
Model Checking Propositional Projection
Temporal Logic Based on SPIN�

Cong Tian and Zhenhua Duan

Institute of Computing Theory and Technology
Xidian University, Xi’an, 710071, P.R. China

{ctian,zhhduan}@mail.xidian.edu.cn

Abstract. This paper investigates amodel checking algorithm for Propo-
sitional Projection Temporal Logic (PPTL) with finite models. To this
end, a PPTL formula is transformed to a Normal Form Graph (NFG),
and then a Nondeterministic Finite Automaton (NFA). The NFA precisely
characterizes the finite models satisfying the corresponding formula and
can be equivalently represented as a Deterministic Finite Automaton
(DFA). When the system to be verified can be modeled as a DFA As, and
the property of the system can be specified by a PPTL formula P , then ¬P
can be transformed to a DFA Ap. Thus, whether the system satisfies the
property or not can be checked by computing the product automaton of
As and Ap, and then checking whether or not the product automaton ac-
cepts the empty word. Further, this method can be implemented by means
of the verification system Spin.

Keywords: Model Checking, Propositional Projection Temporal Logic,
Automaton, Spin, Verification.

1 Introduction

Model checking is an important approach for verification of the properties of
hardware, softwares, multi-agent systems, communication protocols, embedded
systems and so forth. In the last two decades, several model checkers such as
Spin [15] and SMV [16] were developed with success. In particular, as a software
verification system, Spin has attracted a fairly broad group of users in both
academia and industry. Spin can be used as a full Propositional Linear Tempo-
ral Logic (PLTL) [2] model checking system, supporting checks of all correctness
requirements expressible in linear time temporal logic. However, PLTL is not
powerful enough to describe all the ω-regular properties which can be verified in
Spin [15]. For instance, it is impossible to describe the property that proposi-
tion p must hold at even states regardless of odd states over a run (sequence of
states) [20,15]. Thus, to capture a property that is not expressible in PLTL we
need encode it directly into a Never Claim, but this is an error-prone process.
Fortunately, it has been proved that these properties can be specified by more

� This research is supported by the NSFC Grant No. 60373103 and 60433010.

M. Butler, M. Hinchey, M.M. Larrondo-Petrie (Eds.): ICFEM 2007, LNCS 4789, pp. 246–265, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Model Checking Propositional Projection Temporal Logic Based on SPIN 247

powerful logics with chop operator [20]. Within Propositional Projection Tem-
poral Logic (PPTL) [6,7] and Propositional Interval Temporal Logic (PITL) [3],
chop and projection operators are introduced. Thus, the above property can be
specified. It has also been proved that the logic with chop operator has the ex-
pressive power of full regular expressions [20,2]. Therefore, we are motivated to
investigate a model checking algorithm and the corresponding verification tech-
nique based on Spin for PPTL. Note that PPTL is an extension of PITL [6,7,9],
our method can also be applied to PITL.

Within PPTL, many logic laws have been formalized and proved [6,7], and
a decision procedure for checking satisfiability of PPTL formulas with infinite
models has been given in [9]. Thus, model checking PPTL is decidable. The
method presented in this paper is mainly inspired by our previous work [9]. For
simplicity, we consider only PPTL formulas defined over finite intervals. The full
logic will further be studied in the near future.

With our method, the model of the system to be verified is specified by a
DFA As, and the property of the system is described by a PPTL formula P .
Further, ¬P is transformed to a Normal Form Graph (NFG), and then a Nonde-
terministic Finite Automaton (NFA). The NFA precisely characterizes the finite
models satisfying P and can be equivalently represented as a Determined Finite
Automaton (DFA) Ap. Thus, whether the system satisfies property P or not
can be checked by computing the product automaton of As and Ap, and then
checking whether or not the product automaton accepts the empty word. When
implemented in Spin, the system is described in terms of ProMeLa which pro-
duces the automaton As when executed by the ProMeLa interpreter within
Spin. The automaton Ap of ¬P is also described as Never Claim in the syntax
of ProMeLa. Thus, Spin can be employed to implement the model checking
procedure.

Our method has several advantages. For instance, first, the method is based
on the verification tool Spin. As known, Spin is a successful and widely used
software model checking tool. So we can benefit from Spin; secondly, our method
extends the function of Spin since specification language PPTL can be used
in Spin. This enables us to verify systems with properties specified in PLTL
and PPTL; finally, all the properties which can be verified in Spin can now be
specified by PPTL, since logic with chop operator has the expressive power of
full regular expressions.

The rest of the paper is organized as follows. The next section briefly presents
the syntax and semantics of PPTL. Section 3 introduces the normal form of
PPTL formulas. In Section 4, the definition of NFG and the algorithm for con-
structing NFG are given. Further, the upper bound of the number of nodes
in NFGs is proved in details. Section 5 is devoted to the transformation from
NFG to NFA. Further, in Section 6, the model checking method for PPTL is
illustrated and how the method can be implemented in Spin are presented. In
addition, simple examples are given to show how our method works. Finally,
conclusions are drawn in Section 7.

248 C. Tian and Z. Duan

2 Propositional Projection Temporal Logic

Our underlying logic is Propositional Projection Temporal Logic (PPTL) [6,7];
it is an extension of Propositional Interval Temporal Logic (PITL) [3].

2.1 Syntax

Let Prop be a countable set of atomic propositions. The formula P of PPTL is
given by the following grammar:

P ::= p | © P | ¬P | P1 ∨ P2 | (P1, ..., Pm) prj P

where p ∈ Prop, P1 , ..., Pm and P are all well-formed PPTL formulas. ©
(next) and prj (projection) are basic temporal operators. The abbreviations
true, false, ∧, → and ↔ are defined as usual. In particular, true

def= P ∨ ¬P

and false
def= P ∧ ¬P for any formula P . Also we have the following derived

formulas:

ε
def= ¬ © true more

def= ¬ε

©0 P
def= P ©n P

def= ©(©n−1P)
len n

def= ©n ε skip
def= len 1

⊙
P

def= ε ∨ ©P P ; Q
def= (P, Q) prj ε

�P
def= true ; P �P

def= ¬�¬P

halt(P) def= �(ε ↔ P) fin(P) def= �(ε → P)
keep(P) def= �(¬ε → P)

where
⊙

(weak next), � (always), � (sometimes), and ; (chop) are derived
temporal operators; ε (empty) denotes an interval with zero length, and more
means the current state is not the final one over an interval; halt(P) is true over
an interval if and only P is true at the final state, fin(P) is true as long as P
is true at the final state and keep(P) is true if P is true at every state ignoring
the final one.

Also with projection construct (P1, ..., Pm) prj Q, in some circumstances,
there may exist some parts, such as (Pi, ...,Pj), that can repeatedly appear in
P1, ..., Pm for several times. In this case, for concise, the projection construct can
be described as follows:

(P1, ..., (Pi, ..., Pj)k, ..., Pm) prj Q
def= (P1, ..., (Pi, ..., Pj), ..., (Pi, ..., Pj)

︸ ︷︷ ︸
k times

, ..., Pm) prj Q

where 1 ≤ i ≤ j ≤ m, k ≥ 0. When i = 1 and j = m, we have,

(P1, ..., Pm)k prj Q
def= ((P1, ..., Pm), ..., (P1, ..., Pm)

︸ ︷︷ ︸
k times

) prj Q

Model Checking Propositional Projection Temporal Logic Based on SPIN 249

Further, the following formulas can be derived,

ε prj Q
def= (P1, ..., Pm)k prj Q if k = 0

(P1, ..., Pm)+ prj Q
def= (P1, ..., Pm)k prj Q if k > 0

(P1, ..., Pm)∗ prj Q
def= (P1, ..., Pm)k prj Q if k ≥ 0

In particular, when m = 1, let P1 ≡ P , we have,

ε prj Q
def= P k prj Q if k = 0

P+ prj Q
def= P k prj Q if k > 0

P ∗ prj Q
def= P k prj Q if k ≥ 0

Accordingly, in PITL, if P proj Q [3] holds for some P and Q, then we can
express it using prj construction in PPTL,

(P ∗ prj (Q; r ∧ ε)) ∧ halt(r)

where r ∈ Prop does not appear in P and Q.

2.2 Semantics

Following the definition of Kripke’s structure [1], we define a state s over Prop
to be a mapping from Prop to B = {true, false}, s : Prop −→ B. We will use
s[p] to denote the valuation of p at the state s.

An interval σ is a non-empty sequence of states, which can be finite or infinite.
The length, |σ|, of σ is ω if σ is infinite, and the number of states minus 1 if σ is
finite. To have a uniform notation for both finite and infinite intervals, we will
use extended integers as indices. That is, we consider the set N0 of non-negative
integers and ω, Nω = N0 ∪ {ω}, and extend the comparison operators, =, <, ≤,
to Nω by considering ω = ω, and for all i ∈ N0, i < ω. Moreover, we define
� as ≤ −{(ω, ω)}. To simplify definitions, we will denote σ as < s0, ..., s|σ| >,
where s|σ| is undefined if σ is infinite. With such a notation, σ(i..j) (0 ≤ i �
j ≤ |σ|) denotes the sub-interval < si, ..., sj > and σ(k) (0 ≤ k � |σ|) denotes
< sk, ..., s|σ| >. The concatenation of a finite σ with another interval (or empty
string) σ′ is denoted by σ · σ′.

Let σ =< s0, s1, . . . , s|σ| > be an interval and r1, . . . , rh be integers (h ≥ 1)
such that 0 ≤ r1 ≤ r2 ≤ . . . ≤ rh � |σ|. The projection of σ onto r1, . . . , rh is
the interval (named projected interval)

σ ↓ (r1, . . . , rh) =< st1 , st2 , . . . , stl
>

where t1, . . . , tl is obtained from r1, . . . , rh by deleting all duplicates. That is,
t1, . . . , tl is the longest strictly increasing subsequence of r1, . . . , rh. For instance,

< s0, s1, s2, s3, s4 >↓ (0, 0, 2, 2, 2, 3) =< s0, s2, s3 >

250 C. Tian and Z. Duan

An interpretation is a quadruple I = (σ, i, k, j)1, where σ is an interval, i, k are
integers, and j an integer or ω such that i ≤ k � j ≤ |σ|. We use the notation
(σ, i, k, j) |= P to denote that formula P is interpreted and satisfied over the
subinterval < si, ..., sj > of σ with the current state being sk. The satisfaction
relation (|=) is inductively defined as follows:

I |= p iff sk[p] = true, for any given atomic proposition p
I |= ¬P iff I �|= P
I |= P ∨ Q iff I |= P or I |= Q
I |= ©P iff k < j and (σ, i, k + 1, j) |= P
I |= (P1, ..., Pm) prj Q if there exist integers k = r0 ≤ r1 ≤ ... ≤ rm ≤ j

such that (σ, 0, r0, r1) |= P1, (σ, rl−1, rl−1, rl) |= Pl, 1 < l ≤ m, and
(σ′, 0, 0, |σ′|) |= Q for one of the following σ′ :
(a) rm < j and σ′ = σ ↓ (r0, ..., rm) · σ(rm+1..j) or
(b) rm = j and σ′ = σ ↓ (r0, ..., rh) for some 0 ≤ h ≤ m

2.3 Satisfaction and Validity

A formula P is satisfied by an interval σ, denoted by σ |= P , if (σ, 0, 0, |σ|) |= P .
A formula P is called satisfiable if σ |= P for some σ. A formula P is valid,
denoted by |= P , if σ |= P for all σ.

Two formulas, P and Q, are equivalent, denoted by P ≡ Q, if |= �(P ↔ Q).
A formula P is called a state formula if it contains no temporal operators, a
terminal formula if P ≡ P ∧ ε, a non-local formula if P ≡ P ∧ more, and a local
formula if P is a state or terminal formula.

3 Normal Form of PPTL

Definition 1. Let Q be a PPTL formula and Qp denote the set of atomic propo-
sitions appearing in Q. The normal form of Q is defined as follows,

Q ≡
∨n0

j=1(Qej ∧ ε) ∨
∨n

i=1(Qci ∧ ©Q′
i)

where Qej ≡
∧m0

k=1 q̇jk, Qci ≡
∧m

h=1 q̇ih, l = |Qp|, 1 ≤ n (also n0) ≤ 3l, 1 ≤
m (also m0) ≤ l; qjk, qih ∈ Qp, for any r ∈ Qp, ṙ denotes r or ¬r; Q′

i is an
arbitrary PPTL formula2.

In some circumstances, for convenience, we write Qe ∧ε instead of
∨n0

j=1(Qej ∧
ε) and

∨r
i=1(Qi ∧ ©Q′

i) instead of
∨n

i=1(Qci ∧ ©Q′
i). Thus,

Q ≡ (Qe ∧ ε) ∨
∨r

i=1(Qi ∧ ©Q′
i)

where Qe and Qi are state formulas or true.
1 Parameter i is used to handle past operators and redundant with the current version

of the underlying logic. However, to be consistent with previous expositions, it is kept
in the interpretation.

2 It is an exercise to prove n, n0 ≤ 3l.

Model Checking Propositional Projection Temporal Logic Based on SPIN 251

Definition 2. In a normal form, if
∨

i Qi ≡ true and
∨

i�=j(Qi ∧ Qj) ≡ false,
then this normal form is called a complete normal form.

The complete normal form plays an important role in transforming the negation
of a PPTL formula into its normal form. For example, if P has been rewritten
to its complete normal form:

P ≡ Pe ∧ ε ∨
∨r

i=1(Pi ∧ ©P ′
i)

then we have,
¬P ≡ ¬Pe ∧ ε ∨

∨r
i=1(Pi ∧ ©¬P ′

i)

The normal form enables us to rewrite the formula into two parts: the termi-
nating part

∨n0
j=1(Qej ∧ ε) and the future part

∨n
i=1(Qci ∧©Q′

i). For any PPTL
formula P , P can be rewritten into its normal form and complete normal form.
The details of the proofs and the algorithms for transforming PPTL formulas
into normal forms and complete normal forms can be found in [8,9].

4 Normal Form Graph of PPTL

To transform a PPTL formula to an automaton that accepts precisely the se-
quences of sets of propositions satisfying the formula, we first construct a di-
rected graph, called a Normal Form Graph (NFG), for the formula according to
the normal form.

4.1 Definition of NFG

For a PPTL formula P , the NFG of P is a labeled directed graph, G = (CL(P),
EL(P)), where CL(P) denotes the set of nodes and EL(P) denotes the set of
edges in the graph. In CL(P), each node is specified by a formula in PPTL,
while in EL(P), each edge is identified by a triple (Q, Qe, R). Where Q and R
are nodes and Qe is the label of the directed arc from Q to R. CL(P) and EL(P)
of G can be inductively defined below.

Definition 3. For a PPTL formula P , set of nodes, CL(P), and set of of edges,
EL(P), connecting nodes in CL(P) are inductively defined as follows:

1. P ∈ CL(P);
2. For all Q ∈ CL(P) \ {ε, false}, if Q ≡

∨h
j=1(Qej ∧ ε) ∨

∨k
i=1(Qci ∧ ©Q′

i),
then ε ∈ CL(P), (Q, Qej , ε) ∈ EL(P) for each j, 1 ≤ j ≤ h; Q′

i ∈ CL(P),
(Q, Qci, Q

′
i) ∈ EL(P) for all i, 1 ≤ i ≤ k;

CL(P) and EL(P) are only generated by 1 and 2. The NFG of formula P is the
directed graph G = (CL(P), EL(P)).

In the NFG of P , the root node P is denoted by a double circle, ε node by
a small black dot, and each of other nodes by a single circle. Each of the edges
is denoted by a directed arc connecting two nodes. Fig.1 shows an example of
NFG.

252 C. Tian and Z. Duan

4.2 Constructing NFG

In the following, algorithm Nfg for constructing the NFG of a PPTL formula
is presented. It is actually a sketch of the implementation of Definition 3. The

function Nfg(P):
/* precondition: P is a PPTL formula*/
/* postcondition: Nfg(P) computes NFG of P , G = (CL(P),EL(P))*/

begin function
Create root node P ;
Mark(P)=0; AddE = AddN =0;
while there exists node Q (not ε and false) in the NFG and Mark(Q) == 0

Mark(Q)=1; /*marking R is decomposed*/
Rewrite Q to its normal form;
case

Q is
∨h

j=1 Qej ∧ ε: AddE=1; /*need to add first part of NF*/
Q is

∨k

i=1 Qi ∧ ©Q′
i : AddN=1; /*second part of NF needs added*/

Q is
∨h

j=1 Qej ∧ ε ∨
∨k

i=1 Qi ∧ ©Q′
i: AddE=AddN=1;
/*both parts of NF needs added*/

end case
if AddE == 1 /*add first part of NF*/

if there exists no ε node
create node ε;

for 1 ≤ j ≤ h,
create edge (Q, Qej , ε);

end for
AddE=0;

if AddN == 1 /*add second part of NF*/
for 1 ≤ i ≤ k

if Q′
i �∈ CL(P)

create node Q′
i;

if Q′
i is false

mark(Q ′
i)=1; /*Q′

i not decomposed*/
else mark(Q ′

i)=0; /*Q′
i needs to be considered*/

create edge (Q, Qi, Q
′
i);

end for
AddN=0;

end while
return G;

end function

algorithm uses mark [] to indicate whether or not a formula needs to be de-
composed. If mark [P] == 0 (unmarked), P needs further to be decomposed,
otherwise mark [P] == 1 (marked), thus P has been decomposed or needs not
to be precessed. Note that algorithm Nfg employs algorithm Nf [8] to transform
a formula into its normal form. Further, in the algorithm, two global boolean
variables AddE and AddN are employed to indicate whether or not terminating
and future parts in the normal form are encountered respectively. Note also that

Model Checking Propositional Projection Temporal Logic Based on SPIN 253

the algorithm only deals with formulas in a pre-prepared form in which only ∨, ∧
and ¬, as well as temporal operators ©, ; and prj are contained. Others such
as →, ↔, �, �, ¬¬ etc. can be eliminated since they can be expressed by the
basic operators. Algorithm Nfg is slightly different from the one we gave in [9],
since only finite models are considered in this paper.

Example 1. Construct the NFG of formula ¬(true; ¬©q)∨p∧©q by algorithm
Nfg.

As depicted in Fig.1, initially, the root node ¬(true; ¬©q)∨p∧©q is created
and denoted by v0; rewrite ¬(true; ¬©q)∨p∧©q to its normal form, ¬(true; ¬©
q) ∨ p ∧ ©q ≡ ©(q ∧ ¬(true; ¬ © q)) ∨ p ∧ ©q, nodes q ∧ ¬(true; ¬ © q) and q

v0 : ¬(true; ¬ © q) ∨ p ∧ ©q

v1 : q ∧ ¬(true; ¬ © q)
v2 : q

v3 : true

v0

v1 v2

v3
ε

true

q

p

qq

true

true

Fig. 1. NFG of formula ¬(true; ¬ © q) ∨ p ∧ ©q

are created and denoted by v1 and v2 respectively; also edges (v0, true, v1) and
(v0, p, v2) are created; further, rewrite q ∧ ¬(true; ¬ © q) to its normal form, q ∧
¬(true; ¬©q) ≡ q∧©(q∧¬(true; ¬©q)), edge (v1, q, v1) is created; subsequently,
rewrite q to its normal form, q ≡ q∧ε∨q∧©true, node true, denoted by v3 and
ε node are created, also edges (v2, q, ε) and (v2, q, v3) are created; finally, rewrite
true to its normal form, true ≡ ε ∨ ©true, edges (v3, true, ε) and (v3, true, v3)
are created.

4.3 Upper Bound of NFGs

For an arbitrary PPTL formula Q, if Q is rewritten into its normal form as
follows,

Q ≡ (Qe ∧ ε) ∨
∨r

i=1(Qi ∧ ©Q′
i)

then ε or each of Q′
i is called a succ-formula of Q. The set of succ-formulas of Q

is denoted by succ(Q).
The length of a PPTL formula Q is denoted by length(Q) (or |Q|), and is

inductively defined in Definition 4. Note that we need consider only the operators
¬, ©, ∨, ∧, ; and prj supported in algorithm Nfg.

Definition 4. Let θ be an atomic proposition, or derived formula true, false or
ε, length(θ)=1. Suppose Pi, 1 ≤ i ≤ m, and Q are PPTL formulas, length(Pi) =
ni and length(Q) = n, then

254 C. Tian and Z. Duan

– For unary operators ¬ or © denoted by Θ1, length(Θ1Q) = n + 1
– For binary operators ;, ∨ or ∧ denoted by Θ2, length(P1Θ2P2) = n1 +n2 +1
– For operator prj, length((P1, ..., Pm) prj Q) = n1 + ... + nm + n + m

Roughly speaking, the length of a formula P is the number of the symbols
appearing in P .

Lemma 1. Suppose for each formula Pi and Q, 0 ≤ i ≤ m, the length of each
succ-formula of Pi (or Q) is not larger than the length of Pi (or Q), then the
length of each succ-formula of (P1, ..., Pm) prj Q is not larger than the length of
(P1, ..., Pm) prj Q.

Proof. The proof proceeds by induction on m. Suppose P1 and Q are rewritten
into their normal forms,

P1 ≡ P1e ∧ ε ∨
∨n

i=1(P1i ∧ ©P ′
1i)

Q ≡ Qe ∧ ε ∨
∨n′

k=1(Qk ∧ ©Q′
k)

By hypothesis, |ε| ≤ |P1|, |ε| ≤ |Q|, for each i, 1 ≤ i ≤ n, |P ′
1i| ≤ |P1|, and for

each k, 1 ≤ k ≤ n′, |Q′
k| ≤ |Q|. Since,

P1 prj Q ≡ P1e ∧ Qe ∧ ε ∨
∨n

i=1(P1i ∧ Qe ∧ ©P ′
1i)

∨
∨n

i=1
∨n′

k=1(P1i ∧ Qk ∧ ©(P ′
1i; Q

′
k))

∨
∨n′

k=1(P1e ∧ Qk ∧ ©Q′
k)

So, succ(P1 prj Q) = {ε} ∪
⋃n

i=1(P
′
1i) ∪

⋃n
i=1

⋃n′

k=1(P
′
1i; Q

′
k) ∪

⋃n′

k=1(Q
′
k). Ob-

viously, |ε| ≤ |P1 prj Q|; for each P ′
1i and Q′

k, |P ′
1i| ≤ |P1| ≤ |P1 prj Q| and

|Q′
k| ≤ |Q| ≤ |P1 prj Q|; for each P ′

1i; Q
′
k, |P ′

1i; Q
′
k| = |P ′

1i prj Q′
k| ≤ |P1 prj Q|.

Suppose (P2, ..., Pm) prj Q has been rewritten to its normal form,

(P2, ..., Pm) prj Q ≡ Re ∧ ε ∨
∨t

j=1(Rj ∧ ©R′
j)

And for ε and each R′
j , |ε| ≤ |(P2, ..., Pm) prj Q|, |R′

j | ≤ |(P2, ..., Pm) prj Q|.
Since,

(P1, ..., Pm) prj Q

≡ P1e ∧ Re ∧ ε ∨
∨t

j=1(P1e ∧ Rj ∧ ©R′
j)

∨
∨n

i=1
∨n′

k=1(P1i ∧ Qk ∧ ©(P ′
1i; ((P2, ..., Pm) prj Q′

k)))
∨

∨n
i=1(P1i ∧ Qe ∧ ©(Q′

1i; P2; ...; Pm))

So, succ((P1, ..., Pm) prj Q) = {ε}∪
⋃t

j=1(R
′
j)∪

⋃n
i=1

⋃n′

k=1(P
′
1i; ((P2, ..., Pm) prj

Q′
k)) ∪

⋃n
i=1(Q

′
1i; P2; ...; Pm). Obviously, |ε| ≤ |(P1, ..., Pm) prj Q|; for each R′

j ,
|R′

j | ≤ |(P2, ..., Pm) prj Q| ≤ |(P1, ..., Pm) prj Q|; for each P ′
1i; ((P2, ..., Pm) prj Q′

k),
|P ′

1i; ((P2, ..., Pm) prj Q′
k)| ≤ |(P1, ..., Pm) prj Q|; for each Q′

1i; P2; ...; Pm,
|Q′

1i; P2; ...; Pm| ≤ |(P2, ..., Pm) prj Q| ≤ |(P1, ..., Pm) prj Q|. Thus, the lemma
holds.

Model Checking Propositional Projection Temporal Logic Based on SPIN 255

Lemma 2. For any PPTL formula P , when rewritten into its normal form, the
length of each succ-formula of P is not larger than the length of P .

Proof. The proof proceeds by induction on the structure of PPTL formulas
composed of the operators ¬, ©, ∧, ∨, ; and prj which are supported in algorithm
Nfg.
Base case: P is an atomic proposition p. Rewrite p to its normal form, p ≡
p ∧ ε ∨ p ∧ ©true. For the succ-formulas ε and true, |ε| ≤ |p|, |true| ≤ |p|.
Induction step: Suppose for each formula Pi (or Q), 0 ≤ i ≤ m, when rewritten
into its normal form, the length of each succ-formula of Pi (or Q) will be not
larger than the length of Pi (or Q). Then,
(1) P ≡ ©P1: |P1| < 1 + |P1| = |P |.
(2) P ≡ ¬P1: If the complete normal form of P1 is as follows,

P1 ≡ (P1e ∧ ε) ∨
∨r

i=1(P1i ∧ ©P ′
1i)

then,
¬P1 ≡ (¬P1e ∧ ε) ∨

∨r
i=1(P1i ∧ ©¬P ′

1i)

By hypothesis, |ε| ≤ |P1|, |P ′
1i| ≤ |P1|, 1 ≤ i ≤ r. Thus, we have |ε| ≤ |P1| <

1 + |P1| = |¬P1|, |¬P ′
1i| = 1 + |P ′

1i| ≤ 1 + |P1| = |¬P1|, 1 ≤ i ≤ r.
(3) P ≡ P1 ∨ P2: Let

P1 ≡ (P1e ∧ ε) ∨
∨r

i=1(P1i ∧ ©P ′
1i)

P2 ≡ (P2e ∧ ε) ∨
∨k

j=1(P2j ∧ ©P ′
2j)

Then,

P1 ∨ P2 ≡ (P1e ∨ P2e) ∧ ε ∨
∨r

i=1(P1i ∧ ©P ′
1i) ∨

∨k
j=1(P2j ∧ ©P ′

2j)

By hypothesis, |ε| ≤ |P1|, |ε| ≤ |P2|, |P ′
1i| ≤ |P1|, 1 ≤ i ≤ r, and |P ′

2j | ≤ |P2|,
1 ≤ j ≤ k. Thus, we have |ε| ≤ |P1| < |P1| + |P2| + 1 = |P1 ∨ P2|, |P ′

1i| ≤ |P1| <
|P1|+ |P2|+1 = |P1∨P2|, 1 ≤ i ≤ r, and |P ′

2i| ≤ |P2| < |P1|+ |P2|+1 = |P1∨P2|.
(4) P ≡ P1 ∧ P2: Let

P1 ≡ (P1e ∧ ε) ∨
∨r

i=1(P1i ∧ ©P ′
1i)

P2 ≡ (P2e ∧ ε) ∨
∨k

j=1(P2j ∧ ©P ′
2j)

Then,

P1 ∧ P2 ≡ (P1e ∧ P2e) ∧ ε ∨
∨r

i=1
∨k

j=1(P1i ∧ P2j ∧ ©(P ′
1i ∧ P ′

2j))

By hypothesis, |ε| ≤ |P1|, |ε| ≤ |P2|, |P ′
1i| ≤ |P1|, 1 ≤ i ≤ r, and |P ′

2j | ≤ |P2|,
1 ≤ j ≤ k. Thus, we have |ε| ≤ |P1| < |P1| + |P2| + 1 = |P1 ∧ P2|, |P ′

1i ∧ P ′
2j | =

|P ′
1i| + |P ′

2j | + 1 ≤ |P1| + |P2| + 1 = |P1 ∧ P2|, 1 ≤ i ≤ r and 1 ≤ j ≤ k.
(5) P ≡ P1; P2: Let

P1 ≡ (P1e ∧ ε) ∨
∨r

i=1(P1i ∧ ©P ′
1i)

P2 ≡ (P2e ∧ ε) ∨
∨k

j=1(P2j ∧ ©P ′
2j)

256 C. Tian and Z. Duan

Then,

P1; P2 ≡ P1e ∧ P2e ∧ ε ∨ P1e ∧
∨k

j=1(P2j ∧ ©P ′
2j) ∨

∨r
i=1(P1i ∧ ©(P ′

1i; P2))

By hypothesis, |ε| ≤ |P1|, |ε| ≤ |P2|, |P ′
1i| ≤ |P1|, 1 ≤ i ≤ r, and |P ′

2j | ≤ |P2|,
1 ≤ j ≤ k. Thus, we have |ε| ≤ |P1| < |P1| + |P2| + 1 = |P1; P2|, |P ′

2j | ≤ |P2| <
|P1|+ |P2|+1 = |P1; P2|, 1 ≤ i ≤ r, |P ′

1i; P2| = |P ′
1i|+ |P2|+1 ≤ |P1|+ |P2|+1 =

|P1; P2|.
(6) P ≡ (P1, ..., Pm) prj Q: The conclusion has been proved in Lemma 1.

Theorem 3. For any PPTL formula Q, let |Q| = n, and Qp denote the set
of atomic propositions appearing in Q, and |Qp| = l. Let the NFG of Q be
G = (CL(Q), EL(Q)). Then we have |CL(Q)| ≤ (10 + l)n.

Proof. By algorithm Nfg, the nodes of the NFG of Q are generated by repeat-
edly rewriting the new generated succ-formulas into their normal forms. Further,
Lemma 2 confirms that when written into the normal form, the length of each
succ-formula of Q is not larger than the length of Q. Moreover, each node (for-
mula) in the NFG of Q is composed of basic connectives, ¬, ∧, ∨, ©, ; , prj, and
comma (,)3 brought forth by prj, atomic propositions appearing in Q, as well
as true and false. Accordingly, there are at most (9 + l) symbols possibly ap-
pearing in a formula. In addition, each formula is no longer than n. Hence, by
the principle of permutation and combination, at most (10 + l)n formulas (as
nodes) can appear in the NFG of Q, leading to |CL(Q)| ≤ (10 + l)n.

In the NFG constructed by algorithm Nfg for formula Q, a finite path, Π =
〈Q, Qe, Q1, Q1e, ..., ε〉, is an alternating sequence of nodes and edges from the
root to ε node. Actually, a finite path in the NFG of formula Q corresponds to
a finite model of Q. The fact is concluded in [9].

5 Nondeterministic Finite Automata of PPTL

In this section, we show how to build a Nondeterministic Finite Automaton from
an NFG. First, let us recall the definition of Nondeterministic Finite Automa-
ton [12].

5.1 Nondeterministic Finite Automata

Definition 5. A Nondeterministic Finite Automaton is a quintuple A = (Q, Σ,
δ, q0, F), where,
• Q is a finite set of states
• Σ is a finite set of input symbols
• q0 ∈ Q, is the start state
• F ⊆ Q, is the set of final (or accepting) states
• δ, a transition function δ : Q × Σ → 2Q

3 Here , is used in the prj construct.

Model Checking Propositional Projection Temporal Logic Based on SPIN 257

For an NFA, the transition function δ is extended to a function δ̂ that takes
a state q and a string of input symbols w as its input, and returns the set of
states in Q if it starts in state q and successfully processes the string w. The
NFA accepts a string w if it is possible to make any sequence of choices of next
state, while reading the characters of w, and go from the start state to any
accepting state. The fact that other choices using the input symbols of w lead
to a non-accepting state, or do not lead to any state at all (i.e., the sequence of
states ”dies”), doses not prevent w from being accepted by the NFA as a whole.
Formally, for an NFA A = (Q, Σ, δ, q0, F), then

L(A) = {w | δ̂(q0, w) ∩ F �= φ}

That is, L(A) is the set of strings w in Σ∗ such that δ̂(q0, w) contains at least
one accepting state.

5.2 Constructing NFAs from NFGs

For a PPTL formula P , let Pp be the set of atomic propositions appearing in P ,
and |Pp| = l. Further, we define sets Ai (1 ≤ i ≤ l) as follows,

Ai = {{ ˙qj1 , ..., ˙qji} | qjk
∈ Pp, 1 ≤ k ≤ i}

Thus, the alphabet Σ for the DFA of formula P can be defined as follows,

Σ =
l⋃

i=1

Ai ∪ {true}

It can be proved that |Σ| = 3l.
Let qk be an atomic proposition, we define a function atom(

∧m0
k=1 q̇k) for

picking up atomic propositions or their negations appearing in
∧m0

k=1 q̇k as follows,

atom(true) = {true}

atom(q̇1) =
{

{q1}, if q̇1 ≡ q1
{¬q1}, otherwise

atom(
∧m0

k=1 q̇k) = atom(q̇1) ∪ atom(
∧m0

k=2 q̇k)

Accordingly, algorithm Nfg-Nfa is given for obtaining an NFA from the NFG,
G = (CL(P), EL(P)), of PPTL formula P . In the algorithm, each node in the
NFG is transformed as a state in the corresponding NFA; each edge (Pi, Pe, Pj)
forms a transition in the NFA, Pj ∈ δ(Pi, atom(Pe)); the root node P and ε
node forms the start state q0 and the accepting state respectively. Alphabet Σ is
defined as above. Further, as proved, the number of the nodes in the NFG of P
meets |CL(P)| ≤ (10+ l)n, so does the number of states in NFA, |Q| ≤ (10+ l)n.

Example 2. (Continue Example 1) Construct NFA of formula ¬(true; ¬©q)∨
p ∧ ©q.

258 C. Tian and Z. Duan

Function Nfg-Nfa(G)
/* precondition: G = (CL(P), EL(P)) is an NFG of PPTL formula P*/
/* postcondition: Nfg-Nfa(G) computes an NFA A = (Q, Σ, δ, q0, F) from G*/

begin function
Q = φ; F = φ; q0 = {P}; δ = φ;
for each node Pi ∈ CL(P),

add a state Pi to Q, Q = Q ∪ {Pi};
if Pi is ε, F = F ∪ {Pi};

end for
for each edge (Pi, Pe, Pj) ∈ EL(P),

Pj ∈ δ(Pi, atom(Pe));
end for
return A = (Q, Σ, δ, q0, F)

end function

By algorithm Nfg-Nfa, the NFA A = (Q, Σ, δ, q0, F) for formula ¬(true; ¬©
q) ∨ p ∧ ©q can be obtained from the NFG G built with Example 1 as follows,

• Q={q0, q1, q2, q3, q4} is obtained from the set of nodes in G, {v0, v1, v2, v3, ε}
• q0 is v0 in G
• F={q4}, since q4 is the ε node in G
• a0=atom(ture)={true}, a1=atom(q)={q}, a2=atom(p)={p}; δ(q0, a0)={q1},
δ(q0, a2)={q2}, δ(q1, a1)={q1}, δ(q2, a1)={q3}, δ(q2, a0)={q4}, δ(q3, a0)={q3, q4}

Thus, A is depicted in Fig.2.

a0

q3

a1

q2

q1

q4

q0

a2 a1
a0

a0

a0

Fig. 2. NFA for ¬(true; ¬ © q) ∨ p ∧ ©q

Given a PPTL formula P , let M(P) denote the set of finite models of P ,
G(P) the NFG of P , and A(P) the DFA of P . According to algorithm Nfg-

Nfa, for each finite path Π = 〈P, Pe, P1, P1e, ..., Pie, ε〉 in G(P), there exists
a word w = atom(Pe)atom(P1e)... atom(Pie) accepted by A(P). Further, for
an arbitrary word w = a0a1...ai accepted by A(P), there exists a finite model
σ =< s0, s1, ..., si > in M(P), where if atomic proposition q ∈ a0, si[q] = true,
otherwise if ¬q ∈ a0, si[q] = false. Moreover, in [9], we have proved that for any
finite model in M(P), there exists a finite path in G(P), and also for any finite
path in G(P), there exists a corresponding model in M(P). So the relationship
among M(P), G(P) and A(P) is shown in Fig.3. Thus, we can conclude that

Model Checking Propositional Projection Temporal Logic Based on SPIN 259

G(P)A(P)

M(P) M
odel to

Path

Path
to

M
odel

Path to Word

W
or

d
to

M
od

el

Fig. 3. Relationship among models, NFGs and DFAs

the DFA of formula P precisely characterizes the finite models of P . In a sense,
the M(P), G(P) and A(P) are equivalent.

6 Model Checking PPTL Based on SPIN

6.1 Model Checking PPTL Based on SPIN

Similar to the traditionally automata based model checking algorithm for PLTL
[13], with our approach, the system M is modeled as a DFA, while the property
is specified by a PPTL formula P . To check whether M satisfies P or not, ¬P
is transformed into an NFG, and further an NFA. The NFA can be equivalently
represented as a DFA. Thus, the model checking procedure can be done by
computing the product of the two automata and then deciding whether the
words accepted by the product automaton is empty or not as shown in Fig. 4. If

Property

DFA of ¬P

System

DFA

P

NFG of ¬P

NFA of ¬PModel of system

check

product

yes no
(counter-example)

automaton

emptiness

Fig. 4. Model checking PPTL

the words accepted by the product automaton is empty, the system can satisfy
the property, otherwise the system cannot satisfy the property, and counter-
examples are found.

260 C. Tian and Z. Duan

To implement our method with Spin, the model of the system is still specified
in ProMeLa. The property of the system is expressed by a PPTL formula. The
negation of the formula is transformed into an NFG and then an NFA. Further,
we transform the NFA to a DFA. By describing the DFA in terms of Never
Claim, Spin can be employed to complete the model checking procedure.

6.2 Case Studies

Example 3. The property “p is true at every odd position” is a typical example
for showing the limitation of the expressive power of PLTL. Here, we present a
simple system which has this property first; then specify the property by PPTL;
finally illustrate how the system can be checked with our method. In Fig.5, a

p, ¬r ¬p,¬rp,¬r p, rp,¬r¬p,¬r p,¬r

s1 s2 s3 s4 s5 s6 s7

Fig. 5. Model of the system

system is shown as a Kripke structure, where p holds at states s1, s3, s4, s5
and s7; ¬p holds at states s2 and s6; ¬r holds over the sequence except for the
final state s7. The system has a property that p holds at every odd state. The
property can be specified by the following PPTL formula,

(len(2)∗ prj (�p; r ∧ ε)) ∧ halt(r)

Accordingly, the NFG of formula ¬((len(2)∗ prj (�p; r ∧ ε)) ∧ halt(r)) can be
constructed as shown in Fig.6. And the corresponding NFA and DFA are shown

v0 : ¬((len(2)∗ prj (�p; r ∧ ε)) ∧ halt(r))

v1 : ¬((©ε; (len(2)∗ prj (�p; r ∧ ε))) ∧ halt(r))
p ∧ ¬r

true

v0

v2

ε

¬p

¬r
¬r v1

¬p r

v2 : true

true

true

Fig. 6. NFG of ¬((len(2)∗ prj (�p; r ∧ ε)) ∧ halt(r))

in Fig.7 (a) and (b) respectively.

Model Checking Propositional Projection Temporal Logic Based on SPIN 261

Init

q0 q1q2

a0

a1

a1

a0 = {p, ¬r}
a1 = {¬r}
a2 = {¬p} a2

a3
a3 = {true}
a4 = {r}

Init

q0 q1q3

a0

a1

a1
a2

a3

q2

a2 a4

a3

a3 a4

a3

(a) (b)

Fig. 7. NFA and DFA of ¬((len(2)∗ prj (�p; r ∧ ε)) ∧ halt(r))

Further, the DFA can be expressed in Never Claim as shown in Fig.8. When
implemented in Spin, it outputs that the system satisfies the property.

Never{/*¬((len(2)∗ prj (�p; r)) ∧ halt(r))*/
T0 init:

if
::((!r)||(!p)||(r)) → goto accept all
::((p) && (!r))→ goto T0 S2
fi;

T0 S2:
if
::(!r)→ goto T0 init
::(1)→ goto accept all
fi

accept all:
if
::skip
::(1)→ goto accept-all
fi

}

Fig. 8. Never Claim of ¬((len(2)∗ prj (�p; r ∧ ε)) ∧ halt(r))

Example 4. This example shows how Needham-Schroeder protocol [18] can be
verified by our method. In the protocol, two agents A(lice) and B(ob) try to
establish a common secret over an insecure channel in such a way that both are
convinced of each other’s presence and no intruder can get hold of the secret
without breaking the underlying encryption algorithm. The protocol is pictori-
ally represented in Fig.9. It requires the exchanges of three messages between
the participating agents. Notation such as 〈M〉C denotes the message M is en-
crypted using C’s public key. Throughout, we assume the underlying encryption
algorithm to be secure and the private keys of the honest agents to be uncom-
promised. Therefore, only agent C can decrypt 〈M〉C to learn M .

262 C. Tian and Z. Duan

Fig. 9. Needham-Schroeder public-key protocol

1. Alice initiates the protocol by generating a random number NA and send-
ing the message 〈A, NA〉B to Bob (numbers such as NA are called nonces
in cryptographic jargon, indicating that they should be used only once by
any honest agent). The first component of the message informs Bob of the
identity of the initiator. The second component represents one half of the
secret.

2. Bob similarly generates anonceNB and respondswith themessage 〈NA, NB〉A.
The presence of the nonce NA generated in the first step, which only Bob could
have decrypted, convinces Alice of the authenticity of the message. She there-
fore accepts the pair 〈NA, NB〉 as the common secret.

3. Finally, Alice responds with the message 〈NB〉B. By the same argument
as above, Bob concludes that this message must originate with Alice, and
therefore also accepts 〈NA, NB〉 as the common secret.

We assume all messages to be sent over an insecure medium. Attackers may
intercept messages, store them, and perhaps replay them later. They may also
participate in ordinary runs of the protocol, initiate runs or respond to runs
initiated by honest agents, who need not be aware of their partners true identity.
However, even an attacker can only decrypt messages that were encrypted with
his own public key.

The purpose of the protocol is to ensure mutual authentication (of honest
agents) while maintaining secrecy. In other words, whenever both A and B have
successfully completed a run of the protocol, then A should believe her partner to
be B if and only if B believes to talk to A. Moreover, if A successfully completes
a run with B then the intruder should not have learnt A’s nonce, and similarly
for B. These properties can be expressed in PPTL as follows:

�((statusA = ok ∧ statusB = ok) → ((partnerA = B) ↔ (partnerB = A)))
�(statusA = ok ∧ partnerA = B → ¬knows − nonceA)
�(statusB = ok ∧ partnerB = A → ¬knows − nonceB)

We focus on the first formula. To present it in a standard way, P , Q and R are
employed to denote statusA=ok ∧statusB=ok, partnerA=B and partnerB=A
respectively. Thus, we have

�(P → (Q ↔ R))

Model Checking Propositional Projection Temporal Logic Based on SPIN 263

v1 : true

v0

v1ε true

v0 : true; (P ∧ Q ∧ ¬R ∨ P ∧ ¬Q ∧ R)
P ∧ Q ∧ ¬R

true

P ∧ ¬Q ∧ R

P ∧ Q ∧ ¬R

P ∧ ¬Q ∧ R

true

Fig. 10. NFG of formula ¬�(P → (Q ↔ R))

Accordingly, ¬�(P → (Q ↔ R)) is transformed to NFG (see Fig.10), NFA
and then DFA subsequently (the NFA and DFA are depicted in Fig.11 (1) and
(2) respectively). Note that, to transform the NFG of ¬�(P → (Q ↔ R)) by
Algorithm Nfg, the formula is equivalently rewritten as true; (P ∧Q∧¬R∨P ∧
¬Q ∧ R). Further, the DFA can be expressed in Never Claim as shown in Fig.12

a1

q1q0

a0

a0
a1

q2

q1

q0

a2

a0

a0

a0

(1) (2)

a1

a2

a2

a0 : {true}

a2 : {P,¬Q, R}
a1 : {P, Q,¬R}

Fig. 11. NFA and DFA of formula ¬�(P → (Q ↔ R))

Never{/*�(P → (Q ↔ R))*/
T0-init:

if
::((P&&Q&&!R)||(P&&!Q&&R)) → goto accept-all
::(1)→ goto T0-init
fi

accept-all:
if
::skip
::(1)→ goto accept-all
fi

}

Fig. 12. Never Claim of formula ¬�(P → (Q ↔ R))

Providing the ProMeLa specification of the protocol and the Never Claim
of ¬�(P → (Q ↔ R)), Spin declares the property violated and outputs a run
that contains the attack. The run is visualized as a message sequence of chart,
shown in Fig.13. Alice initiates a protocol run with Intruder who in turn (but
masquerading as A) starts a run with Bob, using the nonce received in the first

264 C. Tian and Z. Duan

message. Bob replies with a message of type 2 that contains both A’s and B’s
nonces, encrypted for A. Although agent I cannot decrypt that message itself, it
forwards it to A. Unsuspecting, Alice finds her nonce, returns the second nonce to
her partner I, and declares success. This time, agent I can decrypt the message,
extracts B’s nonce and sends it to B who is also satisfied. As a result, we have
reached a state where A correctly believes to have completed a run with I, but
B is fooled into believing to talk to A.

Fig. 13. Checking result of Needham-Schroeder protocol

7 Conclusions

In this paper, we have presented a model checking approach for PPTL with
finite models. This enables us to verify properties of concurrent systems with
PPTL by means of Spin. To support our approach, we have developed a tool,
a translator from PPTL formulas to Never Claim in C++, in which all of the
algorithms presented in the paper have been implemented. The tool works well
with Spin. However, we are only concerned with finite models in this paper. In
the near future, we will further investigate both finite and infinite models with
our approach. Furthermore, we are motivated to develop a practical verification
environment for the verification of Web services and hardware systems with a
set of supporting tools based on the model checker for PPTL.

Model Checking Propositional Projection Temporal Logic Based on SPIN 265

References

1. Kripke, S.A.: Semantical analysis of modal logic I: normal propositional calculi. Z.
Math. Logik Grund. Math. 9, 67–96 (1963)

2. Rosner, R., Pnueli, A.: A choppy logic. In: LICS, pp. 306–314. IEEE Computer
Society Press, Los Alamitos (1986)

3. Moszkowski, B.: Reasoning about digital circuits. Ph.D Thesis, Department of
Computer Science, Stanford University. TRSTAN-CS-83-970 (1983)

4. Moszkowski, B.: An Automata-Theoretic Completeness Proof for Interval Tempo-
ral Logic. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS,
vol. 1853, pp. 223–234. Springer, Heidelberg (2000)

5. Zhou, C., Hoare, C.A.R., Ravn, A.P.: A calculus of duration. Information Process-
ing Letters 40(5), 269–275 (1991)

6. Duan, Z.: An Extended Interval Temporal Logic and A Framing Technique for
Temporal Logic Programming. PhD thesis, University of Newcastle Upon Tyne
(May 1996)

7. Duan, Z.: Temporal Logic and Temporal Logic Programming. Science Press, China
(2006)

8. Duan, Z., Zhang, L.: A Decision Procedure for Propositional Projection Temporal
Logic. Technical Report No.1, Institute of computing Theory and Technology, Xi-
dian University, Xi’an P.R.China (2005),
http://www.paper.edu.cn/process/download.jsp?file=200611-427

9. Duan, Z., Tian, C.: Decidability of Propositional Projection Temporal Logic with
Infinite Models. In: TAMC 2007. LNCS, vol. 4484, pp. 521–532. Springer, Heidel-
berg (2007)

10. Duan, Z., Yang, X., Koutny, M.: Semantics of Framed Temporal Logic Programs.
In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 256–270.
Springer, Heidelberg (2005)

11. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems.
Springer, Heidelberg (1992)

12. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages and Computation, 2nd edn. Addison-Wesley, Reading (2001)

13. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: LICS 1986, pp. 332–344. IEEE CS Press, Los Alamitos (1986)

14. Dutertre, B.: Complete proof systems for first order interval temporal logic. In:
Proc. 10th LICS, pp. 36–43. IEEE Computer Soc. Press, Los Alamitos (1995)

15. Holzmann, G.J.: The Model Checker Spin. IEEE Trans. on Software Engineer-
ing 23(5), 279–295 (1997)

16. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Dor-
drecht (1993)

17. Lowe, G.: Breaking and fixing the Needham-Schroeder public key protocol using
FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–
166. Springer, Heidelberg (1996)

18. Needham, R., Schroeder, M.: Using encryption for authentication in large networks
of computers. Communications of the ACM 21(12), 993–999 (1978)

19. Merz, S.: Model Checking: A Tutorial Overview. In: Cassez, F., Jard, C., Rozoy, B.,
Dermot, M. (eds.) MOVEP 2000. LNCS, vol. 2067, pp. 3–38. Springer, Heidelberg
(2001)

20. Wolper, P.L.: Temporal logic can be more expressive. Information and Control 56,
72–99 (1983)

http://www.paper.edu.cn/process/download.jsp?file=200611-427

	Model Checking Propositional Projection Temporal Logic Based on SPIN
	Introduction
	Propositional Projection Temporal Logic
	Syntax
	 Semantics
	 Satisfaction and Validity

	Normal Form of PPTL
	Normal Form Graph of PPTL
	Definition of NFG
	Constructing NFG
	Upper Bound of NFGs

	Nondeterministic Finite Automata of PPTL
	Nondeterministic Finite Automata
	Constructing NFAs from NFGs

	Model Checking PPTL Based on SPIN
	Model Checking PPTL Based on SPIN
	Case Studies

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

