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Preface

Formal methods for the development of computer systems have been extensively
researched and studied. A range of semantic theories, specification languages,
design techniques, and verification methods and tools have been developed and
applied to the construction of programs of moderate size that are used in critical
applications. The challenge now is to scale up formal methods and integrate
them into engineering development processes for the correct construction and
maintenance of computer systems. This requires us to improve the state of the
art by researching the integration of methods and their theories, and merging
them into industrial engineering practice, including new and emerging practice.

ICFEM, the International Conference on Formal Engineering Methods, aims
to bring together those interested in the application of formal engineering meth-
ods to computer systems. Researchers and practitioners, from industry, academia,
and government, are encouraged to attend and to help advance the state of the
art. The conference particularly encourages research that aims at a combination
of conceptual and methodological aspects with their formal foundation and tool
support, and work that has been incorporated into the production of real systems.

This volume contains the papers presented at ICFEM 2007 held November
14–15, 2007 in Florida Atlantic University, Boca Raton, Florida. There were 38
submissions. Each submission was reviewed by four Program Committee mem-
bers. The committee decided to accept 19 papers based on originality, technical
soundness, presentation, and relevance to formal engineering and verification
methods. We thank the Program Committee members and the other referees for
their effort and professional work in the reviewing and selecting process. The pro-
gram also includes contributions from the two keynote speakers: Jean-Raymond
Abrial and Tom Maibaum. Professor Abrial gave a talk on a system development
process with Event-B and the Rodin Platform while Professor Maibaum gave a
talk on the challenges of software certification.

A workshop on the verifiable file store mini-challenge was held on November
13, 2007 co-located with ICFEM 2007.This workshopwas organizedby Jim Wood-
cock and Leo Freitas as part of the Grand Challenge in Verified Software.

ICFEM 2007 was jointly organized and sponsored by Florida Atlantic Uni-
versity, Loyola College in Maryland, and the University of Southampton and
we would like to thank all those who helped in the organization. We used the
Easychair system to manage the submissions, refereeing, paper selection, and
proceedings production. We would like to thank the Easychair team for a very
powerful tool.

August 2007 Michael Butler
Mike Hinchey

Maria M. Larrondo-Petrie
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A System Development Process with Event-B

and the Rodin Platform

J.-R. Abrial

jabrial@inf.ethz.ch

Event-B is the name of a mathematical (set-theoretic) approach used to develop
, be they computerized or not.

The Rodin platform is an open tool set devoted to supporting the devel-
opment of such systems. It contains a modeling database surrounded by various
plug-ins: static checker, proof obligation generator, provers, model-checkers, an-
imators, UML transformers, requirement document handler, etc. The database
itself contains the various modeling elements needed to construct discrete tran-
sition system models: essentially variables, invariants, and transitions.

Formal Development. With the help of this palette, users can develop math-
ematical models and refine them. In doing so, they are able to reason, modify,
and decompose their models before starting the effective implementation of the
corresponding systems. Such an approach is well known and widely used in many
mature engineering disciplines where reasoning on a abstract representation of
the future system is routine. Just think of the usage of blueprints made by
architects within a building construction process.

Technology Transfer. One of the main difficulties in transferring this technol-
ogy is not that of its mastering by industry engineers (a common opinion shared
by many analysts). It is rather, we think, the incorporation of this technology
within the industrial . We believe that the above argument
about the difficulty of mastering this technology is, in fact, a way of hiding (con-
sciously or not) the one concerning the incorporation within the development
process.

This Presentation. The aim of this presentation is to show that the Event-B
technology can be put into practice. For this, we must follow a well defined de-
velopment process. That process is precisely the one which has to be transferred
to industry. The Rodin platform, in its final form, will be the supporting tool
for achieving this.

Before describing the Event-B development process however, we make precise
what we mean by an industrial development process in general terms.

Industrial Development Processes are now common practice among im-
portant critical system manufacturers (train signalling system companies, avionic
and space companies, automotive manufacturers, power system designers, de-
fense sector industries, etc.). A system development process contains the defini-
tion of the various milestones encountered in the system construction together
with the precise definition of what is to be done between these milestones, by

M. Butler, M. Hinchey, M.M. Larrondo-Petrie (Eds.): ICFEM 2007, LNCS 4789, pp. 1–3, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 J.-R. Abrial

whom, and within which delays. It also contains different ways of re-iterating on
these milestones in case the process encounters some difficulties.

Usually, industrial managers are very reluctant to modify their development
processes because: (1) it is part of their company culture and image, (2) it is
difficult to define and make precise, and (3) it is even more difficult to have them
accepted and followed by working engineers.

In order to know how to modify the development process due to the introduc-
tion of some formal method technology (Event-B and Rodin) in the construction
of complex systems, it is clearly very important to understand that this process
is aimed at obtaining systems which can be considered to be

. This presentation does not pretend to solve all related problems nor to give
the key to a successful incorporation of formal methods in industry: it aims at
providing the beginning of a systematic way of envisaging these matters.

Let us now briefly present the Event-B development process and show how
the Rodin platform supports it.

Requirement Document. After the initial feasibility studies phase which is
not subsequently modified, the second phase of the process is the writing of
the . It must be pointed out that most of the time such
documents are very poor: quite often, they just contain the pseudo-solution of
a problem which, to begin with, is not stated. Our opinion is that it is very
risky to proceed further with such poor documents. More precisely, we think
that it is necessary to rewrite them very carefully in a systematic fashion. Each
requirement must be stated by means of a short English statement which is well
recognizable and clearly labelled according to some taxonomy to be defined for
each project.

The Rodin platform in its final form will provide a plug-in able to support
the gradual construction of such structured requirement documents, to retrieve
them, and to form the initial basis of the necessary traceability.

Refinement Strategy. The next phase consists in defining a temporary
. It contains the successive steps of the refined models construction.

Clearly, it is out of the question to construct a unique model taking account of
all requirements at once. Each such refinement step must give a reference to
the precise requirements, stated in the previous phase, which are taken into ac-
count. A preliminary completion study can be performed (no requirements are
forgotten). The refinement strategy in this phase is only temporary as it might
be reshaped in further phases.

The Rodin platform in its final form will provide a plug-in able to support
the writing of the refinement strategy and to check that it is correctly linked to
the requirement document.

Refinements and Proofs. The next phase is divided up in many sub-steps
according to the precise strategy defined in the previous phase. Each sub-step
is made of the definition of the which is performed, together
with the corresponding . It might be accompanied by some model-checking,
model testing, as well as animations activities.
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The three previous activities are very important to be performed at each re-
finement sub-step as they help figuring out that some requirements are impossi-
ble to achieve (or very costly), whereas some other had been simply completely
forgotten. In other words, these activities help

. The outcome of these activities (checked or tested properties and model
animations) can be seen and understood by the “client”, who is then able to
judge whether what has been formally modeled at a given stage indeed corre-
sponds to what he had in mind. Notice that in each refinement sub-step, it might
be found also that the previous refinement strategy was not adequate so that it
has to be modified accordingly.

The Rodin platform provides the core elements able to support this central
phase: modeling database, proof obligation generator, and provers. The sur-
rounding plug-ins (model-checker, animator, UML translator) support the other
requirement document validation activities

Decomposition. The next phase proceeds with the of the refined
model obtained at the end of the previous one. In particular, this decomposition
might separate that part of the model dealing with the external environment
from that part of the system dealing with the hardware or software implemen-
tation. The latter part might be refined in the same way as it was done on the
global model in the previous phase. This refinement/decomposition pair might
be repeated a number of times until one reaches a satisfactory architecture.

The Rodin platform in its final form will provide plug-ins to support and
prove that proposed decompositions are correct.

Code Generation. The final phase consists in performing the various hardware
or software .

The Rodin platform in its final form will provide plug-ins to perform these
translations.

As can be seen the incorporation of these phases within an existing devel-
opment process is certainly not an easy task. An important point to take into
account is the incorporation (and measurement) of the many proofs which have
to be performed in order to be sure that the final system will be indeed “correct
by construction”.
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Challenges in Software Certification 

Tom Maibaum 

Software Quality Research Laboratory and Department of Computing and Software  
McMaster University 

1280 Main St West, Hamilton ON, Canada L8S 4K1 
tom@maibaum.org 

Abstract. As software has invaded more and more areas of everyday life, 
software certification has emerged as a very important issue for governments, 
industry and consumers. Existing certification regimes are generally focused on 
the wrong entity, the development process that produces the artifact to be 
certified. At best, such an approach can produce only circumstantial evidence 
for the suitability of the software. For proper scientific evaluation of an artifact, 
we need to address directly the attributes of the product and their acceptability 
for certification. However, the product itself is clearly not enough, as we need 
other artifacts, like requirements specifications, designs, test documentation, 
correctness proofs, etc. We can organise these artifacts using a simple, idealised 
process, in terms of which a manufacturer’s own process can be “faked”. The 
attributes of this idealised process and its products can be modelled, following 
the principles of Measurement Theory, using the product/process modelling 
method first introduced by Kaposi. 

1   Introduction 

Software standards have been a concern amongst the software engineering 
community for the past few decades and they remain a major focus today as a way of 
introducing and standardising engineering methods into the software industry. 
Software certification, or at least certification of systems including software, has 
emerged as an important issue for software engineers, industry, government and 
society. One has only to point to the many stories of serious disasters where software 
has been identified as the main culprit and the discomfort that is being felt about this 
amongst members of these communities. Several organisations, including standards 
organizations and licensing authorities, have published guidance documents to 
describe how software should be developed to meet standards or certification criteria.  

In this paper, we focus on the issues related to software certification and refer to 
standards only when relevant, though much could be said about the failures of 
software related standards to meet criteria characterising rigorous engineering 
standards. These licensing organisations, through their guidance documents, aim to 
establish a common understanding between software producers and certifiers 
(evaluators). The US Food and Drug Administration (FDA) is one of these 
organisations. The Common Criteria consortium, focusing on security properties of IT 
systems, is another. The FDA has published several voluminous guidance documents 
concerning the validation of medical software (as has The Common Criteria 
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consortium on security properties). However, these recommendations are not 
specified in an explicit and precise manner. In more detail, the FDA validation 
approach, as described in the FDA guidance document [6]: 

• does not describe effectively the objects that are subject to assessment,  
• does not specify the measurable attributes that characterize these objects, and  
• does not describe the criteria on which the FDA staff will base their decision, 

in order to approve or reject the medical software and, therefore, does not 
describe the measurement procedures to be used to ascertain the values of the 
relevant attributes of the objects being assessed.  

In fact, the focus of these documents is on the characteristics of a software 
development process that is likely to produce satisfactory software. It shares this 
approach and concern with almost all certification authorities’ requirements (as well 
as those of standards organisations and approaches based on ‘maturity’, such as CMM 
[17]). This seems to miss the point of the aim of certification, namely to ascertain 
whether the product, for which a certificate is being sought, has appropriate 
characteristics. Certification should be a measurement based activity, in which an 
objective assessment of a product is made in terms of the values of measurable 
attributes of the product, using an agreed objective function. (This objective function, 
defined in terms of the measurable attributes of the product, is itself subjectively 
defined; but once agreed, its use is completely objective, predictable and, perhaps 
most importantly, repeatable.) After all, we are not going to be happy if an avoidable 
disaster is down to a product being faulty, even though the process that produced it 
was supposed to deliver a sound product. A process can never provide this guarantee, 
if it does not actually examine relevant qualities of the product being certified. Even if 
the process is one that gives us correctness by construction (in the sense used in 
formal methods), mere correctness is not enough to convince us of the acceptability of 
the product. (For example, the specification on which the correctness assertion is 
based may be faulty. Or not all requirements have been taken into account. See 
[15,22,23].) 

Hence, our hypothesis, boldly stated, is that process oriented standards and 
certification regimes will never prove satisfactory as ways of guaranteeing software 
properties and providing a basis for licensing, and we have to develop a properly 
scientific, product based approach to certification.  

2   Process Oriented Standards and Certification 

The Food and Drug Administration (FDA) is a public agency in the United States of 
America concerned with the validation of medical device software or software used to 
design, develop, or produce medical devices in the United States. In response to the 
questions about FDA validation requirements, the FDA has expressed its current 
thinking about medical software validation through guidance documents [6.7.8]. 
These documents target both the medical software industry and FDA staff. According 
to the FDA, validation is an important activity that has to be undertaken throughout 
the software development lifecycle. In other words, it occurs at the beginning, end 
and even during stages of software development.  



6 T. Maibaum 

For example, the FDA guidance documents recommend validation to start early 
while the software is being developed. In this sense, the FDA guidance document [6] 
considers other activities; like planning, verification, testing, traceability, 
configuration management; as important activities which all together participate in 
reaching a conclusion that the software is validated. 

In essence, the FDA validation approach is a generic approach. It appears in the form 
of recommendations to apply some software engineering practices. These practices are 
considered to be working hand by hand to support the validation process. The reason 
behind FDA taking such a generic approach is due to the ‘variety of medical devices, 
processes, and manufacturing facilities’ [6]. In other words, the nature of validation is 
significantly dependant on the medical device itself. Examples of such validation 
determinant factors are [6]: availability of production environment for validating the 
software, ability to simulate the production environment, availability of supportive 
devices, level of risk, any prerequisite regulations/approvals re validation, etc. 

The recommendations in the FDA guidance documents aim to make it possible for 
the FDA to reach a conclusion that the software is validated. It applies to software [6]: 

• used as a component, part, or accessory of a medical device; 
• that is itself a medical device (e.g., blood establishment software); 
• used in the production of a device (e.g., programmable logic controllers in 

manufacturing equipment); 
• used in implementation of the device manufacturer’s quality system (e.g., 

software that records and maintains the device history record). 

Having reached the conclusion that the software is validated increases the level of 
confidence in the software and, accordingly, the medical device as well. In its 
guidance documents, the FDA recommends certain activities to be undertaken and 
certain deliverables to be prepared during the development of the medical software. 
These activities and deliverables are subject to validation. For instance, validating the 
Software Requirements Specification (SRS), a deliverable that contains all 
requirements, aims to ensure that there are no ambiguous, incomplete, unverifiable 
and technically infeasible requirements. Such validation seeks to ensure that these 
requirements essentially describe the user needs, and are sufficient to achieve the 
users’ objectives. In the same manner, testing is another key activity that is 
thoroughly described in the guidance. On the other hand, the guidance points out 
some issues that are interrelated as a result of the nature of software. Examples of 
such issues are: frequent changes and their negative consequence, personnel turnover 
in the sense that software maintainers might have not be involved in the original 
development. Moreover, the FDA guidance stresses the importance of having well-
defined procedures to handle any software change introduced. Validation in this 
context addresses the newly added software as well as already existing software. In 
other words, in addition to validating the newly added pieces (components) of code, 
the effect of these new pieces on the existing ones has to be checked. Such a check 
ensures that the new components have no negative impact on the existing ones. 
Furthermore, the guidance highlights the importance of having independence in the 
review process, in the sense that the personnel who participate in validating the 
software are not the ones who developed it.  

These are mainly the kinds of issues which the FDA guidance documents address 
with regard to software validation. In terms of software development, the FDA 



 Challenges in Software Certification 7 

approach does not favour any specific software development model. In other words, it 
leaves the choice of the approach to be used in developing the software to software 
producers themselves. This supports the fact that some organizations have there own 
policies, standards and development approaches that must be followed. Furthermore, 
it supports the fact that some approaches may well suit certain types of projects or 
software. Therefore, the FDA leaves the choice of the software development model to 
software producers, as long as it sufficiently describes the lifecycle of the software. 
However, it is explicitly required that validation occurs throughout all stages of the 
software development model (approach). In this context, the guidance states that the 
magnitude of validation effort, expressed in terms of the level of coverage, is relative 
to the complexity and the safety risk which the medical software introduces. 

In summary, the FDA guidance documents attempt to prescribe very detailed 
guidance on the nature of the software process to be used. This focus on process is 
sometimes lost and the guidance documents go into details of the products of the 
process. However, the nature of the product is highly underdefined, at least in terms 
of the requirements of measurement, and nothing is said about how the evidence 
submitted to the FDA will be evaluated. These characteristics make the FDA’s 
certification process lengthy, costly. subjective and, therefore, highly uncertain. 

2.1   Faking It 

We have been criticizing process oriented methods of certification on the basis that 
the evidence about the product is indirect and offers no proper guarantees of the kind 
we actually need. One might then ask whether process based ideas are of any use at 
all in certification activities. In order to answer such a question, we need to look at 
what evidence about the product is required to make a proper assessment of its 
certifiability. Before doing that in the next section, we will discuss an idea due to 
Parnas [26], though implicit in the work of Dijkstra and many others, about faking the 
software process. The main point Parnas was trying to make was that actual instances 
of a development process are likely to be imperfect. There is a lot of backtracking, 
correction and work arounds that do not conform to the process definition. However, 
at the end of the project, one can fake the ideal execution of the project, an execution 
in which there is no backtracking, no fixing, no work arounds, etc. 

The problem with process based guidance for certification, as in that of the FDA 
[6,7] (see also [8]) or the Common Criteria [1,2,3,4,5], is that the prescription of the 
process ‘mandates’ (the FDA does not legally mandate!) many mechanisms and 
procedures that are purely to do with managing the imperfections of the process. So, 
for example, the FDA recommends the development and implementation of a 
configuration management plan, or a problem reporting plan. As a certifier, why 
should one care about configuration management during development? (In contrast, 
one might very well worry about configuration management of a product once it is 
out in the field.) What does it have to do with the properties of the product actually 
delivered for certification? Similar comments may be made about bug reporting and 
fixing mechanisms. The only thing that matters is the qualities of the final version of 
the product seeking certification. (Of course, if one knew that these matters were not 
handled well during development, then this might provide circumstantial evidence 
about the potential quality of the final product. This might then influence the 
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certification authority to look more carefully at evidence about the product. But, this 
is a secondary effect and we leave it for future discussion.) 

On the other hand, we need some products other than the one seeking certification 
as part of the evidence being assessed. An obvious example is a requirements 
specification. Other examples are: a design specification, a document describing 
validation of the design against the requirements, documents relating to testing, 
documents proving correctness, etc. We could organize these pieces of evidence, 
various products, in terms of some simple, idealized development process. One 
candidate for such an idealized process might be a simple version of the waterfall 
model well known from software engineering texts. In this version, there would be no 
backtracking, and every stage would have to be completed before moving on to the 
next one. And this is where the faking it comes in. Whatever actual process one 
follows, or does not follow, the onus is on the organization seeking certification for 
their product to map their documents/evidence onto the ideal model and its products. 
This gives the certification authority a standard product (consisting of the actual 
product and associated other products/evidence) to ‘measure’ and decide on 
certifiability. So, the certification authority should not ‘mandate’ any particular 
development process, or the necessity of having a configuration management plan, or 
whatever. This has the added benefit for the software developer that its internal  
processes are up to them, as long as they can effectively map their products onto the 
ones required by the much simpler, faked process. They can then manage their 
 

 

Fig. 1. The Ontario Hydro idealized development process [29] 
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process without having to undertake the difficult job of redemonstrating conformance 
to the process ‘mandated’ by the certification authority or standard. 

Of course, the certification authority has to decide what evidence is required and 
design the idealized process to ‘deliver’ this evidence. Hence, there is a fine balance 
between the level of detail in the idealized process and the weight of evidence 
necessary to make the certification decision. Striking this fine balance is probably the 
most difficult job the certification authority has to perform. An example of this idea in 
action, though not mandated by the certification authority, is the model used in the 
Ontario Hydro redevelopment of the Darlington nuclear power station safety system 
[29]. See Figure 1.  

This is a simplified version of the figure that actually appears in [29] and is clearly 
insufficient, as it, stands to prescribe a real development process. 

3   Measurement and Product/Process Modelling 

The “Product/process (P/p) methodology” was introduced by Myers and Kaposi in 
their book “A First Systems Book” [18,24]. The purpose of this section is to provide a 
brief overview of this methodology. (See [20,21] for a more detailed description.) The 
language supporting the methodology provides abstractions for the two main 
constructs of the method: products and processes. 

The basics of the method are described in [18,24], as is the relationship of the 
method to Measurement Theory.  (See also [27,12] on measurement.)  What we are 
modelling in many engineering problems is some real (existing or yet to be built) 
process and its associated products, technical or administrative (or both).  Either this 
process is in place and we are modelling what we observe or we are intending, via the 
model, to prescribe what we eventually intend to observe in the organisation. The 
observed or intended phenomenon is called the empirical referent (and is to our 
endeavours what specific physical phenomena are to physicists attempting to 
understand the world by building scientific theories/models). 

The language we use for modelling processes has three basic constructs via which 
the empirical referent must be modelled: products, processes and, an artefact of the 
method, gates.  The first of these, product, is used to model the entities manipulated 
by processes.  A product is an ‘instantaneous’ entity, in that it represents the 
measurable attributes of the entity at a specific moment in time.  On the other hand, a 
process is an entity that relates to behaviour and so represents a phenomenon taking 
place over time.  Gates are, to some extent, an artefact of the method.  Processes are 
modelled via ‘single input, single output’ transformers and so require products to be 
assembled (input from several preceding processes) and disassembled (to send parts 
of the output to separate subsequent processes). 

One may recognise here strong relationships to business process modelling. 
Business process modelling is, of course, not a new subject!  Many consultants make 
big money out of it!  Our focus here is on the problem of modelling itself, with a 
particular focus on technical processes and requiring levels of detail in process 
definition which enable the methods and principles of measurement theory to be 
applied for the purposes of analysis, prediction and certification.  A standard 
reference to approaches to business process modelling is [16].  



10 T. Maibaum 

The idea of characterising formally the process of software development is not new 
either.  The early work of [25,19], etc is notable in this regard and relevant recent 
material on process modelling in software engineering can be found in [13].  The 
spirit of what we are attempting is very much in the style of [25], i.e., characterising 
processes as programs.  We see the major difference as being the larger domain of 
processes being modelled, the much more powerful and expressive language being 
used and the focus on measurement and measurability.  Also, software engineering 
has moved on since the time of this work and concepts such as patterns and software 
architecture enable a more sophisticated approach. 

Fenton and Pfleeger defined processes, in the context of software 
engineering, in [12], as ‘collections of software-related activities’. Hence the process 
usually has a time factor, i.e., it has a clear beginning and end. Attributes of the 
process are the inherent characteristics of the process. These attributes are meaningful 
descriptions over the process lifetime. Fenton and Pfleeger in [12] use the term 
“internal process attributes” to describe the attributes which can be measured directly 
by examining the process definition on its own. We will refer to these attributes as 
static attributes. Having identified these attributes, the evaluation procedure, used by a 
certifier, should consider the procedures used to measure each of these attributes. The 
evaluation may take place at predefined time checkpoints or even continue over a time 
interval. 

In contrast, dynamic process attributes are those attributes that can only be 
measured with regard to the way the process relates to its environment, i.e., the 
behaviour of the process is the main concern of the measurement activity, rather than 
the process definition. The values of these process attributes are not meaningful 
outside their operating environment. Examples of such attributes are: quality and 
stability. The values of dynamic process attributes (external attributes in [12]) may 
depend on some values of the static process attributes. 

On the other hand, Fenton and Pfleeger defined products in [12] as ‘any artifacts, 
deliverables or documents that result from a process activity’. We will refer to a 
product as a deliverable of a process. In a sense, we will overload the word 
deliverable to mean any outcome of the process. Examples of deliverables (products) 
are: Software Requirements Specification (SRS) document, Software Design 
Specification document, software source code or some other intermediate outcome of 
the development proocess. Products are atemporal in the sense that product attributes 
can be measured at any time instant (though the measured values may differ from one 
instant to another). The same notion of static and dynamic attributes is applicable to 
the deliverables (products). To be more concrete, the version number (as a static 
attribute) of the software (as a product) is related to the product itself. Whereas, 
reliability (as a dynamic attribute) of the software (as a product) is relative to the way 
in which the product (software) behaves in its operating environment. (There is a 
potentially very interesting discussion to be had here about a program or process 
being a product, e.g., the code, and a process, e.g., the behaviour the program 
describes. But, we will not go there in this document.) 

To achieve objective judgment of the evaluation evidence (deliverables), attributes 
have to be specified for products. This involves two main points: defining the 
measurement scale for the attribute, i.e., its type, and an effective measurement 
procedure for ascertaining the value of the type. Once the deliverable’s attributes are 
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specified, an acceptability criterion for each attribute has to be established. Such a 
criterion will define the acceptable attribute values, from the point of view of the 
evaluation. Often, it is not the value of a specific attribute that determines the 
acceptability of the product, but the result of some utility function applied to some or 
all of the attribute measures of a product.  Having both the measurement procedures 
and the acceptable values documented at the outset of any “deliverable (product) 
development” will facilitate the development, interim validation and the formal 
evaluation of these products. In the same manner, tools and machines that may be 
used in software production may have to be evaluated. Tools are considered as 
entities with attributes, exactly as for products (i.e., they are products), and hence 
their attributes have to be specified and ‘measured’. 

Having such a measurement framework defined will decrease the level of 
subjectivity in the evaluation activity. The FDA approach lacks such a measurement 
framework. The FDA approach has no explicit definition of what entities (processes 
or products) are to be measured. Hence the developers of the medical software and the 
evaluators from the FDA side share no common understanding about what evidence 
will be inspected, what attributes in this evidence will be measured, what values are 
acceptable and what values are not. Similar comments may be made about the 
Common Criteria, though a better attempt is made in identifying products of 
development processes and determining what the evaluator must do, though not 
necessarily providing specific enough criteria and procedures to do it. 

(Motivated by the idea that processes and products are the key objects of 
measurement, Basili, Caldiera and Rombach in [11] developed the Goal-Question-
Metric (GQM) approach to help engineers develop models based on these kinds of 
ideas. GQM is an engineering approach effective for the specification and the 
assessment of entities. The GQM model is hierarchical in the sense that it is layered 
into three main levels: the conceptual level (goals), the operational level (questions) 
and the quantitative level (metrics, i.e., measurement). At the conceptual level, goals 
specify the objectives to be achieved by measuring some objects (products or 
processes). At the operational level, questions (what, who and how) should be derived 
from each goal. Answers to these questions will determine whether the goals are 
being met or not. Finally, the quantitative level describes what type of data has to be 
collected for every question in addition to the measurement mechanism to ensure a 
quantitative answer for the assessment. The key advantage of the GQM is that it 
enables us to identify the key attributes along with their measurement scales and 
procedures. These attributes are the ones that are identified as being important for 
achieving the objectives and goals. Fenton and Pfleeger also considered process 
maturity models, such as CMM, to be used hand in hand with the GQM model. As the 
GQM helps to understand why we measure an attribute in a process, the process 
maturity model suggests whether or not we are capable of measuring the process in a 
practical way. Thus this supports the applicability of the GQM model. The main 
reason for considering this maturity model is that not all processes are at the same 
level of maturity, i.e., processes vary in terms of the visibility of input products and 
output products. The model is described in detail in [12]. In this context, we want to 
emphasize that processes with clearly defined input and output products are our main 
concern.) 
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4   The Common Criteria (CC) for Information Technology 
Security Evaluation: A Potential Model? 

The Common Criteria (CC) for Information Technology (IT) Security Evaluation is 
an international standard for specifying and evaluating IT security requirements and 
products. This standard was developed as a result of a cooperation between six 
national security and standards organisations in the Netherlands, Germany, France, 
United Kingdom, Canada and the United States of America. This cooperation aims to 
define an international standard in order to replace the existing security evaluation 
criteria in those countries. (The consortium has been significantly expanded since its 
inception.) The main reason for considering the CC is the more systematic and 
consistent approach, as compared to the FDA, that the CC follows in specifying 
security requirements and evaluating their implementation.  As we will illustrate, the 
CC falls into the trap of prescribing in detail development process standards, but, on 
the other hand, it does provide a semblance of being product and measurement 
oriented. 

In the CC, IT security requirements can be classified into Security Functional 
Requirements (SFRs) and Security Assurance Requirements (SARs). SFRs are mainly 
concerned with describing the functionalities to be implemented by the final product, 
whereas SARs are concerned with describing the properties that the final product 
should possess. As per the CC terminology, the final product that has to be developed, 
and after that evaluated, is called the Target-Of-Evaluation (TOE). The TOE is 
defined in [1] as ‘an IT product or system and its associated administrator and user 
guidance documentation that is the subject of an evaluation’ [1]. The requirements 
that describe the TOE are specified in the Security Target (ST). The Security target is 
a document that is similar to an SRS document, in which functional requirements are 
specified using [2], and assurance requirements are specified using [3]. These 
requirements are categorized in [2] and [3], according to the CC taxonomy, into 
classes, families and components. A class describes the security focus of its members. 
In other words, families of the same class share the same security concern, but each 
has a security objective that supports that concern. Components in the same family 
share the security objective of their family, but differ in the level of rigour in which 
the security objective is handled. 

For instance, the security focus of communication class (Class CFO: 
Communication), a security functional class defined in [2], is to ‘assure the identity of 
a party participating in a data exchange’ [2]. This class has two families with two 
different objectives, yet they share the same security concern (communication). Non-
repudiation of origin (FCO NRO: Non-repudiation of origin) is the first family in this 
class, which aims to ensure that the ‘originator cannot successfully deny having sent 
the information’ [2]. The other family (FCO NRR: Non-repudiation of receipt) aims 
to ensure that the ‘recipient cannot successfully deny receiving the information’ [2]. 
Components in the same family solve the security problem as described by their 
family, but with different levels of rigour. In this sense, “non-repudiation of origin” 
has two components. The first component (FCO NRO.1 Selective proof of origin) 
solves the “repudiation of origin” problem in the sense that it requires the “relied-on 
security enforcer (software or hardware or, in the case of CC level 7, both)” to have 
entities ‘with the capability to request evidence of the origin of information’ [2]. On 
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the other hand, the other component (FCO NRO.2 Enforced proof of origin) also 
solves the “repudiation of origin” problem, but it requires the “relied-on security 
enforcer (software or hardware or both)” to always “generate evidence of origin for 
transmitted information” [2]. 

In this context, CC part 2 [2] describes the following security functional classes 
with their families and components: security audit, communication, cryptographic 
support, user data protection, identification and authentication, security management, 
privacy, protection of the Toe Security Functionality (TSF), resource utilisation, and 
trusted path/channels. On the other hand, CC part 3 [3] describes the following 
security assurance classes with their families and components: Protection Profile (PP) 
evaluation, Security Target (ST) evaluation, development, guidance documents, life-
cycle support, tests, vulnerability assessment, and composition. As previously 
described, components of the same family share the security objective of the family, 
but they differ in the level of rigour of the implementation of that objective. In other 
words, the level of rigour is essentially determined by the components that describe 
the level of confidence required for particular security issues. According to the CC, 
the Evaluation Assurance Level (EAL) determines the level of confidence required in 
the TOE. The CC defines seven evaluation assurance levels. These are [3]: 

• EAL1: functionally tested 
• EAL2: structurally tested 
• EAL3: methodically tested and checked 
• EAL4: methodically designed, tested and reviewed 
• EAL5: semiformally designed and tested 
• EAL6: semiformally verified design and tested 
• EAL7: formally verified design and tested 

Each evaluation assurance level requires certain components of particular 
assurance families to be implemented. The correspondence between the evaluation 
assurance level and the components of assurance families in a class appears in the 
following table as given in [3]. The “assurance class” column lists the security 
assurance classes as defined in CC part three (CC part 3: Security Assurance 
Requirements [3]). Each of these classes has security assurance families that share the 
security concern with other families in the same class. The assurance families of each 
class are listed under the “assurance family” column along the assurance class row. 
For instance, the “Development” assurance class (ADV) has ADV ARC, ADV FSP, 
ADV IMP, ADV INT, ADV SPM and ADV TDS as its assurance families. It is the 
CC convention for any family to start with the class symbol (ADV for DeVelopment 
Class) followed by an underscore ( ) and then a family symbol (ARC for security 
ARChitecture family, FSP for Functional SPecification family, IMP for 
IMPlementation representation family, INT for tsf INTernals family, SPM for 
Security Policy Modelling family and TDS for Toe DeSign family). The development 
class symbol (ADV) and all other assurances classes’ symbols (AGD for Guidance 
Documents, ALC for Life Cycle, ASE for Security Target evaluation, ATE for TEsts 
and AVA for Vulnerability Assessment) start with the letter “A” in order to 
differentiate them from functional classes. 

As described in the “evaluation assurance level summary” table below, each family 
has a set of components that share the same security problem but differ in the level of 
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rigour of the solution. For example, ADV FSP family of the assurance class 
“development” has six components. As the table indicates, the first component (1) is 
necessary for evaluation assurance level one (EAL1). Whereas the second component 
(2) of the same family is necessary for evaluation assurance level two (EAL2). In the 
same manner, EAL5 and EAL6 both require the implementation of the fifth 
component (5) of this family, and so on. Finally, some cells in the table are left blank. 
This means that it is not required to implement any component from the given family 
in order to achieve that evaluation assurance level. Security functional and assurance 
requirements are specified in [2,3], respectively. They are specified in a generic way 
that enables customization. 

Developing the security target starts with defining the level of confidence required 
in the product (software product in this case) as per the evaluation assurance levels. 
Having the level of confidence determined, the evaluation assurance level summary 
table imposes the specification and implementation of the security components in the 
ST and the TOE respectively. The requirements written in the security target, as taken 
from [2] and [CC 2006c], can then be customized to reflect some restrictions, such as 
organisation-specific or product-specific issues. Developing the security target using 
only the security functional requirements of [2] results in a CC part 2 conformant 
product. However, adding extra requirements to the security target, which are 
demonstrated to be needed by the ST developer, results in a CC part 2 extended 
product. The same concept applies to CC part 3 security assurance requirements. 

We can observe that, though not cast in the terminology of product/process 
modelling, defining relevant attributes and measurement procedures, this looks very 
close to what we have been describing. 

The security assurance requirements are organized into action elements for the 
developer, action elements for the content and presentation of the submitted 
deliverable, and action elements for the evaluator.  

The taxonomy of the CC describes Security Assurance Requirements (SARs) in 
terms of action elements for the developer, action elements for the “content & 
presentation” of the submitted evaluation evidence and as action elements for the 
evaluator. Each evaluator action element in [3] corresponds to an action that is 
detailed into work units in the Common Evaluation Methodology [4], a companion 
document to the CC documents, which describes the way in which a product specified 
using the CC requirements is evaluated. The work units describe the steps that are to 
be undertaken by the testing laboratory in evaluating the ST, TOE and all other 
intermediate products. If these products passed the evaluation of a testing laboratory 
authorized by the CC, they would be submitted to the national scheme in that country 
to be certified.  

In this context, the CC requires that the developer shall provide the TOE for 
testing. The TOE shall be suitable for testing and the evaluator shall examine sources 
of information to support the identification of potential vulnerabilities in the TOE. 
After that the evaluator shall conduct penetration testing to “confirm that the potential 
vulnerabilities cannot be exploited in the operational environment for the TOE” [3]. 
The CC uses the auxiliary verb shall to refer to mandatory work that has to be 
undertaken to ensure the correctness of evaluation and, accordingly, the verdicts 
assigned to products. On the other hand, the CC uses the auxiliary verb should to 
mean “strongly preferred”. 
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As an example, we include a small fragment of the CC that relates to testing: 

ATE_FUN.1. Functional testing  
Dependencies: ATE_COV.1 Evidence of coverage 
Objectives: The objective is for the developer to demonstrate that the tests in the 

test documentation are performed and documented correctly.  
Developer action elements:  
ATE_FUN.1.1D. The developer shall test the TSF and document the results.  
ATE_FUN.1.2D. The developer shall provide test documentation.  
Content and presentation elements:  
ATE_FUN.1.1C. The test documentation shall consist of test plans, expected test 

results and actual test results.  
ATE_FUN.1.2C. The test plans shall identify the tests to be performed and describe 

the scenarios for performing each test. These scenarios shall include any ordering 
dependencies on the results of other tests.  

ATE_FUN.1.3C. The expected test results shall show the anticipated outputs from a 
successful execution of the tests.  
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ATE_FUN.1.4C. The actual test results shall be consistent with the expected test 
results.  

Evaluator action elements:  
ATE_FUN.1.1E. The evaluator shall confirm that the information provided meets 

all requirements for content and presentation of evidence. 
So, we are a long way from the ideal described in the product/process modelling 

approach, but we see elements of the approach in the above description. There are 
lacunae, such as a definition for “shall confirm”, which is clearly referring to a 
(measurement) procedure that is supposed to determine whether “information 
provided meets all requirements for content and presentation of evidence”. 

5   Conclusions 

Software certification is starting to appear on the agenda of various groups: 
governments, industry and consumers/citizens. Although it has existed as a 
requirement in some critical areas, the practice of certification still leaves a lot to be 
desired. Certification regimes tend to be focused on process oriented standards, 
expecting that good processes will produce artifacts with the right attributes for 
certification. But, at best, this is attempting to evaluate the worth of the artifact by 
using what lawyers might call circumstantial evidence. Lawyers and juries are rightly 
wary of convicting people for serious crimes based only on circumstantial evidence. 
This is more so when the crime involved is of a more serious nature, entailing more 
serious punishment. We should follow suit and be more and more wary of 
certification by circumstantial evidence when the artifact involved may have more 
serious consequences for society, individuals or organisations. 

The concepts of measurement theory and the traditional engineering idea of 
modelling problems by using transfer functions, aka the product/process modelling 
ideas described above, provide a basis for defining much more rigorous standards for 
evidence and for the process of evaluating the evidence to make a certification 
decision. 

There is much research to be done to enable us to put these ideas into action. 
Obvious questions include: 

• Is there a generic notion of certification, valid across many domains? 
• What, if anything, needs to be adapted/instantiated in the generic model to 

make it suitable for use in a particular domain? 
• What simple process model is sufficient to enable the “faking” of real 

processes and providing a platform for evaluation by certification authorities? 
• What is the difference between software quality, of a certain level, and 

certifiability? 
• In what situations can we safely use process based properties as a proxy for 

product qualities? 
• If we assume that both formal approaches and testing are necessary for 

demonstrating evidence of certifiability, what mix is to be used when? If we 
have levels of certifiability, as in the Common Criteria, how does this mix 
change with level? 
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• Since evaluating evidence about software is an onerous task, how can we 
assist an evaluator to perform their task by providing tools? (Amongst 
examples of such tools may be proof checkers (to check proofs offered in 
evidence), test environments (to re-execute tests offered in evidence), data 
mining tools to find “interesting” patterns in artifacts, etc.) 

There are also cultural and political issues for software certification to deal with. 
Many software producers find the idea of software certificates anathema: witness the 
move in various jurisdictions to lower the liability of manufacturers from even the 
abysmal levels in place today. Governments are woefully ignorant of the dangers 
represented by the low levels (or non existent levels) of regulation in some industries, 
such as those producing medical devices, cars and other vehicles, financial services, 
privacy and confidentiality issues in many information systems, etc. However, the 
issue is much too large for us to ignore any longer. 
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Integrating Formal Methods with System
Management

Martin de Groot

CSIRO, Australia

Abstract. Monitoring and fault diagnosis are core management tasks
for deployed industrial systems. Diagnostic reasoning is closely related
to reasoning about implementation correctness. A framework to sup-
port the integration of both reasoning tasks is introduced. Many well
known formal methods for stepwise program refinement are shown to be
compatible with the framework. Compatibility is achieved by treating a
formal development as a hierarchical model of the implemented system
and then adapting model-based reasoning techniques.

1 Background

This paper is an introduction to a novel framework for integrating formal devel-
opments with system management [8]. The framework grew out of an industry
sponsored research program to investigate a practical problem which, despite its
apparent simplicity, was never satisfactorily resolved by the engineers working
for the sponsoring company. The practical problem was to build a general pur-
pose ‘alarms’ or ‘rules’ module for telecommunications monitoring equipment.
Such modules are components of many industrial systems. They are responsible
for detecting, correlating and, occasionally, diagnosing error conditions from an
array of performance metrics collected from the monitored system.

Initial investigations into this area revealed that expert systems had been
used successfully for diagnosis in relatively static domains such as the human
body [4,6], and also that they were unsuited to dynamic domains such as com-
puter networks. Consequently, monitoring systems for the latter tend to offer
very little high level analysis—generally providing only alarm collection, logging,
display and categorisation facilities. This problem is known as the ‘knowledge
engineering bottleneck’ in the artifical intelligence literature. It arises because
accurate and detailed models (or knowledge bases) of non-trivial domains are
inherently time consuming to develop and maintain. Because the industry spon-
sor was moving towards more formal software engineering methods—specifically
the use of Z and object orientation—it was proposed that the resulting formal
developments might be re-used as models for diagnostic reasoning.

The diagnostic framework that ultimately resulted from this project focused
on two questions that have previously been explored by the author:

1. What is the relationship between reasoning about correct implementation
and reasoning about observations of an implementation? [10]

M. Butler, M. Hinchey, M.M. Larrondo-Petrie (Eds.): ICFEM 2007, LNCS 4789, pp. 19–36, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2. How can a formal development be described so that it is amenable to both
reasoning about correctness and diagnostic reasoning? [9]

Only Question 1 is discussed below. The solution proposed is to view refine-
ment as not only a ‘correctness preserving’ [15], but also as a ‘fault preserving’
transformation.

2 Formal Methods and Diagnostic Reasoning

The association between reasoning about correctness and reasoning about faults
can be found in early formal methods literature. Floyd, for example, specifically
defines a notion of program failure called a ‘counterexample’ [14]. Hoare’s CSP
programming model relies on a ‘traces’ function that, by exclusion, identifies all
the sequences of events that a program should not participate in - the faults.
However, there does not seem to be a programming model, with a rigorously
defined semantics and refinement theory, that explicitly supports diagnostic
reasoning.

Specification formalisms have been applied to fault detection under the guise
of ‘model-based testing’ [13]. In this approach, the ‘system under test’ is formally
modeled using, for example, VDM [11] or state charts [5]. Various algorithms
have been proposed to then manipulate the model to generate a large number
of significant test cases. The research to date on formal approaches to testing
has focused on specification and largely ignored refinement or hierarchies of
specifications.

‘Model checking’ is effectively another approach to fault detection employ-
ing formal specifications. There are now many model checking tools implement-
ing a variety of languages and model checking (i.e. fault detection) techniques.
SPIN [18] is a popular model checking tool in industry that uses temporal logic
for specifications [27]. ‘Alloy’ is both a modeling language and the name of the
associated model checking tool [19]. The Alloy language is a subset of Z.

Formal specification languages have also been used for fault diagnosis. Wot-
awa [28] describes applications and techniques to take VHDL output from a
hardware design system and use it as the model for consistency based diagno-
sis. Papadopoulos [21] has developed a semi-automatic process for generating
‘Safety Monitors’ for complex dynamic systems. These monitors are real time
applications that monitor, analyse, diagnose and, advise corrective action for,
safety critical systems such as onboard aircraft fuel management. One of the
supported input design document formats for the generation process is state-
charts which can be produced by a design tool like Statemate [1].

There have been attempts to define novel process specification languages that
explicitly support diagnosis of systems defined with that language. Riese [25] and
Baroni et al. [3] are examples of proposals for different forms of communicating
automata with built in diagnostic capacity. Both these proposals would require
the redevelopment, or at least re-specification, of the target system. Recently
Console et al. [7] proposed a more neutral process algebra that minimises the
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translation effort and also allows greater flexibility in the choice of diagnosis
theory. Unfortunately, even with this more general modeling formalism the orig-
inal development process is still completely separate from the modeling process.
None of these proposals exploits the notion of refinement, or bisimulation, to
build hierarchical models.

3 Model-Based Diagnosis

Model-based diagnosis (MBD) became well-defined in the 1980s. A good sum-
mary of the foundational issues in this area can be found in the canonical col-
lection of articles by Hamscher et al. [16]. Reiter published a landmark paper
describing: ‘A theory of diagnosis from first principles’ [24] (DFP) in 1987. DFP
has become the standard definition of a form of MBD known as ‘consistency-
based’ diagnosis. It is worthwhile briefly describing DFP here to convey an un-
derstanding of MBD to a software engineering audience.

Reiter develops a completely formal treatment of fault diagnosis. The ‘first
principles’ in the title are predicates that form the model of the target system.
The example system discussed at length is a digital circuit implementing a one
bit adder which is a common example in the MBD literature.

�

�
X1 �

�

X2

�

�

A1

�

�

A2
O1

in1
in2

carry in

sum

carry out

The components, and relations between components, are described using a set
of consistent first order predicates called a ‘system description’, referred to as
‘SD’. The following is a portion of SD for the adder that defines the first ‘and’
gate.

( ) ∧ ¬ ( ) ⇒ ( ) = ( 1( ), 2( ))
( 1)

1( 1) = 1( 1)
2( 1) = 2( 1)
( 1) = 2( 1)

A feature of component function definition is the use of a ‘not abnormal’
(¬ ) proviso. Fault detection is performed by verifying that the system de-
scription ( ) is consistent with the observation ( ) and the claim that all
the components ( i) are not faulty (¬ ). Hence the following set of predicates
will be consistent if no fault is observed and inconsistent if faulty behaviour is
observed.

∪ {¬ ( 1), ¬ ( 2,), ..., ¬ ( n )} ∪
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Diagnosis is performed by removing individual proviso predicates from the
above statement to make the set of predicates consistent. A diagnosis (Δ) is a
subset of the set of component labels corresponding to the removed provisos. A
diagnosis of the system-component list-observation triple ( , , ) is a
minimal set Δ ⊆ such that:

∪ ∪ { ( ) | ∈ Δ} ∪ {¬ ( ) | ∈ − Δ}

is consistent.
An observation of the adder is also a set of predicates, for example:

{ 1( 1) = 1 , 2( 1) = 0 , 1( 2) = 1 , ( 2) = 1 , ( 1) = 0 }

A diagnosis is a minimal set (i.e. no other diagnosis is a subset) of component
labels that make SD consistent with the observation. An example diagnosis for
the above observation ( ) and the full adder ( ) is { 2, 1} as it is minimal,
and the derived set of predicates is consistent:

∪ ∪ { ( ) | ∈ { 2, 1}} ∪ {¬ ( ) | ∈ − { 2, 1}}

Reiter offers proofs of computability results. DFP is generalisable to any sys-
tem description language that is a form of ‘default logic’ [23]. One limitation is
identified in the paper—DFP can only diagnose faults in discrete components.
That means, for example, it would not be possible to produce the diagnosis that
the adder circuit has been incorrectly wired together.

4 A General Diagnostic Framework

Reiter’s classic theory of diagnosis identifies many elements of diagnostic reason-
ing: observations, system descriptions (SDs), faults, SD structure, and diagnosis.
DFP is a diagnosis theory built upon a stylised first order predicate calculus.
While predicate calculus is an important tool for formal software engineering
methods, it cannot recreate many well known program specification formalisms.

In this section the core concepts of DFP are used as the basis of a more
general diagnostic framework that is independent of the underlying specification
formalism. This new framework is called ‘Diagnosis from Formal Developments’
or DFD. A small set of formal properties of DFD are labeled as ‘Lemmas’. Proofs
are given only for properties that do not follow immediately from definitions or
previous lemmas.

4.1 Modalities

The foundation of DFD is a distinction between first class entities—things we
want to reason about, and second class entities—things used to perform reason-
ing. These entities are known as ‘system descriptions’ (or ‘SDs’), and ‘observa-
tions’. Where possible they are visually distinguished by the use of upper and
lower case respectively.
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SD observation

Examples of the SD/observationdistinction familiar to formalmethods practition-
ers would be: predicate/evaluation, set/element or program/pre-postcondition
pair.

Relations between SDs and observations are termed ‘modalities’. There are
two ‘core’ modalities called ‘concordance’ and ‘discordance’. Concordance con-
tains desirable or mandated pairings between SDs and observations. The symbol
associated with concordance is ‘�’ which is pronounced ‘concords with’. Discor-
dance contains the undesirable or prohibited pairings and has the symbol ‘−−× ’.
Concordance and discordance are independently defined.

Examples of core modality pairings for the above list of formalisms follow.

= � { �→ 1, �→ 1}
= −−× { �→ 1, �→ 2}

{ , , } �
{ , , } −−×

y := x ; z := (y + 1) � ( = 1, = 1)
y := x ; z := (y + 1) −−× ( = 1, = 1)

Typographic conventions have been introduced in the above examples: evalua-
tions are written as sets of maplets from variables to values, and; programs are
in sans serif font.

4.2 Reasoning About SDs

Modalities can be used to define reasoning relations for SDs. The simplest rea-
soning relations are orderings induced by the core modalities. Concordance in-
duces ‘entails’ (�), while discordance induces ‘breaks’ (�). Both orderings have
a corresponding notion of equivalence. The inverse of breaking is called ‘fixing’.

� ≡ (∀ • � ⇒ � )
◦ ≡ ( � ∧ � )

� ≡ (∀ • −−× ⇒ −−× )
� ≡ ( � ∧ � )

Concordance is also used to define a relation between sets of SDs and single
SDs called ‘consequence’ (�).

� ≡ (∀ • (∀ : • � ) ⇒ � )

An example DFD consequence is:

{ 1, 2} �
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A Venn style diagram with a universe of observations (adapted from Struss [26])
illustrates the example consequence. The ovals indicate the set of concording
observations for each SD.
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�
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��

	




�

�

1 � 2�

�

Like consequence in first order predicate calculus, DFD consequence is mono-
tonic.

Lemma 1: Consequence monotonicity

( � ) � (( ∪ { }) � )

Discordance is used to define ‘diagnoses’ (�) and ‘diagnoses with a fault model’
(), where a fault model contrains diagnosis.

Δ � ( , ) ≡ (Δ � ∧ Δ �−−× )
Δ  ( , , ) ≡ ( � Δ ∧ Δ � ( , ))

Another Venn style diagram illustrates both forms of DFD diagnosis. In this
diagram the triangles enclose the set of discording observations for the associated
SD. The solid point labeled ‘ ’ is a single observation.
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‘ ’ indicates a fault in ‘ ’ as it is within ‘ ’s set of discording observations.
‘ ’ does not discord with ‘Δ’, ‘Δ’ breaks ‘ ’ and fixes ‘ ’, hence ‘Δ’ is a valid
diagnosis.

Diagnosis with fault models (), and hence also diagnosis (�), is monotonic
with respect to target SD fixing.

Lemma 2: Fault diagnosis fix monotonicity

( � ) ∧ (Δ  ( , , )) � (Δ  ( , , ))
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4.3 Refinement

Formal software engineering often defines ‘refinement’ (�) as a correctness pre-
serving transformation [15]. DFD defines correctness preservation by reference to
a set of modalities called a ‘canon’. Where it cannot be determined by context,
the canon is made explicit by prefixing it to the refinement symbol, yielding the
following definition.

.� ≡ (∀ � : • (∀ • � ⇒ � ))

DFD refinement allows the definition of correctness in terms of any set of
modalities. The next Venn style diagram shows the corresponding sets of obser-
vations for SDs ‘ ’ and ‘ ’ with respect to two modalities - called ‘ ’ and
‘ ’.

�

� �

�

The role of the canon in DFD refinement is demonstrated with a short list of
refinement statements consistent with the above modalities and SDs.

{ }.�
{ }.��
{ , }.��
�.�

Including discordance as a canonic modality makes refinement a subset of
fixing.

Lemma 3: Discordant refinement entails fixing

((−−× ∈ ) ∧ ( .� ) � ( � )

It follows from the definition of fixing, and from Lemmas 2 and 3, that both
fault detection and diagnosis are monotonic with respect to refinement where
discordance is canonic.

Lemma 4: Fault detection—discordant refinement monotonicity

((−−× ∈ ) ∧ ( .� ) ∧ ( −−× )) � ( −−× )

Lemma 5: Fault diagnosis—discordant refinement monotonicity

((−−× ∈ ) ∧ ( .� ) ∧ (Δ  ( , , )) � (Δ  ( , , )
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5 DFD Diagnosis Example

To demonstrate DFD we return to the full adder discussed in Reiter’s theory of
diagnosis from first principles (DFP). The adder will be developed and diagnosed
using DFD. Differences and similarities between the two diagnostic theories are
clarified through this exercise.

5.1 Reasoning About the Adder

In order to reason about the adder, an instantiation of the DFD framework
is required. Instances of DFD relations will be distinguished by prefixing an
identifier to the corresponding symbol. Following from Reiter, the DFD instance
encapsulates predicate calculus - identified by the prefix ‘ ’. Core modalities are
defined in terms of models and anti-models of SD specification predicates.

.� ≡ |=
.−−× ≡ ¬ |=

Defining core modalities in terms of satisfaction means that fixing is the inverse
of entailment.

Lemma 6: Predicate entailment / breaking equivalence

.� ≡ .�

Proof
.�

≡ {Definition of .� and .�}
( |= ) ⇒ ( |= )

≡ {Predicate calculus - definition of ⇒}
⇒

≡ {Predicate calculus - contraposition}
¬ ⇒ ¬

≡ {Predicate calculus - definition of ⇒}
(¬ |= ) ⇒ (¬ |= )

≡ {Definition of .� and .−−×}
.�

The refinement canon consists of just the negation of concordance, making re-
finement equivalent to reverse implication.

Lemma 7: Non-satisfaction refinement is reverse implication

{ .��}.� ≡ ⇐
It follows from Lemmas 6 and 7 that this form of refinement is also equivalent
to fixing.
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Lemma 8: Non-satisfaction refinement is fixing

{ .��}.� ≡ .�

5.2 Developing the Adder

There is no explicit development process in Reiter’s discussion. The design is
simply presented in the form of the circuit diagram in Section 3. A slightly
modified adder diagram is given here to facilitate a one-step predicate-based
formal development.

�

�

�

�

�

�

�

�

1
2

1

1

2

A table of variable names and uses clarifies the component specifications.

variable content DFP equivalent
1 adder input 1 1( 1), 1( 2)
2 adder input 2 2( 1), 2( 1)

adder carry in 1( 2), 2( 2)
1 and gate 1 output ( 1), 2( 1)
2 and gate 2 output ( 2), 1( 1)
1 xor gate 1 output ( 1), 1( 2), 1( 2)

adder sum output ( 2)
adder carry output ( 1)

The DFD adder development has one step - refining the requirement (Req)
into an implementation (Imp).

(
⇔ ((1 �⇔ 2 ) �⇔ )

∧ ⇔ ((1 ∧ 2 ) ∨ ( ∧ (1 �⇔ 2 )))

)
Req

{p.��}.�

⎛
⎜⎜⎜⎜⎝

1 ⇔ (1 �⇔ 2 )
∧ ⇔ ( 1 �⇔ )
∧ 1 ⇔ (1 ∧ 2 )
∧ 2 ⇔ ( 1 ∧ )
∧ ⇔ ( 1 ∨ 2 )

⎞
⎟⎟⎟⎟⎠ Imp

The formal adder development can be verified.
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Proof
Req { .��}.� Imp

≡ {Lemma 7}
Imp ⇒ Req

≡ {Expand Imp, Req}⎛
⎜⎜⎜⎜⎝

1 ⇔ (1 �⇔ 2 )
∧ ⇔ ( 1 �⇔ )
∧ 1 ⇔ (1 ∧ 2 )
∧ 2 ⇔ ( 1 ∧ )
∧ ⇔ ( 1 ∨ 2 )

⎞
⎟⎟⎟⎟⎠

⇒
(

⇔ ((1 �⇔ 2 ) �⇔ )
∧ ⇔ ((1 ∧ 2 ) ∨ ( ∧ (1 �⇔ 2 )))

)

≡ {Expand , }⎛
⎜⎜⎜⎜⎝

1 ⇔ (1 �⇔ 2 )
∧ ⇔ ((1 �⇔ 2 ) �⇔ )
∧ 1 ⇔ (1 ∧ 2 )
∧ 2 ⇔ ( 1 ∧ )
∧ ⇔ ((1 ∧ 2 ) ∨ ((1 �⇔ 2 ) ∧ ))

⎞
⎟⎟⎟⎟⎠

⇒
(

⇔ ((1 �⇔ 2 ) �⇔ )
∧ ⇔ ((1 ∧ 2 ) ∨ ( ∧ (1 �⇔ 2 )))

)

≡ {Predicate calculus}

5.3 Monitoring the Adder

An observation of the adder, using binary numbers for truth values, that corre-
sponds to the example in Reiter’s paper is:

adob1 =̂ {1 �→ 1, 2 �→ 0, �→ 1, �→ 1, �→ 0}

The observation ‘adob1’ indicates a fault with the adder as it discords with the
requirement specification ‘req’.

Proof
req .−−× adob1

≡ {Definition of .−−×}
¬req |= adob1

≡ {Expand req; substitute variable values from adob1}
¬((1 ⇔ ((1 �⇔ 0) �⇔ 1)) ∧ (0 ⇔ (1 ∧ 0) ∨ (1 ∧ (1 �⇔ 0)))))

≡ {Predicate calculus}

Consistent with the definition of fixing and Lemma 8, the observation can be
shown by a similar proof to discord with the implementation.
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imp .−−× adob1

Using a different observation, the benefits of using DFD, over Reiter’s pro-
posal, for hierarchical fault detection can be seen.

adob2 =̂ {1 �→ 1, 2 �→ 0, 1 �→ 0}

No fault is detected in the abstract requirement with the new observation.

req .�−−× adob2

However, a fault is detected using the more detailed implementation.

Proof

imp .�−−× adob2

≡ {Definition of .�−−×}
¬imp |= adob1

≡ {Expand imp; substitute variable values from adob2}

¬
(

∧ ( ⇔ ((1 �⇔ ))) ∧ ( 1 ⇔ 0) ∧
( 2 ⇔ ( 1 ∧ )) ∧ ( ⇔ (0 ∨ (0 ∧ )))

)

≡ {Predicate calculus}

This example demonstrates how DFD fault detection may not yield false
positives—only false negatives. That means a fault detected in an abstraction
indicates there is definitely something wrong with the implemented system. In
terms of a contract view of specification, a false negative by using an abstract
SD is also helpful, as the observation does not indicate a breech of the original
contract.

5.4 Diagnosing the Adder

Having detected a fault in the adder with observation ‘adob1’, a diagnosis for
that scenario is determined. Following the pattern of DFP, diagnosis will be
performed through selectively faulting components by removing them from the
specification. The adder requirement effectively has two components—the sum
and the carry calculators. Our first diagnosis of complete failure of the sum
calculator is not valid.

Proof

( ⇔ ((1 ∧ 2 ) ∨ ( ∧ (1 �⇔ 2 )))) .� (req, adob1)

≡ {Definition of �}
( ⇔ ((1 ∧ 2 ) ∨ ( ∧ (1 �⇔ 2 )))) .� req

∧ ( ⇔ ((1 ∧ 2 ) ∨ ( ∧ (1 �⇔ 2 )))) .�−−× adob1
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≡{Lemmas 7 and 8; predicate calculus}
( ⇔ ((1 ∧ 2 ) ∨ ( ∧ (1 �⇔ 2 )))) .�−−× adob1

≡{Definition of �−−× }
¬(¬( ⇔ ((1 ∧ 2 ) ∨ ( ∧ (1 �⇔ 2 )))) |= adob1))

≡{Substitute observation variable values}
¬¬(0 ⇔ ((1 ∧ 0) ∨ (1 ∧ (1 �⇔ 0))))

≡{Predicate calculus}

By similar reasoning, faulting the carry calculator is also not a valid diagnosis.

( ⇔ ((1 �⇔ 2 ) �⇔ )) .� � (req, adob1)

Faulting both components produces a valid, but trivial, diagnosis.

.� (req, adob1)

Consistent with Lemmas 2 and 8, the diagnosis of the requirement is a valid
diagnosis of the implementation.

.� (imp, adob1)

Diagnoses in DFD is not restricted to faulting components by removing them
from the SD. In the next example a fault model is used to guide the generation
of diagnoses. The adder fault model implements logic gate failure as sticking at
‘1’ - a common problem with CMOS technology. As a faulty component may
even fail to fail, the fault model should be sufficiently non-deterministic to allow
both faulty and functional behaviour.

fm1 =̂

⎛
⎜⎜⎜⎜⎝

(1 �⇔ 2 ) ⇒ 1
∧( 1 �⇔ ) ⇒
∧(1 ∧ 2 ) ⇒ 1
∧( 1 ∧ ) ⇒ 2
∧( 1 ∨ 2 ) ⇒

⎞
⎟⎟⎟⎟⎠

Because the trivial diagnosis ( ) does not fix (�) the fault model ( 1) it is
excluded.

.� (fm1, req, adob1)

A potential diagnosis can be produced by faulting the components identified in
one of Reiter’s diagnoses in accordance with the known faulty behaviour of gates
sticking at 1.

δx2o1 =̂

⎛
⎜⎜⎜⎜⎝

1 ⇔ (1 �⇔ 2 )
∧( 1 �⇔ ) ⇒
∧ 1 ⇔ (1 ∧ 2 )
∧ 2 ⇔ ( 1 ∧ )
∧( 1 ∨ 2 ) ⇒

⎞
⎟⎟⎟⎟⎠
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The new diagnosis (δx2o1) does not diagnose the requirement with the fault
model (fm1) as neither the fault model nor the diagnosis break the requirement.

Proof

δx2o1 . (fm1, req, adob1)

≡ {Definition of . and .� }
(fm1 .� δx2o1) ∧ (δx2o1 .� req) ∧ (δx2o1 .�−−× adob1)

≡ {Lemmas 7 and 8}
(δx2o1 ⇒ fm1) ∧ (req ⇒ δx2o1) ∧ (δx2o1 .�−−× adob1)

≡ {Predicate calculus}
∧ ∧ (δx2o1 .�−−× adob1)

≡ {Predicate calculus}

Fault detection monotonicity in DFD means that, even though it is not a valid
diagnosis for the requirement, ‘δx2o1’ may be a valid diagnosis for the imple-
mentation. The proof follows the pattern of previous proofs for the constituent
relations, except this time the diagnosis breaks the SD.

δx2o1 . (fm1, imp, adob1)

6 Other Theories of Programming

The previous section demonstrated that predicate calculus is consistent with the
DFD framework. In this section three more programming formalisms—relations,
Hoare triples and weakest preconditions—are restated as forms of DFD. All three
restatements as instances of DFD include proof that the relevant refinement or-
dering is also fix ordering. Consequently, formal developments using any of these
theories of programming yield SDs suitable for hierarchical diagnostic reasoning.

6.1 Relations

Programs can be described as ‘state transformers’ or as ‘relations on states’. The
conventional programming model for the Z specification language is perhaps the
most widely known example of a relational program semantics. Defining relations
as an instantiation of DFD requires three modalities—the two core modalities
and ‘apply’. Relational SDs are relations on states, while observations are pairs
of states.

.� ( , ) ≡ ( , ) ∈
apply ( , ) ≡ ∈ dom

.−−× ( , ) ≡ ( apply ( , ) ∧ .�� ( , ))

Orderings induced by the core modalities are:
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.� ≡ ⊆

.� ≡ ( ∈ dom ∧ ( , ) �∈ ) ⇒ ( ∈ dom ∧ ( , ) �∈ )

The standard form of relational refinement [22, p.221] as the conjunction of
an ‘applicability’ and a ‘correctness’ condition can be induced from a canon
consisting of discordance and the apply modality.

Lemma 9: Canonic relational refinement

{apply, .−−×}.� ≡ (dom ⊆ dom ) ∧ ((dom � ) ⊆ )

Proof
{apply, .−−×}.�

≡ {Expand �, apply and .−−×}
∈ dom ⇒ ∈ dom

∧ ( ∈ dom ∧ ( , ) �∈ ) ⇒ ( ∈ dom ∧ ( , ) �∈ )

≡ {Distribute implication over conjunction; Re-arrange antecedents}
∈ dom ⇒ ∈ dom

∧ ( , ) �∈ ⇒ ( ∈ dom ⇒ ∈ dom )
∧ ( ∈ dom ∧ ( , ) �∈ ) ⇒ ( , ) �∈

≡ {Remove redundant implication}
∈ dom ⇒ ∈ dom

∧ ( ∈ dom ∧ ( , ) �∈ ) ⇒ ( , ) �∈
≡ {Re-arrange antecedents; Contraposition; Re-arrange antecedents}

( ∈ dom ⇒ ∈ dom ) ∧ (( ∈ dom ∧ ( , ) ∈ ) ⇒ ( , ) ∈ )

≡ {Set theory}
(dom ⊆ dom ) ∧ ((dom � ) ⊆ )

By Lemma 3, DFD relational refinement implies fixing.

Lemma 10: Relational refinement fixes

{apply, .−−×}.� � .�

6.2 Hoare Triples

Hoare triples [17] are the basis of a form of reasoning about program semantics
known as ‘Hoare logics’. A triple consists of a ‘precondition’, ‘program’ and
‘postcondition’, traditionally written it the following way:

{ } { }

The above triple is valid if, starting in any state satisfying ‘ ’, the program
‘ ’ terminates in a state satisfying ‘ ’, if it terminates. The semantics of
a program can be understood as the set of all its valid triples. Instantiating
DFD to replicate Hoare triples can be achieved by casting programs as SDs and
pre-postcondition pairs as observations.
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.� ( , ) ≡ { } { }
.−−× ( , ) ≡ { } {¬ }

A distinguishing property of Hoare logics is the equivalence of entailment and
fixing. This is the opposite of the case with DFD predicates as demonstrated in
Lemma 6.

Lemma 11: Hoare entail / fix equivalence

.� ≡ .�

Proof

.�
≡ {Definition of .� and .�}

{ } { } ⇒ { } { }
≡ {Substitute equivalent set of postconditions}

{ } {¬ } ⇒ { } {¬ }
≡ {Definition of .� and .−−×}

.�

It follows from Lemma 11 that DFD refinement for Hoare triples can make
both, or either, core modalities canonic and still reproduce the standard form of
refinement for Hoare triples.

Lemma 12: Hoare DFD refinement

{ .�, .−−×}.� ≡ { } { } ⇒ { } { }

Proof

.�
≡ {Definition of .� and .�}

{ } { } ⇒ { } { }
≡ {Substitute equivalent set of postconditions}

{ } {¬ } ⇒ { } {¬ }
≡ {Definition of .� and .−−×}

.�

6.3 Weakest Preconditions

Dijkstra proposed [12] a form of Hoare logic that relies on a ‘weakest pre-
condition’ calculation function usually called ‘ ’. This function calculates the
predicate describing the largest set of starting states from which a program is
guaranteed to terminate in a state satisfying a given postcondition. As with
Hoare triples, observations are described with pre-postcondition pairs.
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.� ( , ) ≡ ⊆ ( , )

.−−× ( , ) ≡ ⊆ ( , ¬ }

By following a similar proof to Lemma 11, entailment and fix orderings can be
shown to be equivalent.

Lemma 13: Weakest precondition entail - fix equivalence

.� ≡ .�

Being a Hoare logic, the canon contains both core modalities. The resultant
refinement ordering is consistent with Dijkstra’s definition.

Lemma 14: Weakest precondition refinement

{ .�, .−−×}.� ≡ ( , ) ⊆ ( , )

Proof

{ .�, .−−×}.�
≡ {Definition of .� and .−−×; Lemma 12}

⊆ ( , ) ⇒ ⊆ ( , )

≡ {Set theory}
( , ) ⊆ ( , )

7 Extending DFD

Unlike other theories of MBD, DFD does not require a separate modeling phase.
A development carried out within any programming formalism that is consis-
tent with DFD can be immediately re-used as the diagnostic model of the im-
plemented system. The only requirement for consistency with the framework
is that refinement is a failure preserving transformation. This requirement has
been shown to be satisfied by many well known forms of refinement.

The above discussion should highlight the need to extend the DFD framework
to exploit decomposition. Refinement calculi [2,20] include many rules for the
introduction of structure into programs. It would be very helpful to allow com-
ponents to be labeled and explicitly identified in diagnoses. Adding this facility
to DFD is complex and requires, amongst other things, a formalisation of formal
developments themselves.

Another area for extension of DFD is to look at process algebras. Process al-
gebras often rely on a notion of bisimulation, rather than refinement, to perform
step-wise development. Given that bisimulation basically equates to observa-
tional equivalence, it seems likely that bisimulation would preserve failures.
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Abstract. We present a formal, tool-supported approach to the design
and maintenance of access control policies expressed in the eXtensible
Access Control Markup Language (XACML). Our aim is to help de-
velopers evaluate the consequences of policy decisions in complex sit-
uations where security requirements change and access decisions may
depend on the external dynamic environment. The approach applies
the model-oriented specification language from the Vienna Development
Method (VDM++). An executable formal model of XACML access con-
trol is presented in VDM++. The use of the model to analyse and revise
both policies and requirements on the environment is illustrated through
an example. An approach to the practical problem of analysing access
control in virtual organisations with dynamic membership and goals is
proposed.

1 Introduction

For a multi-user computer system to be secure, the developer must ensure that
the people or systems using it are only allowed to perform legitimate actions.
The functionality that achieves this is often separated out into a distinct

which defines the response to access requests. In many situations,
the response given to a request depends on the environment in which the re-
quest is evaluated. For example, a request may be disallowed outside of regular
working hours, and so each time the request is made a clock will need to be
consulted. Such policies are termed (also context-aware or dy-
namic). Context-sensitivity adds complexity to the development and validation
of access control policies. They often need to satisfy requirements from different
domains, for example legal, technical and commercial. Conformance with each
of these sets of requirements must be checked any time the access control policy
is modified. Modern virtual organisations are composed of separate agents, each
with their own access control policies. They often work to volatile functional
requirements and so policies need to be updated accurately and quickly.

The goal of our current work is to assist the access control policy developer by
providing rapid feedback on design decisions. Formal techniques are well suited to
this task because of the breadth and rigour of analysis that they afford. However,
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our goal is pragmatic, so it is vital that formal techniques for policy design are
relevant to industry practice. Our specific aims are therefore to support policy
analysis in an existing and widely-used access control framework (rather than to
propose a new formalism), to focus on methods that can be supported by tools,
and to exploit the benefits of formal approaches but provide a low technical
barrier to their use by integrating with current and emerging industry practice.

The contribution of this paper is to provide a semantics for XACML in a lan-
guage (VDM++) which is executable and has strong tool support (VDMTools.)
Consistent with the lessons of previous industrial applications of VDM++ we
emphasise modelling and analysis code verification and pay special attention to
using the strong tool support for model validation by testing. The intention be-
hind this approach to provide entry-level access to formal methods technology
without requiring users to learn advanced modelling and analysis techniques at
the outset.

We approach this by focussing on a substantial subset of the OASIS standard
eXtensible Access Control Markup Language (XACML), providing a formal se-
mantics for it in the formal specification language of VDM++ [10]. The semantics
is similar in structure to XACML and includes environments, enabling analysis
of context-sensitive policies. The semantic model can be executed directly using
the VDMTools interpreter, providing a basis for testing and analysing proposed
policies and environments. Test suites may be run against these interpreted mod-
els, providing rapid feedback to the developer.

Section 2 contains a brief overview of access control, and Section 3 gives
an overview of semantics for XACML policies in VDM++. The validation and
evolution of policies using the formal model are illustrated in Section 4. The
application of the model in the volatile environment of dynamic virtual organ-
isations is outlined in Section 5. We conclude by comparing related work and
identifying potential improvements to the coverage of the formal model and the
range of analyses supported.

2 Context-Sensitive Access Control in XACML

This section gives a simplified overview of XACML [16], pointing out how it
is used to describe context-sensitive access control policies. XACML provides a

for describing access control policies and a for
interrogating these policies.

Access control systems that implement XACML have the abstract structure
shown in Figure 1. A request to perform an operation on SYS (the system under
access control) is forwarded to the (PEP). The PEP
translates the request into the XACML request language and passes it on to the

. In XACML a request is a triple containing multiple subjects, actions
and resources. However, we will follow [7] and [6] in restricting request triples to
contain a single subject, action and resource. We assume that the PEP is defined
to break any compound request into a set of requests and submit them singly,
then combine the results in whatever way the developer chooses.
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Fig. 1. XACML overview

The handler forwards the request, together with any relevant information from
the context, to the (PDP). The PDP retrieves the relevant
policies from the (PAP), which contains all the access control
policies for SYS. The PDP then evaluates the relevant access control policies in
the context and sends the response to the handler. The result is returned to the
PEP where it is enforced as either permission or denial. The decision of how to
enforce the result returned by the PDP is in general application-dependent and
is not in the scope of our current formalisation.

The PAP may contain a number of arbitrarily nested policies. When faced
with a request, each policy must produce a single result, so a parent policy
contains an algorithm for combining the responses of all the child policies into a
single result. Policies may also contain a – a set of subjects, resources, and
actions denoting the limits of the applicability of the policy. A policy is applied
to a request if the request the policy target, i.e. if the request subject,
resource and action are in the set of policy target subjects, resources and actions
respectively. If a request does not match the policy target – i.e. it relates to a
subject, resource or action outside the policy target – the policy will generate
the result . If the target is not present in the policy every request
will match.

The lowest-level policies contain sets of rules, together with a combining algo-
rithm. Like policies, rules in XACML may contain a target. They will also contain
an effect (permit or deny). Optionally, they may also contain a .

A is the part of a policy which is . It is a Boolean
function, and may range over the subject, resource and action of the request as
well as arbitrary environment variables. If a request matches a rule target the
condition of the rule is evaluated. Evaluating the condition will involve consulting
the environment of the system. If the condition evaluates to true the effect of
the rule will be returned (which may be either permit or deny). If the condition
evaluates to false the rule will return not applicable. If the condition cannot
be evaluated (perhaps because some system-level environmental information is
missing) the rule will return . Finally, if the request did not match
the rule target is returned.

If several rules return a result for a request, the results are combined using a
. The ones considered in this paper are ,
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which will deny a request if a single rule denies it, and , which
will permit a request if a single rule permits it.

As an example, consider the access control policy for a document manage-
ment system designed to control access to documents within a chemical engi-
neering plant. Documents are held on a central database and access must be
carefully controlled. Each document must be reviewed after it is written. Sup-
pose the initial stages of a project involve two documents – the hazard analy-
sis and the production plan. We begin by developing the access control policy
needed for these early stages. Suppose the developer is initially given two rules to
implement:

1. The hazard analysis must be signed off before anyone may write to
the production plan.

2. An author of a document cannot be the reviewer of that document.

An outline of a possible XACML realisation of the first rule is:

<Rule RuleId="hazanBeforePPRule" Effect="Deny">

<Description> Deny PP write before haz_an signed off </Description>

<Target>

<Subjects><AnySubject/></Subjects>

<Resources>...ProductionPlan...</Resources>

<Actions>...write...</Actions>

</Target>

<Condition FunctionId="...:function:not">

<Apply FunctionId="...signed-off">...haz_an...</Apply>

</Condition>

</Rule>

The effect (to deny access) is in the top line, the target of the rule tells us that
the rule is about write requests on the production plan and finally the rule has a
condition (which will vary according to the precise context.) If a request is made
to write to the production plan the rule must be able to check if the hazard
analysis has been signed off. The second rule, requires that it be possible to
check authorship of any document.

The structure available in the environment to answer the context-related
queries may vary in each case. The documents may be in XML format, with
“signed-off” and “authorship” fields, or the information may be recorded sepa-
rately in a database. The policy developer will not necessarily know in advance
which of these alternative implementations to assume. It is therefore important
that the developer can model the environment abstractly, without requiring a
particular implementation, but ensuring that the abstract model of the envi-
ronment will have all the relevant behaviours that the real environment may
exhibit.

3 A Semantics for XACML

This section introduces the VDM++ formalism, then presents a semantics for
XACML in terms of an executable formal model in VDM++.
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3.1 The VDM++ Formalism and Tools

The model is expressed in VDM++ [10], the object-oriented extension of the Vi-
enna Development Method (VDM) specification language [13,1]. For a detailed
introduction to VDM and its support tools the reader is referred to [8] and
the VDM portal [17]. VDM++ models are composed of class definitions, each
of which may contain local state specified by typed instance variables. Type
definitions are given in terms of abstract basic types including token types for
representing structureless values. Complex types are constructed using record
and union constructors, set, sequence and mapping types. Type membership
is restricted by invariants. Functionality in each class is expressed in terms of
operations that may modify the values of the instance variables and auxiliary
functions that do not affect the local state. Operations and functions may be
specified implicitly by means of postconditions, or explicitly. In either case, re-
strictions on their domains are expressed by logical preconditions. Constants
may also be declared (as values). In our work on XACML, we remain within
an executable subset of the modelling language, allowing our models of access
control policies to be readily analysed using the VDMTools interpreter.

VDM++ benefits from strong tool support and a record of industrial use [9].
The existing tool set (VDMTools) includes a syntax and type checker, an in-
terpreter for executable models, test scripting and coverage analysis facilities,
program code generation and pretty-printing. These have the potential to form
a platform for tools specifically tailored to the analysis of access control policies
in an XACML framework. Advanced static analysis for VDM models includes
automatic proof obligation generation and automated proof support is under
development.

An access control policy in XACML can be thought of as a data structure
based on a set of complex data types. The XACML standard is a description
of these data types and of the evaluation functions over them. VDM++, with
its separation of data types and functionality, is an appropriate language to
describe access control policies. VDM++ also allows a clear encapsulation of
functionality within classes, which makes it particularly suitable for describing
the architectural model of an access control environment.

3.2 A Model of XACML

This section gives an overview of a formal model of access control in VDM++.
Throughout this section and Section 4 we use the interchange syntax of VDM++.
The extracts are drawn from the full VDM++ model1.

Fig. 2 is an informal class diagram showing the structure of the VDM++

model. The structure of the model closely reflects that of XACML. The Request
class describes requests that a user may make. Policies are represented in objects
of the PAP class; individual rules may include conditions that are expressed in
expressions of the FExp class. The Evaluator collects together the functionality
of the XACML handler and Policy Decision Point. It evaluates a request with
1 Available at http://homepages.cs.ncl.ac.uk/jeremy.bryans/VDMPPacmodel/
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Fig. 2. Overview of the VDM++ model

respect to a PAP policy in an environment (an instance of the Env class). We
briefly consider each of the main classes in turn.

Policy Model. The policy model is described in the Policy Access Point (PAP)
class. In the VDM++ model, objects from the PAP class contain a single instance
variable pap of type PolicySet. A PolicySet contains an optional Target, a set
of elements from Policy and PolicySet, and the name of the policy combining
algorithm (of typeCombAlg).

PolicySet :: target : [Target]

components : set of (Policy|PolicySet)

policyCombAlg : CombAlg;

Target :: subjects : set of Subject

resources : set of Resource

actions : set of Action;

Policy :: target : [Target]

rules : set of Rule

ruleCombAlg : CombAlg;

CombAlg = <denyOverrides> | <permitOverrides>;

Rule :: target : [Target]

effect : Effect

cond : [FExp]

A policy contains an Target (optional, indicated by the [..]), a set of Rules,
and a combining algorithm name. The enumerated values <denyOverrides> and
<permitOverrides> act as pointers to the appropriate algorithms, defined in the
Evaluator class. Other possible combining algorithms are given in the XACML
Standard [16], but for simplicity we will model only these two here. Both these
algorithms may be applied to both policies and rules; a slight modification would
allow us to include algorithms which only apply to either policies or rules. The
effect of the rule is the value returned by the rule when a request is evaluated
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against it. It can be one of the enumerated values <Permit>, <Deny>, <Indet>
or <NotApplicable>. The condition cond may contain an expression of the class
FExp.

Dynamic Context. The context in which the rules are evaluated is given by
the environment, which contains two mappings. senv represents a static envi-
ronment mapping expression variables to types, and denv represents a dynamic
environment mapping expression variables to values.

senv : map FExp‘Var to SType;

denv : map FExp‘Var to Val

The senv component contains a record of the types of the variables in the dy-
namic component. This allows us to type check expressions evaluated within this
environment. The dynamic component of the environment contains the values
of each the variables. The abstract syntax of values is given below.

Val = AtomicVal | StructuredVal;

AtomicVal = bool | int | <Indet>;

StructuredVal = BoolArray | IntArray | VarArray;

BoolArray = map FExp‘Var to bool;

IntArray = map FExp‘Var to int;

VarArray = map FExp‘Var to (map FExp‘Var to bool)

An XACML implementation must provide support for arbitrary run time en-
vironments, whereas in our approach we build a simpler abstract model of the
environment that manifests the behaviour necessary to test the rules and poli-
cies that we design. For this reason our syntax of expressions is currently less
expressive than that offered by XACML. However, it is readily extensible.

Atomic values may be Boolean or integer, as well as the special value Indet
used to model situations where the environment fails to return a result. A
BoolArray is a map from variables to Booleans and an IntArray is a map
from variables to integers. A VarArray is a map to BoolArrays.

Condition Expressions. The syntax of expressions and the structure of the
environment are closely related. Objects from the FExp class are used to build
the conditions that form the context-sensitive part of rules. Each object is an
expression. In general, an environment and a request may need to be provided
in order to fully evaluate an expression, as it may contain references to elements
in both of them. An ordinary expression is one which only uses variable names
declared in the environment, and a full expression also uses the reserved terms
requester or resource. Before a full expression is evaluated, these are instan-
tiated with the name of the request subject and resource. Ordinary (non-full)
expressions take one of the following forms:

Expr = Var | Unary | Infix | Literal | ArrayLookup | VarArrayLookup;

Unary :: op : <NOT>

body : Expr;
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Infix :: left : Expr

op : <AND>|<OR>|<LT>

right : Expr;

ArrayLookup :: aname : Var

index : Var;

VarArrayLookup :: aname : Var

index1 : Var

index2 : Var

A Var expression is a record with a single token field, and a Literal may be
a Boolean literal or an integer literal. Expressions may be negated using the
Unary type. Infix expressions may be conjunctions or disjunctions of Boolean
expressions, and integer expressions may be combined using less-than. Expres-
sions may also look up values in environment Arrays. An ArrayLookup contains
the name of the array and the index to be looked up. A VarArrayLookup con-
tains the name of a VarArray and two indices. The first index is the name of
the Boolean array to be looked up, and the second is the name of the index to
be addressed within the Boolean array.

The syntax of full expressions (not shown here) extends the above by including
requester and resource as uninstantiated variables.

UnVar :: <requester>|<resource>

These may be used in the same way as instantiated variables, so full expressions
contain Var|UnVar where Var appears above.

Evaluating Requests. The Evaluator class describes the evaluation of re-
quests, combining the functionality of the XACML handler and Policy Decision
Point.

As indicated in Section 2, we restrict requests to a single subject, resource,
and action. In the VDM++ these are instance variables of the Request class.
The Subject, Resource and Action types are drawn from the PAP class but
could be pulled out into a separate unit.

subject : PAP‘Subject;

resource : PAP‘Resource;

action : PAP‘Action

The Evaluator class contains four instance variables: a PAP, an environment
Env, a request and the instantiation mapping inst. The inst mapping will map
the reserved terms requester and resource to the actual requester and resource
in the access control request triple. This allows requester and resource in any
of the conditions in the PAP to be bound to the current request subject and
resource. The constructor takes a request, a PAP and an environment, and
instantiates Inst from the request. The operation evaluate then returns the
effect of evaluating the request req against the PAP pap in the environment
env.
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pap : PAP; -- an object of class PAP

env : Env; -- an object of class Env

req : Request; -- an object of class Request

inst: Inst := mk_Inst({|->}); -- the instantiation mapping

The evaluate operation (below) invokes the appropriate evaluator on the basis
of the combining algorithm.

public evaluate: () ==> PAP‘Effect

evaluate() ==

if (pap.GetpolicyCombAlg() = <denyOverrides>) then

return(evaluatePAPDenyOverrides())

elseif (pap.GetpolicyCombAlg() = <permitOverrides>) then

return(evaluatePAPPermitOverrides())

else

return(<NotApplicable>)

The tree of policies is traversed and each policy combines the results of the sub-
components of that policy using the stated combining algorithm. At the level
of single rules, the effect of the rule is returned if there is no condition or the
condition evaluates true in the current environment. Otherwise the rule returns
<NotApplicable> if the condition evaluates false and <Indet> if the condition
can not be evaluated (e.g. if a variable reference in the condition does not point
to a variable in the environment).

evaluateRule : PAP‘Rule ==> PAP‘Effect

evaluateRule(rule) ==

if targetmatch(rule.target) then

if rule.cond = nil

then return(rule.effect)

else

cases (rule.cond).Evaluate(req,env):

true -> return(rule.effect),

false -> return(<NotApplicable>),

<Indet> -> return(<Indet>)

end

else

return(<NotApplicable>)

4 Validating Access Control Policies Using the Model

Our overall aim is to support the design and evolution of context-sensitive ac-
cess control policies. In particular, we wish to provide rapid feedback on the
characteristics of policies, or on the effects of changing policies, before they are
implemented. The formal model of XACML presented in Section 3 can provide
a basis for this form of evaluation.

The XACML model is written in the executable subset of VDM++. Initialised
with an environment and a proposed policy, a set of test requests can be eval-
uated by direct execution of the semantic model on the VDMTools interpreter.
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Based on the outcome of such an evaluation, the designer may choose to modify
either or both of the policy and the environment. For example, a policy might
be modified to add specific constraints, or the environment might have to be ex-
tended in order to include external information required to facilitate a new rule.
The designer has an eye to the data that can be obtained from the environment
as well as the content of the policy itself. This process of test and modification
can go through several iterations, eventually yielding a model policy and envi-
ronment. The policy can be implemented in a real XACML Policy Access Point.
The environment model specifies the external data that must be obtainable from
the real environment in order for the policy to behave correctly.

This section illustrates the process of iterative development using the exe-
cutable semantics of XACML. Using the simple example introduced in Section 2,
we first show an initial encoding of two elementary rules in an access control
policy and then illustrate the testing and subsequent modification of the policy.
Throughout we show how policies and tests are represented in VDM++, but in
practice we expect the user of a tool based on the semantic model to access it
through a more friendly interface.

4.1 Designing Rules

Consider first the implementation of the two rules given in Section 1, namely

1. The hazard analysis must be signed off before anyone may write to
the production plan.
2. An author of a document can not be the reviewer of that document.

The developer begins by defining, in VDM++, a sample environment in which
the rules will be exercised. From the example rules, necessary elements in the
environment will include names for the two documents in question (haz an for
the hazard analysis and pp for the production plan) and the names of the two
relevant actions (write and review). To fully specify an example environment,
in which different subjects will have different privileges, the names of some sub-
jects (here Anne and Bob) are included. All these are defined in VDM++ as
variables from the class FExp.

haz_an : FExp‘Var = mk_FExp‘Var(mk_token("hazard_analysis")),

pp : FExp‘Var = mk_FExp‘Var(mk_token("production_plan")),

write : FExp‘Var = mk_FExp‘Var(mk_token("write")),

review : FExp‘Var = mk_FExp‘Var(mk_token("review")),

Anne : FExp‘Var = mk_FExp‘Var(mk_token("Anne")),

Bob : FExp‘Var = mk_FExp‘Var(mk_token("Bob"))

To construct the environment, we consider the two rules. Rule 1 contains a ref-
erence to hazard analysis being signed off. Since this will change over the course
of the document lifetime, it must be possible when the policy is being evaluated
to determine it from the environment. The developer does not need to know
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at this stage the way in which the environment stores this information, merely
that it must be available. One possibility open to the developer is to include a
Boolean variable to indicate whether or not the document is signed off. This is a
straightforward solution, but if the policy expands, an environment with a large
number of such Boolean variables could become complex to maintain and update.
This becomes more important when we come to test the policy in environments
with different values. We therefore add a variable called signed off, of type
BoolArray, to the environment. It is instantiated in the dynamic environment
denv as a mapping from documents to Booleans. In the example environment
given we populate it with the map {haz an |-> true, pp |-> false}.

signed_off : FExp‘Var = mk_FExp‘Var(mk_token("signed_off")),

env : Env = new Env({...
signed_off |-> <BoolArray>},

{...
signed_off |->

{haz_an |-> true, pp |-> false}})

Rule 1 applies to any subject trying to write to the production plan, so we
introduce a symbol all subjects to represent the set of all subjects in the rule
target. This is initialised to {Anne,Bob} and allows us to change the set of test
subjects without having to change the rule target. The XACML convention is
that if the target field is empty it applies to all possible subjects; we allow the
developer to use that convention but retain all subjects for clarity.

all_subjects : set of PAP‘Subject = {Anne,Bob},

hazanBeforePPRule: PAP‘Rule =

mk_PAP‘Rule(

mk_PAP‘Target(all_subjects,{pp},{write}), <Deny>,

new FExp(mk_FExp‘FUnary(<NOT>,

mk_FExp‘FArrayLookup(signed_off,haz_an))))

In order to evaluate Rule 2, it must be possible at any time to determine the
authorship of any document. To support this, a mapping author is added to the
environment as a VarArray which has type map Var to (map Var to bool). It
is instantiated in the dynamic environment as a map from documents to people
to Booleans:

author : FExp‘Var = mk_FExp‘Var(mk_token("author")),

environment1 : Env = new Env({author |-> <VarArray>,

signed_off |-> <BoolArray>},
{author |-> {haz_an |-> {Anne |-> false, Bob |-> true},

pp |-> {Anne |-> true, Bob |-> false}},
signed_off |-> {haz_an |-> true, pp |-> false}})

Rule 2 itself is a separation of duty constraint applying to all requests to review
a document, and denying any author the ability to review their own document.
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This demonstrates the need to vary the result of a rule evaluation depending on
the relationship between the requester and the resource. It therefore makes use
of both the resource and requester reserved words. In order to evaluate the
effect of this rule, the evaluator must instantiate both of these variables via the
inst mapping.

requester : FExp‘UnVar = mk_FExp‘UnVar(<requester>),

resource : FExp‘UnVar = mk_FExp‘UnVar(<resource>),

reviewRule : PAP‘Rule =

mk_PAP‘Rule(mk_PAP‘Target(all_subjects,{haz_an,pp},{review}),
<Deny>,

new FExp(mk_FExp‘FVarArrayLookup(author,resource,requester)))

Following the XACML structure, these two rules are combined in a policy within
a PAP. Both the policy and the PAP have a denyOverrides rule combining
algorithm, so, unless a request is specifically permitted by the rules, it will be
denied. Formally:

CompanyPolicy : PAP‘Policy =

mk_PAP‘Policy(mk_PAP‘Target(all_subjects,{haz_an,pp},{review,write}),
{hazanBeforePPRule,reviewRule},
<denyOverrides>),

pap : PAP = new PAP({CompanyPolicy}, <denyOverrides>)

4.2 Testing and Modifying Rules

To build confidence in the design of the policy, a number of tests are created.
Each test is a single request which may be made of the policy. The developer
evaluates the policy with respect to these tests, and decides if the results of the
tests correspond to his or her understanding of the requirements. The testing
process can be repeated in several environments.

For example, we might define a second test environment (environment2) in
which authorship of each of the documents is as in environment1, but haz an
has not been signed off:

environment2 : Env = new Env({author |-> <VarArray>,

signed_off |-> <BoolArray>},
{author |-> {haz_an |-> {Anne |-> false, Bob |-> true},

pp |-> {Anne |-> true, Bob |-> false}},
signed_off |-> {haz_an |-> false, pp |-> false}})

Table 1 shows the results of evaluating various test requests in each of these two
environments. At this stage the two given rules have been designed, but it is
clear that we are some way from a comprehensive access control policy.
The kind of error that is usually highlighted in this way is
– there are legitimate requests for which the policy has no rule. These are the
requests for which the policy returns <NotApplicable>.

We could use this approach to highlight inconsistencies between rules within
a policy by applying the same set of tests to two different rules. Note, however,
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Table 1. Results of request evaluation in two environments

Request Environment 1 Environment 2

Request(Anne,haz an,{write}) <NotApplicable> <NotApplicable>

Request(Anne,haz an,{review}) <NotApplicable> <NotApplicable>

Request(Bob,haz an,{write}) <NotApplicable> <NotApplicable>

Request(Bob,haz an,{review}) <Deny> <Deny>

Request(Anne,pp,{write}) <NotApplicable> <Deny>

Request(Anne,pp,{review}) <Deny> <Deny>

Request(Bob,pp,{write}) <NotApplicable> <Deny>

Request(Bob,pp,{review}) <NotApplicable> <NotApplicable>

that an inconsistency – one rule returns Permit> where another returns <Deny>
– is not necessarily a cause for concern. It is relatively common in access con-
trol policies to have general rule with specific exceptions, and the combining
algorithm takes care of the resolution.

In Table 1 no permission is given for any requests: they are all either denied or
out of scope of the policy, returning the effect <NotApplicable>. This highlights
a choice for the developer: what is to be the default behaviour of the Policy
Enforcement Point if <NotApplicable> is returned from the policy evaluation?
The two choices are and . If the PEP is permit-biased
it will permit requests for which the policy returns <NotApplicable>, and rules
must be designed to deny all requests that should be forbidden. An alternative
is a PEP, which treats <NotApplicable> as <Deny>. In this case a
policy must be designed to permit all requests which are to be allowed.

If the developer wishes to make the behaviour of the policy independent
of the style of the PEP, they must ensure that the policy does not return
<NotApplicable> for any requests which match the policy target. In this ex-
ample, we pursue this latter option. This is done by including a general per-
mission rule (permitRule) in the policy. This permits any requests to write
and review the two documents. When combined with the other rules using
<denyOverrides>, this means that requests not specifically denied by the other
rules in the policy will be permitted. The permitRule has no expression in the
condition clause, because it is not conditional on any aspect of the environment:

permitRule: PAP‘Rule = mk_PAP‘Rule(mk_PAP‘Target(
all_subjects,{pp,haz_an},{write,review}),
<Permit>,nil)

The CompanyPolicy is altered to include the new rule:

CompanyPolicy : PAP‘Policy =

mk_PAP‘Policy(mk_PAP‘Target(all_subjects,{haz_an,pp},{review,write}),
{hazanBeforePPRule,reviewRule,permitRule},
<denyOverrides>)

Testing these three rules in each of our environments has the anticipated results:
each <NotApplicable> is set to <Permit> (Table 2).
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Table 2. Test results for policy independent of PEP bias

Request Environment 1 Environment 2

Request(Anne,haz an,{write}) <Permit> <Permit>

Request(Anne,haz an,{review}) <Permit> <Permit>

Request(Bob,haz an,{write}) <Permit> <Permit>

Request(Bob,haz an,{review}) <Deny> <Deny>

Request(Anne,pp,{write}) <Permit> <Deny>

Request(Anne,pp,{review}) <Deny> <Deny>

Request(Bob,pp,{write}) <Permit> <Deny>

Request(Bob,pp,{review}) <Permit> <Permit>

4.3 Environment Modification

Another problem highlighted by the test results is that requests by both Anne
and Bob to write to haz an, and by Bob to review haz an, are permitted, even
though it has been signed off. This is an inadequacy of the rules as given, which
do not cover that explicitly. To deal with this, we could propose a rule which
refuses any action on a document after it has been signed off, for example:

NoActionAfterSignoffRule : PAP‘Rule =

mk_PAP‘Rule(mk_PAP‘Target(all_subjects,{haz an,pp},{review,write}),
<Deny>,

new FExp(mk_FExp‘FArrayLookup(signed_off,resource)))

Let us assume that, through analysing the test results, the developer realises a
further requirement

3. For each document, writing and reviewing phases must not overlap.

Implementing this rule will require a new environment variable, a Boolean array
(completed). For each document, this is to be set to true when the writing
phase is over and it is ready for review. The following two rules will keep the
writing and reviewing phases separate:

NoWriteIfCompletedRule : PAP‘Rule =

mk_PAP‘Rule(mk_PAP‘Target(all_subjects,{haz an,pp},{write}),
<Deny>,

new FExp(mk_FExp‘FArrayLookup(completed,resource))),

NoReviewUntilCompletedRule : PAP‘Rule =

mk_PAP‘Rule(mk_PAP‘Target(all_subjects,{haz an,pp},{review}),
<Deny>,

new FExp(mk_FExp‘FUnary(<NOT>,

mk_FExp‘FArrayLookup(completed,resource))))

These three rules can be combined into a separate policy:

CompletionPolicy : PAP‘Policy =

mk_PAP‘Policy(mk_PAP‘Target(all_subjects,{haz an,pp},{write,review}),
{NoWriteIfCompletedRule,NoReviewUntilCompletedRule,
NoActionAfterSignoffRule},
<denyOverrides>)
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Table 3. Test results in environment augmented with separated phases

Request Environment 1 Environment 2

Request(Anne,haz an,{write}) <Deny> <Permit>

Request(Anne,haz an,{review}) <Deny> <Deny>

Request(Bob,haz an,{write}) <Deny> <Permit>

Request(Bob,haz an,{review}) <Deny> <Deny>

Request(Anne,pp,{write}) <Permit> <Permit>

Request(Anne,pp,{review}) <Deny> <Deny>

Request(Bob,pp,{write}) <Permit> <Permit>

Request(Bob,pp,{review}) <Deny> <Deny>

This new policy can then be added to the PAP:

pap : PAP =

new PAP({CompanyPolicy,CompletionPolicy}, <denyOverrides>)

A value for the mapping can be added to the dynamic part of each test en-
vironment. In this case we add {completed |-> {haz an |-> false, pp |->
false}}. Testing the new PAP in the two environments gives the results shown
in Table 3. In Environment 1, the only requests now permitted are requests by
Anne and Bob to write to pp. In Environment 2 there is an inconsistency. Re-
quests to write to both haz an and pp are allowed. This has happened because
haz an has been signed off without being completed. This inconsistency would
be unacceptable in the implementation, and an appropriate safeguard would
need to be put in place. However, modelling such an inconsistent environment is
valuable, because doing so can help to identify environmental assumptions made
by the policy.

5 An Application: Access Control Design for Virtual
Organisations

We have proposed a semantic model of XACML which serves as a tool for the
iterative development of access control policies. One of our motivations for ad-
dressing this topic formally has been the need to develop and maintain access
control policies for virtual organisations. In this section, we show how the formal
model can be used in this domain.

Virtual organisations (often called dynamic coalitions or virtual enterprises)
are opportunistic collaborations that form around business needs and opportu-
nities. Examples include coalitions of companies involved in designing, assessing
and manufacturing a new chemical compound or agencies collaborating in an
emergency relief scenario. Members of virtual organisations are agents, each
having their own resources and policies for controlling access to them. However,
within a coalition, some additional access is given to other coalition members in
order to achieve the coalition’s goal. The members agree a joint workflow for the
common task, and adapt their individual access control policies if necessary to
accommodate the workflow.
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Fig. 3. Evolution of access control policies in virtual organisations

Virtual organisations evolve in real time as members join and leave, and as
workflows are modified to adapt to changing business goals. At each step in the
evolution, each member must make a trade-off between the risks and the bene-
fits of modifying their access control policies to deal with the changed workflow
or coalition membership. A source of complexity in this process is the need to de-
termine the consistency of policy modifications with the member’s own policies.

The executable formal model can be used to assist trade-off analysis by provid-
ing designer feedback on potential policy modifications. The process is illustrated
in Fig. 3. An Access Control policy generator (which could be an off-the-shelf
tool such as [5]) generates access control requirements from a workflow. These
are split into sub-policies, one for each coalition member. These sub-policies rep-
resent the access policy that each member needs to deliver in order to satisfy the
needs of the coalition. The translator (as demonstrated in [4] for context-free
XACML) now translates the proposed policies into VDM++. These are then
combined with the formal model of the current access control policy thus, for
each member, giving a formal model of the new policy each member must enforce
if they accept the workflow.

Each coalition member now has to decide independently if the proposed adap-
tions to their current policy are acceptable. They are faced with two questions:
first, “What access privileges to my resources need to be granted to other mem-
bers in the course of executing this workflow?” and second, “Will adding these new
privileges to my existing access control policy violate my own security policy?”

These questions can be answered using the VDMTools interpreter. The tests
are derived from the member’s own information security policy (a high-level
description of the company information security policy). Deriving these tests
will take understanding and insight (although it need only be done when the
information security policy changes) but performing them and understanding
the results should be more straightforward, especially if the results are presented
through a GUI interface.

Any failures are presented to the decision maker. If any member decides that
the policy is unacceptable, they can do more than simply signal disapproval. For
every test that fails they may use the formal model to investigate precisely why it



Formal Engineering of XACML Access Control Policies in VDM++ 53

failed, and which particular parts of the access control policy were invoked. They
can use this information to propose alternative workflows to the collaboration.
Once all members agree on a workflow, they add the new access control policy
to their current policies and may then begin to execute the workflow.

As an example, consider the scenario developed earlier, but suppose that
company A outsources the hazard analysis to company B, thus forming a style of
coalition. Further, suppose that legislation requires that the author of the hazard
analysis verify that the production plans implement any recommendations made.
However, when a workflow capturing these requirements is proposed and tested
by both companies, the first company discovers that the production plan is
classified as commercially sensitive, and as such only company employees may
see it. The onus is now the first company to propose a new workflow. Note that
the tool highlights the issue but it does not enforce a particular solution.

6 Concluding Remarks

We have presented a VDM++ model for a substantial subset of XACML and
shown how this can be used for developing context-sensitive access control poli-
cies. The utility of the approach has been demonstrated on a small but realistic
example development of an access control policy fragment, showing how VDM-
Tools can be used to analyse prototype policies and provide rapid feedback to
the developer. In particular, the modelling and testing process helps to drive out
requirements on both the policy and environment to be implemented. We have
also outlined the value of the formal model in the development and evolution of
access control policies in virtual organisations.

Current research addresses a variety of semantic models of context-sensitive
access control policies. Constraint logic programming in Datalog has been used
in several formalisations of access control in general(e.g. [6]) and of specific policy
languages such as SecPAL [2]. Few, if any, of these formalisations deal directly
with XACML. The policy modelling formalism [18] may be translated to
XACML. Its semantics permit model checking with respect to a goal involving a
combination of reading and manipulating propositional variables. Model check-
ing of access control policies derived from XACML has also been demonstrated in
Alloy [11], where the authors present several ordering relations between policies
and use these to specify policy properties. Event systems have been proposed as
a semantic model for dynamic access control policies in [15], where the authors
show how to prove that an access control policy refines a given event system
specification. A Haskell semantics of XACML 1.1 [12] covers more of the expres-
sion part of the language than we have done here for XACML 2.0, our focus
being on the exploitation of the model in the policy design process.

The goal of our current work is to assist the access control policy developer
by providing rapid feedback on design decisions. How far have we gone towards
achieving this? Our approach has a formal basis but the goal is pragmatic and
this has led to the use of a tool-supported model-oriented formalism and a test-
based approach to model exploration. The use of a model-oriented formalism
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such as VDM++ makes it relatively easy to build a formal model that has a very
similar structure to the XACML framework, easing translation of the validated
policy model into its implementation. The model-oriented formalism also makes
validation by testing straightforward. We have made this a priority as we wish
to support evolution of models that may already have legacy test sets and we
also want to have a low technical barrier to the use of the formal model.

The formal model that we have developed is expressed in a notation that will
not be familiar to the majority of security engineers. It would be preferable if
users could invoke the model through a tailor-made interface that allows the
definition of XACML rules, policies and environments and allows the execution
of the model on test requests. It is straightforward to construct such an interface
using the VDMTools API, allowing the model to be exercised directly by the
user without them having to face the formalism directly.

Not all of the XACML Standard [16] is so far modelled, but many of the
remaining extensions are technically straightforward, including the extension to
cover the remaining four policy combination algorithms and a capability for the
policy developer to define their own combination algorithms. Requests can be
extended to encompass sets of subjects, resources and actions. When returning
an effect to the PEP, an XACML policy may also return which must
be carried out by the PEP in addition to enforcing the effect. Such obligations
can modify the environment. For example, a policy might permit a user to log on
if the number of unsuccessful attempts is suitably small, and oblige the PEP to
increment this number with every denied request. Allowing the policy to modify
its own environment directly will allow us to model the ability of a user to modify
other users’ access rights.

Currently our policy validation approach is based on testing. We would like
to extend this to include the possibility of proving that policies meet key infor-
mation security objectives. Automating this would utilise on proof technology
for VDM which is currently being developed.

As remarked in Section 5, the semantics and tool developed so far allow the de-
cision maker to see the implications of changes to access control policies. We are
deliberately neutral about the surrounding processes which are the province of
domain experts. These include the determination of environment models and the
negotiation of resolutions to defects in policies for particular applications. The
synthesis of specifications based on explicit assumptions about the surrounding
computational and real-world environments [14] is an area of active research.
The development of a tools framework for more domain-specific policy design is
a natural next step for evaluating and tuning the formal engineering approach.

We would like to extend the work done so far to allow the user to explore
the consequences of access control decisions on information flow in virtual or-
ganisations. In [3] we present a way of formally modelling a range of virtual
organisations in order to investigate information flow properties between the
members. Combined with the work presented here, this would allow the decision
maker to ask “what-if” questions based on possible future scenarios. Here again,
an intuitive interface, via the tool API, will be important.
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Abstract. One of the challenges for designing multi-agent systems is
how to capture and reason about agent knowledge and knowledge evo-
lution in a highly abstract and modular way. Hence it is very desirable
to have a generic framework in which such systems can be conveniently
specified and the properties verified under one umbrella. As a classical
reasoning support, the model checking technique has proved to be ap-
plicable for systems of reasonable size. However current model checkers
for epistemic logics suffer from the state explosion problem and their in-
ability to handle infinite state problems. Prototype Verification System
(PVS) is an environment for the development of formal specifications.
It integrates a highly expressive specification language and a well sup-
ported theorem prover. In this paper, we demonstrate our attempt to-
wards mechanizing epistemic logic reasoning by building a formal, sound
and complete verification framework in PVS for reasoning about a spec-
trum of (dynamic) epistemic logics.

1 Introduction

The area of multi-agent systems is traditionally concerned with formal represen-
tation of the mental state of autonomous agents in a distributed setting. For this
purpose, many modal logics have been developed and investigated. Among them
epistemic logic, the logic of knowledge, is one of the most studied and has grown
to find diverse applications such as artificial intelligence in computer science and
game theory in economics [8,17].

Epistemic logic typically deals with what agents consider possible given their
current information. This includes knowledge about facts as well as higher-order
information about information that other agents have. Public announcement
logic [21] extends normal epistemic logics with modal operator for public an-
nouncement. These logics can be perceived as a basis not only for specification
languages of a particular spectrum of multi-agent systems, but also for mecha-
nized machine-aided reasoning.

Recently some state-of-the-art model checkers [9,20,26] have been developed
for automated verification of epistemic properties. However such approaches suf-
fer from some major drawbacks. Firstly, the system to be verified has to be fully
� Corresponding author.

M. Butler, M. Hinchey, M.M. Larrondo-Petrie (Eds.): ICFEM 2007, LNCS 4789, pp. 57–75, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



58 J.S. Dong, Y. Feng, and H.-f. Leung

specified even if the property only concerns with a fragment of the system. Sec-
ondly, as the sizes of the states and relation are exponential to the number of
proposition of the system, the model checkers suffer from what is known as
the state explosion problem. The task of representing and verifying against all
possible computations of a system may not be problematic for small examples,
but may become unfeasible for realistic multi-agent systems. Lastly and per-
haps most importantly, these model checkers deal with state systems only.
But we are often faced with infinite states as the number of agents is neither
fixed nor known in advance. Consequently the properties are often beyond the
expressiveness of epistemic logic and hence cannot be verified by model checkers.

In this paper we explore a complementary approach. In the specification lan-
guage of a well established interactive theorem prover, we build a reasoning
framework which consists of (1) logic-level proof systems for deriving logic the-
orems, (2) theorem sets for storing the logic-level theorems, (3) object-level rea-
soning systems for application modelling and verification, and (4) reasoning rule
sets for the object-level reasoning system. With this separation of concerns be-
tween the logic meta-level and application object-level, we are able to not only
derive all valid formulae of a logic but also specify multi-agent applications and
perform verification under one umbrella.

Other than obtaining a sound and complete reasoning system, many other
advantages arise from using this translation approach. Firstly we can exploit
the well supported theorem prover for the purpose of doing proofs in the multi-
agent logic. Secondly as we are able to quantify over functions, we obtain the
generality and power of higher-order logic. Thirdly, theories in PVS can be easily
extended and reused. This means that we can extend our framework to support
other epistemic logics with minimal effort. At the same time, system developers
can easily select the suitable reasoning system to specify and verify the system
being developed. Lastly we can utilize the power of proof strategies in PVS for
proof automation.

The rest of the paper is organized as follows. In Section 2, we provide a
brief overview of some well accepted epistemic logics, some model checker for
epistemic logics, and Prototype Verification System. We describe our reasoning
framework in detail in Section 3. An example will be used to explain the proof
process and how we use proof strategies to enhance automation in Section 4.
Section 5 concludes the paper.

2 Overview

2.1 Epistemic Logic

In computer science, it is often useful to reason about modes of truth. Modal
logic, or (less commonly) intensional logic is the branch of logic that deals with
sentences that are qualified by modalities such as can, could, might, may, must,
possibly, and necessarily, and others. A formal modal logic represents modalities
using modal sentential operators. The basic set of modal operators are usually
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given to be � and �. In alethic modal logic (i.e. the logic of necessity and
possibility) � represents necessity and � possibility.

When applied to knowledge representation and reasoning about multi-agent
systems, the specific type of modal logics is called epistemic logic. For exam-
ple each of many interacting agents may have different knowledge about the
environment. Furthermore, each agent may have different knowledge about the
knowledge of other agents. The formula �ϕ is read as: it is known that ϕ.

In the context of epistemic logic, one can view worlds that are possible for an
agent in a world as epistemic alternatives, that are compatible with the agent’s
information in that world. The formal semantics will be introduced later in
Section 2.2.

Epistemic Logic . Epistemic logic is the weakest epistemic logic that does
not have any ‘optional’ formula schemes. It is based on a set of atomic proposi-
tions and a set of agents. It just contains propositional logic and all instances of
formula scheme . Here the operator has exactly the same properties as �.

Definition 1. P A
LK

φ ::= � | ⊥ | | ¬ φ | φ ∧ φ | φ ∨ φ | φ→ φ | φ↔ φ | aφ

∈ P ∈ A aφ φ

Epistemic Logic 45. Also known as 5, 45 is probably one of the most
well known epistemic logics. Having the same language as logic , 45 adds
three axioms:

– Truth: The agent knows only true things.
– Positive Introspection: If an agent knows something, he knows that he knows

it.
– Negative Introspection: If the agent does not know something, he knows that

he does not know it.

Epistemic Logic 45n . When reasoning about the knowledge of a group of
agents, it becomes useful to reason not just about knowledge of an individual
agent, but also about the knowledge of the group. Epistemic logic 45n which
is also known as 5 extends 45 by providing support for shared knowledge
and common knowledge among a set of agents.

Definition 2. LKT45n

φ ::= � | ⊥ | | ¬ φ | φ ∧ φ | φ ∨ φ | φ→ φ | φ↔ φ | aφ | Gφ | Gφ

where Gφ (shared knowledge) means that every agent in the group knows
φ and Gφ (common knowledge) means that every agent in knows about φ
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and every agent knows that every agent knows φ, etc. It captures a higher state
of knowledge and can be thought of as an infinite conjunction Gφ ∧ G Gφ ∧

G G Gφ ∧ ...
First studied by Lewis [14], the notion common knowledge has received much

attention in the area of economics and computer science after Aumann’s seminal
result [3]. The inclusion of common knowledge for a group of agents adds much
more complexity to the task of reasoning about multi-agent systems. As a result,
many previous reasoning systems of epistemic logic have left out the notion of
common knowledge. We will discuss more on this in Section 5.

Epistemic Logic PAL and PAL-C. The knowledge of an agent is more com-
plex than a collection of static data; it evolves typically as a result of agent
communication. Dynamic epistemic logics analyze changes in both basic and
higher-order information. A public announcement in public announcement logic
(PAL) [21] is an epistemic update where all agents commonly know that they
learn that a certain formula holds. Public announcement logic with common
knowledge (PAL-C) extends PAL with support for common knowledge.

Definition 3. LPAL

φ ::= � | ⊥ | | ¬ φ | φ ∧ φ | φ ∨ φ | φ→ φ | φ↔ φ | aφ | [φ]φ

LPAL-C

φ ::= � | ⊥ | | ¬ φ | φ ∧ φ | φ ∨ φ | φ→ φ | φ↔ φ | aφ | Gφ | Gφ |
[φ]φ

[ϕ]ψ ψ every ϕ

There have been various discussions of the equivalence and translations between
5 and PAL [4,10]. Every formula in the language of public announcement logic

without common knowledge is equivalent to a formula in the language of epis-
temic logic.

Theorem 1. PAL ϕ ψ
χ

[ϕ] ↔ (ϕ→ )
[ϕ](ψ ∧ χ) ↔ ([ϕ]ψ ∧ [ϕ]χ)
[ϕ](ψ → χ) ↔ ([ϕ]ψ → [ϕ]χ)
[ϕ]¬ ψ ↔ (ϕ→ ¬ [ϕ]ψ)
[ϕ] aψ ↔ (ϕ→ a [ϕ]ψ)
[ϕ][ψ]χ ↔ [ϕ ∧ [ϕ]ψ]χ

These results conveniently provide us with a rewrite system that allows us to
eliminate announcement from the logical language. In other words PAL is a syn-
tactical extension to 5 and is equivalent to 5. However when common knowl-
edge is added, an equivalence cannot be formulated, thus creating complexity
for reasoning with common knowledge in dynamic epistemic logic.



A Verification Framework for Agent Knowledge 61

2.2 Semantics

Typically the semantics of various epistemic logics are given using the idea of
and .

Definition 4. P A
M = 〈S,R,V〉

– S
D(M) M

– R : A → S × S ∈ A
( , ) ∈ R( )

– V : P → 2S ∈ P

Epistemic formulae are interpreted on epistemic states (M, ) consisting of a
Kripke model M = 〈S,R,V〉 and a state ∈ S.

Definition 5. M = 〈S,R,V〉 ϕ
(M, ) M, |= ϕ
M, |= ∈ V( )
M, |= (ϕ ∧ ψ) M, |= ϕ M, |= ψ
M, |= ¬ ϕ M, |= ϕ
M, |= aϕ ( , ) ∈ R( ) M, |= ϕ
M, |= Gϕ ∈ M, |= aϕ
M, |= Gϕ ( , ) ∈ ∗ M, |= ϕ
M, |= [ϕ]ψ M, |= ϕ M|ϕ, |= ψ

∗ ⋃
a∈G R( )

M|ϕ = 〈S′,R′,V ′〉 M ϕ
S′ = [[ϕ]] R′ = R( ) ∩ [[ϕ]]2 V ′( ) = V( ) ∩ [[ϕ]] [[ϕ]] = { ∈ S |

M, |= ϕ}
When M, |= ϕ for all ∈ D(M), we write M |= ϕ. If M |= ϕ for all Kripke
models M, we say that ϕ is valid. If for formula ϕ there is a state (M, ) such
that M, |= ϕ, we say that ϕ is satisfied in (M, ).

Kripke semantics makes our epistemic logic , in the sense that we
give up the property of extensionality, which dictates that the truth of a formula
is completely determined by the truth of its sub-formulae.

2.3 A Classical Example

Now we present a classical example of epistemic logics, the Three Wise Men
problem [16], which captures the knowledge and the reasoning process of a typical
agent in a multi-agent environment. We take the following problem specification
as in [8].
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in turn

We can formalize the problem as follows, very similar to the formalization in [12],
only adding public announcement features. Let i be the proposition meaning
that the wise man has a red hat; so ¬ i means that he has a white hat. Let
Γ be the set of formulae

{ ( 1 ∨ 2 ∨ 3),
( 1 → 2 1), (¬ 1 → 2¬ 1), ( 1 → 3 1), (¬ 1 → 3¬ 1),
( 2 → 1 2), (¬ 2 → 1¬ 2), ( 2 → 3 2), (¬ 2 → 3¬ 2),
( 3 → 1 3), (¬ 3 → 1¬ 3), ( 3 → 2 3), (¬ 3 → 2¬ 3)}

We want to prove

Γ � [¬ ( 1 1 ∨ 1¬ 1)][¬ ( 2 2 ∨ 2¬ 2)] 3 3

2.4 Reasoning about Epistemic Logics - The Model Checking
Approach

As the semantics of epistemic logic are given in Kripke structures, model checking
is a natural method of verifying epistemic properties [11,6,23,27]. MCK [9], which
deals with the logic of knowledge and both linear and branching time using BDD
based algorithms, MCMAS [20], which handles knowledge and branching time
using BDD based algorithm, and DEMO [26], which is an explicit state model
checker based on a dynamic epistemic logic, are three recent state-of-the-art
epistemic model checkers. Some of these model checkers support logics beyond
PAL-C. For example DEMO supports both public and private announcement.

Though the model checking technique is advantageous over theorem proving
for its automation, it has some drawbacks. For one, the system to be verified has
to be fully specified even if the property only concerns with a fragment of the
system. It is even worse for the case of DEMO in which all states and accessibil-
ity relations have to be manually specified. The sizes of the states and relation
are exponential to the number of proposition of the system. For another, while
model checking technique provides a fully automated mechanism for verifying
properties of a system, it suffers from what is known as the state explosion prob-
lem. The task of representing and verifying against all possible computations of
a system may not be problematic for small examples, but may become unfeasible
for realistic multi-agent systems. The last and most important drawback is that
these model checkers only deal with finite state systems, but in many cases the
state space is infinite due to arbitrary number of agents involved.

Hence in this work we take a different and complementary approach. We en-
code the epistemic logics in an expressive specification language and perform
the reasoning in a well supported theorem prover in a user-guided fashion. How-
ever for simplicity, our current framework allows only public announcement and
leaves out private announcement to future work.
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2.5 PVS

Prototype Verification System (PVS) is an integrated environment for the de-
velopment of formal specifications. The primary purpose of PVS is to provide
formal support for conceptualization and debugging in the early stages of de-
sign of a hardware or software system. The distinguishing feature of PVS is its
synergistic integration of a highly expressive specification language and powerful
theorem-proving capabilities.

The PVS specification language augments classical higher-order logic with a
sophisticated type system with predicate subtypes and dependent types, and
with parameterized theories and a mechanism for defining abstract data types.
PVS specifications are organized into theories, which define data types, axioms,
theorems and conjectures that can be reused by other theories. The ability to
allow specifications to be built in hierarchy and reused makes it easier to specify,
reason about and extend systems with multi-level architectures.

PVS has a powerful interactive theorem prover [18]. The basic deductive steps
in PVS are large compared with many other systems; there are atomic commands
for induction, quantifier reasoning, automatic condition rewriting, simplification,
etc. User-defined proof strategies can be used to enhance the automation.

The prover maintains a proof tree. The users’ goal is to construct a complete
proof tree, in which all leaves (proof goals) are recognized as true. The proof
goals in PVS are represented as sequents which consist of a list of formulae
called the antecedents and a list of formulae called the consequents. The formal
interpretation of a sequent is that the conjunction of the antecedents implies the
disjunction of the consequents.

3 Reasoning Framework

The system architecture of our reasoning framework is depicted in Fig. 1. Based
on the encoding of the logic formulae, the framework primarily consists of four
components, namely , , and

. A solid arrow from a component B to a component A indicates
that A imports B. A dotted arrow from a component A to a component B rep-
resents dataflow from A to B.

In addition, because of the relationship between the epistemic logics, we or-
ganize the encodings for each epistemic logic in a hierarchical fashion too, as
shown in Fig. 2. So we have in effect established a two-dimensional hierar-
chy – hierarchy among different components for a particular logic
and hierarchy among different logics. As a result, system developers
can easily select and reuse the desired system environment for specification and
reasoning.

In this section, we explain the functionalities of each individual component
and how they are used with each other as a system. Due to space limitations,
the full PVS specification is not completely shown, but can be found online1.

1 http://www.comp.nus.edu.sg/~fengyz/PVSFramework
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Fig. 1. Framework Architecture

Fig. 2. Logic Hierarchy

The logic formulae are encoded using the PVS abstract datatype construct
as shown below. The PVS abstract datatype mechanism is useful because it au-
tomatically generates theories containing axioms and definitions. The datatype
declaration simply specifies the ways a logic formula can be constructed. For
example the ninth line specifies that a formula can be constructed by using a

k and two arguments where the first is of type AGENT and the second
is a palc_formula. k? is a for formulae constructed in this way. agent
and sub are accessors for the arguments.

palc_formula[AGENT: TYPE]: DATATYPE
BEGIN

base: base?
knot(sub: palc_formula): knot?
kand(left: palc_formula, right: palc_formula): kand?
kor(left: palc_formula, right: palc_formula): kor?
kif(left: palc_formula, right: palc_formula): kif?
kiff(left: palc_formula, right: palc_formula): kiff?
k(agent: AGENT, sub: palc_formula): k?
e(agents: set[AGENT], sub: palc_formula): e?
c(agents: set[AGENT], sub: palc_formula): c?
pa(inner: palc_formula, outer: palc_formula): pa?

END palc_formula
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Type-checking the datatype specification automatically generates two PVS
theory files which contain axioms and definitions over the logic formulae. An
example is shown below. It defines what is meant by two k? formulae being
equivalent.

palc_formula_k_extensionality: AXIOM FORALL (k?_var: (k?), k?_var2: (k?)):
agent(k?_var) = agent(k?_var2) AND sub(k?_var) = sub(k?_var2)

IMPLIES k?_var = k?_var2;

3.1 Proof Systems

A logic is a set of formulae. An axiomatization is a syntactic way to specify a
logic: it gives a core set of formulae, called axioms, and inference rules, from
which all other valid formulae in the logic can be derived.

Definition 6. X

1, . . . , n 1, . . . , m ϕ
X ϕ1, . . . , ϕk ϕk = ϕ

ϕi 1, . . . , n

1, . . . , m ϕj
< ϕ X X � ϕ X

� ϕ ϕ X

We want to construct a framework that can be used to reason about an arbitrary
model. On the one hand, we need to be sure that our system is complete; all
valid formulae can be proved. On the other hand, we want the base model
to be as concise as possible. Hence we encode the axiomatizations, obtaining
completeness at minimal cost.

In our architecture, the component captures the axiomatiza-
tions of various epistemic logics. Because some axiomatizations extend some
others, we utilize the reuse facilities of PVS by storing each sub-component in
a separate theory and using the IMPORTING clause to capture the extensional
relationship. In effect, we construct a hierarchy of proof systems following the
relationships among various logics.

The basic axiomatization K for the epistemic logic is comprised of the
axioms 1 and 2, together with the derivation rules 1 and 2 as given below.

1 ϕ ϕ is any propositional tautology
2 ( aϕ ∧ a(ϕ→ ψ)) → aψ -axiom
1 � ϕ,� ϕ→ ψ ⇒ � ψ Modus Ponens
2 � ϕ⇒ � aϕ -Necessitation

The encoding of the axiomatization for the logic is shown below. In this
encoding, derives is defined as a function from a palc_formula to a boolean
value. Formally (ϕ) holds if and only if ϕ is a theorem in the system, that
is � ϕ. The two logic axioms and the two derivation rules are specified as PVS
axioms.
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systemK[AGENT: TYPE] : THEORY
BEGIN

IMPORTING palc_formula_adt[AGENT]
derives: [palc_formula -> bool]
tautology: [palc_formula -> bool]
pro_tauto: AXIOM FORALL (p: palc_formula): tautology(p) IMPLIES derives(p)
k_axiom : AXIOM FORALL (p1,p2: palc_formula),(a: AGENT):

derives(kif(kand(k(a,p1),k(a,kif(p1,p2))),k(a,p2)))
modus_ponens : AXIOM FORALL (p1,p2: palc_formula):

derives(p1) AND derives(kif(p1,p2)) IMPLIES derives(p2)
k_necessitation: AXIOM FORALL (p: palc_formula),(a: AGENT):

derives(p) IMPLIES derives(k(a,p))
END systemK

With the axioms and derivation rule, the proof systems can be proved to be
sound and complete. We adopt the soundness and completeness results of [25]
and omit the proof here. For space limitation, we also skip the discussions on
encoding of axiomatization of the logic 5, 5 , PAL and PAL-C which are
available online2.

As we have discussed in Section 2.1, the logic PAL is as expressive as the logic
5. Furthermore it has been shown that the computation complexity of PAL

coincide with that of epistemic logic S5 [15]. But the logical language of public
announcement is a convenient specification tool to express this particular sort
of dynamics of multi-agent systems. In fact it has been shown that there are
properties that can be expressed exponentially more succinctly in PAL than in

5. Hence in our framework, PAL is encoded as S5. Being an essentially
syntactical extension to 5, the proof system of PAL is encoded by extending
that of 5 with additional axioms based on the equivalence. The purpose of
doing so, like the purpose of having PAL with the existence of 5, is to provide
the users with flexibility and convenience to specify the systems. Furthermore it
establish a higher level of reasoning by providing axioms and theorems on the
public announcement operator rather than simply the operator.

3.2 Theorem Sets

This component contains a set of theorem sets, one for each of the proof sys-
tems. Each theorem set contains the theorems that have been proved in the
corresponding proof system. In other words, these theorems can be applied to
any arbitrary model expressed in the logic. The importing relationships among
the theorem sets are the same. Such structure makes the access to a particular
logic with its proof system and theorems easier. It should be noted that, although
the proof systems are complete, these theorem sets are by no means complete.
It initially contains some basic and commonly used theorems such as the axioms
in the axiomatization. These theorems can be used (and hence do not need to be
proved again) with the derivation rules for proving new theorems which are then
added back into the theorem set. Therefore the size of the theorem set grows
with the use of the system. It should be emphasized that the proof systems being
complete ensures that all valid formulae can be proved as theorems.

2 http://www.comp.nus.edu.sg/~fengyz/PVSFramework
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3.3 Reasoning Systems

As compared with the proof systems which aim at proving general theorems
at logic level, the reasoning systems build an environment for reasoning about
concrete object-level models. This component evaluates a formula on a given
model. We specify the reasoning system for logic below.

reasonerK : THEORY BEGIN
Agent : TYPE
IMPORTING systemK[Agent]
Knowledge : TYPE = palc_formula
eval : [Knowledge -> bool]
knot_ax : AXIOM FORALL (k:Knowledge):

eval(knot(k)) IMPLIES NOT eval(k)
kand_ax : AXIOM FORALL (k1,k2:Knowledge):

eval(kand(k1,k2)) IMPLIES (eval(k1) AND eval(k2))
kor_ax : AXIOM FORALL (k1,k2:Knowledge):

eval(kor(k1,k2)) IMPLIES (eval(k1) OR eval(k2))
kif_ax : AXIOM FORALL (k1,k2:Knowledge):

eval(kif(k1,k2)) IMPLIES (eval(k1) IMPLIES eval(k2))
kiff_ax : AXIOM FORALL (k1,k2:Knowledge):

eval(kiff(k1,k2)) IMPLIES (eval(k1) IFF eval(k2))
END reasonerK

is defined as an uninterpreted type and is passed down to the proof
systems as a type parameter. is defined as a type equivalent to logic
formulae. Given a model every piece of knowledge should have a truth value at
any time. Therefore we define a eval. More formally, for a
formula ϕ of a given model, (ϕ) holds if and only if the formula ϕ evaluates
to true in the model. We have defined five logical connectives for knowledge
corresponding to the logical negation, conjunction, disjunction, implication and
equivalence. The advantage of doing this is that we can easily compose new
knowledge from existing ones. As a result we need to define a set of evaluation
axioms which map the logical connectives for knowledge to their logic counter-
parts straightforwardly.

We maintain the hierarchical structure of the whole verification framework.
However the reasoning systems for different logics do not differ a lot because
much of the difference is reflected in the underlying proof systems and theorem
sets. We still specify the reasoning systems in separate theories for consistency.
The reasoning systems of 5 and PAL are the same as that of . The reasoning
system of PAL-C is the same as that of 5 . So we only describe the reasoning
system for 5 below.

reasonerS5C: THEORY
BEGIN

IMPORTING reasonerS5, systemS5C[Agent]
e_ax: AXIOM FORALL (g: set[Agent]),(k1: Knowledge):

eval(e(g,k1)) IFF FORALL (a: Agent): member(a,g) IMPLIES eval(k(a,k1))
c_ax: AXIOM FORALL (g: set[Agent]),(k1: Knowledge):

eval(c(g,k1)) IFF eval(e(g,k1)) AND eval(c(g,e(g,k1)))
END reasonerK

We define evaluation axioms for modal connectives for shared knowledge and
common knowledge. As we have discussed earlier, is in fact an infinite con-
junction of . As PVS only allows finite conjunctions we model the evaluation
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function for the common knowledge connective using a recursive definition. Dur-
ing the reasoning process we can choose the extent to which we expand the
axiom.

3.4 Reasoning Rule Sets

Definitions and evaluation functions alone are not sufficient to prove the prop-
erties efficiently. The last component of the framework is the

. They are encoded based on the reasoning systems. In other words, they
are applied when reasoning about actual models. Therefore their aims are not
to make the system complete, but to achieve a higher degree of automation by
abstracting certain amount of underlying model from the reasoning process. The
reasoning rule sets are constructed hierarchically, similar to the other three com-
ponents. Each reasoning rule set of a logic initially contains the (non-inherited)
axioms from the corresponding proof systems. For example the encoding of the
reasoning rule set for 5 is shown below.

reasoningRuleS5: THEORY
BEGIN

IMPORTING reasonerS5, reasoningRuleK
Truth : THEOREM FORALL (k:Knowledge),(a:Agent): eval(K(a,k)) IMPLIES eval(k)
Positive_Introspection : THEOREM FORALL (k:Knowledge),(a:Agent):

eval(K(a,k)) IMPLIES eval(K(a,(K(a,k))))
Negative_Introspection : THEOREM FORALL (k:Knowledge),(a:Agent):

eval(knot(K(a,k))) IMPLIES eval(K(a,(knot(K(a,k)))))
END reasoningRuleS5

The way of encoding for the reasoning rules is slightly different from the cor-
responding axiom in the proof system, mainly because they are used for different
purposes. The ones in proof systems are for deriving other theorems whereas the
ones here are applied to a particular model for evaluation of formulae. Hence
there are two ways to construct the reasoning rules. Firstly new reasoning rules
can be derived from existing ones. Secondly new reasoning rules for a logic can be
obtained by translating theorems from the corresponding theorem set. Theorems
in the theorem set are of the form

FORALL Q: derives(F)

where Q is a set of bound variables and F is formula in the corresponding logic.
We do not change the quantifier or the bound variables and translate only the
quantified formula. The translated formula is

FORALL Q: F’

where F’ uses the evaluation function eval. We have implemented a simple
translation program which works recursively on the propositional structure of
the formula3.

3.5 Framework Workflow

Having described the components, we explain the framework methodology de-
picted in Fig. 3. When the framework is first used, the theorem sets and reasoning
3 Algorithm available at http://www.comp.nus.edu.sg/~fengyz/PVSFramework
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Fig. 3. Framework Workflow

rule sets contain the initial theorems and reasoning rules. Subsequently,

1. Given a , formalize it using an appropriate epistemic logic to produce
the . Specify the property to be proved about system.

2. With the appropriate and , try to prove
the property. If the property is proved, exit.

3. Construct a reasoning rule which may help prove the property.
4. Try to prove the new reasoning rule in PVS based on the existing reasoning

rules in the . If the rule is proved, add it to the
and go to step 2. Otherwise translate it into theorem format.

5. Try to prove the translated theorem in based on existing the-
orems in the . If successful, add the theorem to the theorem set
and the reasoning rule to the reasoning rule set and go to step 2. Otherwise
go to step 3.

In effect, the user keeps trying to prove the property with reasoning rules which
can be proved by using either the existing reasoning rules or the existing theo-
rems. In the process the reasoning rule set and the theorem set are incrementally
constructed.

4 Example

As an example of how to use the framework, we now illustrate with the run-
ning example, Three Wise Men problem. The procedures follow the workflow
explained in Section 3.5.
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4.1 Formalizing the System

We can formalize the problem in our reasoning framework as shown in Fig. 4. As
we can see the specification is a direct translation of the model in
Section 2.3.

twm: THEORY BEGIN
IMPORTING reasonerPAC
IMPORTING reasoningRulePAC
m1,m2,m3: Agent
p1,p2,p3: (base?)
g: set[Agent] = {a : Agent | a = m1 OR a = m2 OR a = m3}
init: AXIOM eval(c(g,kor(kor(p1,p2),p3)))
init_m1: AXIOM

eval(c(g,kif(p1,k(m2,p1)))) AND eval(c(g,kif(knot(p1),k(m2,knot(p1))))) AND
eval(c(g,kif(p1,k(m3,p1)))) AND eval(c(g,kif(knot(p1),k(m3,knot(p1)))))

init_m2: AXIOM
eval(c(g,kif(p2,k(m1,p2)))) AND eval(c(g,kif(knot(p2),k(m1,knot(p2))))) AND
eval(c(g,kif(p2,k(m3,p2)))) AND eval(c(g,kif(knot(p2),k(m3,knot(p2)))))

init_m3: AXIOM
eval(c(g,kif(p3,k(m2,p3)))) AND eval(c(g,kif(knot(p3),k(m2,knot(p3))))) AND
eval(c(g,kif(p3,k(m1,p3)))) AND eval(c(g,kif(knot(p3),k(m1,knot(p3)))))

conclude: THEOREM
eval(pa(knot(kor(k(m1,p1),k(m1,knot(p1)))),

pa(knot(kor(k(m2,p2),k(m2,knot(p2)))),k(m3,p3))))
END twm

Fig. 4. Three Wise Men specification

As we are going to use the logic PAL-C for reasoning, we import the reasoning
system reasonerPAC and the reasoning rule set reasoningRulePAC. We first
define the three wise men as agents and define three pieces of ground knowledge
p1, p2 and p3 each of which corresponds to the proposition meaning that the
i-th man is wearing a red hat. Then the negation of them mean that the i-th
man is wearing a white hat. For ease of specifying the system we define the group
of agents g containing the three agents. The fact that initially it is commonly
known that at least one of them is wearing a red hat (implied from the fact that
there are two white hats and three red hats) is captured by the axiom init. The
fact that the colour of one’s hat is known to the others is captured by the three
axioms init_1, init_2 and init_3. Then conclude is the property we want to
prove, that is, after the first two men declared their ignorance about the colour
of their hat, the third knows his hat is red. Formally this is

[¬ ( 1 1 ∨ 1¬ 1)][¬ ( 2 2 ∨ 2¬ 2)] 3 3

4.2 Constructing and Proving Reasoning Rules

The PVS prover cannot prove the property automatically. Hence according to
the workflow we need to construct some reasoning rules. There are 9 reasoning
rules that we need for proving the property. Some of these reasoning rules are
from the original reasoning rule set, while others cannot be proved directly from
other reasoning rules. Therefore we input them into the translation program to
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obtain the corresponding theorems and then prove them in the proof system
PAC. For space limitation, simple proofs for the lemmas are omitted.

Let ϕ, ϕ1, ϕ2, ψ and ω be arbitrary formulae, a ground proposition, an
arbitrary set of agents, and an agent in then the following lemmas hold.

Lemma 1. � Bϕ→ aϕ ∧ B aϕ

Lemma 2. � [ϕ ∧ [ϕ]ψ]ω → [ϕ][ψ]ω

Lemma 3. � (ϕ→ a [ϕ]ψ) → [ϕ] aψ

Lemma 4. � (ϕ→ ) → [ϕ]

Lemma 5. � ϕ ∧ [ϕ]¬ ψ → ¬ [ϕ]ψ

Lemma 6. � ϕ ∧ [ϕ] aψ → a [ϕ]ψ

Lemma 7. � [ϕ](ψ ∧ ω) → [ϕ]ψ ∧ [ϕ]ω

Lemma 8. � (ϕ1 → ϕ2) → ( aϕ1 → aϕ2)

Lemma 9. � aϕ1 → ( aϕ2 → a(ϕ1 ∧ ϕ2))

With the reasoning rules, it is now sufficient to prove the property. For space
limitation, we would not show the proof details such as proof commands used in
this proof. The proof tree can be found in the appendix. To improve readability
and save space in the proof tree, ¬ 1 1 ∧ ¬ 1¬ 1 is renamed to ϕ1 and
¬ 2 2 ∧ ¬ 2¬ 2 to ϕ2 in some parts of the proof without loss of correctness.

An observation is that a generalized version of the problem, where there are
wise men and the last would know that he has a red hat if the first − 1

had declare their ignorance, presents an infinite state system. It is even beyond
the expressiveness of the epistemic logics to represent such system, let alone to
prove the property using the current model checkers. However it is possible by
using induction in theorem provers.

4.3 Proof Strategies

PVS proof strategies provide an accessible means of increasing the degree of
automation available to PVS users. A proof strategy is intended to capture
patterns of inference steps. A defined proof rule is a strategy that is applied in a
single atomic step so that only the final effect of the strategy is visible and the
intermediate steps are hidden from the user. PVS provides strong support for
writing strategies. Therefore being able to use proof strategies to increase the
degree of automation is a major motivation for using PVS.

To illustrate how proof strategies can be useful, consider the proof fragment
we have discussed in the Three Wise Men example shown in Fig. 5.

This figure represents the situation whereby there are antecedent formulae
and 1 consequent formula, all of which are of the form aϕ. We want to simulate
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¬ p2, ¬ p3, p1 ∨ p2 ∨ p3 � p1
[K]

K1¬ p2,K1¬ p3,K1(p1 ∨ p2 ∨ p3) � K1p1

Fig. 5. Proof Fragment for K elimination

Fig. 6. K introduction in natural deduction

(defstep k_elim ()
(try (try (forward-chain "k_collect")

(then (hide -2) (try (forward-chain -1)
(then (hide -2) (k_elim))
(then (fail) (fail))))

(skip))
(kand_collapse)
(skip))

"k box: eliminating k operator" "k box: eliminating k operator")

(defstep kand_collapse ()
(try (forward-chain "kand_ax")

(then (hide -2) (kand_collapse))
(skip))

"collapsing kand clause" "collapsing kand clause")

Fig. 7. Proof Strategy Examples

the effect of dashed boxes in natural deduction (as shown in Fig. 6) by stripping
away a , so that the sequent can be simplified.

The naive method would be to first apply the k_collect reasoning rule −1
times to merge the antecedent formulae into one and then apply the kbox rule to
remove the operator and then apply evaluation axioms − 1 times to break
the single antecedent formula into antecedent formulae. The problem is that
in the general case the number of antecedent formulae is not fixed. It is desired
that we can achieve the effect with a single proof command regardless of the
number of antecedent formulae. The proof strategies are shown in Fig. 7.

5 Conclusion

In this paper we presented a formal hierarchical framework for specifying and
reasoning about agent knowledge. We encoded a hierarchy of epistemic logics

, 5, 5 , PAC and PAL-C in the PVS specification language. The framework
mainly consists of four components: for the ability to completely



A Verification Framework for Agent Knowledge 73

derive theorems of a particular logic, for storing the theorems
derived from the proof systems, for evaluating a formula
of a concrete model, and for storing reasoning rules for
better proof automation. and work on the meta-
level while and work on the object level.
We demonstrated the idea by solving the classical Three Wise Men problem.

Some researchers have done related work along a similar line. Kim and Kowal-
ski used meta-reasoning with common knowledge based on a Prolog implemen-
tation to solve the same Three Wise Men puzzle [13]. Compared with their work,
our approach has the advantage of being able to quantify over agent, knowledge
and even functions, i.e., offering higher-order logic benefits. In [5], Basin
presented a theoretical and practical approach to the modular natural deduction
presentation of a class of modal logics using Isabelle [19]. In [22], the sequent
calculus of classical linear logic 4lin is coded in the higher order logic using
the proof assistant COQ [7] with two-level meta-reasoning. These two pieces of
work include neither the common knowledge operator nor the public announce-
ment operator which adds much complexity to the reasoning process. A similar
approach to our work was taken by Arkoudas and Bringsjord in [2]. Instead of
encoding the logic and the axiomatization, they encode the sequent calculus for
a epistemic logic in Athena [1], an interactive theorem prover too, and reason
about the reasoning process in the logic. Two other major differences are that
their work did not provide support for public announcement operators and that
they did not comment on the completeness of their system.

The framework we have proposed achieves a higher space bound than the
current state-of-the-art model checkers for epistemic logic, at the expense of
automation. The user has to select one from a set of rules that is applicable
in some stage of the reasoning process. This requires much human expertise.
Currently the reasoning rules are simply collected in a set which grows with the
use of the system. A better rule management will be able to categorize the rules
according to some criteria such as the type of formula involved, the number of
premises or the number of bound variables. Another area we would like to explore
further is the use of PVS proof strategies. We have demonstrated how proof
strategies can improve the degree of automation. PVS strategies can provide
much stronger support than what we have illustrated. It is envisioned that proof
strategies can be constructed to produce different proof heuristics with which
we can further improve the reasoning methodology. Lastly a language extension
has recently been proposed [24] which adds assignment operator to languages
for epistemic actions, so that change of knowledge and change of facts can be
combined in specifications of multi-agent system dynamics. To incorporate the
notion of actions, state-based formalisms could be appropriate.
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Appendix. Proof Tree for Three Wise Men Puzzle

p1 ∨ p2 ∨ p3, ¬ p3, ¬ p2 � p1,
[k elim]

K1(p1 ∨ p2 ∨ p3), K1¬ p3, K1¬ p2 � K1p1,

K1(p1 ∨ p2 ∨ p3), ¬ pi → Kj ¬ pi , ¬ p3, ¬ p2 � K1p1,

K1(p1 ∨ p2 ∨ p3), ¬ pi → Kj ¬ pi , ¬ K1p1, ¬ K1¬ p1, ¬ p3 � p2

K1(p1 ∨ p2 ∨ p3), ¬ pi → Kj ¬ pi , ¬ K1p1 ∧ ¬ K1¬ p1, ¬ p3 � p2

K1(p1 ∨ p2 ∨ p3), ¬ pi → Kj ¬ pi , ¬ p3 � (¬ K1p1 ∧ ¬ K1¬ p1) → p2
[Lem. 4]

K1(p1 ∨ p2 ∨ p3), ¬ pi → Kj ¬ pi , ¬ p3 � [¬ K1p1 ∧ ¬ K1¬ p1]p2
[k elim]

K2K1(p1 ∨ p2 ∨ p3), K2(¬ pi → Kj ¬ pi ), K2¬ p3 � K2[¬ K1p1 ∧ ¬ K1¬ p1]p2

K2K1(p1 ∨ p2 ∨ p3), K2(¬ pi → Kj ¬ pi ), ¬ pi → Kj ¬ pi , ¬ p3 � K2[¬ K1p1 ∧ ¬ K1¬ p1]p2

K2K1(p1 ∨ p2 ∨ p3), K2(¬ pi → Kj ¬ pi ), ¬ pi → Kj ¬ pi , ¬ K2[¬ K1p1 ∧ ¬ K1¬ p1]p2 � p3

K2K1(p1 ∨ p2 ∨ p3), K2(¬ pi → Kj ¬ pi ), ¬ pi → Kj ¬ pi , ϕ1, ¬ K2[ϕ1]p2, ¬ K2[ϕ1]¬ p2 � p3
[Lem. 5,6]

K2K1(p1 ∨ p2 ∨ p3), K2(¬ pi → Kj ¬ pi ), ¬ pi → Kj ¬ pi , ϕ1, [ϕ1]¬ K2p2, [ϕ1]¬ K2¬ p2 � p3
[Lem. 7]

K2K1(p1 ∨ p2 ∨ p3), K2(¬ pi → Kj ¬ pi ), ¬ pi → Kj ¬ pi , ϕ1, [ϕ1](ϕ2) � p3

K2K1(p1 ∨ p2 ∨ p3), K2(¬ pi → Kj ¬ pi ), ¬ pi → Kj ¬ pi , ϕ1 ∧ [ϕ1]ϕ2 � p3

K2K1(p1 ∨ p2 ∨ p3), K2(¬ pi → Kj ¬ pi ), ¬ pi → Kj ¬ pi � ϕ1 ∧ [ϕ1]ϕ2 → p3
[Lem. 4]

K2K1(p1 ∨ p2 ∨ p3), K2(¬ pi → Kj ¬ pi ), ¬ pi → Kj ¬ pi � [ϕ1 ∧ [ϕ1]ϕ2]p3
[k elim]

K3K2K1(p1 ∨ p2 ∨ p3), K3K2(¬ pi → Kj ¬ pi ), K3(¬ pi → Kj ¬ pi ) � K3[ϕ1 ∧ [ϕ1]ϕ2]p3

K3K2K1(p1 ∨ p2 ∨ p3), K3K2(¬ pi → Kj ¬ pi ), K3(¬ pi → Kj ¬ pi ), ϕ1 ∧ [ϕ1]ϕ2 � K3[ϕ1 ∧ [ϕ1]ϕ2]p3

K3K2K1(p1 ∨ p2 ∨ p3), K3K2(¬ pi → Kj ¬ pi ), K3(¬ pi → Kj ¬ pi ) � ϕ1 ∧ [ϕ1]ϕ2 →K3[ϕ1 ∧ [ϕ1]ϕ2]p3
[Lem. 3]

K3K2K1(p1 ∨ p2 ∨ p3), K3K2(¬ pi → Kj ¬ pi ), K3(¬ pi → Kj ¬ pi ) � [ϕ1 ∧ [ϕ1]ϕ2]K3p3
[Lem. 2]

K3K2K1(p1 ∨ p2 ∨ p3), K3K2(¬ pi → Kj ¬ pi ), K3(¬ pi → Kj ¬ pi ) � [ϕ1][ϕ2]K3p3
[Lem. 1]

C(p1 ∨ p2 ∨ p3), C(pi → Kj pi ), C(¬ pi → Kj ¬ pi ) � [ϕ1][ϕ2]K3p3



From Model-Based Design to Formal

Verification of Adaptive Embedded Systems�

Rasmus Adler1, Ina Schaefer2, Tobias Schuele3, and Eric Vecchié3
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Abstract. Adaptation is important in dependable embedded systems
to cope with changing environmental conditions. However, adaptation
significantly complicates system design and poses new challenges to sys-
tem correctness. We propose an integrated model-based development ap-
proach facilitating intuitive modelling as well as formal verification of
dynamic adaptation behaviour. Our modelling concepts ease the specifi-
cation of adaptation behaviour and improve the design of adaptive em-
bedded systems by hiding the increased complexity from the developer.
Based on a formal framework for representing adaptation behaviour, our
approach allows to employ theorem proving, model checking as well as
specialised verification techniques to prove properties characteristic for
adaptive systems such as stability.

1 Introduction

Many embedded systems autonomously adapt at runtime to changing environ-
mental conditions by up- and downgrading their functionality according to the
current situation. Adaptation is particularly important in safety-critical areas
such as the automotive domain to meet the high demands on dependability and
fault-tolerance. For this reason, adaptation has become state-of-the-art in an-
tilock braking, vehicle stability control and adaptive cruise control systems. For
example, if the sensor measuring the yaw rate of a car fails, the vehicle stability
control system may adapt to a configuration, where the yaw rate is approxi-
mated by steering angle and vehicle speed. In this way, it can be guaranteed
that the system is still operational even if some of the components fail in or-
der to provide a maximum degree of safety and reliability. However, adaptation
significantly complicates the development of embedded systems. One reason for
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this is that in the worst case the number of configurations a system can adapt
to is exponential in the number of its modules. Moreover, for ensuring system
correctness it is not sufficient to consider each configuration separately but the
adaptation process as a whole has to be checked.
A promising approach to deal with the increased complexity posed by adapta-
tion is model-based design. As a major advantage, model-based design allows
to focus on the needs of each phase in the design process and to model the re-
quired concepts as close as possible to the intuition by capturing them in an
accurate and understable manner. Regarding the development of adaptive sys-
tems, model-based design supports the validation and verification of adaptation
behaviour before the actual funtionality is implemented. The integration of for-
mal verification into the development process is important to rigorously prove
that the adaptation behaviour meets critical requirements such as stability.

In this paper, we propose an integrated framework for model-based design and
formal verification of adaptive embedded systems. The modelling concepts of our
approach hide the complexity at system level by fostering modular design and
independent specification of functionality and adaptation behaviour. In this way,
the designer can concentrate on the adaptation behaviour during early phases
of the design process without having to consider implementation specific details.
The design can then be refined successively by adding the intended functionality.

In order to formally reason about adaptive embedded systems, we propose
a framework that captures the semantics of the modelling concepts at a high
level of abstraction. Using this framework, the models as well as the desired
properties can be formulated in a semantically exact manner. This is particularly
important regarding the application of different verification techniques: Firstly,
it is possible to embed the models into a representation suitable for a theorem
prover and to verify the specified properties directly, e.g. by means of induction.
Secondly, properties frequently occurring in the verification of adaptive system
can be checked by automatic techniques such as symbolic model checking.

However, many systems encountered in practice are not directly amenable to
formal verification by model checking due to their huge state space. To solve
this problem, our formal framework allows to perform transformations on the
models in order to reduce verification complexity. For example, data abstraction
techniques may be employed to reduce the state space. The separation between
functionality and adaptation behaviour is thereby maintained, which allows to
consider purely functional, purely adapative and combined aspects. As the mod-
els in our framework have a clear semantics, it can be guaranteed by means of a
theorem prover that the applied transformations are property preserving.

For certain properties, it is often advantageous to apply specialised verification
methods, as standard model checking procedures are not always as efficient as
possible. This is the case for stability of the adaptation process, one of the most
important properties in adaptive systems, as adaptations in one component may
trigger further adaptations in other components, which may lead to unstable
configurations. However, in embedded systems, which are usually subject to
certain real-time constraints, it must be guaranteed that a system stabilises after
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a bounded number of adaptation steps. To this end, we propose an approach that
allows to verify stability of adaptive systems more efficiently than using standard
model checking procedures.

To illustrate our approach, we use a building automation system as running
example. The system consists of four modules: an occupancy detection, a light
control, a lamp and an alarm system. The functionality is as follows: The light
in a room is controlled according to the room occupancy. If the room is unoccu-
pied, the lamp is switched off. Otherwise, the lamp is adjusted according to the
current illuminance of the room. Additionally, an alarm is raised if the room is
occupied without authorisation. Each module has a number of configurations for
maintaining its functionality in case of failures. For instance, the module

uses data from a camera, a motion detector, and transponders
to determine occupancy of the room. When the camera is defect, the module
adapts from camera-based to motion-based occupancy detection.

The rest of this paper is structured as follows: In Section 2, we introduce the
concepts for modelling adaptive embedded systems and present the underlying
formal framework. In Section 3, we address some aspects of adaptive system ver-
ification with a focus on stability. In Section 4, we describe the implementation
of our approach. Finally, we discuss related work (Section 5) and conclude with
an outlook to future work (Section 6).

2 Modelling Adaptive Embedded Systems

2.1 Concepts for Modelling Adaptation Behaviour

The objective of our modelling concepts called MARS (Methodologies and
Architectures for Runtime Adaptive Systems) is the explicit modelling of adapta-
tion behaviour, which is a prerequisite for its validation and verification. These
concepts have been successfully applied in industry and academia for several
years and provide a seamlessly integrated approach for the development of adap-
tive systems [21]. The major difficulty in modelling adaptation behaviour are
complex interdependencies between the modules of a system. To solve this prob-
lem, we employ the concept ‘separation of concerns’ by separating functional
from adaptation behaviour and the concept ‘divide and conquer’ by defining the
adaptation behaviour modularly within the modules. Based on these concepts,
it is possible to hide the complexity at system level from the developer.

A system consists of a set of modules that communicate with each other by
passing signals via ports. This is a common notion found in various modelling
languages and complies with the definition of architecture description languages
by Taylor et al. [10]. In contrast to non-adaptive modules, our modules have
several functional behaviours in order to support different degradation levels.

A modular definition of adaptation behaviour is indispen-
sible for handling the enormous complexity of most systems. For this reason, we
establish a quality flow in the system making such modular definitions possible.
Besides the actual data, each signal has an additional quality description. To
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this end, signals are typed by datives (extended data type for adaptive systems)
that do not only describe which data values a signal may take, but also how the
quality of this data can be described. Hence, a dative consists of a data type and
a quality type. The former describes the type of data values like integers or real
numbers. The quality type provides type-specific quality information, because a
general purpose quality information like the relative error is not reasonable in
many cases, e.g. for Boolean signals. Since the quality is part of the type defini-
tion, module designers are able to define the adaptation behaviour solely on the
basis of quality descriptions available at a module’s local interface. Additionally,
they define how the current quality of the provided signals is determined.

In order to define the quality of a functional value of a signal, it is necessary
to know which behavioural variant has been used to determine a value. In the
first place, a quality type is defined by a set of possible modes. A developer using
a signal knows the deficiencies associated with a certain mode and decides how
a module must adapt in order to compensate for these deficiencies. Additionally,
mode attributes can be used to describe the signal quality more precisely using
mode-specific characteristics. Consequently, a mode is described by the mode
itself and a set of mode attributes.

As an example, Figure 1 shows the definition of the dative . Its
quality type contains five modes: The mode refers to a camera-based
occupancy detection and mode indicates that the occupancy is derived
from the detected motions. A deficiency associated with mode is that only
movements are detected instead of actual persons in the room. As the quality of
motion-based occupancy detection strongly depends on the reaction point of the
motion sensor, the mode attribute is attached to the mode .
In the example, represents the sensitivity of the motion sensor.

Based on datives, developers can modularly define the adaptation be-
haviour of single modules using two extensions made to conventional modules.

Fig. 1. Example for the definition of a dative
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First, the behaviour specification is not directly assigned. Several configurations
can be assigned to a module, each of them representing one behaviour variant.
Second, in addition to the input/output interface, we define a required/provided
interface. This distinction is used for describing the direction of the quality flow.
This is not always identical to the direction of the data flow between two con-
nected module ports. Although the connection is typed by one dative, the data
part of the dative flows from an output port of one module to an input port
of another module, while the quality flows from a provided port to a required
port. This can for instance be the case for an actuator where a data value is
propagated to the actuator while the actuator’s status is conveyed to the func-
tional unit via the signal’s quality. The interface of a module is defined by a set
of input signals, a set of output signals, a set of required signals and a set of
provided signals.

A module can be in one of several configurations, each of them
representing one behavioural variant. A module is thus defined by its interface
and a set of configurations. In our running example, the module

can be in one of five configurations, depending on how occupancy of a
room is determined. For instance, is the configuration, where
the occupancy is derived from a camera image. A configuration is defined by the
following elements: (1) a specification of the associated behavioural variant, (2)
a guard defining under which conditions the configuration can be activated, (3)
a priority and (4) an influence defining how the quality of the provided signals
is determined.

A guard is a Boolean expression. If the guard evaluates to true at run time,
the configuration can be activated. Operands of guards are quality descriptions
of required signals. A guard defines which signals are required in which mode
and which values the mode attributes may have. For instance, the guard of the
configuration in module defines that the
required quality of the signal has to be in mode ‘available’. Ad-
ditionally, it could be enforced that the mode attribute is in a
certain range. Often, guards of several configurations are satisfied at the same
time. Therefore, an unambiguous priority is assigned to each configuration. At
run time, the configuration with the highest priority is activated and the as-
sociated behaviour is executed. Influence rules describe how the quality of the
provided signals is determined. Each influence rule consists of an influence guard
and an influence function. The influence guard refines the configuration guard
and defines a condition under which the respective influence function is applied.
The influence function assigns the appropriate mode to each provided signal and
calculates the mode attributes. For instance, configuration has
only one influence rule whose influence function assigns the quality of signal

to mode .

2.2 Formal Representation of Modelling Concepts

In this subsection, we show how the modelling concepts of MARS can be for-
mally represented by Synchronous Adaptive Systems (SAS), which constitute the
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Fig. 2. Separation of functional and adaptation behaviour in an SAS module

basis for formal verification of adaptive embedded systems [16]. SAS capture the
semantics of adaptation behaviour at a high level of abstraction bridging the gap
between the modelling concepts and their formal representation. The modularity
provided by MARS is represented by composing synchronous adaptive systems
from a set of modules. Each module comprises a set of predetermined behavioural
configurations it may adapt to. SAS maintain the separation of adaptive and
functional behaviour. This is accomplished by defining an adaptation aspect on
top of the different functional configurations. The active configuration is deter-
mined by the adaptation aspect. SAS are assumed to be open systems with input
provided by the environment. Furthermore, they are modelled synchronously as
their simultaneously invoked actions are executed in true concurrency. Figure 2
depicts the intuitive notion of a module.

For the definition of SAS syntax, we assume a set of distinct variable names
and a set of values that can be assigned to these variables. The formal

definition of modules is based on state transition systems.

Definition 1 (Module and Adaptation). m
m = (in, out, loc, init, , adaptation)

– in ⊆ out ⊆
loc ⊆ init : loc →

– = {(guardj , next statej , next outj) | j = 1, ..., n}

• guardj {adapt in, adapt loc}
j adapt in adapt loc

• next statej (in ∪ loc → ) → (loc → )
j

• next outj (in ∪ loc → ) → (out → )
j

adaptation = (adapt in, adapt out,
adapt loc, adapt init, adapt next state, adapt next out)

– adapt in ⊆ adapt out ⊆
adapt loc ⊆

adapt init : adapt loc →
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– adapt next state : (adapt in ∪ adapt loc → ) → (adapt loc → )

– adapt next out : (adapt in ∪ adapt loc → ) → (adapt out → )

The module concept of MARS is represented by SAS modules where module
ports are mapped to input and output variables. The dative associated with a
port is modelled by a set of variables: one functional variable for the functional
data, an adaptive variable for each mode and additional adaptive variables for
mode attributes. In the running example, the module is
represented by an SAS module. The input signal is split into
two variables, a functional variable and an adaptive variable

carrying the mode of the signal. A configuration in a
module is represented by an SAS configuration, where the configuration guard
is mapped to an SAS configuration guard and the priority to the configuration
index. The configuration behaviour is expressed by the next output function of
the configuration. So, the configuration in module

is represented by an SAS configuration with a guard expressing that
the adaptive variable must have the value ‘available’.
The influence function of a configuration is represented using the adapt next out
function of the SAS module’s adaptation aspect. In our example the adaptive
output variable corresponding to the quality part of the signal

is assigned to the mode by the adapt next out function if the
configuration is used. Since MARS concepts currently do not
use state variables, the respective parts of SAS remain unused.

An SAS is composed from a set of modules that are interconnected via their
own and the system’s input and output variables. For technical reasons, we
assume that all system variable names and all module variable names are disjoint.
Whereas for module ports in MARS it is defined whether a quality is required or
provided, quality and data flow in SAS are completely decoupled using separate
adaptive connections. Hence, provided ports are mapped to adaptation output
variables and required ports are mapped to adaptation input variables. A module
can trigger adaptations in other modules via adaptive connections.

Definition 2 (SAS). S

S = (M, inputa, inputd, outputa, outputd, conna, connd),

– M = {m1, . . . , mn} mi = (ini, outi, loci, initi,

i, adaptationi)
– inputa ⊆ inputd ⊆

– outputa ⊆ outputd ⊆
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– conna

conna :
⋃

j,k=1,...,n(adapt outj ∪
inputa) → (adapt ink ∪ outputa) conna(inputa) ⊆ adapt ink

– connd

connd :
⋃

j,k=1,...,n

(outj ∪ inputd) → (ink ∪ outputd) connd(inputd) ⊆ ink

The semantics of SAS is defined in a two-layered approach. We start by defining
the local semantics of single modules similar to standard state-transition sys-
tems. From this, we define global system semantics. A local state of a module
is defined by a valuation of the module’s variables, i.e. input, output and local
variables and their adaptive counterparts. A local state is initial if its functional
and adaptation variables are set to their initial values and input and output
variables are undefined. A local transition between two local states evolves in
two stages: First, the adaptation aspect computes the new adaptation local state
and the new adaptation output from the current adaptation input and the pre-
vious adaptation state. The adaptation aspect further selects the configuration
with the smallest index that has a valid guard with respect to the current input
and the previous functional and adaptation state. The system designer should
ensure that the system has a built-in default configuration ‘off’ which becomes
applicable when no other configuration is. The selected configuration is used to
compute the new local state and the new output from the current functional
input and the previous functional state.

Definition 3 (Local States and Transitions). s
m

s : in ∪ out ∪ loc ∪ adapt in ∪ adapt out ∪ adapt loc →

s s|loc = init s|adapt loc = adapt init
s|V = V = in ∪ out ∪ adapt in ∪ adapt out 1

s s′ s� s′

s′|adapt loc = adapt next state(s′|adapt in ∪ s|adapt loc)
s′|adapt out = adapt next out(s′|adapt in ∪ s|adapt loc)

∀ 0 < j < i . s′|in ∪ s|loc ∪ s′|adapt in ∪ s|adapt loc �|= guardj

s′|in ∪ s|loc ∪ s′|adapt in ∪ s|adapt loc |= guardi

s′|loc = next statei(s′|in ∪ s|loc) s′|out = next outi(s′|in ∪ s|loc)

The state of an SAS is the union of the local states of the contained modules
together with an evaluation of the system inputs and outputs. A system state
is initial if all states of the contained modules are initial and the system input
and output is undefined. A transition between two global states is performed in
1 For a function f and a set M , f |M = {(x, f(x)) | x ∈ M} is the restriction of f to

the domain M .
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three stages. Firstly, each module reads its input either from another module’s
output of the previous cycle or from the system inputs in the current cycle.
Secondly, each module synchronously performs a local transition. Thirdly, the
modules directly connected to system outputs write their results to the output
variables.

Definition 4 (Global States and Transitions). σ
{s1, . . . , sn} si

mi ∈ M
σ = s1 ∪ . . . ∪ sn ∪ ((inputa ∪ inputd ∪ outputa ∪ outputd) → )

σ si i = 1, . . . , n
σ σ′

σ →glob σ′

– x, y ∈ \ (inputd ∪ inputa) connd(x) = y conna(x) = y
σ′(y) = σ(x) x ∈ inputa y ∈ conna(x) = y
σ′(y) = σ′(x) x ∈ inputd y ∈ connd(x) =

y σ′(y) = σ′(x)
– sj ∈ σ s′j ∈ σ′ sj � s′j
– x ∈ y ∈ outputd connd(x) = y σ′(y) =

σ′(x) x ∈ y ∈ outputa conna(x) = y
σ′(y) = σ′(x)

A sequence of global states σ0σ1σ2 . . . of an SAS is a path if σ0 is an initial
global state and for all i ≥ 0 we have σi →glob σi+1. The set ( ) =
{σ0σ1σ2 . . . | σ0σ1σ2 . . . is a path} constitutes the SAS semantics.

3 Verification

The properties to be verified for adaptive embedded systems can be classified
according to whether they refer to adaptive, functional or both aspects. More-
over, one can distinguish between generic properties that are largely independent
of the application and application specific properties. In the following, we will
concentrate on generic properties of the adaptation behaviour.

As specification languages, we use the temporal logics CTL (computation
tree logic) and LTL (linear time temporal logic) [6,18]. In both CTL and LTL,
temporal operators are used to specify properties along a given computation
path. For example, the formula Fϕ states that ϕ eventually holds and Gψ states
that ψ invariantly holds. In CTL, every temporal operator must be immediately
preceeded by one of the path quantifiers A (for all paths) and E (at least one
path). Thus, AGϕ and EFψ are CTL formulae stating that ϕ invariantly holds on
all paths and ψ eventually holds on at least one path, respectively. LTL formulae
always have the form Aϕ, where ϕ does not contain any path quantifiers. None of
these two logics is superior to the other, i.e., there are specifications that can be
expressed in LTL, but not in CTL, and vice versa. However, both are subsumed
by the temporal logic CTL* [6,18].
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SAS models can be verified directly by embedding them into a semantic rep-
resentation of an interactive theorem prover such as Isabelle/HOL [12]. As a
major advantage, interactive theorem provers do not suffer from the state explo-
sion problem, as many properties can be verified without having to enumerate
all possible states. On the other hand, it is often more convenient to employ
automatic verification methods such as model checking, since using a theorem
prover can be rather tedious. In the remainder of this section, we will therefore
focus on the application of standard and specialised model checking procedures
for the verification of SAS models.

3.1 System Transformations

As mentioned in the introduction, SAS models are usually not directly amenable
to model checking due to their complexity. Sources of complexity are for instance
unbounded data domains, the size of arithmetic constants or the mere size of
the model. In order to reduce the runtime of the verification procedures, we per-
form a number of transformations on SAS models transparent to the user [2].
These transformations are formally verified to be property preserving using Is-
abelle/HOL.

To deal with unbounded data domains or large constants, we apply the con-
cept of data domain abstraction [5]. Data values from a large or infinite domain
are thereby mapped to a smaller finite domain using a homomorphic abstraction
function, provided that the domain abstraction is compatible with the opera-
tions of the system. Alternatively, one may apply abstract interpretation based
techniques [7] that overapproximate the effect of certain operations in the ab-
stracted system and yield a conservative abstraction of the system behaviour.
Hence, properties to be verified are abstracted such that an abstracted property
implies the original property. As an example, consider a system input ranging
over the integers. The integer domain may be reduced to the abstract domain
{ , } such that an integer value v is mapped to iff v < 50 and to iff
v ≥ 50. A constraint on the input like input ≥ 50 is subsequently transformed to
input = high without loosing precision due to the suitably chosen abstraction.

Moreover, we restrict the model to those parts that are relevant for verifying
the property under consideration. This means that we first remove all variables
that are declared but never used in the model. Furthermore, we perform an
analysis which variables of the system model and which associated parts influence
the considered property. Unnecessary parts of the model can safely be removed.
This technique is known as cone of influence reduction [6] in model checking of
Boolean circuits.

SAS models also support reasoning about purely adaptive, purely functional
or combined aspects of system models by separating functional from adaptive be-
haviour. Since model checking tools do in general not have any means to distin-
guish between functionality and adaptation, the generation of different verification
problems from SAS models alleviates verification complexity. For purely adaptive
properties, we generate verification output containing only the adaptive part of
the models, i.e. adaptive variables and the associated transition functions.
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Together with a system transformation, we provide a formal proof that the
transformation is property preserving. This means that for a given SAS and
a given property, the transformed system satisfies the transformed property if
the original property is true in the original system. Our approach is based on
translation validation techniques previously applied in compilers. We use a cor-
rectness criterion based on property preservation by simulation for the universal
fragment of CTL*. We prove in the interactive theorem prover Isabelle/HOL [12]
that for each transformation the transformed system simulates the original sys-
tem and that the transformed property can be concretised to imply the original
one. Then, validity of the transformation is established (cf. [2]).

3.2 Verification of Generic Properties by Model Checking

Most of the generic properties can be expressed in CTL, which allows us to em-
ploy standard model checking techniques. To verify such properties, we translate
the reduced SAS model to the input description of the model checker. First of all,
we want to verify that no module gets stuck in the default configuration ‘off’. This
can be expressed by the CTL formula AG(c = → EF c �= ), where c stores
the current configuration. The next specification is even stronger and asserts that
every module can reach all configurations at all times: AG(

∧n
i=1 EF c = i).

If this specification holds, the system is deadlock-free and no configuration is
redundant. Moreover, a module must always be in one of the predefined config-
urations such that no inconsistent states can be reached: AG(

∨n
i=1 c = i).

Many application specific properties can also be verified using standard model
checking techniques. On the one hand, these properties are concerned with the
adaptation behaviour resulting from the concrete combination of different mod-
ules. As an example, one may verify that adaptation in one module leads to a
particular configuration in another module after a certain number of cycles. If,
for instance, the camera in the building automation system fails, the module

will switch to configuration in the next
cycle. On the other hand, application specific properties address the function-
ality of a system. For example, in the building automation scenario, one may
verify that the occupancy of the room is determined correctly indepedent of the
used configurations and the order of their activation.

3.3 Verification of Stability

As mentioned in the introduction, one of the most important properties of adap-
tation is stability [15]. Since adaptation in the considered class of systems is not
controlled by a central authority, adaptation in one module may trigger further
adaptations in other modules. While sequences of adaptations are usually
intended, cyclic dependencies between the modules may lead to an num-
ber of adaptations, which results in an unstable system. For this reason, it is
important to verify that the configurations of a module eventually stabilise if
the inputs do not change.

As stability can be expressed in LTL (but not in CTL), it can be verified
using standard model checking procedures for LTL. However, model checking
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procedures for temporal logic formulae are not always as efficient as specialised
verification procedures for certain properties. In particular, there are more effi-
cient ways to check stability, as we will show in this section. Before we go into
detail, we briefly describe the μ-calculus, which we will use as the basis of our
approach. More detailed information on the μ-calculus can be found in [6,18].

In order to define the syntax and semantics of the μ-calculus, we need the
notion of Kripke structures. In our implementation (see Section 4), SAS models
are first translated to synchronous programs, which can then be compiled to
symbolic descriptions of Kripke structures.

Definition 5 (Kripke structures). V
K (S, I, R, L) S

I ⊆ S R ⊆ S × S
L : S → P(V)

The predecessors and successors of a set of states are used to define the semantics
of the μ-calculus:

Definition 6 (Predecessors and Successors). K =
(S, I, R, L) Q ⊆ S

– preR∃ (Q) := {s ∈ S | ∃s′ ∈ S.(s, s′) ∈ R ∧ s′ ∈ Q}
– preR∀ (Q) := {s ∈ S | ∀s′ ∈ S.(s, s′) ∈ R → s′ ∈ Q}
– sucR∃ (Q) := {s′ ∈ S | ∃s ∈ S.(s, s′) ∈ R ∧ s ∈ Q}
– sucR∀ (Q) := {s′ ∈ S | ∀s ∈ S.(s, s′) ∈ R → s ∈ Q}

Definition 7 (Syntax of the μ–Calculus). V
μ Formμ x ∈ V ϕ, ψ ∈ Formμ

Formμ := x | ϕ ∧ ψ | ϕ ∨ ψ | ♦ϕ | �ϕ | ←−♦ϕ | ←−�ϕ | μx.ϕ | νx.ϕ

Intuitively, a modal formula ♦ϕ holds in a state iff ϕ holds in at least one
successor state, and �ϕ holds iff ϕ holds in all successor states. The operators←−♦ and

←−� refer to the past (predecessors) instead of to the future (successors).
Finally, the operators μ and ν denote least and greatest fixpoints, respectively.
In order to define the semantics of the μ-calculus, we denote the subset of states
satisfying a formula ϕ ∈ Formμ by �ϕ�K.

Definition 8 (Semantics of the μ–Calculus). K =
(S, I, R, L) μ KQ

x

K s ∈ S
x ∈ L(s) s ∈ Q

�x�K := {s ∈ S | x ∈ L(s)} x ∈ V
�ϕ ∧ ψ�K := �ϕ�K ∩ �ψ�K �ϕ ∨ ψ�K := �ϕ�K ∪ �ψ�K
�♦ϕ�K := preR∃ (�ϕ�K) ��ϕ�K := preR∀ (�ϕ�K)
�
←−♦ϕ�K := sucR∃ (�ϕ�K) �

←−�ϕ�K := sucR∀ (�ϕ�K)
�μx.ϕ�K :=

⋂
{Q ⊆ S | �ϕ�KQ

x
⊆ Q} �νx.ϕ�K :=

⋃
{Q ⊆ S | Q ⊆ �ϕ�KQ

x
}
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The satisfying states of fixpoint formulae can be computed by fixpoint iteration:
The states �μx.ϕ�K satisfying a least fixpoint formula μx.ϕ are obtained by the
iteration Qi+1 := �ϕ�KQi

x
starting with Q0 := ∅. For greatest fixpoint formulae,

the iteration starts with Q0 := S. In both cases, the sequence Qi is monotonic
(increasing for least fixpoints and decreasing for greatest ones).

An important characteristic of a μ-calculus formula is its ,
which is roughly speaking the number of interdependent fixpoints. For example,
the formula μy.�(νx.((y ∨ ϕ) ∧�x)) has alternation-depth two, since the inner
fixpoint depends on the outer one. A formula that does not contain interde-
pendent fixpoints is .2 The importance of the alternation-depth
stems from the fact that the complexities of all known model checking algorithms
for the μ-calculus are exponential in it [18]. Regarding the above formula, this
means that for each iteration of the outer fixpoint formula, the inner one has to
be reevaluated.

Let us now return to the problem of stability checking. Suppose that ϕin holds
iff the inputs of an SAS are stable for one unit of time. Moreover, let ϕso hold
iff the state variables and the outputs are stable for one time unit. Then, the
SAS is stable iff the LTL formula Φ :≡ AG(Gϕin → FGϕso) holds. However,
simply checking Φ by means of standard model checking procedures for LTL is
not optimal, since the resulting μ-calculus formula is not alternation-free. The
proof is based on the fact that Φ is equivalent to A(FGϕin → FGϕso). Given
that ϕin holds on all states, we obtain the formula AFGϕso. This formula can be
translated to the μ-calculus formula μy.�(νx.((y∨ϕso)∧�x)) [13,18], which has
has alternation-depth two (see above). In the following, we propose a solution
that does not require the computation of interdependent fixpoints and turns out
to be more efficient in practice. For that purpose, we need the notion of paths
of a Kripke structure:

Definition 9 (Paths). π : N → S K = (S, I, R, L)
(π(i), π(i+1)) ∈ R i ∈ N

s ∈ S PathsK(s)

We assume that the set of variables V consists of a set of input variables Vin and
a set of state and output variables Vso such that Vin ∩ Vso = ∅ holds. Moreover,
we say that a path is steady w.r.t. a set of variables iff none of the variables
changes its value after some point of time.

Definition 10 (Steadiness). K = (S, I, R, L)
π : N → S k ∈ N V ⊆ V

steadyK(π, k, V ) :⇔ ∀i ≥ k.L(π(i)) ∩ V = L(π(i + 1)) ∩ V

2 As every CTL formula can be translated to an alternation-free μ-calculus formula
[6,18], there is no need for specialised verification procedures in order to check the
generic properties described in Subsection 3.2.
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L(si): a b ab a ab

s0 s1 s2 s3 s4

Fig. 3. Example for a Kripke structure

As an example, consider the Kripke structure shown in Figure 3 (dashed lines
represent transitions of the restricted transition relation R′ defined below). Since
b holds on states s1 and s2, the path s0, s1, s2, s2, . . . is steady w.r.t. the set {b}
from time one. In contrast, the path s3, s4, s3, . . . is not steady w.r.t. {b}, as b
holds on state s4, but not on state s3.
Having defined the notion of steadiness, stability of a state and a Kripke structure
can now be rephrased as follows:

Definition 11 (Stability). K = (S, I, R, L)
s ∈ S

stableK(s) :⇔ ∀π ∈ PathsK(s).steadyK(π, 0, Vin) → ∃i ∈ N.steadyK(π, i, Vso)

K K

Consider again the Kripke structure of Figure 3 and assume that Vin = {a} and
Vso = {b} holds. Then, the states s0, s1, and s2 are stable as all paths originating
in these states are either not steady w.r.t. Vin or steady w.r.t. Vso. Since the path
s3, s4, s3, . . . is steady w.r.t. Vin but not w.r.t. Vso, s3 and s4 are not stable.

In order to formulate stability as a μ-calculus formula without interdependent
fixpoints, we first restrict the transition relation to those paths that are steady
w.r.t. Vin and do not contain any self-loops, i.e., we construct a Kripke structure
K′ = (S, I, R′, L) with

R′ := {(s, s′) | (s, s′) ∈ R ∧ s �= s′ ∧ L(s) ∩ Vin = L(s′) ∩ Vin}.

Then, it remains to check whether the paths of K′ are steady w.r.t. Vso. As R′

does not contain any self-loops, a path π is steady from time k iff π(k) has no
successors. Thus, a state s ∈ S is stable iff all paths originating in s are finite. In
the μ-calculus, this can be expressed by the formula νx.♦x, which holds in a state
s ∈ S iff there exists at least one infinite path originating in s. Consequently, a
Kripke structure K is stable iff �νx.♦x�K′ does not contain any reachable states.
The latter are exactly the set �μx.χI ∨ ←−♦x�K, where χI is the characteristic
function of I, i.e., �χI�K = I. This leads to the following theorem:

Theorem 1. K = (S, I, R, L) �μx.χI ∨←−♦x�K ∩
�νx.♦x�K′ = ∅

As both fixpoint formulae are independent of each other, they can be evaluated
separately, which significantly reduces the total number of fixpoint iterations.
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In fact, if a Kripke structure is not stable, we do not even have to compute all
reachable states. Given that the formula νx.♦x has already been evaluated, the
fixpoint iteration for the least fixpoint formula can be aborted when a state is
encountered that belongs to �νx.♦x�K′ .

For the Kripke structure of Figure 3, we obtain �μx.χI ∨ ←−♦x�K = {s0, s1, s2}
with I = {s0} and �νx.♦x�K′ = {s3, s4}. Hence, the Kripke structure is stable.

4 Implementation and Experimental Results

4.1 Modelling Environment and Formal Representation

We integrated the MARS modelling concepts into the Generic Modelling Envi-
ronment GME3 [9], a tool for computer-aided software engineering, and devel-
oped a GME meta model for representing the MARS modelling concepts. Based
on this meta model, concrete examples like our running example (see Figure 4)
can be instantiated. GME automatically produces a model representation in
XML format which is used as input for validation and verification as well as for
code generation.

Besides formal verification of adaptation behaviour, MARS currently offers
two further analyses for its validation. First, we support the simulation of adap-
tation behaviour and the visualisation of reconfiguration sequences using adap-
tation sequence charts ASC [21]. Second, it is possible to perform a probabilistic
analysis of the adaptation behaviour [1]. For this purpose, the adaptation be-
haviour model is transformed into an equivalent hybrid component fault tree.
The probability that a configuration of a module is activated can then be derived
from the failure rates of sensors and actuators.

After the adaptation behaviour of a model has been successfully validated
and verified, the functional behaviour can be integrated into the model. When
the behaviour of the whole system is completely specified, code generation is
possible. For simulation and code generation, we use MATLAB-Simulink,4 the
de facto standard in industrial development of embedded systems.

Moreover, we implemented a tool called AMOR (Abstract and MOdular
verifieR) that reads XML output generated by GME and translates it to a for-
mal representation based on SAS. SAS models are internally represented as
immutable terms using Katja [11]. Additionally, we implemented the transfor-
mations described in Subsection 3.1 in order to make the models amenable to
formal verification using model checking. The correctness of the transformations
is established by automatically generating proof scripts for Isabelle/HOL [12].
AMOR also supports the translation of SAS models into a semantical representa-
tion of Isabelle/HOL, so that SAS models can be directly verified using theorem
proving techniques. Alternatively, AMOR is able to generate code for symbolic
model checkers. The generated code may contain only adaptive behaviour (for
the verification of purely adaptive properties) or both adaptive and functional
behaviour (for the verification of combined properties).
3 http://www.isis.vanderbilt.edu/projects/gme/
4 http://www.mathworks.com
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Fig. 4. Top level view of building automation example in GME

4.2 Verification

As model checking back-end, we use the Averest5 framework, a set of tools for
the specification, implementation and verification of reactive systems [19]. In
Averest, a system is given in the synchronous programming language Quartz,
which is well-suited for describing adaptive systems obtained from SAS models.
In particular, as both are based on a synchronous semantics, SAS modules can be
easily mapped to threads in Quartz. Moreover, causality analysis of synchronous
programs can be used to detect cyclic dependencies that may occur if the quality
flow generated by an output is an input of the same module. Specifications can
be given in temporal logics as well as in the μ–calculus. To check stability, we
implemented the method described in Subsection 3.3 in Averest.

4.3 Evaluation of the Building Automation System

To evaluate our approach, we modelled the building automation example with
MARS, translated it to an SAS model using AMOR and generated a Quartz
program from this model. The resulting system contains 108 variables and has
approximately 1.5 × 1020 reachable states. As the first step, we checked the
generic specifications described in Subsection 3.2 for each module using Averest’s
symbolic model checker. Each of these specifications could be checked in less

5 http://www.averest.org
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than one second. For example, we verified the following CTL formulae for the
module:

AG(occupancyDetection= off → EF(occupancyDetection �= off))

AG(EF(occupancyDetection= camera) ∧ EF(occupancyDetection= transponder)∧
EF(occupancyDetection= motion) ∧ EF(occupancyDetection= entryExit)∧
EF(occupancyDetection= off))

AG(occupancyDetection= camera∨ occupancyDetection= transponder∨
occupancyDetection= motion∨ occupancyDetection= entryExit∨
occupancyDetection= off)

Additionally, we checked five application specific (functional) properties. For
instance, the following formula states that if the light is available and the desired
brightness is greater than zero then the light will be switched on (AXϕ holds iff
ϕ holds on all paths at the next point of time):

AG(lightQuality = available∧ lampBrightness> 0 → AX(light = on))

The application specific properties could also be checked in a few seconds, but
the construction of the transition relation required significantly more time com-
pared to the generic properties (92s instead of approx. 1s). This indicates that
the separation of adaptive from functional behaviour considerably accelerates
verification. As the second step, we checked stability of the system with LTL
model checking and with the approach described in Subsection 3.3. LTL model
checking requires a total number of 39 fixpoint iterations and takes 130s, whereas
our approach only performs 9 iterations in less than one second.

5 Related Work

There are various approaches that integrate model-based design and formal ver-
ification in the development of -adaptive systems. Most of them use an in-
termediate representation that aims at closing the gap between modelling and
verification. The Rhapsody UML Verification Environment [17] supports the
verification of UML models using the VIS model checker via an intermediate
language called SMI. The authors of [22] propose an approach linking xUML,
an executable subset of UML, and the SPIN model checker. They also propose
transformations on the intermediate layer but do not prove them correct, since
the intermediate representation has no formal semantics. The IF Toolset [3] in-
tegrates modelling in UML and SDL (Specification and Description Language)
with different verification tools using the IF intermediate language. IF also sup-
ports a number of techniques to reduce the state space, e.g. elimination of ir-
relevant parts of a model, but the transformations are not explicitly verified.
Furthermore, none of these approaches considers adaptation.

With respect to adaptive system development, most approaches concentrate
either on modelling or on verification aspects. There are various approaches fo-
cussing on modelling self-managed dynamic software architectures; for a survey,
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consult [4]. However, only few of them deal with
[21] and consider the overall development process of adap-

tive embedded systems. The method described in [14] addresses the modelling
of reconfiguration but omits verification aspects completely. In [24], the authors
introduce a method for constructing and verifying adaptation models using Petri
nets. However, specifying adaptation behavior using Petri nets is not an intuitive
way to design complex industry sized systems like the ESP (Electronic Stability
Program). Moreover, the notion of adaptivity is more coarse-grained than in our
work, since it is restricted to three fixed types of adaptation.

Regarding verification of adaptive systems, linear time temporal logic is
extended in [23] with an ‘adapt’ operator for specifying requirements on the sys-
tem before, during and after adaptation. An approach to ensure correctness of
component-based adaptation was presented in [8], where theorem proving tech-
niques are used to show that a program is always in a correct state in terms of
invariants. Initial work on the verification of MARS models can be found in [20].
In contrast to [20], the work presented in this paper supports the verification
of both adaptive and functional aspects. Furthermore, the formal representa-
tion introduced in this work bridges the gap between modelling and verification
techniques and integrates formal verification into the development process in a
way transparent to the user. Additionally, [20] does not discuss specialised ver-
ification procedures for properties characteristic for adaptive systems such as
stability.

6 Conclusion and Future Work

Although dynamic adaptation significantly complicates system design, it is fre-
quently used as cost-efficient solution to increase dependability in safety-critical
embedded systems. In this paper, we have presented an integrated framework for
model-based development of adaptive embedded systems that supports intuitive
modelling as well as efficient formal verification. It provides the developer with a
user-friendly modelling method for specifying the system’s adaptation behaviour
and its interface to functional behaviour. It further allows to formally represent
the semantics of the specified models close to the introduced modelling concepts.
This enables us to express crucial system properties in a semantically exact man-
ner. Based on the formal model, these properties can be verified using interactive
theorem proving, symbolic model checking and specialised verification methods
for adaptive embedded systems.

We are currently extending the modelling concepts for adaptation behaviour
by integrating a configuration transition management. Moreover, we are working
on additional techniques to reduce verification complexity for the application of
model checking such as predicate abstraction. Additionally, we plan to support
the development of distributed adaptive systems, where adaptation can be used
to compensate for the failure of whole components.
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Abstract. Simulink is popular in industry for modeling and simulating
embedded systems. It is deficient to handle requirements of high-level
assurance and timing analysis. Previously, we showed the idea of ap-
plying Timed Interval Calculus (TIC) to complement Simulink. In this
paper, we develop machine-assisted proof support for Simulink models
represented in TIC. The work is based on a generic theorem prover,
Prototype Verification System (PVS). The TIC specifications of both
Simulink models and requirements are transformed to PVS specifica-
tions automatically. Verification can be carried out at interval level with
a high level of automation. Analysis of continuous and discrete behav-
iors is supported. The work enhances the applicability of applying TIC
to cope with complex Simulink models.

Keywords: Simulink, Real-Time Specifications, Formal Verification,
PVS.

1 Introduction

Simulink [18] is popular in industry for modeling and simulating embedded sys-
tems. It is deficient to handle requirements of high-level assurance and timing
analysis. Formal methods have been increasingly applied to the development of
embedded systems because of their rigorous semantics and powerful verification
capability [15]. Previously, we showed the idea of applying Timed Interval Calcu-
lus (TIC) [10], a formal notation of real-time systems to complement Simulink [5]:
an automatic translation from Simulink models to TIC specifications preserves
the functional and timing aspects; important timing requirements can hence
be formally validated by the well-defined TIC reasoning rules and the strong
support of mathematical analysis in TIC.

Currently, the validation is accomplished by hand. When verifying complex
Simulink models, it becomes difficult to ensure the correctness of each proof step
and to manage all proof details manually. Thus, developing machine-assisted
proof support is necessary and important to ease the analysis beyond Simulink.

Simulink models usually involve continuous dynamics, and important timing
requirements often concern behavior over arbitrary (infinite) intervals. These
features make the automated verification of Simulink models challenging. An
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approach, i.e., model checking [6] has successfully handled finite state transition
systems with its fully automatic proving process. Nevertheless the discretization
abstraction of infinite state transition systems can decrease the accuracy when
analyzing properties of continuous dynamics (e.g., space distance [22]). On the
other hand, theorem proving [4] can directly deal with infinite state transition
systems with powerful proof methods (e.g. mathematical induction). Higher or-
der theorem proving systems such as PVS [24], HOL [11], and Isabelle [23] sup-
port expressive input forms and automated proof capabilities (e.g., automated
linear arithmetic reasoning over natural numbers). A recently developed NASA
PVS library [1] formalizes and validates integral calculus based on the work [8]
that supports elementary analysis. The library has been successfully used to
verify a practical aircraft transportation system [21] which involves complex
continuous behavior. In this paper, we apply PVS as a framework to encode and
verify the TIC models generated from Simulink. The NASA PVS library allows
us to rigorously represent and analyze continuous Simulink models.

We firstly construct the TIC denotational semantic models and validate the
TIC reasoning rules in PVS. Based on the encoding, we define a collection of PVS

which correspond to the TIC library functions of Simulink
library blocks. The TIC specifications are automatically transformed into PVS
specifications. The transformation preserves the hierarchical structure. We de-
fine a set of rewriting rules to simplify the proving process and keep certain
detailed TIC semantic encodings transparent to users. Hence we can formally
validate Simulink models at interval level with a high grade of automation: pow-
erful proving capability (including automatic type checking) of PVS guarantees
the correctness of each reasoning step; proofs at low level can be automatically
discharged, mainly by the decision procedures on sets and the propositional sim-
plifications over real numbers in PVS. We have successfully validated continuous
and hybrid systems represented in Simulink against safety and bounded liveness
requirements.

The rest of the paper is organized as follows. In section 2, we brief the work
on representing Simulink models in TIC followed by an introduction of PVS.
The encoding of the primary TIC semantics and reasoning rules is presented in
Section 3. Section 4 defines the library of PVS parameterized types. In the next
section, the transformation strategy is illustrated with a non-trivial hybrid con-
trol system. Section 6 shows the benefits of the rewriting rules and the facilities
of our approach by formally validating the control system in PVS. Related works
are discussed in section 7. Section 8 concludes the paper with future work.

2 Background

2.1 Simulink in Timed Interval Calculus (TIC)

A Simulink [18] model is a wired block diagram that specifies system behavior
by a set of mathematical functions over time. A block can be either an ele-
mentary block or a wired block diagram for a sub-model. An
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denotes a primitive mathematical relationship over its inputs and outputs. Ele-
mentary blocks are generated from a rich set of Simulink by using
the parameterization method. A depicts the dependency relationship be-
tween connected blocks. The source (destination) block can write (read) values
to (from) a wire according to its which is the execution rate of an
elementary block during simulation. Simulink adopts as the uni-
fying domain to support various systems (continuous, discrete or hybrid). Note
that discrete systems behave piecewise-constantly continuously in Simulink.

. A brake control system is used as a running example to explain
our idea and illustrate the results. The system aims to prevent a vehicle from
over speeding by automatically enabling a brake device to decelerate the vehicle
in time. The Simulink model is shown in Figure 1: each square box is an elemen-
tary library block, and each ellipse denotes an interface. The model consists of
three subsystems, namely, subsystem depicting the physical speed behav-
ior, subsystem discretizing the speed, and subsystem controlling
the brake device status based on the sensed speed. More details are provided in
Section 5 where we translate the system with its requirements into PVS specifi-
cations, and here we select subsystem to describe our previous work. The
subsystem contains three components: two denote the interface (i.e., and

), and block created from Simulink library block
stores the input value at each sample time point (the sample time is 1 second in
the example) and keeps it till the next sample time point. Its simplified content
is available in Figure 2.

We applied the Timed Interval Calculus (TIC) [10] to formally represent the
Simulink denotational semantics, and developed a tool to automatically translate
Simulink models into TIC specifications. The translation preserves the functional
and timing aspects as well as the hierarchical structure [5].

TIC is set-theory based and reuses the Z [30] mathematical and schema nota-
tions. It extends the work in [17] by defining to abstract time

Fig. 1. The brake control system with its subsystems in Simulink
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points and specifies properties at interval level. (T) is non-negative
real numbers, and are continuous ranges of time points. In addition,
α, ω, δ are in TIC to return the infimum, supremum and length
of an interval. Note that they can be used to explicitly access endpoints.

defined in TIC are total functions of time to depict physical dynamics,
and integration and differentiation have been rigorously defined in [9]. Each pair
of interval brackets denotes a set of intervals during which an enclosed predicate
holds at time points. There are four according to the
endpoint inclusion. When the involvement of endpoints is unspecified, a

is defined to cover all types of intervals. Hence system behavior can
be modeled by predicates as relations over intervals. To manage the TIC specifi-
cations, are adopted: a TIC schema groups a collection of variables
in the declaration part and constrains the relationships among the variables at
the interval level in the predicate part. A set of well-defined TIC reasoning rules
captures properties over sets of intervals and is used to verify complex systems.

We defined a set of to capture the denotational se-
mantics of Simulink library blocks, i.e., mathematical functions between their
inputs and outputs over time. Each TIC library function accepts a collection of
arguments that correspond to Simulink library parameters, and returns a TIC
schema that specifies the functionality of an instantiated library block. For ex-
ample, function shown in Figure 2 preserves the sample time value (i.e.,
variable ) and describes the discrete execution in each sample time intervals
(where interval brackets represent a set of intervals).

The translation from Simulink models into TIC specifications is in a bottom-
up manner. Elementary blocks are translated into TIC schemas by applying
appropriate TIC library functions to relevant Simulink parameters. For exam-
ple, schema below is constructed by passing the sample
time value to the function. Note that symbol “ ” is used to retain the
hierarchical order in Simulink models ( indicates that
block is a component of system which is a subsystem of system

). Simulink diagrams are converted into TIC schemas. Specifically, the
schemas declare each component as an instance of a TIC schema that represents
the corresponding component, and each wire is expressed by an equation that
consists of variables from the declaration. For example, schema
in Figure 2 captures its three components and the connections.

2.2 Prototype Verification Systems (PVS)

PVS [24] is an integrated environment for formal specification and formal verifi-
cation. The specification language of PVS is based on the classic typed, higher-
order logic. Built-in types in PVS include , ,
and so on. Standard predicate and arithmetic operations, such as conjunction
(AND) and addition (+) on these types are also defined in PVS. Types can be
defined starting from the built-in types using the type constructions. For exam-
ple, types are of the form [# 1 : 1, . . . , n : n#], where the i are named
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Fig. 2. The sensor subsystem in Simulink and TIC

and the i are types. Elements of a record can be referenced by
using the projection functions: ‘ i for instance.

Functions in PVS are total, and partial functions are supported by
and which restrict the function domain. In addition,

functions in PVS can share the same name as long as the types of their param-
eters are different. PVS specifications are organized into , which usually
contain type declaration, axioms and lemmas. A theory can be reused in other
theories by means of the clause.

The PVS theorem prover offers powerful primitive proof commands that are
applied interactively under user guidance. Proofs are performed within a

framework. A proof obligation consists of a list of assumptions
1, . . . , n as and a list of conclusions 1, . . . , m as . It

denotes that the conjunction of the assumptions implies the disjunction of the
conclusions.

Primitive proof commands deal with propositional and quantifier rules, in-
duction, simplification and so on. Users can introduce proof which
are constructed from the basic proof commands to enhance the automation of
verification in PVS.

PVS contains many built-in theories as libraries which provide much of the
mathematics needed (e.g. and ) to support verification. Recently,
the NASA PVS library1 extends the existing PVS libraries by providing means of
modeling and reasoning about hybrid systems. The library formalizes the math-
ematical element analysis such as , and , and
contains many lemmas and theorems for manipulating these notations.

1 It is available at http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/
pvslib.html

Block {
BlockType SubSystem
Name "sensor"
System {

Block {
BlockType Inport
Name "speedR" }

Block {
BlockType ZeroOrderHold
SampleTime "1"
Name "detector"}

Block {
BlockType Outport
Name "speedS" }

Line {
SrcBlock "speedR"
DstBlock "detector" }

Line {
SrcBlock "detector"
DstBlock "speedS" }}}

ZOH : T→ P[In1,Out : T→ R; st : T]

∀ t : T • ZOH (t) = [In1,Out : T→ R; st : T |
st > 0 ∧ st = t ∧
:∃ k : N • α = k ∗ st ∧ ω = (k + 1) ∗ st7 =

:Out = In1(α)7]

vehicle sensor detector =̂ ZOH (1)

vehicle sensor

speedR, speedS : T→ R
detector : vehicle sensor detector

I = >speedR = detector .In1?

I = >detector .Out = speedS?
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3 Primitive Encoding of TIC

We construct the TIC denotational semantic model in PVS in a bottom up fash-
ion. Each subsection below corresponds to a PVS theory. Complex theories can
hence reuse the simple ones. The encoding forms a foundation to generate PVS
specifications for TIC specifications and support TIC verification by formalizing
and validating all TIC reasoning rules in PVS2.

Time and Interval. The Time domain is represented by the PVS built-in type,
i.e., for nonnegative real numbers. Time: TYPE = nnreal.

An interval is a tuple made up by two elements: The first specifies the interval
type, i.e., InterVal Type: TYPE = {OO, CO, OC, CC} (e.g., CO indicates that
the interval type is left-closed, right-open). The second is a pair which denotes
the starting point ( ) and the ending point ( ).

GenInterVal: TYPE = [invt: Interval_Type, {stp: Time, etp: Time | stp <= etp}]

The interval type ( ) captures the relation between basic interval
types and endpoints. For example, when the interval is both-closed ( ),
its ending point can equal the starting point ( ‘2‘1 <= ‘2‘2 where symbols
‘1 and ‘2 are the projection operators of PVS for accessing a tuple). Note that
when an interval is , it can be one of the four basic interval types. We
apply the mechanism of PVS to define basic interval types (e.g.
the type of left-closed, right-open intervals, is given below).

II: TYPE = { gi : GenInterVal | (gi‘1 = CC and (gi‘2)‘1 <= (gi‘2)‘2) or
((gi‘1 = OO or gi‘1 = OC or gi‘1 = CO) and (gi‘2)‘1 < (gi‘2)‘2)};

COInterVal: TYPE = {i: II | i‘1 = CO}

Timed Trace and Interval Operators. The type of timed traces is a total
function from time to real number. The interval operators, α, ω, and δ are func-
tions from interval to time (We show the encoding of α here due to the size limit,
and variable is a variable of type ).

Trace: TYPE = [Time -> real];
ALPHA(i): Time = (i‘2)‘1; % i: var II

Expressions and Predicates. Though time and intervals are abstracted in
TIC specifications for concise modeling, they need to be explicitly accessible
when interpreting expressions and predicates in PVS.

A basic element of TIC can have different types. Specifically, it can be a timed
trace, an interval operator, or a constant. To different types into one type
during the encoding, function is defined in the way which accepts three
kinds of parameters (where the second and third parameters are the time and
intervals respectively) and returns real numbers. Note that this is accomplished

2 The complete PVS specifications of the TIC semantics and the reasoning rules are
available at http://www.comp.nus.edu.sg/~chenchun/PVSTIC
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by the mechanism of PVS. For example, a timed trace is evaluated
at a given time point while a constant is unchanged regardless of the time points
and intervals.

LIFT(x)(t, i): real = x; % t : var Time, x: var real
LIFT(tr)(t, i): real = tr(t); % tr : var Trace
LIFT(tm)(t, i): real = tm(i); % tm : var Term

Expressions in TIC are constructed by applying mathematical operators (in-
cluding calculus operators, e.g., “

∫
”) to the basic elements and other sub-

expressions. As time and intervals are required by the function, they are
passed down to the constituent sub-expressions. The stops when all
the sub-expressions are primitive elements. Similarly way is applied to analyze
predicates which are formed from applying mathematical relation over expres-
sions or predicate logic on constituent sub-predicates. We show below the type
declarations of the expressions and predicates, a subtraction expression, and a
disjunctive predicate:

TExp: TYPE = [Time, II -> real];
-(el, er)(t, i): real = el(t, i) - er(t, i); % el, er: var TExp
TPred: TYPE = [Time, II -> real];
or(pl, pr)(t, i): bool = pl(t, i) or pr(t, i); % pl, pr: var TPred;

An important feature of TIC is that the elemental calculus operations are
supported, in particular and . Their definitions are
formalized precisely in the NASA PVS library, and hence we can directly rep-
resent them in PVS. For example, the integral operation of TIC encoded below
uses function from the NASA PVS library where expressions and
denote the bounded points of an integral.

TICIntegral(el, er, tr)(t, i): real = Integral(el(t, i), er(t, i), tr);

Quantification in TIC is supported in PVS by defining a
from the range of the bounded variable to the quantified predicate. For example,
if the range of the bounded variable is natural numbers, and then the type of
the quantification is from natural numbers to TIC predicate. Note that the fol-
lowing representation adopts the existence quantifier ( ) of PVS directly.

QuaPred: TYPE = [nat -> TPred]; qp: var QuaPred;
exNat(qp)(t, i): bool = EXISTS (k: nat): (qp(k)(t, i))

TIC Expressions. A TIC expression is either formed by the interval brackets
or a set operation on other TIC expressions. We present the way of encoding the
interval brackets and concatenation operation below as they are defined special
in TIC. Other TIC expressions can be constructed by using the PVS theory.

In TIC, a pair of interval brackets denotes a set of intervals during which an en-
closed predicate holds . Firstly function detects if a time point
is within an interval according to the interval type. Next, function ?
checks whether a predicate is true at all time points within an interval. Lastly
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the set of desired intervals is formed by using the set constructor in PVS. For
example, the definition of the interval brackets ( ) which return a set of general
intervals is shown below:

t_in_i(t, i): bool = (i‘1 = OO and t > (i‘2)‘1 and t < (i‘2)‘2) or
(i‘1 = OC and t > (i‘2)‘1 and t <= (i‘2)‘2) or
(i‘1 = CO and t >= (i‘2)‘1 and t < (i‘2)‘2) or
(i‘1 = CC and t >= (i‘2)‘1 and t <= (i‘2)‘2);

Everywhere?(pl, i): bool = forall t: t_in_i(t, i) => pl(t, i);
AllS(pl): PII = {i | Everywhere?(pl, i)}; % PII: TYPE = setof[II];

In TIC, concatenations are used to model sequential behavior over intervals.
A concatenation requires the connected intervals to meet , i.e., no gap and
no overlap. Note that there are eight correct ways to concatenate two intervals
based on the inclusion of their endpoints. Here we just consider one situation
that a set of left-closed, right-open intervals is the result of linking two sets of
left-closed, right-open intervals: the absence of gap is guaranteed by the equiva-
lence of the connected endpoints (i.e., the ending point of 1 equals the starting
point of 2), and the overlap is excluded by restricting the types of the con-
nected endpoints (i.e., 1 is right-open while 2 is left-closed).

concat(cos1, cos2): PCC = {c : COInterVal | % cos1 is a set of CO intervals
exists (co1 : cos1), (co2: cos2): % cos2 is a set of CO intervals

OMEGA(co1) = ALPHA(co2) and ALPHA(co1) = ALPHA(c) and OMEGA(co2) = OMEGA(c)}

Based on the above encoding, we can formalize and validate the TIC rea-
soning rules in PVS. They capture the properties of sets of intervals and the
concatenations and used to verify TIC specifications at the level of intervals.
We have checked all rules stated in [10, 2], and hence they can be applied as
proved lemma when verifying TIC specifications of Simulink models in PVS in
the following sections.

4 Constructing PVS Library Types

Simulink library blocks create elementary blocks by instantiating parameters
specific values. Similarly, we previously defined a set of TIC library function to
represent the library blocks. To be specific, an instantiation of a library block is
modeled as an application of a TIC library function. In this section, we construct
a library of PVS parameterized types for the TIC library functions. In this way
we produce concise PVS specifications for Simulink elementary blocks, and keep
a clear correspondence of mathematical functions denoted in different notations.

A TIC library function accepts a set of parameters and returns a TIC schema,
where the inputs, outputs and relevant parameters of an elementary block are de-
fined as variables with their corresponding types, and the functional and timing
aspects are captured by constraints among the variables.

We represent each TIC library function by a PVS type, which
declares a type based on parameters. The parameters are the ones of a TIC
library function, and the declared type is a . The record type models
a generated schema by a TIC library function: variables are the ;

> ?
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and each predicate is represented by a constraint restricting the type domain of
an associated accessor which is used to construct a set of records. Note that there
are two categories of schema predicates: one indicates the relations between the
declared variables and the TIC function parameters (or constants); the other
captures the relations between variables denoting the inputs and outputs of
Simulink blocks. For the first category of predicates, they constrain the domains
of the corresponding variables; and the predicates of the second category restrict
the domains of the outputs.

Taking TIC library function from Section 2.1 as an example, the PVS
library type, below represents a record type that contains three accessors,
i.e. , 1 and . The TIC predicates constrain the type domains of relevant
accessors. To be specific, the first two predicates (that belong to the first cat-
egory) are the criteria for assigning sample time value correctly, and the last
predicate (which satisfies the second category) is used to express the behavior
of timed trace . Note that the PVS library type closes to the TIC library
function in terms of the structure (where operator “o” is a function composition
defined in PVS).

ZOH (t: Time): TYPE = [# st : {temp: Time | temp > 0 AND temp = t},
In1: Trace,
Out: {temp: Trace |

COS(exNat(lambda(k: nat): LIFT(ALPHA) = LIFT(k) * LIFT(st) AND
LIFT(OMEGA) = (LIFT(k) + LIFT(1)) * LIFT(st)))

= COS(LIFT(temp) = (LIFT(In1) o LIFT(ALPHA)))} #]

Continuous library blocks are important in Simulink modeling. They are
directly represented in TIC with the well-defined operators [9] on elementary
analysis. Using the recently developed NASA PVS library, these features can be
preserved in PVS. For example, a continuous Simulink library block
that performs an integration operation over its input is modeled formally in the
TIC library function :

Operator in the TIC specification indicates that the output is continuous.
We retain this feature explicitly by function from the NASA PVS
library (specifically, in the set constraint below). Note that
PVS variable denotes all valid intervals and maps to the TIC symbol, I.

Integrator (init: real): TYPE = [# IniVal: {temp: real | temp = init},
In1: Trace,
Out: {temp: Trace | temp(0) = IniVal and continuous(temp) and

fullset = AllS((LIFT(temp) o LIFT(OMEGA)) = (LIFT(temp) o LIFT(ALPHA)) +
TICIntegral(LIFT(ALPHA), LIFT(OMEGA), In1))} #]

We found it useful to formalize functions as type declarations instead of con-
ventional functions, although the second seems more intuitive. The reason is that

: R→ P[ : R; 1 : T→ R; : T1 R]

∀ : R • ( ) =
[ : R; 1 : T→ R; : T1 R | = ∧

(0) = ∧ I = > (ω) = (α) +
∫ ω

α 1?]

1
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type information is available to the PVS prover, and hence we can minimize the
number of type correctness conditions generated which are side effects of proof
steps during the type checking in PVS. The benefit has also been investigated
by Stringer-Calvert et al. [27]. They applied PVS to prove Z refinements for a
compiler development. Their work focused on supporting partial functions of Z
in PVS, however the way of handling schemas was missing. As we will show in
the following sections, representing schemas as record types can facilitate both
transformation and verification of TIC specifications.

5 Transformation of TIC Specifications

In this section, we present a strategy to transform TIC specifications which
represent both Simulink models and requirements. The transformation preserves
the hierarchical structure and has been implemented in Java for the automation.

5.1 Transforming TIC Schemas of Simulink Models

A Simulink model is a wired block diagram, and a block can be another wired
block diagram. This hierarchical structure modeling feature eases the challenge
of handling large scale systems. In the TIC specifications of Simulink models,
using schemas as types is the way to preserve the hierarchical structure. When
verifying these TIC specifications in PVS, it is important and necessary to retain
the same hierarchical structure: on the one hand, we can support large scale
systems in PVS, on the other hand the diagnostic information obtain at the
level of PVS can be reflected back to the level of Simulink. The goal is achieved
by using the record type of PVS as illustrated below.

The TIC specifications of Simulink models are TIC schemas and can be clas-
sified into two groups. One group represents the elementary blocks, and each
schema is formed by an application of a TIC library function with relevant
Simulink parameters. The transformation of this type of schemas is direct be-
cause of the PVS library types defined in the previous section. Namely, each
schema is converted to a PVS record type which is an application of an ap-
propriate PVS library type (i.e., the parameterized record type). The selection
criterion is the name of the TIC library function by the one-to-one relation-
ship between the TIC library functions and the PVS library types. For exam-
ple, schema of elementary block in Figure 1 is
transformed to the following PVS specification:

=̂ (1)

vehicle_sensor_detector: TYPE = ZOH(1);

The other group represents (sub)diagrams. A schema of this group models the
diagram components in the declaration part and the connections in the predicate
part. Taking the brake control system (see Figure 1) as an example, the whole
system is made up of three subsystem, where each is represented by a variable
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of schema type, and the wires between components are expressed as equalities
in terms of intervals.

Similar to the way of dealing with the first group, each schema is transformed
into a PVS record type. However, the difference is that the predicates constrain

accessors together rather then accessors. The main reason is that un-
like Simulink elementary blocks which denote relationships between inputs and
outputs, the predicates of Simulink diagrams denote the connections among
components, and it is thus difficult to determine which accessor should be con-
strained, especially when the wires form a cycle. For example, if we adopt the
previous way, one possible PVS specification of schema is below:

vehicle: TYPE = [# plant: vehicle_plant,
sensor: {temp: vehicle_sensor |

fullset = AllS(LIFT(temp‘speedR) = LIFT(plant‘speed))},
brake: {temp: vehicle_brake |

fullset = AllS(LIFT(temp‘speedin) = LIFT(sensor‘speedS) AND
fullset = AllS(LIFT(temp‘status) = LIFT(plant‘command))} #]

It is not hard to observe that above PVS specification forces a dependency
relation among three subsystems, and the correspondence between the PVS type
declaration and the TIC library function is loose. To solve the problem, we ap-
ply the mechanism of PVS to define a set of records which
represent the schema variables as accessors and satisfy the restrictions denoted
by the schema predicates. In this way the transformed PVS specifications follow
closely the schemas. Regarding the previous example, the schema is converted
to the following PVS type declaration:

vehicle: TYPE = { temp: [#
plant: vehicle_plant, sensor: vehicle_sensor, brake: vehicle_brake #] |
fullset = AllS(LIFT(temp‘plant‘speed) = LIFT(temp‘sensor‘speedR)) AND
fullset = AllS(LIFT(temp‘sensor‘speedS) = LIFT(temp‘brake‘speedin)) AND
fullset = AllS(LIFT(temp‘brake‘status) = LIFT(temp‘plant‘command)) }

We remark that representing TIC schemas by the PVS record types supports
the popular modeling technique in Z that uses schemas as types. As shown in
the above PVS specification, the projection function (‘) acts like the selection
operator (.) in Z to access a component. We remark that our way is differ-
ent from Gravell and Pratten [12] who discussed some issues on embedding Z
into both PVS and HOL. They interpreted Z schemas as Boolean functions of
record types and it is thus difficult to handle the case where schemas declared
as types.

: ; : ; :

I = > . = . ?
I = > . = . ?
I = > . = . ?
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5.2 Transforming Requirements

Requirements are predicates formed from the TIC specifications of Simulink
models. They are directly converted into PVS formulas based on the
PVS specifications of the TIC schemas. With the primitive encoding of TIC
semantics mentioned in Section 3, the way of transforming requirements is similar
to the one analyzing schema predicates explained in the previous section. Below
we skip details of the transformation due to the page limit, and provide the
transformed PVS specifications of two requirements of the brake control system.
They are used to illustrate the verification of TIC specifications in the next
section.

One requirement checks the computational accuracy of the sensed speed.
Namely, at any time the sensor should measure the speed within an accuracy
of 10 meters/second. The TIC predicate and the translated PVS specification
(where the used PVS variables such as can be found in Appendix B) are
given below respectively.

Approximation: THEOREM forall (v: vehicle): fullset =
AllS(LIFT(v‘sensor‘speedS) - LIFT(v‘plant‘speed) <= LIFT(10) AND

LIFT(v‘sensor‘speedS) - LIFT(v‘plant‘speed) >= LIFT(-10));

Another requirement concerns the response time within which the brake de-
vice should respond. To be specific, if an interval of which the length is more
than 1 second and during which the speed in the plant is not less than 50 me-
ters/second, the brake must be enabled within 1 second and keep on till the end.
The requirement is represented by the TIC predicate followed by the transformed
PVS specifications:

Response: THEOREM forall (v: vehicle): subset?(
CCS(LIFT(v‘plant‘speed) >= LIFT(50) AND LIFT(DETLA) > LIFT(1)),
concat( COS(LIFT(DELTA) < LIFT(1)),

CCS(LIFT(v‘brake‘status) = LIFT(1))));

We have demonstrated the strategy to automatically transform system design
and requirements into PVS specifications. Important issues about different ways
to represent TIC schemas have been discussed as well. The transformation pre-
serves the hierarchical structure denoted in TIC specifications. In other words,
systems specified in three notations (i.e. Simulink, TIC, and PVS) share the
same viewpoint of structure. This feature improves the traceability when ana-
lyzing systems in different formalisms, for example, verifying TIC specifications
in PVS can follow a similar proving procedure in TIC.

6 Validation Beyond Simulink in PVS

After transforming system designs and requirements into PVS specifications, we
can formally verify Simulink models at the interval level (by the encoded TIC

== ∀ : • I = >| . . − . . | ≤ 10?

== ∀ : • : . . ≥ 50 ∧ δ > 1; ⊆
:δ < 17y : . . = 1;
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reasoning rules) with a high grade of automation (by powerful proving support
of PVS). In this section, we first define and validate a set of rewriting rules
dedicated for Simulink modeling features to make verification more automated,
followed by an illustration of verifying the brake control system to show that
our developed tool supports the validation beyond Simulink such as dealing
with open systems and checking timing properties.

6.1 Rewriting Rules for Simulink

Wires in Simulink models are represented by equations in TIC. Each equation
consists of two timed traces that denote the connected block ports. When veri-
fying TIC specifications in PVS, it is often to replace one timed trace by another
when they both are in an equation. However, the substitution could be tedious
in PVS since we need to expand the TIC semantic encoding thoroughly to make
both time and interval explicitly for allowing the PVS prover to automatically
discharge the proof obligation. To simplify the process as well as keep the detailed
encoding transparent to users, we define a set of rewriting rules to easily handle
the replacement of two equivalent timed traces. For example, rule
substitutes two timed traces and over an inequality at the interval level.

BB_ge_sub: LEMMA forall (tr1, tr2, tr3: Trace):
fullset = AllS(LIFT(tr1) = LIFT(tr2)) =>
AllS(LIFT(tr1) > LIFT(tr3)) = AllS(LIFT(tr2) > LIFT(tr3));

Time domain of discrete systems in Simulink is decomposed into a sequence of
left-closed, right-open intervals. We can hence define rewriting rules to facilitate
the analysis of the discrete Simulink models. For example, rule states
that for a predicate that is interval operator free3, if it holds on sample inter-
vals (a is a left-close, right-open interval of which the endpoints
are a pair of adjacent sample time points.), it is true in interval. We remark
that the rule is useful to check safety requirements of discrete systems.

st: var Time; tp: TPred;
CO_to_All: LEMMA st > 0 AND No_Term?(tp) =>

subset?(COS(exNat( lambda(k: nat): LIFT(ALPHA) = LIFT(k) * LIFT(st) AND
LIFT(OMEGA) = (LIFT(k) + LIFT(1)) * LIFT(st))),

COS(tp))
=> fullset = AllS(tp);

6.2 Reasoning About the Brake Control System

The brake control system is as the exact function of the acceleration change
is difficult to known. Simulink can check functional behavior for just closed
systems by simulation. Moreover, timing requirements are difficult to specify in
Simulink. In the following, we show how our approach can formally validate the
nontrivial system with a high level of automation.

3 We define PVS function No Term? to check if the predicate is dependent on the
interval endpoints or interval length.
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Adding Environment Assumptions. When analyzing open physical envi-
ronment, it is often that the exact functions of environment variables is un-
known while loose information is available such as the ranges of environment
inputs. The loose information can be easier modeled as constraints in TIC than
in Simulink, and we can hence check the open systems represented in Simulink
with the new constraints. For example, the range of the acceleration (the output
of block in Figure 1) is known as below: input port which denotes the
value when the brake is enabled has a range between -10 and 0 / 2;
input port which indicates the acceleration when the brake is disabled has a
range from 0 to 10 / 2. The loose information is thus expressed by
the following TIC predicate as well as the corresponding PVS specification.

InputAssump: LEMMA FORALL (v: vehicle):
fullset = AllS(LIFT(v‘plant‘on) >= LIFT(-10) AND

LIFT(v‘plant‘on) <= LIFT(0))
AND fullset = AllS(LIFT(v‘plant‘off) >= LIFT(0) AND

LIFT(v‘plant‘off) <= LIFT(10))

Checking the Approximation Requirement. The requirement concerns the
functional behavior. It involves the analysis of continuous dynamics (e.g., the
vehicle speed is the integration of the acceleration.), and it requires the checking
over types of intervals. The reasoning process is sketched below4:

1. We apply the rewriting rule, i.e., to reduce the type of intervals
to be checked. Namely, we only need to observe the behavior over the sample
intervals instead of all types of intervals. This is motivated by the discrete
components, i.e., block is discrete in the subsystem.

2. By the functionality of block (specified by the type defined
in Appendix A) and the connection within the system and its
subsystem, we need to compare the output value of subsystem at the
beginning of a sample interval and other values at time points in the
sample interval. The PVS mechanism allows to
replacing all time points by an arbitrarily fixed time point, so we can just
analyze the output values within a both-closed interval formed by two time
points, i.e., the beginning endpoint and the fixed time point.

3. Since variable of subsystem is the output of continuous block
, the analysis of continuous dynamics is needed. Based on the as-

sumption of the environment encoded early, we can apply a lemma from the
NASA PVS library to show that the difference of the speed at two specific
time points mentioned in Step 2 is between -10 and 10. The lemma named

relates the bound of the integration of a function and the
bound of the function over a closed interval.

4 The complete verification of both requirements in PVS is available at http://www.
comp.nus.edu.sg/~chenchun/brakecontrol

== ∀ : •
I = >−10 ≤ . . ≤ 0? ∧ I = >0 ≤ . . ≤ 10?
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Integral_bound: LEMMA a < b AND Integrable?(a,b,f) AND
(FORALL (x: Closed_interval(a,b)): m <= f(x) AND f(x) <= M )

IMPLIES m*(b-a) <= Integral(a,b,f) AND Integral(a,b,f) <= M*(b-a)

In the above analysis, the rewriting rules and the powerful proving capability of
PVS facilitate the verification, and the NASA PVS library enhances the capa-
bility of our tool to handle continuous dynamics.

Checking the Response Requirement. Verifying Simulink models against
timing requirements is non-trivial: the models usually involve continuous dynam-
ics; and the timing requirements often investigate system behavior over arbitrary
(infinite) intervals. Here we demonstrate how a typical timing requirement,

requirement of the brake control system can be validated.
The requirement involves all three subsystems, where subsystem acts

as a converter to pass the sensed speed to the brake. Note that the detector
updates its output only at sample time points. The verification thus becomes
nontrivial as each endpoint of an arbitrary interval may not be a sample time
point. We adopt the method to solve the difficulty. An in-
formal proof procedure is given below:

Firstly, we show that any arbitrary interval can be classified into one of
cases. The following lemma, states that given a positive
sample time ( ), the interval endpoints can be expressed in a uniform format.
The lemma has been checked correctly in PVS. Therefore we can group all
intervals into cases according to the values assigned to variables and
(either 0 or positive real number).
Endpoints_general_form: LEMMA FORALL (i: II):

EXISTS (m, p: nat), (n, q: nnreal): n < ST AND q < ST AND
ALPHA(i) = m * ST + n AND OMEGA(i) = p * ST + q;

Next, we check that the validity of the requirement in all cases. We
consider the case where the intervals consist of multiple sample intervals as the
basic case, as variables and are 0. Other types of intervals from the left three
cases can be formed by appending an interval which lasts less than one sample
time to the front or the back of a multiple sample intervals.

Lemma is defined specially for the basic case, and it
facilitates the analysis over other three cases. The lemma allows a proof over a
multiple sample intervals to be accomplished by reasoning about sub-proofs over
every constituent sample interval. To be specific, the lemma checks the conse-
quence relation between two predicates ( and ) which both are interval
operator free. Note that by the skolemization instantiation method of PVS, we
can only check the proof over one sample interval instead of every sample inter-
val, and hence reduce the complexity of proving the lemma correctness.

Mult_Sample_Intervals: LEMMA No_Term?(tp1) AND No_Term?(tp2) AND x < y =>
((FORALL (k: {n: nat | x <= n AND n < y}):
subset?( COS( tp1 AND LIFT(ALPHA) = LIFT(k) * LIFT(ST) AND

LIFT(OMEGA) = LIFT(k) * LIFT(ST)), COS(tp2)))
=> subset?( COS( tp1 AND LIFT(ALPHA) = LIFT(x) * LIFT(ST) AND

LIFT(OMEGA) = LIFT(y) * LIFT(ST)), COS(tp2)));
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We remark that the lemma is generic to be applied to other systems which
involve behavior. For example, it can check the

defined in Interval Temporal Logic [20] which is a linear-time temporal
logic with a discrete model of time.

The verification of the requirement is nontrivial: initial proof without
using auxiliary lemmas takes more than 1000 steps. The complexity can be
reduced by half after applying five proved lemmas: Four of five represent the
validity of the requirement over four cases mentioned above according to lemma

, and the fifth captures the behavior over the primitive
interval (i.e., the requirement holds everywhere in the interval of which the start-
ing point is a sample time point and the interval length is not longer than one
sample time). The reason for the decrease is that using lemmas we can save proof
steps in many repeated sub-proofs.

Besides the method, proof by exhaustion, used here, we have also applied
other powerful methods, such as and
to verify safety requirements of continuous and hybrid Simulink models.

7 Related Works

Recently, there are a number of works on reasoning about Simulink models.
Meenakshi et al. [19] used a model checker to analyze single-rate discrete
Simulink models. Tripakis et al. [29] applied synchronous programming language

to support multi-rate discrete Simulink models. Tiwari et al. [28] discretiz-
ing differential equations denoted by Simulink models into difference equations
to construct discrete transition systems. Different from theirs our approach can
directly represent and analysis continuous Simulink models. Gupta et al. [13]
developed a tool to increase the modeling capability of Simulink. The tool em-
phasized on checking functional behavior which is also the main concern of the
works mentioned previously, and hence timing analysis lack support. Jersak et
al. [16] translated Simulink models into SPI models for timing analysis, although
the translation abstracts the functional aspect. In contrast, our approach sup-
ports the validation over functional and timing behavior.

There were two preliminary works on supporting TIC using theorem provers.
Dawson and Goré [7] validated TIC reasoning rules in Isabelle/HOL [23]. But
the encoding of TIC semantics is incomplete, and it is hence difficult to support
verification of TIC in general. Cerone [2] described many axioms on interpreting
TIC expressions and predicates. However, the interpretation of the
operator differed from the original [10], and his work dealt with just five reasoning
rules. Our approach encoded the complete TIC semantics and handled all TIC
reasoning rules in PVS. Some researchers have investigated the machine-assistant
proof for a similar formal notation, Duration Calculus (DC) [31]. Skakkebaek and
Shankar [26] developed a proof checker upon PVS, and Heilmann [14] applied
Isabelle to support the mechanized proof. Chakravorty and Pandya [3] digitized
a subclass of DC (i.e. Interval Duration Calculus) into another subclass for just
discrete systems. As DC and its extensions [33, 32] describe systems behavior
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without explicit reference to absolute time, they are limited to represent the
constraints which are relevant to the values of interval endpoints. For example,
the function of Simulink library block relies on specific sample
time points. We remark that continuous behavior which is usually involved in
Simulink models lacks of support in above works on TIC and DCs. For example,
the function is either ignored or captured by a few axioms of limited
properties. This is different from ours, as our approach can handle the analysis
of continuous behavior.

8 Conclusion

In this paper, we extended our previous work which applied TIC to capture
functional and timing aspects of Simulink diagrams as well as preserve the hier-
archical structure. We developed a tool based on PVS to support the machine-
assisted proofs for the Simulink models represented in TIC. A strategy has been
implemented in Java to automatically transform the TIC specifications to PVS
specifications. The transformed PVS specifications follow closely the hierarchi-
cal structured denoted by TIC specifications. Hence we can relate the diagnostic
information of validation at the level of PVS to the level of Simulink.

We define a set of rewriting rules to simply the proving process and capture
special characteristics of Simulink modeling. With the support of the NASA
PVS library, we can directly analyze continuous dynamics which are usually
involved in Simulink models. Validation in our framework can be carried out
at the interval level with a high grade of automation. Open systems which are
not checkable in Simulink can be reasoned about by specifying assumptions in
TIC. Powerful mathematical proof methods (e.g. proof by induction) are useful
to verify timing requirements (of safety and bounded liveness) beyond Simulink.

Currently, we are enhancing our framework in several directions. One is to de-
velop graphical user interface (GUI) on top of the framework so as to facilitate
the usability of our framework: transformation or proving can be executed by
clicking buttons, and systems modeled in different notations can be shown in a
better layout with colors to highlight the correspondence. Another is to improve
the automation of the validation. Though verification of complex Simulink mod-
els is challenging, we are constructing more rewriting rules for special features
of specific domain (e.g. hybrid control systems, the primary domain of Simulink
modeling), and developing more PVS strategies to simplify the proving process.
Extending the framework to support real-time systems development [25] of other
formal notations is also one of our goals in the future.
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A PVS Library Types of the Brake Control System

ZOH(t: Time): TYPE = [# st: {temp: Time | temp > 0 and temp = t}, In1: Trace,
Out: {temp: Trace | COS(exNat(lambda (k: nat): LIFT(ALPHA) = LIFT(k) * LIFT(st) AND

LIFT(OMEGA) = (LIFT(k) + LIFT(1)) * LIFT(st)))
= COS(LIFT(temp) = (LIFT(In1) o LIFT(ALPHA)))} #]

Integrator(x: real): TYPE = [# IniVal: {temp: real | temp = x}, In1: Trace,
Out: {temp: Trace| temp(0) = IniVal AND

AllTrue((LIFT(temp) o LIFT(OMEGA)) = (LIFT(temp) o LIFT(ALPHA))
+ TICIntegral(LIFT(ALPHA), LIFT(OMEGA), In1)) AND

continuous(temp)} #]

Switch_G(t: Time, x: real): TYPE = [# st: {temp: Time | temp = t},
TH: {temp: real | temp = x}, In1, In2, In3: Trace,
Out: {temp: Trace |

IF st = 0 THEN AllS(LIFT(In2) > LIFT(TH)) = AllS(LIFT(temp) = LIFT(In1)) AND
AllS(LIFT(In2) <= LIFT(TH)) = AllS(LIFT(temp) = LIFT(In3))

ELSE COS(exNat(lambda (k: nat): LIFT(ALPHA) = LIFT(k) * LIFT(st) AND
LIFT(OMEGA) = (LIFT(k) + LIFT(1)) * LIFT(st)))

= COS( ((LIFT(In2) o LIFT(ALPHA)) > LIFT(TH) =>
LIFT(temp) = (LIFT(In1) o LIFT(ALPHA)))

AND ((LIFT(In2) o LIFT(ALPHA)) <= LIFT(TH) =>
LIFT(temp) = (LIFT(In3) o LIFT(ALPHA))))

ENDIF} #];
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Relation_GE(t: Time): TYPE = [# st: {temp: Time | temp = t}, In1, In2: Trace,
Out: {temp: BTrace |

IF st = 0 THEN AllS(LIFT(In1) >= LIFT(In2)) = AllS(LIFT(temp) = LIFT(1)) AND
AllS(LIFT(In1) < LIFT(In2)) = AllS(LIFT(temp) = LIFT(0))

ELSE COS(exNat(lambda (k: nat): LIFT(ALPHA) = LIFT(k) * LIFT(st) AND
LIFT(OMEGA) = (LIFT(k) + LIFT(1)) * LIFT(st)))

= COS( ((LIFT(In1) o LIFT(ALPHA)) >= (LIFT(In2) o LIFT(ALPHA))=>
LIFT(temp) = LIFT(1))
AND
((LIFT(In1) o LIFT(ALPHA)) < (LIFT(In2) o LIFT(ALPHA)) =>
LIFT(temp) = LIFT(0)))

ENDIF} #];

InitCond(t: Time, x: real): TYPE = [# st: {temp: Time | temp = t},
IniVal: {temp: real | temp = x}, In1: Trace,
Out: {temp: Trace |

IF st = 0 THEN subset?(AllS(LIFT(ALPHA) = LIFT(0)),
AllS((LIFT(temp) o LIFT(0)) = LIFT(IniVal)))

AND subset?(AllS(LIFT(ALPHA) > LIFT(0)),
AllS(LIFT(temp) = LIFT(In1)))

ELSE COS(LIFT(ALPHA) = LIFT(0) AND LIFT(OMEGA) = LIFT(st)) =
COS(LIFT(temp) = LIFT(IniVal))

AND COS(exNat1(lambda (k: posint): LIFT(ALPHA) = LIFT(k) * LIFT(st) AND
LIFT(OMEGA) = (LIFT(k) + LIFT(1)) * LIFT(st)))

= COS(LIFT(temp) = (LIFT(In1) o LIFT(ALPHA)))
ENDIF} #];

Constant(x: real): TYPE = [# IniVal: {IniVal: real | IniVal = x},
Out: {temp: Trace| AllTrue(LIFT(temp) = LIFT(IniVal))} #];

B Transformed PVS Specifications of the Brake Control
System

For subsystem brake:

vehicle_brake_max: TYPE = Constant(50);
vehicle_brake_check: TYPE = Relation_GE(0);
vehicle_brake_IC: TYPE = InitCond(0, 0);
vehicle_brake: TYPE = {temp: [# speedin, status: Trace,

max: vehicle_brake_max, check: vehicle_brake_check, IC: vehicle_brake_IC #] |
fullset = AllS(LIFT(temp‘speedin) = LIFT(temp‘check‘In1)) AND
fullset = AllS(LIFT(temp‘max‘Out) = LIFT(temp‘check‘In2)) AND
fullset = AllS(LIFT(temp‘check‘Out) = LIFT(temp‘IC‘In1)) AND
fullset = AllS(LIFT(temp‘IC‘Out) = LIFT(temp‘status))}

For subsystem sensor:

vehicle_sensor_detector: TYPE = ZOH(1);
vehicle_sensor: TYPE = {temp: [# speedS, speedR: Trace,

detector: vehicle_sensor_detector #] |
fullset = AllS(LIFT(temp‘speedR) = LIFT(temp‘detector‘In1)) AND
fullset = AllS(LIFT(temp‘detector‘Out) = LIFT(temp‘speedS))}

For subsystem plant:

vehicle_plant_Integration: TYPE = Integrator(0);
vehicle_plant_Switch: TYPE = Switch_G(0, 0);
vehicle_plant: TYPE = {temp: [# on, off, command, speed: Trace,

Switch: vehicle_plant_Switch, Integration: vehicle_plant_Integration #] |
fullset = AllS(LIFT(temp‘on) = LIFT(temp‘Switch‘In1)) AND
fullset = AllS(LIFT(temp‘command) = LIFT(temp‘Switch‘In2)) AND
fullset = AllS(LIFT(temp‘off) = LIFT(temp‘Switch‘In3)) AND
fullset = AllS(LIFT(temp‘Switch‘Out) = LIFT(temp‘Integration‘In1)) AND
fullset = AllS(LIFT(temp‘Integration‘Out) = LIFT(temp‘speed))}

For whole system vehicle:

vehicle: TYPE = { temp: [# plant: vehicle_plant, sensor: vehicle_sensor,
brake: vehicle_brake #] |

fullset = AllS(LIFT(temp‘plant‘speed) = LIFT(temp‘sensor‘speedR)) AND
fullset = AllS(LIFT(temp‘sensor‘speedS) = LIFT(temp‘brake‘speedin)) AND
fullset = AllS(LIFT(temp‘brake‘status) = LIFT(temp‘plant‘command))}
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Abstract. Vesta is a push-button tool for checking the correct inte-
gration of a component in an environment, for component-based timed
systems. By correct integration, we mean that the local properties of the
component are preserved when this component is merged into an envi-
ronment. This correctness is checked by means of a so-called divergence-
sensitive and stability-respecting timed τ -simulation, ensuring the
preservation of all linear timed properties expressed in the logical for-
malism Mitl (Metric Interval Temporal Logic), as well as strong non-
zenoness and deadlock-freedom. The development of the tool was guided
by the architecture of the Open-Kronos tool. This allows, as additional
feature, an easy connection of the models considered in Vesta to the
Open-Caesar verification platform, and to the Open-Kronos tool.
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1 Motivations

Model-checking is an attractive automatic verification method to ensure the
correctness of models of systems. However, it is well-known that this method
has difficulties to handle large-sized models, in particular when treating models
involving timing constraints. Component-based modeling is a method often used
to model timed systems. First, it consists in decomposing the system into a set
of sub-systems, called components. Next, each component is modeled and the
interactions between them are specified. The complete model is obtained by
putting together all these components with respect to their interactions. With
such a modeling, two kinds of properties can be checked to ensure the correctness
of the model: global properties concerning the behavior of the complete model,
and local properties concerning the behavior of one or some components. For
both kind of properties, verification by model-checking is usually performed on
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the complete model, and thus can become difficult if the size of the model is
too large.

We propose to use an alternative method for the verification of local proper-
ties of the components: integration of components. Integration of components is
an incremental development method. It consists, for a local property L of a com-
ponent C, in checking L only on C. Model-checking is here applicable due to the
generally small size of the components. Obviously, L has to be preserved when C
is integrated in an environment E. When using the classic parallel composition
operator || between components, the preservation of local safety properties of C
on C‖E is ensured for free. This is not the case for local liveness properties.

Simulation relations are a way to ensure preservation of properties. They have
already been used in the untimed case for this purpose. For instance, [1] defines
the refinement of transition systems as a kind of τ -simulation, which ensures the
preservation of Ltl properties. In the timed case, a time-abstracting simulation
is defined in [2], but does not preserve timed properties. Timed simulation is
defined in [3], but does not consider the possible internal activity of the systems
(internal activity is a main barrier for the preservation of liveness properties). A
timed ready simulation is defined in [4], but does not allow to preserve liveness
properties. To our knowledge, there is no simulation relation for timed systems,
which handles internal activity of the systems, and also preserves liveness prop-
erties. Therefore, we defined in [5] a

τ for timed components expressed as timed automata [6]
and proved it can ensure the preservation of all linear timed properties which can
be expressed in the logical formalism Mitl [7], thus in particular linear liveness
and bounded liveness properties. Strong non-zenoness and deadlock-freedom are
also preserved by the relation. That is, if C simulates C‖E with respect to this
relation, all linear local timed properties of C are preserved on C||E.

The tool Vesta (Verification of Simulations for Timed Automata) was devel-
oped to automate the verification of the DS timed τ -simulation. More precisely,
Vesta considers component-based timed systems, developed incrementally by
integration of components, where each component is modeled as a timed au-
tomaton. It allows to check that local properties of a component (or group of
components) of the system are preserved during its integration with other com-
ponents of this system. The architecture of the tool was inspired by the one
of the Open-Kronos tool [8]. Thus, as Open-Kronos, Vesta benefits of li-
braries which provide an efficient symbolic representation for networks of timed
automata. This choice also allows to connect the models considered in Vesta to
Open-Kronos, and also to the verification platform Open-Caesar[9].

The structure of the paper is the following. In section 2, we recall some back-
ground on timed systems, i.e., on the formalisms which are used in Vesta for
the modeling of timed systems and their properties. This section also intro-
duces the divergence-sensitive and stability-respecting timed τ -simulation, and
its preservation abilities. Section 3 presents the tool Vesta: its architecture, the
algorithms which are implemented and its graphical user interface. In section 4,
we illustrate the interest of Vesta by using it to verify incrementally properties
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of a case study concerning a production cell. Section 5 presents some additional
features of the tool. Finally, section 6 contains the conclusion and exhibits some
future developments for Vesta.

2 Incremental Verification of Timed Systems

We present here the preliminary notions that we consider concerning component-
based timed systems. First, we introduce timed automata which we use to model
timed components, and the composition operator we use to assemble these com-
ponents. Then, we present the simulation relation we defined for timed au-
tomata and recall previous results concerning the properties that it preserves
during incremental development, and in particular, during integration of
components.

2.1 Modeling Timed Systems

Since their introduction in [6], timed automata are amongst the most studied
models for timed systems. They are finite automata with real-valued variables
called clocks, to model time elapsing.

Clock valuations and clock constraints. Let X be a set of clocks. A clock
valuation over X is a mapping v : X → R

+, associating to each clock in X
a value in R

+. We note 0 the valuation assigning the value 0 to each clock in
X . Given a clock valuation v and t ∈ R

+, v + t is the valuation obtained by
adding t to the value of each clock in v. Given Y ⊆ X , the dimension-restricting
projection of v on Y , written v�Y , is the valuation over Y only containing the
values in v of clocks in Y . The reset in v of the clocks in Y , written [Y := 0]v, is
the valuation in which all clocks in Y are reset to zero, while the value of other
clocks remains unchanged.

A clock constraint over X is a set of clock valuations over X . The set Cdf (X)
of diagonal-free clock constraints1 over X is defined by the following grammar:

g ::= x ∼ c | g ∧ g | true

where x ∈ X , c ∈ N and ∼∈ {<, ≤, =, ≥, >}. Diagonal-free clock constraints do
not allow comparison between clocks such as x − y ∼ c. Note that a clock con-
straint defines a convex X-polyhedron. We note zero the X-polyhedron defined
by

∧
x∈X v(x) = 0. The dimension-restricting projection and reset operation

can be directly extended to clock constraints. The backward diagonal projec-
tion of the X-polyhedron ζ defines a X-polyhedron ↙ζ such that v′ ∈↙ζ if
∃t ∈ R

+ ·v′+ t ∈ ζ. The forward diagonal projection of ζ defines a X-polyhedron
↗ζ such that v′ ∈↗ζ if ∃t ∈ R

+ · v′ − t ∈ ζ. Given c ∈ N, the extrapolation of ζ
w.r.t. c, written Approxc(ζ), is the smallest polyhedron ζ′ ⊇ ζ defined intuitively

1 We restrict ourselves to this kind of clocks constraints to ensure the correctness of
the construction of the symbolic representation of TA [10].
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as follows: lower bounds of ζ greater than c are replaced by c, and upper bounds
greater than c are ignored. All these operations preserve convexity.

Timed Automata. Let Props be a set of atomic propositions. A timed au-
tomaton (TA) over is a tuple A =〈 , 0, Σ, , , Invar, 〉 where Q is a
finite set of locations, q0 ∈ Q is the initial location, Σ is a finite alphabet of
names of actions, X is a finite set of clocks, T ⊆ Q×Cdf (X)×Σ ×2X ×Q is a fi-
nite set of edges, Invar is a function mapping to each location a clock constraint
called its invariant and L is a labelling function mapping to each location a set
of atomic propositions over . Each edge is a tuple e = (q, g, a, r, q′) where
q and q′ are the source and target locations, g is a clock constraint defining the
guard of the edge, a is the label of the edge and r is the set of clocks to be reset
by the edge. We use the notation label(e) to denote the label a of the edge e.
Examples of TA can be found in section 4.

The semantics of a TA A is an infinite graph G(A) in which states
are pairs (q, v), where q is a location of A and v a clock valuation over the clocks
of A, such that v ∈ Invar(q). The transitions of this graph can be either discrete
or time transitions. Consider a state (q, v). Given an edge e = (q, g, a, r, q′) of A,
(q, v) e→ (q′, v′) (where v′ = [r := 0]v) is a discrete transition in G(A) if v ∈ g
and v′ ∈ Invar(q′). We call (q′, v′) a discrete successor of (q, v). Time transitions
have the form (q, v) t→ (q, v + t) where t ∈ R

+ and v + t ∈ Invar(q). We say
that (q, v + t) is a time successor of (q, v).

Due to the dense nature of time, the semantic graph of
a TA has an infinite number of states. To perform algorithmic analysis for TA,
a finite representation of this state space is needed. The symbolic representation
currently used is based on the notion of zones, and leads to a symbolic graph
called . A zone (q, ζ) is a set of (semantic) states of a TA, such
that they have the same discrete part q and the set of their valuations forms a
convex polyhedron ζ. Given a zone z = (q, ζ), we note disc(z) the discrete part
q of z, and poly(z) its polyhedron ζ. The transitions of a simulation graph are
labelled by discrete actions (intuitively time elapses inside zones, and thus there
are no transitions labelled by time delays). The following operations allow to
compute the transitions of a simulation graph: time-succ(z) and time-pred(z)
represent respectively the set of time successors and predecessors of some state
in z, while disc-succ(e, z) and disc-pred(e, z) represent the set of discrete
successors of some state in z, by taking transition e. The operation post(e, z, c)2

computes the successor zone of z by taking transition e, with respect to a con-
stant c ∈ N (in general, this constant is the greater constant appearing in the
constraints of the TA), while the operation pre(e, z) computes the predecessor
zone of z by transition e.

2 The operation post is used to compute the simulation graph. The use of the operator
Approxc in its definition ensures the termination of the construction of the simulation
graph. More details can be found in [8].
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time-succ(z)
def
= {s′ | ∃s ∈ z, t ∈ R

+ s
t→ s′}

time-pred(z)
def
= {s | ∃s′ ∈ z, t ∈ R

+ · s
t→ s′}

disc-succ(e, z)
def
= {s′ | ∃s ∈ z · s

e→ s′}
disc-pred(e, z)

def
= {s | ∃s′ ∈ z · s

e→ s′}
post(e, z, c)

def
= Approxc(time-succ(disc-succ(e, z)))

pre(e, z)
def
= disc-pred(e,time-pred(z))

Consider a TA A =〈 , 0, Σ, , , Invar, 〉 and c ∈ N a constant greater
or equal to the greatest constant appearing in a constraint of A. The sim-
ulation graph of A with respect to c, written SG(A, c), is a tuple 〈 , 0, Σ,
E〉 where Z is the finite set of states of the graph (i.e., a set of zones) and
z0 = (q0, ↗zero ∩ Invar(q0)) is the initial zone. The set E ⊆ Z × T × Z
of transitions is defined as follows: given a zone z and an edge e ∈ T , if
z′ = post(e, z, c) �= ∅, then z′ is a zone of the graph and z

e→ z′ is a transi-
tion of the graph.

We consider timed systems modeled
in a compositional framework. Each component is modeled as a TA, and com-
ponents are put together with some parallel composition operator. We consider
here the classic parallel composition operator for TA. This operator, written ‖,
operates between TA with disjoint sets of clocks. It is defined as a synchronized
product where synchronizations are done on actions with identical labels. Other
actions interleave and time elapses synchronously between all the components.
Formally, let us consider two TA Ai = 〈 i, 0i

, Σi, i, i, Invari, i〉 for i = 1, 2,
such that X1 ∩ X2 = ∅. The parallel composition of A1 and A2, written A1‖A2,
creates a new TA which set of clocks is X1 ∪ X2 and which labels are Σ1 ∪ Σ2.
The set Q of locations consists of pairs (q1, q2) where q1 ∈ Q1 and q2 ∈ Q2.
The initial location is the pair (q01 , q02). The invariant of a location (q1, q2) is
Invar(q1)∧Invar(q2), and its label is L(q1)∪L(q2). The set T of edges is defined
by the following rules:

Interleaving: (q1,q2)∈Q , (q1,g1,a,r1,q′
1) ∈ T1 , a�∈Σ2

((q1,q2),g1,a,r1,(q′
1,q2)) ∈ T

(q1,q2)∈Q , (q2,g2,a,r2,q′
2) ∈ T2 , a�∈Σ1

((q1,q2),g2,a,r2,(q1,q′
2)) ∈ T

Synchronization: (q1,q2)∈Q, (q1,g1,a,r1,q′
1) ∈ T1 , (q2,g2,a,r2,q′

2) ∈ T2
((q1,q2),g1∧g2,a,r1∪r2,(q′

1,q′
2)) ∈ T

2.2 Simulation Relations to Preserve Properties

Recall that we are interested in developing incrementally component-based timed
systems, by integration of components. The major issue when using such a method
is to ensure preservation of already checked local properties of a component, when
integrating it in an environment. We defined in [5] a divergence-sensitive and
stability-respecting (DS) timed τ -simulation, which ensures the preservation of
linear timed properties, in particular safety, liveness and bounded-liveness ones.
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Consider a component C to be integrated in an environment E, using the
parallel composition operator ‖, where each component is modeled as a timed
automaton. This integration leads to a composite automaton C‖E, which con-
tains new clocks and new actions comparing to C. New clocks are the clocks
of E, and new actions are internal actions of E which do not synchronize with
an action of C. In C‖E, we consider such actions as being non-observable and
rename them by τ . The DS timed τ -simulation is defined between the traces
of C||E and C and is characterized by (i) if C||E can make an action of C
after some amount of time, then C could also make this action after the same
amount of time (clauses 1 and 2 of Definition 1), (ii) internal actions of the
environment E (called τ) stutter (clause 3 of Definition 1). Note that this defini-
tion actually corresponds to the classic notion of τ -simulation, that we extend to
handle time. We also add two criteria to the definition of this simulation, namely
divergence-sensitivity and stability-respect. Divergence-sensitivity ensures that
internal actions τ of E will not take the control forever, and stability-respect
guarantees that the integration of C in E will not create new deadlocks.

In order to avoid too many definitions, we remained concise in the presentation
of the simulation and focus here directly on its symbolic formal definition, which
is the one implemented in the tool Vesta. More details, as well as the definition
at the semantic level, can be found in [5]. However, the following technical points
used in Definition 1 must be clarified. The predicate free, used in the clause

, was defined in [8]. Informally, given a location q of a timed
automaton, free(q) is the set of all valuations (of states with q as discrete part)
from which a discrete transition can be taken after some time elapsed. The
formal definition is: free(q) =

⋃
e=(q,g,a,r,q′)∈T ↙ (g ∩ ([r := 0]Invar(q′))).The

predicate src val, used in the clause is defined formally as
follows: src val(z, e, z′) = poly(pre(e, z′) ∩ z). It represents the valuations of
the subset of states in z which lead to states in the zone z′ by taking transition
e and letting time elapse.

Definition 1 (Symbolic DS timed τ-simulation). SG1 = 〈 1, 01 ,
Σ1, E1〉 SG2 = 〈 2, 02 , Σ1 ∪ {τ}, E2〉

A1 A2 τ Zds

Z2 × Z1 z2Zdsz1

z2
e2→ z′2 ∧ label(e2) ∈ Σ1 ⇒ ∃z′1 · (z1

e1→ z′1 ∧ label(e1) = label(e2) ∧
src val(z2, e2, z

′
2)�X1 ⊆ src val(z1, e1, z

′
1) ∧ z′2 Zds z′1)

poly(z2)�X1 ⊆ poly(z1)

τ z2
e2→ z′2 ∧ label(e2) = τ ⇒ z′2 Zds z1

(poly(z2)\free(disc(z2))�X1 ⊆ poly(z1)\free(disc(z1))

SG2 τ
τ τ
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We extend this relation to simulation graphs. Consider two simulation graphs
SG1 and SG2, which initial zones are respectively z01 and z02 . We say that SG1
simulates SG2 with respect to Zds, written SG2 �Zds

SG1, if z02Zdsz01 .

Preservation abilities. The DS timed τ -simulation preserves all properties
which can be expressed with the logic Mitl (Metric Interval Temporal Logic)
[7], as well as strong non-zenoness and deadlock-freedom. Formal proofs can be
found in [5]. Mitl is a linear timed logic, which can be viewed as the timed
extension of the linear (untimed) logic Ltl [11] and in which temporal operators
are constrained by a time interval. Strong non-zenoness is a specific essential
property of timed systems. A TA is said to be strongly non-zeno if time can
diverge along each path of its semantic graph. Note that the timed τ -simulation,
without divergence-sensitivity and stability-respect criteria, preserves all safety
properties.

Composability. Composability is an essential property for integration of com-
ponents. Indeed, it expresses that a component automatically simulates its inte-
gration with other ones. Formally, given components C and E, it means that C
simulates its integration with E, i.e., the composition C‖E. Thus, composability
can ensure the preservation of local properties of C for free (properties preserved
depends on the notion of simulation which is considered).
The composability property is guaranteed with the timed τ -simulation (without
divergence-sensitivity and stability-respect), when integration is achieved with
the classic parallel omposition operator. This implies that safety properties are
preserved for free during this integration process. However, this is not the case
when considering the divergence-sensitivity and stability-respect criteria. Com-
posability does not automatically hold. To ensure this property, the DS timed
τ -simulation has to be checked algorithmically. Therefore, we implemented this
verification in a tool named Vesta.

3 The Tool Vesta

Vesta considers component-based timed models consisting of a set of compo-
nents (modeled as timed automata) which interact using the classic parallel
composition operator ‖. Therefore, it provides graphical and textual editors to
capture these elements. Then, Vesta can automatically generate composite sys-
tems, made up by parallel composition of chosen components with respect to
the given interactions.

The main feature of Vesta is to check if local properties of a component are
preserved when it is merged into an environment, by checking if this component
simulates the composite system obtained by this merging. The simulation can
be checked either in a “general way”, i.e., to ensure preservation of all the local
properties of a component, or “partially”, i.e., for some specific given properties.
This partial verification is presented in details in section 5.1. In both cases, if the
simulation is not checked successfully, the tool reports the error found as well as
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a graphical diagnostic consisting of the trace of the composite system which is
not simulated by any traces of the component, and the trace of the component
it had to correspond to.

3.1 Architecture of Vesta

Vesta was developed using both C and Java languages. Java is used for the
graphical user interface, which is described in the next section, and C for the
core of the tool, which is described below. The architecture of Vesta is shown
in Fig. 1. The models considered consist of three kinds of elements: the set of
components (saved in .aut files) and possibly their local properties (prop) in the
case of partial verification, the types of the variables used in the components and
the interactions between components (sync). From this modeling, Vesta can au-
tomatically generate composite systems by using the classic parallel composition
operator between the components (.exp files). Compositions can also have local
properties.

To get an efficient representation of this model, Vesta is based on SMI3 (Sym-
bolic Model Interface). SMI is a powerful library providing efficient representa-
tion for finite-state models, by building an equivalent symbolic representation
using decision diagrams. Note that our choice was guided by the functioning of
the Open-Kronos tool [8], which is already based on SMI.
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.aut
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prop
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.exp ...
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verif. modulesOPEN−CAESAR library

DBM library C compiler
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simul.a profounder.a

Yes / No answer +
Graphical representation

of the diagnostic

Yes / No answer +
Diagnostic

profounder
(modified)

Fig. 1. Structure of Vesta

The core of the tool consists of two modules: translator and simul, taking
as input two components, which can be composite systems (.exp files): one cor-
responding to a component C to be integrated in an environment E, and the
other to the composite system C||E obtained after having integrated C in E.

3 http://www-verimag.imag.fr/~async/SMI/index.shtml

http://www-verimag.imag.fr/~async/SMI/index.shtml
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translator creates a file .c which implements data structures and functions to
generate a symbolic graph (the so-called simulation graph) for each input compo-
nent. The way data structures and functions are created for C||E allows it to be
connected to the different modules of Open-Caesar. When this file is created,
it is compiled and linked to Open-Caesar and Dbm libraries (Dbm libraries
allow to manipulate the timing constraints of the model). Then, an executable
simul is created and run to check the stability-respecting timed τ -simulation.
The divergence-sensitivity part is checked thanks to an adaptation of an algo-
rithm of the module Profounder [12] of Open-Kronos. This algorithm, as
well as the one implemented in simul, is presented in the next section.

3.2 Algorithms

The DS timed τ -simulation is checked in two phases. The divergence-sensitive
part (i.e., clause 5 of Def. 1) is checked independently with an adaptation of an
algorithm of the module Profounder, which is part of the Open-Kronos tool.
Then, the stability-respecting timed τ -simulation is checked in the module simul
(i.e., clauses 1 to 4 of Def. 1). Thus, Vesta uses two main algorithms to check
the DS timed τ -simulation: one for divergence-sensitivity, and the other for the
stability-respecting timed τ -simulation.

Adaptation of the module Profounder to check divergence-sensitivity.
For this verification, we use the algorithm called (

) defined in [8,12]. This algorithm was first designed to test the emptiness
of a timed Büchi automaton, in the case of a persistent acceptance condition (i.e.,
from one point on, the automaton only visits accepting states). The algorithm
thus consists in detecting non-zeno cycles in the automaton such that they only
contain accepting states. For this, it visits all the paths of the simulation graph of
the automaton, and puts them in a stack. The exploration of a path stops when
reaching a state which is already in the stack (this means that an elementary
cycle is found). It only remains to check that the cycle is non-zeno and only
contains accepting states.

Algorithm 1 presents the adaptation of this algorithm to detect non-zeno τ -
cycles, instead of non-zeno accepting cycles, in a simulation graph SG =〈 , 0,
Σ, E〉, where the alphabet Σ contains the action τ . When a cycle is detected,
we test if it is non-zeno and if all the transitions of the cycle are labelled by
τ . The procedures Top, Push and Pop are classic operations on stacks, allowing
to get the top of a stack, and to add and remove an element in the stack. The
procedure Part(Stack, e) gets all the elements of the stack Stack added after
the element e. The procedure Next(Stack, e) gets the element following e in
Stack (i.e. the element added after e). The procedure non zeno is defined as
in [8] and performs a syntactic test to check if a path is non-zeno. This test
consists in checking that, in the cycle, there exists a clock x which is reset at
a point i of the cycle, and that x has a lower bound at a point j of the cycle.
Intuitively, this allows to ensure that at least one time unit elapses at each loop
in the cycle.
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Algorithm 1. A full DFS to check divergence-sensitivity

divergence sensitivity(SG){
Stack := {z0}
return non zeno τ cycles()

}

non zeno τ cycles(){
z := top(Stack)
cycle := false

while ∃ z
e→ z′ ∈ E and cycle = false

if z′ �∈ Stack then
Push(z′, Stack)
cycle := non zeno τ cycles()
Pop(Stack)

else

if ∀z1 ∈ Part(Stack, z′), ∃z1 τ→ Next(Stack, z1) ∈ E
and non zeno(Part(Stack, z′)) then

return true
end while

return cycle
}

Note that a classic DFS is generally not sufficient to detect non-zeno τ -cycles.
Indeed, this search can miss cycles. For instance, consider a simulation graph
with four states (and, to simplify only τ -transitions), such that there is a zeno
τ -cycle visiting the following states: 1 → 2 → 3 → 1, and a non-zeno one
1 → 4 → 2 → 3 → 1. A simple DFS would explore the path 1 → 2 → 3 → 1 and
find this zeno cycle, which is not retained for divergence-sensitivity checking.
Then, the search would explore the path 1 → 4 → 2, and stop since the state 2
has already been visited. Thus, the non-zeno cycle is missed. The full DFS would
not have missed this cycle since it explores all cycles. However, the drawback
of this algorithm is its worst-case complexity: exponential in the size of the
simulation graph [12]. The problem exposed above with a simple DFS comes
from zeno cycles. For strongly non-zeno simulation graphs (i.e., which do not
contain any zeno path), a simple DFS (linear in the size of the graph) is sufficient.

Checking the stability-respecting timed τ -simulation in the module
simul. Algorithm 2 checks the symbolic stability-respecting timed τ -simulation
between two simulation graphs SG1 =〈 1, 01 , Σ1, E1〉, with set of clocks X1, and
SG2 =〈 2, 02 , Σ1∪{τ}, E2〉. Formally, it checks that SG2 �Zds

SG1, without the
divergence-sensitivity clause. This verification is in O((|Z1|+|E1|)×(|Z2|+|E2|)).
The algorithm is cut in four parts, the main one being verification Zds. A
procedure verif Z and stability respect performs a joint depth-first search
of SG2 and SG1, and at each step of the search, it checks clauses 1 to 4 of Def. 1.
A set Visited records the already visited pairs of zones in relation, and a stack
Stack contains the currently checked pairs of zones. This stack also allows to
return diagnostics when the verification fails.
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Algorithm 2. Verification of the symbolic ds timed τ -simulation

verification Zds(SG2, SG1){
if (divergence sensitivity(SG2)) then

return false
else

Stack := {(z02 , z01)}
Visited := ∅
return verif Z and stability respect()

}

verif Z and stability respect(){
simul ok := true
(z2, z1) := top(Stack)
if delays equality(z2 , z1) ∧ stab respect(z2, z1) then

while ∃ a transition z2
e2→ z′

2 in E2 and simul ok = true
if label(e2) ∈ Σ1 then

if ∃z1 e1→ z′
1 s.t. label(e1) = label(e2) ∧

strict simulation(z1 , e1, z
′
1, z2, e2, z

′
2) = true then

if (z′
2, z

′
1) �∈ Visited and (z′

2, z
′
1) �∈ Stack

Push((z′
2, z

′
1), Stack)

simul ok := verif Z and stability respect()
Pop(Stack)

else
return false

else
if (z′

2, z1) �∈ Visited and (z′
2, z1) �∈ Stack then

Push((z′
2, z1), Stack)

simul ok := verif Z and stability respect()
Pop(Stack)

end while
else

return false

if simul ok = true then Visited := Visited ∪ {(z2, z1)}
return simul ok

}

strict simulation (z1, e1, z
′
1, z2, e2, z

′
2){

return (src val(z2, e2, z
′
2)�X1 ⊆ src val(z1, e1, z

′
1))

}

stab respect (z2, z1){
return (poly(z2)\free(disc(z2)))�X1 ⊆ poly(z1)\free(disc(z1))

}

delays equality (z2, z1){
return (poly(z2)�X1 ⊆ poly(z1))

}



VeSTA: A Tool to Verify the Correct Integration of a Component 127

3.3 Graphical User Interface

The GUI of Vesta is shown in Fig. 2. The tree on the left is an explorer to
navigate between the elements of the model, the generated assembling of com-
ponents, and the results of already checked preservations (i.e., simulations). The
bottom-right part is a log window, displaying informations such as syntax errors
or summarized results of preservation checkings. The top-right part is the main
element of the GUI, with five tabs:

– the tab displays the types of the variables used in the model,
– the tab shows the interactions between the components,
– the tab contains all the components of the model,
– the tab contains the assembling of components,
– the tab contains results for each already checked preservation.

Fig. 2. Graphical User Interface of Vesta

The menubar and toolbar provide buttons to treat a new model. They al-
low to create new components, import components from another model, choose
components to put together and automatically create the assembling, and check
simulations. The interactions between components can be created graphically via
the tab. Components (i.e. timed automata4) are described through
a textual editors, with a simple language which consists in giving the invariant

4 Actually, Vesta considers extended timed automata, which can be equiped with
boolean, bounded-integer and enumerative-type variables. However, the use of these
variables is restricted to a local use for the components (no shared variables).
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of each location, and the transitions of the component (name, source and target
location, guard, reset and, possibly, update of some variables).

4 Vesta in Practice: Incremental Verification of a
Production Cell

The tool Vesta allowed us to show the interest of incremental development by
integration of components, formalized by the DS timed τ -simulation, in compar-
ison to a direct verification on the complete model of the system. We present
in this section a case study concerning a production cell5. This case study was
developed by FZI (the Research Center for Information Technologies, in Karl-
sruhe) as part of the Korso project. The goal was to study the impact of the
use of formal methods when treating industrial applications. Thus, this case
study was treated in about thirty different formalisms. We treated it with timed
automata, as it was in [14].

Presentation of the case study. The production cell contains six devices, as
shown in Fig. 3: a feed-belt equipped with a sensor, a deposit-belt, an elevating-
rotary table, a two-arms robot and a press. It also contains one or several pieces
to be treated. Our modeling of the cell follows the one of [14].
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table
feed-belt

arm A

robot arm B

deposit-belt

sensor

press

Fig. 3. The Production Cell Example

Description of the production cell. A simplified functioning of the cell is
the following. Pieces arrive on the feed-belt. The sensor detects when a piece
is introduced in the cell, and sends a message to the robot to inform that the
piece is going to be available. When it arrives at the end of the belt, it is trans-
ferred to the table, which goes up and turns until being in an adequate position
to give to the robot the possibility to take it. The robot turns 90◦ so that its
arm A can pick the piece up, and then puts it in the press which processes it.
When the treatment is finished, the piece is taken by the arm B of the robot,
which transports it to the deposit-belt where it is evacuated. The behavior of
each device depends on timing constraints and is modeled by a timed automaton.
In the sequel, we focus particularly on local properties concerning the robot, and

5 The detailed results for this case study, as well as other experimentations, can be
found in [13].
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Fig. 4. Timed Automaton of the robot
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Fig. 5. Timed Automaton of the press

the assembling robot‖press. Fig. 4 and 5 show respectively the timed automata
modeling the robot and the press.

Some local properties. We identified seven main properties of the robot: two
safety properties (called P1 and P2), two liveness (response) properties (P3 and
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P4) and three bounded liveness properties (P5, P6 and P7)6. We also identified
a main liveness property (P8) ensuring the correct functioning of the robot and
the press when they are put together. We express these properties in Mitl

7.
Our objective is to compare direct verification and incremental verification

by integration of components, for Mitl properties. The first method consists
in assembling all the components, and then to check properties P1 to P8 on
the complete model obtained. The second method consists in checking these
properties locally only on the components they concern, and then to ensure
they are preserved when these components are integrated in their environment.
That is, properties P1 to P7 are checked on the robot component, and property
P8 on the assembling robot‖press. Then, the preservation of P1 to P7 must be
ensured when the robot component is integrated with the press component. The
preservation of P8 must be guaranteed when this assembling is integrated with
all the other components of the system. In this way, each locally checked property
will hold on the complete model, since preservation is checked thanks to the DS
timed τ -simulation, which is a preorder, and thus, is a transitive relation.

Experimental results for the production cell. First note that Vesta is
not a model-checker. Thus to check the properties locally and globally, we used
the model-checker Kronos[15]. Kronos is a verification tool for timed sys-
tems which performs Tctl model-checking [16]. Tctl is a logical formalism
that allows to express branching-time properties. Even if we do not consider
branching-time properties, we can use it for this example since the Mitl prop-
erties we consider can also be expressed in Tctl

8. It turns out that the local
and global verification of all the properties, achieved with Kronos, succeeded.
Vesta allows to ensure the preservation of locally established properties. There-
fore, it is first used to check that the local properties of the robot are preserved
when it is combined with the press, and then that the property of the assembling
robot‖press is preserved when these components are integrated with the rest of
the components of the cell and one piece. In both cases, the verification suc-
ceeded, and thus, the preservation of the Mitl properties P1 to P8 is guaranteed
(as well as the preservation of strong non-zenoness and deadlock-freedom).

Fig. 6 presents the results obtained on the example, by comparing incremental
verification by integration of components to direct verification. We compared the
time consumed to perform this direct verification on the whole model (column
“Global Verification”) and the time spent to achieve incremental verification, i.e.,
local verification and preservation checking. It turns out that, even if the com-
putation times are still acceptable, direct verification consumes much more time
(almost 20 seconds) than incremental verification when preservation is achieved
with Vesta (less than one second).

6 Under some conditions, safety properties express that something bad will not happen,
liveness ones that something expected will eventually happen and bounded liveness
ones that something expected will eventually happen within some bounded delay.

7 The detailed expressions of these properties can be found in [13].
8 To our knowledge, there is no tool performing Mitl model-checking.
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Property Global Verification Local Verification Preservation checking
(Kronos) (Kronos) (Vesta)

P1 (safety) 0.01 < 0.001
P2 (safety) 0.01 < 0.001

P3 (liveness) 0.98 < 0, .001
P4 (liveness) 15.79 0.04 0.05

P5 (bounded liveness) 0.68 < 0.001
P6 (bounded liveness) 0.48 < 0.001
P7 (bounded liveness) 0.7 < 0.001

P8 (liveness) 0.93 0.02 0.46

Total 19.58 0.06 0.51

Fig. 6. Comparison of the local and global verification times (in seconds)

Fig. 7. Diagnostic provided by Vesta

Diagnostics. In section 3, we stated that Vesta has the ability to provide
diagnostics when the verification of the DS timed τ -simulation (and thus of
the preservation) fails. To show this functionality, we slightly modify the au-
tomaton of the press. We add a guard (for instance xp ≤ 40) to the transition

, which means that the press expects to be unloaded by the
robot at most 40 time units after having received a piece. This modification pre-
vents the preservation from being established, when integrating the robot with
the press. Indeed, adding this guard introduces a deadlock in the assembling
press‖robot, which did not exist in the robot component alone. Thus, deadlock-
freedom is obviously not preserved. Moreover, Mitl properties P3 to P7 are also
not preserved since non-introduction of deadlocks is precisely one of the con-
ditions which define the DS timed τ -simulation (clause ), and
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thus, which ensure the preservation of Mitl properties. Note that properties P1
and P2 are still preserved since they are safety properties and, therefore, their
preservation does not need neither stability-respect, nor divergence-sensitivity.
The graphical diagnostic provided by Vesta helps detecting where the dead-
lock is introduced, by showing the trace of the assembling robot‖press where
the deadlock appears, and the corresponding trace of the component robot that
had to simulate it, with respect to the DS timed τ -simulation. Fig. 7 shows how
diagnostics are displayed in Vesta.

5 Additional Features

The main functionality of Vesta is to check the DS timed τ -simulation, using
exactly algorithms 1 and 2. In addition, Vesta proposes an interesting additional
feature, consisting in verifying partially the relation to ensure the preservation
of some specific given Mitl properties. This kind of verification, as well as the
motivations, are explained below.

5.1 Partial Verification of the Preservation

Let us go back to the second version of the production cell example, in which
we modified the guard of the edge in the automaton of the
press. As we explained, the deadlock introduced in the assembling robot‖press
prevents ensuring the preservation of all the properties which can be expressed
for the robot, since the verification of the simulation fails. However, the specified
local properties of the robot may be preserved. For this reason, we improved
Vesta by giving the possibility to the user to specify the properties to preserve,
and to check the preservation only for these properties (instead of a “global
preservation”). This is what we call .

Thus, the objective of such a verification is to guarantee the preservation of
specified local properties of a component, rather than the preservation of all the
properties which could be potentially specified. Until now, this functionality is
only available for response properties of the form �(p ⇒ ♦q). The reasoning for
this kind of verification is the following. In most cases, the verification of the
simulation fails due to an introduction of deadlocks (i.e., the clause

of the simulation does not hold). Consider now a component C, a local
property L = �(p ⇒ ♦q) of C and an environment E in which C must be
integrated. A path π in C‖E, in which a deadlock is introduced comparing to
the path of C which simulates it, makes the verification of the preservation fail.
However, if this path π does not concern L, then the preservation should be
guaranteed.

Let us detail how this partial verification is achieved, for a response property
of the form �(p ⇒ ♦q). To ensure the preservation of such a property, we must
guarantee that, when p is encountered in a path π, this path is not (by the
introduction of a deadlock) before q is reached. Thus, the partial verification
consists in checking this non-introduction of deadlock (i.e., the clause

) only for the states of π located between the state satisfying p, and the
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No verification of stability-respect and divergence-sensitivity

Verification of stability-respect and divergence-sensitivity

¬p ¬p ¬p p ¬q ¬q q,¬p

Fig. 8. Partial verification for a property of the form �(p ⇒ ♦q)

one satisfying q. Fig. 8 illustrates the principle of this verification for this kind of
property. A path is represented, and the states on which stability-respect must
be checked are put in grey. Note also that divergence-sensitivity must also be
checked for these states, to ensure that the path is not cut by means of the
introduction of an infinite sequence of non-observable actions. The verification
for divergence-sensitivity consists in checking that these states are not part of a
non-zeno cycle only containing non-observable actions.

Thus, Vesta gives the possibility to specify the local properties of C, of the
form �(p ⇒ ♦q), which must be preserved, and to verify the simulation only
to guarantee the preservation of these properties. Note that, contrary to the
classic verification, this partial verification does not guarantee the preservation
of strong non-zenoness and deadlock-freedom.

5.2 Connection to Other Platforms and Tools

Another interesting point of Vesta is the following. Recall that the way the
tool was designed was inspired by the Open-Kronos tool. In particular, the
syntax used to describe the components, and the symbolic representation of these
models, is identical to the one in Open-Kronos. Thus, a direct consequence of
this design choice is that models considered in Vesta can be connected to the
Open-Kronos tool. Connection to the Open-Caesar verification platform is
also possible as another direct consequence, since this connection was already
available from Open-Kronos models.

The connection to Open-Kronos is particularly interesting. Indeed, the abil-
ity to connect Vesta models to Open-Kronos could allow to check Mitl prop-
erties directly on the models considered in Vesta. Recall that, now, we use
the tool Kronos to perform model-checking, since there exist no tools for
Mitl model-checking. Thus, as Kronos is a Tctl model-checker, we are re-
stricted to Mitl properties which can also be expressed in Tctl. Moreover,
Vesta models must be translated into Kronos syntax. The Open-Kronos tool
can perform reachability analysis, but can also test timed Büchi automata (TBA)
emptiness. Mitl properties can be translated into TBA which recognize the same
language. Thus, with a translator from Mitl to TBA (such translators do not
exist yet) and an implementation of the composition of TA with TBA (see [8] to
get more details about this special composition), it would be possible to directly
connect Vesta models of components to Open-Kronos, perform Mitl model-
checking on these components, and then check with Vesta the preservation of
these properties during the integration of these components.
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6 Conclusion and Further Developments

In this paper, we presented the tool Vesta, which allows (i) to model incremen-
tally a component-based timed system, by integration of components, and (ii) to
ensure the preservation of established local properties of the components on the
complete model, instead of performing a direct verification of these properties
on this complete model. Timed components are modeled as timed automata,
and integration is achieved thanks to the classic parallel composition operator
for timed automata. Preservation is checked by means of a divergence-sensitive
and stability-respecting timed τ -simulation. Precisely, a successful verification
of this relation ensures the preservation of all linear timed properties expressed
with the logic Mitl, strong non-zenoness and deadlock-freedom.

The first results obtained for incremental verification by integration of compo-
nents, using Vesta for the preservation part, are encouraging. On the production
cell case study of [14], it turns out that a direct verification consumes almost 20
seconds of computation time, while the incremental one based on preservation
needs less than one second. Other experiments showed that Vesta can handle
models up to 400000 symbolic states. Beyond this number, we had not enough
memory for the verification of the preservation to be run to completion (on a PC
with 1Gb memory). Nevertheless, this number has to be relativized with respect
to the number of clocks of the model, which is a direct cause of great memory
consumption: 15 clocks for the model from which we obtained this upper bound.
Thus, further improvements will be dedicated to handle this limitation, by im-
plementing abstractions such as the [17,18], allowing to
ignore clocks in states where they are inactive.

Another further development concerns the partial verification of the DS timed
τ -simulation. The objective of such a verification is to check preservation only
for the local properties which are specified for the components, instead of en-
suring the preservation of all properties which could potentially be expressed.
Until now, this partial verification is only available for response properties of
the form �(p ⇒ ♦q). It seems interesting to extend this kind of verification to
other patterns of liveness and bounded-liveness properties. Moreover, this kind
of verification could optimize computation times. Indeed, recall that partial ver-
ification consists, in particular, in checking the stability-respecting part of the
simulation only on some specific states, instead of checking it systematically. As
stability-respect is checked by means of high-cost operations, such as polyhedra
complementation, it is essential to avoid as much as possible to check this clause.
Thus, generalizing partial verification could lead to better performances in terms
of computation times to check preservation.

Additional Informations. More informations on Vesta can be found in its
complete documentation and user guide at the following url:
http://lifc.univ-fcomte.fr/publis/papers/pub/2006/RT2006-01.pdf.
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Abstract. Review and testing are the most practical verification tech-
niques that complement each other, and their effectiveness can be en-
hanced by utilizing formal specifications. In this paper, we describe a
verification method that integrates specification-based review and testing
for detecting errors of programs in three phases. First, inspection is used
to check whether all the relevant conditions defined in a specification are
implemented in the corresponding program and whether there are any
errors that may prevent the program from normal termination. Second,
testing is carried out to detect errors through dynamic executions of the
program and to build a useful relation between the specification and the
program. Finally, walkthrough analysis is performed to check whether
every functional scenario defined in the specification is correctly imple-
mented by the traversed execution paths in the program and whether
any untraversed paths exist and are desired. We present an example to
show how our method is applied in practice.

1 Introduction

Specification-based testing (SBT) has been well researched under different names,
such as specification-based testing, model-based testing, and functional testing or
black-box testing, and its scientific nature and tool supportability have been sig-
nificantly improved when formal specifications are employed [1, 2]. An obvious
advantage of SBT over implementation-based (or structural) testing is that tests
can be performed without the need to analyze program structures. However, this
advantage may not be achieved if the program under test does not run normally
(e.g., crash or infinite loops in execution). It is often the case that large-scale pro-
grams do not run normally just after being developed according to our industrial
partners in Japan. In this case, even formal specifications may not help very much
for testing. To tackle this problem, review can play an effective role.

Software review is a static analysis technique commonly used in industry
for software quality assurance [3]. It usually includes two specific techniques:
inspection [4] and walkthrough [5]. The purpose of inspection is to detect and
identify software product anomalies, including software element errors (e.g., lack
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of statements updating loop conditions) and deviations from required standards
and specifications. Walkthrough is aimed at understanding a software product,
through which software anomalies can be revealed and the conformance of soft-
ware products to standards and specifications can be evaluated. The feature of
review is that human reviewers read through and analyze review targets (i.e.,
the documents under review), and the determination of errors depends upon
reviewer’s judgements. Unfortunately, review techniques used in practice offer
neither precise rules for reviewers to make judgements nor precise technical pro-
cedures for systematically carrying out reviews [6]. Over the last several years,
we have been concentrating on research on specification-based review techniques
[7, 8] in order to tackle this problem. We have established a rigorous inspection
method that facilitates the reviewer to check whether every functional scenario
defined in a formal specification is properly implemented in the corresponding
program. However, the method may meet challenges in associating functional
scenarios in the specification with the corresponding execution paths in the pro-
gram and in detecting run-time errors.

Our experience suggests that both review and testing are necessary and they
complement each other in program verification. We believe that an integration of
review and testing can enhance their advantages and avoid their disadvantages.
The question is how to make such an integration so that the integrated technique
can be rigorous, systematic, effective, and easy to be supported by software tools.

In this paper we describe an integrated method that combines specification-
based review and testing techniques. A specification provides precise guidelines
and references for review and testing, while review and testing are used at dif-
ferent phases to check the program for different purposes. First, inspection is
used to check whether all the relevant conditions defined in the specification
are implemented in the corresponding program and whether there are any er-
rors that may prevent the program from normal termination. Second, testing
is carried out to detect errors through dynamic executions of the program and
to build a useful relation between the specification and the program. Finally,
walkthrough analysis is performed to check whether every functional scenario
defined in the specification is correctly implemented by the traversed execution
paths in the program and whether any untraversed paths exist and are desired.
We applied our method to verify an Automated Teller Machine (ATM) software
system based upon its formal specification in SOFL [9], an extension of VDM for
practicality, and the result shows that the method is effective in detecting errors.
Since the whole application is too large to fit into the paper, we choose only one
of the operations of the system as an example to explain how our method is
applied in practice.

The rest of the paper is organized as follows. Section 2 describes the goal of
program verification and Section 3 discusses the integrated method for fulfilling
the goal. Section 4 presents an example to illustrate how the method is used.
Section 5 overviews the related work. Finally, Section 6 concludes the paper and
points out future research directions.
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2 The Goal of Verification

In this section, we discuss the goal of program verification using our integrated
method. Conceptually, we use the format S(Siv, Sov)[Spre, Spost] to denote the
specification of an operation S, where Siv is the set of all the input variables
whose values are not changed by the operation, Sov is a set of all the output
variables whose values are produced or updated by the operation, and Spre and
Spost are the pre- and postconditions of S, respectively. In addition, we adopt
the following convention for our discussions throughout this paper:

– If a variable x is used as both an input and an output, then we use ˜x to
denote the input value of x and x (i.e., itself) to denote the output value of
x. Thus, ˜x ∈ Siv and x ∈ Sov.

Definition 1. P S
∀˜σ∈Σ · Spre(˜σ) ⇒ Spost(˜σ, P (˜σ))

In the quantified expression, S is perceived as an abstraction of P , which gener-
ally defines a relation between the initial state ˜σ before the execution of P and
the final state σ (= P (˜σ)) after the execution of P . P is treated as a function
mapping the initial state ˜σ to the final state σ. The program P refines the
specification S iff for any initial state ˜σ satisfying the precondition Spre, the
final state σ resulting from the execution of P satisfies the postcondition Spost.

It is well-known that trying to use all the initial states satisfying the pre-
condition Spre to test the program P is not realistic due to the state explosion
problem. Therefore, we try to make use of human judgments for help. For this
purpose, it is important that the specification provides precise guidelines and ref-
erences for human to carry out an effective verification. To this end, we require
the specification S to be well-formed, as defined below. But for this definition,
we first need to introduce a concept called .

Definition 2. Spost ≡ (C1 ∧ D1) ∨ (C2 ∧ D2) ∨ · · · ∨ (Cn ∧ Dn)
Ci (i ∈ {1, ..., n}) guard condition

Sov Di defining condition
Sov functional scenario fs S

˜Spre ∧ Ci ∧ Di (˜Spre ∧ C1 ∧ D1) ∨ (˜Spre ∧
C2 ∧ D2) ∨ · · · ∨ (˜Spre ∧ Cn ∧ Dn) functional scenario form FSF)

S

where ˜Spre = Spre[˜σ/σ] denotes the predicate resulting from substituting the
initial state ˜σ for the final state σ in the precondition Spre. We treat a conjunc-
tion ˜Spre∧Ci∧Di as a scenario because it defines an independent function: when
˜Spre ∧ Ci is satisfied by the initial state (or intuitively by the input variables),
the final state (or the output variables) is defined by the defining condition Di.
Note that in the pre- and postconditions of a specification, we treat a relation
(e.g., x > y) and a as an atomic predicate. A strict
quantified predicate is a quantified predicate whose body does not contain any
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atomic predicate unrelated to its bound variables. For example, ∀x∈X · y > x
is a strict quantified predicate, while ∀x∈X · y > x ∧ t ≥ 0 is not, because it
contains the atomic predicate t ≥ 0 that is not related to the bound variable x.
These concepts are useful for transforming a specification into an FSF, and an
algorithm for such a transformation is already made available in our previous
publication [7].

Note that simply treating a disjunctive clause in the disjunctive normal form
of a postcondition as a functional scenario is not necessarily correct in supporting
our verification method. For example, let x > 0∧ (y = x∨y = −x)∨x ≤ 0∧y =
x + 1 be the postcondition of an operation whose precondition is assumed to
be true, where x is the input and y the output. It states that when x > 0, y
is defined either as x or as −x (the specifier does not care which definition will
be implemented). In this case, if we convert it into the disjunctive normal form
x > 0 ∧ y = x ∨ x > 0 ∧ y = −x ∨ x ≤ 0 ∧ y = x + 1, and treat each of the two
disjunctive clauses x > 0∧y = x and x > 0∧y = −x as an individual functional
scenario, respectively, and require the existence of corresponding execution paths
in the program to implement both of them, we may not find a satisfactory answer
in the program, since the programmer may decide to implement only clause
x > 0 ∧ y = x as a refinement of x > 0 ∧ (y = x ∨ y = −x).

Definition 3. S (˜Spre ∧C1 ∧D1)∨(˜Spre ∧C2 ∧
D2) ∨ · · · ∨ (˜Spre ∧ Cn ∧ Dn) (n ≥ 1) S

(∀i,j∈{1,...,n} ·(i 
= j ⇒ (Ci∧Cj ⇔ false))∧(˜Spre ⇒ (C1∨C2∨···∨ Cn ⇔ true))

We call a specification S satisfying this condition specification. A
well-formed specification ensures that every pair of the guard conditions in its
FSF are exclusive, and the disjunction of all the guard conditions under the
precondition of the specification constitutes a tautology. Assume every defin-
ing condition Di (i ∈ {1, ..., n} in the FSF of a specification is satisfiable, the
well-formedness of the specification guarantees its feasibility: for any initial state
satisfying the precondition, there exists a final state that satisfies the postcondi-
tion. This is because for any initial state ˜σ, there must exist a guard condition
Ci such that Ci(˜σ) holds. Since its corresponding defining condition Di is as-
sumed to be satisfiable, there must exist a final state σ such that Di(˜σ, σ). Let
us consider the operation Conditional Swap as an example. Suppose its specifi-
cation is given as follows:

Conditional Swap ({˜x, ˜y}, {x, y})
[x ≥ 0,
˜x ≤ ˜y ∧ y = ˜x ∧ x = ˜y
∨
˜x > ˜y ∧ y = ˜y ∧ x = ˜x
] ,

where Conditional Swapiv = {˜x, ˜y} is the input variable set,
Conditional Sqrtov = {x, y} is the output variable set, x ≥ 0 is the precondition,
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and ˜x ≤ ˜y ∧ y = ˜x ∧ x = ˜y ∨ ˜x > ˜y ∧ y = ˜y ∧ x = ˜x is the postcon-
dition, and all the variables involved are of real type. The FSF of the operation
specification is:

˜x ≥ 0 ∧ ˜x ≤ ˜y ∧ y = ˜x ∧ x = ˜y ∨
˜x ≥ 0 ∧ ˜x > ˜y ∧ y = ˜y ∧ x = ˜x

where ˜x ≤ ˜y and ˜x > ˜y are two guard conditions, and y = ˜x ∧ x = ˜y
and y = ˜y ∧ x = ˜x are two defining conditions. Obviously, the specification is
well-formed because the specification satisfies the condition in Definition 3. It is
also feasible because each of the two defining conditions are satisfiable.

A well-formed and feasible specification forms a basis for applying our inte-
grated method. As far as the issue of how to achieve a well-formed and feasible
specification is concerned, many techniques available in the literature can help,
such as specification animation [10] or testing [11, 12]. In this paper, we con-
centrate only on the problem of how to verify a program against its well-formed
and feasible specification.

3 The Method for Verification

This section focuses on the discussion of the integrated verification method with
which we can fulfill the goal of program verification defined in the previous
section. The fundamental idea of the method is to analyze and test whether
every functional scenario defined in a specification is correctly implemented in
its corresponding program. The purpose of the method is not aimed at achieving
this goal (simply because it is almost impossible in practice), but at detecting
as many errors as possible by trying to take the way leading to the goal. The
question is how to carry out the verification so that we can find more errors. As
we mentioned before in this paper, our experience suggests that integration of
review and testing can be an effective solution. The principle of the integration
is summarized as the following three phases:

Phase 1. Carry out an inspection of the program based on both the functional
scenarios in the specification and some standards.

Phase 2. Conduct a testing of the program based on the functional scenarios
in the specifciation.

Phase 3. Carry out a walkthrough analysis of the traversed execution paths
based on the functional scenarios in the specification.

The first phase tries to prepare for the phase 2 by creating a situation where the
program can run normally. The phase 2 tries to test the program and meanwhile
link functional scenarios in the specification to the corresponding traversed paths
in the program. The resulting association between scenarios and paths will serve
as an effective guideline for the phase 3. The third phase tries to go through
entire paths that have been traversed during the phase 2 to analyze whether
more potential errors still remain. We discuss the details of each phase of the
three, respectively, next.
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3.1 Inspection

The task of the inspection phase is twofold. One is to check whether every guard
condition, including all the variables and their relations involved, of a functional
scenario in the specification is properly implemented in the program. If this is
not the case, it indiates a possibility that some functional scenario is not cor-
rectly implemented in the program because every scenario defines a conditional
behavior in terms of a guard condition and a defining condition. Another task
is to reveal errors that prevent the program from running normally. In order
to systematically guide the inspector to effectively perform an inspection, we
need to make a checklist that contains appropriate questions. In our method, a
checklist contains the following questions:

– Is the precondition of the specification properly implemented in the program?
– Is the guard condition of every functioanl scenario in the specification im-

plemented properly in the program?
– Is the defining condition of every functioanl scenario in the specification

implemented properly in the program?
– Is every guard condition of a conditional or loop statement in the program

satisfiable?
– Is there any variant in the body of every loop statement to ensure the ter-

mination of the statement?

When applying this checklist to a specific specifiaction and program, a specal-
ized checklist will be derived from this general checklist. Each question on the
specalized checklist is concerned with a specific inspection target. For example,
to inspect the program implementing the specification Conditional Swap, we
need to raise the following specific questions on the checklist:

– Is the precondition x ≥ 0 properly implemented?
– Is the guard condition ˜x ≤ ˜y properly implemented?
– Is the guard condition ˜x > ˜y properly implemented?
– ......

For the sake of space, we omit the other relevant questions on the checklist. This
point will be illustrated with an exmaple in Section 4.

3.2 Testing

Testing in our method is aimed at fulfilling two tasks. One is to dynamically check
whether the behavior defined by each functional scenario in the specification
is correctly implemented by the program. In theory, there should be a set of
execution paths in the program that are responsible for the implementation of
each scenario in the specification if the program does refine the specification,
so the major issue to address here is how to generate test cases based on each
scenario so that all the corresponding paths will be traversed at least once. As is
well known, even when a path is traversed once, it does not however guarantee
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no error remaining on the path. To find more errors on the path, more tests are
needed, but this can be costly or impossible due to practical constraints (e.g.,
time). In our method we adopt a to find
more potential errors on paths for cost-effectiveness, as described in detail in the
next subsection. For such an analysis, we need clearly understand which paths in
the program are responsible for implementing which functional scenario in the
specification. Testing can be used as a technique to find out such information.
So another task of testing in our method is to link functional scenarios in the
specification to execution paths in the program. To this end, we put forward the
following criterion for test case generation from the specification.

Criterion 1. S (˜Spre∧C1∧D1)∨(˜Spre∧
C2 ∧ D2) ∨ · · · ∨ (˜Spre ∧ Cn ∧ Dn) (n ≥ 1) T

S T
S ∀i∈{1,...,n}∃t∈T · ˜Spre(t) ∧ Ci(t)

A test set T , which is a collection of test cases, satisfies the scenario-coverage iff
for any functional scenario in the FSF of the specification S, there exists some
test case in T such that it satisfies both the precondition of S and the guard
condition of the scenario. Such a test set T ensures that the corresponding exe-
cution paths of every scenario are tested. However, since many execution paths
may be needed to implement a single scenario in the specification, the test set
T may not guarantee to traverse all the paths for a given scenario. For exam-
ple, suppose the following program segment is used to implement the scenario
˜x ≥ 0 ∧ ˜x ≤ ˜y ∧ y = ˜x ∧ x = ˜y of the specification Conditional Swap:

S1
if (x <= y)
if (x < y)

int q;
q = x;
x = y;
y = q;

S2 ,

then there are two paths implementing the scenario: [S1, x <= y, x < y, intq, q =
x, x = y, y = q, S2] and [S1, x <= y, !x < y, S2], where S1 represents the
program segement written before the first statement and denotes the
program segement after the assignment y = q, and !x < y means x < y does
not hold. If we generate a test set T = {(10, 6), (2, 8)}, obviously it meets the
Criterion 1, and therefore covers every scenario defined in the specification, but it
does not ensure that every path implementing the scenario given above, because
the path [S1, x <= y, !x < y, S2] is not traversed by the test. In order to ensure
that every execution path (in terms of ) is
covered, we need to expand the test set T by creating more test cases. This
process continues until all the execution paths are traversed at least once. The
question here is how to proceed to create more test cases.
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We take a method for the selection of more test cases. Let
(˜Spre ∧ Ci ∧ Di) (i ∈ {1, ..., n}) be any scenario of the specification S. Then,
by this method we divide the sub-domain defined by the conjunction ˜Spre ∧ Ci

into smaller sub-domains, say Σ1, Σ2, ..., Σq (q > 1), and select a test case from
each sub-doman Σj (j ∈ {1, 2, ..., q}) to expand the test set T . Continuously
applying this method until all the execution paths are traversed. The challenge
here lies in providing a general rule for deciding the sub-domains for a given
sub-domain like the one defined by ˜Spre ∧Ci, because the structure of the sub-
domain is undecidable due to various possibilities in the content of the predicate
˜Spre ∧ Ci. Since the main purpose of testing in our verification method is to
ensure that all the execution paths are traversed and linked to scenarios in the
specification, our experience shows that chooseing values for input variables with
longer “distance” can be more effective than values with shorter “distance” [13].
For example, the sub-domain defined by ˜x ≥ 0 ∧ ˜x ≤ ˜y of the scenario of
the specification Conditional Swap mentioned above can be divided into the
following two sub-domains: ˜x ≥ 0 ∧ ˜x < ˜y and ˜x ≥ 0 ∧ ˜x = ˜y in order to
cover the two obvious cases. When generating specific values for ˜x and ˜y as
test cases, the two pairs of values (˜x = 5, ˜y = 10000) and (˜x = 10000, ˜y = 5)
would be more effective than the two pairs of values (˜x = 5, ˜y = 10) and
(˜x = 10, ˜y = 5). This is because, for example, if ˜x < ˜y is refined into the
guard condition ˜x + 6 < ˜y in implementation, the former two pairs of values
make the condition evaluate to true and false once, respectively, while the latter
two pairs of values make the condition evaluate only to false twice.

3.3 Walkthrough

The testing phase can help traverse all relevant execution paths and detect the
corresponding errors on those paths, but it does not guarantee the detection of
all the errors on those paths by a limited number of executions. This is a typical
limitation of testing: testing can only find the presence of bugs, but not their
absence. To overcome this weakness of testing, we adopt a specification-based
review technique in our verification method that allows the reviewer to perform
a walkthrough analysis to find more potential errors on the tested paths. The
walkthrough can also facilitate the reviewer to analyze the execution paths that
are not traversed at all during the testing phase. There may be two possibilities
for the test phase not to traverse some paths. One is the lack of sufficient test
cases within the required schedule for testing. Another possibility is that the
program may have some paths irrelevant to the functions defined in the spec-
ification or have errors that prevent the paths from being traversed (e.g., the
guard condition of a while loop is a contradiction).

Let us treat a specification S as a set of its all scenarios and a program P as
a set of its all execution paths. Then, the relation between S and P in general
can be reflected by a function from S to the power set of P , based on which a
walkthrough analysis is performed.
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Definition 4. S {f1, f2, ...,
fn} P {p1, p2,..., pm}
M

M : S → power(P )
∀f∈S∃q∈power(P ) · M(f) = q

In this definition, fi (i ∈ {1, ..., n}) denotes a scenario ˜Spre ∧ Ci ∧ Di of S;
power(P ) denotes the power set of P ; and M(f) = q (q ⊆ P ) means that the
set of paths q correctly implements the scenario f . A formal interpretation of
this equation is given as follows.

Definition 5. f ∈ S q ∈ power(P )
M(f) = q

∀˜σ,σ∈Σ · (∃p∈q · σ = p(˜σ)) ⇒ f(˜σ, σ)

where a path p is treated as a partial function from states to states. A set of
paths q is said to correctly implement a scenario f , denoted as M(f) = q, iff any
final state σ produced by a single path p in the path set q based upon an initial
state ˜σ satisfies the scenario f (considering f as a predicate that may contain
both initial and final state variables).

Note that there is a possibility that the range of M does not fully cover the
set power(P ) because P may be an extension rather than a refinement of S
(albeit this situation may not be desired and need to be corrected ultimately).
Therefore, there may be a subset of P that does not implement any scenario in
the specification. We name this special subset ω; that is, ω ∈ power(P ). Note
that ω = {} is possible (if P is a correct refinement of S).

A walkthrough analysis is adopted in our integrated method to check whether
a program P refines its specification S. If the walkthrough analysis is successful
(i.e., it confirms that P refines S), it will increase the confidence in the correct-
ness of P with respect to S; otherwise, it will help to find errors for correction
or improvement. A definition of P refining S in terms of M is given as follows.

Definition 6. S {f1, f2, ...,
fn} P {p1, p2,..., pm} P

S

(∀f∈S∃q∈power(P ) · M(f) = q) ∧ (∀p∈P ∃f∈S · p ∈ M(f))

Program P refines specification S iff for any scenario in S there exists a set of
execution paths in P that correctly implements the scenario and every execu-
tion path in P contributes to the implementation of some scenario in S. This
definition is a specialization of the refinement concept defined in Definition 1.
This is the goal to achieve by our integrated verification method and the final
responsibility falls onto the “shoulder” of the walkthrough analysis phase.

The testing phase has prepared for a walkthrough analysis in two ways. One
is that it clearly establishs the correspondance between a scenario in the speci-
fiaction and some paths in the program. Another preparation is that test cases
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for testing the implementation of each scenario are already generated. The walk-
through analysis will make good use of these prepared results in such a manner
that some of the test cases are used by the reviewer to help the analysis of all
the paths for each scenario.

When carrying out a walkthrough analysis of a path p in the program against
the corresponding scenario f in the specification, the reviewer chooses some test
case, which satisfies the guard condition of the scenario under review, and then
uses the test case to manually “execute” the corresponding path for the analysis of
the potential behavior. During the walkthrough process, the reviewer should also
keep asking questions concerning each statement or condition on the path, such
as “what is this statement/condition for?” and “why is this statement/condition
here?”, and the programmer (or the person responsible) tries to explain to the
reviewer. During this “question time”, errors are expected to be found.

4 An Example

We have applied our integrated method to the verification of an Automated
Teller Machine (ATM) software system developed by a group of senior students
at Hosei University in our recent project. Since the verification of the entire
system is too large to fit in this paper, we choose only one operation called
Change Password as an example to explain how our method can be used in
practice. Considering our expertise in formal specification language, we wrote
the operation specification in the Structured Object-Oriented Formal Language
(SOFL) [9]. Since SOFL is an extension of VDM-SL toward engineering friendly
practice, our method can also be applied to VDM-SL and other model-oriented
notations (e.g., Z, B), as well as their variations (e.g., VDM++, Alloy).

The specification of the operation Change Password is given as follows:

process Change Password(id, old pass, new pass: int)
ext wr result message: string

wr accounts: set of Account
pre true,
post let R = Find Account(id, old pass, ˜accounts) in

R.found = true ∧
(1000 ≤ new pass ≤ 9999 ∧
accounts =

Modify Account(˜accounts, R.account, new pass) ∧
result message =

”Y our password has been successfully changed.”
∨

¬1000 ≤ new pass ≤ 9999 ∧ accounts = ˜accounts ∧
result message = ”Y our new password is unacceptable.”)

∨
R.found = false ∧ accounts = ˜accounts ∧
result message = ”Y our id or pass is wrong.”

end process
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where int denotes the integer type, and the two functions Find Account and
Modify Account are defined as follows:

function Find Account( id, pass: int,
accounts: set of Account): FoundAccount

post (∃a∈accounts · a.id = id ∧ a.pass = pass ⇒
Find Account = mk FoundAccount(a, true))

∧
((¬∃a∈accounts · a.id = id ∧ a.pass = pass) ⇒
Find Account = mk FoundAccount(nil, false))

end function
function Modify Account( accounts: set of Account, account: Account,

new pass: int): set of Account
pre account ∈ accounts
post Modify Account = (accounts \ {account}) ∪

{modify(account, pass → new pass)}
end function,

where the composite type Account and FoundAccount are defined as follows,
respectively.

Account = composed of
id: int
pass: int
balance: nat0
amount available : nat0
end

FoundAccount = composed of
account: Account
found: bool
end

where nat0 denotes the natural number type including 0.
The operation Change Password takes the user’s identification number id,

old password old pass, and a new password new pass, and updates the cus-
tomer’s account in the account set, denoted by accounts, by replacing the
old password with the new password. However, if the input id or old pass
is not correct, an error message is provided. The following is an FSF of the
Change Password specification.

R = Find Account(id, old pass, ˜accounts) ∧
R.found = true ∧ 1000 ≤ new pass ≤ 9999 ∧
accounts = Modify Account(˜accounts, R.account, new pass) ∧
result message = ”Y our password has been successfully changed.”

∨
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R = Find Account(id, old pass, ˜accounts) ∧
R.found = true ∧ ¬1000 ≤ new pass ≤ 9999 ∧
accounts = ˜accounts ∧
result message = ”Y our new password is unacceptable.”

∨
R = Find Account(id, old pass, ˜accounts) ∧ R.found = false ∧
accounts = ˜accounts ∧
result message = ”Y our id or pass is wrong.”

Note that in the FSF, we have converted conjunctions like true ∧ P into P for
simplicity. The FSF consists of three scenarios, each of which is one of the three
disjunctive clauses in the FSF. The conditions

(1) R = Search Account(id, pass, ˜accounts) ∧
R.found = true ∧ 1000 ≤ new pass ≤ 9999,

(2) R = Search Account(id, pass, ˜accounts) ∧
R.found = true ∧ ¬1000 ≤ new pass ≤ 9999,

(3) R = Search Account(id, pass, ˜accounts) ∧ R.found = false

are three guard conditions of the three scenarios, respectively, and the rest parts
are their defining conditions, respectively. According to Definition 3, this spec-
ification is well-formed. The specification is implemented as a method in Java
as follows, where each line of the code is assigned a number for reference in
discussions.

0 {
1
2
3 {
4 < < {
5
6 }
7
8 }
9
10 }
We first carried out an inspection to confirm that each of the three guard

conditions and each of the three defining conditions defined in the specifiaction
are implemented in the program. For example, the guard condition of the first
scenario (appearing as the first disjunctive clause in the FSF) above is imple-
mented by the statements on lines 2, 3, and 4 in the program, and the defining
condition of the same scenario is implemented by the statements on lines 5 and
6. We found no other errors by inspection that could prevent the program from
running normally.

After the inspection, we generated a test set to test the program. This test
helped us to find no error, but build the correspondance relation between the
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Table 1. A test for the program Change Password

Test cases Execution
paths

id old pass new pass ˜accounts

6942 5190 2901 {(2319, 5492, 200, 100), {path1}
(6942, 5190, 300, 100)}

2319 5492 389 {(2319, 5492, 200, 100), {path2}
(6942, 5190, 300, 100)}

3187 5291 9147 {(4018, 2391, 100, 2000)} {path3}

scenarios in the specification and the execution paths in the program. Table 1
shows all the test cases generated and the corresponding paths traversed.
where path1, path2, and path3 denote the following execution paths:

path1 = [1, 2, 3, 4, 5, 6, 8, 10]
path2 = [1, 2, 3, 4, 7, 8, 10]
path3 = [1, 2, 3, 9, 10] .

Finally, we conducted a walkthrough analysis of the three paths against their
corresponding scenarios. As a result, we found an error in line 4 on path1 and
path2. The error is that the condition new pass < 9999 should be new pass <=
9999 according to the specification, but this error could not be found by the test,
since none of the three new passwords in the test cases is 9999.

5 Related Work

While formal specification-based testing techniques have been well researched,
specification-based review and its integration with testing techniques are not
widely explored yet.

Bernot set up a theoretical foundation and a tool support for specifciation-
based testing, explaining how a formal specification can serve as a basis for test
case generation and as an oracle for test result evaluation [1]. Dick and Faivre pro-
posed to transform pre- and postconditions into a disjunctive normal form (DNF)
and then to use it as the basis for test case generation [14]. Stocks and Carrington
suggested to define test template as the basis for test case generation and to di-
vide a large test template into smaller templates for generating more detailed test
cases [2]. Offutt and Liu investigated how to effectively generate test cases based
on SOFL specifiactions [15] and finite state machine-based formal specifications
[16], and discussed the advantages and weakness of the existing specification-based
testing techniques.

As far as specification-based review is concerned, an early idea of using formal
specifications to help the inspection of programs was described by Parnas and his
colleagues in [17]. The technique, known as Document Driven Inspection (DDI),
was developed to tackle structured programs. Using the DDI technique, the
inspector needs to document the program to be inspected as a set of .
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Each display consists of three elements: formal specification, program, and a
list of invoked subroutines. However, the DDI technique is focused on the issue
of how to derive a formal document from a given structured program, but not
much on how the formal document is utilized to systematically guide inspections
of programs. In order to address this issue and to make formal specification
benefical to software review in industry, we have conducted an intensive research
on specification-based review over the last five years. We established a systematic
method for inspecting programs based on formal operation specifications in pre-
and postconditions in [7]. The fundamental principle underlying the method is to
inspect whether every functional scenario defined in a specification is correctly
implemented in the program. We have also carried out a case study for the
assessment of the method and constructed a prototype tool for the method [8].

During our research on specifiaction-based review and testing techniques, we
found that both techniques are complementary rather than one can replace
another, as explained in Section 1. Compared to the existing work mentioned
above, the integrated method described in this paper has taken advantages of
specification-based review and testing and avoided their disadvantages. We be-
lieve that our method can be more cost-effective in detecting errors than the
existing review or testing approaches based on our experience so far, but further
rigorous studies are needed to clarify this point in the future.

6 Conclusion and Future Work

We have described an integrated method for verifying programs. The method
combines the specifiaction-based review and testing in three phases: inspec-
tion, testing, and walkthrough analysis. Each phase prepares for the next one
and helps find errors from a different angle. We have presented an example to
show how the method is applied to verify the program of an operation called
Change Password in an ATM system against its formal specification. As future
research, we plan to carry out several empirical studies on the application of
the method to large-scale programs for the assessment of its effectiveness and to
build a software tool for the method to enhance its usability and efficiency.
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Abstract. CSP is a well-established formalism for modelling and verifi-
cation of concurrent reactive systems based on refinement. Consolidated
denotational models and an effective tool have encouraged much work
on algebraic reasoning and model checking. Testing techniques based on
CSP, however, have not been widely explored, and in this paper we take
a first step by instantiating Gaudel et al’s theory of formal testing to
CSP. We identify the testability hypothesis that we consider necessary
to use CSP models as a basis for testing. We also define test sets that
we prove to be exhaustive with respect to traces and failures refinement,
and consider optimisations, inputs and outputs, and selection strategies.
Our results are proved in terms of the CSP denotational models; they are
a sound foundation for the development of test-generation techniques.

1 Introduction

It is well accepted that formal specifications can be useful bases for software
testing; we refer to [6,11,2,3,1,17] among many other pioneering papers and
surveys. In spite of that, testing based on CSP [26,16], which is a popular formal
notation for specification and verification of concurrent systems, has not been
widely explored. In this paper, we establish the foundations of CSP-based testing
by instantiating a well-established theory of formal testing.

Even though it has been recognised for a while that formal models can bring
much to software testing, embedding implementation testing within a formal
framework is far from being obvious. In this case, we test a system: a system is not
a formula, even if it can be (partially) described as such. Thus, testing is related
to, but very different from proof of correctness based on the program text using,
for example, an assertion technique. Similarly, testing is different from model
checking, where verifications are based on a known model of the system: when
testing, the model corresponding to the system under test is unknown. If it was
known, testing would not be necessary... Moreover, it is sometimes difficult to
observe the state of the system under test [6,12,17]. These points have been
successfully circumvented in several testing methods that are based on formal
specifications (or models) and on conformance relations that precisely state what
it means for a system under test to satisfy a specification [7,8,9,31,14,13,20,18].

The gap between systems and models is generally taken into account by ex-
plicit assumptions on the systems under test [6,1,17] that are called “testability
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hypotheses” in [1] or “test hypotheses” in [4]. Such assumptions are fundamental
in the proof that the success of the test set derived from the specification estab-
lishes the conformance relation. Moreover, they provide hints on complementary
tests or proofs that may be necessary to ensure this equivalence.

CSP provides, in addition to a formal semantics of communicating processes,
formal definitions of notions of refinement similar to the conformance rela-
tions used in specification-based testing or model-based testing. Peleska and
Siegel [24,25] have already studied and applied CSP-based testing. They have
not, however, addressed the issue of the gap between the system under test and
the CSP model that it defines. The practical test sets they propose in [25] are
inspired by, but not in direct correspondence with, their theoretical definitions.

Schneider [27] defines a partition that classifies refusable and non-refusable
events, and high-level and low-level events, for the purposes of modelling security
applications in CSP. In that work, two conformance relations based on testing
are defined, and Schneider shows how model checking can be used to establish
such relations. In our work, on the other hand, we are interested in refinement.

More recently, CSP has been used to formalise a notion of conformance tradi-
tionally associated with input-output labelled transition systems [22]. This work
goes well beyond ours, in that it provides a technique and a tool for genera-
tion and selection of tests based on the use of FDR, the CSP refinement model
checker. Our definition of a test case, however, is similar to theirs. We believe
that the results on exhaustiveness of test sets and factorisation that we present
here are relevant to further justify some of the definitions in [22].

The work in [29] recognises the potential impact of the assumptions about the
interaction of a system with its environment on refinement; it aims at supporting
the validation of (implicit) assumptions. For that, mutation testing techniques
are applied to a CSP model of the system, and the mutants that satisfy the
properties of interest are used as a basis for the clarification of requirements.

In this paper, we state the testability hypotheses that are associated with the
use of CSP. Moreover, we formalise accurately the kind of observations (traces
and refusals) that must be done when performing test experiments derived from a
CSP specification. It leads to a novel formulation of the tests and of their verdicts.
We give algebraic proofs that getting the right observations when running these
tests is equivalent to establishing traces or failures refinement.

In the next section, we give a brief introduction to CSP, and in Section 3
we discuss the consequences of using a process algebra as a basis for testing. In
Section 4, we introduce our testability hypotheses and their consequences, and in
Section 5, we give our exhaustive test sets. In the next three sections, we discuss
possible optimisations of our tests, test selection criteria, and the issues raised
by inputs and outputs. Proofs of our results can be found in [5]. We conclude in
Section 9 with a summary, and a discussion of related and future work.

2 A Few Things on CSP

Here we briefly recall the syntax of CSP, and some important points of its se-
mantics and notions of refinement. More information can be found in [26].
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2.1 Main CSP Operators

In CSP, a system is modelled as a process that can interact with its environment
via a number of events. CSP models describe a collection of processes and their
patterns of interactions. The unit of interaction is an event which processes
perform and on which they may synchronise; the occurrence of events is atomic.
The set of (external) events of a process is denoted α .

There are two basic processes: is a deadlocked process, and is
the terminating process. The process → can perform an event and then
behave as . The external choice, 1 � 2, is initially prepared to behave either
as 1 or as 2, with the choice being made on occurrence of the first event.
Nondeterminism is modelled by an internal choice, 1 � 2, which is a process
that can arbitrarily choose to behave as either 1 or 2.

Processes can also be combined in sequence, using the operator ; , or in
parallel. CSP provides a number of operators for parallelism; here we use the
alphabetised parallelism: 1 |[ ]| 2 , which executes 1 and 2 concurrently,
requiring that they synchronise on events that are in the set .

Events can be external, that is, observable and controllable by the environ-
ment, or internal. Using the hiding operator, like in \ , we define a process
that behaves like , but whose events in the set are internal.

A simple example, which we use later on, is given below: a process 2
that counts from 0 to 2, and is defined in terms of the processes 1 and 2.

2 = → 1

1 = → 2 � → 2

2 = → 1

The events in α 2 = { , } model requests to add or subtract.
In CSP, inputs and outputs are not primitive concepts; they are modelled

using events whose names are composite. A classical example is a copying process
, which takes an input from a channel and sends it back.

= ? → ! →
If we assume that the type of is the rather small set { 0, 1, 2 }, then we have
the events .0, .1, and .2. In this case, the above definition of is
just an abbreviation for the following definition in terms of these basic events.

= ( .0 → .0 → ) � ( .1 → .1 → ) � ( .2 → .2 → )

An input ? → ( ) is an abbreviation for a possibly infinite external choice
over processes . → ( ), for all possible values for . An output event ! ,
on the other hand, is just another name for . , where is the value of .

2.2 Semantics and Refinement

There are three well-established semantic models of CSP: the traces, the (sta-
ble) failures, and the failures-divergences models. The traces model characterises
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a process by its set ( ) of traces: finite sequences of events which it can
perform. It is a subset of ((α ) ∪ {� })∗; ∗ is the set of finite sequences of
elements of . The special event � records termination. The empty trace is 〈 〉.
The set of all events, except only for �, is Σ; the set including � is denoted
Σ�. In the sequel, we sometimes consider traces as processes: the finite trace
1, 2, . . . corresponds to the process 1 → 2 → . . .→ .
As usual we write / to describe the behaviour of the process after one of

its traces , and ( / ) for the set of events performable by after . In
fact, is defined for any process [26, page 197], and can be characterised
in terms of its traces as ( ) = { : Σ� | 〈 〉 ∈ ( ).

For a trace of a process and a subset = { 1, . . . , n} of α , the pair
( , ) is a failure for if, and only if, after performing , may refuse all events
of : in other words, |[α ]| ( ; ( 1 → 1� . . .� n → n) may deadlock just
after . For 2, the set of failures includes the following elements.

(〈 〉, { }), (〈 〉, ∅), (〈 〉, ∅),
(〈 , 〉, { }), (〈 , 〉, ∅), (〈 , 〉, { }), (〈 , 〉, ∅),
(〈 , , 〉, ∅), . . .

The set ( ) containing all failures of is subset closed: for instance, if
may deadlock when the choice among the events { , } is proposed by its environ-
ment after a trace , it may deadlock as well if only or is proposed. The traces
of can be defined from its failures: ( ) = { : Σ�∗ | ( , ∅) ∈ ( ) }.

The set ( ) is the set of traces of that lead to divergent be-
haviour, that is, an infinite sequence of internal events, plus all the extensions of
those traces. The canonical semantics of CSP is given by the failures-divergences
model; it represents a process by the two sets ( ) and ( ).

Here, we assume that specifications and systems are divergence free. A diver-
gent specification is necessarily a mistake. Also, when testing, divergences raise
problems of observability; generally, it is not possible to distinguish a divergent
from a deadlocked system using testing. Therefore, we identify divergence with
deadlock in the models of the systems under test, so that the models are diver-
gence free; most authors circumvent the problem of observability in this way.
If the system under test is divergent, the divergence is detected as a (probably
forbidden) deadlock and reported as such by the verdict of the tests.

We consider two refinement relations between CSP processes: traces and fail-
ures refinement. A process is trace-refined by a process , that is 	T , if,
and only if, ( ) ⊆ ( ). For failures refinement, 	F , we require
that ( ) ⊆ ( ), that is, refines with respect to failures if,
and only if, all its possible traces are traces of , and may refuse a set of
events and deadlock after a trace only if may.

The first refinement relation is restrictive: it states that there are no observable
behaviours of the refined process that are not behaviours of the original process.
It accepts the idle process as a trace refinement of any other process.
The second refinement relation is still restrictive on traces, but prescriptive on
acceptances: it states that the refined process can only refuse to do something
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when the original process may refuse the same thing in the same situation. In
this case, there are forbidden behaviours and mandatory behaviours.

For divergence-free processes, failures refinement as described above corre-
sponds to the refinement relation in the canonical model of CSP: failures-
divergences refinement, which is defined as follows.

	FD =̂ ( ) ⊆ ( ) ∧ ( ) ⊆ ( )

In CSP, failures refinement is defined for the stable-failures model, and not for
the failures-divergences model as above. In the stable-failures model, a process is
represented by its set of traces and its set of failures, that is, we have a separate
record of the traces, independent of the failures. This is because, in this model,
failures are only recorded for stable states, so that traces that lead to divergence
are not in any of the failures. For the stable-failures model, failures refinement
requires subset inclusion of both traces and failures.

In the absence of divergence, however, the failures in the stable-failures model
are exactly those of the failures-divergences model, which contain a failure for
all traces of the process [26, page 215]. In this case, failures inclusion, as re-
quired above in our definition of failures refinement, implies traces inclusion. In
summary, for divergence-free processes, our definition of failures refinement is
equivalent to the standard definition of failures refinement in CSP.

Furthermore, since the set of divergences of divergence-free processes are
empty, failures-divergences refinement corresponds to failures refinement. In
summary, our definition of failures refinement is the notion of refinement in
the canonical model of CSP, when we are restricted to divergence-free processes.

3 Process-Algebra Based Testing

Given a specification and a system under test ( ), any testing activity
is, explicitly or not, based on a satisfaction relation (also called conformance
relation): . The subject of the test is an executable system. A system
is a dynamic entity. It raises tricky issues such as observability and controllability,
and is sometimes submitted to peculiar physical constraints. The only way to
observe it is to interact via some specific (and often limited) interface.

To test a system against a process specification, we need tests (more exactly
tester processes) built on the same alphabet of events as the specification (pos-
sibly enriched by some special symbols). The execution of a given test consists
in running it and the in parallel.

The verdict about the success or not of a test execution depends on the ob-
servations that can be made, and it is based on the satisfaction relation. Most
testing methods based on process algebras consider that two kinds of observa-
tions are possible: external events, and deadlock (that is, refusal of some external
events). Deadlock is observed via time-out mechanisms: it is assumed that if the

does not react after a given time limit, it is blocked.
The tests are derived from the specification on the basis of the satisfaction

relation, and often on the basis of some additional knowledge of the and
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of its operational environment called testability hypothesis. One advantage of
such a formal framework is that it makes it possible to define test sets that are
unbiased and valid: they accept any satisfying the specification and the
testability hypothesis, and they reject any that does not. Such test sets are
called exhaustive in [12] or complete by other authors [3].

Exhaustive test sets are often infinite, or too large to be used in practice, but
they are used as references for selecting finite, practical, test subsets according
to a variety of criteria, such as additional hypotheses on the [1], coverage
of the specification [6,17], or test purposes [10].

4 Testing Versus Refinement: Testability Hypotheses

Work on testing processes is traditionally based on labelled transition systems
or finite state machines. To recast these results for CSP, the obvious route is to
consider its operational semantics. However, there is a formal link between the
operational and the denotational semantics of CSP. The main concepts usually
associated with the operational semantics, like sets of initials and refusals, are
also defined in terms of the denotational semantics.

This is most convenient to establish a relationship between testing and refine-
ment. The definitions of refinement based on the denotational semantics are very
simple: just subset inclusion, as presented above. It is fortunate that we are able
to discuss testing notions based on the usual operational notions, but that we
have a clear link to the denotational semantics. This simplifies the proofs, and
allows for a formal algebraic style. When considering test criteria and test selec-
tion, though, it is necessary to refer to the operational semantics. For instance,
the most popular selection criterion is transition coverage: explicit notions of
states and transitions are needed to formulate it.

The refinement relations presented in Section 2.2 are natural candidates for
CSP-based testing. They are, however, relations between process, and the

is not a process. A classical way of overcoming this difficulty is to
assume that the behaves like some unknown process; this is our
first testability hypothesis. With this assumption, we can then require that this
process is a refinement of the specification. We define that a system
behaves like a CSP process to mean that, in any environment, running
or running yields the same set of observations. If and were both CSP
processes, then behavioural equivalence would be characterised as refinement in
both directions, but is not a CSP process; it is a system.

In more detail, if CSP denotes the unknown process that behaves
as the , we can consider the satisfaction relation 	F CSP based
on failures refinement. In the sequel, we write instead of CSP when
there is no ambiguity. The use of failures refinement as a satisfaction relation has
been studied in different frameworks, with various names and notations since the
original definition of testing equivalence in [21]; testing preorder, failure preorder,
≤te , , are examples of the terminology that has been adopted.
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The testability hypothesis requires that events of the specification abstract
operations are perceived as atomic and of irrelevant duration in the . It is
necessary to ensure in some way that this requirement is fulfilled, for example,
by developing wrappers, or performing some complementary proofs or tests.

It is interesting to note that, similarly, testing methods based on Finite State
Machine (FSM) descriptions assume that the behaves as an FSM with the
same number of states as the specification, or a known number of states [17].
Likewise, methods based on IO-automata or IO-Transition Systems assume that
the behaves as an IO-automata: it is input-enabled, that is, always ready
to accept any input [31]. Analogously, methods based on algebraic specifications
assume that the behaves as a many-sorted algebra [1].

Our second testability hypothesis is related to nondeterminism in the
and its influence on the verdict after test executions. This hypothesis, sometimes
called the complete testing assumption, postulates that there is some known
integer such that, if a test experiment is performed times, then all possible
behaviours are observed. The issue of the number of test executions is a classical
problem in black-box testing of nondeterministic systems. Its choice is generally
based on empirical knowledge of the system, as, for example, its level of internal
parallelism that may give rise to nondeterminism, and the length of the test.
Without such hypotheses, it is hopeless to get a meaningful conclusion after a
test campaign. For some hints, see [13], and for recent variants, see [15].

An example is an that reads the system , and based on whether
the time is an odd or an even number, performs the or . Using the first
testability hypothesis, we assume that it behaves like the CSP process below.

= ? → if ( ) then ( → ) else ( → )

If we cannot observe the , then the behaviour of the is more accurately
described by the CSP process \ {| |}, which, using the algebraic
laws of CSP, we can show to be equal, in the failures-divergences model, to
the nondeterministic process → � → . Such does
not satisfy, according to the semantics of nondeterminism in CSP, our second
testability hypothesis: no that behaves like a nondeterministic CSP process
does, since nondeterminism in CSP is modelled as a completely arbitrary choice,
with no guarantee of balanced behaviour for any value of . Extra knowledge of
the performance of the , and of the system , however, may allow us
to conclude that, if the system is executed, for instance, sixty times in a single
minute, it is guaranteed to read an even and an odd time at least once.

Such considerations are beyond what we aim at formalising in this paper.
For the above example, for instance, we can say that \ {| |} is
not an accurate model of the . The extra knowledge of the performance
of the and of the clock means that we know that it actually behaves like
a deterministic, in the sense of CSP, process whose description requires the
formalisation of a notion of time, and properties of the clock. In other words,
we accept the restriction imposed by the second testability hypothesis that, in
the CSP sense, the is deterministic, but point out that determinism may
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come from the observation of events that are not necessarily expected to be in
the alphabet of the specification. In our example, these events are, for instance,
the passage of time and the system clock.

These considerations are not relevant for works based, for example, on finite
state machines, where nondeterminism is not necessarily arbitrary. In CSP, non-
determinism captures a notion of abstraction relevant for system development,
and, therefore, refinement. If there is any factor that allows us to make any con-
clusion about the balance of nondeterministic behaviour, this means that, in the
CSP sense, the system is not really nondeterministic.

5 Tests and Exhaustive Test Sets

Failures refinement can be expressed in terms of traces refinement and a well-
studied satisfaction relation [3]: the conformance relation (cf. Proposi-
tion 3.13.1 in [30]). For CSP processes and , can be defined as follows.

=̂ ∀ : ( ) ∩ ( ) • ( , ) ⊆ ( , )
where ( , ) =̂ { | ( , ) ∈ ( ) }

The above definition of ( , ) is compatible with the definition of ( )
in CSP, for the process / [26, pages 94,197].

The following theorem establishes the relationship between failure refinement,
traces refinement, and ; its simple proof is in [5].

Theorem 1. ( 	F ) ⇔ ( 	T ∧ )
This theorem justifies the suggestion in [30] that traces refinement and
can be checked separately. In this section we first study how to test a system
with respect to traces refinement (that is, trace containment), and then address
testing against (that is, refusal containment). These two kinds of testing
are suitable for the detection of different types of faults. Testing against traces
refinement makes it possible to detect forbidden behaviours, and testing against

makes it possible to detect forbidden deadlocks.

5.1 Testing Against Traces Refinement

Since trace refinement prescribes that ( ) ⊆ ( ), but not the
reverse, a testing strategy does not need to test that a can execute the
traces of . It is sufficient to test it against those traces in α( )�∗ that are
not traces of and to check that they are refused. Moreover, it is sufficient to
consider the minimal prefixes of forbidden traces that are forbidden themselves.
For example, if after a trace , the event is forbidden, then , and ,
for example, are also forbidden, but we only need to consider . On the other
hand, if is also forbidden, we also check that it is refused.

Formally, we define a test set that proposes to the the following traces.

{ � 〈 〉 | ∈ ( ) ∧ /∈ ( / )}
For one test execution, the verdict is as follows. If the trace , followed by a
deadlock is observed, then the test execution is said to be a success. If �
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is observed, we have a failure. If a strict prefix of followed by a deadlock
is observed, then the test execution is inconclusive; the trace has not been
executed by the , and this is acceptable for traces refinement.

As mentioned in Section 4, if the is nondeterministic, then several exe-
cutions of the same test must be performed and a global verdict is reached based
on such a set of executions. When the is known to be deterministic, there
is no need for several executions of any of the tests, and the passes a test
as soon as the verdict is either successful or inconclusive, and not a failure.

When the is nondeterministic, the following global verdict for several
executions of the same test is recorded. If there is one execution with a failure
verdict, the does not pass the test. If for all the test executions the verdict
is either success or inconclusive, the passes the test.

The idea of basing the test set on the pairs ( , ) where ∈ ( ) and
/∈ ( / ) is inspired by the work of Peleska and Siegel [24], where it

is proved that based on this set of pairs, it is possible to detect all violations of
traces refinement, and that this is the minimal set of pairs with this property.
The notions of test and verdict that we present below, however, are slightly
different, and also, we give an algebraic proof of the exhaustivity of the test set.

As mentioned in Section 3, a test execution is a run of the and a test
process in parallel; we describe this in CSP as ( |[ α ]| )\α . The
synchronisation set, which is the interface of the system as defined in the specifi-
cation, is hidden; so, the external events of are internal in a test execution.
This means that synchronisation between the and the test proceeds imme-
diately, and cannot be affected by the test execution environment.

On the other hand, this also means that direct observation of traces is not
possible in such test executions. Thus, we introduce three special events, ,

, and , in the alphabet of the test in order to perform on-the-fly verdict.
Using these events, we have a very direct characterisation in CSP of the verdict
of a single test execution as described above.

For a finite trace = 1, 2, . . . , n and an event , we define a test
process T ( , ) as → 1 → . . . → n → → → → .
Formally, we can describe it as shown below.

T (〈 〉, ) = → → →
T (〈� 〉, ) = → → →
T (〈 〉� , ) = → → T ( , )

Extending with is supposed to lead to an invalid trace; and the test aims at
ruling it out. The event �, it if happens, is final [26, page 143], and only marks
termination. So, no event should occur after it.

The execution of a test for a given , against a specification , is
described by the process below.

SP
SUT ( ) = ( |[ α ]| )\α

The verdict is given by the last event observed ( , , or ) before deadlock.
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Depending on the precision required for the verdict and on some knowledge of
the , it is possible in some cases to use only one or two events among ,

, and . If the is deterministic, for instance, there are no inconclusive
verdicts, and can be eliminated. In fact, in our case, since we are testing for
absence of forbidden traces, we can eliminate in this way. If any prefix of a
tested trace is observed, the test is successful (due to the prefix closure of the
sets of traces and the definition of trace refinement). Our use of the three events,
however, gives a direct model of verdict for a single test execution.

We now define an exhaustive test set for trace refinement.

T ( ) = { T ( , ) | ∈ ( ) ∧ /∈ ( / ) }
Testing of termination is covered because it is signalled by the event � that is
explicitly included in the traces. As an example, we consider the process 2
from Section 1. The set T ( 2) contains the following tests.

T (〈 〉, ) = → → →
T (〈 , 〉, ) = → → → → → → →
T (〈 , 〉, ) = → → → → → → →
T (〈 , , , 〉, ) =

→ → → → → → → → → → →
T (〈 , , , 〉, ) = . . .

This is, of course, an infinite set since the set ( 2) is infinite.
The next theorem establishes that an that does not fail any of the tests

in T ( ) is a traces refinement of . Its proof can be found in [5]. For
a trace , we use ( ) to refer to its last event.

Theorem 2 (Exhaustivity of T ).
	T

∀ T ( , ) : T ( ); : ( SP
SUT ( T ( , ))) • ( ) �=

As mentioned in Section 3, on the basis of this exhaustive test set, it is possible
to design selection and optimisation strategies for getting finite test sets.

5.2 Testing Against Refusals

In this section we address the problem of testing whether an behaves as
a process CSP that satisfies CSP . The definition of
requires us to check that, after performing one of their common traces, the
failures of are failures of as well. For that we check that, after every
trace of , the cannot refuse all events in a set accepted by .

This is achieved by executing the test described by the process corre-
sponding to the trace followed by an external choice among the events in .
Basically, a test execution proposes to the the traces of the CSP process
; (� ∈ • → ) where ∈ ( ) and ( , ) /∈ ( ). The

verdict of one execution of such a test is as follows. If , followed by a deadlock is
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observed, the test execution is said to be a failure. If a trace � , with ∈
is observed the result of the test is said to be a success. If a strict prefix of
followed by a deadlock is observed, the test execution is said to be inconclusive;
the trace has not been executed by the during this test execution.

Using the same events , , and that modelled the verdict of test
executions concerned with traces refinement, we define the test for a trace

= 1, 2, . . . , n of and a set such that ( , ) /∈ ( ), or in
other words, /∈ ( , ) as follows.

F ( , ) = → 1→ → 2→ . . . n→ →(� ∈ • → → )

It can be formally defined as follows.

F (〈 〉, ) = → (� ∈ • → → )
F (〈 〉 � , ) = → → F ( , )

Termination is not a special case here: every set is refused after a trace ending
by �. If ends in �, then there is no that does not belong to the failures of

[26, page 192], and so we do not need to define (〈�〉, ).
When the is nondeterministic, the global verdict for several executions

of the same test is just as before. If there is one execution with a failure ver-
dict, the does not pass the test. If for all the test executions the verdict
is either success or inconclusive, it passes the test. However, it is not neces-
sary to consider all these tests because as soon as ( , ) /∈ ( ), then
∀ ′ ⊃ • ( , ′) /∈ ( ). If the passes the test for , it will in
principle pass the test for ′; the only concern would be with nondeterminism.
On the other hand, if the fails the test for , it may pass the test for ′,
which offers more choices, but a problem has already been identified.

Thus for each trace , it is sufficient to consider a subset of the sets ′ such
that ( , ′) are not in ( ); namely we consider the set As of sets

1, . . . , m of events such that for all i , ( , i) /∈ ( ), and for all
( , ) /∈ ( ) there is i ∈ As such that ⊇ i . These are the mini-
mal acceptance sets of . In the case of a deadlock, there is no such that
( , ) /∈ ( ), and in this case As is empty. Precisely, we propose the
following exhaustive minimal test set for refusal containment.

conf ( ) = { F ( , ) | ∈ ( ) ∧ ∈ As}
where As = ⊆({ | ( , ) /∈ ( ) }). For a set S of sets, we define

⊆(S) = { | ∈ S ∧ ¬ ∃ ′ • ′ ∈ S ∧ ′ ⊂ }.
For the process 2, we have the following minimal acceptances.

For 〈 〉, we have { }
For 〈 〉, we have { }, { }
For 〈 , 〉, we have { }
For 〈 , 〉, we have { }
For 〈 , , 〉, we have { }, { } . . .

For each trace, there can be several refusal sets, and similarly, several sets of
minimal acceptances. In the exhaustive test set, we have the following tests.
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F (〈 〉, { }) = → → →
F (〈 〉, { }) = → → → → →
F (〈 〉, { }) = → → → → →
F (〈 , 〉, { }) = → → → → → → →
F (〈 , 〉, { }) = → → → → → → →
F (〈 , , 〉, { }) =

→ → → → → → → → →
F (〈 , , 〉, { }) =

→ → → → → → → → →
. . .

The exhaustive test set is enough to establish conformance: an for which
none of the test executions deadlock after a is in conformance with
according to ; a proof is found in [5].

Theorem 3 (Exhaustivity of conf ).
( )

∀ F ( , ) : conf ( ); ( , ) : ( SP
SUT ( F ( , ))) •

( ) �= ∨ �= { , , }

This theorem is similar, up to the notation, to Proposition 4.5, proved by Tret-
mans in [30, page 85]. The main difference there is that ( / ) was added
to the minimal set of acceptance sets for technical reasons: the test set was de-
fined by induction, starting from the empty trace, and all the successors of the
state before the last one must appear at each induction step in order to get all
the traces at the next step.

There is also a similar result by Peleska and Siegel in [24], with a rather
different formulation of the sets of acceptance sets to be considered. In their
theoretical work, deadlock observations are characterised in terms of maximal
traces. This is not accurate for nondeterministic systems, since in the traces
model a prefix of a maximal trace may be included just because it is a prefix of
a possible trace, or because the system may deadlock after that prefix. It is well
known that the traces model is not enough to characterise failures. In practice,
one uses timeout to conclude that there is a deadlock, but in the theoretical
work, this must be expressed in terms of the failures model. In the test derivation
method that has been applied to several industrial systems [25], though, Peleska
and Siegel handle deadlock adequately.

5.3 Running Tests Against Systems

The two last theorems are about CSP processes, namely a specification , an
unknown process CSP such that the system under test behaves like it, and
some tests. They state some equivalence between, on the one hand, a confor-
mance relation between and CSP , and, on the other hand, some prop-
erties of the traces of the parallel composition of CSP with the tests. These
theorems are fundamental for stating practical properties on testing the .
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In practice, for every test in T and conf , it is trivial to obtain
some tester program (in any suitable language for interacting with the , for
instance TTCN, Concert C, ...), that behaves like the CSP test. When performing
one test experiment of the with the tester program corresponding to a test
, we define that 1 if the verdict as defined in the previous section

is not a failure. Now, from the second testability hypothesis, for any test ,
there is an integer that prescribes the number of experiments that must be
performed with . We define that if there is no failure observed
when performing experiments with . We also define that
when passes all the tests in a test set .

Theorem 2 above allows to say that, under the testability hypotheses, an
passes all the tests of T ( ) if and only if 	T CSP . In a

more mathematical form we have:

=⇒ ( T ( ) ⇔ 	T CSP )

Similarly, Theorem 3 and Theorem 1 allow us to say that under the testability
hypotheses, an passes all the tests of T ( ) and conf ( )
if, and only if, 	F CSP .

=⇒
( T ( ) ∪ conf ( ) ⇔ 	F CSP )

Of course the set of experiments described above, that is, the passing an
exhaustive test set, is not realistic since the test sets are infinite. This leads to
the problem of selecting a finite subsets of these experiments. This can be done
by enriching the hypotheses on the with so-called selection hypotheses,
keeping the same kind of properties as above: under the testability hypotheses
and the selection hypotheses, the passes the selected test set if and only if
it is a refinement of . Some hints on test selection are given later in Section 7.

6 Factorisation

The tests in T can be factorised, taking advantage of the fact that the set
of traces of a process is prefix-closed. This factorisation decreases the number of
inconclusive executions, although it may result in some adaptive tests, originally
called adaptive checking sequences [17]. They were introduced for dealing with a
nondeterministic . Instead of submitting a preset sequence of events to the

, a tree of possible behaviours is submitted to it, allowing a test to follow
and reveal the nondeterministic choices of the .

In the case of traces refinement testing, for a trace , we define a factorised
test SP

T ( ) which, after each of the events of proposes to the an
external choice between the continuation of the trace and those events forbidden
after the prefix of the trace executed so far. It is formally defined as follows, in
terms of the function SP

tr ( , ) that takes as an extra parameter the trace
that has already been executed.
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SP
T ( ) = SP

tr ( , 〈 〉)
SP
tr (〈 〉, ) = SP ( )
SP
tr (〈 〉 � , ) = SP ( ) � → → SP

tr ( , � 〈 〉)
SP ( ) = → � f /∈ ( / ) • f → → ,

provided ( / ) �= ∅
SP ( ) = , otherwise

The function SP ( ) defines the CSP process that proposes all the invalid
extensions of according to .

For 2, we have that C
T (〈 , , , 〉) is the following test.

→ → →
�

→ → → →
⎛
⎝ → → →

�

→ → → → → → →

⎞
⎠

This factorised test subsumes three tests in the set T ( 2), namely,
T (〈 〉, ), T (〈 , 〉, ), and T (〈 , , , 〉, ).
The factorised tests, however, have a problem concerning coverage of be-

haviours, since the choices are no more under the control of the test and can be
biased. For example, in the above factorised test, after the performs the
trace 〈 , 〉, there is a choice between the testing events and that
is left up not to the test, but to the environment of the test execution. It is an
external choice over events that are not in the alphabet of the .

For the non-factorised tests, the environment of a test execution can be a sim-
ple process that is prepared to accept interaction on any of the events , ,
and , at any moment. Even in such a liberal environment, it is guaranteed
that the interaction with the defined by the trace that corresponds to the
test is attempted in the test execution.

If the test is factorised, though, the environment of the test execution is offered
choices between and events, whenever there is a possibility, according
to the specification, of extending the trace or deadlocking. To ensure coverage,
both choices should be tried; in a simple environment like that described above,
there is no such guarantee, and more care is needed in its design.

A related concern arises when there are several possibilities of failure. By way
of illustration, we consider that the alphabet of 2 includes a third event

, which is always refused; the definition of 2 remains that presented
in Section 2. In this case, the factorised test takes the following shape.

→ (( → → ) � ( → → ))
�

→ → . . .

In this case, in the beginning, if the environment of the test execution chooses
to synchronise on , it then has no control over the choice between and
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: these events are not in its alphabet. The test is not making a choice, but
rather offering it to the . If the can perform any of them, the mistake
is going to be detected, but it is not possible to determine which of the mistaken
events are possible, since the is not forced to perform any of them.

If the can perform one of the mistaken events, the test execution will
indicate a , but it will not be clear which of the choices was made; it is a choice
internal to the test execution. If the can perform both and due to
an internal nondeterminism, the second testability hypothesis guarantees that,
after running the factorised test a certain number of times, both nondeterministic
choices will be made, but again the test executions will not indicate when this
has happened. If the offers and in an external choice, in the test
execution, the choice becomes nondeterministic, and even though the testability
hypothesis guarantees that all choices will be made, there is no way, again, of
identifying the reason of the problems that will be indicated.

On the other hand, if the non-factorised tests → → →
and → → → are used instead, given the testability hy-
pothesis, the verdict is more precise. If only one of the mistaken events can be
performed by the , only the test that offers that event will signal a . If
the can perform both and due to an internal nondeterminism,
then the testability hypothesis guarantees that, after running each test a certain
number of times, the nondeterministic behaviour will be revealed. Therefore, the
executions for both tests will reveal a failure, and it will be observed that both
mistakes are possible. If, on the other hand, the can perform both
and due to an external choice, then the individual non-factorised tests will
make the choice and reveal the individual problems straightaway.

An even more factorised test can be defined. The automaton that defines set of
traces of the so-called canonical tester [3] can be visualised as the tree formed by
the traces of decorated at each node by a choice between the forbidden events
after the traces from the root to the node. Such events lead to a failure verdict
followed by . In this case, there is no need for an inconclusive verdict, but
the problem of coverage discussed above arises also with valid continuations of
the trace. In this case, not only the environment cannot control the initial choice
of mistaken events that are to be tried, that is, the choice between and ,
but it also cannot control whether the initial valid traces to be attempted are
〈 , 〉 or 〈 , 〉, for example.

For this reason, the factorisation that we propose above is not the canonical
tester. It provides some optimisation, in that it joins all the tests based on traces
that are associated by the prefix relation, but it does not joint all the tests.

Several authors [3,30,24] have studied the minimisation and factorisation of
the exhaustive test set for the relation. Brinksma in [3], and later on
Tretmans in [30], provide some ways of building some canonical tester, that
is, some nondeterministic tester process whose behaviour contains all the tests
in conf ( ). The factorisation is less obvious than for traces refinement
since all acceptable sets must be attempted after a given trace. It leads to highly
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nondeterministic testers. In practice, this formulation raises issues of coverage
of the test set, as discussed above for T ( ).

7 Test Selection and Derivation

A testing strategy can be formalised as a way of selecting some finite subset
of an exhaustive test set. The choice of such a strategy corresponds to stronger
hypotheses on the system under test than the testability hypotheses discussed in
Section 4. Such hypotheses are called selection hypotheses in [1]. Weak selection
hypotheses lead to large test sets. Strong selection hypotheses lead to smaller,
more practicable test sets, with the risk that they may not be fulfilled.

Various selection hypotheses can be formulated and combined depending on
some knowledge of the program, some coverage criteria of the specification and
ultimately cost considerations. For instance, a regularity hypothesis uses a size
function on the tests and has the form, for a given exhaustive test set: “ if the
subset of the exhaustive test set made up of all the tests of size less than or equal
to a given limit is passed, then the exhaustive test set is as well”.

For T and conf , an obvious candidate for a size function on
tests such as T ( , ) and F ( , ) is the length of the trace . Given the
precise way in which these tests are specified in subsections 5.1 and 5.2, it is
straightforward to implement test generators corresponding to these selection
hypotheses. It must be noted, however, that regularity hypotheses are not always
a good choice in practice. For instance, in [9], Dong and Frankl report cases where
such a strategy failed to detect important faults.

A popular criterion for model-based testing (using finite state machines or
labelled transition systems) is transition coverage. The corresponding selection
hypothesis is a so-called uniformity hypothesis. Such hypotheses are common in
software testing. They assume that the system behaves uniformly on some test
subsets. Thus it is enough to have only one test from each of these subsets.

In the case of transition coverage, it can be reworded as: “if a subset of the ex-
haustive test set that exercises all the transitions is passed, then the exhaustive
test set is as well”. Given a finite model, it is quite feasible to develop a generator
that yields a set of paths satisfying this criteria (see for instance [6,17]). One
justification of this selection hypothesis is that in model-based testing, there is
a testability hypothesis similar to our first one: the behaves like a finite
model. Since such models have no memory, the execution of a transition is inde-
pendent of the way in which it has been reached, and it is sufficient to exercise
it once, checking that the output (if any) is correct, and that the arrival state
in the is equivalent to the arrival state in the model.

The framework that we have developed so far for CSP-based testing is based
on its denotational semantics. As mentioned in Section 4, to consider selection
strategies based on states or transitions, we need to work with the finite labelled
transition systems derived from CSP specifications using its operational seman-
tics. A brute-force way of transposing transition coverage into our framework
could be to select one subset of T (resp., in conf ), such that the
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set of the traces that originate the selected T ( , ) (resp., F ( , )) ensures
the coverage of all the transitions of this labelled transition system.

However, coverage of transitions is not just exercising the transitions, but,
importantly, checking that the arrival state after each transition in the is
a right one: it accepts or refuses events that are compatible with the confor-
mance relation. Here the conformance relations are derived from the notions of
refinement, namely, 	T CSP and CSP . These relations rely
on traces, as they appear in the form of the tests, in both cases. In our test-
ing approach, these traces correspond to full paths from the initial state, and
transitions are not considered individually. Thus it is not clear that transition
coverage is an adequate selection criteria for the approach of CSP-based testing
that is presented here. Starting from the exhaustive test sets we have defined,
new uniformity hypotheses must be investigated in order to propose pertinent
selection strategies. This is the subject of future work.

8 Inputs and Outputs

So far, we have considered events, with no distinction between inputs and out-
puts. This distinction is extremely important in testing. The choice of inputs is
under the control of the tester. The outputs are under the control of the
and provide the information for stating the verdict.

If we consider again our small example given in Section 2, for
example, we observe that T ( ) contains the following tests.

T (〈 .0〉, .1) = → .0 → → .1 → →
T (〈 .0〉, .2) = → .0 → → .2 → →
T (〈 .1〉, .0) = → .1 → → .0 → →
T (〈 .0, .0, .0〉, .1) =

→ .0 → .0 → → .0 → → .1 → →
. . .

Instead of inputs or outputs, we have specific events .0, .1, and .2. The same
applies for the tests in conf . We proved that these sets are enough to
indicate mistaken implementations, but this is under our first testability hy-
pothesis: that the can be accurately described as a CSP process. It raises
an issue related to input and output that is not directly captured in CSP: that
of origin of data communication.

As described in Section 2, in CSP, inputs and outputs are only syntactic sugar
for synchronisations on events with composite names. For example, the process

defined below is not at all different from itself.

= ( ? → ! → ) � ( !0 → !0 → )

We could say that it is a process that, instead of waiting for an input, may decide
to output 0, twice. Its CSP model, however, is exactly as that of , since
!0 → !0 → is a choice already offered by the input.
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If we are concerned with checking that an implementation does not decide to
make progress without duly waiting for input from the environment, this CSP
approach to modelling is not appropriate. In [26, page 302], Roscoe mentions
the possibility of introducing the notion of input and output as a basic concept
in CSP, by making outputs undelayable events, in much the same way that the
termination event � is undelayable. Much of the work on this has been carried
out in the context of security and timed applications.

In particular, Schneider [27] defines “may” and “must” tests in the context
of a partition of events that classifies refusable and non-refusable event, but
also high-level and low-level events, for the purposes of security applications.
Schneider is interested in new conformance relations, rather than refinement,
and on the use of model checking, rather than testing.

An interesting line for future work is the extension of CSP to include delayable
and non-delayable events as suggested in [26], and analyse how results on testing
based on input-output labelled transitions systems [31], and on other similar
formalisms [19], can be cast in this new version of CSP.

By taking inputs and outputs into account, we are likely to be able to factorise
some of the tests that are based on the several traces generated by the implicit
choice associated with a CSP input.

9 Conclusions

In this paper we have established a solid foundation for model-based testing
using CSP. We have characterised the relevant testability hypotheses, and dis-
cussed their consequences. We have concentrated on testing for traces and fail-
ures refinement, but discussed the issues raised by divergence. We have proposed
exhaustive test sets; the algebraic proofs of exhaustiveness are directly based on
the definition of the semantics of CSP. We have considered some possible opti-
misations of our tests, with the observation, however, that optimisations raise
issues of controllability. Finally, we have indicated the challenges imposed by
inputs and outputs, and test selection based on labelled transition systems.

In [25], Peleska and Siegel present a pioneering work on CSP-based testing.
They define and study two extra relations, divergence refinement and robustness.
However, they point out divergent specifications are not very useful, and it is
not clear how they handle divergent implementations. Their test executions do
not hide the events of the specification, and so they allow interference from the
environment in the interaction between the test and the . Their tests use
only one extra event; it characterises success. In the absence of a success, they
do not reveal if the test is inconclusive or a failure. They define may and must
tests; we do not make this distinction because we are able to give an inconclusive
verdict. Using the three events , , and , we have a very direct model
of the verdict. Their definitions of tests are based on traces, but assume the
possibility of infinite traces, as described in the operational semantics. For these,
their tests are not well-defined CSP processes. Since we base our work on the
denotational semantics, we have a natural characterisation of the set of finite
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traces that are relevant for a partial, but widely accepted characterisation of
CSP processes: its canonical failures-divergences model.

The failures-divergences model that we adopt here is in direct correspondence
with the UTP model of CSP processes. We expect to be able to recast our results
in the UTP easily, and pave the way to consider more sophisticated concurrent
languages that include constructs from other programming paradigms. In par-
ticular, we are interested in a combination of CSP and Z [28] that is adequate
for refinement called Circus [23].

The next step in our work plans, however, is the characterisation of test
selection and generation techniques. We plan to use the CSP model checker to
provide some empirical results on test generation and selection that will guide
further work on Circus.
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Abstract. Conformance testing has been extensively studied in the con-
text where the desired behavior of the implementation under test is mod-
eled in terms of finite state machines. An essential issue in FSM-based
conformance testing is to generate from a given finite state machine a
test sequence that is both effective in detecting the faults in the imple-
mentation under test and efficient in terms of its length. In this paper,
we consider test sequences satisfying the test criterion of the U-method
as they have been proved to have high fault detectability. We present our
solution to reduce the length of such a test sequence by maximizing the
overlap among the test segments through the use of invertible sequences.

Keywords: conformance testing, finite state machine, test sequence,
UIO sequence.

1 Introduction

Conformance testing has been a great helper for us to gain enough confidence in
the correctness of our final software products with respect to the expectation. In
most of the cases, the (IUT) is in the sense
that it reacts differently (e.g. by giving different outputs) to the same input
provided at different time of the execution. To conduct conformance testing, we
assume that we have the formal description of our expectation in terms of some
structural models such as (input/output) , and

. Such models are suitable for specifying the ex-
pected behavior of the IUT at different during the execution. We adopt
here FSM specification for the IUT. Different from the formal verification ap-
proach, the IUT is treated here as a from which we can only observe
its input/output behavior.

One of the challenging issues in FSM-based conformance testing is how to
generate an efficient and effective input/output sequence from a given FSM
specification. Various approaches have been explored in this regard according to
different test criteria: we generate from the specification FSM input sequences
called either as in the T-method [1] and the U-method [2,3,4] or

as in the D-method [5,6,7] and the W-method [8]. See [9,10]
for comprehensive surveys on this topic.

M. Butler, M. Hinchey, M.M. Larrondo-Petrie (Eds.): ICFEM 2007, LNCS 4789, pp. 171–190, 2007.
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According to the T-method [1], the corresponding path of the generated test
sequence in the specification FSM M should contain each transition in M at least
once. Although most of the time the T-method yields a test sequence of much
shorter length compared to those generated by other methods, it does not have
a good fault detection capability [11]. The most rigorous criterion is expressed
in as used in the W-method [8] and the D-method [5,6,7].
Under certain circumstances, a checking sequence can distinguish M from any
implementation FSM not equivalent to M . The high price for it is a much longer
length of the checking sequence.

As a compromise between the above two approaches, the U-method (see e.g.
[2,3,4]) turns out to be a popular choice. According to the U-method , the corre-
sponding path of the generated test sequence in the specification FSM M should
contain each transition in M with only its ending state in the implementation
FSM . Unlike a checking sequence, such a test sequence does not have
full support for fault coverage. However, it has a much shorter length compared
to a checking sequence and the study of [11,12] shows that its effectiveness in
detecting faults in the IUT is quite satisfactory.

To a state s in the implementation FSM, we usually apply to the IUT
an input sequence called s which, according to the specifica-
tion FSM, should produce an output sequence that is unique among all output
sequences we observe when we apply this input sequence to different states of
the IUT. A of transition t is t followed by a path in this FSM
induced by applying a UIO sequence of the ending state s of t at s in order
to verify this state in the implementation FSM. Thus, the path induced by ap-
plying U-sequence [13], i.e., a test sequence satisfying the test criterion in the
U-method, should contain at least one test segment of transition t for all t in M
[2,3,4,14,15,16].

Traditionally, U-sequence generation was achieved by generating one or multi-
ple UIO sequences for each state and simply connecting each test segment using
some so called . This method has been greatly improved with
the observation that one test segment ρ of transition t may be used to verify the
ending state s of another transition t′ via some possibly empty transfer sequence
ρ′ (from s to the starting state of ρ). The appearance of these choices of test
segments introduces additional overlap among test segments, which very often
leads to possible U-sequences of shorter length. Here, the transfer sequence ρ′

concatenated by t should be an [15] in the sense that there
is no other transition sequence ending at the ending state of t with the same
input/output sequence as that of ρ′ concatenated by t.

The optimization problem of generating a minimal-length U-sequence or check-
ing sequence from a given specification FSM is very hard in general. Much of exist-
ing work reduces this problem to the [2,7,17,18,19].
This is based on the fact that quite some sophisticated heuristics for solving CPP
have been proposed in the literature (see e.g. [20]).

Suppose we are given a UIO sequence for each state of the specification FSM.
In this paper, we consider the problem of reducing the lengths of U-sequences
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by making use of invertible sequences to maximize the overlaps among the test
segments. Our solution is, again, obtained by reducing the problem to RPP. Our
experimental results show that the proposed method outperforms the existing
work in the literature.

Similar to many other pieces of research work in this field, the results presented
here apply only to specifications given in FSMs. Consequently, the
testing technique is developed for and on those
implementations executed by a single thread/process and for on each
sequentially executed component of a distributed system.

The rest of the paper is organized as follows. Section 2 gives the terminology
and notation used in this paper followed by an example. In Section 3, we give
a brief literature review on recent improvements on U-sequence generation via
the overlap among test segments. This leads to our problem description and the
proposed method. In Section 4 and 5, we present a polynomial-time algorithm for
finding minimal-length invertible sequences and an optimal solution for finding a
minimal-length proximate test path. Then we compare our work with the other
approaches in the literature on the optimization problem of generating minimal-
length U-sequences (Section 6). In Section 7, we present our experimental results,
and in Section 8, we compare the present work with a broader range of related
work. This is followed by our conclusion in Section 9.

2 Preliminaries

In this section, we introduce terminology and notation on FSMs and digraphs,
together with an example.

2.1 n-Port Finite State Machines

FSMs have been widely used to model sequential circuits, lexical analysis sys-
tems, communications protocols, and more generally, distributed systems. The
definition of FSM has been generalized into n-port FSM to describe the abstract
behavior of distributed systems with n different called .

An n (simply called FSM below) is defined as M =
(S, X , Y , δ, λ, s0) where

– S is a finite set of states of M ;
– s0 ∈ S is the initial state of M ;
– X =

⋃n
i=1 Xi, where Xi is the input alphabet of port i, and for simplicity,

we assume that Xi ∩ Xj = ∅ for i, j ∈ {1, 2, . . . , n}, i �= j;
– Y =

∏n
i=1(Yi ∪{−}), where Yi is the output alphabet of port i, and − means

null output;
– δ is a transition function that maps S × X to S, i.e., δ: S × X → S;
– λ is an output function that maps S × X to Y , i.e., λ: S × X → Y .

Note that each y ∈ Y is a vector of outputs, i.e., y = 〈y1, y2, . . . , yn〉 where
yi ∈ Yi ∪ {−} for i ∈ {1, 2, . . . , n}.
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We extend and of the transition function δ
and output function λ to as follows: For input x1, . . . , xk ∈ X , out-
put y1, . . . , yk ∈ Y , and s1, . . . , sk+1 ∈ S, if λ(si, xi) = yi and δ(si, xi) = si+1
for i ∈ [1, k], then λ(s1, x1 . . . xk) = y1 . . . yk, δ(s1, x1 . . . xk) = sk+1.

A of an FSM is a triplet t = (si, sj , x/y), where si, sj ∈ S, x ∈ X ,
and y ∈ Y such that δ(si, x) = sj , and λ(si, x) = y. si and sj are called the

and the of t respectively. The input/output pair x/y
is called the of the transition. By definition, an FSM M is .

We keep the “slow environment” assumption used in the literature. That is,
whenever an input reaches the system, the system will always prompt the output
for it before the second input can reach the system. Furthermore, the inputs and
the outputs are abstract symbols. The discussions on data types and complicate
data structures in the inputs and outputs are beyond the scope of this paper.

We will use standard definitions of and on FSMs. The
label of a path ρ, denoted as (ρ), is the sequence of input/output pairs
of the transitions in ρ. Let ρ = t1t2 . . . tk (k ≥ 1) be a tour. We say ρ′ =
tj , . . . , tk, t1, . . . , tj−1 is a path obtained by ρ at tj such that ρ′

with transition tj , and with transition tj−1.
When ρ �= ε, we use (ρ) and (ρ) to denote the starting state of ρ and

the ending state of ρ respectively. Also, we use (ρ) to denote the
of the concatenated labels of ρ.

Let χ = x1 . . . xk be an input sequence. ρ = (s, δ(χ), χ/λ(s, χ)) is a path
χ s ∈ S.

Let ρ1, ρ2 be two paths in M . When (ρ1) and (ρ2) are the same state,
we use ρ1ρ2 to denote the of ρ1 and ρ2. For clarity, sometimes we
also use ρ1@ρ2 for ρ1ρ2. If ρ = ρ1@ρ2@ρ3, we say ρ2 is ρ, denoted
as ρ2 ∈ ρ, where ρ1, ρ3 might be null path. Similarly, we use σ1@σ2 or σ1σ2 to
represent the concatenation of σ1 and σ2 when they are both input sequences or
both input/output sequences.

Let ρ1 and ρ2 be two paths, and ρ the (maximum) common part of the suffix
of ρ1 and the prefix of ρ2. When ρ �= ε, there is an between ρ1 and ρ2.
More precisely, we say ρ1 ρ2.

Like in quite some other work on FSM-based conformance testing, we assume
that the given specification FSM M is minimal. Given an FSM M = (S, X ,
Y , δ, λ, s0), a UIO sequence of a state s is an input sequence such that the
corresponding output sequence obtained by applying this input sequence at s in
M is unique from those obtained by applying this input sequence at any other
state. We use i to denote the UIO sequence for state si.

Most of the algorithms for test sequence generation are based on some well-
known algorithms in graph theory applied to the directed graph of a given FSM:
Each FSM M has a graph representation G = (V, E), in which a state of M is
represented by a vertex of V and a transition of M is represented by an edge of
E. We use GM to denote the graph representation of FSM M , where state si is
represented by vertex vi, and transition from si to sj with input x and output
y is represented by edge (vi, vj , x/y).
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The from vertex vi to vertex vj in G is the length of a short-
est walk from vi to vj . The of G is the longest distance in G, i.e.,
max{distance(vi, vj) | vi, vj ∈ V }. An FSM M is if the
digraph that represents M is strongly connected. Given a strongly connected
graph G = (V, E), a of G is a tour which contains every edge of
E at least once. The is to find the minimum-
cost Postman Tour in a strongly connected digraph. Given a strongly connected
G = (V, E) and E1 ⊆ E, a is a tour which contains each
edge in E1 at least once. The is to find
a Rural Postman Tour with minimum cost. CPP has a polynomial time solution
while RPP is in general NP-hard. We will present our results in terms of strongly
connected FSMs. A brief discussion on how to apply the proposed method to
general FSMs is given in the Conclusion.

2.2 An Example

As an example, we present here a protocol for establishing service connection,
which is commonly used in peer-to-peer systems. In this protocol, any partici-
pant, upon receiving a request from its user, can initiate a connection with any
other peer participant by issuing a . The connection will not be
established until the confirmations from all peer participants are received. Each
confirmation represents the permission from another participant. For simplicity,
we consider such a protocol with two participants.

Note that the can be issued concurrently by both partic-
ipants. That is, the two participants may issue the requests at about the same
time. Consequently, it is possible that each participant receives a

from the other participant right after it has sent out its own request and
yet before it receives the confirmation from its partner. In this case, in order to
establish a connection, each participant should respond to the request from its
partner as well as receive the confirmation from its partner for its own request.

The specification FSM M0 = (S, X, Y, δ, λ, s0) of a participant in this protocol
is shown in Figure 1. M0 has two ports: U and L. Port U represents the interface
of the participant with the external users of the service; and port L represents the
interface of the participant with the other participant. To distinguish the service
primitives at different ports, we explicitly associate the source or destination
of the messages to the symbolic representations of these messages. The service
primitives and their symbolic representations for each participant in this protocol
are listed below.

– : user’s intension for establishing a service connection;
– : message to request the partner to establish connection;
– : response from the partner for service connection;
– : confirmation of the service connection to the user;
– : request from the partner for service connection;
– : request for the user’s permission for service connection;
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0s

1s

2s

3s

t1: IntFromU/
<-,ReqToL>

t8: RspFromL/
<ConfToU,->

t3: ReqFromL/
<PerReqToU,->

t14: PerRspFromU/
<-, ConfToL>

t12: RspFromL/
<ConfToU,->

4s

t10: PerRspFromU/
<-, ConfToL>t20: RspFromL/

<ConfToU,->

t6: PerRspFromU/
<-,->

t13: IntFromU/<-,->

t17: IntFromU/<-,->

t4: RspFromL/<-,->

t9:IntFromU
/<-,->

t16: RspFromL/<-,->

t18: PerRspFromU/<-,->

t5: IntFromU/<-,->

t2: PerRspFromU/<-,->

t7: ReqFromL/
<PerReqToU,->

t11: ReqFromL/<-,->

t19: ReqFromL/<-,->

t15: ReqFromL/<-,->

S = { s0, s1, s2, s3, s4 };
X1 = { IntFromU, PerRspFromU }; 
Y1 = { ConfToU, PerReqToU };
X2 = { ReqFromL, RspFromL }; 
Y2 = { ConfToL, ReqToL }. 

Fig. 1. FSM M0 of the connection establishment protocol for one participant

– : user’s permission for a service connection;
– : confirmation of the service connection to the partner.

The input and output alphabet at port U is X1 and Y1, respectively; and the
input and output alphabet at port L is X2 and Y2, respectively.

Suppose process A is a participant of this connection establishment proto-
col modeled by M0. I/O pair 〈 〉 means that upon receipt
of message , A will send a request to its partner for the connec-
tion establishment. I/O pair 〈 〉 represents that when
A receives message , it will send a request to its user asking for
permission.

Table 1 shows the shortest UIO sequences for each state.
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Table 1. UIO sequences for each states in M0

states UIO sequence

s0 IntFromU

s1 ReqFromL @ RspFromL

s2 RspFromL @ PerRspFromU

s3 PerRspFromU @ RspFromL

s4 ReqFromL @ RspFromL @ PerRspFromU

3 Problem Description

Suppose that we have a UIO sequence for each state of an FSM M . As we
mentioned in the Introduction, a for a transition t = (si, sj , x/y)
of M is a path obtained by concatenating t and the path ρ by applying
a UIO sequence of sj at sj . This path ρ is used to the ending state of t
in the implementation FSM. A test sequence is a if it is the input
portion of a path that contains the test segments of all the transitions in M . The
optimization problem of generating a minimal-length U-sequence is reduced in
general to the RPP [2] by connecting test segments using .

A more recent result along this approach makes use of the
in the specification FSM. The notion of was first introduced
in [14]1. A transition (si, sj , x/y) is if it is the only transition entering
state sj with input x and output y. In the example FSM M0, t1, t2, t3 are
invertible transitions while t8 and t20 are not because both t8 and t20 end at s0
with the same label RspFromL/〈ConfToU, −〉.

The existence of invertible transitions in existing protocol descriptions has
been the major source of the recent success in reducing the lengths of the gen-
erated U-sequences. This is based on the following observation ([3,14]):

A) If t is an invertible transition and i is a UIO sequence of (t), then
the input sequence (t)@ i is a UIO sequence for (t).

Suppose that t is an invertible transition, and tσ is a test segment for t in the
sense that σ is a path induced by applying the UIO sequence of state (t) at

(t). Now if t′ is a transition adjacent to t (i.e. (t′) = (t)), then path
t′tσ is a test segment for t′. As t′tσ contains test segments for both t′ and t, we
say there is an overlap between test segment t′tσ and test segment tσ. By using
invertible transitions, the overlap between test segments is increased. It follows
that the length of the generated U-sequence can be reduced.

Some heuristic algorithms have been proposed in [3,14] to maximize the use of
invertible transitions to reduce the lengths of the U-sequences. In doing so, the
notion of is extended to that of [15]. A
path ρ is an if it is the only path with label (ρ) that ends

1 A similar notion called non-converging edge was defined on the digraphs that repre-
sent the FSMs ([3]).
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at (ρ). That is, for any path ρ′, (ρ) �= (ρ′) implies (ρ) �= (ρ′)
or (ρ) �= (ρ′). Clearly, when the length of an invertible sequence is 1, it
is actually an .

Similar to A), we have the following result [15]:

A′) If ρ is an invertible sequence and i is a UIO sequence of (ρ), then
the input sequence (ρ)@ i is a UIO sequence of (ρ).

Note that the additional UIO for (ρ) obtained from A′) may be longer
than the given UIO sequence for (ρ). For the example in Figure 1, t10t20
is an invertible sequence ending at s0. We know that 0 = IntFromU and

2 = RspFromL@PerRspFromU . By using invertible sequence t10t20, we
have another UIO sequence for s2:

′
2 = PerRspFromU@RspFromL@IntFromU .

Although this newly found UIO sequence is longer than the given one, it may help
to reduce the length of a U-sequence since the test segment it produced has
an with other test segment(s). Let us use ρi to denote the test segment
formed by concatenating ti and the path induced by applying the originally given
UIO sequence of (ti) at (ti). Consider the two test segments for transitions
t9 and t20 in M0. We have ρ9 = t9t12t14 and ρ20 = t20t1. Using transfer sequence
t1t7t10 to connect these two test segments, we get

ρ = t9t12t14t1t7t10t20t1

which is a path containing both test segments. The length of ρ is 8. If we use
the UIO sequence derived according to A′), one of the test segments for t9 is
ρ′9 = t9t10t20t1 which contains ρ20. In this case, ρ′9 can be used to verify both t20
and t9 and its length is only 4. With this observation, a heuristic algorithm was
given in [15] to use the invertible sequences to reduce the length of U-sequences.

As from A) an optimal solution was derived for finding a minimal-length
U-sequence in the special case when transitions in M are invertible, now
with A′), we would like to do the same for general FSMs which may contain
both invertible transitions and non-invertible ones. This leads to the following
proposal:

a’) Determine a minimal-length path � = t0σ1t1σ2t2 . . . σktkσ0, where for 0 ≤
i ≤ k, σiti is an invertible sequence and for each t ∈ M , there exists i
(0 ≤ i ≤ k) such that ti = t. Without loss of generality, we assume t0 is a
transition starting from the initial state s0.

b’) Obtain ρ by remove σ0 from � and append path ρ′ induced by applying the
UIO sequence of (tk) at state (tk).

Then, we would like to use (ρ@ρ′) as the desired U-sequence. Formally, we
introduce the notion of .

Definition 1 (proximate test path). M ti
M σi M 0 ≤ i ≤ k

� = t0σ1t1σ2t2 . . . σktkσ0
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– t0 s0
– ∀i ∈ {0, . . . , k} σiti
– ∀t ∈ M ∃i 0 ≤ i ≤ k t = ti

With the notion of , the correctness of using (ρ@ρ′) as the
desired U-sequence is guaranteed by the following theorem:

Theorem 1. M = (S, X, Y, δ, λ, s0)
� = t0σ1t1σ2t2 . . . σktkσ0 M ti

σi M σiti
1 ≤ i ≤ k end(tk) = sm in(t0σ1t1σ2t2 . . . σktk)@UIOm

This result is straightforward from existing statements about invertible sequences
given in [15].

According to this theorem, our problem is to generate minimal-length proxi-
mate test path in a given FSM. This is achieved in two steps:

i) search for a minimal-length invertible sequence starting from a given state
and ending with a given transition;

ii) with the invertible sequences from i), generate a minimal-length proximate
test path.

We present our result in the next two sections.

4 Minimal-Length Invertible Sequences

To find the optimal solution of minimal-length proximate test path, we need
to have a shortest invertible sequence from any given state in the specification
FSM M and ending with any given transition. The existence of such an invertible
sequence is guaranteed by the following proposition.

Proposition 1. M = (S, X, Y, δ, λ, s0)
sk

t = (si, sj , x/y) M sk

t

Let ρk denote the path induced by applying k at sk. Since M is
strongly connected, there exists a path ρ from (ρk) to si. Below we prove
ρ′ = ρk@ρ@t is an invertible sequence.

We prove by contradiction. Suppose ρ′ is not an invertible sequence. Then
there exists a path ρ′′ �= ρ′ such that (ρ′′) = (ρ′) and (ρ′′) = (ρ′).
Since M is deterministic, we can deduce (ρ′) and (ρ′′) are different from

(ρ′′) = (ρ′) and (ρ′′) = (ρ′). (ρ′′) = (ρ′) implies the
prefix of (ρ′′) of length | i| is the same as the prefix of (ρ′) with the
same length. It follows that i will produce the same output sequence on two
different states si and (ρ′′). This contradicts the definition of i. Thus,
ρ′ is an invertible sequence. In other words, there exists an invertible sequence
starting from sk and ending with t.
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1: Input: FSM M = (S, X, Y, δ, λ, s0), and transition t = (r1, r2, x/y) in M .
2: Output: for each s ∈ S, a minimal-length invertible sequence starting from s and

ending with t.

3: Algorithm:
4: Su := S; Ω := {x/y}; Ω′ := ∅; π(x/y) := {r1}; mark(x/y, r1) := true; Γ := ∅;
5: for all s1 �= r1 s.t. there exists transition (s1, r2, x/y) do
6: π(x/y) := π(x/y) ∪ {s1}; mark(x/y, s1):= false;
7: end for
8: if |π(x/y)| = 1 then
9: Γ := {(r1, x/y)}; Su := Su − {r1};

10: end if
11: while Su �= ∅ do
12: for any ω ∈ Ω, s, s2 ∈ S, s.t. s ∈ π(ω) and mark(ω, s) = true and there exists

transition (s2, s, x
′/y′) for some x′, y′ do

13: Ω′ := Ω′ ∪ {x′/y′@ω}; mark(x′/y′@ω, s2) := true;
14: if π(x′/y′@ω) not defined then
15: π(x′/y′@ω) := {s2}
16: else
17: π(x′/y′@ω) := π(x′/y′@ω) ∪ {s2};
18: end if
19: for all s3 �= s2 do
20: if there exists transition (s3, s4, x

′/y′) where s4 ∈ π(ω) then
21: π(x′/y′@ω) := π(x′/y′@ω) ∪ {s3};
22: if mark(ω, s4) = true then
23: mark(x′/y′@ω, s3) := true;
24: else
25: mark(x′/y′@ω, s3) := false;
26: end if
27: else if s2 ∈ Su then
28: Γ := Γ ∪ {(s2, x

′/y′@ω)};
29: Su := Su − {s2};
30: end if
31: end for
32: end for
33: Ω := Ω′; Ω′ := ∅;
34: end while
35: for all (s, ω) ∈ Γ , output the path induced by applying the input of ω at s;

Fig. 2. Algorithm 1. Find minimal-length invertible sequences ending with a given

transition.

Now that we know an invertible sequence from a given state and ending
with a given transition is guaranteed, we consider how to obtain a
one. Figure 2 shows the algorithm to find a minimal-length invertible sequence
starting from any state s ∈ S and ending with a given transition t = (r1, r2, x/y).
The information of the result of this algorithm is kept in Γ : A pair (s, ω) ∈ Γ
means that the path induced by applying the input of input/output sequence ω
at s is a desired minimal-length invertible sequence ending with t.
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Basically, we start from transition t and search backward for states from which
there exists an invertible sequence of length k and ending with t. We start with
k = 1 and increase this length with each iteration of the -loop. For k = 1, if
t is the only transition entering r2 with x/y, then t is an invertible sequence and
(r1, x/y) is added to Γ (line 9). Since k is increased one by one, it is guaranteed
that for each state s, among all invertible sequences that start from s and end
with t, we will hit a minimal-length one first. Of course, once we have found a
state s we want (together with the input/output sequence ω of length k), we
exclude s from consideration. For this purpose, we use Su for the set of states
from which the desired minimal-length invertible sequences have not yet been
found.

We keep the information about the useful paths of length k in order to cal-
culate the invertible sequences of length k + 1. Note that all potential invertible
sequences to be considered depend only on certain length-k paths ending at
r2. These paths can be categorized into two groups: a) those ending with t; b)
those not ending with t but ending at r2 and sharing a same label as some path
from category a). The information about length-k paths is represented by the
following Ω, π, and :

– Ω is a set of input/output sequences (of length k) so that for any ω ∈ Ω,
there exists s ∈ S such that applying the input of ω in s will end at r2.
Apparently, we have Ω := {x/y} at the beginning. Ω′ temporally records all
the possible input/output sequences to be considered in the next iteration of
the -loop (line 11). These sequences share the same length which is that
of those in Ω increased by 1. At the end of each iteration of the -loop,
the value of Ω′ is assigned to Ω.

– π describes the correspondence between an input/output sequence ω ∈ Ω
and a subset S′ of states such that applying the input of ω at any state in
S′ will yield the output of ω and will end at r2. For example, for x/y ∈ Ω,
we have r1 ∈ π(x/y); if there exists transition (s1, r2, x/y), then s1 should
be added into π(x/y). See Figure 3.

– We use mark(ω, s) = true and mark(ω, s) = to denote that the path
induced by applying the input of ω at s is in group a) and b) respectively. For
example, mark(x/y, r1) := true. If there exists transition (s1, r2, x/y) and
s1 �= r1, since this transition ends at r2 but is not t, we have mark(x/y, s1) :=

.

Suppose ω ∈ Ω, s ∈ π(ω), and we find a transition t′ = (s2, s, x
′/y′) in M (see

Figure 3). Path ρ = (s2, r2, x
′/y′@ω) is an invertible sequence if it is the only

path entering r2 with label x′/y′@ω. The latter can be determined by checking
if t′ is the only transition entering some state in π(ω) with label x′/y′.

If the biggest length of the given UIO sequences is l and the of
digraph GM of M is d, by the proof of Proposition 1, we know an invertible
sequence starting from s and ending with t exists and its length is no longer
than (l + d). It follows that the number of iterations of the -loop is no
greater than (l + d).
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Fig. 3. An illustration for Algorithm 1

Within each iteration of the -loop, the algorithm basically checks if it
is possible to add a transition to an already known path to form an invertible
sequence. No more than |V | × |X | transitions will be checked during each iter-
ation. Thus, in the worse case, this algorithm requires O((|V | × |X |)(l+d)) time
for execution. It is worth noticing that in practice this algorithm will terminate
very soon. In the best case when all transitions are invertible, this algorithm
is similar to the search of a spanning tree rooted at r2 with minimal depth in
digraph G′

M obtained by reversing the directions of the edges in GM .
Below we prove the correctness of Algorithm 1.

Proposition 2. M = (S, X, Y, δ, λ, s0)

ρ ρ′ s ∈ S
t M ρ

|ρ| ≤ |ρ′|

According to the way Algorithm 1 works, the search of invertible se-
quences goes in such a way that the path with length (m + 1) is searched only
after all the candidate paths for the desired invertible sequences with length
m are checked, and we only record the first occurrence of a desired invertible
sequence for each state s ∈ S into Γ . Thus, the invertible sequence we found is
one of the shortest. As a consequence, |ρ| ≤ |ρ′|.

Since there exists a UIO sequence for each state in M , by Proposition 1, we
know that there exists an invertible sequence starting from any given state s ∈ S
and ending with t. So by searching step by step with the increase of the length of
the paths considered, we will eventually find all the shortest invertible sequences
we need. Therefore, Algorithm 1 always terminates.
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5 Minimal-Length Proximate Test Path

With the given shortest invertible sequences starting from each state of M and
ending with each transition of M , now we show how to use graph theory to find
the minimal-length proximate test path.

Let M be the given finite state machine. We first construct an
M , denoted by G∗

M . G∗
M = (V ∗, E∗) is defined as follows:

– V ∗ = {v1
t , v2

t | for any transition t in M}
– E∗ = E1 ∪ E2, where

- E1 = {(v1
t , v2

t , t) | for any transition t in M }
- E2 = {(v2

t1 , v
1
t2 , ρ) | for any t1, t2 in M , t1 �= t2, ρ@t2 is a minimal-length

invertible sequence starting from (t1) and ending at t2}. Note that ρ
may be a null path, denoted by ε.

For each transition t in M , i) there are two vertices in V ∗ representing states
(t) and (t) respectively; and ii) there is an edge in E1 representing this

transition t. Note that in the case when (t) and (t) are the same state,
we still have two separate vertices v1

t and v2
t in V ∗.

Edges in E2 are used to connect the edges in E1. According to Proposition 1,
it is always possible to find an invertible sequence starting from any given state
and ending with any given transition. Let t1 and t2 be any two transitions in M ,
Algorithm 1 can compute the minimal-length invertible sequence staring with

(t1) and ending with t2, so there is an edge from v2
t1 to v1

t2 for any t1 and t2
in M . Thus, G∗

M is strongly connected.

1
1v 2

1v

1
8v 2

8v

1
20v 2

20v

1t

8t

20t

114127 tttt

ε
1t

ε

1071 ttt

107tt

Fig. 4. Part of the constructed graph G∗
M0 for finding the minimal-length proximate

test path � for M0. Edges in E1 and E2 are shown in solid arrows and dashed arrows

respectively.
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Figure 4 shows part of the constructed graph G∗
M0

for finding the minimal-
length proximate test path � for M0. Here, for simplicity, we consider three
transitions in M0: t1, t8, and t20. The edges in E1 corresponding to these three
transitions are: (v1

1 , v
2
1 , t1), (v1

8 , v2
8 , t8), and (v1

20, v
2
20, t20). Now we show how the

edges in E2 are constructed. Transitions t8 and t20 both end at s0, and the
shortest invertible sequence starting from s0 and ending with t1 is t1. So the
edges from v2

8 and v2
20 to v1

1 is assigned label ε. Similarly, transition t1 ends at
s1 and the shortest invertible sequence starting from s1 and ending with t8 is
t7t12t14t1t8. So we assign t7t12t14t1 as the label of the edge from v2

1 to v1
8 .

Since the above constructed G∗
M is strongly connected, we can find a minimal-

cost RPP tour in it that contains each edge in E1 at least once. The cost of each
edge in G∗

M is defined as the length of its label. In particular, the cost of edges
with label ε is 0.

Now, we derive the minimal-length proximate test path as follows:

a. Find a minimum-cost RPP tour ρ∗ in G∗
M such that ∀e ∈ E1, e ∈ ρ∗;

b. Let ρ′ be the walk derived by breaking ρ∗ at an edge e ∈ E1 such that the
label of e is a transition starting from the initial state s0;

c. Concatenate the labels of the edges in ρ′ (removing ε) to form a path � in
M .
Then � is the desired minimal-length proximate test path.

To find a minimum-cost ρ∗, we can choose among various sophisticated heuris-
tics proposed in the literature for RPP (see e.g. [20]). Polynomial time algo-
rithm exists under the condition that for any e = (v1

i , v2
i , ti) ∈ E1, there exists

e′ = (v2
j , v1

i ) ∈ E2 for some j, such that (e′) = ε. This is the case in par-
ticular when all transitions in M are invertible, and the problem is reduced to
CPP.

For the example shown in Figure 1, the derived minimal-length proximate
test path is:

� = t1t5t6t7t9t10t17t18t19t19t20t1t7t11t12t13t15t16t14t3t14t2t4t1t8.

Note that t1 and t8 are the first transition and the last transition to be tested
in � respectively. Since t8 is connected to t1 with a null path, a test sequence
can be derived by appending to (�) the UIO sequence of state (�), namely
IntFromU . Thus, the generated test sequence (�)@IntFromU is of length 26.

Now we prove that the above solution is sound.

Theorem 2. M �
M

– �
– �′ �′ |�| ≤ |�′|

First, we prove that � is a proximate test path. Let ρ∗ be an RPP tour
in G∗

M that contains each edge in E1 at least once, and let ρ′ be a walk derived
by breaking ρ∗ at an edge e ∈ E1 such that (e) is a transition starting from
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the initial state s0. According to the way we construct G∗
M , ρ′ has the following

form:

ρ′ = e1,0e2,1e1,1e2,2 . . . e2,ke1,ke2,0

where e1,i ∈ E1 and e2,i ∈ E2 (0 ≤ i ≤ k). Since for any edge e1,i in E1, (e1,i)
is a transition in M , let ti = (e1,i). Similarly, since for any edge e2,i in E2,

(e2,i) is a path in M , let σi = (e2,i). For e2,ie1,i in ρ′ (0 ≤ i ≤ k), its
label σi@ti is a shortest invertible sequence starting from (tl) and ending
with ti. Here l = i − 1 for 1 ≤ i ≤ k and l = k for i = 0. Then, � has the
form of � = t0σ1t1σ2t2 . . . σktkσ0 where we know that ∀i ∈ {0, . . . , k}, σiti is an
invertible sequence. Furthermore, for any transition t in M , there exists an edge
in E1 whose label is t. So, from the fact that ρ∗ contains each edge in E1 at least
once, we can conclude that for any t in M , ∃i ∈ {0, . . . , k} such that t = ti and
ti ∈ �. Therefore, � is a proximate test path.

Now we prove that B. holds. Since �′ is a proximate test path, �′ is in the
form �′ = t′0σ′

1t
′
1σ

′
2t

′
2 . . . σ′

ht′hσ′
0 for some h, such that ∀i ∈ {0, . . . , h}, σ′

it
′
i is an

invertible sequence and for any t ∈ M , there exists some i ∈ {0, . . . , h} such that
t′i = t.

For each t′i, there exists a corresponding edge in E1 such that its label is t′i.
We use f(t′i) to denote the edge in E1 of G∗

M and whose label is t′i. Similarly,
we use f ′(t′i) to denote the edge starting from the ending vertex of f(t′l) and
ending at the starting vertex of f(t′i) in E2 of G∗

M . Here l = i − 1 for 1 ≤ i ≤ h
and l = h for i = 0. Since the label of the walk obtained by concatenating f ′(t′i)
and f(t′i) is a shortest invertible sequence, we have | (f ′(t′i))@t′i| ≤ |σ′

i@t′i|.
By replacing σ′

it
′
i with (f ′(t′i))@t′i for all 0 ≤ i ≤ h, we obtain a tour �′′ and

|�′′| ≤ |�′|. Since � is a path derived by RPP tour in G∗
M which has the minimum

cost, we have |�| ≤ |�′′|. Thus, |�| ≤ |�′|.

6 Comparisons with Other Methods

The following proposition shows that when using a transfer sequence σ to connect
transition ti and transition tj such that σ@tj is a shortest invertible sequence
starting from (ti) and ending with tj , the overlap between the test segments
for these two transitions is maximized.

Proposition 3. M = (S, X, Y, δ, λ, s0)
ti tj M σtj

end(ti) tj tj�
tj ρ = ti@σ@tj@�

ti tj�

Let ρ′ be any path that contains the test segment for ti and ends with
tj�. We have ρ′ = ρ0@ti@σ′@tj@�, where ρ0 is a possibly null path in M .

First, we prove that σ′@tj is an invertible sequence. Suppose σ′@tj is not an
invertible sequence. There exists another path γ ending at (tj) with the same
label as that of σ′@tj. Then γ@� forms a path ending at (�) with the same
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label of path σ′@tj@�. It follows that σ′@tj@� is not an invertible sequence. On
the other hand, ρ′ starts with the test segment of ti, i.e., σ′@tj@� starts with the
path induced by applying a UIO sequence of (ti) at (ti). As we know, if
an input sequence χ1 is a UIO sequence, then χ1@χ2 is a UIO sequence for any
input sequence χ2. It follows that (σ′@tj@�) is a UIO sequence for (ti).
As proved in [15], the path induced by applying a UIO sequence of some state
s at s is an invertible sequence. Thus σ′@tj@� is an invertible sequence. This
contradicts the previous conclusion that σ′@tj@� is an invertible sequence.
Therefore, σ′@tj is an invertible sequence.

Since σ′@tj is an invertible sequence starting from (ti) and ending with
tj while σ@tj is a invertible sequence starting from (ti) and end-
ing with tj , we have that |σ@tj | ≤ |σ′@tj|. As a consequence, |ti@σ@tj@�| ≤
|ρ0@ti@σ′@tj@�|.

Thus, ρ = ti@σ@tj@� is a shortest path that contains the test segment for ti
and ends with tj�.

Proposition 3 suggests that for any given U-sequence χ generated by the ap-
proaches proposed in the literature (e.g. [2,14,15,16]), we can further reduce its
length while preserving its satisfiability of U-sequence. This length reduction is
performed by replacing certain sub-paths of the corresponding path induced by
applying χ at s0 with the .

More precisely, let ρ be the path induced by applying χ at s0. Since ρ contains
each test segment at least once, we let ρ = �1t1σ2t2 . . . σktkσk+1�2, where i) �1
and �2 are (possibly ) transfer sequences; ii) for any t in M , there exists i
(1 ≤ i ≤ k) such that ti = t; and iii) each ti (1 ≤ i ≤ k) is followed by a UIO
of (ti) in ρ. Since ti (1 ≤ i ≤ k) is followed by a UIO of (ti) in ρ, similar
as in the proof of Proposition 3, we know σi+1ti+1 is an invertible sequence for
1 ≤ i ≤ k − 1. Thus, we can derive ρ′ = �1t1σ

′
2t2 . . . σ′

ktkσ′
k+1�2 from ρ by

replacing σi with σ′
i, where σ′

i@ti is a invertible sequence starting from
(ti−1) and ending with ti for 2 ≤ i ≤ k + 1. Clearly, |ρ′| ≤ |ρ|. Hence, we can

use test sequence (ρ′) instead of χ.
Note that ρ′ is a proximate test path, and further reduction on ρ′ is still

possible by, for example, applying RPP algorithm on G∗
M as we did in this

paper.

7 Experimental Results

Now we evaluate the performance of the proposed approach in terms of the
lengths of the U-sequences generated from part of the specifications of sev-
eral widely-used protocols: the (2PC) with recovery
scheme; the specified in ITU-T Q.931;
and the aforementioned connection establishment protocol (specified as M0) used
in peer-to-peer systems.

The two-phase commit protocol ensures that a transaction in a distributed
database system can only be committed without invoking any inconsistency
among distributed components ( ). We suppose that transactions
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Table 2. Comparison on the lengths of the generated U-sequences

specification approach in [2] approach in [3,14] our approach

2PC-participant 72 56 50

2PC-coordinator 42 32 31

Q.931-network side 109 96 83

P2P connection establishment 72 31 26

are to be committed simultaneously by two participants with an additional pro-
cess, the coordinator, to coordinate this activity.

The ISDN BRI D-channel signaling protocol is a network layer protocol de-
scribing the procedure for establishing, maintaining, and clearing basic circuit-
switched voice connections between the user and the network interface in a

. Here, we consider the network part of the
specification at the originating end.

The lengths of the U-sequences generated by our method and two other related
approaches in the literature are shown in Table 2. Clearly, the lengths of the U-
sequences are reduced by using our approach. This length reduction is achieved
by making use of the shortest invertible sequences to maximizing the overlap
among test segments.

8 Related Work

We have introduced our problem in Section 3 together with some closely related
work. In Section 7 we have presented our experimental results to compare our
method with two others along the same line. All these pieces of work fall into the
category of testing deterministic systems in the sense that the given specification
is deterministic.

Testing techniques developed for deterministic systems cannot be applied to
concurrent/distributed systems due to the non-determinism involved. However,
as we have mentioned in the Introduction, they can be applied to

on each sequentially executed component. An interesting point is that if
we can derive from deterministic testing that components I1 and I2 are trace
equivalent to their respective specification P1 and P2, then under certain circum-
stances we know I1||I2 is a correct implementation of P1||P2 without performing
further or which involves nondeterministic sys-
tem specifications. Of course, even for the deterministic systems, to establish
trace equivalence between an implementation and its specification is a hard is-
sue, very often resulting in lengthy (or even infinite) test sequences. Thus, while
testing deterministic system plays an important role in the unit testing, we are
equally interested in testing parallelly executed systems in general, which raises
two major challenges: and .

The main issues in conformance testing of non-deterministic systems are dis-
cussed in the literature (e.g. [21,22,23]). To reduce the state explosion problem,
a remarkable approach is to adopt model checking tools to help generating test



188 L. Duan and J. Chen

sequences or test suites so that the advanced state space reduction techniques
incorporated into the model checkers can be automatically employed into the
testing techniques [24,25,26].

9 Conclusion

Invertible sequence is a key to obtaining a larger pool of test segments with
significant overlap among them. This provides us with a possibility of reducing
the length of U-sequences. An essential problem here is how to find a minimal-
length proximate test path. In this paper we have presented an optimal solution
to this problem.

The assumption of strong connectivity guarantees a test sequence tour can be
generated. When the specification FSM is not strongly connected, a minimal-
length proximate test path in each strongly connected component of the speci-
fication FSM can be generated by applying the proposed approach on the com-
ponent. In this case, instead of a single test sequence, a set of test sequences will
be generated from the given specification FSM.

When the IUT has more than one interface, our solution is directly applicable
if the IUT is tested in a local test architecture. With a distributed test archi-
tecture, [27] arise. If we want to generate
proximate test path to avoid controllability problems, the shortest invertible
sequences should be synchronizable. Algorithm 1 can be tailored as follows to
achieve this:

– construct a digraph G′ = (V ′, E′), where V ′ = {v′i | t ∈ M} and E′ =
{(v′i, v

′
j) | ti, tj form a };

– modify Algorithm 1 to find a minimal-length invertible sequence from any
two vertices in V ′.
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Abstract. Bounded semantics of LTL with existential interpretation and that of
ECTL (the existential fragment of CTL), and the characterization of these exis-
tentially interpreted properties have been studied and used as the theoretical basis
for SAT-based bounded model checking [2,18]. This has led to a lot of successful
work with respect to error detection in the checking of LTL and ACTL (the uni-
versal fragment of CTL) properties by satisfiability testing. Bounded semantics
of LTL with the universal interpretation and that of ACTL, and the characteri-
zation of such properties by propositional formulas have not been successfully
established and this hinders practical verification of valid universal properties
by satisfiability checking. This paper studies this problem and the contribution
is a bounded semantics for ACTL and a characterization of ACTL properties by
propositional formulas. Firstly, we provide a simple bounded semantics for ACTL
without considering the practical aspect of the semantics, based on converting a
Kripke model to a model (called a k-model) in which the transition relation is
captured by a set of k-paths (each path with k transitions). This bounded seman-
tics is not practically useful for the evaluation of a formula, since it involves too
many paths in the k-model. Then the technique is to divide the k-model into
submodels with a limited number of k-paths (which depends on k and the ACTL
property to be verified) such that if an ACTL property is true in every such model,
then it is true in the k-model as well. This characterization can then be used as the
basis for practical verification of valid ACTL properties by satisfiability check-
ing. A simple case study is provided to show the use of this approach for both
verification and error detection of an abstract two-process program written as a
first order transition system.

1 Introduction

Bounded semantics of LTL with existential interpretation (called existential LTL here-
after) and that of ECTL (the existential fragment of CTL), and the characterization of
these existentially interpreted properties have been studied and used as the theoretical
basis for SAT-based bounded model checking [2,18]. This has lead to a lot of suc-
cessful work with respect to error detection in the checking of LTL and ACTL (the
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universal fragment of CTL) properties by satisfiability testing [1]. It is considered as a
complementary technique to BDD-based model checking [3,5] for combating the state
explosion problem, esp. for effective error detection [19].

Bounded semantics of LTL with the universal interpretation and that of ACTL, and
the characterization of such properties by propositional formulas have not been suc-
cessfully established and this hinders practical verification of valid universal properties
by satisfiability checking. Bounded semantics of existential LTL and that of ECTL, and
the characterization of such properties are consistent with the fact that the witness of
the properties can be searched within a fragment of the valid paths. For witness of exis-
tential LTL properties ϕ, one path of the form u · vω is sufficient. In some cases, a finite
path u may be sufficient, while in the general case, it is sufficient to find a finite path
u · v such that there is a transition from the last element of v to the first element of v,
and show that u ·vω |= ϕ holds. For an ECTL property, a witness may consist of several
paths. Some may need to have a loop, while others may not need to have a loop. For
simplicity, we assume that all these paths are of the same length. A path of length k+1
is called a k-path (a path with k transitions). Then the number of k-paths needed for
witnessing an ECTL formula depends on the number k and the structure of the formula.
For instance, for EGEFϕ with ϕ being a propositional formula, the number of k-paths
needed is k + 1.

The problem of characterization of universally interpreted properties lies in that it
looks difficult to reason about all involved paths of a model, since the number of such
paths is too big. This paper studies this problem and the contribution is a bounded
semantics for ACTL and a characterization of ACTL properties by propositional for-
mulas. Firstly, we provide a simple bounded semantics for ACTL without considering
the practical aspect of the semantics, based on converting a Kripke model to a model
(called a k-model) in which the transition relation is captured by a set of k-paths (each
path with k transitions). Although this bounded semantics is not practically useful for
the evaluation of a formula, it serves as the basis for further development. Then the tech-
nique is to divide the k-model into submodels with a limited number of k-paths (which
also depends on k and the ACTL property to be verified) such that if an ACTL property
is true in every such model, then it is true in the k-model as well. This characterization
can then be used as the basis for practical verification of valid ACTL properties by sat-
isfiability checking. A simple case study is provided to show the use of this approach
for both verification and error detection of an abstract two-process program written as
a first order transition system.

The contents of this papers is as follows. Section 2 presents background knowledge
on CTL. Section 3 presents a bounded semantics for ACTL. Section 4 presents a further
development of the bounded semantics of ACTL. Section 5 presents a characterization
of the problem for model checking ACTL properties by propositional formulas. Section
6 presents the verification approach and a case study to show the use of this character-
ization for verification of abstract programs with respect to ACTL properties and for
error detection of incorrect abstract programs. Section 7 proposes a combined verifica-
tion approach in light of a discussion with respect to related work. Finally, we present
concluding remarks in Section 8.



Model Checking with SAT-Based Characterization of ACTL Formulas 193

2 Computation Tree Logic (CTL)

Computation tree logic is a propositional branching-time temporal logic [10] introduced
by Emerson and Clarke as a specification language for finite state systems. In this sec-
tion, preliminary knowledge on CTL, including the syntax and the semantics of CTL
and the definition of ACTL and ECTL, is presented.

Let AP be a set of proposition symbols. The set of CTL formulas is defined as
follows:

– Every member of AP is a CTL formula.
– The logical connectives of CTL are: ¬, ∧, and ∨.

If ϕ and ψ are CTL formulas, then so are ¬ϕ, ϕ ∧ ψ, and ϕ ∨ ψ.
– The temporal operators are
EX , ER, EU , AX , AR, and AU .
If ϕ and ψ are CTL formulas, then so are:
EX ϕ, E(ϕ R ψ), E(ϕ U ψ), AX ϕ, A(ϕ R ψ), and A(ϕ U ψ).

In addition to the logical connectives,ϕ→ ψ may be used as an abbreviation of ¬ϕ∨ψ.
In addition to the temporal operators, AFϕ,AGϕ,EFϕ,EGϕ may be used as abbre-
viations of respectivelyA(trueU ϕ), A(falseRϕ), E(true U ϕ), and E(falseRϕ).

A model for CTL formulas is a Kripke structure M = 〈S, T, I, L〉 where S is a set
of states, T ⊆ S × S is a transition relation which is total, I ⊆ S is a set of initial
states and L : S → 2AP is a labeling function that maps each state of S to a set of
propositions that are assumed to be true at that state. A sequence π = π0π1 · · · of S is
a path of M , if T (πi, πi+1) holds for all i ≥ 0.

Definition 1. Let M be a model, s a state, p a proposition symbol, ϕ and ψ CTL for-
mulas. M, s |= ϕ denotes that ϕ is true at the state s in M . Let π be a path of M . The
relation |= is defined as follows:

M, s |= p iff
p ∈ L(s) .
M, s |= ¬ϕ iff
M, s 
|= ϕ
M, s |= ϕ ∧ ψ iff
(M, s |= ϕ) and (M, s |= ψ)
M, s |= ϕ ∨ ψ iff
(M, s |= ϕ) or (M, s |= ψ)
M, s |= EXϕ iff
∃π.(π0 = s ∧M,π1 |= ϕ)
M, s |= E(ϕUψ) iff
∃π.(π0 = s∧ ∃k ≥ 0.(M,πk |= ψ ∧ ∀j < k.(M,πj |= ϕ)))
M, s |= E(ϕRψ) iff
∃π.(π0 = s ∧ (∀j ≥ 0.(M,πj |= ψ)∨
∃k ≥ 0.((M,πk |= ϕ) ∧ ∀j ≤ k.(M,πj |= ψ))))
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M, s |= AXϕ iff
∀π.(π0 = s→M,π1 |= ϕ)
M, s |= A(ϕUψ) iff
∀π.(π0 = s→ ∃k ≥ 0.(M,πk |= ψ ∧ ∀j < k.(M,πj |= ϕ)))
M, s |= A(ϕRψ) iff
∀π.(π0 = s→ (∀j ≥ 0.(M,πj |= ψ)∨
∃k ≥ 0.((M,πk |= ϕ) ∧ ∀j ≤ k.(M,πj |= ψ))))

A CTL formula is in negation normal form (NNF), if the symbol ¬ is applied only to
proposition symbols. Every formula can be transformed into an equivalent formula in
NNF.

The sublogic ACTL is the subset of CTL formulas that can be transformed into
NNF formulas not containing the temporal operators EX, EF, EG, EU, ER. Dually,
the sublogic ECTL is the subset of CTL formulas that can be transformed into NNF
formulas not containing the temporal operators AX, AF, AG, AU, AR.

Definition 2. Let ϕ be an ACTL formula. ϕ is true in M , denotedM |= ϕ, iff ϕ is true
at all initial states of M .

3 Bounded Semantics of ACTL

Since every ACTL formula can be transformed into an equivalent formula in NNF, we
only consider formulas of the form ϕ∨ψ, ϕ∧ψ, AXϕ, A(ϕRψ), A(ϕUψ) constructed
from propositions and the negation of propositions. Therefore, in the following, a for-
mula refers to such an ACTL formula unless otherwise stated. In this section, a bounded
semantics of ACTL is presented. One of the particular aspects of this semantics is the
use of the condition eqs(π) for stating that there are same (or equal) states appearing
in different positions in the path π. Note that in the semantics of existential LTL and
that of ECTL, a condition indicating that there is a transition from the last state of π to
some state already in π is used [2,18]. This condition is not useful for the construction
of the bounded semantics for ACTL. The reason is that we need the property of eqs(π)
stated below for reasoning about the correctness of Lemma 1 and Lemma 2. Details are
explained in the sequel.

For simplicity, we fix the model under consideration to be M = 〈S, T, I, L〉, and in
the sequel, M refers to this model, unless otherwise stated. Let k ≥ 0. A k-paths of M
is a path π = π0 · · ·πk of M where πi ∈ S for i = 0, ..., k and (πi, πi+1) ∈ T for
i = 0, ..., k − 1. The k-model for M is a structure Mk = 〈S, Phk, I, L〉 where Phk is
the set of all different k-paths of M . Let |π| be the length of π. We have the following
definition of eqs(π).

eqs(π) :=
|π|−1∨
i=0

|π|−1∨
j=i+1

πi = πj .

If π is a prefix of π′, then eqs(π) → eqs(π′).

Definition 3 (Bounded Semantics of ACTL). Let Mk be the k-model of M , s a state,
p a proposition symbol, ϕ and ψ ACTL formulas. Mk, s |=k ϕ denotes that ϕ is true at
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the state s in Mk. Let π = π0 · · ·πk be a path in Phk. Let [n] denote the set {0, ..., n}.
The relation |=k is defined as follows:

Mk, s |=k p iff
p ∈ L(s)
Mk, s |=k ¬p iff
p 
∈ L(s)
Mk, s |=k ϕ ∧ ψ iff
(Mk, s |=k ϕ) and (Mk, s |=k ψ)
Mk, s |=k ϕ ∨ ψ iff
(Mk, s |=k ϕ) or (Mk, s |=k ψ) .
Mk, s |=k AXϕ iff
k ≥ 1 and ∀π.(π0 = s→Mk, π1 |=k ϕ)
Mk, s |=k A(ϕUψ) iff
∀π.(π0 = s→ ∃i ∈ [k].(Mk, πi |=k ψ ∧ ∀j ∈ [i− 1].(Mk, πj |=k ϕ)))
Mk, s |=k A(ϕRψ) iff
∀π.(π0 = s→ ((eqs(π) ∧ ∀j ∈ [k].(Mk, πj |=k ψ))∨
∃i ∈ [k].((Mk, πi |=k ϕ) ∧ ∀j ∈ [i].(Mk, πj |=k ψ))))

For the soundness of this definition, we need to know that if M, s |= ϕ then there is a
finite k ≥ 0 such that Mk, s |=k ϕ, and vice versa.

Let kM be the number of reachable states of M . For k′ = kM , since k′ ≥ 1 and
eqs(π) are satisfied for every π ∈ Phk′ , we have M, s |= ϕ implies Mk′ , s |=k′ ϕ by
restricting every path in M to be k′-path. On the other hand, an infinite path π of M
has a k′-path as its prefix. A property is true on π, if it is true on such a prefix, unless it
is a global property, i.e., a property of the form A(ϕRψ) such that ϕ does not hold in
any state of π and ψ must hold in all states of π, and therefore a prefix is not sufficient
for showing the truth of ϕRψ. Assume this situation occurs and A(ϕRψ) holds in the
bounded semantics. We want to show that ϕRψ also holds on such a path π. For the
first, the situation implies that ψ is true on every state of every k′-path of which the set
of states is a subset of that of π. For the second, the set of states of all these k′-paths
with the start state π0 covers the set of states of π. These two conditions guarantee that
ψ is true on every state of π and therefore ϕRψ holds on π. Summing up the above
discussion, we have Mk′ , s |=k′ ϕ implies M, s |= ϕ. On the other hand, paths in a
k-model with more than kM transitions can be shortened to paths with kM transitions1

without affecting the satisfiability of ACTL formulas in the model. Formally, we have

Lemma 1. Let k ≥ kM . M, s |= ϕ iff Mk, s |=k ϕ.

This assures in some sense the soundness of the semantics, in addition, we need to have
some kind of continuity of the truth values of Mk, s |=k ϕ for a sequence of values
of k. Fortunately, the property of eqs(π) allows us to prove that if an ACTL property
holds on the k-model, it also holds on the (k+ 1)-model (which is a model with longer
paths). Formally:

1 The number of reachable states for kM is an over-approximation. A smaller number is usually
sufficient. The least such number is called the completeness threshold, Computation of such
numbers has been studied in e.g. [13].
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Lemma 2. If Mk, s |=k ϕ, then Mk+1, s |=k+1 ϕ.

This means that if Mk, s |=k ϕ holds for k = kM , then there is a k′ ≤ k such that for
all k′′ ≥ k′, Mk′′ , s |=k′′ ϕ holds, and for all k′′ < k′, Mk′′ , s |=k′′ ϕ does not hold.
Combining Lemma 1 and Lemma 2, we obtain

Theorem 1 (Soundness). M, s |= ϕ iff there is some k ≤ kM such that Mk, s |=k ϕ.

Definition 4. Let ϕ be an ACTL formula. ϕ is true in the k-modelMk, denotedMk |=k

ϕ, iff ϕ is true at all initial states of the model Mk.

Following Theorem 1 and Lemma 2, we have the following theorem.

Theorem 2. M |= ϕ iff there is some k ≤ kM such that Mk |=k ϕ holds.

4 Refining the Bounded Semantics

The bounded semantics of ACTL is not directly useful as a method for checking whether
an ACTL formula holds in the model, since the number of k-paths in the k-model is large.
An over-approximation of the number is (kM )k+1, while the exact number is difficult
to compute. In the case of ECTL, if a witness exists, we only need to find a small subset
(depends on k and the property to be verified) of k-paths in the k-model to certify the
existence of a witness. in the case of ACTL, the number of involved k-paths for certifica-
tion of the property is necessarily large. The technique is then to divide the k-model into
submodels with a limited number of paths (which also depends on k and the property to
be verified) and prove that if such an ACTL property is true in every such model, then
it is true in the k-model as well. The details are explained in the sequel. We first define
the concept of submodels.

Definition 5 (Submodels). Let Mk = 〈S, Phk, I, L〉 be the k-model of M . M
′
k =

〈S, Ph′
k, I, L〉 is a submodel of Mk, if Ph

′
k ⊆ Phk. We write M

′
k ≤ Mk for this

relation.

Similarly, if M
′
k and M

′′
k are two submodels, M

′
k ≤ M

′′
k iff Ph

′
k ⊆ Ph

′′
k . The number

of k-paths in a submodelM
′
k is denoted by |M ′

k|. We call a submodelM
′
k with n k-paths

a (k, n)-submodel. Note that in a (k, n)-submodel, we do not require the n k-paths in
the submodel be different.

A state s in a submodelM
′
k satisfies a formula ϕ, denoted byM

′
k, s |=k ϕ, is defined

just like the definition of Mk, s |=k ϕ (cf. Definition 3), except that ∀π means ∀π ∈
Ph

′
k instead of ∀π ∈ Phk. We have the following property of submodels.

Proposition 1. If M
′
k ≤M

′′
k , then M

′′
k , s |=k ϕ implies M

′
k, s |=k ϕ.

Based on this proposition, we obtain:

Proposition 2. LetM
′
k,M

′′
k be respectively a (k, n)-submodel and a (k,m)-submodel.

If M
′
k, s1 
|=k ϕ or M

′′
k , s2 
|=k ψ, then there is a (k,max(m,n))-submodel M

′′′
k such

that M
′′′
k , s1 
|=k ϕ or M

′′′
k , s2 
|=k ψ.
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We may combine submodels. Let M
′
k,M

′′
k be two submodels. Then M

′
k ∪M

′′
k is the

submodelM∗
k with Ph∗k = Ph′k ∪ Ph′′k and the other components remain the same.

Proposition 3. Let M
′
k,M

′′
k be two submodels. If M

′
k, s1 
|=k ϕ and M

′′
k , s2 
|=k ψ,

then M
′
k ∪M ′′

k , s1 
|=k ϕ and M
′
k ∪M ′′

k , s2 
|=k ψ.

A consequence of this proposition is that if there is a (k, n)-submodelM
′
k and a (k,m)-

submodel M
′′
k such that M

′
k, s1 
|=k ϕ and M

′′
k , s2 
|=k ψ, then there is a (k,m + n)-

submodelM
′′′
k such that M

′′′
k , s1 
|=k ϕ and M

′′′
k , s2 
|=k ψ.

In the following, we analyze how many paths are needed in submodels such that we
can conclude if an ACTL property is true in every such submodel of the k-model, then
it is true in the k-model. Let ϕ be a propositional formula.

For every s, if for every (k, 0)-submodelM
′
k (there is actually only one (k, 0)-

submodel),M
′
k, s |=k ϕ holds, then Mk, s |=k ϕ.

This is because propositional property does not depend on k-paths2. This fact serves
as the basis for reasoning about composed formulas. Suppose that we have now the
following two assumptions (which are needed for the following inductive construction):

1. For every s, if for every (k, n)-submodelM
′
k,M

′
k, s |=k ϕ holds, thenMk, s |=k ϕ.

2. For every s, if for every (k,m)-submodelM
′′
k , M

′′
k , s |=k ψ holds, then Mk, s |=k

ψ.

We then consider the composed ACTL formulas. Let z = max(m,n). According to
Proposition 1 and the two assumptions, we have, for every s,

– if for every (k, z)-submodelM
′′′
k , M

′′′
k , s |=k ϕ holds, then Mk, s |=k ϕ.

– if for every (k, z)-submodelM
′′′
k , M

′′′
k , s |=k ψ holds, then Mk, s |=k ψ.

Combining these two statements, we obtain:

For every s, if for every (k,max(m,n))-submodel M∗
k , M∗

k , s |=k ϕ ∧ ψ
holds, then Mk, s |=k ϕ ∧ ψ.

For disjunction, we consider the validity ofMk, s |=k ϕ∨ψ. Suppose thatMk, s |=k

ϕ∨ψ does not hold. Then none ofMk, s |=k ϕ andMk, s |=k ψ holds. According to as-
sumption 1 and assumption 2, there is a (k, n)-submodelM

′
k such thatM

′
k, s 
|=k ϕ and

there is a (k,m)-submodelM
′′
k , such that M

′′
k , s 
|=k ψ. Combining these two submod-

els, we obtain a (k,m + n)-submodel M
′′′
k such that M

′′′
k , s 
|=k ϕ and M

′′′
k , s 
|=k ψ.

Then M
′′′
k , s 
|=k ϕ ∨ ψ. By turning the direction of reasoning, we obtain:

For every s, if for every (k,m + n)-submodel M∗
k , M∗

k , s |=k ϕ ∨ ψ holds,
then Mk, s |=k ϕ ∨ ψ.

2 The number of different (k, n)-submodels is limited by mn where m is the number of different
k-paths.
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For temporal formulas of the form AXϕ, suppose that Mk, s |=k AXϕ does not
hold. Then there is a k-path P1 = π0π1 · · ·πk with π0 = s such that Mk, π1 |=k ϕ
does not hold. According to assumption 1, there is a (k, n)-submodel M

′
k such that

M
′
k, π1 
|=k ϕ. Extending M

′
k with P1, we obtain a (k, n+ 1)-submodel M

′′
k such that

M
′′
k , s 
|=k AXϕ. By turning the direction of reasoning, we obtain

For every s, if for every (k, n+1)-submodelM∗
k , M∗

k , s |=k AXϕ holds, then
Mk, s |=k AXϕ.

For temporal formulas of the form A(ϕUψ), suppose that Mk, s |=k A(ϕUψ) does
not hold. Then there is a k-path P1 = π0π1 · · ·πk with π0 = s such that either (1)
Mk, πi |=k ψ does not hold for all 0 ≤ i ≤ k or

– (2a) Mk, π0 |=k ψ does not hold, and
– (2b) for each j < k, if Mk, πi |=k ϕ holds for all 0 ≤ i ≤ j, then Mk, πj+1 |=k ψ

does not hold.

According to assumption 1 and assumption 2,

– With condition (1), there is a (k,m)-submodelM i
k such thatM i

k, πi 
|=k ψ for each
0 ≤ i ≤ k.
According to Proposition 3, we may combine the k+ 1 submodels, and obtain that
there is a (k, (k+ 1)m)-submodelM∗

k such that M∗
k , πi 
|=k ψ for each 0 ≤ i ≤ k.

– With condition (2a), there is a (k,m)-submodelM0
k such that M0

k , π0 
|=k ψ.
– With condition (2b), for each j < k, there is a (k, n)-submodel M

′i
k such that

M
′i
k , πi 
|=k ϕ for some 0 ≤ i ≤ j, or there is a (k,m)-submodel M j+1

k such that
M j+1

k , πj+1 
|=k ψ.
According to Proposition 2, we obtain that for each j < k, there is a (k,max(m,n))-
submodelM

′′
k such that M

′′
k , πi 
|=k ϕ for some 0 ≤ i ≤ j, or M

′′
k , πj+1 
|=k ψ.

According to Proposition 3, we obtain that there is a (k, k ·max(m,n))-submodel
M

′∗
k such that for each j < k,M

′∗
k , πi 
|=k ϕ for some 0 ≤ i ≤ j, orM

′∗
k , πj+1 
|=k

ψ.

Since condition (2a) and condition (2b) are to be satisfied at the same time, we need
a (k, k · max(m,n) + m)-submodel to cover condition (2). Since condition (1) is an
alternative to condition (2), and (k + 1) · m ≤ (k, k · max(m,n) + m), a (k, k ·
max(m,n) + m)-submodel is sufficient to cover both conditions. Take the path P1
into consideration, we have a (k, k · max(m,n) + m + 1)-submodel M∗∗

k such that
M∗∗

k , s |=k A(ϕUψ) does not hold. By turning the direction of reasoning, we obtain

For every s, if for every (k, k ·max(m,n)+m+1)-submodelM∗
k , M∗

k , s |=k

A(ϕUψ) holds, then Mk, s |=k A(ϕUψ).

Similar arguments can be applied to temporal formulas of the form A(ϕRψ). Be-
cause the semantics of A(ϕRψ) involves the condition eqs(π), an analysis of eqs(π) is
needed. Otherwise, the reasoning is similar to that of the case of A(ϕUψ).

Suppose that Mk, s |=k A(ϕRψ) does not hold. Then there is a k-path P1 =
π0π1 · · ·πk with π0 = s such that
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– (1) eqs(π) does not hold or Mk, πj |=k ψ does not hold for some 0 ≤ j ≤ k, and
– (2) for each j ≤ k, if Mk, πi |=k ψ holds for all 0 ≤ i ≤ j, then Mk, πj |=k ϕ

does not hold.

Condition (1) can be divided into 2 subcases: (1a) eqs(π) does not hold and (1b)
eqs(π) holds. According to assumption 1 and assumption 2,

– With condition (1b), we have thatMk, πj |=k ψ does not hold for some 0 ≤ j ≤ k.
Then there is a (k,m)-submodelM

′
k such that M

′
k, πj 
|=k ψ for some 0 ≤ j ≤ k.

– With condition (2), for each j ≤ k, there is a (k,m)-submodel M
′i
k such that

M
′i
k , πi 
|=k ψ for some 0 ≤ i ≤ j, or there is a (k, n)-submodel M j

k such that
M j

k , πj 
|=k ϕ.

Then there is a (k, (k + 1) · max(m,n))-submodel M
′′
k such that for each j ≤ k,

M
′′
k , πi 
|=k ϕ for some 0 ≤ i ≤ j, or M

′′
k , πj 
|=k ϕ.

Applying the similar argument as that in the case of A(ϕUψ), we obtain that in case
eqs(π) holds (i.e., we have condition (1b) and condition (2)), there is a (k, (k + 1) ·
max(m,n)+m+1)-submodelM∗

k such thatM∗
k , s 
|=k A(ϕRψ). In case eqs(π) does

not holds, there is a (k, (k + 1) ·max(m,n) + 1)-submodelM
′′′
k such that M

′′′
k , s 
|=k

A(ϕRψ). According to Proposition 1, there is a (k, (k + 1) · max(m,n) + m + 1)-
submodelM∗

k such that M∗
k , s 
|=k A(ϕRψ) also in the this case. Therefore, by turning

the direction of reasoning, we obtain

For every s, if for every (k, (k + 1) · max(m,n) + m + 1)-submodel M∗
k ,

M∗
k , s |=k A(ϕRψ) holds, then Mk, s |=k A(ϕRψ).

The above reasoning leads to the following definition of the necessary number of
paths in such submodels.

Definition 6. Let ϕ be an ACTL formula. nk(ϕ) is defined as follows.

nk(p) = 0 if p ∈ AP
nk(¬p) = 0 if p ∈ AP
nk(ϕ ∧ ψ) = max(nk(ϕ), nk(ψ))
nk(ϕ ∨ ψ) = nk(ϕ) + nk(ψ)
nk(AXϕ) = nk(ϕ) + 1
nk(A(ϕRψ)) = (k + 1) ·max(nk(ϕ), nk(ψ)) + nk(ψ) + 1
nk(A(ϕUψ)) = k ·max(nk(ϕ), nk(ψ)) + nk(ψ) + 1

For verifying ϕ, we divide the k-model into submodels with nk(ϕ) paths. This leads to
the following lemma.

Lemma 3. Mk, s |=k ϕ iff for every (k, nk(ϕ))-submodel M∗
k , M∗

k , s |=k ϕ holds.

This lemma can be proved by structural induction on ϕ based on the above analysis.
Combining Theorem 1, we obtain

Theorem 3. M, s |= ϕ iff there is some k ≤ kM such that for every (k, nk(ϕ))-
submodel M∗

k , M∗
k , s |=k ϕ holds.
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Similar to Definition 4, we can define the relation M∗
k |=k ϕ for a submodel M∗

k and a
formula ϕ. Then we obtain

Theorem 4. M |= ϕ iff there is some k ≤ kM such that for every (k, nk(ϕ))-submodel
M∗

k , M∗
k |=k ϕ holds.

5 SAT-Based Characterization of ACTL

Let k ≥ 0. Let Nk be the number of different k-paths of M . Let ui,0, ..., ui,k be a
finite sequence of state variables for each i ∈ {1, ..., Nk}. The sequence ui,0, ..., ui,k is
intended to be used as a representation of a path of Mk.

Definition 7. Let k ≥ 0.

Pk(i) :=
k−1∧
j=0

T (ui,j, ui,j+1)

Every assignment to the set of state variables {ui,0, ..., ui,k} satisfying Pk(i) represents
a valid k-path of M . The sequence ui,0, ..., ui,k is then called a symbolic path of Mk.
Let a be an assignment to ui,0, ..., ui,k for i ∈ {1, ..., Nk}. Then the value assigned
to ui,j , denoted a(ui,j), represents a state of M . Conversely, for each state s ∈ S of
M , we use u(s) to represent that u has already been assigned a value representing the
state s. The difference between a state variable u and u(s) is that the latter has a fixed
assignment and therefore cannot be assigned new values.

Definition 8 (Transition Relation). Let k ≥ 0. Let 0 ≤ b ≤ Nk.

[[M ]]bk :=
b∧

i=1

Pk(i)

This is a collection of Pk(l) for l = 1, ..., b. Let p ∈ AP be a proposition symbol
and p(u) represent the propositional formula representing the states in which p is true
according to L of M . State it differently, we have that p(u) is true when u is assigned
the truth value representing a state s such that p holds on s. Let ek(i) denote that there
are same states appearing in different positions in path Pk(i). Formally,

ek(i) :=
k−1∨
x=0

k∨
y=x+1

ui,x = ui,y.

This definition corresponds to the definition of eqs(π) for a k-path π = ui,0ui,1 · · ·ui,k.

Definition 9 (Translation of ACTL formulas). Let k ≥ 0. Let u be a state variable
and ϕ be an ACTL formula. The encoding [[ϕ, u]]bk is defined as follows.
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[[p, u]]bk = p(u)
[[¬p, u]]bk = ¬p(u)
[[ϕ ∨ ψ, u]]bk = [[ϕ, u]]bk ∨ [[ψ, u]]bk
[[ϕ ∧ ψ, u]]bk = [[ϕ, u]]bk ∧ [[ψ, u]]bk
[[AXϕ, u]]bk =

∧b
i=1(u = ui,0 → [[ϕ, ui,1]]bk)

[[A(ϕRψ), u]]bk =
∧b

i=1(u = ui,0 →∨k
j=0([[ϕ, ui,j ]]bk ∧ ∧j

t=0[[ψ, ui,t]]bk) ∨ ∧k
j=0[[ψ, ui,j ]]bk ∧ ek(i))

[[A(ϕUψ), u]]bk =
∧b

i=1(u = ui,0 → ∨k
j=0([[ψ, ui,j ]]bk ∧ ∧j−1

t=0 [[ϕ, ui,t]]bk))

where [[ϕ, ui,j ]]b0 denotes false for j > 0.

[[ϕ, ui,j ]]b0 may occur when k = 0. We may only consider the cases with k ≥ 1 in the
definition. But we choose to allow k = 0 for avoiding situations where we may need to
explicitly mention k = 0 as a special case.

Definition 10. [[M,ϕ, u]]bk := [[M ]]bk → [[ϕ, u]]bk.

[[M,ϕ, u(s)]]bk encodesM ′
k, s |= ϕ, in the sense that a model of [[M,ϕ, u(s)]]bk satisfy-

ing [[M ]]bk yields a (k, b)-submodel M ′
k such that M ′

k, s |= ϕ. This means that if there
is no falsifying assignments, then every (k, b)-submodel M ′

k satisfies M ′
k, s |= ϕ. On

the other hand, a falsifying assignment of [[M,ϕ, u(s)]]bk yields a (k, b)-submodel M ′′
k

such that M ′′
k , s 
|= ϕ.

Lemma 4. [[M,ϕ, u(s)]]bk is valid iff for every (k, b)-submodelM ′
k, M ′

k, s |= ϕ.

According to Lemma 3, we obtain Mk, s |= ϕ iff [[M,ϕ, u(s)]]nk(ϕ)
k is valid. Then

with Theorem 1, we obtain

Theorem 5. M, s |= ϕ iff there is some k ≤ kM such that [[M,ϕ, u(s)]]nk(ϕ)
k is valid.

Definition 11. [[M,ϕ]]bk := I(u) ∧ [[M ]]bk → [[ϕ, u]]bk.

I(u) restricts the potential values of u to be the initial states of M . [[M,ϕ]]bk is valid iff
for each s of the initial states, [[M ]]bk → [[ϕ, u(s)]]bk is valid. According to Lemma 4

and Lemma 3, we obtain Mk |= ϕ iff [[M,ϕ]]nk(ϕ)
k is valid. Then with Theorem 2, we

obtain

Theorem 6. M |= ϕ iff there is some k ≤ kM such that [[M,ϕ]]nk(ϕ)
k is valid.

6 Bounded Verification and Case Study

Bounded verification of valid ACTL properties can be based on theorem 6. For mini-
mizing the number of propositions used in the SAT formulas, we base the verification
on the following corollary where the variable u (implicitly) in Theorem 6 is replaced
by u1,0 which is already in [[M ]]nk (when n ≥ 1). Let

[[M,ϕ]]∗k := I(u1,0) ∧ [[M ]]nk(ϕ)
k → [[ϕ, u1,0]]

nk(ϕ)
k .
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Corollary 1. M |= ϕ iff there is a 0 ≤ k ≤ kM such that [[M,ϕ]]∗k is valid.

The verification approach is as follows. For a given modelM and an ACTL formula ϕ,

– Start with k = 0;
– If [[M,ϕ]]∗k is valid, report that the property holds;
– Increase k, if k ≤ kM , go to the first “if”-test;
– Report that the property does not hold.

6.1 Case Study

We first present the tool for the case study. There are mainly two steps for the veri-
fication: one is the generation of a CNF formula and the other is the checking of the
formula. The tool first converts the Boolean representation of the initial state and the
transition relation of the abstract program and the property (to be checked) to the CNF
formula and then call the satisfiability checker BOSCH3 for checking the CNF for-
mula. If the formula is satisfiable, an assignment that makes the formula satisfiable is
presented. This can be used for error detection as demonstrated in Section 6.3.

We now present the abstract program (this is taken from [23] in which the program
was used for the illustration of the verification of LTL properties) and the properties
to be verified. Let a, b be variables of enumeration type which have respectively the
domain {s0, ..., s3} and {t0, ..., t3}. Let x, y, t be variables of Boolean type. The pro-
gram consists of two processes:A andB with the following specification in a first order
transition system [17]:

Process A:
a = s0 −→ (y, t, a) := (1, 1, s1)
a = s1 ∧ (x = 0 ∨ t = 0) −→ (a) := (s2)
a = s2 −→ (y, a) := (0, s3)
a = s3 −→ (y, t, a) := (1, 1, s1)
Process B:
b = t0 −→ (x, t, b) := (1, 0, t1)
b = t1 ∧ (y = 0 ∨ t = 1) −→ (b) := (t2)
b = t2 −→ (x, b) := (0, t3)
b = t3 −→ (x, t, b) := (1, 0, t1)

Let the initial state be a = s0∧b = t0∧x = y = t = 0. We consider two properties:

– A liveness property: process A or process B will at some future point (including
the current one) pass a critical region, i.e. AF (a = s3 ∨ b = s3).

– A mixed property: at any point, process A or process B will at some future point
(including the current one) pass a critical region, i.e. AGAF (a = s3 ∨ b = s3).

Let boolean variables a0 and a1 represent the variable a such that a0 = i ∧ a1 = j
meaning a = s2i+j , and b0 and b1 represent b such that b0 = i ∧ b1 = j meaning
b = t2i+j . Then each state is represented by a tuple (a0, a1, b0, b1, x, y, t).

3 A tool based on DPLL and developed based on parts of the code of a tool presented in [25].



Model Checking with SAT-Based Characterization of ACTL Formulas 203

Let V = {a0, a1, b0, b1, p, q, r}. The system can be represented by boolean formulas
as follows:

I(a0, a1, b0, b1, x, y, t)
≡ x = 0 ∧ y = 0 ∧ t = 0 ∧ a0 = 0 ∧ a1 = 0 ∧ b0 = 0 ∧ b1 = 0
T (a0, a1, b0, b1, x, y, t, a

′
0, a

′
1, b

′
0, b

′
1, x

′, y′, t′)
≡ a0 = 0 ∧ a1 = 0 ∧ y′ = 1 ∧ t′ = 1 ∧ a′1 = 1 ∧ same(V \ {y, t, a1})∨
a0 = 0 ∧ a1 = 1 ∧ (x = 0 ∨ t = 0) ∧ a′0 = 1 ∧ a′1 = 0 ∧ same(V \ {a0, a1})∨
a0 = 1 ∧ a1 = 0 ∧ y′ = 0 ∧ a′1 = 1 ∧ same(V \ {y, a1})∨
a0 = 1 ∧ a1 = 1 ∧ y′ = 1 ∧ t′ = 1 ∧ a′0 = 0 ∧ same(V \ {y, t, a0})
b0 = 0 ∧ b1 = 0 ∧ x′ = 1 ∧ t′ = 0 ∧ b′1 = 1 ∧ same(V \ {x, t, b1})∨
b0 = 0 ∧ b1 = 1 ∧ (y = 0 ∨ t = 1) ∧ b′0 = 1 ∧ b′1 = 0 ∧ same(V \ {b0, b1})∨
b0 = 1 ∧ b1 = 0 ∧ x′ = 0 ∧ b′1 = 1 ∧ same(V \ {x, b1})∨
b0 = 1 ∧ b1 = 1 ∧ x′ = 1 ∧ t′ = 0 ∧ b′0 = 0 ∧ same(V \ {x, t, b0}) ∨ loop action

where same(X) represents v′1 = v1 ∧ · · · ∧ v′n = vn for the set of propositions X =
{v1, ..., vn}, and loop action is a transition enabled if none of the other transitions is
applicable, and the effect of this transition is that the values of the state variables are
kept unchanged in the next state.

The formula (a = s3 ∨ b = t3) is the same as the following.

(a0 = 1 ∧ a1 = 1 ∨ b0 = 1 ∧ b1 = 1)

Let us denote this formula by ψ. Then the two properties are as follows.

(1) M |= AFψ
(2) M |= AGAFψ

6.2 Checking Correctness

For M |= AFψ, we want to know whether [[M,AFψ]]∗k is valid for some k. We check
the satisfiability of the negation of [[M,AFψ]]∗k for k = 0, 1, 2, ..., until the formula
is unsatisfiable, or the completeness threshold kM is reached. By making trivial sim-
plifications, transforming the formula into CNF format, and using the tool BOSCH for
satisfiability checking, we obtain that the CNF formula is satisfiable for k = 0, 1, 2, 3
and it is unsatisfiable for k = 4. This proves M |= AFψ. Table 1 shows the experi-
mental data of this verification on a Sun Blade 1000 with 750 MHz and 512 MB. The
number of variables includes the number of variables representing the states and that of
auxiliary variables used in the transformation of the formula into CNF. The time used
by BOSCH for satisfiability checking is negligible.

For M |= AGAFψ, we check the satisfiability of the negation of [[M,AGAFψ]]∗k
for k = 0, 1, 2, ... . We obtain that it is satisfiable for k = 0, 1, ..., 9 and it is unsatisfiable
for k = 10. This proves M |= AGAFψ. Table 2 shows the experimental data of this
verification for k = 0, 3, 6, 9, 10. The time is that (in seconds) used by BOSCH for
satisfiability checking.
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Table 1. Experimental data for verification of AFψ

Property k Variables Clauses Time SAT
AFψ 0 9 14 0.0 yes

1 26 157 0.0 yes
2 43 302 0.0 yes
3 60 449 0.0 yes
4 77 598 0.0 no

Table 2. Experimental data for for verification of AGAFψ

Property k Variables Clauses Time SAT
AGAFψ 0 23 25 0.0 yes

3 185 1000 0.0 yes
6 410 2146 0.1 yes
9 698 3463 0.2 yes

10 808 3940 5.0 no

6.3 Error Detection

Suppose that we have an erroneous program where the transition rule

a = s1 ∧ (x = 0 ∨ t = 0) → (a) := (s2)

is wrongly written as

a = s1 ∧ (x = 0 ∨ t = 1) → (a) := (s2).

Then the two properties do not hold in this modified program. Let us denote this
program (its equivalent Kripke structure) by M ′. Then we need to check the properties
up to the threshold kM ′ . With Proposition 2, we may use an over approximation of kM ′ .
For instance, we may use 17, which is the number of reachable states ofM ′, as the over
approximation.

The inputs to the satisfiability checker are satisfiable with each k up to and including
17, and this certifies that the properties do not hold in this program, i.e.

M ′ 
|= AFψ
M ′ 
|= AGAFψ

Table 3 and Table 4 show the experimental data of error detection with respect to the
properties AFψ and AGAFψ with k = 0, 4, 8, 12, 16, 17, respectively.

For error location, the path information produced by BOSCH can be used for the
analysis of the problem of the program. For the propertyAGAFψ, the path information
is shown in Table 5, where a = si iff a0 = i/2∧a1 = i%2 and b = ti iff b0 = i/2∧b1 =
i%2. By looking at the path information, we find two paths. The first path has a loop
at state 06 (the sixth state in the path) and the second path has a loop at state 02. The
first path satisfies AFψ and the second one does not. Further, we can relate the first
state of the second path to the first state of the first path, and this means that the second
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Table 3. Experimental data for error detection w. r. t. AFψ

Property k Variables Clauses Time SAT
AFψ 0 9 14 0.0 yes

4 77 598 0.0 yes
8 145 1214 0.0 yes

12 213 1862 0.0 yes
16 281 2542 0.0 yes
17 298 2717 0.0 yes

Table 4. Experimental data for error detection w. r. t. AGAFψ

Property k Variables Clauses Time SAT
AGAFψ 0 23 25 0.0 yes

4 253 1363 0.0 yes
8 595 3005 0.2 yes

12 1049 4951 0.4 yes
16 1615 7201 0.9 yes
17 1774 7811 1.1 yes

Table 5. Path information for error detection w. r. t. AGAFψ

Path State a0 a1 b0 b1 x y t

1 00 0 0 0 0 0 0 0
1 01 0 1 0 0 0 1 1
1 02 1 0 0 0 0 1 1
1 03 1 1 0 0 0 0 1
1 04 1 1 0 1 1 0 0
1 05 1 1 1 0 1 0 0
1 06 0 1 1 0 1 1 1
1 07 1 0 1 0 1 1 1
1 08 1 1 1 0 1 0 1
1 09 = 06 0 1 1 0 1 1 1
1 · · · · · · · · · · · · · · · · · · · · · · · ·
2 01 0 1 0 0 0 1 1
2 02 0 1 0 1 1 1 0
2 03 = 02 0 1 0 1 1 1 0
2 · · · · · · · · · · · · · · · · · · · · · · · ·

path starts at the first state of the first path, and this path has an execution sequence that
looks like a deadlock. By analyzing the program, we know that there is a deadlock (not
ending with a state satisfying ψ) and therefore the program does not satisfy AGAFψ.

6.4 Complexity and Discussion

The complexity of [[M,ϕ]]∗k depends on M , k and nk(ϕ). For a given k, the number
of propositional variables involved in [[M,ϕ]]∗k is (k + 1) · nk(ϕ) where nk(ϕ) =
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2O(log(k)·|ϕ|). This means that the number of propositional variables could be exponen-
tial in the length (in practice, in the nesting depth of AR and AU ) of ϕ. We expect that
for practical applications, the nesting depth of AR and AU of a formula is small. Then
the efficiency depends very much on k which is bounded by the number of reachable
states (or more accurately, the diameter) of M .

When a small k is sufficient for the verification, the advantage of this approach is
clear. In such cases, it could be much more efficient than BDD based approaches. we
provide an example illustrating this advantage.

Let p0, ..., pn−2, q, r be variables of the domain {0, 1} and ⊕ be the function: addi-
tion modulo 2. Let the system be consist of n processes.A,B andCi for i = 0, ..., n−3
(each is a sequential process which executed in parallel to each other with the interleav-
ing semantics) with the following specification:

A : r = r ⊕ 1; p0 = p0 ⊕ 1
B : pn−2 = pn−2 ⊕ 1; q = q ⊕ 1
Ci : pi = pi ⊕ 1; pi+1 = pi+1 ⊕ 1; q = q ⊕ 1

Let the initial state be pi = 0 and q = r = 1.
Let ϕ = AXA(qU(p0∨p2∨· · ·∨pn−2)) for an even number n. For verifyingϕ(n),

we first transform the problem to CNF formula, then use zChaff, an implementation
of the Chaff algorithm [16] for verification. For n = 4, 6, 8, 10, 12, the property is
verified when k reaches respectively 2, 3, 4, 5, 6. The verification times by zChaff for
n = 4, 6, 8, 10, 12 are shown in Table 6.

For comparison, we have carried out the same verification task using SMV (release
2.5.4.3), an implementation of the symbolic model checking technique [15]. The veri-
fication times for n = 4, 6, 8, 10, 12 are shown in Table 7.

Table 6 and Table 7 show clear advantage of using this bounded verification approach
over the BDD based verification approach for this example.

Table 6. Experimental data for verification by zChaff

Property k Time (s) Variables Clauses SAT
ϕ(4) 2 0.01 139 1254 no
ϕ(6) 3 0.03 278 4077 no
ϕ(8) 4 0.11 465 9522 no
ϕ(10) 5 0.42 700 18456 no
ϕ(12) 6 1.15 983 31746 no

Table 7. Experimental data for verification by SMV

Property Time (s) BDD nodes Memory (KB)
ϕ(4) 0.06 6092 1245.184
ϕ(6) 0.96 14545 1376.256
ϕ(8) 12.97 111981 2949.120
ϕ(10) 192.01 888025 15335.424
ϕ(12) 6596.34 6135235 99287.040
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6.5 Summary

The case study shows that this approach can be used to both verification of correct
properties and error detection, and the comparison has illustrated that when a small k
is sufficient for the verification, the advantage is clear. In such cases, it could be much
more efficient than BDD based approaches. For error detection, in addition to identi-
fying that there is an error, error paths may also be produced. Creating and analyzing
tree-like counter examples have also been studied in many papers including [8,20]. In
our work, the counterexample may be created and presented as a set of k-paths. Al-
though we may use this approach for error detection, it needs to reach a completeness
threshold for k. This is usually not very efficient. This approach can be combined with
that presented in [18] for error detection. This is to be discussed in the next section.

7 A Combined Verification Approach

Bounded model checking based on SAT (satisfiability checking) has first been intro-
duced as a complementary technique to BDD-based symbolic model checking of LTL
properties [2]. This idea has then been used for checking ACTL properties [18]. The
characterization, denoted here by [[ϕ, ui,j ]]

∗,b
k , is based on a bounded semantics for

ECTL and the encoding of ECTL formulas as follows.

[[p, u]]∗,b
k = p(u)

[[¬p, u]]∗,b
k = ¬p(u)

[[ϕ ∨ ψ, u]]∗,b
k = [[ϕ, u]]∗,b

k ∨ [[ψ, u]]∗,b
k

[[ϕ ∧ ψ, u]]∗,b
k = [[ϕ, u]]∗,b

k ∧ [[ψ, u]]∗,b
k

[[EXϕ, u]]∗,b
k =

∨b
i=1(u = ui,0 ∧ [[ϕ, ui,1]]

∗,b
k )

[[EGϕ, u]]∗,b
k =

∨b
i=1(u = ui,0 ∧

∧k
j=0[[ϕ, ui,j ]]

∗,b
k ∧ ∧k

j=0 T (ui,k, ui,j))
[[E(ϕUψ), u]]∗,b

k =
∨b

i=1(u = ui,0 ∧
∨k

j=0([[ψ, ui,j ]]
∗,b
k ∧ ∧j−1

t=0 [[ϕ, ui,t]]
∗,b
k ))

where [[ϕ, ui,j ]]
∗,b
0 denotes false for j > 0. Define

[[M,ϕ]]∗,b
k := I(u) ∧ [[M ]]bk ∧ [[ϕ, u]]∗,b

k .

Let fk(ϕ) be the sufficient number4 of paths for a witness (if there is any) of the
ECTL formula ϕ. According to this encoding, we have the following theorem [18].

Theorem 7. Let ϕ be an ACTL formula. Mk 
|=k ϕ iff there is some k < kM such that

[[M,¬ϕ]]∗,fk(¬ϕ)
k is satisfiable.

This theorem can be used as a basis for efficient error detection with SAT-based model
checking. The procedure for verification of a given modelM against an ACTL formula
ϕ could be as follows:

4 The computation of fk(ϕ) is referred to the paper [18].
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– Start with k = 0;
– If [[M,¬ϕ]]∗,fk(¬ϕ)

k is satisfiable, report “the property does not hold”;
– Increase k, if k < kM , go to the first “if”-test;
– Report that the property holds.

This can also be used for verification of valid properties. However, it is not efficient
for this purpose, since one has to reach the condition with k = kM . Theorem 7 and
Theorem 6 can be combined to avoid the use of the completeness threshold kM .

Corollary 2. Let ϕ be an ACTL formula. Mk |=k ϕ if there is some k ≤ kM such

that [[M,ϕ]]nk(ϕ)
k is valid or for all k ≥ 0, [[M,¬ϕ]]∗,fk(¬ϕ)

k is unsatisfiable. Mk 
|=k

ϕ if [[M,ϕ]]nk(ϕ)
k is not valid for each k ≥ 0 or there is some k < kM such that

[[M,¬ϕ]]∗,fk(¬ϕ)
k is satisfiable.

The procedure for the verification of a given model M against an ACTL formula ϕ
could then be as follows:

– Start with k = 0;
– If [[M,ϕ]]nk(ϕ)

k is valid, report “the property holds”;

– If [[M,¬ϕ]]∗,fk(¬ϕ)
k is satisfiable, report “the property does not hold”;

– Increase k, go to the first “if”-test;

The procedure based on Corollary 2 is guaranteed to terminate with a report on
whether the property holds. In theory, there is still a completeness threshold that may
be reach in some cases of the satisfiability checking. Even in such cases, the advantage
is that we do not need to know the completeness threshold for which the cost for the
calculation is high [1,13] and an over-approximation can be quite large.

The complexity of the procedure depends on the number of variables involved in the
encoding. For a given k and an ACTL formula ϕ, the number of variables needed is
kO(|ϕ|). The efficiency depends on whether there is a small k which is sufficient to cer-
tify or falsify the property. The partO(|ϕ|) is small when there are few levels of nesting
temporal operators (which is often the case in the practical property specification and
verification).

Related Works. There has not been lack of motivation and work for proving proper-
ties based on SAT. Related works include, for instance, SAT-based analysis of partial
correctness assertions [11,12], SAT-based proof of safety properties by using induction
[21], conservative abstraction with counter example guided refinement [9], and interpo-
lation based transition relation approximation for generating facts relevant with respect
to given properties [14]. Proving simple liveness properties based on SAT was also
considered in [1]. Recently, SAT-based verification of valid general LTL and ACTL
properties has been considered in [23,24]. The idea is to verify a model of a particular
length (as short as possible) and to generate a propositional formula that is unsatisfiable
if the model is unsatisfiable with respect to the given property. However the condition in
these approaches is only a sufficient condition, not a sufficient and necessary condition,
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such that there are valid LTL and ACTL properties that cannot be verified by using these
approaches alone.

8 Concluding Remarks

Model checking has been considered as one of the most practical applications of the
theoretical computer science in the verification of concurrent systems. The practical ap-
plicability of explicit state model checking, introduced in [6,7], is limited by the state
explosion problem which could be caused by for instance, the representation of cur-
rency of operations by their interleaving. Therefore much effort has been put into the
research aiming at minimizing models. Binary Decision Diagram (BDD) based on sym-
bolic techniques has significantly improved the practical applicability of model check-
ing by compactly representing transition relations and system states [4,3,5]. Although
this is a great success, it has not solved the state explosion problem. For many problems,
there is no polynomial size representation with BDD.

For combating this problem, bounded model checking based on SAT (satisfiability
checking) has been introduced as a complementary technique to BDD-based symbolic
model checking of LTL and ACTL properties in respectively 1999 and 2002 [2,18].
The basic idea is to search for a counter example of a particular length (as short as
possible) and to generate a propositional formula that is satisfied iff such a counter
example exists. This idea is similar to that for searching finite models [22] for which
we search for counter models of given sizes until we find one.

Prasad, Biere and Gupta pointed out in a survey paper [19] in 2005 that, currently, the
strength of SAT-based verification techniques lies primarily in falsification. This is a re-
mark on verification related to general temporal properties. For simple properties, there
has been a lot of work and report of success, for instance, for proving simple safety and
liveness properties [21,9,14,1]. Recently, SAT-based verification of valid general LTL
and ACTL properties has been considered in [23,24]. However these approaches are
based on semantics with existential interpretation and the condition in these approaches
is not a sufficient and necessary condition, such that there are valid LTL and ACTL
properties that cannot be verified by using these approaches.

This work has provided a bounded semantics for ACTL, and based on this semantics,
a refinement has been developed. Then a characterization of ACTL properties by propo-
sitional formulas and an approach is presented for the verification of ACTL formulas
such that a sufficient and necessary condition is provided. This means that all ACTL
properties can either be verified or falsified by using this approach, with the emphasis
on verification. For practical application, falsification using this approach depends on a
completeness threshold which is not very efficient, and therefore a proposal for com-
bining this approach with the approach based on the bounded semantics for ECTL is
suggested for avoiding the use of such a completeness threshold.

Acknowledgments. The author thanks anonymous referees for their constructive critics
that helped improving this paper.
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Abstract. Refinement plays a crucial role in “top-down” styles of verifi-
cation, such as the refinement calculus, but for probabilistic systems proof
of refinement is a particularly challenging task due to the combination
of probability and nondeterminism which typically arises in partially-
specified systems.

Whilst the theory of probabilistic refinement is well-known [18] there
are few tools to help with establishing refinements between programs.

In this paper we describe a tool which provides partial support during
refinement proofs. The tool essentially builds small models of programs
using an algebraic rewriting system to extract the overall probabilis-
tic behaviour. We use that behaviour to recast refinement-checking as
a linear satisfiability problem, which can then be exported to a linear
arithmetic solver.

One of the major benefits of this approach is the ability to generate
counterexamples, alerting the prover to a problem in a proposed refine-
ment.

We demonstrate the technique on a small case study based on Schnei-
der et al.’s Tank Monitoring [26].

Keywords: Probabilistic systems, probabilistic verification, algebraic
rewriting system for probability, refinement, linear satisfiability.

1 Introduction

The generally-accepted semantics for probabilistic programs [10] is based on
Markov Decision Processes (MDPs) [5], and incorporates probability and non-
determinism. That model is the basis for several refinement-style formalisms such
as pGCL [18], probabilistic action systems [27,9,16], and probabilistic extensions
to the B-method [12]. Whilst the theory of probabilistic-program refinement is
well understood, there is little mechanised support to aid in its practical appli-
cation, except in some specialised situations [11,2]. Our principal purpose in this
paper is to address that problem, by providing partial support to automate the
task of checking refinement for finite instances of systems, with the ability to
provide counterexamples in cases where the proposed refinement fails.

The background to this work lies in - rather than styles
of verification such as model checking. The strengths of probabilistic model
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checking lie in its detailed numerical calculation of various performance mea-
sures, on the other hand, even though it is restricted to the treatment of finite-
state systems, there is normally no compensating version of “counterexample
support” as for standard model checking systems.

In contrast a proof-based method uses mathematical reasoning to show that
an implementation satisfies (or does not satisfy) a particular specified property
or behaviour. It is more general than model checking but normally requires
significant prover-guided intervention. Moreover the combination of arithmetic
and predicates over program variables necessary in probabilistic systems poses
significant practical challenges for automation [2]. Refinement — in which the
behaviour of a specification program must be shown to match that of an imple-
mentation — is particularly difficult to verify, and moreover it is known that the
staple “first order” rule [7] used in the standard B-toolkit, for example, does not
carry over to probabilistic systems, except for a restricted class of refinements
[12].

In this paper we propose a technique based on the algebra of probabilistic pro-
grams to reduce “iteration-free” programs to semantically equivalent form which
allows probabilistic behaviour — on which refinement is ultimately judged —
to be compared directly between programs. The actual comparison is formu-
lated as the satisfaction of linear constraints, which is then exported to a linear
arithmetic solver.

Whilst restricted to iteration-free programs, the technique is general enough
to treat finite instances of arbitrary such programs, and appeal to invariant-
style rules will typically promote an iteration-free refinement to one which even
includes iteration [17,19]. However even proofs of refinements between small, but
intricate programs, are often tricky to get right, and our aim is to support that
part of the verification task.

A particular benefit of this approach is the possibility of generating coun-
terexamples in the event that a putative refinement does not hold, and this is
not something which other tools for probabilistic systems can currently supply.
Moreover in certain cases where the system is “data independent” [15] even the
ban on arbitrary variable types can sometimes be lifted.

Our specific contributions are:

1. The theoretical formulation of refinement as a linear satisfiability problem
(Sec. 4 and Sec. 5);

2. An implementation of a refinement checker between two probabilistic pro-
grams, which are restricted to being iteration-free and having variables of
finite type (Sec. 6);

3. A small case study based on Schneider et al. ’s Tank Monitoring system [26]
(Sec. 7);

4. A data-independent style theorem for generalising the automated refinement
checking to a class of probabilistic programs for Tank Monitoring (Sec. 7.1).

We begin in Sec. 2 with a review of probabilistic program semantics, and end
with a brief summary of other work on related topics and describe some areas
for future research.
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Notation. Function application is represented by a dot, as in f.x. We use
an abstract state space S. (In our programming language a state is defined
by a mapping from program variables to values.) We denote the set of discrete
probability distributions over S by S (that is the sub-normalised functions from S
into the real interval [0, 1], where function f is sub-normalised if

∑
s : S f.s ≤ 1).

We use δs for the point distribution such that δs.s
′ = 1 if and only if s′ = s, and

otherwise is 0.
We often use functions or relations between reals “lifted” pointwise to real-

valued functions. Examples include ≤ (no more than) and � (minimum).

2 Probabilistic Program Semantics

When programs incorporate probability, their properties can no longer be guar-
anteed “with certainty”, but only “up to some probability”. For example the
program

=̂ x := 0 2/3⊕ x := 1 , (1)

sets the real-valued variable x to 0 only with probability 2/3, and to 1 with
probability 1/3. In practice this means that if the statement were executed a
large number of times, and the final values of x tabulated, roughly 2/3 of them
would record x having been set to 0 (up to well-known statistical confidence [8]).

The language pGCL [18] was developed to express such programs and to
derive their probabilistic properties by extending the classical assertional style of
programming to include a probabilistic choice operator [23]. Programs in pGCL
are modelled (operationally) as functions (or transitions) which map
in S to (sets of) probability distributions over — the program at (1)
for instance has a single transition which maps any initial state to a (single)
final distribution; we represent that distribution as a function d, evaluating to
2/3 when x = 0 and to 1/3 when x = 1.

Central to verification is the notion of abstraction, by which programs’ de-
tailed behaviour may be specified by abstracting from much of the intermediate
computation steps required to achieve some intended goal. As for standard pro-
gramming we use to enable the specification of several possible
“result distributions”. For example the program

′ =̂ x := 0 1/2⊕ x := 1 � x := 0 (2)

specifies two result distributions, which we have put together with nondetermin-
istic choice. Thus at the extremes, may behave either as a fair coin, or a
completely biased coin, always setting x to 0. But specifies much more: the
intention of nondeterminism is to abstract from all resolution strategies, amongst
them being both Boolean- and probabilistic choices. For example one of the out-
comes specified by (2) is an implementation in which the choice is resolved by a
probability e.g. 2/3⊕. Thus we say

′ � (x := 0 1/2⊕ x := 1) 2/3⊕ (x := 0) = , (3)
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where the refinement follows by replacing the � in (2) with 2/3⊕, and the right-
hand side equality holds by the standard rules of probability theory [8] (i.e. in
the middle expression at (3), the “event x is set to 0” happens with probability
2/3×1/2 + 1/3 = 2/3, which is expressed more succinctly by ).

More generally we define the semantics of probabilistic programs as sets of
result distributions, where following Morgan et al.[18] we restrict the result sets
of the semantic functions according to an underlying order on the state space.
That order has been set out in detail elsewhere [1], and we review it briefly in
Sec. 4 to follow. An innovation, however, is to distinguish specially “miraculous”
or infeasible behaviour from ordinary behaviour — miracles are used in program
semantics to simplify calculations [23,22], or to model “guarded commands” [16].
In the semantics, miracles will be associated with a special introduced state �,
and our program model is defined over the [14] based
on the underlying (flat) domain (S�, �), where S� is S conjoined with the
special state �, and the order � is constructed so that � dominates all (proper)
states in S, which are otherwise unrelated.

Definition 1. 1 (LS, �) LS

S� S�
convex � � �

{δ�} δ�

P � P ′ (∀s : S · P.s ⊇ P ′.s) .

C Convex closed d, d′ ∈ C λ×d+(1−λ)×d′

0 ≤ λ ≤ 1 2

In Fig.1 we set out the semantics for pGCL, a variation of Dijkstra’s GCL
with several extensions and modifications. They are miracles, probability, and
parallel [16], with the last restricted to programs operating over distinct state
spaces and, in-line with standard MDP-style semantics [24], and can be under-
stood as first resolving all the nondeterminism in either operand, followed by
any probabilistic choice. All the other programming features have been defined
previously elsewhere, and (apart from probabilistic choice) have interpretations
which are merely adapted to the real-valued context. For example nondetermin-
ism, as explained above, is interpreted and can be thought of as
being resolved by a “demon”, providing guarantees on all program behaviour,
such as is expected for total correctness. , on the other hand,
selects the operands at random with weightings determined by the probability
parameter p.

We also use the following short-hand expressions. Given a (finite) family I
of commands we write � i : ICi for the generalised (nondeterministic) choice

1 This particular “Lamington” model was first suggested by Carroll Morgan [21].
2 Strictly speaking, we should also include “up-closure” and “Cauchy-closure” in our

definition [18], but they are naturally implied by convex closure in the iteration-free
context which allows miracles.
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identity skip.s =̂ �{δs}� ,
top magic .s =̂ {δ�} ,
composition (P ; P ′).s =̂ {

�
u : S�(d.u) × d′

u | d∈P.s; d′
u ∈P ′.u} ,

choice (if B then P else P ′).s =̂ if B.s, then P.s, otherwise P ′.s
probability (P p⊕ P ′).s =̂ �{d p⊕ d′ | d ∈ P.s; d′ ∈ P ′.s}� ,
nondeterminism (P � P ′).s =̂ �{d | d ∈ (P.s ∪ P ′.s)}� ,
parallel (P | P ′).s =̂ �{d ⊗ d′ | d ∈ P.s ∧ d′ ∈ P ′.s)}� , ‡
iteration It P tI =̂ (νX · P ;X � 1) .

In the above definitions s is a state in S and �K� is the smallest up-, convex- and
Cauchy-closed subset of distributions containing K. (Note up- and Cauchy-closed are
normally implied by convex closure.) Given distributions d and d′ over disjoint state
spaces, their composition d ⊗ d′ is defined as the normal product distribution between
independent random events [8]. Programs are denoted by P and P ′, and the expression
(νX · f.X) denotes the greatest fixed point of the function f — in the case of iteration
the function is the 
-monotone program-to-program function λX · (P ; X � 1). All
programs map � to {δ�}. The parallel operator at ‡ is only defined between programs
which act over disjoint state spaces.

Fig. 1. Semantics of probabilistic programs [18]

over the family, and
⊕

i∈I Ci@pi for the generalised probabilistic choice (where∑
i∈I pi = 1). In cases where we need to be more explicit, we also use a list

[C0 @p0, C1 @p1, . . . , Ck @pk] , (4)

for the generalised probabilistic choice, where each Ci is executed with proba-
bility pi. For assignments to variables v, we use v :∈ for the generalised
nondeterministic choice over any value from its type that satisfies the predicate

.
In this paper we are interested in the refinement-oriented style of verification,

and in the next section we illustrate it for probabilistic programs by a small
example.

3 Probabilistic Verification as a Refinement Problem

In this section we consider as an illustration the following problem, originally
attributed to Dijkstra [3]. Given a biased coin

(x) =̂ x := 0 1/3⊕ x := 1 , (5)

in which the variable x is set to 0 with probability 1/3 and to 1 with probability
2/3, devise a strategy of such coin flips which effectively generates a fair coin.

The underlying idea of the solution is based on the following observation: if
two such biased coins are flipped independently (x); (y), then the chance
that x = 0 ∧ y = 1 is as the chance that x = 1 ∧ y = 0. Intuition now
implies that if we flip coins independently in pairs until x �= y, then overall we
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should observe a fair distribution of the events x = 0 ∧ y = 1 and x = 1 ∧ y = 0.
If our intuition is correct then the iteration given at Fig.2 should be a
refinement of the simple assignment , also at Fig.2:

� . (6)

Observe that the specification program makes a fair probabilistic choice
between two simultaneous assignments to x and y which distinguish the two
possible cases satisfying x �= y. The program , on the other hand uses the
iteration construct to define a loop, which makes pairs of independent coin flips
by calling (5) independently twice. Whilst the general iteration construct in Fig.1
allows an arbitrary number of steps, the following coercion, defined

[x �= y] =̂ if (x �= y) then skip else magic ,

forces the iteration to continue only until the desired condition has been estab-
lished. Overall, if the refinement at (6) is valid then the only possible final results
of the iteration is to set the variables x and y in the pattern prescribed by

.

pairs =̂ (It if (x = y) then coin(x); coin(y) else skip tI); [x �= y]

fair =̂ if (x = y) then (x, y := 0, 1) 1/2⊕ (x, y := 1, 0) else skip

The program pairs effectively implements an arbitrary finite number of paired flips,
terminating when x is not equal to y.

Fig. 2. Making a biased flip fair

Whilst the specification is quite straightforward, more difficult is the actual
verification. As usual with iterative designs however proof may be delegated to
the satisfaction of an invariant-style argument based on the iteration body. Here
the appropriate rule is given by

w � z; w ∧ [G]; w = [G] ⇒ w � (It z tI); [G] (7)

and is proved elsewhere for probabilistic programs [17,19]. The idea of the rule
is that if the overall required behaviour specified by w and stopping condition G
is an invariant of the iteration body z (the left-hand side of (7)) then it must be
the case that the result of the iteration is indeed specified by w (the right-hand
side of (7)).

For our example, this means that verification of (6) follows provided that the
following refinement holds:

� if (x = y) then (x); coin(y) else skip ; . (8)

Whilst this refinement may be proved very easily “by hand” using effectively
elementary probability theory we are interested in providing automated support
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more generally, for cases in which there are many such refinements to be proved
[25,17], or where many small proof rules are required to demonstrate it. In these
situations support either in the form of a proof, or concrete evidence that the
refinement does not hold is very valuable in the verification task.

In the next section we show how to turn the problem of demonstrating refine-
ments like (8) into a linear-programming problem, which can be exported to an
automated “solver”.

4 Refinement as a Linear Satisfiability Problem

To see the relevance of linear satisfiability to the refinement problem, we must
first consider how distributions over a finite (discrete) state space (of size N)
can be considered as points in an N -dimensional Euclidean space, and that the
definition of the semantics of refinement given at Def. 1 corresponds to whether
one convex polyhedron is contained in another. We begin by illustrating the
ideas with a specific state space of size 3, and then go on to set out the general
mathematical framework.

Let d be a result-distribution of a program operating over a state space of size
3, so that S =̂ {s0, s1, s2}.3 Thus d can be thought of as a function d : S → [0, 1],
and indeed may be represented by a 3-tuple (d0, d1, d2), where di =̂ d.si. In this
notation, we can easily visualise d as a point in 3-dimensional Euclidean space,
where the Cartesian axes are labelled s0, s1, s2.

In general, of course, when nondeterminism is present the result set will consist
of a number of distributions, giving a set of points. Fortunately the semantics
guarantees that the set satisfies certain regularity conditions, in particular that
it corresponds to a convex polyhedron.

For example if we consider the program

P =̂ x := s0 0.5⊕ x :∈ {s0, s1, s2} , (9)

where x is either set to s0 with probability 0.5, or (also with probability 0.5)
to the nondeterministic choice over s0, s1, or s2. When the result distributions
are encoded as triples, and depicted graphically, the result is a triangular set of
points P depicted at Fig.3. Note however that the three points a =̂ (1, 0, 0), b =̂
(1/2, 1/2, 0) and c =̂ (1/2, 0, 1/2), corresponding respectively to the the three
refinements (x := s0), (x := s0 0.5⊕ x := s1) and (x := s0 0.5⊕ x := s2), can
between them generate all the other points in the set by .
Here a convex combination of a, b and c is an expression of the form λ0×a +
λ1×b+λ2×c, such that the λi ≥ 0 and their sum is 1; the set generated by such
a finite set of points is called the . Now, given any point d′, we can
decide whether it lies inside P or not, by considering only convex sums of a, b
and c.

3 For this example we do not deal with miraculous behaviour, but the general theory
later does account for it.
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For example the point z given by (3/4, 1/8, 1/8), illustrated in Fig.3 is con-
tained in P since

z =
1
2
a +

1
4
b +

1
4
c .

On the other hand point y = (0, 1/2, 1/2) is not contained in P, and indeed
it cannot be expressed as a convex combination of a, b and c, since any such
combination must have representation (d0, d1, d2) with d0 > 0.4

P
a, b

c

As we shall see, the problem of discovering whether or not a point can be
expressed as a convex combination of a set of given points is equivalent to a linear
satisfiability problem, and indeed can be exported directly to a satisfiability
solver.

a

b

c

s0

s1

s2

z

The dark triangle comprises the set P of result distributions
generated by program P at (9). The large triangle is the
set of (proper) distributions, i.e. the set of tuples (d0, d1, d2)
such that d0+d1+d2 = 1.
Note that point z can be expressed as a convex combination
of the extreme points a, b and c.

Fig. 3. The result of program P as a convex set

Finally we note that we can extend this idea to deciding whether one convex
set A generated as the convex hull of a finite set of points {a0, . . . , ak} is contained
inside another B generated by {b0, . . . , bn}, by observing that A ⊆ B if and
only if each ai ∈ B. This last condition can now be treated as above for each
point ai.

For example, consider program Q defined,

Q =̂ (x := s0 � x := s1) 0.5⊕ (x := s0 � x := s2) . (10)

Note that Q’s result set Q is determined by four extreme points. They are a, b
and c as for P , but also d =̂ (0, 1/2, 1/2) corresponding to Q’s refinement x :=
4 A more general characteristic of non-containment of a point d in a convex set A is

given later.
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s1 0.5⊕ x := s2. Thus we see immediately that P ⊂ Q, since a, b and c are all
members of P, but as mentioned above, d does not lie in P. Thus we deduce that

Q � P �� Q .

In general the refinement problem between two programs with result sets A
and B over a finite state space is determined by whether A ⊆ B, and may be
formalised as follows. Note that we use cc.T to be the convex closure of a set T
of points in some N -dimensional space.

Theorem 1. A =̂ cc.{a0, . . . , ak} b A
λi

λi ≥ 0 , 0 ≤ i ≤ k ,
λ0×a0 + · · · + λk×ak ≥ b ,
λ0 + · · · + λk ≤ 1 .

≥
5

This result can be applied in general to check whether cc.Q ⊆ cc.P , for two
finitely-generated sets of points P and Q. We simply apply Thm. 1 to each point
in q ∈ Q.

The above satisfiability problem only partially solves the problem of proving
refinements between programs, since it assumes that the semantics of a program
is immediately available. That is an unlikely scenario in normal program devel-
opment, where only the program text is available. In the next section we turn
to the question of extracting semantics from program texts, so that Thm. 1 may
be applied directly.

5 Normal Form for Non-iterating Programs

The semantics of programs set out at Def. 1 implies that operationally any
program is equivalent to one in which all the nondeterminism is resolved first,
followed by probabilistic choice. In this situation the result distributions, which
ultimately determine the behaviour of the program, are immediately accessible.
If the whole result set can be generated from a finite number of final distributions
(by convex closing) then, as explained above, the problem of refinement checking
may be reduced to a linear satisfiability problem.

Unfortunately the semantics of a program is not normally readily available.
For example the program 0 defined,

0 =̂ (y := 0 0.5⊕ y := 1); ((y := y+1 � skip) 0.4⊕ y := 2) , (11)

does not have distributions which can be simply “read off” immediately, since
the initial probabilistic assignment must be modified by the subsequent demonic
5 See http://www.comp.mq.edu.au/∼anabel/ICFEM07.pdf for a detailed proof.
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and probabilistic choices before the final result distributions may be computed.
In contrast the result distributions are readily available in the program 1 ,
defined

1 =̂ (y := 1 0.1⊕ y := 2) � (y := 1 0.4⊕ y := 2) �
(y := 0 0.1⊕ y := 2) � ((y := 0 0.5⊕ y := 1) 0.4⊕ y := 2) ,

(12)
because the nondeterminism simply chooses between four possible probabilistic
assignments, and these form the extreme points of the convex hull. Programs
complying with that general syntactic shape — namely a nondeterministic choice
selecting between probabilistic assignments — are said to be in “normal form”,
whose definition appears below at Def. 3. Since the definition is language specific
however, we first fix our language to one which excludes iteration.

Definition 2. P
iteration-free

Whilst iteration-free programs are not general enough to express most programs
of interest, refinement between programs with iteration often follows from re-
finements between loop bodies, as illustrated in Sec. 3.

Now returning to iteration-free programs, we can now define their normal
form: a program is said to be in if it is the nondeterministic choice
over probabilistic assignment statements.

Recall that we use generalised choice � i∈IPi for the nondeterministic choice
over a finite index set I, and occasionally

⊕
i∈I Pi@pi for the generalised prob-

abilistic choice with weights pi (sometimes using the more convenient list form
introduced above). Finally, for convenience, we allow the pi to be real-valued
functions from the state into [0, 1]. We note that this can be used to encode
Boolean choice, since (if B then P else Q) can be written as P B⊕Q, where B is
the characteristic function which returns 1 on states that satisfy B and 0 other-
wise. To see that this is a valid encoding, compare an execution of P B⊕ Q with
(if B then P else Q) from an initial state s0 which satisfies B. In both cases, P
will be executed (with probability 1), since in the first case B.s0 = 1 (so that P
is selected with probability 1), whereas in the latter case B.s0 = determines
also that P is executed.

Definition 3. normal form

� i∈IPi ,

I Pi

It turns out that all iteration-free programs have an equivalent formulation in
normal form, and moreover that there is a decision procedure for converting
programs to their normal forms, based on a set of algebraic rules. In Fig.4 we
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(i) (P p⊕ Q) q⊕ R = [P @p×q, Q @(1−p)×q, R @(1−p)×(1−q)]
(ii) (P � Q) p⊕ R = (P p⊕ R) � (Q p⊕ R)

}
Probability moves inwards

(iii) (P � Q); R = P ; R � Q; R
(iv) (P p⊕ Q); R = P ; R p⊕ Q; R

}
Operators distribute from the right

(v) (y := x); (P p⊕ Q) = (y := x); P p′⊕ (y := x); Q
(vi) (y := x); (P � Q) = (y := x); P � (y := x); Q

}
Assignments move from left

Here y is defined by the program variables, and x can be some (deterministic) function
of the state (i.e. program variables).
Note in rule (v), if the probability p is dependent on the state then p′ is the result of
“applying the assignment”; how that is done is set out elsewhere [18].
Finally, we have only given the rules for the binary form of the various choices —
similar rules hold for generalised choices with respect to finite index sets.

Fig. 4. Rules for rewriting a program to equivalent normal form

set out what they are, and in the next lemma we show that they are sufficient
to reduce all iteration-free programs to (semantically equivalent) normal form.

Lemma 1. P
P 6

We can see Lem. 1 in action by rewriting 0 above at (11) to 1 at (12).
We reason as follows.

(y := 0 0.5⊕ y := 1); ((y := y+1 � skip) 0.4⊕ y := 2)

= (y := 0; ((y := y+1 � skip) 0.4⊕ y := 2) Fig.4 (iv)

0.5⊕
y := 1; ((y := y+1 � skip) 0.4⊕ y := 2))

= ((y := 0; y := y+1) � y := 0)) 0.4⊕ y := 0; y := 2) Fig.4 (v) and (vi)

0.5⊕
((y := 1; y := y+1 � y := 1) 0.4⊕ y := 1; y := 2))

= (y := 1 � y := 0)) 0.4⊕ y := 2) simplify assignments

0.5⊕
((y := 2 � y := 1) 0.4⊕ y := 2))

= [(y := 1 � y := 0) @0.2, y := 2 @0.6, (y := 2 � y := 1) @0.2] . Fig.4 (i)

From here we now apply rule Fig.4 (ii) twice, one for each nondeterministic
choice, to obtain the nondeterministic choice over four probabilistic assignments:

[y := 1 @0.2, y := 2 @0.8] � [y := 1 @0.4, y := 2 @0.6, ] �
[y := 0 @0.2, y := 2 @0.8] � [y := 0 @0.2, y := 1 @0.2, � y := 2 @0.6] ,

6 See http://www.comp.mq.edu.au/∼anabel/ICFEM07.pdf for a detailed proof.
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finally revealing 1, by converting each list to equivalent expressions using
the binary probabilistic choice operator.

The normal-form reduction illustrated here involves many re-writing rules; in
the next section we describe how that procedure may be automated, together
with how the resulting normal form may be used to implement a refinement-
checking program based on the Yices SMT solver [4].

6 Automating Refinement Checking

In this section we discuss the design and implementation of our software tool
for automatic refinement checking of probabilistic programs. While this tool is
working well for that core purpose, the reader should keep in mind that it is
currently being improved and extended considerably. The source and various
scripts which make up the tool are available elsewhere [6].

The tool consists of three core modules. The first part is the
and takes as input an iteration-free program text, and reduces it to

equivalent normal form, implementing a rewriting system based on the algebraic
rules set out at Fig.4.

The second part is the and takes a normal-form and
extracts its finite number of result distributions, which captures the precise se-
mantic probabilistic and nondeterministic behaviour of the program.

The final part is the which is implemented using the Yices
SMT-solver [4]. The input for this part consists of two sets of distributions com-
puted separately using the normal-form analyser and the distribution generator
for two programs P and Q. The results are then used to generate satisfiability
constraints defined by Thm. 1 in the Yices input syntax that can be passed to
the Yices solver. The result of this part is either a report that the P is indeed
refined by Q, or that it is not, together with a distribution in Q’s result set that
does not lie in P ’s result set.

In Fig.5 we give a graphical overview of how these three parts fit together,
with some supplementary details and examples in the following sections.

6.1 Implementation Details

The lexical analysis and parsing of pGCL programs expressed as strings is im-
plemented using the Moscow ML7 versions of Lex/Yacc that come with the
distribution. As usual with the application of such standard compiler tools, this
makes for efficient and sound implementation of those two steps. The final prod-
uct is a representation of the pGCL program as an algebraic data type. We
have completely avoided the use of what few imperative features are available in
the Moscow ML language, which in our opinion enhances the development and
maintenability of the code base for our tool.

7 We chose Moscow ML because it is the implementation environment for HOL and
we intend in the future to link our tool with the existing formalisations of pGCL
done in HOL [13].
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Input programs P,Q

Output normal forms P',Q'

Result distributions dist.P,dist.Q

No, with reason

Yes

Fig. 5. Modular design of the refinement checking tool to test P 
 Q

The conversion of a pGCL program so represented to its normal form is car-
ried out by a set of functions carefully designed to reflect the rewrite rules dis-
cussed in Sec. 5. When it is presented with a pGCL program, the analyser would
first normalize the subprograms under its main construction, and then based on
what this construction is, apply rewrite rules to push any operators that break
normal form to their proper places. The correctness of such rewrites depends
fundamentally on the assumption that the subprograms are already normalized,
as is the case in our code. The result is again an internal representation of a
pGCL program in algebraic data type form.

The production of pGCL normal forms following these rewrite rules is usually
efficient enough to present the user with a result in a few seconds at most.
However, the nature of the rules is such that a lot of subexpression duplication
would be performed on even relatively uncomplicated programs, and so in some
cases the answer may take many minutes to be produced. This happens in cases
where a probabilistic choice with many branches is composed with a Boolean or a
demonic choice. In the particular case of the composition with a Boolean choice,
the subexpressions actually become all distinct, so this seems an unavoidable
issue with the rules as implemented at the moment. An improvement on either
the shape of the rules or their implementation (which at the moment reflects
them in a very straightforward way) is a goal of our future work.

The probability distribution analysis takes as input one pGCL program in nor-
mal form in internal representation, and proceeds to follow its structure while
applying the semantic meaning of pGCL constructions as discussed in Sec. 5.
The result will be a list of distributions, each represented in turn as a list of state-
probability pairs. Each state is a typical environment, that is, a list of variable-
value pairs. At some intermediate points during the computation, Moscow ML
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library types for maps and sets are used to help make the generation of the
distributions be more concise and readable.

Finally, given such a list of distributions, we implemented a procedure to gen-
erate a set of concrete linear constraints in the Yices syntax as set out in Thm. 1.
Since each of the distributions is represented as an |S|-tuple, each constraint on
the tuples must be expressed equivalently as |S|-individual linear constraints.
The Yices solver then takes each of the satisfiability problems and reports either
that it is not solvable, or that it is and in that case produces an example which
sets out the exact convex combination of specification distributions needed to
express the corresponding implementation distribution.

Thus overall, if Yices reports satisfiability of all these linear problems, then we
know that refinement holds, and if at least one of these problems is unsatisfiable,
then refinement fails to hold.

6.2 Some Examples

We illustrate now the production of normal forms and probability distributions
of our tool with a few examples. The programs to be used as such are quite simple
but still illustrate important aspects of the tool use, and have been mentioned
already in preceding sections. The syntax is pretty close to the mathematical
notation used before, but altered according to restrictions on possible textual
inputs of the implementation compiler. Demonic choice is ^, and multi-branch
probabilistic choice is of the shape @{n1: p1, ..., nm: pm} where the n are
the numerical probabilities and the p the subprograms of each branch.

Example 1: prog0 defined at (11)

@{0.5: y:=0, 0.5: y:=1}; @{0.4: y:=y+1 ^ y:=y, 0.6: y:=2}

For this program we obtain as its normal form:

@{0.2: y:=0; y:=y+1, 0.3: y:=0; y:=2, 0.2: y:=1; y:=y+1, 0.3: y:=1; y:=2} ^
@{0.2: y:=0; y:=y+1, 0.3: y:=0; y:=2, 0.2: y:=1; y:=y, 0.3: y:=1; y:=2} ^
@{0.2: y:=0; y:=y, 0.3: y:=0; y:=2, 0.2: y:=1; y:=y+1, 0.3: y:=1; y:=2} ^
@{0.2: y:=0; y:=y, 0.3: y:=0; y:=2, 0.2: y:=1; y:=y, 0.3: y:=1; y:=2}

And as the probability distributions of final states:

[[([("y", 0)], 0.0), ([("y", 1)], 0.2), ([("y", 2)], 0.8)],
[([("y", 0)], 0.0), ([("y", 1)], 0.4), ([("y", 2)], 0.6)],
[([("y", 0)], 0.2), ([("y", 1)], 0.0), ([("y", 2)], 0.8)],
[([("y", 0)], 0.2), ([("y", 1)], 0.2), ([("y", 2)], 0.6)]]

Each line of the above is a separate distribution, in which each program state
(represented as an environment, that is a list of pairs identifier/value) is associ-
ated with its probability of being the final state of the program.

Example 2: prog1 defined at (12)
@{0.2: y:=1, 0.8: y:=2} ^ @{0.2: y:=0, 0.8: y:=2} ^ @{0.4: y:=1, 0.6: y:=2} ^
@{0.2: y:=0, 0.2: y:=1, 0.6: y:=2}
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Tank(N) : flow :∈ {0, 1, . . . , N}

Sensor(x) : x := flow 0.9⊕ x :∈ {0, 1, . . . N}

3Monitor : if(a = b ∨ a = c) then rflow := a else rflow := b

3System(N) : Tank(N);
Sensor(a) | Sensor(b) | Sensor(c);
3Monitor

Spec(N, p) : Tank(N);
rflow := flow p⊕ rflow :∈ {0, 1, . . . N}

Fig. 6. The Tank Monitoring System [26]

The normal form is:
@{0.2: y:=1, 0.8: y:=2} ^ @{0.2: y:=0, 0.8: y:=2} ^ @{0.4: y:=1, 0.6: y:=2} ^
@{0.2: y:=0, 0.2: y:=1, 0.6: y:=2}

The probability distributions of final states are four, one for each following
line:

[[([("y", 0)], 0.0), ([("y", 1)], 0.2), ([("y", 2)], 0.8)],
[([("y", 0)], 0.2), ([("y", 1)], 0.0), ([("y", 2)], 0.8)],
[([("y", 0)], 0.0), ([("y", 1)], 0.4), ([("y", 2)], 0.6)],
[([("y", 0)], 0.2), ([("y", 1)], 0.2), ([("y", 2)], 0.6)]]

Observe here that, as expected, the set of result distributions are the same
for 0 and 1.

7 Case Study: Tank Monitoring

In this section we illustrate the technique with a small case study based on
Schneider et al.’s “tank monitoring”.

The scenario is a tank filled by a pump which causes the rate of flow to
vary between a low and a high thresholds. The flow of water is monitored by a
number of sensors, which have a small chance of error. The results of the sensors
are gathered by a central monitoring system which then combines them to make
an estimate of the actual flow. In our case study we wish to explore the extent
of the fault tolerance in the tank monitoring system, and in particular how the
design of the monitoring system is able overall to reduce the margin of error
below that of individual sensor reports.

In Fig.6 we set out the main components in the system. The is modelled
simply by a variable which is chosen nondeterministically from a range of
values. Each is modelled by a variable which is either set to the current
value of , or nondeterministically to any value between the low and the high
threshold, with the chance of error set at 10%.
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We study first the case of using three sensors — is also set out at
Fig.6 — it describes a system which bases its estimate on the majority of
the three reports. Notice how the cannot refer directly to itself,
but only the reports of the three sensors.8 The specification (N, p) is that
the (N) containing will set the estimated value to the
true value with probability p, to be specified.

Case 1: Finding counterexamples. A counterexample to a refinement problem
P � Q is any behaviour of Q which lies outside those specified by P . In this
context it is any result distribution in Q which cannot be expressed as a linear
combination of distributions in P .

In this first example we (as it turns out, optimistically) specify a required
success probability of p = 0.98, thus we want to check the refinement

(N, p) � (N) , (13)

for all values of N . Our implemented refinement checker however must have all
parameters defined initially, thus we try a small example with N =̂ 1. For this
small instance the checker reports a counterexample in the form of a distribution:

[ = 0 ∧ = 0 @0.972, = 1 ∧ = 0 @0.028] ,

which corresponds to a 0.972 chance that at least two out of the three sensors
in (N) correctly report the flow.

Thus our specification was indeed too strong: if we weaken it to allow a more
generous probability of failure, the checker verifies the refinement

(1, 0.972) � .

Case 2: Proving refinements. Whilst the counterexample provides useful di-
agnostic information, better would be a general proof that (13) for some value of
p, and for all values of N . Fortunately for some classes of system, including this
one, the above check that (1, 0.972) � (1) implies the more general
refinement for all values of N . That is because (N) is “data indepen-
dent”, and thus the general case follows from exhaustive analysis of some finite
instance; we explain how in the next section.

7.1 A Data-Independence Lemma

A system is said to be (with respect to a datatype X) “if
and only if it cannot perform any operations involving values of type X , but it
can only input such values, store them, output them, and perform equality tests
between them” [15]. An informal inspection of (N) indicates that it does
not do anything with the input values, except for assigning them to variables
and making comparisons. Next we show how that intuition can be formalised to
promote the finite check to a general proof of (13).
8 In the original description, the median value is selected — but this reduces to the

“majority value within some pre-set tolerance”.
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Lemma 2. p [0, 1]

(1, p) � (1) ⇒ (∀N : N · (N, p) � (N)) .

Tk =̂ :∈ {k, k+1}

Sk(x) =̂ x := 0.9⊕ x :∈ {k, k+1}

k =̂ Tk ; (Sk(a)|Sk(b)|Sk(c)) ; 3Monitor .

– Tank(N) = � 0≤k<NTk �
– (x) = � 0≤k<NSk(x) �
– (N) = � 0≤k<N k

– (1) = 0

(N, p) � (1, p)
(N, p) � (1)
(N, p) � (k)

Case 3: Exploring numerical relationships between system parameters.
Our final example shows how the results of the distribution generator can be

used to explore the effect of varying the parameters which define the system.
In our case study so far, inspection of the distributions computed by the

normal-form analyser suggests that the success rate of 0.972 is the greatest lower
bound for the success probability of the monitor with 3 sensors. Our final exper-
iment establishes a numerical relationship between the number of sensors and
the probability that the monitor reports the correct value for the flow.

Consider now the system which has k+1 sensors (where k is an odd number
greater than 2). Define

=̂ (1); (a0)| . . . | (ak); := maj(a0 . . . aN ) .

where the reported value given by maj(a0 . . . aN ) is just the majority of the
values reported by the sensor. The table below gives the probability that the
monitor reports the correct value of the flow for different numbers of sensors.
The probabilities were computed from the distributions generated by the normal
form analyser and distribution generator.

Number 3 5 7 9 11 13
Success prob 0.972 0.9914 0.9972 0.9991 0.9997 0.9999

This experiment shows that having more than about five sensors does not
appreciably improve the chance of success — thus the overall benefits of more
sensors can be compared to the cost of installation.
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8 Further Work and Conclusions

In this paper we have shown how the theoretical analysis of refinement can
be used to reduce the problem of refinement checking to a linear satisfiability
problem. We have also shown how an algebraic rewriting system may be used
to extract the satisfiability formulation directly from the program text. We have
demonstrated the technique with an implementation, ultimately exporting the
problem to the Yices solver.

One of the main benefits of this system is the possibility to generate coun-
terexamples in the case that a putative refinement does not hold. Production of
counterexamples is not normally available in other tools for probabilistic verifi-
cation.

One drawback of the currently-implemented system, is that for some com-
binations of probability and Boolean choices, the application of the rewriting
rules is very inefficient; choosing a more efficient order of rule application would
significantly improve that situation, and that is currently being investigated.

This work has suggested a number of topics for future research.

1. The current implementation in Yices produces a distribution as the coun-
terexample, but this is not very helpful to the developer as it does not provide
any hint as to how the problem arose. Reformulating the counterexample in
a way that could indicate the place in the program which is at fault would
be more useful.

2. OurCase 3 in the Tank Monitoring example could certainly be performed more
efficiently using the model checker PRISM, for example, and an alternative ap-
proach would be to use the output from the normal-form analyser to
obtain an efficient translation of the original code intoPRISM for performance-
style analysis. This would provide a nice way to combine refinement-style sys-
tems with probabilistic model checking.

There are other automated tools for investigating refinement, but they are
only valid for a restricted class of refinements [12,2]. Meanwhile other tools for
optimising action-system-style designs have also been implemented [9], but these
systems do not check for general refinements.

Other systems which use an abstract specification, principally for analysis,
include probabilistic abstract interpretation [20].
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Abstract. This work presents a case study of the use of model checking
for analyzing an industrial software, the Generic Bootloader. Analysis
of the software have been carried out using the automated verification
system SPIN. A model of the software has been developed using the
specification language PROMELA, and the properties expressed in the
LTL have been verified against the model. We propose a new modeling
technique that helps to model communication protocols efficiently. For-
mal analysis has also helped us to reveal a flaw in the implementation of
the software which otherwise remain undetected through testing process.

1 Introduction

Model checking ensures the correctness of a safety critical system in a rigorous
manner. Formally specified models, written in the constrained language of the
model checkers, are fed to the model checkers, along with the formally written
formulas describing the desired properties of the specified model. Model checkers
then automatically generate the state space that the model will traverse in its
original run. Verifying any property of that model reduces to state space graph
traversal and finding a bad state in the path. A common problem faced by
explicit state model checkers is the combinatorial blow up of the state space,
known as state space explosion.

Extensive study of formal verification of communication protocols using model
checkers can be found in the literature [2,3,4,5]. Formal verification of commu-
nication protocols are becoming very significant as they become an important
part of safety critical systems or security protocols. The Spin model checker [1]
is a well proven explicit state model checker for distributed software systems.

The Spin Model checker provides a specification language Promela. It provides
a way for making abstractions of distributed systems. Among the basic features,
the Promela syntax has a special data type to model communication channels,
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called chan. This data type allows to specify two different type of communica-
tions, asynchronous (point to point) and synchronous (handshake). Essentially,
the difference between them is in the channel length. In case of synchronous
communications channel length should be zero.

Modeling broadcast or multicast communication using only one channel has
never been done. In literature, broadcast or multicast communication was mod-
eled using shared variable. We do not find any reference where all four types of
communication, viz. point to point, broadcast, multicast and handshake, were
modeled using the same channel. However, in a practical scenario, all four types
of communication do take place over the same channel.

In literature [2,3,4,5] we find that attempts were made to model broadcast
communication. In [2] the authors modeled the broadcast communication using
as many channels as the number of processes. Thus the common bus was re-
placed by several point to point channels, and then a broadcast packet is sent
synchronously through all the channels. This specification is not close to the
practical scenario and significantly increases the state space.

In fact the earliest attempt were made by Jensen et. al. In [3] they considered
a similar model like [1] with a separate process for the bus. That process ensures
different types of communications using different flags. Again this implementa-
tion is not close to the practical scenario, as one more extra process is needed.
The bus is replaced by several point to point channels, therefore common shared
bus is not modeled in its true sense.

In [5] the authors modeled the broadcast communication using a shared vari-
able for the bus. This specification does not blow the state space, but it does not
use the channels. Therefore this specification can not be used to model hand-
shake communication.

In this article we model the communication protocol between Generic Boot-
loader, that lies in every line replacement modules of a switching network and
Quickloader, which is also a part of this network. This switching network is an
important part of the A380 Aircraft’s Secondary Electrical Power Distribution
System. Each module is connected to a shared RS432 bus. The line replacement
modules need to upload the required software from the Quickloader. This process
of uploading the required software consists of complex communication protocol,
involving various type of communications.

We claim to provide an easier and efficient way of specification technique to
model a common shared bus for different type of communications, viz. multicast,
broadcast, point to point and handshake. This technique models the bus more
closely to a practical scenario, like CAN bus, RS485 etc, in the Promela language
of SPIN model checker. The generated state space using our technique is also
minimum compared to other known techniques.

We also show that our formal analysis of the model could find out a seri-
ous bug, which was otherwise overlooked by common industrial software testing
processes.

The rest of the paper is organized as follows. Section 2 provides a brief descrip-
tion of the communication pattern between Generic Bootloader and Quickloader.
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Section 3 gives an overview of the Promela model of the communication of the
system. In Section 4 we describe what are the desired properties of the model
described in the previous section and in Section 5 we describe verification results
and give explanations of our findings. Section 6 contains the concluding remarks.

2 Generic Bootloader

In a commercial aircraft, electric power system has two major tasks, viz. power
generation and power distribution. Power generation is classified in three cate-
gories, viz. AC generation, DC generation and External power. AC generator is
the main power generation system serving almost every component of an aircraft.
DC power supply is provided to cater the emergency purpose in case the AC
power supply fails and External power is needed to start the engine at airport.
Electric power distribution system is also categorised in three components based
on their purpose. Standby electric power distribution system provides power
supply for flight essential loads. Primary electric power distribution system pro-
vides power supply in most of the components with requirements 5 to 100 KVA,
either in AC or in DC or as a combination of both. Secondary electric power
distribution system provides power supply with requirements 25A or less, mainly
to relay panels or circuit breaker panels.

In Airbus A380 aircraft, the Secondary Electric Power Distribution System
(SEPDS), acts as the main power distribution system. The switching software
that runs on SEPDS has a shared bus architecture, as given in Figure 1. Several
components are connected to a shared RS432 bus. These components are also
called as Line Replacement Modules or LRMs because they are replaced as a
whole module to correct faultiness. In the network, AC/DC component delivers
power supply to loads. There could be more than one such component. GATE-
WAY component acts as a gateway for outside signals and GFI component takes
care of ground fault interrupts. Any such network contains only one GATEWAY
component and one GFI component.

Quickloader 

AC/DC 

GFI 

Gateway 

AC/DC 

RS432

Fig. 1. SEPDS network switch architecture

When the power is switched on in the network, each of the LRMs verifies that
the correct software is loaded in them. Now this software is different for different
LRMs. If the correct software is not present in the LRM or the software is not
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Generic BootloaderQuickloader Generic BootloaderQuickloader

Command Packet with  Query_Id setCommand Packet with  Query_Id set

Sends back ID-Response PacketSends back ID-Response Packet

Authorization Packet with Query_Ready SetAuthorization Packet with Query_Ready Set

Sends back Handshake Response Packet.Sends back Handshake Response Packet.

1st Payload Packet with Query_Ready set1st Payload Packet with Query_Ready set

Sends back Handshake Response PacketSends back Handshake Response Packet

Payload  Packet  with  Emit_Last setPayload  Packet  with  Emit_Last set

Sends back the Handshake Response Packet and stops.Sends back the Handshake Response Packet and stops.

Property 1: On receipt of the 
Command Packet with QUERY_ID 
set, GBL sends back the Identity 
Response Packet to quickloader and 
subsequently receives an 
Authorization Packet with 
QUERY_READY set from 
quickloader .

Command Packet with Query_CompletionCommand Packet with Query_Completion

Sends back Handshake Response Packet.Sends back Handshake Response Packet.
Property 3: On receipt of the first 
Payload Packet with 
QUERY_READY set, GBL 
subsequently receives a Command 
Packet from  quickloader with 
QUERY_COMPLETION set and then 
sends back Handshake Response 
Packet to quickloader .

Payload Packet with Emit_Payload setPayload Packet with Emit_Payload set

Command Packet with Query_CompletionCommand Packet with Query_Completion

Command Packet with Query_CompletionCommand Packet with Query_Completion

Property 5: On receipt of the Payload 
Packet with EMITLAST set, GBL 
subsequently receives a Command 
Packet from quickloader

with QUERY_COMPLETION set and 
then sends back Handshake Response 
Packet to quickloader .

Property 2: On receipt of the 
authorization packet with 
QUERY_READY set, GBL sends 
back Handshake Response Packet to 
quickloader and subsequently receives 
the first Payload Packet with 
QUERY_READY set from 
quickloader .

Property 4: On receipt of the Payload 
Packets with EMITPAYLOAD set, 
GBL subsequently receives a 
Command Packet from 
quickloader with 
QUERY_COMPLETION set and then 
sends back Handshake Response 
Packet to quickloader .

Property 6: GBL expects the first 
Payload Packet with 
QUERY_READY set, then 
subsequent Payload Packets with 
EMITPAYLOAD set 
and then the last Payload Packet with 
EMITLAST set - precisely in this 
order.

Fig. 2. Communication protocol between Generic Boot Loader and Quickloader

properly present, then the corresponding LRM uploads the correct software from
the Quickloader, another module connected to the same RS432 bus. To upload
the software each of the LRMs communicates with the Quickloader Module. All
kinds of communication, viz. point to point, handshake, multicast and broadcast
take place between them. The communication protocol between the Generic
Bootloader and the Quickloader can be best described using Figure 2.

Quickloader starts the communication with each Generic Bootloader. In a
point to point communication Quickloader sends a with op-
code QUERY ID. Generic bootloader replies back to Quickloader by sending

packet in another point to point communication. Quickloader re-
sponds by sending an with opcode QUERY READY set
using point to point communication. Generic bootloader acknowledges by send-
ing a using handshake communication. Quickloader then starts
broadcasting containing the required software for a particular
type of LRM. After sending each payload packet Quickloader broadcasts a com-
mand packet with QUERY COMPLETION set signalling that it had completed
the sending of . Following which the concerned Generic Boot-
loader acknowledges the receipt of the payload packet and the command packet



236 K. Das Barman and D. Mukhopadhyay

by sending a response packet in a handshake communication with Quickloader.
Payload packets are categorized into three different types of packets. First pay-
load packet has opcode “QUERY READY” set. This signals that this is the first
payload packet. The last payload packet has opcode “EMIT LAST” set, which
says that complete software has been sent. Receiving the command packet fol-
lowing this packet the concerned Generic Bootloader sends handshake response
packet and stops its uploading process. The intermediate payload packets con-
tains opcode “EMIT PAYLOAD”. Essentially the process of uploading software
should follow the above mentioned ordered steps. The properties mentioned in
the Figure 2 are described in detail in Section 4, and these are the properties
which we intend to verify for this uploader communication protocol.

3 Description of the Model

We try to model the communication protocol, described in the previous section,
close to its original implementation. In fact our model for the communication
protocol is based on its original implementation in approximately 5K LOC of
C++. We manually abstracted the model from the original implementation.

In our model we consider different LRMs and the Quickloader as different
processes. The LRMs ac and dc behave in the same way in the communication
protocol and in our model we did not differentiate them. Thus we have four
different processes ACDC, GFI, GATEWAY and Quickloader. Our interest is
primarily in the complexity of interaction involved between these LRMs and
therefore we modeled only the relevant parts of each of these LRMs and not
their complete state machine.

Each of the above mentioned processes communicate with each other by send-
ing packets using a shared bus. These packets are defined in the following way.

typedef packet {
byte TYPE;
byte ID;
byte OPCODE;
bit EMIT_LAST;

};

where the field TYPE describes the type of packet, in other words whether it is
a command packet or an authorization packet or a handshake response packet
etc. The ID field describes the recipient or the sender. In practice, in the net-
work there will be one Quickloader, one GFI and one GATEWAY. But AC or DC
LRMs could be more than one in numbers. We need a mechanism to differentiate
between two AC/DC LRMs. Using the ID field we can identify a particular LRM.
In this work we kept only one ACDC process and kept this option as a future
extension of this work. The differentiation mechanism is described in the docu-
mentation with the Promela code given below. OPCODE describes the opcode
we mentioned in the previous section, viz., EMIT PAYLOAD, EMIT LAST,
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QUERY COMPLETION etc. To ease the verification process we kept one more
separate bit for EMIT LAST opcode. Below we present the fragment of the
specification that describes the packet in detail.

/* IDs to decide
1) who is recipient
2) who is sender

Numbers here represent sender identifiers

Ac/Dc 1, 2, 3, 4 are marked as 11, 12, 13, 14
GFI - 25, Gateway - 36, Quickloader - 47

In other words, ID mod 10 -> 0 for Invalid
(1 - 4) for AcDc 1-4, 5 for GFI
6 for Gateway and 7 for Quickloader,

And,
ID div 10 -> 0 Invalid

1 AcDc
2 GFI
3 Gateway
4 Quickloader

ID = 0 means empty packet

TYPE to assert that LRMs are receiving right set of packets

TYPE 0 Invalid/Empty packet
1 Command packet
2 ID_RESPONSE packet
3 Authorization packet
4 Handshake packet
5 Payload packet

OPCODEs to denote different kinds of "queries"

OPCODE 0 Invalid
1 QUERY_ID
2 QUERY_READY for Payload packet
3 QUERY_COMPLETION
4 EMIT_PAYLOAD
5 EMIT_LAST
6 QUERY_READY for Authorization packet

EMIT_LAST to denote whether this is the last packet or not



238 K. Das Barman and D. Mukhopadhyay

EMIT_LAST 0 not LAST PACKET
1 LAST PACKET

*/

We need to model different type of communication over a shared channel.
SPIN provides data type to describe the communication channel between
two processes. This channel allows only two type of communications viz., asyn-
chronous or “point to point” and synchronous or “handshake” communication.
In our case we also need to model broadcast communication using the same
channel. Using a shared variable for broadcast communication can not essen-
tially model handshake communication. On the other hand having more than
one channel not only increases the complexity of the model but also significantly
increases the state space size.

We have 4 processes who communicate with each other using a shared bus.
All the four types of communications, mentioned earlier, are possible in between
them. We keep one shared bit for each of these processes. Each time a packet
is sent to the channel (representing the bus), these 4 extra bits are added at
the end of the packet. Each of these extra bits represents one process. In other
words, for every process we add an extra bit at the end of each packet.

A bit is on, if the packet is meant for the corresponding process. Otherwise
the bit is off. For example, in case of broadcast, all the bits except the one
representing the sender will be on. We also keep one more extra flag (or shared
bit), say bus empty, to show that the channel (or bus) is empty or not. In case
of handshake response, as the communication is synchronous we do not need to
off this bit. In case of other communications, as soon as a packet is sent to the
channel the bus empty flag will be set to off. This flag will remain off until all
the receivers receive the packet. No communication is possible over a channel if
its bus empty flag is off.

A receiver receives a packet from the bus if the packet is destined for it. After
receiving the packet the receiver checks whether the packet has to be received by
some other receivers. If yes, it sends back the same packet to the bus. Otherwise,
it sets on the bus empty flag. In either case it sets off its representing bit, which
comes at the end of the packet. Below we provide a fragment of the specification,
where the bits for acdc, for gfi, for gateway and for quickloader are used for the
purposes we just described.

chan bus = [0] of {packet, bit, bit, bit, bit};

bit bus_empty = 1;

packet bus_queue, acdc_packet, gfi_packet,
gateway_packet, quickloader_packet;

bit for_acdc, for_gfi, for_gateway, for_quickloader;
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bit quickloader_stops = 0;
bit acdc_uploaded = 0;
bit gfi_uploaded = 0;
bit gateway_uploaded = 0;

inline send_to_bus (pack, bit1, bit2,bit3,bit4) {
bus_empty = 0;

bus!pack,bit1,bit2,bit3,bit4;
}

inline acdc_receive_from_bus () {
!(bus_empty) ->
bus?bus_queue,for_acdc,for_gfi,for_gateway,for_quickloader;
!(bus_empty) -> acdc_packet.TYPE = bus_queue.TYPE;

acdc_packet.ID = bus_queue.ID;
acdc_packet.OPCODE = bus_queue.OPCODE;
acdc_packet.EMIT_LAST = bus_queue.EMIT_LAST;
for_acdc = 0; to_acdc = 0;

if
:: for_gfi | for_gateway | for_quickloader ->
bus!bus_queue,for_acdc,for_gfi,for_gateway,for_quickloader;
:: else -> bus_empty = 1;
fi;

}

Similarly we have defined the packet receiving function for each of the processes.
Specification of the processes are then straightforward and follows the original
C++ implementation. In our simulation we tried with four processes communi-
cation with each other in all different combinations. We could easily verify the
properties without any state space explosion. One simulation message sequence
chart showing all the different type of communications is in Figure 3.

In Figure 3, we have four processes, viz. ACDC, GFI, GATEWAY and Quick-
loader, indicated by four vertical lines from left to right respectively. The arrows
denote the communication between processes. For example the first arrow from
the top is a point to point communication from the process Quickloader to the
process GATEWAY. The second and third arrows as well are point to point
communications. The fourth arrow from the top is a handshake communication
from GATEWAY to Quickloader. The fifth, sixth and seventh arrow in together
represents the broadcast communication from Quickloader to ACDC, GFI and
GATEWAY.
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quickloader:3
32

gateway:2
32

1!1,36,1,0,0,0,1,0

57
571!2,47,1,0,0,0,0,1
85

851!3,36,6,0,0,0,1,0
108

1081!4,47,6,0,0,0,0,1
135

1351!5,36,4,0,1,1,1,0
144

gfi:1
144

1!5,36,4,0,1,1,0,0

154
acdc:0
154

1!5,36,4,0,1,0,0,0

184
1841!1,36,3,0,0,0,1,0
206

2061!4,47,4,0,0,0,0,1
223

2231!5,36,5,1,1,1,1,0
232

2321!5,36,5,1,1,1,0,0
242

2421!5,36,5,1,1,0,0,0
272

2721!1,36,3,1,0,0,1,0
295

2951!4,47,5,1,0,0,0,1
318

318 1!1,11,1,0,1,0,0,0
343

3431!2,47,1,0,0,0,0,1
371

371 1!3,11,6,0,1,0,0,0
394

3941!4,47,6,0,0,0,0,1
419

4191!5,11,2,0,1,1,1,0
430

4301!5,11,2,0,1,0,1,0
442

4421!5,11,2,0,0,0,1,0
470

470 1!1,11,3,0,1,0,0,0
492

4921!4,47,3,0,0,0,0,1
513

5131!5,11,4,0,1,1,1,0
522

5221!5,11,4,0,1,0,1,0
534

5341!5,11,4,0,1,0,0,0
562

562 1!1,11,3,0,1,0,0,0
584

5841!4,47,4,0,0,0,0,1
604

6041!5,11,4,0,1,1,1,0
614

6141!5,11,4,0,1,1,0,0
626

6261!5,11,4,0,1,0,0,0
654

654 1!1,11,3,0,1,0,0,0
676

6761!4,47,4,0,0,0,0,1
693

6931!5,11,5,1,1,1,1,0
702

7021!5,11,5,1,1,1,0,0
714

7141!5,11,5,1,0,1,0,0
742

742 1!1,11,3,1,1,0,0,0
765

7651!4,47,5,1,0,0,0,1
785

7851!0,0,0,0,1,1,1,0
793

797
7971!0,0,0,0,1,0,1,0
808

8081!0,0,0,0,1,0,0,0
818

818
822

Fig. 3. Simulation results
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4 Properties

As mentioned in the earlier sections we aim to formally analyze Generic Boot-
loader (GBL) software, which communicates with the Quickloader following Up-
loader Communication Protocol. In this study, we have modeled GBL in SPIN
(using the specification language PROMELA) taking into account only the up-
loader communication protocol. We then express the response properties of the
uploader communication protocol in LTL and can be verified against the GBL
model. The response properties of the uploader communication protocol and
how the properties can be expressed in LTL are described as under.

Property 1: On receipt of the Command Packet with QUERY ID set, GBL
sends back the Identity Response Packet to Quickloader and subsequently re-
ceives an Authorization Packet with QUERY READY set from Quickloader.
Property 2: On receipt of the authorization packet with QUERY READY
set, GBL sends back Handshake Response Packet to Quickloader and sub-
sequently receives the first Payload Packet with QUERY READY set from
Quickloader.
Property 3: On receipt of the first Payload Packet with QUERY READY
set, GBL subsequently receives a Command Packet from Quickloader with
QUERY COMPLETION set and then sends back the Handshake Response
Packet to Quickloader.
Property 4: On receipt of the Payload Packets with EMIT PAYLOAD set,
GBL subsequently receives a Command Packet from Quickloader with
QUERY COMPLETION set and then sends back the Handshake Response
Packet to Quickloader.
Property 5: On receipt of the Payload Packet with EMIT LAST set, GBL
subsequently receives a Command Packet from Quickloader with
QUERY COMPLETION set and then sends back the Handshake Response
Packet to Quickloader.
Property 6: GBL expects the first Payload Packet with QUERY READY
set, then subsequent Payload Packets with EMITPAYLOAD set and then
the last Payload Packet with EMIT LAST set - precisely in this order.

From the description of the properties, it is now apparent that the LTL forms
of these properties will be similar. So, we do not make it a point to describe LTL
expressions of all these properties, rather we only describe how Property 1 can
be expressed in LTL. A closer look of all these properties show that all of them
are comprised of three events as can be seen that for Property 1 to Property 5,
two of these events are receiving a packet and the third one is sending a packet.
For Property 6 all these events correspond to receiving a packet. We now turn
our attention in describing Property 1, for each of its events we have a Boolean
expression. We thus have the following.

p1 = ((bus empty == 0) & (for acdc == 1)) & ((acdc packet.ID == 11) &
(acdc packet.TYPE == 1) & (acdc packet.OPCODE == 1))

p2 = ((bus empty == 0) & (for quickloader == 1)) & (quickloader pack
et.TYPE == 2)
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p3 = ((bus empty == 0) & (for acdc == 1)) & ((acdc packet.ID == 11) &
(acdc packet.TYPE == 3) & (acdc packet.OPCODE == 2))

p1 corresponds to the receipt of the Command packet with Query Id set
and p3 denotes that an authorization packet with QUERY READY set is being
received by GBL. p2 symbolizes that GBL sends back an Identity Response
Packet to Quickloader. Property 1 can now be expressed as,

( <> p1) & (![]<> p1 ) & (<>p1 U <>p2 )
& (![](<>p1 U <>p2) ) & ((<>p1 U <> p2) U <>p3 ).

Eventually, GBL will receive a Command Packet with QUERY ID set and hence
we have <> p1 as first term in the above expression. The third term in the above
expression (<> p1

⋃
<> p2) signifies that on receipt of the Command packet

with QUERY ID set, GBL eventually sends back the Identity Response Packet
to Quickloader. But, this can be true in a way that <> p1 is globally true and
<> p2 is false, which in other words can be said as GBL always waits for the
Command packet with QUERY ID set, but never receives. To prevent this from
happening, we have the second term (![] <> p1), i.e., <> p1 is not globally
true. The first three terms in the above expression thus model the fact that,
on receipt of the Command packet with QUERY ID set, GBL sends back the
Identity Response packet to Quickloader. The fourth and the fifth term of the
expression can be analogously explained.

5 Verification and Results

We have carried out the verification of the LTL properties using SPIN. What
has been attempted here is to verify the individual terms of the property. If each
of the terms gets verified in affirmative then the property holds in the model.
Verification result as has been obtained from our experiment is captured in
Table 1. The columns in the table are labeled as Term 1, Term 2, to Term 5. For
Property 1, Term 1 is (<> p1), Term 2 is (![] <> p1), Term 3 is (<> p1U <> p2),
Term 4 is (![](<> p1U <> p2)), and Term 5 is ((<> p1U <> p2)U <> p3). In
order for the property to be true, all the terms are required to be true in the
model, and the validity results of these terms are shown separately in the table.
The terms for other properties can be similarly identified. From the table, we
can see that, only property 1 is valid in the model, whereas all other properties
are invalid. Row that corresponds to property 1 shows that, the depths reached
in verifying Term 1, Term 3 and Term 5 are respectively 27, 56 and 87. This
monotonically increasing order in depths reached is expected. For these three
terms correspond to three events comprising Property 1 and as has been also
evident from the description that they should also happen in this order.

Depths reached in verifying Term 2 and Term 4 have achieved the maximum
value of 864 and this can also be explained, for these two terms have to be
true over the entire state space. Verification of Property 2 can also be explained
in a similar way, with the only exception that Term 5 has been found to be
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Table 1. Verification results

Properties Term 1 Term 2 Term 3 Term 4 Term 5 Results

Property 1 27 864 56 864 87 Valid

Property 2 87 864 118 864 761 Not valid

Property 3 761 N.A. N.A. N.A. N.A. Not valid

Property 4 761 N.A. N.A. N.A. N.A. Not valid

Property 5 761 N.A. N.A. N.A. N.A. Not valid

Property 6 761 N.A. N.A. N.A. N.A. Not valid

invalid in the model. SPIN thus have found one error while verifying Term 5 and
have provided with us one counter example of how this can be invalid. This has
helped us to find a bug in the GBL software, which is mainly because of a switch
statement. The parameter of this switch statement is the type of the payload
packet that the GBL software expects and for each of the values of its types, it
has separate blocks. Thus, it looks like the following.

switch ( Payload Packet Type){
case QUERY_READY: ...

break;
case EMIT_PAYLOAD: ...

break;
case EMIT_LAST: ...

break;
}

The correctness of the GBL expects the payload packets to arrive in order,
i.e, first payload packet with QUERY READY set, the payload packets with
EMIT PAYLOAD set, and lastly to mark the end of uploading the software
the payload packet with EMIT LAST set. But the problem with the switch
statement it doesn’t guarantee this order. Thus, because of this bug, GBL either
can enter into a faulty state or can erroneously flag that it has successfully
completed uploading the software.

Property 2 says that on receipt of the authorization packet with QUERY
READY set, GBL sends back Handshake Response Packet to Quickloader and
subsequently receives the first Payload packet with QUERY READY set from
Quickloader. But, instead of sending the first payload packet with QUERY
READY set, if Quickloader sends either a payload packet with EMIT PAYLOAD
or EMIT LAST set, then the GBL enters into an erroneous state. Because of
the same reason all the other properties are also invalid in the model. For the
properties Property 3 to Property 6, SPIN reports this error for the first term of
the corresponding LTL expression and hence we havent carried our verification
process for the remaining terms as marked in the table by N.A.
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6 Conclusion

In this work we have shown a modeling technique that provides an easier way to
model the practical channels which are of use in industry, like CAN bus, RS485
etc. This will help to model a lot more similar channels or communications in
between processes without blowing up the state space.

Our technique specifies the common shared bus between several processes for
different types of interprocess communications using only one channel. In case
of Spin Model Checker this channel can be specified using the already available
data type chan in Promela. Broadcast, multicast, point to point and handshake
communications are then modeled by adding one extra shared bit per process,
representing each process and sent across at the end of each packet. If the bit
corresponding to a process is on, the packet is meant for that process. One
more shared bit makes sure that the channel is not used simultaneously for two
communicating processes.

Let us compare our technique with the already available techniques in litera-
ture to model different communications. Replacing a broadcast channel by point
to point channels, as many as the number of processes, increases the number of
channels to four in our example. That too only if we have a single sender acting
as broadcaster. If we have senders where each of them can act as broadcaster
then the number of channels will increase even further. In our case only four bits
were enough to model the broadcast communication.

Again having a separate process taking care of broadcasting faces similar prob-
lems. That process has to have as many channels as the processes. Therefore it
remains expensive. Since in this case, there will be no direct channel between
two processes handshake communications can not be modeled easily, if possi-
ble. Another way of modeling the broadcast communication is to have a shared
variable. This way of modeling does not need to have any channel. Messages
are copied to the shared variable and receivers read from them. Modeling other
type of communications needs extra information about the sender and receiver.
In other words our technique of adding extra bits representing the processes will
model different communications. The state space size will be nearly equal when
compared with our technique. Since channels have an internal representation in
the tool, our technique will build the state space with smaller size, as in the
shared variable technique the shared variable has to be explicitly kept in the
state space. Also the modeling of a common bus using a channel is more close
to the practical scenario than modeling the bus using a shared variable. In other
words our technique is easier and better than the techniques available in the
literature.

We hope that our technique will be helpful to the researchers from industry
to formally verify communication protocols. As a future extension of this work
we would like to try the network with more than one ACDC processes and im-
plementing the multicast communication between Quickloader and these ACDC
processes.
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Abstract. This paper investigates amodel checking algorithm for Propo-
sitional Projection Temporal Logic (PPTL) with finite models. To this
end, a PPTL formula is transformed to a Normal Form Graph (NFG),
and then a Nondeterministic Finite Automaton (NFA). The NFA precisely
characterizes the finite models satisfying the corresponding formula and
can be equivalently represented as a Deterministic Finite Automaton
(DFA). When the system to be verified can be modeled as a DFA As, and
the property of the system can be specified by a PPTL formula P , then ¬P
can be transformed to a DFA Ap. Thus, whether the system satisfies the
property or not can be checked by computing the product automaton of
As and Ap, and then checking whether or not the product automaton ac-
cepts the empty word. Further, this method can be implemented by means
of the verification system Spin.

Keywords: Model Checking, Propositional Projection Temporal Logic,
Automaton, Spin, Verification.

1 Introduction

Model checking is an important approach for verification of the properties of
hardware, softwares, multi-agent systems, communication protocols, embedded
systems and so forth. In the last two decades, several model checkers such as
Spin [15] and SMV [16] were developed with success. In particular, as a software
verification system, Spin has attracted a fairly broad group of users in both
academia and industry. Spin can be used as a full Propositional Linear Tempo-
ral Logic (PLTL) [2] model checking system, supporting checks of all correctness
requirements expressible in linear time temporal logic. However, PLTL is not
powerful enough to describe all the ω-regular properties which can be verified in
Spin [15]. For instance, it is impossible to describe the property that proposi-
tion p must hold at even states regardless of odd states over a run (sequence of
states) [20,15]. Thus, to capture a property that is not expressible in PLTL we
need encode it directly into a Never Claim, but this is an error-prone process.
Fortunately, it has been proved that these properties can be specified by more
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powerful logics with chop operator [20]. Within Propositional Projection Tem-
poral Logic (PPTL) [6,7] and Propositional Interval Temporal Logic (PITL) [3],
chop and projection operators are introduced. Thus, the above property can be
specified. It has also been proved that the logic with chop operator has the ex-
pressive power of full regular expressions [20,2]. Therefore, we are motivated to
investigate a model checking algorithm and the corresponding verification tech-
nique based on Spin for PPTL. Note that PPTL is an extension of PITL [6,7,9],
our method can also be applied to PITL.

Within PPTL, many logic laws have been formalized and proved [6,7], and
a decision procedure for checking satisfiability of PPTL formulas with infinite
models has been given in [9]. Thus, model checking PPTL is decidable. The
method presented in this paper is mainly inspired by our previous work [9]. For
simplicity, we consider only PPTL formulas defined over finite intervals. The full
logic will further be studied in the near future.

With our method, the model of the system to be verified is specified by a
DFA As, and the property of the system is described by a PPTL formula P .
Further, ¬P is transformed to a Normal Form Graph (NFG), and then a Nonde-
terministic Finite Automaton (NFA). The NFA precisely characterizes the finite
models satisfying P and can be equivalently represented as a Determined Finite
Automaton (DFA) Ap. Thus, whether the system satisfies property P or not
can be checked by computing the product automaton of As and Ap, and then
checking whether or not the product automaton accepts the empty word. When
implemented in Spin, the system is described in terms of ProMeLa which pro-
duces the automaton As when executed by the ProMeLa interpreter within
Spin. The automaton Ap of ¬P is also described as Never Claim in the syntax
of ProMeLa. Thus, Spin can be employed to implement the model checking
procedure.

Our method has several advantages. For instance, first, the method is based
on the verification tool Spin. As known, Spin is a successful and widely used
software model checking tool. So we can benefit from Spin; secondly, our method
extends the function of Spin since specification language PPTL can be used
in Spin. This enables us to verify systems with properties specified in PLTL
and PPTL; finally, all the properties which can be verified in Spin can now be
specified by PPTL, since logic with chop operator has the expressive power of
full regular expressions.

The rest of the paper is organized as follows. The next section briefly presents
the syntax and semantics of PPTL. Section 3 introduces the normal form of
PPTL formulas. In Section 4, the definition of NFG and the algorithm for con-
structing NFG are given. Further, the upper bound of the number of nodes
in NFGs is proved in details. Section 5 is devoted to the transformation from
NFG to NFA. Further, in Section 6, the model checking method for PPTL is
illustrated and how the method can be implemented in Spin are presented. In
addition, simple examples are given to show how our method works. Finally,
conclusions are drawn in Section 7.
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2 Propositional Projection Temporal Logic

Our underlying logic is Propositional Projection Temporal Logic (PPTL) [6,7];
it is an extension of Propositional Interval Temporal Logic (PITL) [3].

2.1 Syntax

Let be a countable set of atomic propositions. The formula P of PPTL is
given by the following grammar:

P ::= p | © P | ¬P | P1 ∨ P2 | (P1, ..., Pm) prj P

where p ∈ , P1 , ..., Pm and P are all well-formed PPTL formulas. ©
(next) and prj (projection) are basic temporal operators. The abbreviations
true, false, ∧, → and ↔ are defined as usual. In particular, true

def= P ∨ ¬P

and false
def= P ∧ ¬P for any formula P . Also we have the following derived

formulas:

ε
def= ¬ © true more

def= ¬ε

©0 P
def= P ©n P

def= ©(©n−1P )
len n

def= ©n ε skip
def= len 1⊙

P
def= ε ∨ ©P P ; Q

def= (P, Q) prj ε

�P
def= true ; P �P

def= ¬�¬P

halt(P ) def= �(ε ↔ P ) fin(P ) def= �(ε → P )
keep(P ) def= �(¬ε → P )

where
⊙

(weak next), � (always), � (sometimes), and ; (chop) are derived
temporal operators; ε (empty) denotes an interval with zero length, and more
means the current state is not the final one over an interval; halt(P ) is true over
an interval if and only P is true at the final state, fin(P ) is true as long as P
is true at the final state and keep(P ) is true if P is true at every state ignoring
the final one.

Also with projection construct (P1, ..., Pm) prj Q, in some circumstances,
there may exist some parts, such as (Pi, ...,Pj), that can repeatedly appear in
P1, ..., Pm for several times. In this case, for concise, the projection construct can
be described as follows:

(P1, ..., (Pi, ..., Pj)k, ..., Pm) prj Q
def= (P1, ..., (Pi, ..., Pj), ..., (Pi, ..., Pj)︸ ︷︷ ︸

k times

, ..., Pm) prj Q

where 1 ≤ i ≤ j ≤ m, k ≥ 0. When i = 1 and j = m, we have,

(P1, ..., Pm)k prj Q
def= ( (P1, ..., Pm), ..., (P1, ..., Pm)︸ ︷︷ ︸

k times

) prj Q
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Further, the following formulas can be derived,

ε prj Q
def= (P1, ..., Pm)k prj Q if k = 0

(P1, ..., Pm)+ prj Q
def= (P1, ..., Pm)k prj Q if k > 0

(P1, ..., Pm)∗ prj Q
def= (P1, ..., Pm)k prj Q if k ≥ 0

In particular, when m = 1, let P1 ≡ P , we have,

ε prj Q
def= P k prj Q if k = 0

P+ prj Q
def= P k prj Q if k > 0

P ∗ prj Q
def= P k prj Q if k ≥ 0

Accordingly, in PITL, if P proj Q [3] holds for some P and Q, then we can
express it using prj construction in PPTL,

(P ∗ prj (Q; r ∧ ε)) ∧ halt(r)

where r ∈ Prop does not appear in P and Q.

2.2 Semantics

Following the definition of Kripke’s structure [1], we define a state s over
to be a mapping from to B = {true, false}, s : Prop −→ B. We will use
s[p] to denote the valuation of p at the state s.

An interval σ is a non-empty sequence of states, which can be finite or infinite.
The length, |σ|, of σ is ω if σ is infinite, and the number of states minus 1 if σ is
finite. To have a uniform notation for both finite and infinite intervals, we will
use extended integers as indices. That is, we consider the set N0 of non-negative
integers and ω, Nω = N0 ∪ {ω}, and extend the comparison operators, =, <, ≤,
to Nω by considering ω = ω, and for all i ∈ N0, i < ω. Moreover, we define
� as ≤ −{(ω, ω)}. To simplify definitions, we will denote σ as < s0, ..., s|σ| >,
where s|σ| is undefined if σ is infinite. With such a notation, σ(i..j) (0 ≤ i �
j ≤ |σ|) denotes the sub-interval < si, ..., sj > and σ(k) (0 ≤ k � |σ|) denotes
< sk, ..., s|σ| >. The concatenation of a finite σ with another interval (or empty
string) σ′ is denoted by σ · σ′.

Let σ =< s0, s1, . . . , s|σ| > be an interval and r1, . . . , rh be integers (h ≥ 1)
such that 0 ≤ r1 ≤ r2 ≤ . . . ≤ rh � |σ|. The projection of σ onto r1, . . . , rh is
the interval (named projected interval)

σ ↓ (r1, . . . , rh) =< st1 , st2 , . . . , stl
>

where t1, . . . , tl is obtained from r1, . . . , rh by deleting all duplicates. That is,
t1, . . . , tl is the longest strictly increasing subsequence of r1, . . . , rh. For instance,

< s0, s1, s2, s3, s4 >↓ (0, 0, 2, 2, 2, 3) =< s0, s2, s3 >
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An interpretation is a quadruple I = (σ, i, k, j)1, where σ is an interval, i, k are
integers, and j an integer or ω such that i ≤ k � j ≤ |σ|. We use the notation
(σ, i, k, j) |= P to denote that formula P is interpreted and satisfied over the
subinterval < si, ..., sj > of σ with the current state being sk. The satisfaction
relation (|=) is inductively defined as follows:

I |= p iff sk[p] = , for any given atomic proposition p
I |= ¬P iff I �|= P
I |= P ∨ Q iff I |= P or I |= Q
I |= ©P iff k < j and (σ, i, k + 1, j) |= P
I |= (P1, ..., Pm) prj Q if there exist integers k = r0 ≤ r1 ≤ ... ≤ rm ≤ j

such that (σ, 0, r0, r1) |= P1, (σ, rl−1, rl−1, rl) |= Pl, 1 < l ≤ m, and
(σ′, 0, 0, |σ′|) |= Q for one of the following σ′ :
(a) rm < j and σ′ = σ ↓ (r0, ..., rm) · σ(rm+1..j) or
(b) rm = j and σ′ = σ ↓ (r0, ..., rh) for some 0 ≤ h ≤ m

2.3 Satisfaction and Validity

A formula P is satisfied by an interval σ, denoted by σ |= P , if (σ, 0, 0, |σ|) |= P .
A formula P is called satisfiable if σ |= P for some σ. A formula P is valid,
denoted by |= P , if σ |= P for all σ.

Two formulas, P and Q, are equivalent, denoted by P ≡ Q, if |= �(P ↔ Q).
A formula P is called a state formula if it contains no temporal operators, a
terminal formula if P ≡ P ∧ ε, a non-local formula if P ≡ P ∧ more, and a local
formula if P is a state or terminal formula.

3 Normal Form of PPTL

Definition 1. Let Q be a PPTL formula and Qp denote the set of atomic propo-
sitions appearing in Q. The normal form of Q is defined as follows,

Q ≡
∨n0

j=1(Qej ∧ ε) ∨
∨n

i=1(Qci ∧ ©Q′
i)

where Qej ≡
∧m0

k=1 q̇jk, Qci ≡
∧m

h=1 q̇ih, l = |Qp|, 1 ≤ n ( also n0) ≤ 3l, 1 ≤
m ( also m0) ≤ l; qjk, qih ∈ Qp, for any r ∈ Qp, ṙ denotes r or ¬r; Q′

i is an
arbitrary PPTL formula2.

In some circumstances, for convenience, we write Qe ∧ε instead of
∨n0

j=1(Qej ∧
ε) and

∨r
i=1(Qi ∧ ©Q′

i) instead of
∨n

i=1(Qci ∧ ©Q′
i). Thus,

Q ≡ (Qe ∧ ε) ∨
∨r

i=1(Qi ∧ ©Q′
i)

where Qe and Qi are state formulas or true.
1 Parameter i is used to handle past operators and redundant with the current version

of the underlying logic. However, to be consistent with previous expositions, it is kept
in the interpretation.

2 It is an exercise to prove n, n0 ≤ 3l.
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Definition 2. In a normal form, if
∨

i Qi ≡ true and
∨

i�=j(Qi ∧ Qj) ≡ false,
then this normal form is called a complete normal form.

The complete normal form plays an important role in transforming the negation
of a PPTL formula into its normal form. For example, if P has been rewritten
to its complete normal form:

P ≡ Pe ∧ ε ∨
∨r

i=1(Pi ∧ ©P ′
i )

then we have,
¬P ≡ ¬Pe ∧ ε ∨

∨r
i=1(Pi ∧ ©¬P ′

i )

The normal form enables us to rewrite the formula into two parts: the termi-
nating part

∨n0
j=1(Qej ∧ ε) and the future part

∨n
i=1(Qci ∧©Q′

i). For any PPTL
formula P , P can be rewritten into its normal form and complete normal form.
The details of the proofs and the algorithms for transforming PPTL formulas
into normal forms and complete normal forms can be found in [8,9].

4 Normal Form Graph of PPTL

To transform a PPTL formula to an automaton that accepts precisely the se-
quences of sets of propositions satisfying the formula, we first construct a di-
rected graph, called a Normal Form Graph (NFG), for the formula according to
the normal form.

4.1 Definition of NFG

For a PPTL formula P , the NFG of P is a labeled directed graph, G = (CL(P ),
EL(P )), where CL(P ) denotes the set of nodes and EL(P ) denotes the set of
edges in the graph. In CL(P ), each node is specified by a formula in PPTL,
while in EL(P ), each edge is identified by a triple (Q, Qe, R). Where Q and R
are nodes and Qe is the label of the directed arc from Q to R. CL(P ) and EL(P )
of G can be inductively defined below.

Definition 3. For a PPTL formula P , set of nodes, CL(P ), and set of of edges,
EL(P ), connecting nodes in CL(P ) are inductively defined as follows:

1. P ∈ CL(P );
2. For all Q ∈ CL(P ) \ {ε, false}, if Q ≡

∨h
j=1(Qej ∧ ε) ∨

∨k
i=1(Qci ∧ ©Q′

i),
then ε ∈ CL(P ), (Q, Qej , ε) ∈ EL(P ) for each j, 1 ≤ j ≤ h; Q′

i ∈ CL(P ),
(Q, Qci, Q

′
i) ∈ EL(P ) for all i, 1 ≤ i ≤ k;

CL(P ) and EL(P ) are only generated by 1 and 2. The NFG of formula P is the
directed graph G = (CL(P ), EL(P )).

In the NFG of P , the root node P is denoted by a double circle, ε node by
a small black dot, and each of other nodes by a single circle. Each of the edges
is denoted by a directed arc connecting two nodes. Fig.1 shows an example of
NFG.
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4.2 Constructing NFG

In the following, algorithm Nfg for constructing the NFG of a PPTL formula
is presented. It is actually a sketch of the implementation of Definition 3. The

function Nfg(P):
/* precondition: P is a PPTL formula*/
/* postcondition: Nfg(P) computes NFG of P , G = (CL(P),EL(P))*/

begin function
Create root node P ;
Mark(P)=0; AddE = AddN =0;
while there exists node Q (not ε and false) in the NFG and Mark(Q) == 0

Mark(Q)=1; /*marking R is decomposed*/
Rewrite Q to its normal form;
case

Q is
∨h

j=1
Qej ∧ ε: AddE=1; /*need to add first part of NF*/

Q is
∨k

i=1
Qi ∧ ©Q′

i : AddN=1; /*second part of NF needs added*/

Q is
∨h

j=1
Qej ∧ ε ∨

∨k

i=1
Qi ∧ ©Q′

i: AddE=AddN=1;

/*both parts of NF needs added*/
end case
if AddE == 1 /*add first part of NF*/

if there exists no ε node
create node ε;

for 1 ≤ j ≤ h,
create edge (Q, Qej , ε);

end for
AddE=0;

if AddN == 1 /*add second part of NF*/
for 1 ≤ i ≤ k

if Q′
i �∈ CL(P )

create node Q′
i;

if Q′
i is false

mark(Q ′
i )=1; /*Q′

i not decomposed*/
else mark(Q ′

i )=0; /*Q′
i needs to be considered*/

create edge (Q, Qi, Q
′
i);

end for
AddN=0;

end while
return G;

end function

algorithm uses [] to indicate whether or not a formula needs to be de-
composed. If [ ] == (unmarked), P needs further to be decomposed,
otherwise [ ] == (marked), thus P has been decomposed or needs not
to be precessed. Note that algorithm Nfg employs algorithm Nf [8] to transform
a formula into its normal form. Further, in the algorithm, two global boolean
variables AddE and AddN are employed to indicate whether or not terminating
and future parts in the normal form are encountered respectively. Note also that
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the algorithm only deals with formulas in a pre-prepared form in which only ∨, ∧
and ¬, as well as temporal operators ©, ; and prj are contained. Others such
as →, ↔, �, �, ¬¬ etc. can be eliminated since they can be expressed by the
basic operators. Algorithm Nfg is slightly different from the one we gave in [9],
since only finite models are considered in this paper.

Example 1. Construct the NFG of formula ¬(true; ¬©q)∨p∧©q by algorithm
Nfg.

As depicted in Fig.1, initially, the root node ¬(true; ¬©q)∨p∧©q is created
and denoted by v0; rewrite ¬(true; ¬©q)∨p∧©q to its normal form, ¬(true; ¬©
q) ∨ p ∧ ©q ≡ ©(q ∧ ¬(true; ¬ © q)) ∨ p ∧ ©q, nodes q ∧ ¬(true; ¬ © q) and q

v0 : ¬(true; ¬ © q) ∨ p ∧ ©q

v1 : q ∧ ¬(true; ¬ © q)
v2 : q

v3 : true

v0

v1 v2

v3
ε

true

q

p

qq

true

true

Fig. 1. NFG of formula ¬(true; ¬ © q) ∨ p ∧ ©q

are created and denoted by v1 and v2 respectively; also edges (v0, true, v1) and
(v0, p, v2) are created; further, rewrite q ∧ ¬(true; ¬ © q) to its normal form, q ∧
¬(true; ¬©q) ≡ q∧©(q∧¬(true; ¬©q)), edge (v1, q, v1) is created; subsequently,
rewrite q to its normal form, q ≡ q∧ε∨q∧©true, node true, denoted by v3 and
ε node are created, also edges (v2, q, ε) and (v2, q, v3) are created; finally, rewrite
true to its normal form, true ≡ ε ∨ ©true, edges (v3, true, ε) and (v3, true, v3)
are created.

4.3 Upper Bound of NFGs

For an arbitrary PPTL formula Q, if Q is rewritten into its normal form as
follows,

Q ≡ (Qe ∧ ε) ∨
∨r

i=1(Qi ∧ ©Q′
i)

then ε or each of Q′
i is called a succ-formula of Q. The set of succ-formulas of Q

is denoted by succ(Q).
The length of a PPTL formula Q is denoted by length(Q) (or |Q|), and is

inductively defined in Definition 4. Note that we need consider only the operators
¬, ©, ∨, ∧, ; and prj supported in algorithm Nfg.

Definition 4. Let θ be an atomic proposition, or derived formula true, false or
ε, length(θ)=1. Suppose Pi, 1 ≤ i ≤ m, and Q are PPTL formulas, length(Pi) =
ni and length(Q) = n, then
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– For unary operators ¬ or © denoted by Θ1, length(Θ1Q) = n + 1
– For binary operators ;, ∨ or ∧ denoted by Θ2, length(P1Θ2P2) = n1 +n2 +1
– For operator prj, length((P1, ..., Pm) prj Q) = n1 + ... + nm + n + m

Roughly speaking, the length of a formula P is the number of the symbols
appearing in P .

Lemma 1. Suppose for each formula Pi and Q, 0 ≤ i ≤ m, the length of each
succ-formula of Pi (or Q) is not larger than the length of Pi (or Q), then the
length of each succ-formula of (P1, ..., Pm) prj Q is not larger than the length of
(P1, ..., Pm) prj Q.

Proof. The proof proceeds by induction on m. Suppose P1 and Q are rewritten
into their normal forms,

P1 ≡ P1e ∧ ε ∨
∨n

i=1(P1i ∧ ©P ′
1i)

Q ≡ Qe ∧ ε ∨
∨n′

k=1(Qk ∧ ©Q′
k)

By hypothesis, |ε| ≤ |P1|, |ε| ≤ |Q|, for each i, 1 ≤ i ≤ n, |P ′
1i| ≤ |P1|, and for

each k, 1 ≤ k ≤ n′, |Q′
k| ≤ |Q|. Since,

P1 prj Q ≡ P1e ∧ Qe ∧ ε ∨
∨n

i=1(P1i ∧ Qe ∧ ©P ′
1i)

∨
∨n

i=1
∨n′

k=1(P1i ∧ Qk ∧ ©(P ′
1i; Q

′
k))

∨
∨n′

k=1(P1e ∧ Qk ∧ ©Q′
k)

So, succ(P1 prj Q) = {ε} ∪
⋃n

i=1(P
′
1i) ∪

⋃n
i=1

⋃n′

k=1(P
′
1i; Q

′
k) ∪

⋃n′

k=1(Q
′
k). Ob-

viously, |ε| ≤ |P1 prj Q|; for each P ′
1i and Q′

k, |P ′
1i| ≤ |P1| ≤ |P1 prj Q| and

|Q′
k| ≤ |Q| ≤ |P1 prj Q|; for each P ′

1i; Q
′
k, |P ′

1i; Q
′
k| = |P ′

1i prj Q′
k| ≤ |P1 prj Q|.

Suppose (P2, ..., Pm) prj Q has been rewritten to its normal form,

(P2, ..., Pm) prj Q ≡ Re ∧ ε ∨
∨t

j=1(Rj ∧ ©R′
j)

And for ε and each R′
j , |ε| ≤ |(P2, ..., Pm) prj Q|, |R′

j | ≤ |(P2, ..., Pm) prj Q|.
Since,

(P1, ..., Pm) prj Q

≡ P1e ∧ Re ∧ ε ∨
∨t

j=1(P1e ∧ Rj ∧ ©R′
j)

∨
∨n

i=1
∨n′

k=1(P1i ∧ Qk ∧ ©(P ′
1i; ((P2, ..., Pm) prj Q′

k)))
∨

∨n
i=1(P1i ∧ Qe ∧ ©(Q′

1i; P2; ...; Pm))

So, succ((P1, ..., Pm) prj Q) = {ε}∪
⋃t

j=1(R
′
j)∪

⋃n
i=1

⋃n′

k=1(P
′
1i; ((P2, ..., Pm) prj

Q′
k)) ∪

⋃n
i=1(Q

′
1i;P2; ...;Pm). Obviously, |ε| ≤ |(P1, ..., Pm) prj Q|; for each R′

j ,
|R′

j | ≤ |(P2, ..., Pm) prj Q| ≤ |(P1, ..., Pm) prj Q|; for each P ′
1i; ((P2, ..., Pm) prj Q′

k),
|P ′

1i; ((P2, ..., Pm) prj Q′
k)| ≤ |(P1, ..., Pm) prj Q|; for each Q′

1i;P2; ...;Pm,
|Q′

1i;P2; ...;Pm| ≤ |(P2, ..., Pm) prj Q| ≤ |(P1, ..., Pm) prj Q|. Thus, the lemma
holds.
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Lemma 2. For any PPTL formula P , when rewritten into its normal form, the
length of each succ-formula of P is not larger than the length of P .

Proof. The proof proceeds by induction on the structure of PPTL formulas
composed of the operators ¬, ©, ∧, ∨, ; and prj which are supported in algorithm
Nfg.
Base case: P is an atomic proposition p. Rewrite p to its normal form, p ≡
p ∧ ε ∨ p ∧ ©true. For the succ-formulas ε and true, |ε| ≤ |p|, |true| ≤ |p|.
Induction step: Suppose for each formula Pi (or Q), 0 ≤ i ≤ m, when rewritten
into its normal form, the length of each succ-formula of Pi (or Q) will be not
larger than the length of Pi (or Q). Then,
(1) P ≡ ©P1: |P1| < 1 + |P1| = |P |.
(2) P ≡ ¬P1: If the complete normal form of P1 is as follows,

P1 ≡ (P1e ∧ ε) ∨
∨r

i=1(P1i ∧ ©P ′
1i)

then,
¬P1 ≡ (¬P1e ∧ ε) ∨

∨r
i=1(P1i ∧ ©¬P ′

1i)

By hypothesis, |ε| ≤ |P1|, |P ′
1i| ≤ |P1|, 1 ≤ i ≤ r. Thus, we have |ε| ≤ |P1| <

1 + |P1| = |¬P1|, |¬P ′
1i| = 1 + |P ′

1i| ≤ 1 + |P1| = |¬P1|, 1 ≤ i ≤ r.
(3) P ≡ P1 ∨ P2: Let

P1 ≡ (P1e ∧ ε) ∨
∨r

i=1(P1i ∧ ©P ′
1i)

P2 ≡ (P2e ∧ ε) ∨
∨k

j=1(P2j ∧ ©P ′
2j)

Then,

P1 ∨ P2 ≡ (P1e ∨ P2e) ∧ ε ∨
∨r

i=1(P1i ∧ ©P ′
1i) ∨

∨k
j=1(P2j ∧ ©P ′

2j)

By hypothesis, |ε| ≤ |P1|, |ε| ≤ |P2|, |P ′
1i| ≤ |P1|, 1 ≤ i ≤ r, and |P ′

2j | ≤ |P2|,
1 ≤ j ≤ k. Thus, we have |ε| ≤ |P1| < |P1| + |P2| + 1 = |P1 ∨ P2|, |P ′

1i| ≤ |P1| <
|P1|+ |P2|+1 = |P1∨P2|, 1 ≤ i ≤ r, and |P ′

2i| ≤ |P2| < |P1|+ |P2|+1 = |P1∨P2|.
(4) P ≡ P1 ∧ P2: Let

P1 ≡ (P1e ∧ ε) ∨
∨r

i=1(P1i ∧ ©P ′
1i)

P2 ≡ (P2e ∧ ε) ∨
∨k

j=1(P2j ∧ ©P ′
2j)

Then,

P1 ∧ P2 ≡ (P1e ∧ P2e) ∧ ε ∨
∨r

i=1
∨k

j=1(P1i ∧ P2j ∧ ©(P ′
1i ∧ P ′

2j))

By hypothesis, |ε| ≤ |P1|, |ε| ≤ |P2|, |P ′
1i| ≤ |P1|, 1 ≤ i ≤ r, and |P ′

2j | ≤ |P2|,
1 ≤ j ≤ k. Thus, we have |ε| ≤ |P1| < |P1| + |P2| + 1 = |P1 ∧ P2|, |P ′

1i ∧ P ′
2j | =

|P ′
1i| + |P ′

2j | + 1 ≤ |P1| + |P2| + 1 = |P1 ∧ P2|, 1 ≤ i ≤ r and 1 ≤ j ≤ k.
(5) P ≡ P1; P2: Let

P1 ≡ (P1e ∧ ε) ∨
∨r

i=1(P1i ∧ ©P ′
1i)

P2 ≡ (P2e ∧ ε) ∨
∨k

j=1(P2j ∧ ©P ′
2j)
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Then,

P1; P2 ≡ P1e ∧ P2e ∧ ε ∨ P1e ∧
∨k

j=1(P2j ∧ ©P ′
2j) ∨

∨r
i=1(P1i ∧ ©(P ′

1i; P2))

By hypothesis, |ε| ≤ |P1|, |ε| ≤ |P2|, |P ′
1i| ≤ |P1|, 1 ≤ i ≤ r, and |P ′

2j | ≤ |P2|,
1 ≤ j ≤ k. Thus, we have |ε| ≤ |P1| < |P1| + |P2| + 1 = |P1; P2|, |P ′

2j | ≤ |P2| <
|P1|+ |P2|+1 = |P1; P2|, 1 ≤ i ≤ r, |P ′

1i; P2| = |P ′
1i|+ |P2|+1 ≤ |P1|+ |P2|+1 =

|P1; P2|.
(6) P ≡ (P1, ..., Pm) prj Q: The conclusion has been proved in Lemma 1.

Theorem 3. For any PPTL formula Q, let |Q| = n, and Qp denote the set
of atomic propositions appearing in Q, and |Qp| = l. Let the NFG of Q be
G = (CL(Q), EL(Q)). Then we have |CL(Q)| ≤ (10 + l)n.

Proof. By algorithm Nfg, the nodes of the NFG of Q are generated by repeat-
edly rewriting the new generated succ-formulas into their normal forms. Further,
Lemma 2 confirms that when written into the normal form, the length of each
succ-formula of Q is not larger than the length of Q. Moreover, each node (for-
mula) in the NFG of Q is composed of basic connectives, ¬, ∧, ∨, ©, ; , prj, and
comma (, )3 brought forth by prj, atomic propositions appearing in Q, as well
as true and false. Accordingly, there are at most (9 + l) symbols possibly ap-
pearing in a formula. In addition, each formula is no longer than n. Hence, by
the principle of permutation and combination, at most (10 + l)n formulas (as
nodes) can appear in the NFG of Q, leading to |CL(Q)| ≤ (10 + l)n.

In the NFG constructed by algorithm Nfg for formula Q, a finite path, Π =
〈Q, Qe, Q1, Q1e, ..., ε〉, is an alternating sequence of nodes and edges from the
root to ε node. Actually, a finite path in the NFG of formula Q corresponds to
a finite model of Q. The fact is concluded in [9].

5 Nondeterministic Finite Automata of PPTL

In this section, we show how to build a Nondeterministic Finite Automaton from
an NFG. First, let us recall the definition of Nondeterministic Finite Automa-
ton [12].

5.1 Nondeterministic Finite Automata

Definition 5. A Nondeterministic Finite Automaton is a quintuple A = (Q, Σ,
δ, q0, F ), where,
• Q is a finite set of states
• Σ is a finite set of input symbols
• q0 ∈ Q, is the start state
• F ⊆ Q, is the set of final (or accepting) states
• δ, a transition function δ : Q × Σ → 2Q

3 Here , is used in the prj construct.
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For an NFA, the transition function δ is extended to a function δ̂ that takes
a state q and a string of input symbols w as its input, and returns the set of
states in Q if it starts in state q and successfully processes the string w. The
NFA accepts a string w if it is possible to make any sequence of choices of next
state, while reading the characters of w, and go from the start state to any
accepting state. The fact that other choices using the input symbols of w lead
to a non-accepting state, or do not lead to any state at all (i.e., the sequence of
states ”dies”), doses not prevent w from being accepted by the NFA as a whole.
Formally, for an NFA A = (Q, Σ, δ, q0, F ), then

L(A) = {w | δ̂(q0, w) ∩ F �= φ}

That is, L(A) is the set of strings w in Σ∗ such that δ̂(q0, w) contains at least
one accepting state.

5.2 Constructing NFAs from NFGs

For a PPTL formula P , let Pp be the set of atomic propositions appearing in P ,
and |Pp| = l. Further, we define sets Ai (1 ≤ i ≤ l) as follows,

Ai = {{ ˙qj1 , ..., ˙qji} | qjk
∈ Pp, 1 ≤ k ≤ i}

Thus, the alphabet Σ for the DFA of formula P can be defined as follows,

Σ =
l⋃

i=1

Ai ∪ {true}

It can be proved that |Σ| = 3l.
Let qk be an atomic proposition, we define a function atom(

∧m0
k=1 q̇k) for

picking up atomic propositions or their negations appearing in
∧m0

k=1 q̇k as follows,

atom(true) = {true}

atom(q̇1) =
{

{q1}, if q̇1 ≡ q1
{¬q1}, otherwise

atom(
∧m0

k=1 q̇k) = atom(q̇1) ∪ atom(
∧m0

k=2 q̇k)

Accordingly, algorithm Nfg-Nfa is given for obtaining an NFA from the NFG,
G = (CL(P ), EL(P )), of PPTL formula P . In the algorithm, each node in the
NFG is transformed as a state in the corresponding NFA; each edge (Pi, Pe, Pj)
forms a transition in the NFA, Pj ∈ δ(Pi, atom(Pe)); the root node P and ε
node forms the start state q0 and the accepting state respectively. Alphabet Σ is
defined as above. Further, as proved, the number of the nodes in the NFG of P
meets |CL(P )| ≤ (10+ l)n, so does the number of states in NFA, |Q| ≤ (10+ l)n.

Example 2. (Continue Example 1) Construct NFA of formula ¬(true; ¬©q)∨
p ∧ ©q.
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Function Nfg-Nfa(G)
/* precondition: G = (CL(P ), EL(P )) is an NFG of PPTL formula P*/
/* postcondition: Nfg-Nfa(G) computes an NFA A = (Q, Σ, δ, q0, F ) from G*/

begin function
Q = φ; F = φ; q0 = {P}; δ = φ;
for each node Pi ∈ CL(P ),

add a state Pi to Q, Q = Q ∪ {Pi};
if Pi is ε, F = F ∪ {Pi};

end for
for each edge (Pi, Pe, Pj) ∈ EL(P ),

Pj ∈ δ(Pi, atom(Pe));
end for
return A = (Q, Σ, δ, q0, F )

end function

By algorithm Nfg-Nfa, the NFA A = (Q, Σ, δ, q0, F ) for formula ¬(true; ¬©
q) ∨ p ∧ ©q can be obtained from the NFG G built with Example 1 as follows,

• Q={q0, q1, q2, q3, q4} is obtained from the set of nodes in G, {v0, v1, v2, v3, ε}
• q0 is v0 in G
• F={q4}, since q4 is the ε node in G
• a0=atom(ture)={true}, a1=atom(q)={q}, a2=atom(p)={p}; δ(q0, a0)={q1},
δ(q0, a2)={q2}, δ(q1, a1)={q1}, δ(q2, a1)={q3}, δ(q2, a0)={q4}, δ(q3, a0)={q3, q4}

Thus, A is depicted in Fig.2.

a0

q3

a1

q2

q1

q4

q0

a2 a1
a0

a0

a0

Fig. 2. NFA for ¬(true; ¬ © q) ∨ p ∧ ©q

Given a PPTL formula P , let M(P ) denote the set of finite models of P ,
G(P ) the NFG of P , and A(P ) the DFA of P . According to algorithm Nfg-

Nfa, for each finite path Π = 〈P, Pe, P1, P1e, ..., Pie, ε〉 in G(P ), there exists
a word w = atom(Pe)atom(P1e)... atom(Pie) accepted by A(P ). Further, for
an arbitrary word w = a0a1...ai accepted by A(P ), there exists a finite model
σ =< s0, s1, ..., si > in M(P ), where if atomic proposition q ∈ a0, si[q] = true,
otherwise if ¬q ∈ a0, si[q] = false. Moreover, in [9], we have proved that for any
finite model in M(P ), there exists a finite path in G(P ), and also for any finite
path in G(P ), there exists a corresponding model in M(P ). So the relationship
among M(P ), G(P ) and A(P ) is shown in Fig.3. Thus, we can conclude that
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G(P )A(P )

M(P ) M
odel to

Path

Path
to

M
odel

Path to Word

W
or

d
to

M
od

el

Fig. 3. Relationship among models, NFGs and DFAs

the DFA of formula P precisely characterizes the finite models of P . In a sense,
the M(P ), G(P ) and A(P ) are equivalent.

6 Model Checking PPTL Based on SPIN

6.1 Model Checking PPTL Based on SPIN

Similar to the traditionally automata based model checking algorithm for PLTL
[13], with our approach, the system M is modeled as a DFA, while the property
is specified by a PPTL formula P . To check whether M satisfies P or not, ¬P
is transformed into an NFG, and further an NFA. The NFA can be equivalently
represented as a DFA. Thus, the model checking procedure can be done by
computing the product of the two automata and then deciding whether the
words accepted by the product automaton is empty or not as shown in Fig. 4. If

Property

DFA of ¬P

System

DFA

P

NFG of ¬P

NFA of ¬PModel of system

check

product

yes no
(counter-example)

automaton

emptiness

Fig. 4. Model checking PPTL

the words accepted by the product automaton is empty, the system can satisfy
the property, otherwise the system cannot satisfy the property, and counter-
examples are found.
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To implement our method with Spin, the model of the system is still specified
in ProMeLa. The property of the system is expressed by a PPTL formula. The
negation of the formula is transformed into an NFG and then an NFA. Further,
we transform the NFA to a DFA. By describing the DFA in terms of Never
Claim, Spin can be employed to complete the model checking procedure.

6.2 Case Studies

Example 3. The property “p is true at every odd position” is a typical example
for showing the limitation of the expressive power of PLTL. Here, we present a
simple system which has this property first; then specify the property by PPTL;
finally illustrate how the system can be checked with our method. In Fig.5, a

p,¬r ¬p,¬rp,¬r p, rp,¬r¬p,¬r p,¬r

s1 s2 s3 s4 s5 s6 s7

Fig. 5. Model of the system

system is shown as a Kripke structure, where p holds at states s1, s3, s4, s5
and s7; ¬p holds at states s2 and s6; ¬r holds over the sequence except for the
final state s7. The system has a property that p holds at every odd state. The
property can be specified by the following PPTL formula,

(len(2)∗ prj (�p; r ∧ ε)) ∧ halt(r)

Accordingly, the NFG of formula ¬((len(2)∗ prj (�p; r ∧ ε)) ∧ halt(r)) can be
constructed as shown in Fig.6. And the corresponding NFA and DFA are shown

v0 : ¬((len(2)∗ prj (�p; r ∧ ε)) ∧ halt(r))
v1 : ¬((©ε; (len(2)∗ prj (�p; r ∧ ε))) ∧ halt(r))p ∧ ¬r

true

v0

v2

ε

¬p
¬r

¬r v1

¬p r

v2 : true

true

true

Fig. 6. NFG of ¬((len(2)∗ prj (�p; r ∧ ε)) ∧ halt(r))

in Fig.7 (a) and (b) respectively.
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Init

q0 q1q2
a0

a1

a1

a0 = {p,¬r}
a1 = {¬r}
a2 = {¬p} a2

a3
a3 = {true}
a4 = {r}

Init

q0 q1q3
a0

a1

a1
a2

a3

q2

a2 a4

a3

a3 a4

a3

(a) (b)

Fig. 7. NFA and DFA of ¬((len(2)∗ prj (�p; r ∧ ε)) ∧ halt(r))

Further, the DFA can be expressed in Never Claim as shown in Fig.8. When
implemented in Spin, it outputs that the system satisfies the property.

Never{/*¬((len(2)∗ prj (�p; r)) ∧ halt(r))*/
T0 init:

if
::((!r)||(!p)||(r)) → goto accept all
::((p) && (!r))→ goto T0 S2
fi;

T0 S2:
if
::(!r)→ goto T0 init
::(1)→ goto accept all
fi

accept all:
if
::skip
::(1)→ goto accept-all
fi

}

Fig. 8. Never Claim of ¬((len(2)∗ prj (�p; r ∧ ε)) ∧ halt(r))

Example 4. This example shows how Needham-Schroeder protocol [18] can be
verified by our method. In the protocol, two agents A(lice) and B(ob) try to
establish a common secret over an insecure channel in such a way that both are
convinced of each other’s presence and no intruder can get hold of the secret
without breaking the underlying encryption algorithm. The protocol is pictori-
ally represented in Fig.9. It requires the exchanges of three messages between
the participating agents. Notation such as 〈M〉C denotes the message M is en-
crypted using C’s public key. Throughout, we assume the underlying encryption
algorithm to be secure and the private keys of the honest agents to be uncom-
promised. Therefore, only agent C can decrypt 〈M〉C to learn M .
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Fig. 9. Needham-Schroeder public-key protocol

1. Alice initiates the protocol by generating a random number NA and send-
ing the message 〈A, NA〉B to Bob (numbers such as NA are called nonces
in cryptographic jargon, indicating that they should be used only once by
any honest agent). The first component of the message informs Bob of the
identity of the initiator. The second component represents one half of the
secret.

2. Bob similarly generates anonceNB and respondswith themessage 〈NA, NB〉A.
The presence of the nonce NA generated in the first step, which only Bob could
have decrypted, convinces Alice of the authenticity of the message. She there-
fore accepts the pair 〈NA, NB〉 as the common secret.

3. Finally, Alice responds with the message 〈NB〉B. By the same argument
as above, Bob concludes that this message must originate with Alice, and
therefore also accepts 〈NA, NB〉 as the common secret.

We assume all messages to be sent over an insecure medium. Attackers may
intercept messages, store them, and perhaps replay them later. They may also
participate in ordinary runs of the protocol, initiate runs or respond to runs
initiated by honest agents, who need not be aware of their partners true identity.
However, even an attacker can only decrypt messages that were encrypted with
his own public key.

The purpose of the protocol is to ensure mutual authentication (of honest
agents) while maintaining secrecy. In other words, whenever both A and B have
successfully completed a run of the protocol, then A should believe her partner to
be B if and only if B believes to talk to A. Moreover, if A successfully completes
a run with B then the intruder should not have learnt A’s nonce, and similarly
for B. These properties can be expressed in PPTL as follows:

�((statusA = ok ∧ statusB = ok) → ((partnerA = B) ↔ (partnerB = A)))
�(statusA = ok ∧ partnerA = B → ¬knows − nonceA)
�(statusB = ok ∧ partnerB = A → ¬knows − nonceB)

We focus on the first formula. To present it in a standard way, P , Q and R are
employed to denote statusA=ok ∧statusB=ok, partnerA=B and partnerB=A
respectively. Thus, we have

�(P → (Q ↔ R))
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v1 : true

v0

v1ε true

v0 : true; (P ∧Q ∧ ¬R ∨ P ∧ ¬Q ∧R)
P ∧ Q ∧ ¬R

true

P ∧ ¬Q ∧R
P ∧ Q ∧ ¬R

P ∧ ¬Q ∧R

true

Fig. 10. NFG of formula ¬�(P → (Q ↔ R))

Accordingly, ¬�(P → (Q ↔ R)) is transformed to NFG (see Fig.10), NFA
and then DFA subsequently (the NFA and DFA are depicted in Fig.11 (1) and
(2) respectively). Note that, to transform the NFG of ¬�(P → (Q ↔ R)) by
Algorithm Nfg, the formula is equivalently rewritten as true; (P ∧Q∧¬R∨P ∧
¬Q ∧ R). Further, the DFA can be expressed in Never Claim as shown in Fig.12

a1

q1q0

a0

a0
a1

q2

q1

q0

a2

a0

a0

a0

(1) (2)

a1

a2

a2

a0 : {true}

a2 : {P,¬Q, R}
a1 : {P, Q,¬R}

Fig. 11. NFA and DFA of formula ¬�(P → (Q ↔ R))

Never{/*�(P → (Q ↔ R))*/
T0-init:

if
::((P&&Q&&!R)||(P&&!Q&&R)) → goto accept-all
::(1)→ goto T0-init
fi

accept-all:
if
::skip
::(1)→ goto accept-all
fi

}

Fig. 12. Never Claim of formula ¬�(P → (Q ↔ R))

Providing the ProMeLa specification of the protocol and the Never Claim
of ¬�(P → (Q ↔ R)), Spin declares the property violated and outputs a run
that contains the attack. The run is visualized as a message sequence of chart,
shown in Fig.13. Alice initiates a protocol run with Intruder who in turn (but
masquerading as A) starts a run with Bob, using the nonce received in the first
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message. Bob replies with a message of type 2 that contains both A’s and B’s
nonces, encrypted for A. Although agent I cannot decrypt that message itself, it
forwards it to A. Unsuspecting, Alice finds her nonce, returns the second nonce to
her partner I, and declares success. This time, agent I can decrypt the message,
extracts B’s nonce and sends it to B who is also satisfied. As a result, we have
reached a state where A correctly believes to have completed a run with I, but
B is fooled into believing to talk to A.

Fig. 13. Checking result of Needham-Schroeder protocol

7 Conclusions

In this paper, we have presented a model checking approach for PPTL with
finite models. This enables us to verify properties of concurrent systems with
PPTL by means of Spin. To support our approach, we have developed a tool,
a translator from PPTL formulas to Never Claim in C++, in which all of the
algorithms presented in the paper have been implemented. The tool works well
with Spin. However, we are only concerned with finite models in this paper. In
the near future, we will further investigate both finite and infinite models with
our approach. Furthermore, we are motivated to develop a practical verification
environment for the verification of Web services and hardware systems with a
set of supporting tools based on the model checker for PPTL.
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Abstract. Handel-C is a hybrid language based on C and CSP for the
high level description of hardware components. Several semantic models
for the language and a non-rigorous compilation mechanism have been
proposed for it. The compilation has been empirically validated and used
in commercial tools, but never formally verified. This work presents a se-
mantic model of the generated hardware and establishes the foundations
for the formal verification of correctness of the transformation approach.

1 Introduction

Handel-C [18] is a Hardware Description Language (HDL) based on the syntax
of the C language extended with constructs to deal with parallel behaviour and
process communications based on CSP [16]. As an example, the Handel-C source
code of a two-place queue implemented with two parallel data containers is shown
in figure 1.

The language is designed to target synchronous hardware components with
multiple clock domains, usually implemented in Field Programmable Gate Ar-
rays (FPGAs). Operational [9] and denotational [8,6,7] semantics have been
proposed for Handel-C, providing interpretations for most constructs, ranging
from simple assignments to prioritised choices (priAlts).

A model for the translation into gate-level components has also been proposed
[26,25] and later applied in the implementationof commercial tools [19].Despite the
existence of formal algebraic rules to handle hardware compilation [4,2,3], the pro-
posed translation is basedonnetlist graphs representing thehigher level constructs.
This more informal approach is justified, essentially, because of its efficiency (as a
translation process) and because of the complexity of the algebraic rules.

The compilation is based on the fact that the control of the generated circuits
is handled by a pair of handshake signals ( and ). The semantics
is intuitively given by the assumption that the signal will be given to a
circuit only if all the previous circuits have already finished. Then, the translation
mechanism is designed in a way that ensures the validity of this assumption,
leading to the satisfaction of a system-level assumption: “the environment will
start the hardware program running just once and will not attempt to start it
again before the program has completed”.
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void main(void) {
chan unsigned int link;
chanin unsigned int 8 input;
chanout unsigned int 8 output;
unsigned int state[2];

par {
// First queue location
while (1) {

input ? state[0]; link ! state[0];
}

// Second queue location
while (1) {

link ? state[1]; output ! state[1];
}

}

Fig. 1. Handel-C source code for a two place queue

In this context, it is relevant to provide a formal model of the translation
approach and denotational semantics for the generated hardware in order to
validate the whole approach. In particular, a semantic model will allow the
proof of the semantic equivalence (or a relationship) between the
original source code and the generated hardware, ensuring the correctness of the
compilation process.

This paper presents the first results towards the goal of formally verifying
the compilation of Handel-C. In particular, we first introduce a syntax to cap-
ture the information that was graphically provided in [26,25,19] by means of
a deep embedding in Higher Order Logic (HOL). Then we provide an encod-
ing of the basic actions performed by the generated hardware and a semantic
domain (an extension of sequences) that is able to describe parallel behaviour
in a shared-variable environment. Finally, we present a denotational semantics
for the generated hardware, including fixpoint proofs in order to ensure the
existence of solutions to constructs involving control loops, such as while and
communications (modelled as recursive calls in the semantics).

2 The Language

In order to abstract essential features and treat their translation in detail we
present a simplified form of the original Handel-C. In particular, prioritised
choice (priAlt) and multi-way synchronisation or communication are left aside
from this work. The priAlt construct has been excluded because the purpose of
this work is to formalise the compilation of Handel-C into hardware and this
feature is not covered by published work describing this translation. Multi-way
operators are simplified into their binary counterparts (the same effect can be
achieved by means of nesting the binary versions as deeply as needed).
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The input language consists of the following constructs:

c ∈ Circ ::=
δstart,finish

| v :=start,finish e

| c1||start,finish c2

| c1;start,finish c2

| c1 � cond �start,finish c2

| cond ∗start,finish c

| ch?start,finish var

| ch!start,finish e

As we are focusing this work on the translation mechanism, the input language
needs to account not only for the high level constructs but also the wires used in
the handshaking synchronisation protocol. In particular, we have chosen to show
the pair of wires associated with each construct as part of the syntax. It would
also be possible to achieve the same means by having a unique identifier for
each occurrence of the syntactic constructs in the program text, together with a
function mapping identifiers into the corresponding pair of wire names. We have
decided to include the wire identifiers in the syntax in order to have simpler
semantic expressions (the alternative implies a heavy usage of the mapping to
obtain the wire names every time they are needed, making the semantics more
difficult to follow).

The delay construct δ propagates the signal on its start to its finish wire one
clock cycle after receiving it1. The assignment construct propagates the start
signal as delay does but updates the store location v according to the expression
e just before the end of the clock cycle.

The sequential composition operator (;) achieves its usual semantics by firstly
linking its start wire to the start wire of c1. Then it wires the end wire of
c1 to the start one of c2. Finally, it connects the finish wire of c2 to its own
finish signal. The parallel composition operator (||) behaves as expected and it
achieves this behaviour by wiring its start wire to the start wires of c1 and c2.
Its finish signal is the logical-and of the finish signals of c1 and c2 (it memorises
the individual finish signals of c1 and c2 to handle uneven execution times in the
parallel branches).

The selection construct (if-then-else) evaluates its condition and transfers con-
trol (by setting the appropriate start signal) to the circuit on its left or right
depending on the truth value of the condition. Its finish signal is set by a logical-
or operation between the finish signals of both circuits.

The while construct evaluates its condition and, if true, transfers control to its
body. After the completion of the body, its finish signal is looped back and used
to trigger another evaluation of the whole while construct. In case the condition
1 The language described in this section is a formalisation of the building blocks for

the translation presented graphically in [26].
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evaluates to false, the finish signal is set to true and the construct’s execution
finishes in the same cycle (i.e., it reduces to a form of skip).

Finally, the communication primitives (input and output), signal their pres-
ence over the communication channel and, if their counterpart is also present in
the same clock cycle, the value is transferred to the variable associated with the
input command. In case the communication is not possible (because the other
end of the communication is not ready), the side that is trying to communicate
will wait for a whole clock cycle and re-start (by setting the start signal to true
through a feedback loop).

3 Translation Semantics

The input language denoted by Circ defined in the previous section denotes
a set of values whose structure mirrors the way in which Handel-C constructs
are translated into hardware. In order to be able to analyse the validity of this
translation approach, we need to define formally what we mean by the syntactic
constructs defined in the previous section. The aim of this section is to present
the semantic domain and denotational semantics for the approach used in the
translation from Handel-C into netlists.

As pointed out in [7] the presence of a global clock synchronising all the hard-
ware components preempts the usage of standard trace models (such as prefix-
closed sets or event sequences) as the domain for the semantics. On the other
hand, the absence of prioritised communication (by the exclusion of priAlts)
would allow the usage of CSP-like semantic domains. However, as we intend to
extend this framework to analyse prioritised choice in the future, we exclude this
choice in order to guarantee the extensibility of the approach2.

From the problem’s domain, it is possible to extract five possible actions to
be performed while the hardware is executing the translated code.

– . Represents the action that consumes no time and does not modify the
state of the system (neither wires nor store).

– . Represents the action of transmitting the value
from a wire (high or low) to another one. This action is modelling a system’s
invariant: the linking of the end of a wire with the beginning of another one.

– . Models the idea of a wire in the “true” state.
– . Models a value being transmitted over a bus. This type

of action will be used to model the value being communicated through a
channel.

– . Stands for boolean expressions that may involve rela-
tional operators, values of the store and presence/absence of current on a
given set of wires.

– . Represents the change of value of one of the system
registers (i.e., variable assignment).

2 As mentioned in [17], the notion of priorities in communication guards cannot be
modelled in CSP-like models.
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As we are modelling Handel-C constructs and their hardware counterparts, we
need a suitable formalism to express both the translation process and hardware
components. In this context, Higher Order Logic (HOL) has been shown to be
a very powerful framework for describing and reasoning about hardware devices
[20,23,12,14]. Several HDL languages have been given semantics using HOL as
the semantic domain [1]. Several approaches have been used, and they can be
grouped by the kind of embedding of the syntax into HOL that they have used
(shallow or deep embedding).

In our case, a deep embedding seems to be the most appropriate approach
because we are interested in the translation from Handel-C into netlists and it
is not clear how to encode this kind of information in a shallow approach. Also,
we aim at reasoning about equivalences between the original Handel-C program
and its compiled code. A deep embedding will allow us to do this by means of
quantifying over syntactic structures [21], permitting us to reason about classes
of programs and their translations.

In the context of HOL, it is possible to model the semantics of our “ac-
tions” as boolean predicates over a given environment (the predicates represent
a particular restriction that should hold true in the current environment). This
approach has been successfully applied in [23] to provide denotational semantics
to CMOS circuits. Following this idea, we can define our basic set of actions as
HOL boolean predicates involving wire names and store locations.

Within this framework, skip is captured by (i.e., there is no additional
restriction over the state) and the linking of wires is captured by the predicate
w1 = be, where w1 is a wire name and be stands for a boolean relation (see [18]
for a complete list of the boolean operations allowed by Handel-C) involving wire
names and, possibly, some boolean operator. Similarly, the action of setting a
wire is captured by w1 = T , setting a bus’s value by ch = expr, and conditionals
by the appropriate boolean predicates.

The semantics of the translation is then defined based on the idea that an
environment is a function that maps wire names and store locations to their
corresponding values. In particular, the environment is an n-tuple of functions:

e ∈ Env ::= 〈| wire : String → Bool,

store : String → storeV al,

busV al : String → storeV al,

time : Nat |〉

The function in the environment is meant to hold the current status of each
wire at any given time. The information contained in this function is not only
of the individual start/finish wires but also the wires signalling the presence of
channel writers (c!) and readers (c?) for any given channel c.

On the other hand, the component models the state space of the pro-
gram, which is known to be static (because Handel-C does not support procedure
names) and known at compile-time. is a function from channel names into
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the value being transmitted through them (or an undefined value if the channel
is not being used). Finally, the field holds the current time of the system.

Having presented a way of describing the individual actions performed at the
hardware level, we need to account for the advance of time and the persistence
of the changes on the environment. Taking into account the synchronous na-
ture of Handel-C (that gets reflected as well in the hardware generated from
it) it is possible to group basic actions into three sets: ,

and . Combinatorial actions and tests are
essentially actions performed within a clock cycle. In particular, combinatorial
actions will modify the state of the system in the current clock cycle (the modifi-
cations they produce on the system are not propagated further than the current
clock cycle). On the other hand, combinatorial tests will not modify the state,
but will deadlock the system if they do not hold (i.e., it is an error to try to
“execute” a circuit without giving it the start signal). This is the way in which
we capture the invariant associated with the handshaking protocol used in the
compilation.

Sequential actions, on the contrary, produce changes expected to be preserved
further than the current clock cycle (usually involving bi-stable components,
such as flip-flops or latches). As expected, the SU action is the only action (plus
skip) belonging to the sequential set while all the remaining actions belong to
the combinatorial category. With this classification in mind and making use
datatypes in HOL [22] we provide the class of actions used in our denotational
semantics:

e ∈ Action ::= CombAction ca where ca ∈ {WST, WS, BV, Skip}
| CombTest ct where ct ∈ {CND}
| SeqAction sa where sa ∈ {SU, Skip}

With this, we have defined the basic actions of the system. We now need to
focus on the sequencing of these actions. From partial correctness analysis, it is
well known [15,24] that in a language including parallel composition and shared
variables it is not possible to reason semantically about partial correctness of a
statement in isolation. In this sense, we need a semantic domain that allows us
to account for actions happening in parallel and to describe their effects when
executed in this way.

With this idea in mind we interpret our actions (i.e., the ) as
following the ideas presented in [5,7]. In this way, actions can

be seen as functions partially modifying the environment (instead of returning
a whole new updated environment) and the effects of parallel actions can be
composed together (in our case, conjoined together).

The problem of this approach, however, is that the semantics are expressing
the way in which the execution may (or may not) modify the state, so we need
to be able to explicitly represent different alternative “execution” paths in our
semantic domain. To cope with this, we define a branching sequences semantic
domain with the following constructors:



272 J.I. Perna and J. Woodcock

e ∈ BSeq ::= Empty

| LNode Action → BSeq

| BNode Action → BSeq → BSeq

| SmNode Circ → BSeq

| ParNode BSeq → Action → BSeq → Action → BSeq

The first two constructors correspond directly to the standard constructors for
lists (the empty list and the “linear” sequence). BNode stands for control flow
decisions: its first element is meant to hold the logical condition that determines
the execution flow, while its second and third elements are placeholders for the
paths to be followed if the branching condition is true or false respectively.

The SmNode constructor models the loop-back of control signals used to define
iteration and communication and it is, essentially, a deep embedding of tail re-
cursion (the following section will go further into details about this constructor).

On the other hand, ParNode, is meant to capture actions being performed in
parallel. Its first and third arguments are placeholders for the semantic expres-
sions of each of the two parallel branches. The actions in its second and fourth
arguments, on the other hand, are meant for expressing combinatorial circuitry
in order to hold the finish signal (for as many cycles as needed) of the circuit
running in parallel with the shortest execution time (all parallel branches must
synchronise at the end of the parallel construct).

Based on its three first constructors and its general idea, our approach re-
sembles the branching sequences domain presented in [7] but we present two
new constructors: SmNode and ParNode. Both are a consequence of the usage of
a deep-embedding. In previous related works [6,8,7,10], the notion captured by
SmNode in our semantics was just expressed by tail-recursive or fixpoint equa-
tions. On the other hand, the presence of nodes that may expand into fur-
ther sequences (i.e., several nodes of the SmNode kind), preempts the usage of a
parallel-flattening operator and this forces the explicit representation of parallel
behaviour by means of the ParNode constructor.

Having defined the domain for our denotational semantics, we just need to
define an operator to concatenate elements of type Seq. We do so by defining:

concat : BSeq → BSeq → BSeq
(concat a Empty) = a = (concat Empty a)
(concat (SmNode c r) a) = (SmNode c (concat r a)))
(concat (LNode ac r) a) = (LNode ac (concat r a)))
(concat (BNode ct b1 b2) a) = (BNode ct (concat b1 a) (concat b2 a)))
(concat (ParNode b1 a1 b2 a2 r) a) = (ParNode b1 a1 b2 a2 (concat r a))

3.1 The Semantics

Using the branching sequences domain defined in the previous section, a deno-
tational semantics can be given to elements of type by defining a semantic
function Sm : Circ → Env → Seq that maps circuit terms and an environment
to branching sequences of boolean predicates.
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In order to keep the presentation compact, we adopt some shorthands for the
actions and constructors in the domain. In particular, we represent applications
of (CombAction a) just by a; (CombTest ct) as (ct)⊥ and (SeqAction sa) as �sa�.

Regarding Seq elements, Empty will be modelled as [], the application of LNode
to an action a and a sequence s will be modelled a : s. The branching constructor
BNode applied to a condition c and with alternative branches b1 and b2 will be
expressed as c → b1 | b2. Occurrences of the SmNode constructor applied to a
circuit c followed by the sequence s will be presented as �c� : s. On the other
hand, applications of the type (ParNode b1 a1 b2 a2 r) will be expressed as
(b1 ⇒ a1) ‖ (b2 ⇒ a2) : r. Finally, applications of the type (concat s1 s2) will
be expressed as s1 � s2, where � is just the infix, left-associative version of the
concat function.

The semantics for the constructor Delay can, then, be stated as follows:

(Sm δstart,finish) ≡ (start)⊥ : �skip� : finish : []

It states that if properly started (by means of the assertion over the start wire),
its operation ends one clock cycle later by releasing the control (by signaling a
high pulse on finish).

On the other hand, the assignment is a delay block plus the proper modifica-
tion over the store.

(Sm v :=start,finish ex) ≡ (start)⊥ : �v = ex� : finish : []

In order to describe the semantics of sequential and parallel composition, it is
necessary to define a projection operator. Projection over circuits of type Circ
is defined as the function πx∈{start,finish} : Circ → String where, for example,
πstart(δstart,finish) = start.

With the projection operator, it is possible to define the semantics of the
sequential composition as:

(Sm c1 �start,finish c2) ≡ (πstart c1) = start : (Sm c1) �
(πstart c2) = (πfinish c1) : (Sm c2) � finish = (πfinish c2) : []

The semantics of the sequential composition initially transfers its start signal to
the first circuit. Then it expands its semantics and turns its finish signal into the
start signal of the second circuit. The process is then repeated with the second
circuit but turning its finish signal into the composition’s finish signal.

Regarding the semantics of the parallel composition operator, it first trans-
fers its start signal to its parallel components. Then, each branch expands the
appropriate semantic sequence (of the circuit being placed in parallel) and holds
at the end a combinatorial action to preserve the finish signal (in case a parallel
branch finishes earlier than the other).

(Sm c1||start,finishc2) ≡ (πstart c1) = start ∧ (πstart c2) = start :
((Sm c1) ⇒ (πfinish c1)) ‖ ((Sm c2) ⇒ (πfinish c2)) :
finish = (πfinish c1) ∧ (πfinish c2) : []
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Note that the flip-flop used in the actual translation to hardware from Handel-C
is not directly stated in the semantics. In the hardware translator, it is necessary
to store the produced by each individual circuit in order to make
sure that the finish signal of the parallel composition represents that all the
parallel circuits have finished. In the case of the semantics, the same result is
achieved by means of explicitly signaling the finish of each branch at the end of
the parallel composition.

The semantics of the selection (if-then-else) construct is given by the condi-
tional expansion of the proper circuit depending on the boolean expression guard-
ing the conditional. The selected circuit is then expanded and the start/finish sig-
nals of the whole selection are bound to those of the selected circuit.

(Sm c1 � cond �start,finish c2) ≡ cond →
((πstart c1) = start : (Sm c1) � finish = (πfinish c1) : []) |
((πstart c2) = start : (Sm c2) � finish = (πfinish c2) : [])

In the case of the guarded iteration (while), the semantics are provided by means
of a deep embedding of a tail recursive equation. In particular, the evaluation of
the boolean guard to true yields the expansion of the circuit in the body of the
while (setting the value of the start signal appropriately). Then, the whole while
construct should be expanded again, using the finish signal of the current body’s
execution as start signal. In case the evaluation of the boolean guard fails, the
while circuit finishes reducing to skip.

In our approach, we combine the deep embedding with a approach: we
don’t expand the re-invocation of the while construct, but we denote it with a
particular constructor (SmNode). The prune operator (see section 3.3) will do the
actual expansion if it is needed. This approach simplifies the mechanisation of
our semantics and it is easily proven to be semantically equivalent.

(Sm (cond ∗start,finish b) e) ≡ (start)⊥ : cond →
((πstart b) = start : (Sm b) �

start = (πfinish b) : �cond ∗start,finish b�) : [] |
(finish : [])

Notice that in the translation to hardware, the activation of the while’s body (b)
depends on the conjunction of the boolean condition and a second signal. This
second signal is the disjunction of the start signal of the while circuit with the
output of b’s previous execution. The main reason for this activation logic is to
preempt the execution of b by the sole fact of having the while’s condition set to
true (i.e., without the start signal). Given the fact that the start signal is set to true
only at the activation time of the while, either the start signal of the while or the
feedback from a previous b’s execution are used to control the current activation
of b. We achieve the same effect by setting the start signal of the next recursive
expansion of the whole while to the finish signal of the current instance of b.

Finally, the semantics for the Input and Output operations over channels,
are based on two special wires (ch? and ch!) and one bus ch. The elements in
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the pair of wires represent, respectively, the presence of a reader and writer
over channel ch. The bus ch, on the other hand, is meant to hold the value
being transmitted when the communication is successful. It is also important to
point out that the (channel-wise) centralised arbitration mechanism described
in the actual translation has been distributed into guards on both the Input and
Output circuits’ semantics.

(Sm ch?start,finish var) ≡ (start)⊥ :
ch? : (ch! → (�var = ch� : finish : []) |

(�skip� : start : �ch?start,finish var�) : [])

From the semantics for the Input command it is possible to see that the first
action of the circuit is to check for the start token and to flag the presence of
the reader over the channel at the moment of execution. Then, the control flow
splits depending on the presence or absence of the writer over the channel. If
the communication counterpart is present and ready to communicate, the Input
command updates the store according to the value being transmitted over the
bus and then emits the finish signal. In case that there is no writer willing to
communicate, a clock cycle is spent , the start signal re-established and
the Input command re-initiated.

(Sm ch!start,finish ex) ≡ (start)⊥ :
ch! : (ch? → (ch = ex : �skip� : finish : []) |

(�skip� : start : �(ch!start,finish ex)�) : [])

The Output command semantics behaves similarly to the Input one. The main
difference is after engaging in the communication: the Input command will first
set the value being transmitted in the appropriate bus. After that, it will reduce
to a one-clock cycle delay (the rest of the actions take place on the readers’ side
of the communication).

3.2 Fixpoints

As the semantic definitions of While, Input and Output involve (tail) recursive
equations, it is necessary to assure the existence of an appropriate semantic
domain with fixpoint guaranteeing the existence of solutions for them.

The idea is to establish a semantic domain with an associated
(cpo), this is, a set with a partial-ordering v, a least element ⊥, and limits

of all non-empty chains [11]. In turn, the semantics are described in terms of
continuous functions, i.e., functions between cpos that preserve the partial-order
and limit structure.

We firstly extended Seq with a bottom element ⊥ to get Seq⊥ ::= Seq ∪ ⊥
and defined our ordering over Seq⊥ as the smallest relation � satisfying:
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⊥ � σ

a : σ � a : τ ⇔ σ � τ

cond(σ1 | σ2) � cond(τ1 | τ2) ⇔ σi � τi

�circ� : σ � circ : τ ⇔ σ � τ

(σi ⇒ a) ‖ (τi ⇒ a) : γ � (ηi ⇒ a) ‖ (θi ⇒ a) : γ ⇔ σi � ηi ∧ τi � θi

Then we used the HOL system [13] to prove that the relation � is a partial order.
After defining the types Circ, Action and Seq⊥ in HOL, we defined the relation
� and proved it is a partial order. In particular, the proofs of all the properties
follow from inductively applying the definition of �. We only show here the proof
for the transitive property, the other ones follow a similar approach.

val ord_trans = store_thm("ord_trans",
‘‘!s1 s2 s3. (ord s1 s2) /\ (ord s2 s3) ==> (ord s1 s3)‘‘,
(Induct_on ‘s1‘) THEN (Induct_on ‘s2‘) THEN (Induct_on ‘s3‘)
THEN PURE_REWRITE_TAC [ord_def] THEN PROVE_TAC []);

In order to establish the existence of fixpoints, we also need to show that the
constructors in Seq and the concatenation operator are monotonic regarding the
relation �.

The proofs for Bottom and Empty are trivial from the definition of order so
we omit them. The proof for LNode and SmNode are similar and straightforward
from their definition:

val LNode_mono = store_thm("LNode_mono"
‘‘!x seq1 seq2. (ord seq1 seq2) ==>
(ord (LNode x seq1) (LNode x seq2))‘‘, REWRITE_TAC [ord_def]);

For the rest of the constructors, we need to prove they are monotonic on all
of their arguments. The proof for the BNode constructor is almost immediate by
the order’s definition and its reflexivity.

val BNode_left_mono = store_thm("BNode_left_mono",
‘‘!cond seq seq1 seq2. (ord seq1 seq2) ==>
(ord (BNode cond seq1 seq) (BNode cond seq2 seq))‘‘,

REWRITE_TAC [ord_def] THEN PROVE_TAC [ord_refl]);

val BNode_right_mono = store_thm("BNode_right_mono",
‘‘!cond seq seq1 seq2. (ord seq1 seq2) ==>
(ord (BNode cond seq seq1) (BNode cond seq seq2))‘‘,

REWRITE_TAC [ord_def] THEN PROVE_TAC [ord_refl]);

In the case of the ParNode constructor we need to prove that the order is
preserved not only on both of the parallel branches, but also in the sequence
that follows it. Here we present the proof of monotonicity on the left parallel
branch (the remaining ones follow the same pattern).
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val ParNode_left_mono = store_thm("ParNode_left_mono",
‘‘!ia aa s0 s1 s2 s3. (ord s1 s2) ==>

(ord (ParNode s1 ia s0 aa s3) (ParNode s2 ia s0 aa s3))‘‘,
REWRITE_TAC [ord_def] THEN PROVE_TAC [ord_refl]);

Finally, we have to verify that the concatenation function preserves the or-
der as well. Firstly, we extend it in order to handle ⊥ by adding the clause
(concat ⊥ a = ⊥) to its definition (⊥ is a left zero for the function). With the
extended definition, we prove that concat is monotonic on its first argument (by
structural induction on its arguments).

val concat_left_mono = store_thm("concat_left_mono",
‘‘!s1 s2 s.(ord s1 s2) ==>

(ord (concat s1 s) (concat s2 s))‘‘,
(Induct_on ‘s1‘) THEN (Induct_on ‘s2‘) THEN (Induct_on ‘s‘)
THEN PURE_REWRITE_TAC [ord_def, concat_def]
THEN RW_TAC std_ss [ord_def,ord_refl]);

In order to prove monotonicity on concat’s second argument, we first need to
prove two results: (a) that concat preserves the order when handling ⊥ and (b)
that concat preserves �’s reflexivity. The proof for (a) follows by induction on
the sequence being concatenated with ⊥ and from �’s and concat’s definitions.

val lemma1 = store_thm("lemma1",
‘‘!s. (ord (concat s Bottom) s)‘‘,
Induct_on ‘s‘ THEN PURE_REWRITE_TAC [ord_def, concat_def]
THEN RW_TAC std_ss [ord_def,ord_refl]);

The proof for (b) is by induction on sequences being concatenated, the defi-
nitions concat and by of �’s definition and reflexivity.

val lemma2 = store_thm("lemma2",
‘‘!s1 s2. (ord (concat s1 s2) (concat s1 s2))‘‘,
Induct_on ‘s1‘ THEN Induct_on ‘s2‘
THEN PURE_REWRITE_TAC [ord_def, concat_def, ord_refl]
THEN RW_TAC std_ss [ord_def,ord_refl]);

Using the previous results, the proof of right monotonicity follows by induction
on the sequences being concatenated and by the definitions of � and concat, and
their properties.

val concat_right_mono = store_thm("concat_right_mono",
‘‘!s1 s2 s.(ord s1 s2) ==>

(ord (concat s s1) (concat s s2))‘‘,
(Induct_on ‘s1‘) THEN (Induct_on ‘s2‘) THEN (Induct_on ‘s‘)
THEN PURE_REWRITE_TAC [ord_def, concat_def, lemma1, lemma2]
THEN TRY (RW_TAC std_ss [ord_def,ord_refl,prop])
THEN TRY (METIS_TAC [ord_def]));
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3.3 Getting the Actual Execution Path’s Semantics

So far we have described the semantics of the translation from Handel-C into
netlists as branching sequences and proved the existence of fixpoint solutions
to our recursive semantic equations. In particular, the semantics is providing a
tree of actions that captures all possible execution paths of the circuit being
analysed. In order to complete the semantic description of the generated circuit,
we need to flatten the structure of the execution tree and provide the actual
execution path and outcome of the program.

In order to keep the presentation compact, we define two auxiliary functions:
updateEnv : Env → Action → Env and flattenEnv : Env → Env. As ex-
pected, the former updates the environment according to the action passed as
argument by means of rewriting the appropriate function using λ-abstractions.
On the other hand, flattenEnv is meant to be used to generate a new environ-
ment after a clock cycle edge. In particular, it flattens all wire values (to the
logical value false), resets the bus values to the undefined value and advances
the timestamp in one unit.

With our auxiliary functions, we define the operator prune : Env →
BSeq → (Env, BSeq) ∪ � ∪ ⊥ that advances one step at a time over the se-
quence of possible actions and updates the environment accordingly. With the
updated environment information available, prune is also able to select the ap-
propriate path when a condition branches the control flow of the program. Given
an environment e, we define prune over s ∈ Seq as follows:

If the empty branching sequence of actions is reached, then the execution is
successful ( (prune e, [])−→�).

Pruning a sequence of actions starting with the combinatorial action a modi-
fies the state according to this first action and leaves the rest of actions pending
for execution ( (prune e, a:s)−→((updateEnv e a), s) ).

On the contrary, a sequence of actions starting with an assertion cond will
proceed and leave the state unchanged if the condition holds in the current
environment ( cond(e)

(prune e, (cond)⊥:s)−→(e, s) ). On the other hand, if cond does not

hold, the system deadlocks ( ¬cond(e)
(prune e, (cond)⊥:s)−→⊥ ).

Pruning a sequence starting with a sequential action �a� will flatten the
environment (i.e., set all wires and buses to the low value and advance
the clock count in one) and perform the action a on the new environment
( (prune e, �a�:s)−→((updateEnv (flattenEnv e) a), s) ).

A branching node depending on the condition cond will select its left or
right sequence depending on the truth value of the condition in the current
environment. If the condition holds, then the left sequence is chosen
(( cond(e)

(prune e, cond→(s1) | (s2))−→(e, s1)
); in case the condition does not hold, the right

sequence is chosen instead ( ¬cond(e)
(prune e, cond→(s1) | (s2))−→(e, s2) ).

Pruning a SmNode leads to its evaluation (using the semantic function
Sm) and the SmNode itself being replaced by the result of this evaluation
( (Sm c)=sc

(prune e, �c�:s)−→(e, sc�s) ).
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The remaining constructor, ParNode, is not straightforward to be handled
and increases the complexity of the prune function. This is so because it is
possible to have nested parallel constructors and we need to keep the execution
of all the parallel branches while preserving the original semantics of Handel-C.
To achieve this we need to define how the basic actions in our semantics are
going to be executed when found in parallel with other actions. In particular,
we have defined three classes of actions in our semantics: ,

and . In order to preserve the semantics,
we need our prune operator to account for these categories and to treat them
accordingly. In particular, we want:

– To prioritise over . Combinatorial
tests will either branch the control flow (in the case of a selector) or
validate/stop the system’s execution (in the case of an assertion). In order to
be able to select the right action, we need as much information as possible,
justifying the priorities of combinatorial actions over tests.

– To order the evaluation of combinatorial tests. The class of combinatorial tests
collects three kinds of conditions: (ASRs) (referring to verifications
over control signals), (CFDs) (control flow changes due
to while and selection constructs) and (CCs)
(verifications of the presence of both sides in a communication event).

In particular, ASRs verify the “sanity” of the the execution’s control sys-
tem. As we want to detect flaws of this kind at the earliest possible stage,
we give them the highest priority among conditionals.

CFDs, on the other hand, depend only on the current environment and are
independent of other actions being performed in parallel with them provided
that all the pertinent combinatorial actions have been already performed
before them.

Finally, as the evaluation of CCs depend on the presence (over another
parallel branch) of the counterpart over a channel, we need defer their evalu-
ation after all other conditions. A clear example of the reason for this choice
arises, for example, in (while b {ch?a} || ch!val). In this case, we even-
tually reach a point in the execution where we have a CFD (the evaluation
of b) in parallel with a CC (the verification of the presence of the reader in
the semantics of ch!val). If we allow the CC to be evaluated first, it will
(wrongly) assume that there is no reader to synchronize with in the current
clock cycle and turn the output command into a delay. On the other hand,
the evaluation of the while’s condition first, produces the right result.

– To give priority to all combinatorial fragments (actions and tests) over
. As sequential actions signal the end of the current clock

cycle, any combinatorial fragment left for execution after the sequential ac-
tions will belong to the next clock cycle, leading to erroneous results.

– To synchronise the parallel execution of all actions at the same level of priority.
If not done in this way, an action a1 may not be chosen for execution at its
priority level (another action a0 of the same kind is selected for execution) and
never get to be executed again because the actions following a0 are of higher
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priority than a1. In the case of , this is as well fundamental
to achieve the synchronous behaviour reinforced by Handel-C’s semantics.

With these considerations in mind, we define a priority system over our seman-
tic actions implemented by a function priority : Action → N that implements
the following ordering over actions: CombActions ≺ ASRs ≺ CFDs ≺ CCs ≺
SeqActions.

In order to make the semantics clearer, we define three auxiliary functions:
getPriority, colActions and doActions. The first one, getPriority : Seq →
N, traverses the branching structure of the parallel node(s) (probably nested)
getting the priority of the first available action on each of them. The highest
collected priority is returned.

The second function, colActions : Seq → N → ({Action}, Seq), looks in the
head of the branching sequence passed as argument and collects all available
actions that match the priority level given as second argument. It returns the
set of collected actions together with an updated sequence (the original argument
without the actions that have been selected for execution).

Finally, doActions : {Action} → Env → Env, will perform the set of selected
actions and update the the current environment appropriately.

With the priority system and the auxiliary functions, the prune function will, on
each step, select the current priority level p fromall the actions ready to be executed
(i.e., the highest priority among the first actions of each of the parallel branches)
and execute all the available actions at level p in parallel. The following rules de-
scribe theway prunehandles theParNode constructor (symmetric cases ommited):

p1 = (priority s1) ∧ p2 = (priority s2) ∧ p1 ≥ p2
(e, (s1:ss1⇒r1)‖(s2:ss2⇒r2):r)−→ let (ac1, ns1)=(colActions p1 s1),

(ac2, ns2)=(colActions p1 s2) in ((doActions (ac1
⋃

ac2), e), (ns1�ss1⇒r1)‖(ns2�ss2⇒r2):r)

p1 = (priority s1)
(e, (s1:ss1⇒r1)‖([]⇒r2):r)−→ let (ac1, nf1)=(colActions p1 f1) in

((doActions ac1, e), (nf1�ss1⇒r1)‖([]⇒r2):r)

(e, ([] ⇒ r1) ‖ ([] ⇒ r2) : r) −→ ((doActions[r1 + +r2], e), r)

4 Testing the Semantics

In this section we present some examples to illustrate the way the semantics are
generated by the Sm function and how prune flattens the branching structure.

Firstly we present the case of two threads sharing global variables:

((x :=s1,f1 1) �s5,f5 (x :=s2,f2 x + y) ‖s7,f7 (y :=s3,f3 2)) �s6,f6 (y :=s4,f4 y − x)

We apply Sm to get the sequence of semantic actions and obtain:
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s7 =s6 : sequential composition start
s5 =s7 ∧ s3 = s7 : parallel start signal propagation

(s1 = s5 : (s1)⊥ : �x = 1� : f1 : x := 1

s2 = f1 : (s2)⊥ : �x = x + y� : f2 : x := x + y

f5 = f2 sequential composition finishes
⇒ f5)

‖
((s3)⊥ : �y = 2� : f3 : y = 2

⇒ f3) :
f7 =(f5 ∧ f3) parallel composition finishes

s2 =f7 : (s2)⊥ : �y = y − x� : f2 : y = y − x

f6 =f2 sequential composition finishes

In order to make the presentation clearer, we introduce W , S and τ to repre-
sent the , and components of the environment respectively. We
also introduce two function shorthands: Ξ (that flattens all wires and buses to
the logical value false) and � (function overriding). With this compact notation
and an initial environment e = 〈|wire = λx. if x = s6 then T else F, store =
λs. ?, busV al = λb. ?, time = 0|〉, we apply the prune operator to obtain:

Now we present two parallel processes trying to communicate over a channel
(c) but one of the sides has to wait:

((y :=s4,f4 10;s6,f6 c!s5,f5y) ‖s7,f7 (c?s1,f1x;s3,f3 c =s2,f2 c + 1))

(prune e, s6 = s7 ∧ s3 = s7 : ...) W � {s6 = T, s3 = T }
(prune e, (s4 = s6 : ...) ‖ (s1 = s3 : ...)) W � {s4 = T, s1 = T }

(prune e, ((s4)⊥ : ...) ‖ ((c1)⊥ : ...)) e

(prune e, (...) ‖ (c?...)) W � {c? = T }
(prune e, (...) ‖ ((c!) → ...)) e (false branch selected)

(prune e, (�y = 10� : ...) ‖ (�skip� : ...)) S � {y → 10} ∧ τ = 1 ∧ Ξ(e)
(prune e, (f4 : ...) ‖ (s1 : ...)) W � {f4 = T ∧ s1 = T }

(prune e, (s5 = f4 : ...) ‖ (...)) W � {s5 = T }
(prune e, (...) ‖ (�c?s1,f1x� : ...)) e

(prune e, ((s5)⊥ : ...) ‖ ((s1)⊥...)) e

(prune e, (c! : ...) ‖ (c? : ...)) W � {c! = T ∧ c? = T }
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(prune e, s7 = s6 : ...) W � {s7 = T}
(prune e, s5 = s7 ∧ s3 = s7 : (...) ‖ (...)) W � {s5 = T, s3 = T}

(prune e, (s1 = s5 : ...) ‖ (...)) W � {s1 = T}
(prune e, ((s1)⊥ : ...) ‖ ((s3)⊥...)) e

(prune e, (�x = 1� : ...) ‖ (�y = 2� : ...)) S � {x→ 1, y → 2} ∧ τ = 1 ∧Ξ(e)
(prune e, (f1 : ...) ‖ (f3 : ...)) W � {f1 = T, f3 = T}

(prune e, (s2 = f1 : ...) ‖ ([] ⇒ ...)) W � {s2 = T}
(prune e, ((s2)⊥ : ...) ‖ ([] ⇒ ...)) e

(prune e, (�x = x+ y� : ...) ‖ ([] ⇒ ...)) S � {x→ 1 + 2} ∧ τ = 2 ∧Ξ(e)
(prune e, (f2 : ...) ‖ ([] ⇒ ...)) W � {f2 = T}

(prune e, (f5 = f2 : ...) ‖ ([] ⇒ ...)) W � {f5 = T}
(prune e, ([] ⇒ f5) ‖ ([] ⇒ f3)) W � {f5 = T ∧ f3 = T}

(prune e, f7 = (f5 ∧ f3) : ...) W � {f7 = T}
(prune e, s2 = f7 : ...) W � {s2 = T}

(prune e, (s2)⊥ : ...) e

(prune e, (�y = y − x� : ...)) S � {y → 2 − 3} ∧ τ = 3, Ξ(e)
(prune e, f2 : ...) W � {f2 = T}

(prune e, f6 = f2 : ...) W � {f6 = T}

Using the same conventions described in the previous example plus B for the
bus component in the environment, the prune function processes flattens the
semantics of this construct as follows.

5 Conclusions and Future Work

We have presented a suitable semantic domain and used it to provide denota-
tional semantics to the translation from Handel-C into hardware-level descrip-
tions. The main contribution of this work is the formalisation of the translation
approach that has been validated and applied in several academic and industrial
projects but has not been, yet, formally verified.

In particular, our semantic domain is an extension of the branching sequences
presented in [7,10] that is able to cope with low level hardware actions and
that captures the control-flow structure that is used in the current translation
approach. We have modelled the semantics by means of a deep embedding into
Higher Order Logic and mechanically verified the existence of fixpoint solutions
to the semantic equations involving recursion using the HOL system.

As the main goal of this work is to provide a formal verification of the trans-
lation from Handel-C into hardware components, we still need to prove that the
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s6 =s7 ∧ s3 = s7 parallel composition start propagation
(s4 = s6 : sequential composition starts

(s4)⊥ : �y = 10� : f4 : y := 10
s5 = f4 : sequential link

(s5)⊥ : c! : (q?) → is the reader ready?
(c = y : �skip� : f5) | communication successful
(�skip� : s5 : �c!s5,f5y� : wait one cycle and retry

f6 = f5) sequential composition finishes
⇒ f6)

‖
(s1 = s3 : sequential composition starts

(s1)⊥ : c? : (c!) → is the writer ready?
(�x = c� : f1) | communication successful
(�skip� : s1 : �c?s1,f1x� : wait one cycle and retry

s2 = f1 : sequential link

(s2)⊥ : �x = x+ 1� : f2 x := x+ 1
f3 = f2) sequential composition finishes
⇒ f3)

f7 =(f6 ∧ f3) parallel composition finishes

(prune e, ((c?) → ...) ‖ ((c!) → ...)) e (true branch on both sides)
(prune e, (c = y : ...)||(...)) B � {c = 10}

(prune e, (�skip� : ...)||(�x = c�...)) S � {x→ 10} ∧ τ = 2 ∧Ξ(e)
(prune e, (f5 : ...)||(f1 : ...)) W � {f5 = T ∧ f1 = T}

(prune e, (f2 = f5 : ...)||(s2 = f1 : ...)) W � {f2 = T ∧ s2 = T}
(prune e, ([] ⇒ ...)||((s2)⊥)) e

(prune e, ([] ⇒ ...)||(�x = x+ 1�)) S � {x→ 11} ∧ τ = 3 ∧Ξ(e)
(prune e, ([] ⇒ ...)||(f2)) W � {f2 = T}

(prune e, ([] ⇒ ...)||(f3 = f2)) W � {f3 = T}
(prune e, ([] ⇒ f6)||([] ⇒ f3)) W � {f6 = T ∧ f3 = T}

(prune e, (f6 ∧ f3) W � {f6 = T}
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hardware generated by the compilation rules is (i.e., semantically equiv-
alent to its original Handel-C code). Towards this end, the next step will be to
prove the existence of an equivalence relationship using the semantic models for
Handel-C [6,10] and the semantics for the generated hardware presented in this
paper. We are also interested in extending the compilation approach in order to
include priAlts and formally verify the correctness of the extension.
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Abstract. The complexity inherent to concurrent systems can turn
their development into a very complex and error-prone task. The use of
formal languages like CSP and tools that support them simplifies consid-
erably the task of developing such systems. This process, however, usually
aims at reaching an executable program: a translation between the spec-
ification language and a practical programming language is still needed
and is usually rather problematic. In this paper we present a transla-
tion framework and a tool, csp2hc, that implements it. This framework
provides an automatic translation from a subset of CSP to Handel-C, a
programming language that is similar to standard C, but whose programs
can be converted to produce files to program an FPGA.

Keywords: concurrency, refinement, program development, tool sup-
port, Handel-C, FPGA, CSP, automatic compilation.

1 Introduction

The development of large-scale distributed systems is very complex, error-prone
and time-consuming. This is because concurrent applications can be very com-
plicated since they normally consist of many components running in parallel.

The use of formal methods like Hoare’s CSP [13], an algebra designed for
describing and reasoning about synchronisations and communications between
processes, may simplify this task because it provides a way to explicitly specify
the required synchronisation among processes. Furthermore, phenomena that
are exclusive to the concurrent world, since they arise from the combination of
components and not from the components alone, like deadlock and livelock, can
be much more easily understood and controlled using such formalisms.

Tool support is another reason for the success of CSP. For instance, FDR [9]
provides an automatic analysis of correctness and of properties like deadlock and
divergence. It accepts a machine-processable subset of CSP, called CSPM [20],
which combines an ASCII representation of CSP with a functional language.

Using CSP, we may capture systems descriptions at the levels of specifica-
tions, design, and implementation. This allows a stepwise development in a single
framework from a specification to an implementation. Nevertheless, in reality,
the final product of a program development is an executable program. Hence, we
still need to translate the CSP implementation into a practical programming lan-
guage. Preferably, languages that directly support the CSP style of concurrency
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through channels, such as occam-2 [14] and Handel-C [8], or other languages us-
ing packages that add CSP features, such as CTJ [12] and JCSP [22] for Java,
CCSP [16] for C, and C++CSP [5] for C++, should be used as target languages.

Unfortunately, this translation may not be trivial and usually, it is rather
problematic. In the presence of a large number of processes with a reasonably
complex pattern of communications, the implementation of a program that be-
haves like the CSP specification is quite error-prone. By providing an automatic
translation into a programming language, we achieve a comprehensive method-
ology for developing concurrent applications as illustrated in Fig. 1: first, we
specify the system’s desired concurrent behaviour; next, we gradually refine it
into a CSP implementation and verify the correctness of each refinement and
other properties using tools like FDR. Finally, we automatically translate the
CSPM implementation into a practical programming language. We target Handel-
C code, which can itself be converted to produce files to program FPGAs.

Fig. 1. Methodology using an Automatic CSP Translator

We present csp2hc, an automatic translator from CSPM to Handel-C. Using
csp2hc, we apply our methodology, which provides a development path for hard-
ware generated from a high-level description of a system. The subset of sup-
ported CSPM includes SKIP, STOP, sequential composition, recursion, prefixing,
external choice, internal choice, concurrency, datatypes, constants, functions,
expressions, alternation, and guarded processes. Besides the CSPM constructors
that are accepted by csp2hc, there are some other restrictions that are specific
to the translation of some constructs; they are summarised in Table 1. These
restrictions are automatically verified by csp2hc.

Sections 2 and 3 contain an introduction to both CSPM and Handel-C, respec-
tively. In Sect. 4, we present the translations done by csp2hc, which is briefly
described in Sect. 5. We draw our conclusions and discuss future work in Sect. 6.

1.1 Related Work

Other researchers have already considered the translation of process algebras into
programming languages. For instance, in [15], the refinement of CSPM specifica-
tions into occam-2 and Ada 9X [1] code was presented. The intention, however,
is to illustrate the translation; no tool support is available.

The translation of CSPM into imperative and object-oriented programming
languages is also the subject of [19], where Raju present a tool that trans-
lates a small subset of CSPM into Java and C, with the help of libraries that
provide models for processes and channels and allows programmers to abstract
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Table 1. Restrictions Summary

CSPM Restrictions

Datatypes, constants, func-
tions, and expressions

Sets/constants cannot be used as datatypes constructors
arguments; no recursive datatypes; restricted syntax.

SKIP, STOP, ;, |~|, [],
guarded process, synchroni-
sation, and tail recursion

Output/Input Prefix Single output/input; not before projections; the name of
the input variable is not repeated in the next process.

Projection Consistent use of projections.

Mutual Recursion Parallel composition only in the main behaviour

External choice Only between prefixing processes; no two input variables
with the same name.

Parallel composition Shared channels are in the synchronisation channel set;
no multi-synchronisation.

P \ CS Under certain conditions.

from basic constructs of these languages (i.e., JCSP [22] for Java and CCSP [16]
for C). Using this approach, we have an automatic translation into software.

In [17], we extend this work and provide a translation from a subset of Circus,
a combination of CSP with Z [23] and Dijkstra’s command language that has an
associated refinement theory [7], into JCSP. In [10], that authors extended [17]
and implemented a tool that automatically applies this translation strategy.

Most of the translations between CSPM and a programming language available
in the literature target the generation of software. In [15], occam-2, which is the
native programming language for a line of transputer microprocessors, is the
target language. Unfortunately, it is not supported by any tool.

Handel-C’s approach differs from BlueSpec’s one [2]. The later is based on Ver-
ilog, a hardware description language that is useful for developing complex, be-
spoke hardware, exploiting a hardware engineer’s skill and knowledge of circuits.
The former is a programming language for compiling programs into hardware
images of FPGAs or ASICs; it provides fast development and rapid prototyping,
without hardware skills, and allows massive parallelism to be easily exploited.

In this paper, we achieve an automatic generation of verified hardware. In the
literature, as far as we know, only [18](probably based on [21]) present tools that
convert a subset of CSPM into Handel-C code. Their methodology is very similar
to ours, but the subset of CSPM considered is relatively small.

2 CSPM

CSP [13] is a process algebra that can be used to describe systems composed
by interacting components, which are independent self-contained processes with
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interfaces that are used to interact with the environment. Most of the CSP tools,
like FDR, accepts a machine-processable subset of CSP, called CSPM.

The two basic CSPM processes are STOP (deadlock) and SKIP (successful ter-
mination). The prefixing a -> P is initially able to perform only the event a;
afterwards it behaves like process P. A boolean guard may be associated with a
process: given a predicate g, if the condition g is true, the process g & P behaves
like P; it deadlocks otherwise. The sequence operator P1;P2 combines processes
P1 and P2 in sequence. The external choice P1[]P2 initially offers events of both
processes. The performance of the first event resolves the choice in favour of
the process that performs it. The environment has no control over the internal
choice P1|~|P2. The sharing parallel composition P1[|cs|]P2 synchronises P1
and P2 on the channels in the set cs; events that are not listed occur indepen-
dently. In the alphabetised parallel composition P1[cs1||cs2]P2, the processes
synchronise on the channels in cs1 ∩ cs2; the remaining events occur inde-
pendently. Processes composed in interleaving P1|||P2 run independently. The
event hiding operator P\cs encapsulates the events that are in the channel set
cs, which become no longer visible to the environment. Some other constructors
are available in CSPM but omitted here; they are not accepted by csp2hc.

Figure 2 presents the specification of a parking spot. It contains special com-
ments called directives (--!!), which gives extra information to csp2hc, such
as: information on whether simple synchronisation channels are input channels
or output channels within a process; the types of processes arguments; the main
behaviour of the system; the length of the integers used within the system; and
the moment internal choices should be made. The directives are either mandatory
or optional; csp2hc will raise an error describing missing mandatory directives.

The abstract specification PARKING only requires that, after entering, a cus-
tomer must leave before the next customer enters. Process PAID PARKING de-
scribes a parking spot with a pay and display machine that accepts cash, and
issues tickets and change.

First, we declare a datatype ALPHA: variables of this type can assume either
value a or b. The next datatype, ID, represents identifications: the construc-
tor Letter receives an ALPHA value and returns a value of ID (for example,
Letter.a); another possibility is the unknown ID. After receiving the cash, the
machine issues tickets and change. The process CUST models a customer: after en-
tering the parking spot, a customer interacts with the ticket machine: he inserts
the cash, picks the ticket and the change in any order, and finally, leaves the
parking spot. Customers have unique identification that guarantees that tickets
and changes are only issued to the right customer. The paid parking spot is
modelled by PAID PARKING. For simplification purposes, it is a parallel composi-
tion of only one customer and a machine; they synchronise on cash, ticket and
change, which are encapsulated. Finally, a CAR interacts with the parking spot;
the main behaviour of the system, SYSTEM, is the parallel composition between
the CAR and the parking spot.
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--!!mainp SYSTEM
--!!int_bits 2
datatype ALPHA = a | b
datatype ID = Letter.ALPHA | unknown
channel enter, leave
channel cash, ticket, change : ID

--!!channel enter in within PARKING
--!!channel leave in within PARKING
PARKING = enter -> leave -> PARKING
--!!channel cash in within MACHINE
--!!channel ticket out within MACHINE
--!!channel change out within MACHINE
MACHINE = cash?id -> ticket.id ->

change.id -> MACHINE
--!!channel enter in within CUST
--!!channel leave in within CUST
--!!channel cash out within CUST

--!!channel ticket in within CUST
--!!channel change in within CUST
--!!arg id ID within CUST
CUST(id) =
(enter -> cash!id ->
(ticket.id -> change.id -> SKIP
[]change.id -> ticket.id -> SKIP
)); leave -> CUST(id)

PAID_PARKING =
(CUST(Letter.a)
[| {|cash,ticket,change|} |]
MACHINE) \ {|cash,ticket,change|}
--!!channel enter out within CAR
--!!channel leave out within CAR
CAR = enter -> leave -> CAR
SYSTEM = CAR

[| {| enter,leave |} |]
PAID_PARKING

Fig. 2. CSPM Example

3 Handel-C

Handel-C is a procedural language, rather like occam, but with a C-like syntax.
It was designed by Celoxica and has as its main purpose the compilation into
netlists to configure FPGAs or ASICs. Although targeting hardware, it is a pro-
gramming language with hardware output rather than a hardware description
language. This makes Handel-C different from VHDL [3]. A hardware design us-
ing Handel-C is more like programming than hardware engineering; this language
is developed for programmers who have no hardware knowledge at all.

Basically, Handel-C contains a small subset of C that includes common ex-
pressions that can be used to describe complex algorithms. However, it does not
include processor-oriented features like floating point arithmetic, which is sup-
ported through external libraries. Handel-C extends C by providing constructs
that facilitate the description of parallel behaviour based on CSP concepts. For
instance, using the parallel construct PAR, we can execute instructions in par-
allel; the parallel branches can communicate values via channels. The prialt
statement can be used to select one of the channels that are ready to communi-
cate, and that channel is the only one that will be allowed to communicate. The
only data type allowed in Handel-C is int, which can be declared with a fixed
size, hence avoiding unneeded bits that would lead to an inefficient hardware

By way of illustration, we present a simple BUFFER that receives an integer
value through a channel input and outputs it through channel output.

#define integer int 8
set clock = external "clock1";
chan integer input, output, middle;
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void IN(){ integer v; while(1) { input?v; middle!v; } }
void OUT(){ integer v; while(1) { middle?v; output!v; } }
void BUFFER(){ par{ IN(); OUT(); } }
void main(){ BUFFER(); }

This buffer can be decomposed into a process IN that receives an integer value
and passes it through channel middle to another process OUT that finally outputs
this value. A possible CLIENT can interact with the BUFFER by sending an integer
value via channel input and receiving it back via channel output. The Handel-C
code presented at the end of the previous page implements such a buffer.

We define a constant integer that represents the 8-bit integers, an external
clock named clock1, and declare the channels used in the system. The Handel-C
function IN implements the process of same name. It declares a local variable
v and starts an infinite loop: in each iteration, it receives a value via channel
input, assigns it to v, and writes the value of v on middle. The function OUT is
very similar; however, it receives a value via channel middle and writes this value
on output. The BUFFER is defined as the parallel composition of both functions
IN and OUT. We declare the main function as the process BUFFER.

The development process we propose, from an abstract CSPM specification to
its Handel-C implementation was presented in Fig. 1. An automatic translation
from CSPM to Handel-C is straightforward for some CSPM constructs because
Handel-C provides constructs that facilitate the description of parallel behaviour
based on CSP concepts. Nevertheless, for many of the CSPM constructs an auto-
matic translation into Handel-C is not trivial. In the next section, we present the
translation that is done by csp2hc from a useful subset of CSPM into Handel-C.

4 Translating CSPM into Handel-C

Our tool mechanises the translation of a subset of CSPM to Handel-C, which
includes SKIP, STOP, sequential composition, recursion, prefixing, external choice,
internal choice, concurrency, datatypes, constants, expressions, and alternation.
Although they represent a subset of CSPM, using these constructors, we are
already able to automatically translate some of the classical CSPM examples in
the literature. A more interesting application of our results has been the case
studies elaborated by our industrial partner.

In what follows, we describe the details of the translation adopted by csp2hc;
it assumes that the original CSPM specification has already been loaded and
checked by FDR. Besides, csp2hc does not deal directly with the system’s clock.
Since every Handel-C program must have a clock related to it, we use a dummy
clock, called clock1 as the only clock of our programs. Besides, in CSPM, we can
have communications on channels with no value being carried; this, however, is
not reflected in Handel-C where every communication must carry a value. For
this reason, we declare a type SYNC. It is used as the type of a dummy constant
value syncout, which is written on the channels in such communications, and
as the type of a dummy input variable syncin. For this reason, every Handel-C
code generated by csp2hc starts as follows.
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set clock = external "clock1";
typedef unsigned int 1 SYNC; const SYNC syncout = 0; SYNC syncin;

Afterwards, the resulting Handel-C program contains the following items (de-
clared in this order): constants related to the types used in the CSPM speci-
fication; constants and functions declared in the CSPM specification; channels
used in the CSPM specification; constants related to sets of channels and parallel
branches; functions that implement the CSPM processes; and the main function.

4.1 Types

We start by describing the constants that are related to the types used in the
CSPM specification. This includes the constants related to the CSPM types Int,
Bool, and all existing datatypes. For every type , we calculate all possible
values 0, 1, . . . , n that are in . For instance, for the boolean type we have that
0 = and 1 = . This calculation is possible because csp2hc supports

only bounded (hence enumerable) types. This approach restricts the datatypes
that are accepted by csp2hc; recursive datatypes are not allowed, but they can
be removed from the specification using the same strategy as in Z [23], which
could be applied either by hand or automatically by csp2hc.

We start by defining the type T as an unsigned int of length , which is the
number of bits needed to represent + 1 values. For example, the declaration
of the boolean is #define boolean unsigned int 1. Next, for each value i in

, we declare a constant vi with a value i. The constants related to false and
true are declared as #define false 0 and #define true 1, respectively.

The cardinality of (for instance, #define boolean card 2) is also part of
the code. csp2hc uses a bitwise representation of sets: a set of type , called
T set, is a bit value of same length as the cardinality T card of .

#define boolean_set unsigned int boolean_card

In this representation, a set contains a value n if the -th bit (from left to right)
of the bit word (preceded by 0b in Handel-C) is one. Hence, the empty set has
all the bits equals to zero: #define boolean set nil 0b00.

For every value n in the type , we declare a singleton containing n . It is
represented as a bit word of length T card, with all bits but the -th one set
to zero. For instance, the constant #define true set 0b10 and the constant
#define false set 0b01 represent the sets that contains only false and true,
respectively. Finally, we have a look-up table T set LUT that is used to access
the representation of every singleton set. It is a static array of type T set and
size T card, and whose elements are the singleton sets previously declared.

static boolean_set boolean_set_LUT[boolean_card] = {false_set,true_set};

Using this approach we will be able to translate set values and expressions. For
instance, boolean set LUT[false] | boolean set LUT[true] corresponds to
the set {false,true}; in Handel-C, | is bitwise logical or.

The first directive we present is optional; it gives to csp2hc the number of
bits used to represented integer numbers in the system (the default value is 1).
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The directive --!!int bits 2 tells csp2hc that integers need at most 2 bits
to be represented; hence, they are signed integers ranging from -2 to 1. We
present below the declaration of the constants related to the type integer in
the translation of Figure 2. In the access to arrays like the look-up tables we cast
signed integers into unsigned ones. The look-up table for the integers implements
the transformation which is implicitly done by the Handel-C casting.

#define integer int 2
#define integer_card 4
#define integer_set unsigned int integer_card
#define integer_neg_1_set 0b1000
#define integer_neg_2_set 0b0100
#define integer_1_set 0b0010
#define integer_0_set 0b0001
#define integer_set_nil 0b0000
static integer_set integer_set_LUT[integer_card] =

{integer_0_set,integer_1_set,integer_neg_2_set,integer_neg_1_set};

The number of bits declared by this directive must be sufficient to include
the evaluation of all integer expressions within the specification. Otherwise, the
generated code may be inconsistent: turning a signed number that is out of the
range of the valid integers specified by the directive into an unsigned number may
have the same bitwise representation as some valid signed numbers. For instance,
given 2-bit integers, (unsigned)2 is the same as -2. In the future, we intend to
provide csp2hc with a dataflow analysis on the Handel-C code that could identify
overflows; such technique is already used by the Spark-ADA compiler [6].

In the translation of both simple and complex datatypes, we use the same
strategy used for the boolean type, which is simply based on the set of values
0, 1, . . . , n that compose the type. For the simple datatypes, the calculation of

these values is trivial; they are simply all the constants used in the declaration
of the datatype (a and b for ALPHA). For complex datatypes , the used con-
structors are interpreted as functions: for each element in the domain of
there is a corresponding value C e in the datatype. For example, the constructor
Letter is used is the definition of ID in Fig. 2; hence the values Letter a and
Letter b are possible values of type ID. Furthermore, another sort of look-up ta-
ble is created for each one of the constructors used in the specification: it returns
the corresponding value in the datatype for each element in the domain of the
constructor. By way of illustration, ID Letter LUT[ALPHA card] is the look-up
table for the constructor Letter used in the definition of the datatype ID. Its
length is ALPHA card because the domain of this constructor is the type ALPHA.
These look-up tables are used in the translation of such values. For example, the
translation of Letter.b is ID Letter LUT[b]; this corresponds to the first (b
is a constant equals to 0) element of the array, Letter b. In The translation of
ALPHA is very similar to the translation of boolean; just replace false by b and
true by a. In what follows, we present the translation of ID. Currently, csp2hc
does not allow constants and sets to be given to datatype constructors.
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#define ID unsigned int 2
#define unknown 0
#define Letter_a 1
#define Letter_b 2
#define ID_card 3
#define Letter_b_set 0b100
#define Letter_a_set 0b010

#define ID_set unsigned int ID_card
#define unknown_set 0b001
#define ID_set_nil 0b000
static ID_set ID_set_LUT[ID_card]=

{unknown_set,Letter_a_set,Letter_b_set};
static ID ID_Letter_LUT[ALPHA_card]=

{Letter_b ,Letter_a};

4.2 Constants and Functions

Constants and functions are translated into Handel-C macro expressions, whose
definition and compilation have the same behaviour as in ANSI-C. Neverthe-
less, Handel-C provides additional macro support that allows more powerful (for
example, recursive) macros. By translating them into expressions, instead of
functions, we avoid some restrictions that Handel-C has for function invocations.
For instance, the condition of an alternation cannot contain a function call.

As in C, Handel-C also has function prototypes as a means of providing type
checking and parameter checking for function calls. Hence, we declare macros
and function in two blocks: the first one declares the prototypes of all constants
and functions, and the second one defines the constants and functions.

4.3 Channels

Every channel used in a Handel-C program must be declared. The general syntax
for a channel declaration is chan type csp id. csp2hc uses the channel declara-
tions from the CSPM specification in order to infer the types used to declare
the channels in the resulting Handel-C code. We translate synchronisations like
c1.e, where c1 is declared as channel c1:T1, into an access to the -th element
of an array of channels c1. Hence, for channels used in such way, we declare an
array of channels instead of a single channel. The length of this array is defined
by the number of values in the channel type. In our example, we would have
chan SYNC c1[T1 card]; the type communicated is SYNC because there is no
value actually being communicated. Because of some restrictions imposed by
our translation and discussed in more details later in this section, if a channel
is declared with more than one type, the type communicated by that channel is
the right-most one; the remaining types are synchronisation types. For example,
a channel declared as channel c1:T1.T2 communicates values of type T2; its
Handel-C declaration is chan T2 c1[T1 card];.

Channel sets are commonly used in a CSPM specification and have a major
influence in the behaviour of constructs like parallel composition. Hence, we need
a notation to represent them. In order to reuse the implementation done for
types, we consider a datatype CHANNEL: for each channel c used in the system,
there is a branch chan c. For example, if an input CSPM specification uses
channels c1, c2, and c3, the translator includes a code that corresponds to the
translation of datatype CHANNEL = chan c1 | chan c2 | chan c3;.
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4.4 Processes

Each process is translated to an inline function in Handel-C. The declaration
of functions as inline causes their expansion where they are called; this ensures
that they are not accessed at the same time by parallel branches of the code.
This would lead to an interference between different instances of the same process
running in parallel. For instance, the process PARKING = ... is translated to a
function inline void PARKING(){ ... } in Handel-C. For the same reasons
as for the constants and functions, we prototype all the processes declared in
a specification before their actual definition. For instance, let us consider our
CSPM specification of a parking spot presented in Fig. 2. The generated Handel-
C code presented below is composed of four functions, which correspond to each
one of the processes in the original CSPM specification.

inline void PARKING();
inline void MACHINE();
inline void CUST(ID id);
inline void PAID_PARKING();
inline void CAR();
inline void SYSTEM();

inline void PARKING() { ... }
inline void MACHINE() { ... }
inline void CUST(ID id) { ... }
inline void PAID_PARKING() { ... }
inline void CAR() { ... }
inline void SYSTEM() { ... }

CSPM processes can be parametrised; the parameters, however, are not typed.
For this reason, csp2hc requires this information in order to be able to cor-
rectly translate the process; another directive is needed. The mandatory directive
--!!arg id ID within CUST informs csp2hc that the type of the argument id
of process CUST is ID. Using this information, the translator is able to correctly
declare and define the function CUST as we presented above.

Simple Processes. The translations of SKIP and STOP are trivial: the former
is ignored and the latter is translated to an input communication on a channel
we assume is not used anywhere in the specification because its name is a csp2hc
reserved word. The code if(g){ P1(); } else { P2();} is given as the trans-
lation of the process if g then P else Q. The process g & P is translated in
the same way as the process if g then P else STOP.

Sequential composition is also trivially translated using the Handel-C seq
constructor. For example, P1; P2 is translated into seq { P1(); P2() }; it
invokes both P1 and P2 in sequence. The process P1; P2 could also have been
translated into P1(); P2(). Nevertheless, Handel-C’s parallel operator (par) has
the same syntax as the sequence operator. If we translate sequence as P1();
P2(), then the translation of (P1;P2) || P3 could lead, as we will present later
in this section, to par { P1(); P2(); P3() }, which does not have the desired
behaviour, since it executes the three processes in parallel.

Communication. We consider that the use of channels first declare possible
synchronisation of the form .csp exp, and finally possible communications of the
form ?csp id or !csp exp. Our translation also constrains the channels to have
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only one input or output value; multiple inputs and outputs must be encapsu-
lated in datatypes. For example, c.0, c.0!true, c are valid communications for
csp2hc, but c!1.0 and c?x!1 are not; the former has a synchronisation value
after an output, and the later has both an input and an output.

For single output communications, the mapping is straightforward because
the syntax of both is the same. Nevertheless, we make use of the Handel-C seq
constructor; this makes the translation more generic because it allows the trans-
lation of parallel composition of nameless process as we present later in this
section. For example, a CSPM output communication cash!id -> ... is trans-
lated into seq { cash!id; ... }.

The translation of single input communications declares the input variable,
which is in the scope of the translation of the CSPM process that follows; its type
is retrieved from the channel declaration in the CSPM specification. For instance,
the input communication cash?id -> ... from our example is translated to
seq{ ID id; cash? id; ... }. In both cases, it is trivial to conclude if the
channel is either an input or an output channel. For simple synchronisations,
however, csp2hc gets this information from the user: the directive --!!channel
c in within P informs csp2hc that the channel c is an input channel within
process P; for output, we replace in with out. This directive simplifies the work of
csp2hc because it does not need to enforce the direction of these communications.

Because every Handel-C communication must carry a value, we communi-
cate a dumb value on the channel: a dumb value syncout is written on output
communications and a dumb variable is used on input communications. In our
example, the first communication of process CUST is a simple synchronisation on
channel enter. Using the directive presented below, csp2hc is able to translate
the synchronisation to seq { enter?syncin; ... } .

--!!channel enter in within CUST

Projections c.e are translated to an access to the e-th element of an array c
of channels. The declaration of channel c in the CSPM is used to get the array
dimensions and use this information in the declaration of the array of channels.
For each type used in a channel projection, we add an extra dimension to the
array with size T card. If after the projection, no value is communicated, as for
the simple synchronisations, we need a directive to inform if it is an input or an
output synchronisation. For instance, in Fig. 2, the channel ticket is declared to
have type ID and used as ticket.idwithin process CUST. First, the source CSPM

must have the directive --!!channel ticket in within CUST. As a result, the
translated Handel-C code declares this channel as chan SYNC ticket[ID card];.
Because no value is communicated, the type of the channel is the value of the
dumb value, SYNC; otherwise, the type of the value communicated would be used.
Next, the communication ticket.id -> ... within CUST is translated into seq{
ticket[id]!syncout; ... }. In this case, the type ID is used and, as previously
described, it is declared as an unsigned integer. If, however, the CSPM type Int is
used in a projection, csp2hc includes a casting to an unsigned integer that is re-
quired by the Handel-C compiler in order to guarantee that we do not have access
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to negative indexes of an array. For example, a synchronisation c.v is translated
to c[(unsigned)v].

This approach imposes a restriction to our source CSPM specifications: pro-
jections must be consistently used. This means that if a channel is used as c.e,
it cannot be used as c!e elsewhere in the specification.

Recursion. In Handel-C, functions may not be recursive; however, recursive
processes can be defined in CSPM. Our translation allows tail recursive processes
and mutually recursive processes. Tail recursive processes may be translated to a
loop that iterates while a special boolean variable is true. Initially, each iteration
sets this variable to false and only the recursive call sets this variable back to
true. This causes the loop to stop or not. For instance, the translation of the
tail recursive process PARKING used in our example is presented below.

inline void PARKING(){
boolean KEEP_LOOPING; KEEP_LOOPING = true;
while(KEEP_LOOPING){

KEEP_LOOPING = false;
seq{ seq{ enter?syncin; seq{ leave?syncin;

KEEP_LOOPING = true; } } } } }

It declares a variable KEEP LOOPING and initialises it with true. This variable
is used as the condition of the loop that follows. The first action of the loop is
to set KEEP LOOPING to false; the recursive invocation of PARKING is translated
into the code KEEP LOOPING = true.

Process arguments are declared as local copies, which are initialised before
the beginning of the loop with the given value and are updated before the end of
each iteration. In our example, the process CUST is a parametrised tail recursive
process. Its translation presented below omits the translation of the external
choice (this will be presented later in this section). In the declaration part, we
also declare a local copy CUST local id of the process argument id, which is
initialised with the given real argument and updated with the argument used in
the recursive invocation before setting the variable KEEP LOOPING to true.

inline void CUST(ID id){
boolean KEEP_LOOPING; ID CUST_local_id;
CUST_local_id = id; KEEP_LOOPING = true;
while(KEEP_LOOPING){

KEEP_LOOPING = false;
seq{ seq{ seq{ enter?syncin;

seq{ cash! CUST_local_id;
// translation of external choice
seq{ leave?syncin;

CUST_local_id = CUST_local_id;
KEEP_LOOPING = true; } } } } } } }

This translation for tail recursive processes does not allow parallel composi-
tion in the tail recursion. This could lead to infinite expansion, which would be
impossible to map into hardware. Furthermore, this solution for tail recursive
processes is valid only for specifications that contain no mutually recursive pro-
cesses. If, however, mutually recursive processes are present in the specification,



298 M. Oliveira and J. Woodcock

csp2hc uses a different translation, which transforms the whole model into an
action-system-like model [4]. It declares all the processes parameters as global
variables and uses a single function parametrised by a process counter to rep-
resent the whole system. As for tail recursive processes, the body of this single
function is a loop controlled by a boolean variable KEEP LOOPING. The parame-
ter of the function is used as a program counter and indicates the behaviour that
the function must have in each iteration. Because we are mapping the behaviour
of the system into an action-system-like, this solution can only be applied to
CSPM specification in which parallel composition is present only in the process
given as the main behaviour of the system.

Our example does not present mutual recursion; the example in Fig. 3 shows
the translation of a CSPM specification of two mutually recursive processes. They
represent a lamp that can be switched on and off and that memorises the number
of times it has been switched on. In the CSPM specification presented below
we have the declaration of a datatype that represents the status on which a
lamp can be: it is either ON or OFF. This type is used to synchronise with the
processes L ON and L OFF, which represent a lamp that is switched on and off,
respectively. Besides, as we can see in the information given by the directives,
both their arguments are integers and in both processes, the channel switch is
an input channel. If the lamp is OFF, it can only be switched ON and vice-versa;
if the lamp is switched ON, it increments the counter.

--!!mainp L_OFF(0)
datatype STATUS = ON | OFF
channel switch:STATUS
--!!arg x integer within L_OFF
--!!channel switch in within L_OFF

L_OFF(x) = switch.ON -> L_ON(x+1)
--!!arg y integer within L_ON
--!!channel switch in within L_ON
L_ON(y) = switch.OFF -> L_OFF(y)

A directive that declares the main behaviour of the specification can also be
given to csp2hc. In our example, we have that initially the system behaves like
L OFF and has a counter set to zero. For conciseness, we omit the preamble of
the resulting translation presented in Fig. 3. It declares two constants L ON and
L OFF they represent each one of the processes. The arguments of each process
are declared as global variables: for every argument x of a process P, we name
a global variable P local x (i.e., L OFF local x for argument x of L OFF).
The system is implemented by the function MUTUAL REC that is parametrised
by a PROGRAM COUNTER. In each iteration, it falsifies KEEP LOOPING. Next, it
checks the current value of the program counter and behaves accordingly: if
PROGRAM COUNTER indicates that we are in L OFF, the process waits to synchro-
nise on channel switch[ON]. Afterwards, it sets the value of the global variable
that represents the argument of process L ON, L ON local y. The main method
implements the behaviour of the system: it sets the value of the global variable
that represents the argument of L OFF and invokes the mutual recursion giving
the initial value of the program counter, L OFF, as argument.

External and Internal Choice. The translation of external choice uses Handel-
C’s prialt, which makes a prioritised choice between the channels that are in the
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...
#define L_ON 2
#define L_OFF 1
integer L_OFF_local_x; integer L_ON_local_y;
inline void MUTUAL_REC(int 2 PROGRAM_COUNTER){
boolean KEEP_LOOPING; KEEP_LOOPING = true;
while(KEEP_LOOPING){

KEEP_LOOPING = false;
switch(PROGRAM_COUNTER){
case L_OFF :{ seq{ switch[ON]?syncin;

L_ON_local_y = L_OFF_local_x+1;
PROGRAM_COUNTER = L_ON; KEEP_LOOPING = true; }

break; }
case L_ON :{ seq{ switch[OFF]?syncin;

L_OFF_local_x = L_ON_local_y;
PROGRAM_COUNTER = L_OFF; KEEP_LOOPING = true; }

break; }
default: KEEP_LOOPING = false; } } }

void main(){ L_OFF_local_x = 0; MUTUAL_REC(L_OFF); }

Fig. 3. Translation of Mutually Recursive Processes

choice. Currently, only choices between prefixed processes can be translated by
csp2hc. Furthermore, to avoid name clashes, if two input communications are in
an external choice, their input variables must have different names.

In our example, CUST has an external choice. After giving the cash to the
machine, it either receives the ticket or the cash. The following code, which
is the part of the translation of process CUST indicated as a commentary in
Page 297, is the translation of this external choice.

prialt{ case ticket[CUST_local_id]?syncin :{
seq{ change[CUST_local_id]?syncin; } }; break;

case change[CUST_local_id]?syncin :{
seq{ ticket[CUST_local_id]?syncin; } }; break; };

It is a choice between ticket and change; the local copy of the customer id is
used to access the corresponding channel in the array. Any other input variable
is declared before the Handel-C prioritised choice that implements the choice.

Using another directive, the user can choose the time he wants internal choices
to be carried out. Using the directive --!!int choice at compiletime, for
instance, we request csp2hc to resolve the internal choice P |~| Q at trans-
lation returning P(); as result. If, however, runtime is used, the translation is
random(random var); if((random var % 2) == 0) P(); else Q();. The
global variable random var is an integer; it is given to the macro procedure
random that updates its value to a random value. Next, if this new value is
an even number, the process behaves like P; it behaves like Q, otherwise. This
directive is optional: the default value is compiletime.
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Parallel Composition. Handel-C provides the command par { P() ; Q() }
that executes the methods P and Q in parallel; they may interact via channel
communications, but it is not possible to explicitly declare the synchronisation
channel set. As a side effect, the direct translation into a parallel composition
using par is only valid for processes with no interleaved events in the synchro-
nisation set. Formally, for every two processes P and Q composed in parallel in
a channel set CS (P [| CS |] Q), the intersection of their alphabets (the set of
events performed by a process) must be a subset of CS. Similar restrictions also
apply to alphabetised parallel: in P [ CS1 || CS2 ] Q, the intersection of the
alphabets of P and Q must be a subset of the intersection of CS1 and CS2. Fur-
thermore, only interleave of processes with no events in common can be directly
translated into a simple parallel composition using Handel-C’s par.

For example, consider PAID PARKING in Fig. 2. It is a parallel composition
between a customer and a machine; they interact on cash, ticket, and change.
Analysing CUST, we see that it also has enter and leave in its alphabet, which,
since they are not in the synchronisation channel set, must be interleaved. Nev-
ertheless, the MACHINE does not mention these channels and, as result, csp2hc
translates the process PAID PARKING as follows.

inline void PAID_PARKING(){ par{ CUST(ID_Letter_LUT[a]); MACHINE(); } }

It accesses the look-up table corresponding to the constructor Letter in order
to pass the right value as argument to the function CUST.

In Fig. 4 we present the resulting Handel-C code of our example in Fig. 2.
For conciseness, we omit some parts of the code like the typing related con-
stants. Currently, synchronisation channel sets must be explicit; no constant
reference, functions on sets, set productions, or set comprehension are accepted
as the synchronisation channel set. Furthermore, csp2hc does not support multi-
synchronisation and, to some extent, neither does Handel-C. We may, though,
using the DK Design Suite, change the settings of a project in order to be al-
lowed to have multiple channels reading and writing. In this case, the debugger
requires only two processes to be willing to synchronise on an event in order to
make the communication happen. In a CSPM multi-synchronisation, however,
the communication happens only if all parts are willing to synchronise.

Hiding. In our example, the definition of process PAID PARKING hides some
channels from the environment, but its translation simply ignores the hiding.
Fortunately, under certain conditions, which are automatically checked (starting
from the main process), the translation of P \ cs may ignore the hiding; all
these conditions are met by the main process in our example. The first two
conditions guarantee that for every channel c in cs that is visible in P, there is
some communication on c in P: a process that is not in parallel with any other
process cannot have a communication on a given channel that is being hidden;
and for every parallel composition P [| CS |] Q, the set of the hidden channels
that are also visible in both P and Q must be a subset of the set of channels that
are in CS and are either written to and visible in P and read from and visible in
Q or vice-versa. The third condition guarantees that communications on hidden



Automatic Generation of Verified Concurrent Hardware 301

...
chan SYNC INEXISTENT_CHANNEL;
chan SYNC change[ID_card]; chan SYNC ticket[ID_card];
chan ID cash; chan SYNC enter; chan SYNC leave;
...
inline void PARKING(){ ... }
inline void CUST(ID id){ ... }
inline void PAID_PARKING(){ ... }
inline void MACHINE(){

boolean KEEP_LOOPING; KEEP_LOOPING = true;
while(KEEP_LOOPING){

KEEP_LOOPING = false;
seq{ seq{ ID id; cash? id;

seq{ ticket[id]!syncout;
seq{ change[id]!syncout;

KEEP_LOOPING = true; }; }; }; } } }
inline void CAR(){

boolean KEEP_LOOPING; KEEP_LOOPING = true;
while(KEEP_LOOPING){

KEEP_LOOPING = false;
seq{ seq{ enter!syncout;

seq{ leave!syncout; KEEP_LOOPING = true; }; } } } }
inline void SYSTEM(){ par{ { CAR(); };{ PAID_PARKING(); } } }
void main(){ SYSTEM(); }

Fig. 4. Complete Translation of our CSPM Example

channels do not happen outside the hiding: given P [| CS |] Q, there cannot
be any channel that is a member of CS, hidden in P and mentioned in Q, or
hidden in Q and mentioned in P.

The examples presented in this section have been automatically translated by
csp2hc, whose design and architecture is the subject of the next section.

5 csp2hc: Design and Architecture

csp2hc is simple to use: the user opens the original CSPM file and, if the transla-
tion is successful, saves the result in a Handel-C file. Non-successful translations
are displayed to the user as error messages, which are detailed in the log window.
In such cases, the user can correct the file and translate it again.

Internally, csp2hc uses a CSPM parser and type checker that has been devel-
oped by our collaborators in UFPE/Brazil. This parser is strongly based in the
visitor design pattern [11] and for this reason our implementation is based on
a small number of visitors; most of them collect information about the specifi-
cation (directives, constants, functions, types, processes, parallelism, channels,
and recursion). This information is used by the main visitor, the translator, that
actually translates the specification into Handel-C. We believe that the informa-
tion needed by the translator and some of the ordering in which this information
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Fig. 5. The Internal Behaviour of csp2hc

is retrieved is significant not only to translate CSPM into Handel-C, but in other
translations from a process algebra to a programming language.

Figure 5 illustrates the internal behaviour of csp2hc. We identify the visitors
with grey boxes and the information processed by them with soft-edged boxes.
The arrows indicate the generation (from generator to information) and the
usage (from information to user) of this information, which is grouped using
dotted soft-edged boxes (identified with a number in the bottom left corner).

First, csp2hc receives the CSPM specification, which is parsed. The result is a
concrete tree that is given to the directives visitor who retrieves the information
given by the directives. This information is used by the next visitor that retrieves
information about the constants and functions in the specification. Then, the
types visitor uses the information retrieved so far (grouped in box 1 in Fig. 5)
to retrieve the information about the datatypes used in the system.

The next stage of the translation needs to access the directives information
to append the definition of the main process to the original CSPM specification
code. This extended specification is also parsed and type checked. The result-
ing concrete tree is the one that is analysed by the visitors that follows. The
first one is the visitor that retrieves the information about the channels: types,
projections, and communications. The next one retrieves the processes’ informa-
tion, which includes their arguments and definitions. This information is used
by the parallelism analyser, the next visitor, which gives unique identifications
to each of the parallel branches (starting from the main process) and stores
information that is used to identify the events on which the branches cannot
synchronise on. Only then, csp2hc can check the specification against the csp2hc
restrictions previously described. The restrictions visitor uses the information
on the datatypes, processes, and parallelism that are grouped in box 2 in Fig. 5.
All the restrictions described in this paper, including identifying unsupported
CSPM constructors and keywords, are automatically checked by csp2hc.
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The last visitor before the actual translation, the recursion visitor, analyses
possible recursions and stores information about them. Finally, the translator
visitor is invoked; it uses all the information retrieved by the previous visitors to
translate the CSPM into an unformatted Handel-C code. This code is formatted
by the csp2hc code formatter and output to the user.

The automatic translations of the examples presented in this paper were fairly
quick. For instance, the 38 lines of the parking spot’s specification were translated
into 268 lines of Handel-C code in 1359ms. Optimization of this code can still be
achieved automatically and manually and is the topic of future research.

6 Conclusions

We presented a translation approach from CSPM to Handel-C and a tool that
automates this translation. With this tool, we achieve a method for developing
concurrent applications in hardware. Starting from an abstract CSPM specifica-
tion of system, we gradually refine this specification into a CSPM implementa-
tion. Using CSPM’s analysis tools like FDR, we can verify the correctness of each
refinement and some other properties. Finally, csp2hc translates the CSPM im-
plementation into Handel-C code that can be used to program a FPGA. Testing
should also be contemplated in this method; nevertheless, using our method, the
time spent in this stage can be considerably reduced.

During the implementation of the translation of the remaining CSPM opera-
tors, we faced some interesting problems that are inherent in targeting hardware
from a specification language like CSPM. The solutions to some of them are pre-
sented in this paper: we could not translate all recursive structures, but only
those who would not create infinite recursion; deadlock was implemented as pro-
cess reading from a fresh new channel to simulate deadlock; we needed to create
a bit representation for sets; although not directly related to the CSPM seman-
tics, we implemented a synchronisation like c.e as accesses to the e-th element
of an array of channels c; finally, integer representations for datatypes, parallel
branches, and channel identification had also to be used.

Some information was either impossible or not trivial to retrieve from the
CSPM specification and yet was needed in the translation process. For instance,
csp2hc needed information about the types of the processes’ arguments and
about writers and readers in the translation of a synchronisation c. This extra
information is given in the form of special CSPM comments called directives.

Finally, because the concurrency model on which Handel-C is based is slightly
different from that of CSP, the translation of CSPM parallel composition into
Handel-C’s par construct has some restrictions; a protocol is needed and is being
currently implemented. It must guarantee that, if two processes should not syn-
chronise on a channel, this will not happen. There are some further consequences
from this difference on the concurrency model. For instance, in CSPM, if three
processes should synchronise on c and only two processes are ready to do so,
the synchronisation should not happen. This is not what happens in Handel-C;
in the near future we intend to introduce support for multi-synchronisation to
csp2hc, which will be a simple extension of the protocol mentioned above.
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csp2hc has already been able to translate some of the classical CSPM prob-
lems (including a quarter of the examples provided with the FDR distribution)
and parts of a very complex CSPM specification provided by our industrial part-
ner. Nevertheless, there is still a long road ahead of us. Some of the CSPM con-
structs have restrictions that could be removed. For instance, prefixed processes
guarded by boolean conditions could take part in the external choice and is not
yet considered in csp2hc. Furthermore, there is still a large subset of CSPM con-
structs that have not yet been included in csp2hc: nametypes, local definitions,
chase, linked parallelism, constrained inputs (c?x:S), iterated operators, local
definitions, renaming, and hiding are some of them. Most of the specifications
that cannot be currently translated because they contain some of these opera-
tors must be changed by hand into a corresponding specification that is csp2hc
compatible. This substitution is possible in most of the cases, but can prove to
be fairly difficult sometimes; it can, however, be proven correct using FDR.

We intend to translate part of FDR’s functional language: set expressions,
set comprehension, functions on sets, integer ranges, sequence expressions and
functions on sequences, tuple expressions, and pattern matching are among the
elements we intend to automatically translate into Handel-C. With this result,
csp2hc could translate a large set of CSPM specifications, which includes a fairly
complex specification used by our industrial partner that motivated the start
up of our project and all the examples provided in the FDR distribution. A
full automatic translation from CSPM to Handel-C still requires the translation
of interruptions, pipping, untimed time out, external, and the remaining of
FDR’s functional language; these translations are also in our agenda.

The performance of the code generated by csp2hc was not considered so far.
We believe optimisation is possible and should be implemented. Currently, we
may implement these by hand and use the automatic optimisation provided by
the DK Design Suite. Nevertheless, we intend to investigate and to automatise
part of this optimisation in order to achieve smaller and faster programs. For
instance, in Handel-C, each assignment takes one clock cycle; hence, executing
these assignments in parallel would be faster than the current solution.

Correctness of the translation approach was not considered in this paper. We
currently rely on the validation of the implementation of our examples and on
the fairly direct correspondence of CSPM and Handel-C. We intend to formalise
the translation as translation rules, and then prove these rules.

We intend to integrate our tool with FDR, creating a complete framework
that will support the full development of verified hardware. It would consist of a
powerful tool that is of much interest not only to academia but also to industry.
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Abstract. An accurate and reliable clock synchronization mechanism is
a basic requirement for the correctness of many safety-critical systems.
Establishing the correctness of such mechanisms is thus imperative. This
paper addresses the modeling and formal verification of a specific fault-
tolerant master/slave clock synchronization system for the Controller
Area Network. It is shown that this system may be modeled with hybrid
automata in a very natural way. However, the verification of the result-
ing hybrid automata is intractable, since the modeling requires variables
that are dependent. This particularity forced us to develop some mod-
eling techniques by which we translate the hybrid automata into single-
rate timed automata verifiable with the model-checker Uppaal. These
techniques are described and illustrated by means of a simple example.

1 Introduction

This paper addresses the formal verification of a specific solution for fault-
tolerant clock synchronization over the Controller Area Network (CAN) field-
bus [1]. This solution is called OCS-CAN, which stands for

[2,3]. The aim of this formal ver-
ification is to use model checking in order to determine whether the designed
fault tolerance mechanisms guarantee the desired precision in the presence of
potential channel and node faults.

OCS-CAN can be naturally described with the formalism of hybrid automata
[4] by assuming that clocks are continuous variables. Unfortunately, the resulting
automata cannot be directly verified with model checking. The main difficulties
are caused by two specific characteristics of the adopted clock synchronization
algorithm: the existence of clocks of various rates, and the fact that neither the
rates nor the values of the clocks are independent.

Without the second characteristic, the first one would not be a real problem.
It is known that a system with clocks of different rates, also known as
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, can be translated into a verifiable single-rate timed automata as
long as the rates of the clocks are independent [5,6]. But the second character-
istic —the lack of independence— poses a real challenge to model checking, as
it actually relates to a more general issue in the field of hybrid systems: the
undecidability of the reachability problem in hybrid automata where variables
are not decoupled [4], also called .

Despite this limitation, we were able to translate our non-rectangular hybrid
automata into a network of timed automata verifiable with Uppaal [7], and
thus model check the precision guaranteed by OCS-CAN, as shown in [3,8]. The
essence of this translation is twofold: 1) the behavior of the system is expressed
over a single timeline, and 2) the lack of precision (the offset) between the clocks
is converted into the corresponding delays over that timeline. The techniques
developed to perform these tasks, which are closely related to the notion of

[6], are discussed in this paper.
The contribution of this paper is relevant in many senses. First, it concerns

the application of model checking to a realistic, and relatively complex, sys-
tem. Second, it addresses a very important topic in the context of dependable
embedded systems: formal verification of clock synchronization; and proposes a
novel approach, since to the authors’ best knowledge, model checking has not
been previously applied to master/slave clock synchronization. Third, it shows
that despite the theoretical limitation of verifying non-rectangular hybrid au-
tomata, the model of OCS-CAN can be translated into timed automata to allow
model checking of certain properties. The discussed translation techniques may
inspire other researchers willing to model check hybrid systems with dependent
variables.

The rest of the paper is organized as follows. Sect. 2 introduces the notion of
perturbed time automaton and relates it to the problem of clock synchronization.
In Sect. 3, the main characteristics of OCS-CAN are discussed, paying special
attention to the properties of its clock synchronization algorithm. In Sect. 4, the
basic notation of OCS-CAN is defined, and the aim of the formal verification
is stated in terms of this notation. Sect. 5 describes the modeling of OCS-CAN
as a network of non-rectangular hybrid automata. In Sect. 6, the translation of
such hybrid automata into a network of timed automata verifiable with Uppaal

is addressed. Some verification results are presented in Sect. 7, whereas Sect. 8
summarizes the paper.

2 Perturbed Timed Automata

Timed automata are, in principle, a very useful formalism to model systems with
clocks. However, timed automata exhibit an important limitation: although they
allow definition of multiple clocks, all clocks must evolve at the same pace [9].
This represents a limitation because real systems often work with ,
i.e. clocks that evolve at a slightly different rate, and therefore such systems
cannot be directly modeled as timed automata. This limitation may, however,
be overcome by adopting certain modeling techniques. One of such techniques,
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Fig. 1. An example of two perturbed timed automata

Fig. 2. An external observer to check precision between clock x1 and clock x2

which is known as perturbed timed automata [6], proposes to move the un-
certainty caused by the drifting clocks into the guards and invariants of the
automata. A similar technique is also used in [5].

The usefulness of perturbed timed automata is illustrated by the example
in Fig. 1. This example shows two automata which exhibit the same behavior:
they both use a clock (x1 and x2, respectively) to trigger a periodical action
(signaled through channel a1 and a2, respectively)), with period R. Both clocks
are assumed to start simultaneously and to have the same maximum drift (ρ)
with respect to real time. Due to this drift, they actually do not trigger the
periodical actions at an exact point of time, but they may trigger it within a
time interval [R - ρR, R + ρR], as defined by the guard and invariant expressions.

When using such a model, the lack of synchronism between the clocks can
be easily checked by an external observer, which just measures the time elapsed
between the signaling over channel a1 and the signaling over channel a2. This
observer is depicted in Fig. 2. Notice that location Failure can only be reached
when one of the automata has performed the periodical signaling at least Π
time units later than the other one. Assuming that exceeding such threshold is
undesirable for some reason, the following safety property should be defined for
the system: A[ ] not Observer.Failure, stating that location Failure should
never be reached.

Note that according to the automata of Fig. 1, the location Failure is reach-
able, regardless of the value of Π , because the clocks are never resynchronized.
Therefore, behaviors in which they continuously diverge are possible. This per-
fectly matches the behavior of a real system with unsynchronized clocks.
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Fig. 3. Architecture of an OCS-CAN system

Nevertheless, the aim of this work is to model check the clock error of a system
(OCS-CAN) where clock resynchronization is periodically performed, and where
the effect of resynchronization is to dynamically change the values and drifts
of the clocks. For instance, we wish to specify actions such as x2:= x1, which
means that clock x2 takes the value of clock x1 (i.e. x2 synchronizes to x1). This
requires more complex modeling than just perturbed automata. The techniques
we have developed for this modeling are described in Sect. 6.

3 System Under Verification

OCS-CAN is designed to be incorporated into a CAN-based distributed embed-
ded system. The role of OCS-CAN within such a system is to provide a common
time view, which the processors of the nodes can rely on in order to perform
coordinated actions [2,3].

3.1 Architecture of OCS-CAN

OCS-CAN is made up of a set of specifically designed hardware components,
named , which are interconnected through a CAN bus. When OCS-
CAN is used, a clock unit is attached to every node of the system, as depicted
in Fig. 3, along with the processor and the fieldbus controller (FC). Notice that
the clock unit has its own connection to the CAN bus.

The clock unit is provided with a discrete counter, the so-called ,
which is intended to measure real time. The clock units execute a master/slave
clock synchronization algorithm, which aims at keeping all virtual clocks within
a given interval of tolerance, which is called precision. In principle, only one of
the clock units (the ) is allowed to spread its time view, and the rest of
clock units (the ) synchronize to this time view.

In order to spread its time view, the master periodically broadcasts a specific
message, which is called the (TM). Fig. 4 shows the transmission
pattern of the TM when the resynchronization period is R time units.

The function of the TM is twofold: it signals the resynchronization event,
which coincides with the first bit (the Start of Frame bit) of the TM, and also
contains a timestamp that indicates the occurrence time of that event. This is
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Fig. 4. Transmission pattern of the TM in the absence of faults
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Fig. 5. The Time Message contains a timestamp of the Start of Frame bit

depicted in Fig. 5. Thanks to such timestamp mechanism, after receiving the
TM, every slave can adjust the value and the rate of its virtual clock to take the
value and the rate of the master’s virtual clock [2].

3.2 Fault Tolerance Issues

Concerning the fault model, it is important to remark that the failure semantics
of the clock unit is restricted to by means of internal du-
plication with comparison. With respect to channel faults, OCS-CAN assumes
the CAN bus to provide timely service but not reliability nor data consistency.
This means that a TM broadcast by a master clock unit at time t is expected
to be delivered to some clock unit within the interval (t, t + wcrt] or not de-
livered at all, where wcrt is the worst-case response time of the message [10].
Both inconsistent duplicates and inconsistent omissions of the TM, as defined
in [11,12], may occur. Permanent failures of the bus, such as bus partition or
stuck-at-dominant failures, are not addressed by OCS-CAN.

In order to provide tolerance to faults of the master, OCS-CAN defines a
number of backup masters, one of which should take over upon failure of the
active master. The mechanism for master replacement assumes that masters are
organized hierarchically. The priority of a master is defined with two parameters.
The first parameter is the identifier of the TM broadcast by the master; following
the common convention in CAN, a lower identifier implies higher priority. The
second parameter is the of the TM, which for every round indicates
to every master when it is allowed to broadcast its corresponding TM. The

of master m in the resynchronization round k, is calculated as follows:

Trlsm = k · R + Δm

Where R is the resynchronization period (the same for all masters) and Δm

(the ) is a small delay —in the order of a few ms— whose length is
inversely proportional to the priority of the master.
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Fig. 6. Order of events within a synchronization round

The release time, combined with the assignment of identifiers discussed above,
must guarantee that in a round, a master may broadcast its TM before a master
of higher priority only if the latter is faulty. This is depicted in Fig. 6, for the
case of three masters. In the absence of faults, the second and third TM are
usually not broadcast, and if any of them is broadcast (for instance because one
backup master could not timely abort a just-requested TM broadcast) then it
is ignored by the slaves. The spare TMs are only taken into account if master 0
fails and is not able to broadcast its TM. Thanks to the master redundancy, in
such situation the system will recover after a very short delay.

Nevertheless, in a CAN network it may happen that a message is not con-
sistently received by all the nodes, as discussed in [11,12]. In such cases, the
clock units might not receive a TM to synchronize with, or even worse, in the
same round different clock units may synchronize to TMs broadcast by different
masters. These scenarios, although being rather unlikely, may jeopardize clock
synchronization and should be carefully studied.

A fundamental property of the CAN protocol states that, regardless of be-
ing consistent or not, a CAN broadcast always finishes within a bounded time
interval, so the worst-case response time of any broadcast can be calculated,
as discussed in [10]. In OCS-CAN this property implies that whenever a mas-
ter clock units requests a TM broadcast, this request causes a reception of the
TM in some other clock units before time units, or it does not cause any
reception at all.

This property also means that for every resynchronization round, receptions
of the TM may only happen within a bounded temporal interval. This is shown
in Fig. 6 by means of a shadowed window, which is called TMdelay. In an OCS-
CAN system, the length of TMdelay is equal to Δl +wcrtl, where l is the master
of lowest priority in the system. Since clock synchronization may only happen
after reception of a TM, this implies that the maximum distance between two
consecutive synchronizations of a clock unit is Rmax = R + TMdelay. Although
it is not properly represented in Fig. 6, R is always much greater than TMdelay.

3.3 Master and Slave Finite State Machines

This section describes the algorithms executed by the clock units, as they are
fundamental to understand the model used for formal verification. Every clock
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unit may behave either as a master or a slave. A non-faulty master clock unit
executes the finite state machine in Fig. 7, whereas a non-faulty slave clock unit
executes the finite state machine in Fig. 8. Both algorithms are built upon five
primitives: TM.Request, TM.Indication, TM.Confirm, TM. Abort and Sync.

TM.Request. A master executes TM.Request to broadcast its TM as soon as
it reaches the corresponding release time. This primitive is denoted TM.Req(n),
where n is the identifier of the TM broadcast. Further information about the
low-level actions triggered by TM.Req, such as timestamping, is available in [3].

Fig. 7. Behavior of a non-faulty master m

TM.Indication. This primitive is executed when a TM is received. It is denoted
TM.Ind(n), where n indicates the identifier of the received TM. Every master
compares the value of n with its own identifier (m) to determine whether this
TM comes from a higher priority master (case n < m) or not. Masters may only
synchronize to masters of higher priority.

TM.Confirm. This primitive indicates to the transmitting master that a pre-
viously requested TM broadcast has been successful. It is denoted TM.Conf(n),
where n indicates the identifier of the successfully broadcast TM.

TM.Abort. A master uses this primitive to abort the broadcast of a TM whose
transmission was previously requested. It is denoted TM.Abort(n), where n is
the identifier of the TM to be aborted. This action is caused by the reception
of a higher priority TM, and has some associated latency so it may be the case
that the TM broadcast is not timely aborted.

Sync. This primitive is executed by any clock unit (either master or slave)
that receives a TM and wants to adjust its own virtual clock to the value
conveyed by the TM. For the slaves, a valid TM is the first TM received in
any resynchronization round (first TM.Ind(n)). For the masters, a valid TM
is the first TM received in any resynchronization round (the
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Fig. 8. Behavior of a non-faulty slave s

firstTM.Ind(n) with n < m), provided that the master did not successfully broad-
cast its own TM in that round. This primitive is denoted Sync(n,a), where a
indicates the clock unit that is adjusting its virtual clock, and n is the identifier
of the TM which clock unit a is using as a reference.

Concerning the Sync primitive, it is important to remark that the clock adjust-
ment can never be exact. Even with the very accurate timestamping mechanism
of OCS-CAN [3], certain imprecision remains, for instance due to small system
latencies or to fixed-point arithmetics.

Note that a clock unit can only synchronize once per round. This is ensured by
entering a waiting state after execution of the Sync primitive, in which further
receptions of TM are ignored. Given that R

2 > TMdelay (as already indicated
in Sect. 3.2), we ensure that TM duplicates and non-aborted TMs cannot cause
duplicated resynchronizations.

4 Aim of Our Formal Verification

In this section, the basic notions of OCS-CAN, such as clock unit or virtual clock,
are formally defined. These definitions are specially useful for describing the aim
of our formal verification, which is to model check the precision guaranteed by
OCS-CAN under diverse fault assumptions.

4.1 Basic Definitions

The synchronization algorithm is characterized by the resynchronization pe-
riod R, and two parameters ε0 and γ0, which indicate the ”quality” of the mech-
anism for clock adjustment. The failure assumptions are defined with two values

(the ) and (the ), which indicate the maxi-
mum number of consecutive rounds affected by inconsistent message omissions
and the maximum number of faulty masters, respectively.

Definition 1.

= {A, R, ε0, γ0, , }
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– A

– R ∈ IR+

– ε0 ∈ IR+

– γ0 ∈ IR+ γ0 << 1
– ∈ IN
– ∈ IN

In an OCS-CAN system, the state of a clock unit is defined at any instant by
the three following variables: the value of its virtual clock vc(t), the rate of its
virtual clock v̇c(t), and its operational state f(t). Furthermore, every clock unit
is characterized by the following three additional parameters, which indicate how
the clock unit executes the clock synchronization algorithm: the relative priority
(p) of the TM that the clock unit broadcasts, the release delay (Δ) of the TM
that the clock unit broadcasts, and the worst case response time (wcrt) of the
TM that the clock unit broadcasts.

Definition 2. a ∈ A

a = (vca, v̇ca, fa, pa, Δa, wcrta)

– vca(t) ∈ IR+ a t, ∀t ∈ IR+

– v̇ca(t) ∈ IR+ a
t, ∀t ∈ IR+

– fa : IR+ → {0, 1} a fa(t) = 1 a
t fa(t) = 0

– pa ∈ IN a
pa = 0

– Δa ∈ IR+ a

– wcrta ∈ IR+ a

Note that although the virtual clock of a clock unit is actually implemented as a
discrete counter, and therefore it may take only values over IN, we define it over
IR+ for compatibility with the definition of time in timed automata. Also note
that the values of Δa and wcrta are irrelevant for slaves.

4.2 Offset and Precision

In OCS-CAN, each clock unit supplies its corresponding processor with a local
view of real time. Therefore, the consistency in the perception of time depends
on the difference (or ) exhibited by the virtual clocks.
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Definition 3. A A
t

ΦA(t) = max
a,b∈A

{|Φab(t)|}

Φab(t) = vca(t) − vcb(t) a, b ∈ A t

When the maximum offset between the clock units is always bounded, then the
OCS-CAN system is said to be synchronized.

Definition 4. Π
Π ∈ IR+ precision ΦA(t) ≤ Π, ∀t ∈ IR+

The extent to which the system is synchronized depends on the value of Π . The
lower the value of Π , the higher is the achieved precision.

Last, we define the concept of between two clock units, as this
concept turns out to be very important when modeling drifting clocks.

Definition 5. a, b ∈ A
t

γab(t) = v̇ca(t) − v̇cb(t)

5 Modeling OCS-CAN as a Network of Hybrid Automata

The first step of model checking is to specify a formal model of the system under
verification. Whenever a system combines both continuous components, which
evolve over time as expressed by a differential equation, and discrete compo-
nents, expressed by finite state machines, hybrid automata are very suitable for
the modeling [13]. This is the case of OCS-CAN, since the virtual clocks can
be easily modeled as continuous variables that are modified by the (discrete)
synchronization actions performed by the clock units.

In this section, we discuss how the behavior of OCS-CAN can be specified by
means of hybrid automata. It is shown that the resulting model includes variables
that are not independent. Although this characteristic makes, in principle, the
verification of our model unfeasible by model checking, in Sect. 6 we show that
the model can still be translated into timed automata. Thanks to this, some
safety properties, such as the guaranteed precision, can be verified.

5.1 Channel Abstraction

The communication channel is abstracted by means of an additional process
channel control, together with a global variable msg id and a

[7] called tx msg. This abstraction is shown in Fig. 9. The function of the
automaton channel control is to enforce the worst-case response time of the
TM broadcasts. A full description of channel control is available in [3].
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Fig. 9. Abstraction of the communication channel in OCS-CAN

The variable msg id represents the identifier of the TM being broadcast.
TM.Request is modeled as a write operation over msg id, and CAN arbitration [1]
is modeled by allowing the masters to overwrite the value of msg id only whenever
they have higher priority that the TM being transmitted. Therefore, TM.Req(m)
is modeled with the following assignment: msg id:= min{m,msg id}. However,
and for compatibility with the Uppaal model checker, we hereafter use the C-
like assignment: msg id:= m <? msg id, which is equivalent.

The broadcast channel tx msg is used by channel control to signal the in-
stant at which the TM is delivered. Therefore, TM.Confirm and TM.Indication
primitives are both signaled through tx msg. For a master, a signaling through
tx msg is a TM.Confirm if the value of msg id is equal to the identifier written
by the master. Otherwise, it is a TM.Indication.

5.2 Abstraction of Clock Correction

In [2], we provide some details about the way virtual clocks are corrected (or
adjusted) in OCS-CAN, and we highlight that clock correction is never performed
immediately, but it is gradually carried out. This is called clock amortization.

Nevertheless, for the purpose of modeling and formal verification, we assume
instantaneous clock correction instead of clock amortization. We make this ab-
straction because including clock amortization would cause an unnecessary com-
plexity in the modeling. We are interested in assessing the maximum error (the
achievable precision) between virtual clocks, and to do this we have to ex-
amine the value of the virtual clocks a long time after the last resynchronization
action. At these time instants, and provided that clock amortization is properly
implemented [14], there is no difference between considering either instantaneous
clock correction or clock amortization.

When instantaneous clock correction is assumed, executing the Sync(n,a)
primitive is equivalent to assigning the value and the rate of the virtual clock
of master n to the virtual clock of the synchronizing clock unit a. Since this
assignment is never exact, the value and the rate assigned are always within an
error interval. The width of this interval is determined by the maximum offset
error ε0, in the case of clock value assignments, and by the maximum drift error
γ0, in the case of clock rate assignments.
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Since the Sync(n,a) primitive may cause discontinuities of the virtual clock
values as well as discontinuities of the virtual clock rates, it makes sense to define
the following notation.

f(t+0 ) = lim
t↘t0

f(t)

f(t−0 ) = lim
t↗t0

f(t)

After that, the points of discontinuity can be characterized.

Definition 6. a ∈ A m ∈ M
v̇ca(t) vca(t)

– v̇ca(t+) = B̄(v̇cm(t−), γ0) a (m, a) t
– vca(t+) = B̄( m(t−), ε0) a (m, a) t

B̄(x, ε) = [x − ε, x + ε]

Let m ∈ M be a master and a ∈ A be a clock unit. If clock unit a
executes Sync(m,a) at time t then |Φma(t+)| ≤ ε0 and |γma(t+)| ≤ γ0.

5.3 Master and Slave Hybrid Automata

When using the discussed abstractions for the communication channel and for
clock correction, the hybrid automaton of a master corresponds to the one in
Fig. 10.

Notice that in the transitions where the Sync(n, a) primitive should be ex-
ecuted, which were described in Sect. 3.3, this model includes assignments to
the virtual clock’s value and to the virtual clock’s rate, as specified in Sect. 5.2
(Definition 6). Particularly, these assignments occur in the transitions from lo-
cation 1 to location 4 and from location 2 to the committed location right before
locations 3 and 4.

Furthermore, this automaton models three additional characteristics of OCS-
CAN masters: the inconsistent reception of the TM, the possible non-abortion
of the TM, and the possibility of master crash. A full description of these char-
acteristics can be found in [3].

Inconsistent receptions of the TM are modeled at the receiver’s side, by ig-
noring TM.Indications. For this reason, in locations 1 and 2, it is possible that
a transition fired by a valid TM (tx msg? with msd id < m) does not cause any
modification of the virtual clock.

When describing the management of the TM in Sect. 3.3, it was mentioned
that a TM broadcast may not be timely aborted. This is modeled with a com-
mitted location, between locations 2 and 3, which is reached when the master
has performed a TM.Request, but receives a TM.Indication of a higher priority
master. From this location, the master may either overwrite again the variable
msg id or not. The first behavior would represent a non-aborted message.
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Fig. 10. Hybrid automaton of master m

Fig. 11. Hybrid automaton of slave s

The master hybrid automaton includes a location that represents the
failure (location 5). Notice that a master may nondeterministically step into
this state as long as there is another non-faulty master in the system (condition
nalive > 1).

The hybrid automaton of a slave is depicted in Fig. 11. This automaton also
models the synchronization as an assignment to the virtual clock’s value and
to the virtual clock’s rate, according to Definition 6. The possibility of incon-
sistent receptions of the TM is modeled by having transitions that are fired by
TM.Indications but do not cause any clock correction.

Crash failures are not modeled for slaves, as such failures do not have any
consequence for the rest of the system.

6 Translating the Model into Timed Automata

As discussed in Sect. 4, the aim of our formal verification is to determine whether
an OCS-CAN system is Π-synchronized under certain fault hypotheses or not.
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This formal verification is addressed by translating our hybrid automata into a
network of timed automata verifiable with Uppaal.

The main challenge of such translation is that, as a consequence of the Sync
actions, clock and rate assignments exist. Although these assignments cannot
be directly specified in timed automata notation, we circumvent this limitation
in the following way: 1) the behavior of the system is expressed over a single
timeline, and 2) the offset between the virtual clocks is converted into delays
over that timeline.

Therefore, the first step is to decide what this single timeline represents. In
our model, time corresponds to the clock of the highest priority master, which is
called hereafter. For the rest of clock units, we use the consonance
(γi) with respect to this clock in order to calculate the delays over the reference
timeline. Furthermore, four additional aspects need special consideration:

– The instant when the offset is to be checked has to be properly defined. This
instant is called the .

– Updates of the value of a virtual clock, as defined in the equations of Sect. 5.2,
must be modeled.

– Updates of the rate of a virtual clock need to be modeled as well. Particularly,
it is important to model how a rate change may affect the consonance with
respect to the reference clock.

– The model must include changes of the reference clock when the master of
highest priority crashes.

In the following, these aspects are described in detail. A model of a simplified
OCS-CAN system, which is made up of two masters and an arbitrary number of
slaves, is used to illustrate the main points. The modeling of the failure assump-
tions of OCS-CAN is not included to reduce the complexity of the model and
help reader’s understanding. The complete Uppaal model can be found in [8].

6.1 Definition of the Observance Instant

In order to adopt the verification technique described in Sect. 2 (the precision
observer), the observance instant must be known a priori, and it must be sig-
naled by all of the clock units. Since we are interested in knowing the precision
of OCS-CAN, we should check it at the instant with the maximum offset. This
instant must be located before a Sync(n,a) primitive because the involved clocks
converge immediately after this primitive is executed.

Although it is not possible to know the exact instant of execution of any
Sync(n,a) primitive, it is possible to determine the maximum distance between
the synchronization instants of two consecutive rounds. In Sect. 3.3 it was shown
that the maximum distance is given by Rmax= R + TMdelay. This value can be
used to upper bound the offset accumulated during one synchronization round,
as described next.

Fig. 12 depicts the virtual clock automaton, which models the behavior
of virtual clock i. Although one virtual clock is included for each clock unit
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Fig. 12. Virtual clock of clock unit i

Fig. 13. Precision observer

in the system, this automaton does not describe the behavior of a master or a
slave; what it actually models is the passage of time as measured by clock unit i,
and represents it with the clock vc[i]. According to the value of vc[i] certain
events are signaled, so the clock units (either master or slave) can execute the
clock synchronization algorithm discussed in Sect. 3.3. This means that in every
round, every master and slave automaton chooses which virtual clock it uses,
which is equivalent to having clock assignments.

As shown in Fig. 12, the virtual clock automaton signals three events:
the instant to broadcast the TM (through channel begin[i]); the observance
instant; and the instant for resetting the virtual clocks (through channel end[i]).
Notice that the first two events are signaled within time intervals whose lengths
depend on the consonance (γi) with respect to the reference clock.

Fig. 14. Auxiliary automata
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In the second event, the integer variable nsync is incremented. This variable is
monitored by the observer depicted in Fig. 13, in order to detect the first virtual
clock to reach this point. This observer resets clock watch after that event. If
watch exceeds a given value Π before all nodes increment nsync then location
Failure will be reached, expressing that the system is Π-synchronized. Note
that the observer makes use of the synchronization channel a, which is activated
by the dummy automaton shown in Fig. 14.

6.2 Modeling of Virtual Clock Value Assignments

Once the observance instant and the precision observer have been defined, the
model must ensure that, for each virtual clock, the delay in reaching this instant
really corresponds to the offset between the virtual clock and the reference clock.

According to the hybrid automata of Sect. 5.3, the Sync(n,a) primitive causes
an update on the value of the synchronizing virtual clock. This kind of clock
assignments may be indirectly modeled with the simultaneous restart of the
clocks involved in the synchronization action. However, in our model virtual
clocks cannot be restarted immediately after the Sync(n,a) primitive because
this would interfere the role of the observer. Instead, virtual clocks have to
continue until they reach the observance instant and signal it.

This forces us to delay the simultaneous restart. In this manner, the Sync(n,a)
primitive does not cause a clock assignment (which is not possible in a timed
automaton) nor an immediate restart (which would make the measurement of
the precision impossible). Instead, Sync(n,a) causes an assignment to a

, the variable ref id, which is used later on to detect when to restart
vc[i]. This is shown in Fig. 15 for master 2, and in Fig. 16 for slave j.

In these automata, the channel abstraction of Sect. 5.3, based on the variable
msg id and the channel tx msg, is further simplified to reduce the complexity
of the automata and improve legibility. In fact, Sync(1,j) is signaled through
channel s1 whereas Sync(2,j) is signaled through channel s2.

In both automata it can be observed that vc[i] is restarted when the corre-
sponding virtual clock automaton signals —through channel end[ref id]— that
the pointed clock has reached a certain value R1= R/2 (third event in Fig. 12).
This modeling technique guarantees that all the clocks that have synchronized
to the same master are restarted simultaneously, thus fulfilling Remark 1 in
Sect. 5.2. In contrast, whenever two clocks do not synchronize to the same mas-
ter, the offset that these two clocks have accumulated in the round is kept for
the next round.

Channel all end, which appears in the automaton of Fig. 12, is used in order
to avoid violation of time invariants. The left auxiliary automaton of Fig. 14 uses
this channel to make every virtual clock automaton wait until all masters and
slaves have reset vc[i].

6.3 Modeling of Virtual Clock Rate Assignments

Clock rate assignments can be easily modeled with a variable γi that keeps
the consonance with respect to the reference clock. This variable is used by
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Fig. 15. Automaton of master 2

Fig. 16. Automaton of slave j

the virtual clock automata in order to define the interval of occurrence of any
relevant event. In Fig. 15 and 16 it can be seen that the value of γi is updated
in every synchronization action. Whenever a clock unit does not synchronize to
any master within a synchronization round, the value of γi remains unchanged.

It is important to remark that whenever a clock unit synchronizes to a master
that is not the current reference clock, the clock unit ”inherits” the drift error
of that master. In this case, the consonance after synchronization may be worse
than before synchronization. This can be observed in one of the transitions fired
by s2 in the slave automaton of Fig. 16.

6.4 Change of the Reference Clock Due to Master Crash

Whenever the reference clock crashes, the timeline of the model needs be rede-
fined. Although it is not shown in the automata, this recalculation is implicitly
performed if in every round the value of γi is assigned as follows:

– If master i is the current reference clock: γi:= 0.
– If clock unit i synchronizes to the current reference clock: γi:= γ0.
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– If clock unit i synchronizes to a master n that is not the current reference
clock: γi:= γ0 + γn + γref ; where γref is the consonance between the current
reference clock and the reference clock of the previous synchronization round.

7 Some Verification Results

By applying the transformations described above, an OCS-CAN system can be
modeled as a network of timed automata and the guaranteed precision can be
model checked. In a previous paper we provided some results that were achieved
with the complete Uppaal model of OCS-CAN [8]. These verification results
were obtained in the following situations:

– Fault-free scenario.
– Only master faults (no channel faults).
– Only channel faults (no master faults), assuming and with-

out assuming .
– Master faults and channel faults, assuming and without

assuming .

Concerning the precision guaranteed by the clock synchronization service,
Table 1 shows the precision that was verified under diverse fault assumptions.
These results were obtained with the following parameters: N= 4 masters, R= 1s,
Δ0= 0, Δ1= 1 ms, Δ2= 2 ms, Δ3= 3 ms. Regarding the network load, it was
assumed that no other messages were sent on the bus, so wcrt= 1.04 ms was
used in those scenarios without channel faults whereas wcrt= 6 ms was used in
those scenarios with channel faults.

The first cell in Table 1 shows the precision guaranteed in the fault-free sce-
nario. This precision equals to 2 μs. The first row of Table 1 corresponds to the
scenarios in which only master’s faults were assumed. Note that the number of
faulty masters does not affect significantly the precision guaranteed. This is due
to the fact that master replacement takes place in a very short time, which is
negligible compared to R.

The first column of Table 1 corresponds to the scenarios in which only chan-
nel’s faults were assumed. OD= 0 indicates that no inconsistent omissions can
occur, which is a common assumption in other clock synchronization protocols

Table 1. Fault assumptions and precision guaranteed (in μs) with R = 1 sec

# Channel faults # Faulty masters
0 1 2 3

No faults 2 2.1 2.1 2.1

OD = 0 2.1 2.1 2.1 2.1

OD = 1 6.1 6.1 6.1 6.1

OD = 2 10.1 12.1 12.1 12.1

OD = 3 14.1 16.1 16.1 16.1
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for CAN. The rest of cells in Table 1 correspond to the scenarios where a com-
bination of node and channel faults is assumed. In particular, the right bottom
cell corresponds to the most severe fault scenario.

8 Conclusions

In this paper, the formal verification of OCS-CAN has been discussed. OCS-CAN
is a solution for clock synchronization over CAN that adopts a fault-tolerant
master/slave clock synchronization. It has been shown that this system can be
naturally described with hybrid automata, by modeling the virtual clocks as
variables that evolve over time with certain rates.

An important particularity of these hybrid automata is that they are not rect-
angular, because of the inevitable dependencies that the clock synchronization
actions cause among the clocks. This lack of independence makes, in principle,
the verification of these timed automata intractable by model checking. How-
ever, we have shown that it is possible to translate the hybrid automata into a
timed automata verifiable with the Uppaal model checker. Thanks to this, the
precision guaranteed by OCS-CAN has been successfully model checked under
diverse fault assumptions.

The techniques developed in order to carry out such translation have been
presented, and they have been illustrated in a simple example. These techniques
somehow extend the notion of perturbed timed automata, by allowing drifting
clocks whose rates may change dynamically as a consequence of discrete actions.
Our modeling may be useful for other researchers that aim at model checking
hybrid systems in which variables are dependent.
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Abstract. This paper describes three optimization techniques for a
process algebra interpreter called eb

3
pai. This interpreter supports the

eb
3 method, which was developed for the purpose of automating the

development of information systems using efficient symbolic execution
of abstract specifications. The proposed optimizations allow an inter-
preter to execute actions on a quantified choice in constant time and
on a quantified parallel composition in logarithmic time with respect to
the number of entities in a quantified entity type. This time complexity
is comparable to that of programmer-derived implementation of process
expressions and significantly better than the time complexity of common
process algebra simulators, which execute quantifications by computing
their expansion into binary expressions.

1 Introduction

Process algebras have now been recognized has excellent modelling notations
for specifying system behavior. They are used in various areas such as tele-
com systems, control systems, business processes and web services. In the apis

project [1,2], they are used to specify information systems (IS). The apis plat-
form supports the eb

3 method [3], which was designed for the specification of
IS. This platform includes a symbolic interpreter, called eb

3
pai, to efficiently

execute process expressions of IS specifications. Its goal is to reach a level of
efficiency comparable to hand-made implementations, thereby avoiding the im-
plementation of these process expressions, which represents a significant increase
in software development productivity.

In developing an efficient interpreter for IS process expressions, one has to deal
with quantified (also called indexed or replicated) process expressions, mainly
for choice quantification and parallel composition quantification. For example,
the process expression

�x ∈ 1..m : P ( x )

denotes the expanded process expression

P ( 1 ) � . . . � P (m ).

Existing process algebras simulators like PROBE [4] and CIA [5] for CSP, the
simulator in the μCRL tool set [6], and CADP’s OCIS [7] for Lotos, are execut-
ing quantifications (or an equivalent feature) by expanding them. Code genera-
tors like JCircus [8,9] translates a Circus [10] specification into a Java program
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c© Springer-Verlag Berlin Heidelberg 2007



328 B. Fraikin and M. Frappier

using JCSP [11]. A quantification is also expanded and each interleaved process
is implemented by a separate thread.

Expansion of quantifications is not acceptable for the execution of IS process
specifications, because the size of the quantification set is typically huge (e.g.,
m ≥ 1010). Constant m denotes the maximum value of a key of an entity in an
IS (e.g., a book id in a library system).

In this paper we propose techniques, called κ-optimization, to efficiently ex-
ecute quantifications in a process expression. These techniques apply to several
recurrent patterns of IS specifications which are found in eb

3 specifications and
defined in [3]. Let n denote the number of entities in an entity type (e.g., the
number of books in a library system). When the sufficient conditions are met,
our algorithms can execute choice quantifications in constant time and quan-
tified parallel composition in O(log(n)) or in constant time, depending on the
implementation used for a map (B-tree or hash table). A programmer derived
(i.e., hand-made) implementation of these process expressions has a comparable
time complexity, although it is more efficient since there is less overhead than
for symbolic execution. Our algorithms are more efficient than existing process
algebra simulators, since they expand quantifications, which means that their
time complexity is linear (O(m)) for both quantified choice and quantified par-
allel composition. Note that usually m is quite greater than n, since m denotes
the upper bound for the value of an entity key, hence it denotes the maximum
number of entities, whereas n denotes the number of entities currently existing
in the system. Our algorithms are also more efficient than code generation in
JCircus, since it requires m threads to implement a quantification.

The proposed algorithms are defined for the eb
3 process algebra, but they

could probably be adapted for other process algebras like CSP, μCRL, FSP and
Circus, which include quantified operators. Lotos does not include quantifica-
tion; it must be simulated using recursion.

Our algorithms are suitable for process algebra , but not for
. A simulator executes actions as requested by the environment. It ex-

plores only the execution path that the environment commands during execu-
tion. Simulators are typically used for specification animation and validation
with users. The objective of eb

3
pai is to increase the efficiency of simulators to

use them as an implementation of a specification.
Model checkers are addressing another issue for which our algorithms are

not relevant. They are used to verify that a process expression satisfy a given
property. The property is checked by exploring the entire transition system of
the process expression; hence expansion of quantification is necessary since each
individual process may have to be checked. Typical examples of model checkers
include FDR2 [12] for CSP, the Concurrency Workbench [13] for CCS, ProB [14]
for a combination of CSP and B, the model checking tools in the μCRL tool
set [6], LTSA [15] for FSP, and CADP’s EVALUATOR [7] for Lotos.

This paper is structured as follows. Section 2 provides a brief overview of
the eb

3 process algebra method and describes the general idea of symbolic ex-
ecution with eb

3
pai. Section 3 is the main part of this paper. It describes the
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optimization of large quantified expressions. Finally, Section 4 analyzes the space
and time complexity of the symbolic execution algorithm and provides some ex-
perimental results showing the actual performance of its implementation, eb3

pai.
Section 5 concludes with some remarks and future work on improvements to
eb

3
pai.

2 The eb
3 Process Algebra and Symbolic Execution

The eb
3 process algebra is inspired from regular expressions, CSP [16], CCS [17],

ACP [18] and Lotos [19]. Its syntax has been simplified in order to streamline
IS specification. The reader may consult [3,20,21] for additional details and a
thorough comparison with these process algebras.

2.1 Syntax

A process expression is defined over a set of symbols Σ, called the ,
whose elements are denoted by a(t1, . . . , tn), where a is an action label and ti
denotes a constant or a variable. Set Σe is the set of ground actions from Σ, i.e.,
those with no variable; it is called the . Set Σl denotes the set of
labels of actions in Σ.

The process expressions over Σ are defined recursively as follows. Elements of
Σ ∪ {λ} represent process expressions over Σ. The symbol �, called
“box”, is an elementary process expression denoting successful completion. Let
E, E1, and E2 be process expressions over Σ, n ∈ N, Δ ⊆ Σl and Φ be a
formula. The expressions E∗, E+, En, E1 � E2, E1 | E2, E1|[Δ]| E2, E1 ‖ E2,
E1 � E2, Φ =⇒ E, and ([x := t1, . . . , x := tn])E are process expressions over Σ.
Operations ∗, +, n, and � denote the usual Kleene closure, positive closure, and
concatenation of regular expressions. Operation | is a choice between E1 and
E2; it is drawn from regular expressions and CSP [16]. Operation |[Δ]| is the
parameterized parallel composition of E1 and E2 with synchronization on actions
whose labels belong to Δ; it is drawn from Lotos. Intuitively, the composition
E1|[Δ]| E2 is a process that can execute actions of either E1 or E2 without
constraint, but actions in Δ must be executed by both E1 and E2. Actions in Δ
are said to be synchronized. Operations � and ‖ are the interleave and parallel
composition of CSP [16], respectively; they are special variants of |[ ]|: E1 �E2 is
equivalent to E1|[∅]| E2 and E1 ‖ E2 is a synchronized composition of E1 and E2
on shared actions of E1 and E2, , E1|[α(E1) ∩ α(E2)]| E2, where the operator
α denotes the alphabet (set of labels) of a process expression. The operator α is
defined recursively on the structure and returns the set of all the action labels
occurring in a process expression but λ. The process expression Φ =⇒ E is
the guard of E by Φ: it means that E can execute an action if and only if Φ is
true. The process expression ([x1 := t1, . . . , xn := tn])E is called an environment
and it denotes the simultaneous substitution of x1, . . . , xn by t1, . . . , tn in E.
The special symbol λ denotes an internal action that a process may execute
without requiring input from the system’s environment. It plays a role similar
that of the empty word ε in regular expressions or the unobservable action τ in
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CCS and i in Lotos. The eb
3 process algebra also allows (also

called or in CSP) over operators |, |[Δ]| , �. For instance,
the process expression | x ∈ 1..n : P (x ) denotes P ( 1 ) | P ( 2 ) | · · · | P (n ).
Quantifications are restricted to finite sets.

For the sake of readability, we sometimes write a instead of a( ). We use the
following precedence of operators from highest to lowest, enclosing between “(”
and “)” operators with the same precedence: (∗, +), �, |, (|[ ]|, �, ‖ as binary
operators), (|[ ]|, �, | as quantified operators).

2.2 An Example

To illustrate our optimizations, consider the specification provided by Figure 1.
It shows the process main and auxiliary process definitions for a simple library
system. The rest of the eb

3 specification is omitted, since it is not relevant to
illustrate our optimization techniques. Figure 2 provides the entity-relationship
diagram of this specification.

There are two entity types (book and member) and one association (loan),
each modelled by a process expression. A book must be acquired in order to
be used in the library, and a member must join it. Books and members are
identified by a number (bId and mId). A member can borrow a book, renew it
as many times as he wants and, finally, return it to the library. While a member
is borrowing a book, no other member can borrow it. Other usual properties of
loans are represented by this specification. The behavior of each single entity or

main ( )=
(� bId ∈ bookid : book ( bId )∗)

‖
(� mId ∈ memberid : member ( mId )∗)

book ( bId : bookid ) =
Acquire( bId )�
(| mId ∈ memberid : loan ( mId, bId ))∗�
Sell( bId ) ;

loan (mId : memberid, bId : bookid ) =
Lend(mId, bId )�
Renew( bId )∗�
Return( bId ) ;

member (mId : memberid ) =
Join( mId )�
(� bId ∈ bookid : loan (mId, bId ))∗�
Leave( mId ) ;

Process expression main and process definitions

Fig. 1. eb
3 specification example
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book memberloan 0..1*

Fig. 2. Entity-relationship diagram of the library system

association (a book, a member, or a loan) is defined by the corresponding process
definition. The system is defined using quantifications that, on the one hand,
allow for multiple entities (quantified interleave), and on the other hand, model
the cardinality of the association (quantified choice for 0..1 and a quantified
interleave for *). In the following, an is an instance of a process that
models an IS entity like book or member. An is an instance of a
process that models an IS association like loan. An entity type is represented in
eb

3 by a quantification over all possible entities. For example,

� mId ∈ memberid : member (mId )∗

represents the entity type member. Process member ( 1 ) represents the member
entity with mId = 1. Additional explanations and a more complex example of
a library can be found in [22].

It is important to note that quantification is a crucial operator in IS specifi-
cation. This constitutes a major difference from other problem domains where
process algebras are typically used (protocol specification for example). Since
the main aim of eb

3 is to provide an executable specification, the specification
style used to achieve this goal is also different.

2.3 Symbolic Execution of eb
3 Process Expressions

eb
3
pai is a symbolic interpreter. It executes the inference rules of an opera-

tional semantics defined in the CCS style [17]. The original semantics of the eb
3

process algebra has been defined in [3]. A new operational semantics, optimized
for symbolic execution, has been defined in [20,21]. eb

3
pai is based on this se-

mantics. We provide below an outlook of the symbolic execution strategy. For
more details, the reader may consult [20,21].

Given a process expression P and an action σ, one can compute the possible
transitions and resulting process expressions (PEs) using the inference rules. This
involves a proof search that determines which inference rules are applicable, by

matching the structure of P with E1 in an inference rule of the form E2
σ−→E′

2

E1
σ−→E′

1

.

When a match is found, the rule’s premiss, which are themselves transitions (e.g.,
E2

σ−→ E′
2), induce a recursive search. Ultimately, the search reaches a rule which

doesn’t have a transition in its premiss. Then, the resulting process expression
Q is constructed by backtracking over the inference rules through termination
of recursive search calls.

In summary, eb
3
pai executes a specification by simply evaluating the infer-

ence rules. We do not generate code per se; eb3
pai can be considered as a virtual
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machine and each specification becomes a high-level program. The implementa-
tion is the combination of eb

3
pai and the specification.

3 Optimizations for Symbolic Execution

3.1 Optimizing Quantification Execution Time: Direct
κ-Optimization

The Problem of Large Quantification. The eb
3 language allows the use of

quantification operators. For example,

| x ∈ 1..1010 : � y ∈ 1..1010 : a(x, y ) � b( y, x ) (1)

A basic approach to executing quantification operators is to iterate over the
values of the quantification set to determine whether a transition is feasible.
It is clear that such a linear search through a large set is too ineffective to be
acceptable. Moreover, the execution of a quantified interleave generates large
interleave expressions. For instance, if the process defined by (1) has executed
a( 2, 1 ), . . . , a( 2, 109 ), the resulting PE is

([y := 1, x := 2])b( y, x )
�

. . .
�

([y := 109, x := 2])b( y, x )
� (

� y ∈ 1..1010 − 1..109 : a(x, y ) � b( y, x )
)
.

When action b(109, 2) must be executed, another linear search must be done
over the interleave composition, which is also too inefficient.

To optimize these executions, we determine by static analysis of each quan-
tified expression which value of the quantified set must be selected based on
the parameters of the action to execute. We call these values κ-values, the po-
sitions of the values in the action parameters κ-positions, and this method
direct κ-optimization.

For instance, in process expression (1), we can determine that when

|x ∈ 1..1010 : . . .

must execute a( t1, t2 ), the only execution feasible is with x = t1; similarly, the
only execution feasible for

� y ∈ 1..1010 : . . .

is with y = t2. Hence, whenever possible, we determine a map Π : Σ → T
for each quantified expression Φx ∈ T : E such that ([x := Π(σ)])E is the
only candidate to execute a transition with σ. Specifically, we determine the
position of the quantification variable within the parameters of each action.
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These positions, called κ-positions, are determined by static analysis before the
execution of a specification. Let κ(χ, E) be the κ-position of χ-labelled actions
in E, where E is a quantified interleave operator or a quantified choice operator.
Then, if we need to optimize the quantification E for any event σ,

Π(σ) Δ= πκ(α(σ),E)(param(σ))

where πi((x1, . . . , xi, . . . , xn)) = xi, α(σ) is the label of σ and param(σ) is the
tuple of the parameters of σ.

This approach is sufficient to optimize a choice quantification, since the quan-
tification disappears after the transition. In the case of a quantified interleave,
the quantification remains in the result process expression, since it can spawn
one interleave process for each value in the quantification set. For example, the
execution of a( 1 ) from the process expression

| x ∈ [1..3] : a(x ) � b(x )

returns ([x := 1])b( x ). The execution of the same event on

� x ∈ [1..3] : a(x ) � b( x )

returns (
([x := 1])b( x )

)
�

(
� x ∈ [2..3] : a(x ) � b(x )

)
.

The interleave of the instantiated process expressions (i.e.,, P (t1) � . . . � P (tn))
is represented by a function K : T → PE such that K(Π(σ)) is the only process
expression that can execute σ.

Figure 3 describes the function findκ(E, x, ep), which determines a κ-pos-
ition for a variable x in a process E. The parameter ep is used to keep track
of the process definitions that have been parsed so far over recursive calls; it is
set to ∅ on the initial call. The function findκ returns a relation between action
labels and N ∪ {⊥}. The symbol � is used as a marker to detect overlapping
quantifications on the same variable; the algorithm returns ⊥ for actions within
the scope of these overlapping quantifications. When an action does not contain
x in its parameters, ⊥ is also returned. A quantification is κ-optimizable if the
result of findκ is a deterministic relation and does not include ⊥ in its codomain
(i.e., x occurs in the same position for each occurrence of an action in E). A
choice quantification is also partially κ-optimizable when the image set of the
action to execute is a singleton; for other actions which include either ⊥ or
several κ-positions, κ-optimization is not applicable.

This algorithm, which is part of a static analysis of the specification prior to
its execution, is applied on every quantified process expression. Its algorithmic
complexity is O(NE), where NE is the number of nodes in the syntax tree
of E. This number is usually small (NE < 100). It does not depend on the
number of entities involved in E. At runtime, the algorithmic complexity of
retrieving the instantiated interleave process depends on the implementation
chosen for map K; databases usually offer either hash tables or B-trees, which
means constant or logarithmic access time. As for space complexity, a process
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findκ(E, x, ep)
Δ
= match E with

([z1 := y1 . . . zn := yn])E0 -> if ∃i (yi = x) then t := zi else t := x endif;

return findκ(E0, t, ep),

λ -> return ∅,

a(y1, . . . , yn) -> if ∃i (yi = x) then j = i else j = ⊥ endif;

return { (a, j) },

E1ΦE2 -> return findκ(E1, x, ep) ∪ findκ(E2, x, ep),

ϕ =⇒ E0 -> return findκ(E0, x, ep),

Φ(E0) -> if Φ is a quantification on x

then t := � else t := x endif;

return findκ(E0, t, ep),

Q(y1, . . . , yn) -> if Q ∈ ep then return ∅ else

let E0 be the definition of Q(x1, . . . , xn) ;

return findκ(([x1 := y1 . . . xn := yn])E0, x, ep ∪ {Q})
endif.

Fig. 3. An algorithm that computes κ-positions

expression �x ∈ T : E requires a map and only one instance of E for all map
entries, because the environment ([x := Π(σ)]) is represented by a map entry.
Each process expression E′ reachable from E by transition execution is also
instantiated only once, which is very efficient.

Example. Consider the library specification in Figure 1. The algorithm of Fig-
ure 3 has to be applied on four quantified process expressions:

1. findκ(book ( bId )∗, bId, ∅) in the main process definition;
2. findκ(loan (mId, bId )∗, mId, ∅) in the book process definition;
3. findκ(loan (mId, bId )∗, bId, ∅) in the member process definition;
4. and findκ(member (mId )∗, mId, ∅) in the main process definition.

Once the computation is done, we obtain the following results:

1. { (Acquire, 1), (Lend, 2), (Renew, 1),
(Return, 1), (Sell, 1) }

2. { (Lend, 1), (Renew, ⊥), (Return, ⊥) }

3. { (Lend, 2), (Renew, 1), (Return, 1) }

4. { (Join, 1), (Lend, 1), (Renew, ⊥),
(Return, ⊥), (Leave, 1) }

The first and third quantifications are κ-optimizable. Therefore, to execute the
action Lend( 1, 2 ) from � bId ∈ bookid : loan (mId, bId ), we can directly try
to execute Lend( 1, 2 ) from the process expression ([bId := 2])loan (mId, bId ),
instead of trying every value of bookid for bId until bId = 2 is found. The fourth
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quantification is not κ-optimizable since it is an interleave and the codomain of
the result contains two occurrences of ⊥ (for Renew and Return), because mId
is not a parameter of these actions. The second quantification is a choice. It
is partially κ-optimizable: κ-optimization can be used for a Lend, but not for
a Renew or a Return. Hence, the κ-optimization is not totally satisfactory. The
next section addresses this issue.

3.2 Extending Quantification Optimization: Indirect κ-Optimization

We have found conditions under which a quantification can be optimized when
the algorithm in Figure 3 fails to find a single κ-position for each action. These
conditions cover a large number of IS specification patterns described in [3].
Hence, our interpreter can optimize the execution of quantified interleaves in
most common IS specifications. Let us start by providing the intuition behind
this second optimization.

Example. Consider the example in Figure 1 and the action Renew, which cannot
be optimized by the algorithm in Figure 3. Intuitively, one can see that when a
loan is initiated, the action (Lend(mId, bId )) binds book bId to member mId.
Since a book can only be borrowed by one member at a time, and since a renew
can only occur after a book is borrowed, bId is sufficient to deduce mId; hence,
actions Renew and Return do not need to include mId as a parameter, because
of this binding between a borrowed book and its borrower. In entity-relationship
data modeling, we say that loan is a one-to-many relationship between members
and books: a member can borrow several books concurrently, but a book is
borrowed by at most one member at any given time. Hence, there is a functional
dependency from entity type book to entity type member.

The first question that must be raised is how exactly one can deduce, solely
by static analysis of the process expression, that there exists a functional de-
pendency between book and member. Next, we have to determine under what
conditions such a dependency can be found.

In our example, one can deduce the functional dependency between a book
and a member from the position of the choice quantification in the process book:

book ( bId : bookid ) =
Acquire( bId ) �
(| mId ∈ memberid : loan (mId, bId ))∗ �
Sell( bId )

Indeed, the choice quantifier implies that one book (with the number bId) can
be borrowed by only one member at a time. To be lent to another member, the
execution of process loan has to be completed. If we closely examine the loan
process expression,

loan ( mId : memberid, bId : bookid ) =
Lend(mId, bId )� Renew( bId )∗� Return( bId )
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we see that it is made of three parts : a producer (Lend), a modifier (Renew)
and a consumer (Return). This is a classical IS pattern described in [3]. The
producer is the action that binds mId and bId. The consumer is the action that
tells us that the bond is no longer active. Since the interleave quantification to
optimize for action Renew and Return is synchronized over actions of loan with
this quantified choice expression, we know which mId can execute Renew and
Return from the process expression loan (mId, bId ).

Using this example, we can summarize the general idea of indirect κ-optimiza-
tion, as follows.

During static analysis:

1. Find the quantified choice operators to deduce the possible functional
dependencies (below we refer to choice quantified variables occurring in
the scope of other quantifications (interleave or choice) as the

and the enclosing quantified variables as the ).
2. For all actions not optimized with the algorithm in Figure 3, identify

the producer that binds the keys (bId in the example) to the dependent
variable (mId in the example) under the condition that the choice and
interleave quantifications to optimize are synchronized on these actions.

At runtime:

1. When a producer is executed, store the value of the functional depen-
dency between the set of keys and the dependent variable.

2. Store the value of the new process expression for the operand of the
quantified interleave in a mapping K, as for direct κ-optimization.

3. When a consumer is executed, delete the stored value of the functional
dependency between the keys and the dependent variable.

4. Accept or reject an action using the value of the functional dependency
and mapping K. If the value of the functional dependency is not initial-
ized, then reject the modifier or the consumer; if it is initialized, then
check if the corresponding process expression in mapping K can execute
the action.

Functional Dependencies. The first part of the optimization process is a
search for the functional dependencies. In a recursive search on the structure of
the process expression of each entity type, the algorithm stores the
functional dependencies: a function from P(Var) to Var, where Var is the set
of all variables used in the entity types and P(Var) is the set of all subsets of
Var. We say candidates, because a functional dependency will be selected only
when it is required to optimize an interleave.

Algorithm in Figure 4 computes the functional dependencies for a process
expression E. The function FD(E, ks, wait?, ep) is called initially with ks = ∅,
ep = ∅ and wait? = false, since the parameter ks represents the set of keys
that will be mapped to the dependent variable and ep represents the process
definitions already parsed. The variable wait? is used to avoid the creation of
the next dependency.
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FD(E, ks, wait?, ep)
Δ
= match E with

ΓE0 -> return FD(E0, ks, wait?, ep),

λ -> return ∅,
a() -> return ∅,

a(y1, . . . , yn) -> return ∅,
E1 � E2 -> return FD(E1, ks, wait?, ep) ∪ FD(E2, ks, wait?, ep),

E1 | E2 -> return FD(E1, ks, wait?, ep) ∪ FD(E2, ks, wait?, ep),

E1 ‖ E2 -> return FD(E1, ks, wait?, ep) ∪ FD(E2, ks, wait?, ep),

E1 � E2 -> return FD(E1, ks, true, ep) ∪ FD(E2, ks, true, ep),

E1|[Δ]| E2 -> return FD(E1, ks, true, ep) ∪ FD(E2, ks, true, ep),

ϕ =⇒ E0 -> return FD(E0, ks, wait?, ep),

E0
∗ -> return FD(E0, ks, wait?, ep),

| x ∈ s : E0 -> if wait? then add := ∅ else add := {(ks, x)} endif;
return add ∪ FD(E0, ks ∪ {x}, false, ep)

Φ x ∈ s : E0 -> where Φ either a quantification � or |[]| on x
then ks

′ := ks ∪ {x} else ks
′ := ks endif;

return FD(E0,ks’, false, ep),

Q(y1, . . . , yn) -> if Q ∈ ep then return ∅ else
let E0 be the definition of Q(z1, . . . , zn) ;
return FD(E0, ks, wait?, ep ∪ {Q})

endif.

Fig. 4. An algorithm that computes functional dependencies

For example, if we analyze the process expression

� x ∈ x :
(
( | y ∈ y : E′ ) � ( | y ∈ y : E′ )

)
‖

� y ∈ y : �x ∈ x : E′
(2)

we don’t know whether it associates one x to one or two y, because of the
combination of two choice quantifications of | y with �. Since these cases can
associate more than one value of y to a value of x, the existence of a functional
dependency is not guaranteed. Even after excluding these cases, we can still
successfully identify the functional dependencies for the process expressions that
fit the patterns in [3]. The function call FD(E, ks, wait?, ep) returns a map
that is associated to E.

(· · · E · · · ) ‖ (· · · E′ · · · ) where E = �x · · · � −→y · · ·A (−→y , x ) · · ·

and E′ = �−→y · · · | x · · ·A (−→y , x ) · · · .

Fig. 5. Example of structure for the κ-optimization
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The Complete κ-optimization of an Action. Consider the example of a
general process expression structure illustrated in Figure 5. The process def-
inition A can be a simple pattern (Figure 6), or there could also be several
producers and consumers with an arbitrary combination of bi(−→y ), which we
denote by Ξibi( −→y ) (Figure 7).

A ( −→y :
−→
T , x : T ′ ) = (a(−→y , x ) � b( −→y )

∗ � c( −→y ))
∗

Fig. 6. First pattern for the κ-optimization

The execution of an action b(−→y ) for a quantifier � x in the entity E can be
optimized under the following conditions:

1. Entity E is synchronized with an entity E′ over a binding process expression
A such that there is a functional dependency from −→y to x in E′. A binding
expression is a process expression under the quantified choice scope that
defined the functional dependency.

2. The binding process expression A enforces the following ordering constraints:
(a) An event b(−→y ) can only occur between a producer a(−→y , x ) and a con-

sumer c(−→y )
(b) A consumer c(−→y ) must be preceded by one producer a(−→y , ) (i.e., the

producer occurs before the consumer).
(c) A consumer c(−→y ) must occur between each pair of producers a( −→y , ).
(d) A producer a(−→y , ) must occur between each pair of consumers c(−→y ).
Hence, a trace of A (−→y , x ) is of the form

a(−→y , x ) � · · · � b(−→y ) � · · · �
c(−→y ) � a( −→y , x′ ) � · · · �
b(−→y ) � · · · � c(−→y ) � · · ·

A consumer c can also be optimized under these conditions. Condition 1 is
satisfied by the general structure of the expression in Figure 5. The patterns for
A in Figures 6 and 7 satisfy condition 2 above.

A (−→y :
−→
T , x : T ′ ) =

(
(a1(

−→y , x ) | · · · | an(−→y , x )) �
(Ξibi(

−→y ))
∗ �

(c1(
−→y ) | · · · | cm( −→y ))

)∗

Fig. 7. Second pattern for the κ-optimization
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When a producer a(−→y , x ) is executed, the pair −→y �→ x is stored in a map f
which represents the functional dependency −→y → x. When action b(−→y ) must
be executed, the only value of x in �x of E (i.e., quantification to optimize) that
can execute b( −→y ) is f(−→y ). This can be proved by contradiction. Suppose there
are two values of x, v1 and v2 that can execute b(−→w ). By condition 2a, each
execution of b(−→y ) is preceded by a producer in A, which means that �x of E
has spawned two interleaved processes, one for v1 and one for v2; each one has
executed a producer, a(−→w , v1 ) and a(−→w , v2 ), respectively, and no consumer yet,
by condition 2a. But since E and E′ are synchronized over A by condition 1,
the �−→y of E′ has spawned a single process for −→w , and this process has executed
two producers, a(−→w , v1 ) and a(−→w , v2 ), without a consumer in between, which
contradicts condition 2c above.

The only candidate to execute a consumer c(−→w ) is also the spawned process
for x = f(−→w ) in �x of E. This can be proved as follows. Suppose there are
two values of x, v1 and v2 that can execute c(−→w ). By condition 2b, �x : T of
E has spawned two interleaved processes, one for v1 and one for v2; each one
has executed a producer, a(−→w , v1 ) and a( −→w , v2 ), respectively. Consider the last
occurrences of these two actions. Since E and E′ are synchronized over A by
condition 1, the �−→y of E′ has spawned a single process for −→w , and this process
has now executed two producers, a(−→w , v1 ) and a(−→w , v2 ). By condition 2c, ex-
actly one consumer c( −→w ) must have been executed in between. Hence, only the
last producer can execute c( −→w ).

3.3 Generality of κ-optimization

Complete κ-optimization is not effective for all specifications that can be writ-
ten. Actually, it is not effective for all IS specifications. However, our aim is to
optimize all specifications written with the patterns described in [3]. There are
seven patterns:

1. the producer-modifier-consumer pattern;
2. the one-to-many association pattern;
3. the multiple association pattern;
4. the n-ary association pattern;
5. the weak entity type pattern;
6. the recursive association pattern;
7. the inheritance association pattern.

For the sake of conciseness, the complete description of these patterns is omitted.
It is straightforward to check that the first four patterns satisfy the conditions for
κ-optimization. The first pattern describes the structure of an entity type. The
producers of the association in the second pattern are exactly the producers of
the functional dependency needed. These producers contain all the key variables,
and the dependent variables, since they build an instance of the association.
Each association also has consumer actions. The second pattern is same as the
one used to illustrate indirect κ-optimization (i.e., a one-to-many association).
The third and fourth patterns can use either direct or indirect κ-optimization,
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depending on the cardinality of the association. An important point is that when
an entity participates in several associations, these associations are combined
with a parallel operator (‖). Therefore the problem of the process expression 2
(page 337) does not occur. This point justifies the use of the wait? predicate in
the algorithm of Figure 4: if these patterns are used, there is no loss of generality.
The last three patterns also fit our conditions for κ-optimization. They are special
cases of the first four: a weak entity is just an instance of a simple association for
our purpose; a recursive association is just an association between the entities
of the same entity type; an inheritance association is decomposed into many
process definitions, but it still has a behavior similar to that of simple entity
types.

4 Implementation and Performance

eb
3
pai is implemented with Java 1.4 and an OODB ObjectStore PSE Pro for

Java 6.0. The parser was built with ANTLR 2.7.1. Indirect κ-optimization is
not implemented, but direct κ-optimization is. The performance for indirect
κ-optimization should be very close to that of direct κ-optimization, because it
uses the same data structures plus an additional hash table to store the functional
dependencies.

4.1 Complexity Analysis

Let Ei, 1 ≤ i ≤ mE , denote an entity type and Aj , 1 ≤ j ≤ mA, denote an
association. An association links two or more entity type Ei. The size |Ei| of
an entity types Ei is the maximal number of entities in the entity type. The
size |Aj | of an association Aj is a product of all |Ek|, where Ek is an entity
type involved in Aj . Let n denote the sum of all |X |, where X is either an en-
tity type or an association of an eb

3 specification. Let s denote the number of
nodes in the tree representing a process expression, excluding the nodes of a
κ-optimized quantification (they will be computed with n). Note that for most
ISs, s is usually smaller, whereas n can be quite larger. Therefore, the number of
nodes s can be considered negligible with respect to the number of entities and
associations n. The search for a proof using the inference rules requires inspec-
tion (in the worst case) of all the nodes (i.e., s nodes). The space complexity is
O(s + n), which corresponds to the size of a process expression, including in-
stances of quantified process expressions. But, since s is negligible with respect
to n, the space complexity is O(n). Without κ-optimization, the algorithmic
complexity is impractical since the number of nodes s is multiplied by the num-
ber n of entities and associations involved. So a transition computation has a
complexity of O(s n). With the κ-optimization, only one node is inspected for
quantified expressions. The execution of a κ-optimized quantification depends on
the implementation chosen for a map K. ObjectStore offers hash tables, which
yield constant time in an average case, or B-trees, which yield logarithmic time.
Hence, the algorithmic complexity of a transition computation is O(s + log(n))
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on average. The space complexity is still O(n). For indirect κ-optimization, we
also need to store the functional dependencies ( 3.2). The total size of the
tables needed for these optimizations is bounded by the number of quantifica-
tions involved multiplied by the number of actions involved. Theorically, this
number could be an overwhelming difficulty to tackle. However, practicably, it
is still negligible with respect to n. Therefore, the space complexity is the same
as that of direct κ-optimization. The algorithmic complexity is also the same
because the small tables needed can be implemented with hash tables which
yield constant time. Typically, the algorithmic complexity of a manual imple-
mentation of an IS specification is O(log(n)), since it will access several records
from the database, each access usually being backed by an index which yields
log(n) access time using B-trees; its space complexity is O(n) on average. All
of these complexities are summarized in Figure 8, under the hypothesis of IS
domain. Thus, for κ-optimizable specifications, eb

3
pai has an overhead of O(s)

Algorithmic Space
complexity complexity

eb
3
pai with no optimization O(s.n) O(n)

eb
3
pai with direct κ-optimization O(log(n) + s) O(n)

eb
3
pai with indirect κ-optimization O(log(n) + s) O(n)

manual implementation O(log(n)) O(n)

Fig. 8. Algorithmic and space complexity of eb
3
pai for IS specifications

compared with manual implementation of an IS. With no κ-optimization, the
difference is substantial and eb

3
pai becomes impractical as a tool, but it can

still be useful for specification animation for validation purposes.

4.2 Performance for Direct κ-optimization

Performance tests were conducted with a specification of a library management
system on an Intel Core Duo 1.66GHz with 1GB of DDR2 SDRAM, running
Mac OSX 10.4. Indirect κ-optimization has not been implemented yet; only
direct κ-optimization. Figure 9 provides some statistics on these experiments.
The column titled “Without DB” corresponds to the execution time without
the use of a database; the column titled “With DB” corresponds to the time of
executions with the use of an Object Store PSEPro as database. The experiment
consists of the execution of actions creating 9,000 books and 9,000 members,
followed by the execution of 30,000 actions which were randomly generated;
9,899 of these actions were valid and 20,101 were invalid. Figure 9 only shows
information for valid actions. Invalid actions (actions which must be rejected
by the interpreter) are less expensive in time than valid actions: they require
approximately half the time of a valid action. We also manually implemented the
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Without DB With DB

Time 1m 52 s 8m 27 s
Mean 4ms 81 ms

Median 1ms 10 ms

Fig. 9. EB3PAI execution times for the library system

library specification in Java using an Oracle database. The average transaction
processing time is 10 ms, which is 8 times faster than eb

3
pai with a database.

Nevertheless, 80 ms is still acceptable for many IS systems where the transaction
rate is low (e.g., a library management system). The results are good, but the
median is quite low in comparison to the mean time. This is because some
executions are rather slow (more than 2 s). These executions occur periodically.
We are currently investigating the reason for these anomalies in order to correct
this behavior. We also intend to implement indirect κ-optimization and validate
its real performance.

5 Conclusion

In this paper, we have presented two optimization techniques to efficiently exe-
cute quantified process expressions in the eb

3 process algebra. Their space and
algorithmic complexities are comparable to those of a manual implementation
for a large number of IS specifications which are determined by a set of classi-
cal specification patterns. Direct κ-optimization was implemented in the eb

3
pai

interpreter. It performs 8 times slower than a manual implementation of the
specification for the library system, but its average response time is acceptable
for a large class of IS with low transaction rates, which demonstrates that sym-
bolic execution is a viable way of implementing IS.

The performance of eb
3
pai is largely dependent on the OO database used to

the store the object representation of the specification. It seems quite feasible to
implement a dedicated persistence manager for eb

3
pai to reduce the number of

disk IOs.
We are currently looking at other optimizations for eb

3
pai. Tail-recursive

deterministic process expressions can be represented by an extended labelled-
transition system (ELTS) [23], which basically takes less space and avoids the
computation of a proof at each transition. Preliminary experimentation has
shown us that ELTS coupled with κ-optimization could cut computation time
by as much as 40%. We are working on a complete definition of ELTS and the
algorithms to translate an eb

3 process expression into an ELTS.
Future work also includes techniques for issuing meaningful error messages

when an action is not executed. For instance, if a Lend( bId, mId ) is rejected
by the interpreter, we must tell the user why; it could be that the book or the
member does not exist, the book is on loan to another member, or the member
has reached his loan limit. This problem is similar to the determination of error
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messages by a compiler. Finally, we wish to investigate how parallelism could be
used for symbolic execution.
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Abstract. The SANE Virtual Processor (SVP) is a fine-grain, thread-
based model of concurrent program composition developed and used at
the University of Amsterdam as a basis for designing and programming
many-core chips. Its design goal was to support dynamic concurrency
and hence support self-adaptive systems within the AETHER collabora-
tive European project. It provides an effective solution for programming
chip multiprocessor systems [1,2,3]. In this paper, we take thread alge-
bra [4], a semantics for recent object-oriented programming languages
such as C# and Java, as a theoretical framework to the verification and
evaluation of SVP. We show how a SVP program behavior can be deter-
mined in TAsvp , an extension of thread algebra with the features of SVP,
and prove that SVP programs satisfy the determinism property, i.e. the
programs always give the same result, a key property of the sequential
paradigm that SVP will replace.

Keywords: SANE Virtual Processor, microthreading, thread algebra.

1 Introduction

The SANE Virtual Processor (SVP) was defined as a concurrent programming
model with two broad requirements. Firstly, that it provide a suitable substi-
tute for the ubiquitous sequential model of program composition while retaining
the latter’s properties of safe composition of programs. The required properties
in this case are freedom from deadlock under composition and determinism of
results under whatever schedule is used to execute the equivalent concurrent
program. The second broad requirement of the model is that it should have
scalable implementations in silicon as many-core chips. The model is defined
by a small number of actions used to create and asynchronously manage the
execution of concurrent SVP programs. These actions capture concurrency, im-
plicit communication and resource management, and using these abstractions
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we aim to develop an understanding of self-adaptive computational systems in
the AETHER collaborative European project (http://www.aether-ist.org/).

Programs are composed in SVP by executing a action on a fragment
of code (a microthread), which dynamically creates a parameterized family of
thread contexts based on that fragment and which may all execute concurrently,
together with the creating thread. Every thread in a family is identified by a
unique index value in its context. Further actions are defined to manage infinite
families of threads and the termination of families, both destructively and by
preempting the concurrent program defined by a family. The create action is
used in place of the sequential composition actions of looping (both for and
while loops) and function invocation.

This paper tackles the first broad requirement. However, it should be em-
phasized that this is not a theoretical exercise. Implementations of all of the
above actions have been evaluated using an emulated many-core processor in
which these actions are implemented as instructions in the processors’ instruc-
tion set. Silicon implementations have also been investigated. This paper rep-
resents therefore, the application of theory to a very practical situation. This
model will provide the issues of scalability and code compatibility that will be
required for future generations of many-core processor chips. For more detail on
this aspect of the research, the interested reader is directed towards the prior
work dating back some ten years [1,5,6,2,3].

We aim to give a formal proof for the determinism property of SVP programs.
We will need to define formally the semantics and the memory model of SVP.
We take thread algebra [4], a semantics for recent object-oriented programming
languages such as C# and Java, as a theoretical framework to the verification
and evaluation of SVP. In particular, we extend thread algebra with the features
of SVP to TAsvp (thread algebra for SVP), and show that TAsvp indeed is a
formal semantics of SVP. To interpret the memory model of SVP, we adapt
the concept of a Maurer machine [7], an extension of a Maurer computer [8,9],
with the features of SVP. The reason to use Maurer computers is that they are
closer to real computers than the well-known models such as register machines,
multistack machines and Turing machines (see e.g. [10]). Threads in TAsvp can
perform operations to transform states of a Maurer machine. The determinism
property of SVP programs, i.e. concurrent SVP programs always give the same
result as the result obtained when they are executed sequentially, therefore, can
be proved as program behaviors and memory states are represented as threads
in TAsvp and states of a Maurer machine.

Our work, like the previous works given in [7,11,12,13,14], is a part of a project
investigating microthreading in a collaboration between the Computer Systems
Architecture group and Sectie Software Engineering at the University of Am-
sterdam. We note that a denotational semantics and a structural operational
semantics for TAsvp can be found in our other paper [14]. The other desired
property of SVP programs, namely freedom from deadlock under composition,
is also proven in that paper.
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The structure of this paper as follows. Section 2 summaries the informal se-
mantics of the SVP model. Section 3 defines TAsvp (thread algebra for SVP), a
theoretical frame work for the verification and evaluation of SVP. Section 4 mod-
els the memory of SVP with the use of Maurer computers. Section 5 illustrates
the programming language μTC ( ) [15], a realization of SVP, as
a simple programming language Lsvp and determines Lsvp program behaviors in
TAsvp . We also prove the determinism property of SVP programs in this section.
The paper is ended with some concluding remarks in Section 6.

2 A Summary of the SVP Model

The SVP model provides five actions in order to create and manage concurrency.
These actions replace those normally used to construct sequential programs,
namely loops and function calls. Three of these actions are used to parallelize
sequential programs and the other two are used for concurrency engineering, i.e.
the self-adaptive aspects of the model.

The model is designed to capture the precise functionality of an equivalent
sequential program, while relaxing as far as is practical the order of execution of
the instructions. It captures a more relaxed partial order of instruction execution
than the sequential program, although a more restricted partial order when
compared to a dataflow representation of the same program. Because this paper
is concerned with the determinacy of the results compared to the equivalent
sequential program, only the parallelizing actions will be described. They include
the and actions.

The create action defines a of threads based on a single fragment of
code. The result of the create action is the creation of an ordered set of thread
contexts defined by parameters to the action. These parameters define the code
used, the size of the context required and the number of threads to be created.
The latter is defined by a triple defining an index range and each thread has its
context initialized with a unique value from this range. This provides an analogy
to the limits defied within a loop in the sequential model. This family of threads
is identified with a unique name so that it may be monitored and controlled by
the other actions.

A thread’s code may itself contain create actions and this provides for hi-
erarchy in the composition of programs in the SVP model. Nested loops are
just one example of a sequential construct that maps to nested creates. Func-
tion calls are another, as they are also translated into SVP create actions. A
created function is a family with a singleton thread that executes concurrently
and asynchronously with its creating thread. However, any thread creating a
subordinate family of threads, be it a loop or a function equivalent, must wait
for the entire family of threads to complete before any results the family has
written to memory are fully defined. As a result, no two concurrent threads can
read and write the same location in memory (nor both write to the same lo-
cation). These constraints are enforced in the compilation of an SVP program.
This model allows for significant concurrency without the cost associated with



348 T.D. Vu and C. Jesshope

dataflow models. Unlike dataflow however, this constraint on concurrency al-
lows for expressive stored-variable semantics on memory locations rather than
the single assignment model of memory used in dataflow.

A thread creating a subordinate family can detect its termination using an
SVP action. This identifies the family by name so that multiple concur-
rent families can be created and synchronized from within a single thread. The
termination of the family also guarantees that all memory locations written to
the shared memory by its threads have completed. Note that no guarantees are
made on shared memory latency as it is deemed to be asynchronous and dis-
tributed. The sync action provides a return code that specifies how a family was
terminated and can provide a return value in the case of a action.

The break action is provided to allow for the creation of dynamically bounded
families of threads. In such circumstances, a semi-infinite range of index values is
specified in the family’s parameters and any thread in the family may terminate
the creation of new contexts using the break action and return a scalar value
(e.g. an index or pointer) back to the creating thread via the sync action. This
construct is the SVP concurrent equivalent of a while loop in a sequential pro-
gram. Because of lack of space and simplicity, in this first report of our approach,
we will ignore the existence of sync and break actions.

Communication between threads is achieved by two mechanisms. The first is
the bulk synchronization on memory described above, where read after writes
to asynchronous shared memory are synchronized by a sync action between the
family that writes to memory and the family that reads from memory. The sec-
ond mechanism uses a fine-grain synchronizing memory that stores the context
of scalar variables for each thread created. This acts like a stack in a conventional
sequential machine. Each word in this memory contains synchronization bits that
identify whether the word has been written to, enabling threads to block on a
read and to be rescheduled when data is written. This allows synchronization on
operations within a thread, for example loading data from asynchronous shared
memory and subsequently using it. It also provides blocking reads on communi-
cation between concurrently executing threads. The latter enables dependencies
to be defined between the creating thread and the first thread it creates, as
well as between a created thread and its successor in index sequence. It enables
dataflow-like scheduling of instructions within a concurrently executing family
of threads. Note that the sequential equivalent of this communication is a scalar
value assigned within a loop body. This dependency chain is captured by defin-
ing a variable in each thread’s context, where each thread has read only
access to its predecessor’s shared variable (the first thread in a family has access
to an initializing variable defined in the creating thread).

The exact relationship between a sequential program and its SVP equivalent
is outside of the scope of this paper, however the goal is to program multi-
cores chips using code compiled from sequential languages and the goal of this
paper is to ensure that the sequential program’s determinism is retained by this
model. A realization of the SVP model has been developed at the University
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of Amsterdam and called or μTC for short. More information,
including program examples in μTC can be found in the following report [15].

3 Thread Algebra for SVP (TAsvp)

In this section, we introduce TAsvp , a theoretical framework for the verification
and evaluation of SANE Virtual Processors.

3.1 Basic Thread Algebra for SANE Virtual Processors (BTAsvp)

BTAsvp ( ) is defined as a semantics for SVP se-
quential programs. It is based on (BTA) [4], a semantics for
sequential programming languages which was first introduced as

(BPPA) in [16].
We assume the existence of a fixed but arbitrary set BA of

in BTAsvp . Each basic action a ∈ BA of a thread is taken as a command to
the execution environment of the thread. This command is accepted or rejected
depending on a boolean value ?a produced by the execution environment. If
?a = T (true) then the action a is and can be executed otherwise
it is . The execution environment cannot do anything with it. Here the
term “independent” means that the execution of action a does not depend on
any other actions. At completion of the processing of a basic action a ∈ BA, the
execution environment produces a reply value ya. This reply is either T or F
(false) and is returned to the thread concerned.

BTAsvp (basic thread algebra for SVP) is the extension of BTA with the
and [13] conditional operators. Hence, the set A of finite threads

in BTAsvp is defined inductively with the operators in BTA and additionally
with the following operators:

– : S ∈ A yields successful terminating behavior.
– or : D ∈ A represents inactive behavior.
– : − � a � − with a ∈ BA. The thread p � a � q,

where p, q ∈ A, first performs a and then proceeds with p if T was returned
and with q otherwise. In case p = q we abbreviate this thread by the

operator: a ◦ −. In particular, a ◦ p = p � a � p.
– The conditional operator: −�?a �− with a ∈ BA. The thread

p�?a � q behaves as p is a is independent (?a = T ) and it behaves as q
otherwise.

– The conditional operator: −�ya �− with a ∈ BA. The thread p�ya �q
behaves as p if the execution of a returns a positive reply T , and it behaves
as q otherwise. In fact, p � a � q = a ◦ (p � ya � q).

We note that the reply conditional operator is needed for defining synchronous
cooperation of threads. This operator and the independence conditional operator
originate from the operator [17] defined for process algebra, where
the second argument must be T or F . Table 1 represents the axioms for these
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operators. The constants S and D are similar to the termination ε and the
deadlock δ used in other process algebras such as CCS [18] and ACP [19].

The tau ∈ BA [4] plays a special role. Its execution
will never change any state and always produces a positive reply. The axiom for
this action is given in Table 2.

We write p.q for threads p, q ∈ A with each occurrence of S of p replaced by
q. This thread executes p and q sequentially.

Table 1. Axioms for conditions

x � T � y = x CO1
x � F � y = y CO2
x � c � x = x CO3
(x � c � y) � c � z = x � c � z CO4
x � c � (y � c � z) = x � c � z CO5
(x � c1 � y) � c2 � z = (x � c2 � z) � c1 � (y � c2 � z) CO6
x � c1 � (y � c2 � z) = (x � c1 � y) � c2 � (x � c1 � z) CO7
x � a � y = a ◦ (x � ya � y) RC

Table 2. Axioms for the concrete internal action

x � tau � y = tau ◦ x IA1
x�?tau � y = x IA2
x � ytau � y = x IA3

3.2 Approximation Induction Principle

An thread in BTAsvp is represented by a consisting of
its finite approximations. These finite approximations are defined inductively by
means of the approximation operators πn(−) of depth n of threads with n ∈ N

whose axioms on finite threads are given as P0-P5 in Table 3. Note that axioms
P4 and P5 makes use of the assumption that BA is finite.

A is a sequence (pn)n∈N such that πn(pn+1) = pn for all
n ∈ N.

The (AIP) in Table 3 states that two
threads are considered identical if their finite approximations at every depth
are identical. We write A∞ for the set of (finite and infinite) threads, and πn(p)
for the projection at depth n of a thread p ∈ A∞. A∞ is called a

. For infinite threads p1, . . . , pn ∈ A∞, we define for all n ∈ N that

πn(p1 . . . pn) = πn(πn(p1) . . . πn(p)).

3.3 The Current Thread Persistence with Blocking Strategy in
TAsvp

We now extend BTAsvp with the basic interleaving strategy that is used in SVP,
called the and written as ‖ctpb.



Formalizing SANE Virtual Processor in Thread Algebra 351

Table 3. Axioms for approximation operators and induction principle

π0(x)=D P0
πn+1(S)=S P1
πn+1(D)=D P2
πn+1(x � a � y)=πn(x) � a � πn(y) P3
πn+1(x � ya � y)=πn+1(x) � ya � πn+1(y) P4
πn+1(x�?a � y)=πn+1(x)�?a � πn+1(y) P5
If πn(x) = πn(y) for all n ∈ N then x = y AIP

Table 4. Axioms for approximation operators with thread creation

x � NT(〈(z1)〉 � . . . � 〈zn〉) � y= NT(〈z1〉 � . . . � 〈zn〉) ◦ x PerfectNT
πn+1(NT(〈z1〉 � . . . � 〈zk〉) ◦ x) = NT(〈πn(z1)〉 � . . . � 〈πn(zk)〉) ◦ πn(x) PNT

Thread Creation. First of all, we will explain how a family of threads in SVP
is created. We assume that there is no resource deadlock in thread creation.
Hence thread creation considered here is a perfect forking.

Let 〈〉 denote the empty sequence, 〈p〉 the sequence having p as sole element,
and α � β the concatenation of finite sequences α and β.

The creation of a family of threads in TAsvp is given by the
operator −� NT(α) �− where α is a sequence of threads. The

thread r = p � NT(α) � q for some threads p, q is called the thread of
the threads in α. NT(α) is considered as a . Like a real action,
its execution also produces a reply. Since we only deal with perfect forking in this
paper, this reply is always T . The axioms for thread creation are given in Table 4.
We note that thread creation has been considered for thread algebra in [4,13] with
perfect forking and imperfect forking (forking off a thread may be blocked and/or
fail). Our axiom PNT coincides with the axiom for thread creation in [4,13] in the
case that the sequence of threads to be created is of length one.

In the thread creation NT(〈p1〉 � . . . � 〈pn〉), we say that p1, . . . , pn are the
threads in the same family, and are also in the same family with the creating
thread. Moreover, pi is a of pj for all 1 ≤ i < j ≤ n, and pn is
a predecessor of its creating thread. If r �= pn is a predecessor of the creating
thread then r is also a predecessor of p1, . . . , pn.

In SVP, the blocking of a thread in a sequence of concurrent threads is allowed
in a very restricted manner, depending only on its predecessors. In other words, a
thread may only be waiting for some data produced by its predecessors. Hence, de-
pendencies between threads in SVP can be represented as an acyclic graph, which
in turn ensures freedom from in the model SVP (see [14]).

The Current Thread Persistence with Blocking. We assume the existence
of a special action swch ∈ BA to switch off the current thread to another thread
in the sequence of concurrent threads. Like the concrete internal action tau, the
execution of swch will never change any state and always produces a positive
reply. The switching off may speed up processors in some cases. The axiom for
the swch action is given in Table 5.
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Table 5. Axioms for swch

x � swch � y=swch ◦ x SWCH1
x�?swch � y = x SWCH2
x � yswch � y = x SWCH3

Table 6. Axioms for current thread persistence with blocking. Here a ∈ BA.

‖ctpb (α)=‖0
ctpb (α) Ctpb0

‖
length(α)
ctpb (α)=D Ctpb1

‖k
ctpb (〈〉)=S Ctpb2

‖k
ctpb (〈S〉 � α)=‖k

ctpb (α) Ctpb3

‖k
ctpb (〈D〉 � α)=D Ctpb4

‖k
ctpb (〈x � a � y〉 � α)=

(‖0
ctpb (〈x〉 � α) � a � ‖0

ctpb (〈y〉 � α))�?a � (tau◦ ‖k+1
ctpb (α � 〈x � a � y〉)) Ctpb5

‖k
ctpb (〈x � swch � y〉 � α)= tau◦ ‖0

ctpb (α � 〈x〉) Ctpb6

‖k
ctpb (〈x � NT(β) � y〉 � α)= tau ◦ ‖k

ctpb (β � 〈x〉 � α) Ctpb7

‖k
ctpb (〈x�?a � y〉 � α)= ‖k

ctpb (〈x〉 � α)�?a � ‖k
ctpb (〈y〉 � α) Ctpb8

The axioms for current thread persistence with blocking ‖ctpb are given in
Table 6. Initially, ‖ctpb (α) =‖0

ctpb. The superscript k used in ‖k
ctpb (α) denotes the

number of the blocked threads in α. If all the threads are blocked then
communication-deadlock occurs. The composition of an empty sequence of threads
will terminate successfully. If the first thread of the sequence is terminated then the
execution proceeds with the subsequent threads. If the first thread is in deadlock
then whole system is in deadlock. In the remaining case, the system will execute
the actions of the first thread until there is a blocked action, or the action swch. The
control flow then proceeds with the next thread in the sequence. The first thread
meanwhile is put to the end of the sequence in a round-robin fashion. When creat-
ing a new family of threads or switching off to another thread, the action tau will
arise as a residue to keep pace with other threads in the sequence. We note that
the threads are supposed initially not to contain any guards.

The axioms in Table 6 are defined for finite threads only. For a sequence of
arbitrary (finite or infinite) threads α = 〈p1〉 � . . . � 〈pm〉, ‖ctpb (α) is deter-
mined by its projective sequence where πn(‖ctpb (α)) = πn(‖ctpb (〈πn(p1)〉 �

. . . � 〈πn(pm)〉)).

3.4 Synchronous Cooperation of Threads in TAsvp

In this section, we extend TAsvp with a form of synchronous cooperation of
threads in SVP.

Atomic Actions and Concurrent Actions. Like [13], we assume a fixed but
arbitrary set AA of (tau ∈ AA), a fixed but arbitrary set CA ⊇
AA of , and a fixed but arbitrary synchronization function
| : CA × CA → CA satisfying that:
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Table 7. Conditions on the synchronization function. Here ξ, ξ′, ξ′′ ∈ CA.

tau|ξ = ξ
(ξ|ξ′)|ξ′′ = ξ|(ξ′|ξ′′)
(ξ|ξ′)|ξ′′ = (ξ′|ξ)|ξ′′
x�?(ξ|ξ′) � y = x�?ξ′ � y
x � yξ|ξ′ � y = x � yξ′ � y

Table 8. Axioms for synchronous cooperation with blocking

‖scb (〈〉)=S Scb1
‖scb (α � 〈S〉 � β)=‖scb (α � β) Scb2
‖scb (α � 〈D〉 � β)=D Scb3

‖scb (〈x1 � ξ1 � y1〉 � . . . � 〈xn � ξn � yn〉)=ψ∅
0 Scb4

‖scb (α � 〈x � NT(〈z1〉 � . . . � 〈zn〉) � y〉 � β)=
‖scb (α � 〈tau ◦ z1〉 � . . . � 〈tau ◦ zn〉 � 〈tau ◦ x〉 � β) Scb5

‖scb (α � 〈x � c � y〉 � β)= ‖scb (α � 〈x〉 � β) � c � ‖scb (α � 〈y〉 � β) Scb6

– tau ∈ AA;
– for an action ξ ∈ CA if and only if ξ ∈ AA or there exist ξ′, ξ′′ such that

ξ = ξ′|ξ′′;
– for an action ξ ∈ CA there is a boolean value ?ξ stating that ξ is independent

or blocked.

Hence, each concurrent action can be reduced to one of the following form:

– a with a ∈ AA;
– a1| . . . |an with a1, . . . an ∈ AA for n > 1;

The axioms for concurrent actions are given in Table 7. We assume that the
independence of a concurrent action and its reply depend only on its last atomic
action. The set BA of basic actions is extended with this set CA of concurrent
actions.

The Synchronous Cooperation with Blocking Strategy. The synchronous
cooperation of threads in SVP is dynamic. We intend to perform simultaneously
the maximum number of independent actions from concurrent threads. This
might speed up processors [20]. We call this interleaving strategy the

, denoted by ‖scb .
The axioms for synchronous cooperation with blocking ‖scb are given in Ta-

ble 8. The threads are supposed initially not to contain any guards. In this
strategy, the composition of an empty sequence of threads is a termination. If a
thread is in deadlock then the whole system is also in deadlock. If a thread is
terminated then this thread is simply removed from the sequence. If all threads
are blocked, deadlock will occur. If all threads are deadlock free, the synchro-
nous cooperation strategy will execute simultaneously all and only independent
threads. The indexes of these threads are contained in a set I. We note that the
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tau actions will arise when a family of thread is created in order to keep pace
with other threads in the sequence. The auxiliary function ψI

i is defined by:

ψI
i = ψ

I∪{i+1}
i+1 �?ξi+1 � ψI

i+1
ψ∅

n = D
ψI

n = |i∈Iξi◦ ‖scb (〈χI
i (x1 � ξ1 � y1)〉 � . . . � 〈χI

n(xn � ξn � yn)〉) (I �= ∅)

where χI
i (x � ξ � y) =

{
x � yξ � y if i ∈ I,

x � ξ � y otherwise.
For a sequence of arbitrary infinite threads α = 〈p1〉 � . . . � 〈pm〉, ‖scb (α) is
determined by its projective sequence where πn(‖scb (α)) = πn(‖scb (〈πn(p1)〉 �

. . . � 〈πn(pm)〉)).

3.5 Basic Terms and Guarded Recursive Specifications in TAsvp

Basic Terms. We now denote Tsvp as the set of all closed terms over the sig-
nature of TAsvp . The set B of is inductively defined by the following
rules:

– S, D ∈ B;
– if p ∈ B then tau ◦ p ∈ B;
– if p, q ∈ B and a ∈ BA then p � a � q ∈ B;
– if p, q ∈ B then p � swch � q ∈ B;
– if p, r1, . . . , rn ∈ B then NT(〈r1〉 � . . . � 〈rn〉) ◦ p ∈ B;
– if p, q ∈ B and a ∈ BA then p � ya � q ∈ B;
– if p, q ∈ B and a ∈ BA then p�?a � q ∈ B;

We write B0 for the set of all terms from B in which no subterm of the form
p � NT(α) � q occurs.

Lemma 1. p1, . . . , pn ∈ B q ∈ B0 ‖k
ctpb (〈p1〉 �

. . . � 〈pn〉) = q TAsvp

Theorem 1. Elimination p ∈ Tsvp q ∈ B
p = q TAsvp

The proofs of Lemma 1 and Theorem 1 are given in [14].

Guarded Recursive Specifications in TAsvp . We assume the existence of
a fixed but arbitrary set of variables X . Let X ⊆ X . We write T X

svp for the set
of all terms from Tsvp in which no other variables than the ones in X have free
occurrences. The set G of terms is defined inductively as follows:

– S, D ∈ G;
– if ξ ∈ BA and t1, t2 ∈ Tsvp then t1 � ξ � t2 ∈ G;
– if t1, t2, t3 ∈ Tsvp then t1 � NT(t3) � t2 ∈ G;
– if ξ ∈ BA and t1, t2 ∈ G then t1 � yξ � t2 ∈ G;
– if ξ ∈ BA and t1, t2 ∈ G then t1�?ξ � t2 ∈ G;
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Table 9. Axioms for the constants 〈X|E〉

〈xi|E〉 = ti(〈x1|E〉, . . . , 〈xn|E〉) (i ∈ [1, n]) RDP
If yi = ti(y1, . . . , yn) for i ∈ [1, n] then yi = 〈xi|E〉 (i ∈ [1, n]) RSP

– if t1, . . . , tn ∈ G then ‖ctpb (〈t1〉 � . . . � 〈tn〉) ∈ G.
– if t1, . . . , tn ∈ G then ‖scb (〈t1〉 � . . . � 〈tn〉) ∈ G.

A E is a finite set {xi = ti|i ∈ [1, n]} of recursive
equations where ti, for all 1 ≤ i ≤ n, are terms in T {x1,...,xn}

svp . The finite recursive
specification E is if for all 1 ≤ i ≤ n, ti are guarded.

Theorem 2.

The proof of the previous theorem can be obtained in the same line as the proof
of Theorem 5 in [13]. If E is a guarded recursive specification and x a recursive
variable in E, then 〈x|E〉 denotes the thread that has to be substituted for x in
the solution for E. This thread is called . The axioms for guarded recursive
specifications are given in Table 9, where RDP and RSP refer to

and as in other process
algebras (see e.g. [21]).

In [14], we have given both a denotational semantics [22] and a structural
operational semantics [23,24] for TAsvp , and shown that threads in TAsvp are
communication-deadlock free. In Section 5.3, we will see how a SVP program
behavior is represented as a thread in TAsvp . This means that SVP programs
are communication-deadlock free, a desired property for the SVP model.

4 Memory Model for SVP

This section interprets the memory of the SVP model with the use of Maurer
computers [8].

4.1 Maurer Computer

A Maurer computer has a memory and operations. The contents of all memory
elements construct a state of the computer. This state can be transformed to
another state when a certain operation is performed. We recall the definition of
Maurer computers from [9,7]. A C consists of the following
components:

– a set M ;
– a set B with |B| ≥ 2;
– a set S of functions s : M → B;
– a set O of functions O : S → S;

and satisfies the following conditions:
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– s1, s2 ∈ S, M ′ ⊆ M and s2 : M → B is such that s3(x) = s1(x) if x ∈ M ′

and s3(x) = s2(x) if x /∈ M ′, then s3 ∈ S;
– if s1, s2 ∈ S then the set {x ∈ M |s1(x) �= s2(x)} is finite.

M is called the ; the elements of M are called the ; B is called
the ; the elements of S are called the ; the elements of O are called
the . The first condition is satisfied if C is , i.e. if S is the set
of all functions s : M → B, and the second condition is satisfied if C is ,
i.e. M and B are finite sets.

Let (M, B, S, O) be a Maurer computer, and O ∈ O. Then the
of O, written IR, and the of O, written OR, are the subsets of M
defined as follows:

IR(O) = {x ∈ M | ∃s1, s2 ∈ S : ∀z ∈ M : s1(z) = s2(z)∧
∃y ∈ OR(O) : O(s1)(y) �= O(s2)(y)},

OR(O) = {y ∈ M | ∃s ∈ S : s(y) �= O(s)(y)}

OR(O) is the set of all memory elements (or locations) that are possibly affected
by O; and IR(O) is the set of all memory elements that possibly affects elements
of OR(O).

4.2 Maurer Machines

Threads in TAsvp can be used to direct a Maurer machine [7,13], an extension
of a Maurer computer, in performing operations on its states. In this section, we
define Maurer machines with the features of memory and synchronization of the
SVP model.

We extend Maurer computers (M, B, S, O) with a set Act, a function ? :
Act → M and a function � � : Act → (O × M) to obtain Maurer machines. For
each a ∈ Act, we write m?

a for the unique m ∈ M such that ?a = m. Furthermore,
we write Oa and ma for the unique O ∈ O and m′ ∈ M , respectively, such that
� a � = (O, m′).

A is a tuple H = (M, B, S, O, Act, ? , � �) where (M, B, S, O)
is a Maurer computer, and:

– ? : Act → is such that for all a ∈ Act, s(m?
a) ∈ {T, F}.

– � � : Act → (O×M) is such that for all a ∈ Act and s ∈ S, s(ma) ∈ {T, F};
Oa(s) is defined if s(m?

a) = T otherwise it is , denoted by ↑;

The elements of Act are the , and ? is the , and � � is
the of H .

We assume that Act = AA ∪ (BA \ CA). Let σ(p) denote the set of actions
a ∈ Act occurring in a thread p. We define that

IR(Op) = ∪a∈σ(p)IR(Oa) and OR(Op) = ∪a∈σ(p)OR(Oa)

The SVP model supports two kinds of memory namely
and .
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– supports bulk synchronization between fami-
lies of threads and provides the permanent state of a computation. There are
two simple rules that can be identified for writing deterministic programs,
e.g.:

• no two concurrently executing threads write to the same location in
asynchronous shared memory;

• no two concurrently executing threads read and write to the same loca-
tion in asynchronous shared memory.

– supports communication and synchronization be-
tween threads in a family. A location in synchronizing memory accessed
by a thread in a family is available in read-only form to the other threads in
the family.

We then impose two restrictions on threads in TAsvp as follows:

– no two concurrently executing threads write to the same location in the
memory, i.e. for two threads p and q that are in the same family or in
different families executing concurrently, OR(Op) ∩ OR(Oq) = ∅.

– no two concurrently executing threads from different families of threads read
and write to the same location in the memory, i.e. for two concurrent threads
p and q that are not in the same family, IR(Op) ∩ OR(Oq) = ∅.

We say that an action a is a thread p if a is not waiting for
any data produced by p, and p is not waiting for the data produced by a either,
i.e. IR(Oa) ∩ OR(Op) = ∅ and IR(Op) ∩ OR(Oa).

The request function ?a is to request the execution of an action a. This action
a can be executed if it is , acknowledged by s(m?

a) = T . In case
s(m?

a) = F , a is and cannot be executed.
As mentioned earlier, the dependency of a thread in the SVP model is allowed

in a very restricted manner, depending only on its predecessors. In particular, a
thread may only be waiting for a data produced by its predecessors. Hence, if
thread p is not a predecessor of thread q then IR(p) ∩ OR(q) = ∅.

We now say that an action a of a thread p in a sequence of concurrent threads
is if it is not waiting for any data produced by the predecessors of
p, i.e. for all predecessors q of p, IR(Oa) ∩ OR(Oq) = ∅. This also means that a is
independent from all predecessors of p.

The actions tau and swch are always independent and have no effect on the
state space. That is, for all s ∈ S, s(m?

tau) = T , s(m?
swch) = T , Otau(s) = s,

s(mtau) = T , Oswch(s) = s, and s(mswch) = T .
For a concurrent action ξ ∈ CA, where ξ = a1| . . . |an with n > 1 and ai ∈ AA

for i ∈ [1, n], we define that s(m?
ξ) = s(m?

an
) and s(mξ) = s(man) for all s ∈ S.

Furthermore, Oξ(s) = Oan(. . .Oa1(s) . . .),

IR(Oξ) = ∪i∈[1,n]IR(Oai) and OR(Oξ) = ∪i∈[1,n]OR(Oai).

In TAsvp , the simultaneously performing act ξ = a1| . . . |an occurs only in the
case that all actions ai (i ∈ [1, n]) are independent. Since the dependency of an
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Table 10. Axioms for the apply operator. Here ξ ∈ BA.

x• ↑ = ↑
S • s = s
D • s = ↑
(x�?ξ � y) • s = x • s if s(m?

ξ) = T

(x�?ξ � y) • s = y • s if s(m?
ξ) = F

(x � ξ � y) • s = x • Oξ(s) if s(m?
ξ) = T and Oξ(s)(mξ) = T

(x � ξ � y) • s = x • Oξ(s) if s(m?
ξ) = T and Oξ(s)(mξ) = F

(x � ξ � y) • s = ↑ if s(m?
ξ) = F

(x � NT(α) � y) • s = ↑
(x � yξ � y) • s = x • s if s(mξ) = T

(x � yξ � y) • s = y • s if s(mξ) = F

∧n≥0πn(x) • s =↑ ⇒ x • s =↑

action depends only on the predecessors of the thread containing that action,
there cannot be two actions ai and aj for i, j ∈ [1, n] with i �= j such that they
write to the same location in the memory, or they read and write to the same
location in the memory. Therefore, s(m?

ξ) = T and Oξ(s) = Oain
(. . . Oai1

(s) . . .)
where i1..in is a permutation of 1..n.

4.3 Applying Threads in TAsvp to Maurer Machines

The operator • [7,13] allows threads to transform states of the Maurer
machine H by means of it operations. Such state transformations produce either
a state of H or the undefined state ↑.

Let p ∈ TAsvp and s ∈ S, then p • s is the state that results if all actions
performed by thread p are processed by the Maurer machine H from initial
state H . The processing of an action ξ ∈ BA is allowed by the boolean value
produced by H contained in memory element m?

ξ. This processing amounts to
a state change according to the operation Oξ. In the resulting state, the reply
produced by H is contained in memory element mξ. If p is S, then there will
be no state change. If p is D, then the result is ↑. If the current action of p is a
thread forking action, then the resulting is also ↑, since thread forking is carried
into effect only if it is put in the context of concurrency. Table 10 represents
axioms for the apply operator.

We say that p • s is if ∃n ∈ N : πn(p) • s �=↑. If p • s is convergent
then the of p • s, written ‖p • s‖, is the least n ∈ N

such that πn(s) • S �=↑.
Two threads p and q are , written p ≈ q, if for all

s ∈ S, p • s = q • s.

Lemma 2. ξ p s ∈ S
p • Oξ(s) = Oξ(p • s)

Straightforward.
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5 TAsvp as a Formal Semantics of SVP

This section intends to determine the behaviors of programs (or threads) in
μTC, a programming language that realizes the model SVP [15], in the setting
of TAsvp . In order to illustrate our approach, we construct a simple program-
ming language Lsvp , a subset of the language μTC, with a least collection of
primitive statements, but rich enough for important applications. We will show
that Lsvp threads have a desired property, the determinism property, i.e. the
threads should always give the same result as the result obtained when they are
executed sequentially.

5.1 The Program Notation Lsvp

We assume the existence of a set Var of ranged over x, y, . . .. The
program notation Lsvp is generated from five kinds of constructs and two com-
position mechanisms. The constructs used in Lsvp are as follows:

– assignment x=e;
– the constant swch, used to switch off the current thread to another thread

in the sequence of concurrent threads;
– thread creation create(X1, . . . , Xn);
– conditional statement if(e){X}{Y };
– while-loop statement while(e){X}.

Here x is a variable and e stands for a boolean or an arithmetic expression,
whose syntax we do not describe here. The semantics of conditional statements
and while-loops is given as in other programming languages. Two composition
mechanisms of Lsvp are:

1. sequential composition X ; Y ; and
2. concurrent composition ‖ (〈X1〉 � . . . � 〈Xn〉) where ‖∈ {‖ctpb, ‖scb}.

Let X, Y, Xi denote the programs (or threads) in Lsvp . Then

X, Y := x=e | if(e){X}{Y } | while(e){X} | swch | create(X1, . . . , Xn) |
X ; Y | ‖ (〈X1〉 � . . . � 〈Xn〉).

Threads X and Y in the sequential composition X ; Y must be sequential. Fur-
thermore, thread creation create(X1, . . . , Xn) must be put in the context of
concurrency initially. In μTC, the threads X1, . . . , Xn in create(X1, . . . , Xn)
are identical. However, in the verification and evaluation of SVP, it is not nec-
essary to impose this restriction to programs in Lsvp . Thus, the threads in a
created family in Lsvp can be different.

5.2 Communication Between Threads with Shared Variables in Lsvp

A variable occurring in a thread can be a variable (defined by the thread
itself) or a variable (defined by the creating threads of that thread). A
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Table 11. Example of μTC programs

thread main()
{

int *a;
int fid, t=0, n=3;
create(fid;0;n-1)

{
index int i;
shared int s=t; /*initializes s in first thread only*/
s = s + a[i];
}

sync(fid);
}

local variable can be . Every local variable of a thread corresponds to a
location in the memory. The set of the locations of all local variables of a thread
is called the memory of that thread. A thread can manipulate the values
in its working memory, which is inaccessible to other threads from a different
family. However, this working memory will be available in read-only form to
the subthreads created by the thread itself, and to other threads in the same
family if the variable is a shared variable. The communication between threads,
as described in Section 2, happens via shared variables. In other words, shared
variables define dependency between threads. This dependency depends only on
the predecessors of a thread. In particular, if a shared variable s occurs as an
input of an assignment or a conditional in a thread then its value is taken as the
last value of s produced by the thread and its predecessors.

A typical μTC program is given in Table 11. The thread in this
table sums the values of array a. Here i for i ∈ [0, n − 1] are the indexes of the
subthreads. The instruction s = s + a[0] is never blocked, and the instruction
s = s + a[i] of thread i for i > 0 will be blocked until the value of s is produced
by thread i − 1.

Without loss of generality, we can assume that all local variables of concurrently
executing threads in Lsvp are distinct. Furthermore, a shared variable of a thread
does not occur in the predecessors of that thread. Since a thread can write only
to its working memory, there cannot be an assignment x = e occurring in that
thread where x is not defined by the thread itself.

The thread given in Example 1 can be formulated as program X in
Lsvp below.

X0 := s0 = t; s0 = s0 + a[0]
X1 := s1 = s0 + a[1]
X2 := s2 = s1 + a[2]
X := ‖ (t = 0; create(X0, X1, X2))

where ‖∈ {‖ctpb, ‖scb}. We note that the sum of the array a is stored in s2.
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Table 12. Axioms for thread extraction operation

|〈〉| = S
|a| = a ◦ S
|a; X| = a ◦ |X|
|swch; X| = swch ◦ |X|,
|create(X1, . . . , Xn); X| = NT(X1, . . . , Xn) ◦ |X|
|if(a){X}{Y }; Z| = |X; Z| � a � |Y ; Z|
|if(T ){X}{Y }; Z| = |X; Z|
|if(F ){X}{Y }; Z| = |Y ; Z|
|while(a){X}; Z| = |X; while(a){X}; Z| � a � |Z|
|while(T ){X}; Z| = |X; while(T ){X}|
|while(F ){X}; Z| = |Z|
| ‖ctpb (〈X1〉 � . . . � 〈Xn〉)| = ‖ctpb (〈|X1|〉 � . . . � 〈|Xn|〉)
| ‖scb (〈X1〉 � . . . � 〈Xn〉)| = ‖scb (〈|X1|〉 � . . . � 〈|Xn|〉)

5.3 The Thread Extraction Operation

We now consider instructions x=e and e of Lsvp as the actions in BA, written as
[x = e] and 〈e〉. The behaviors of programs in Lsvp are determined by means of
the | |, which assigns a thread in TAsvp to a program
(or thread) in Lsvp . Table 12 represents axioms for thread extraction operation.
If the behavior of a thread in Lsvp cannot be computed according to the thread
extraction operation, then it is identified with D. For instance, the behavior of
a non-trivial loop in which no action occurs can be identified with D.

The behavior of program X in Example 2 can be determined as a
thread in TAsvp as follows.

|X0| = [s0 = t] ◦ [s0 = s0 + a[0]] ◦ S
|X1| = [s1 = s0 + a[1]] ◦ S
|X2| = [s2 = s1 + a[2]] ◦ S
|X | := ‖ (〈[t = 0] ◦ NT(〈|X0|〉 � 〈|X1|〉 � 〈|X2|〉) ◦ S〉) with ‖∈ {‖ctpb, ‖scb}.

Lemma 3. X, Y Lsvp |X ; Y | = |X |.|Y |

Theorem 3. Lsvp TAsvp

The proof of Lemma 3 is straightforward, and Theorem 3 can be proven by
induction on the structure of the programs using Lemma 3.

5.4 Determinism

For each program X ∈ Lsvp , we write X for the sequential form of X , ob-
tained from X by replacing any subterm of the forms create(X1, . . . , Xn),
‖ctpb (〈X1〉 � . . . � 〈Xn〉) and ‖scb (〈X1〉 � . . . � 〈Xn〉) with X1; . . . ; Xn.

Theorem 4. Determinism X Lsvp |X | ≈ |X|
See Appendix A.
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6 Concluding Remarks

In this paper, we have given a formal proof for the determinism property of SANE
Virtual Processors (SVP). We taken thread algebra (TA) [4] as a theoretical
framework for the verification and evaluation of SVP. In particular, TA has
been extended with the features of SVP to TAsvp (thread algebra for SVP). We
have shown that TAsvp indeed is a formal semantics of SVP by assigning a thread
in TAsvp to a program in Lsvp , a simple programming language that illustrates
the realization μTC of SVP. We have interpreted the memory of SVP with the
use of Maurer computers [8,9], and considered the interaction between threads in
TAsvp and Maurer machines. Finally, we have proven that Lsvp programs always
give the same result as the result obtained when they are executed sequentially.
Our work together with the work presented in [14] show that the SVP model
has the desired properties, namely determinism and freedom from deadlock.

Acknowledgments. We thank Jan Bergstra for the fruitful discussions.
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A Proofs

In this section, we provide a proof for Theorem 4. We will use some supporting
results. The first result states that the execution of concurrent finite threads
in TAsvp gives the same result as the result obtained when they are executed
sequentially.

Lemma 4. p1, . . . , pn B ‖∈ {‖ctpb, ‖scb}
qi ∈ B0 ‖ (〈pi〉) = qi i ∈ [1, n]

1 ≤ i < j ≤ n pj pi i1..in
1..n ‖ (〈pi1〉 � . . . � 〈pin〉) ≈ q1 . . . qn.

‖ (〈p1 . . . pn〉) ≈ q1 . . . qn.

We prove (1) only. The proof of (2) can be obtained in the same way.
We consider the case ‖=‖k

ctpb. The case ‖=‖scb is similar. We note that in the
interleaving strategy ‖k

ctpb, the case k ≥ n never happens since the threads in
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TAsvp are communication-deadlock free (see [14]). Let p =‖k
ctpb (〈pi1〉 � . . . �

〈pin〉). We prove by induction on (L(p), n − k) where L(p) is defined by

L(S) = 1,
L(D) = 1,
L(p � c � q) = max{L(p), L(q)} + 1,
L(p � a � q) = max{L(p), L(q)} + 1,
L(NT(〈r1〉 � . . . � 〈rn〉) ◦ p) = max{L(p), L(r1), . . . , L(rn)} + 1,
L(‖ (〈q1〉 � . . . � 〈qn〉)) = max{L(q1), . . . , L(qn)} + 1.

Let q = q1 . . . qn. We show that p ≈ q. Let q′ = q1 . . . qi1−1 and q′′ = qi1+1 . . . qn.
We consider the following possibilities:

– pi1 = S. Then p ≈‖k
ctpb (〈pi2 〉 � . . . � 〈pin〉). By the induction hypothesis,

p ≈ q′.q′′. Since pi1 = S, p ≈ q.
– pi1 = D. Then p ≈ q ≈ D.
– pi1 = tau ◦ p′i1 . Then p = tau ◦ p′ where p′ =‖0

ctpb (〈p′i1〉 � . . . � 〈pin〉). By
the induction hypothesis, p′ ≈ q′.q′i1 .q

′′ where qi1 = tau ◦ q′i1 . Since tau has
no effect on the state space S, p ≈ p′ ≈ q′ ≈ q.

– pi1 = swch ◦ p′i1 . Similar to the previous case, p ≈ q.
– pi1 = p′i1 �c �p′′i1 . Then p = p′�c �p′′ where p′ =‖k

ctpb (〈p′i1〉 � . . . � 〈pin〉)
and p′′ =‖k

ctpb (〈p′′i1〉 � . . . � 〈pin〉). By the induction hypothesis, we also
have p ≈ q.

– pi1 = p′i1 � a � p′′i1 . Then p = (p′ � a � p′′)�?a � tau ◦ p′′′ where
p′ =‖0

ctpb (〈p′i1〉 � . . . � 〈pin〉), p′′ =‖0
ctpb (〈p′′i1〉 � . . . � 〈pin〉) and

p′′′ =‖k+1
ctpb (〈pi2〉 � . . . � 〈pin〉 � 〈pi1〉). Hence for all s ∈ S,

p • s =
{

p′ • Oa(s) � Oa(s)(ma) � p′′ • Oa(s) if s(m?
a) = T

p′′′ • s otherwise.

Let q′i1 =‖ctpb (〈p′i1〉) and q′′i1 =‖ctpb (〈p′′i1〉). By the induction hypothesis,
p′ ≈ q′.q′i1 .q

′′, p′′ ≈ q′.q′′i1 .q
′′, and p′′′ ≈ q. If s(m?

a) = F then p• s = p′′′ • s ≈
q • s. If s(m?

a) = T then a is independent from all predecessors of pi1 . This
implies that a is independent from q′. Let s′ = q′•s. It follows from Lemma 2
that q′ • Oa(s) = Oa(q′ • s) = Oa(s′). Furthermore, s′(m?

a) = s(m?
a) = T .

Therefore,

p • s = p′ • Oa(s) � Oa(s)(ma) � p′′ • Oa(s)
≈ (q′.q′i1 .q

′′) • Oa(s) � Oa(s)(ma) � (q′.q′i1 .q
′′) • Oa(s)

≈ (q′i1 .q
′′) • (q′ • Oa(s)) � Oa(s)(ma) � (q′i1 .q

′′) • (q′ • Oa(s))
≈ q′i1 .q

′′ • (Oa(s′)) � Oa(s′)(ma) � q′i1 .q
′′ • (Oa(s′))

= (q′i1 � a � q′′i1 .q
′′) • s′ ≈ (qi1 .q

′′) • s′ ≈ q • s.

This implies that p ≈ q.
– pi1 = NT(〈r1〉 � . . . � 〈rm〉) ◦ p′i1 . Then p = tau◦ ‖k

ctpb (〈r1〉 � . . . �

〈rm〉 � 〈p′i1〉 � . . . � 〈pin〉). By the induction hypothesis,

p ≈ q′.r′1 . . . r′m.q′i1 .q
′′ ≈ q′.qi1 .q

′′ ≈ q.
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The following lemma extends Lemma 4 with the case of infinite threads.

Lemma 5. p1, . . . , pn ‖∈ {‖ctpb, ‖scb}

1 ≤ i < j ≤ n pj pi i1..in
1..n ‖ (〈pi1〉 � . . . � 〈pin〉) ≈‖ (〈p1〉) . . . ‖ (〈pn〉).

‖ (〈p1 . . . pn〉) ≈‖ (〈p1〉) . . . ‖ (〈pn〉).

We prove (1) only. The proof of (2) is similar. Let p =‖ (〈pi1〉 � . . . �

〈pin〉) and q =‖ (〈p1〉) . . . ‖ (〈pn〉). Since πk(p) = πk(‖ (〈πk(pi1 )〉 � . . . �

〈πk(pin)〉)), there is Np ∈ N such that p ≈‖ (〈πk(pi1)〉 � . . . � 〈πk(pin)〉) for all
k ≥ Np. Furthermore, for all i ∈ [1, n], there are Ni ∈ N such that pi ≈ πk(pi)
for all k ≥ Ni. Let N = max{Np, N1, . . . , Nn}. It follows from Lemma 4 that

p ≈ ‖ (〈πN (pi1)〉 � . . . � 〈πN (pin)〉) ≈‖ (〈πN (p1)〉) . . . ‖ (〈πN (pn)〉)
≈ ‖ (〈p1〉) . . . ‖ (〈pn〉) ≈ q.

Finally, we can prove our main result as follows.

(The proof of Theorem 4). If X is a sequential program then we are
done. In the remaining case, we prove by induction on the structure of X .

– X = 〈〉. Then X = 〈〉. Hence |X | ≈ |X | ≈ S.
– X =‖ (〈a〉). Then X = a. Thus, |X | ≈ a ◦ S = |X|.
– X =‖ (〈if(a){Y }{Z}〉). Then X = if(a){Y }{Z}. By the induction hypoth-

esis, |X | =‖ (〈|Y |�a � |Z|〉) ≈‖ (〈|Y |〉)�a � ‖ (〈|Z|〉) ≈ |Y |�a � |Z| = |X |.
– X =‖ (〈while(a){Y }〉). Then X = while(a){Y }. Let Z = while(a){Y }. It

follows from Lemma 3, Lemma 5 and the induction hypothesis that
|X | =‖ (〈|Y |.|Z| � a � S〉) ≈‖ (〈|Y |.|Z|〉) � a � S ≈‖ (〈|Y |〉).|X | � a � S ≈
|Y |.|X | � a � S,
|X| = |Y |.|X| � a � S. This implies that |X | ≈ |X|.

– X =‖ (〈create(X1, . . . , Xn)〉). By Lemma 5 and the induction hypothesis,
|X | =‖ (〈|X1| � . . . � 〈|Xn|〉〉) ≈‖ (〈|X1|〉) . . . ‖ (〈|Xn|〉) ≈ |X1| . . . |Xn| =
|X|.

– X =‖ (〈X1; . . . ; Xn〉). Similar to the previous case, we likewise get
|X | =‖ (〈|X1| . . . |Xn|〉) ≈‖ (〈|X1|〉) . . . ‖ (〈|Xn|〉) ≈ |X1| . . . |Xn| = |X|.

– X =‖ (〈X1 � . . . � 〈Xn〉〉). Similarly, |X | ≈‖ (〈|X1|〉) . . . ‖ (〈|Xn|〉) ≈
|X1| . . . |Xn| = |X |.
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Abstract. To facilitate the construction of concurrent programs based
on progress requirements, we study an integration of the Owicki/Gries
theory with UNITY’s leads-to relation. In particular we investigate a
set of calculational rules for leads-to, and we study the composition of
programs regarding their effect on progress. Apart from parallel composi-
tion, we consider the less familiar notion of weak sequential composition.
Our techniques are illustrated on two network initialisation protocols
that are related to the protocol standard IEEE 1394.

1 Introduction

We study the construction of concurrent programs using formal derivation tech-
niques, which is an approach that guarantees correctness by construction. In
[FvG99], Feijen and vanGasteren have developed a method for deriving con-
current programs from their safety requirements. This method is based on the
calculational method of Dijkstra [Dij76] and the axiomatic theory of Owicki and
Gries [OG76]. It is applicable to shared-memory systems as well as to distributed
systems that communicate using message passing. The resulting derivations are
recognised to be elegant and insightful; see e.g. [FGR04].

Nevertheless, some concurrent programs are primarily motivated by their
progress requirements, which makes it hard to derive them on the basis of safety
alone. In [DG06], Dongol and Goldson integrated the progress logic of UNITY
[CM88] into the theory of Owicki and Gries with its more conventional style of
program description. In [DM06a, DM06b], Dongol and Mooij have started to
develop a corresponding method for program derivation, such that both safety
and progress requirements can be used.

The progress logic of UNITY is based on the leads-to relation �, for which
usually a large collection of lemmas is provided. However, many of these are
complicated and hard to remember; see also [Kna92]. In the present work we
investigate a series of calculational rules with familiar algebraic shapes that are
easy to remember. Apart from collecting some known properties, also some new
properties are discovered.

In addition, to simplify the progress proofs of concurrent programs that can be
decomposed into simpler concurrent programs, we develop some elementary rules
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for the maintenance of progress properties under two kinds of program compo-
sition. The first kind of composition is the most natural kind of composition for
concurrent programs, viz., parallel composition. Even though reasoning about
parallelism is often considered to be difficult, we advocate the extensive use of
parallelism for postponing design decisions and for decomposing specifications;
see also [MW03, Moo06].

The second kind of composition is a kind of sequential composition. Usually
sequential composition is studied, which imposes the requirement that

the parallel components of the second program being composed can only start
execution when parallel components in the first program have terminated.
However, implementing this kind of composition in a real concurrent system
yields a considerable overhead for the additional synchronisation between the
components. We study the more natural notion of sequential composi-
tion, which is the usual kind of sequential composition for scenario languages
like Message Sequence Chart [ITU00]. This component-wise sequential compo-
sition allows more concurrency, and it is easy to implement in a real concurrent
system.

To illustrate some of the techniques, we consider some network initialisa-
tion protocols. The basic purpose of such fundamental protocols is to get a
distributed system into a desired initial state [Mis91]. In contrast to such pro-
tocols in [FvG99], we do not assume that all parallel components have access to
one shared memory. The structure of the network protocols is closely related to
the highly-concurrent architectures from the two protocol standards IEEE 1394
[IEE96] (see also [DGRV00]) and IEEE 1394.1 [IEE05] (see also [Moo06]).

In [MP91] a proof system for temporal logic is presented that
is more general than UNITY, in particular including several kinds of fairness,
and more kinds of temporal formulae. Nevertheless the UNITY logic contin-
ues to receive attention by focusing on a prevalent class of temporal formulae,
for which the rules in [MP91] are similar to the usual definition of leads-to
in UNITY. Moreover the emphasis in [MP91] is on completeness of a proof
system, while we are looking for rules that support calculations on progress
formulae.

Protocol composition is a very active area of research. In our study, the
rely-guarantee method [Jon81, XdRH97] would be an obvious candidate frame-
work, because it is considered to be a compositional reformulation of the theory
from [OG76]. Furthermore, [Sto91, XdRH97] describe extensions to cover some
progress properties. However, in contrast to strong sequential composition, the
notion of weak sequential composition does not fit nicely within this framework,
nor within UNITY-based frameworks like [CK97].

Instead of composing programs that interact, like in action refinement ap-
proaches [PVAS05], we focus on the composition of independent concurrent pro-
grams. This applies to proper modularisations of a program into simpler pro-
grams. The resulting composition rules seem to be useful and simple enough to
be remembered easily and applied safely.
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In Section 2 we summarise the basic theories on program construc-
tion that we use. Our collection of calculational rules is described in Section 3,
and the composition rules are described in Section 4. In Section 5 we specify
the initialisation protocol, and in Sections 6 and 7 we derive two distributed
implementations. Finally some conclusions are provided in Section 8.

2 Preliminaries

In this section we summarise some basic material that we use in the remainder
of this work. It is based on [FvG99, DG06, DM06a, DM06b].

2.1 Concurrent Programs

A consists of a precondition and a number of
, which are sequential programs with a unique identifier. The components

are to be executed in parallel by interleaving their atomic statements, and they
communicate via shared variables (which in turn can model message passing).
The are the locations between the atomic statements in the com-
ponents, and the are typically the guard evaluations and the
assignments.

Each control point is assigned a unique , although we sometimes omit
them. For each component X there is an auxiliary variable X that represents
the program counter of X in terms of the control-point labels. The program
counters cannot explicitly be accessed by the statements, but they are implicitly
updated and they can be used in the specification and proof of properties.

The programming language that we use is Dijkstra’s Guarded Command
Language [Dij76]. In this work we only use assignments, and guarded skips
like if b → skip fi, with a boolean expression b as guard, which denotes a
statement that is blocked as long as ¬b holds. However, the approach equally
applies to repetitions, selections, etc. The semantics of the statements follows
from the weakest liberal precondition and weakest precondition pred-
icate transformers, where in particular the does not require termination.
The of an atomic statement in component X and a predicate P is defined
as:

[ .(x := E j: ).P ≡ (x, X := E, j).P ]
[ .(if b→ skip fi j: ).P ≡ (b ⇒ ( X := j).P ) ]

Here (x := E j: ) denotes an assignment that terminates at program counter
value j, (x, X := E, j) denotes a substitution, and [ . . . ] denotes a universal
quantifier binding all program variables.

As all atomic statements are assumed to be terminating, the and the
for the atomic statements are equal. The of a statement S, denoted g.S, is
defined as [ g.S ≡ ¬ .S. ]. A statement S at control point i of component
X is whenever X = i ∧ g.S holds and whenever X = i ∧ ¬g.S
holds.
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2.2 Owicki/Gries Theory

Safety properties are specified by annotating the program with assertions. An
is a predicate on the state of the system and it is located within brackets

{. . .} at a control point. To prove partial correctness of the annotation, we use
the classical Owicki/Gries theory [OG76] using the nomenclature of [FvG99].
An assertion P in a component is correct if it is both

– locally correct, i.e., it is established in the component:
• if P is an initial assertion in the component: [ ⇒ P ] holds;
• if P is preceded by an atomic statement {Q} S, whereQ is a pre-assertion

of S, then [ Q ⇒ .S.P ] holds.
– globally correct, i.e., it is maintained by all other components:

• for each atomic statement {Q} S in any other component, where Q is a
pre-assertion of S, [ P ∧Q ⇒ .S.P ] holds.

are assertions that hold at every control point of a program. So an
invariant is correct if it is both implied by the precondition, and maintained by
each statement in any component. In turn, assertions could also be expressed
in terms of invariants, possibly using some auxiliary variables. Hence, without
loss of generality, we can assume the absence of either assertions or invariants,
whenever appropriate.

2.3 Method from Feijen/VanGasteren

The programming method from [FvG99] addresses the construction of concur-
rent programs hand-in-hand with a suitable annotation and correctness proof.
Assertions play an important role, and in particular a is an
assertion whose correctness has not yet been proved. Usually a queried assertion
Q is denoted as {? Q}.

Program construction starts with a specification in terms of a preliminary
program and some queried assertions, like post-conditions. Program development
consists of turning each queried assertion, one-by-one, into a correct assertion.
The proof obligations for local correctness lead to a style in which programs
are constructed from the required assertions towards the initial control point.
When all assertions (which include those from the specification) are correct, the
developed program is correct with respect to the specification.

If a queried assertion’s correctness (in the current annotated program) cannot
yet be proved, there are mainly two solutions (which can also be combined):

– introduce additional queried assertions in the current annotation;
– modify the program.

An important issue is whether these two steps can endanger the correctness
of the other assertions. Introducing additional assertions cannot endanger the
correctness of the other assertions, and typically the weakest possible strengthen-
ing of the annotation that serves the goal is calculated. However, modifying the
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program may transform all assertions into queried assertions again. The typical
modification is inserting a statement for local correctness.

During the derivations we often omit the details of the proofs, in order to focus
on program construction. Formal tool-support with an emphasis on the incre-
mental nature of derivations has been developed in [MW05, Moo06, RWM07].

2.4 UNITY’s Progress Logic

To prove progress properties of a program, we use the progress logic from [CM88]
as proposed in [DG06]. The progress logic is based on the un relation, which
captures the temporal notion of ‘unless’, which is also known as ‘weak until’.
The expression P un Q denotes that P continues to hold until Q becomes ,
but it does not guarantee that Q will become . For predicates P and Q,
condition P un Q holds in an annotated program if

[ P ∧ ¬Q ∧ U ⇒ .S.(P ∨Q) ]

holds for all atomic statements {U} S, where U is a pre-assertion of S.
of any predicate P is a special instance of the un relation, viz., P un .

We use the term progress property to denote a property that can be expressed
using the main operator in this progress logic, viz., the leads-to operator �,
which is related to temporal logic using (P � Q) ≡ �(P ⇒ ♦Q). Expression
P � Q for a program denotes that whenever an execution of the program reaches
a state that satisfies P , each continuation of the execution will eventually reach
a state that satisfies Q. A weakly fair scheduling regime is assumed such that in
the interleaving, no component is neglected forever.

The progress properties include individual progress and termination. A pro-
gram terminates if each component terminates. Termination of a component X
can be expressed as the property � X = τX , for label τX the final
control point of the component with identifier X . Possibly using extra auxiliary
variables (e.g., to mimic the program counters), every property that refers to
the program counters can be replaced by an equivalent property that does not
refer to the program counters.

We use the following definition of the � relation. For any predicates P and
Q, condition P � Q holds in an annotated program if it can be derived by a
finite number of applications of the following rules:

– P � Q holds in an annotated program whenever
P un Q holds in the program and there exists an atomic statement S at a
control point i of a component X such that [ P ∧ ¬Q ⇒ X = i ∧ g.S ∧
.S.Q ] holds.

– P � Q holds if there exists a predicate R such that P � R
and R� Q.

– P � Q holds if there exist predicates R.i such that [ P ≡
(∃i: : R.i) ] and (∀i: : R.i� Q).

Usually we leave the program that we refer to implicit, but otherwise we use
the notation A |= P to denote that property P holds in concurrent program
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A. An important result for maintaining progress under program modifications is
the theorem from [DM06a]. Let P and Q be
predicates, and A be a program. Suppose that A |= P � Q holds, and let K
denote the set of instances of immediate progress that are used in a proof of it.
Then B |= P � Q holds for any program B in which each property from K is
valid, i.e., (∀R:R ∈ K: B |= R).

3 Calculational Leads-to Rules

In this section we present our collection of calculational rules for the leads-to
relation, independent of a particular program, and sometimes in relation to the
notion of stability as defined in Section 2. In what follows, the bound variable x
ranges over an arbitrary domain. Variables like P , Q and R denote predicates,
and we typically omit the outer universal quantification over these predicates.
The usual assumption is that there is at least one statement in any program,
which makes the leads-to relation a pre-order (i.e., reflexive and transitive).

3.1 Basic Monotonicity Properties

In [DM06a], it has been shown that the leads-to relation is

– monotonic in its second argument:

[ Q⇒ R ] ⇒ ((P � Q) ⇒ (P � R))

– anti-monotonic in its first argument:

[ P ⇒ Q ] ⇒ ((Q� R) ⇒ (P � R))

3.2 Distribution Properties

The leads-to relation distributes over

– disjunction as follows:

((∃x: : P.x) � Q) ≡ (∀x: : P.x� Q)

– conjunction as follows, if for all x, predicate Q.x is :

(P � (∀x: : Q.x)) ≡ (∀x: : P � Q.x)

In addition there is the following rule:

– trading, if predicate Q is :

(P � Q⇒ R) ≡ (P ∧Q � R)

A proof of these three properties can be found in Appendix A.
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3.3 More Monotonicity Properties

With respect to the leads-to relation,

– function (∨R) is monotonic:

(P � Q) ⇒ (P ∨R � Q ∨R)

– function (∧R) is monotonic, if predicate R is :

(P � Q) ⇒ (P ∧R � Q ∧R)

We use (∨R) to denote a function that maps any predicate P to (P ∨ R). In
[Mis94] the second property is called stable conjunction, and it is an instance of
the progress-safety-progress theorem [CM88]. A proof of the first property can
be found in Appendix A.

3.4 Closure Properties

Instead of these monotonicity properties, in calculations it is more effective to
apply the following closure properties. Namely, by applying the equivalences
from right to left the proof obligation just becomes simpler.

With respect to the leads-to relation,

– function (∨R) is an increasing closure:

(P � Q ∨R) ≡ (P ∨R � Q ∨R)

– function (∧R) is a decreasing closure, if predicate R is :

(P ∧R � Q) ≡ (P ∧R � Q ∧R)

A proof of these properties can be found in Appendix A.

3.5 Proof Techniques

The following is a series of rules that look like familiar proof techniques:

– proof by induction, for m a fresh variable and ≺ a well-founded order on the
type of M , which is an expression over program variables:

(P � Q) ≡ (∀m: : P ∧ M = m � (P ∧M ≺ m) ∨ Q)

– proof by contradiction:

(P � Q) ≡ (P ∧ ¬Q � Q)

– proof by indirect inequality (two variants):

(P � Q) ≡ (∀R: : (Q� R) ⇒ (P � R))

(Q� R) ≡ (∀P : : (P � Q) ⇒ (P � R))
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The first property is from [CM88], but extended with the equivalence observation
from [DM06a]. The second property has been explicitly formulated in [DM06a],
although it also appears somewhere in the middle of exercise 3.10 of [CM88].
The third property is less familiar, but it follows immediately from � being a
pre-order.

Using proof by indirect inequality, monotonicity of function (∨Q) is equivalent
to the cancellation theorem from [CM88, DG06]:

(∀D,Q,R: : (D � R) ⇒ (∀P : : (P � D ∨Q) ⇒ (P � R ∨Q)) )

4 Composition Rules

In this section we present the two elementary composition rules. Their proofs in
terms of the UNITY-based framework from [DG06] can be found in Appendix B.
We call two concurrent programs variable disjoint if the sets of variables that
can be accessed by the programs are disjoint.

4.1 Parallel Composition

Given two concurrent programs A and B that use disjoint sets of component
identifiers and disjoint sets of variables. The parallel composition A‖B of the
programs A and B yields a concurrent program with the union of the sets of
components, and the conjunction of the preconditions.

Given a progress property P � Q that holds in programA, i.e., A |= P � Q,
and that does not refer to variables of program B. Then the property P � Q
also holds in the parallel composition of A and B, i.e., A‖B |= P � Q.

4.2 Weak Sequential Composition

Given two concurrent programs A and B that use identical sets of component
identifiers and disjoint sets of variables, such that for each component identifier
the sets of control-point labels are disjoint apart from the final control points
in program A being identical to the initial control points in program B. The
weak sequential composition A◦B of the programs A and B yields a concurrent
program with components consisting of the sequential composition of the pairs of
components with the same identifier, and the conjunction of the preconditions.

Given a progress property P � Q that holds in programA, i.e., A |= P � Q,
and that does not refer to variables of program B. Then the property P � Q
also holds in the weak sequential composition of A and B, i.e., A◦B |= P � Q.
Moreover, if programB is guaranteed to terminate (as defined in Section 2), then
the property P � Q also holds in the weak sequential composition of B and A,
i.e., B ◦A |= P � Q.

5 Initialisation Protocol

In this section we introduce the specification of initialisation protocols, and we
briefly discuss an implementation for two components.
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5.1 Specification

The specification of an initialisation protocol for any number of components C.x,
for any series of values x, is as follows:

C.x: {Q.x}
. . .
{? (∀i: : Q.i)}

So, if in every component C.x the predicate Q.x is established as a correct pre-
assertion of the protocol (yet to be developed at the “. . . ”), then the protocol
has to establish as a post-assertion in every component C.x that Q.i holds for all
i. Each predicate Q.x is assumed (or, relied on) to be stable and does not contain
any of the variables that will be used in the protocol. This specification resem-
bles the rules of import and export that are sometimes used for asynchronous
communication; see e.g. [Hoo06, Moo07].

In the original setting of an “initialisation protocol”, predicateQ.x is typically
“the initialisation phase of component C.x has terminated”. In addition there is
the restriction that the precondition must be a conjunction, such that the set of
variables in each conjunct belongs to at most one component. Establishing such
a precondition is a local affair that should be isolated from the main distributed
protocol.

Initialisation protocols are in fact very general schemes. For any commutative
and associative operator ⊕, they can usually be extended to compute in each
component the value of (

⊕
i: : f.i), where f.i is a constant value that initially

resides in component C.i. In particular, for the addition operator a summation
protocol is obtained, and for the minimum or maximum operator a deterministic
consensus protocol is obtained from which in turn a deterministic leader election
protocol can easily be built.

5.2 Two-Component Implementation

For derivations of a protocol for the two components C.X and C.Y we refer to
[FvG99, DM06a], yielding for example the following solution:

C.X : c :=
; b :=
; if c → skip fi
; b :=

C.Y : b :=
; c :=
; if b → skip fi
; c :=

with the two fresh boolean synchronisation variables b and c. Freshness denotes
that these variables are not used by the rest of the system. Notice that there
is no assumption on the initial value of the booleans b and c. The annotation
has been omitted, but it would include assertions like b ⇒ Q.X . The proved
properties include individual progress, deadlock freedom and termination.

Without the restriction on the precondition, there are many more solutions.
For example, based on two semaphores (both initialised at 0), or based on two
unidirectional communication channels (both initialised with an empty buffer).
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In Sections 6 and 7, we will discuss network protocols that use any such a
two-component protocol as a building block. To this end we will abbreviate
the protocol for each component as sync and assume that the synchronisation
variables that are used for synchronisation, in this case b and c, do not occur
anywhere else in the program.

6 Initialisation Protocol on Full Networks

In this section we discuss an implementation for a full network of nodes, in
which each pair of nodes can communicate. A motivation for the composition
rules in Section 4 is the desire to easily derive some progress properties of this
implementation based on the properties of the implementation in Section 5.

6.1 Partial Correctness

Our starting point is the specification from Section 5, with a component for
each node in the network. Considering the required post-assertion (∀j: : Q.j),
it might be tempting to start determining for each component a sequential or-
der to establish the conjuncts of the universal quantification, or inserting some
repetition. Instead we propose to postpone this design decision by establishing
them in parallel (see also [MW03, Moo06]), which is the key to success in this
derivation. Notice that parallel composition can mimic sequential composition
using some auxiliary variables, if this finally turns out to be necessary.

To model parallelism within the nodes, we introduce in each node x an ad-
ditional component S.x.y for each other node y. Then the requirement on the
precondition of the program is that it is the conjunction of conditions that refer
to the variables used in the components of at most one node.

To establish the required assertion, we synchronise the components in each node
using a fresh series of variables b. That is, in each component C.x we introduce
a guarded skip with guard (∀j: j �= x: b.x.j), which is valid if we require a pre-
assertionQ.x and an invariant (∀i, j: : b.i.j ⇒ Q.j). For correctness of this invari-
ant, we require for any assignment b.x.y := the pre-assertion Q.y as follows:

Pre: (∀i: : (∀j: : ¬b.i.j))

C.x: {Q.x}
. . .

; {? Q.x}
if (∀j: j �= x: b.x.j) → skip fi
{(∀j: : Q.j)}

S.x.y:

. . .
; {? Q.y}
b.x.y :=

Inv: (∀i, j: : b.i.j ⇒ Q.j)

Notice that the precondition is the conjunction of conditions that refer to the
variables used in the components of at most one node. The b variables might be
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eliminated by implementing the guarded skip using a join construct that blocks
until the execution of the corresponding S-components has terminated.

The new queried assertion Q.y in component S.x.y should be imported from
a component in node y, for example from component S.y.x. This pair of com-
ponents can be synchronised using a fresh copy of the initialisation protocol
for two components (or any of the other solutions described in Section 5). The
corresponding required pre-assertions in S.x.y and S.y.x are Q.x and Q.y re-
spectively. Recall that the only requirement for partial correctness of this basic
initialisation protocol is that the conditions Q.x and Q.y are stable.

Pre: (∀i: : (∀j: : ¬b.i.j))

C.x: {Q.x}
. . .

; {? Q.x}
if (∀j: j �= x: b.x.j) → skip fi
{(∀j: : Q.j)}

S.x.y: . . .
; {? Q.x}
sync with S.y.x

; {Q.y}
b.x.y :=

Inv: (∀i, j: : b.i.j ⇒ Q.j)

What remains to establish in component S.x.y is a pre-assertion Q.x. This
can be established by synchronisation with component C.x using a fresh series
of variables a. That is, in each component S.x.y we introduce a guarded skip
with guard a.x, which is valid if we require an invariant (∀i: : a.i ⇒ Q.i).
For correctness of this invariant, we need for any assignment a.x := the
pre-assertion Q.x as follows:

Pre: (∀i: : ¬a.i ∧ (∀j: : ¬b.i.j))

C.x: {Q.x}
a.x :=

; {Q.x}
if (∀j: j �= x: b.x.j) → skip fi
{(∀j: : Q.j)}

S.x.y: if a.x → skip fi
; {Q.x}
sync with S.y.x

; {Q.y}
b.x.y :=

Inv: (∀i, j: : b.i.j ⇒ Q.j)
Inv: (∀i: : a.i ⇒ Q.i)

Notice that the precondition is the conjunction of conditions that refer to the
variables used in the components of at most one node. The a variables might be
eliminated by implementing the assignment to variable a using a fork construct
that explicitly starts the execution of the corresponding S-components.

6.2 Progress

The design so far has focussed on partial correctness; what remains to discuss
is termination. This can easily be proved using the composition rules, since the
protocol is the weak sequential composition of the following sub-protocols:
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– simple protocol on the a variables;
– parallel composition of some independent copies of the initialisation protocol

for two components (and some empty programs for the C-components);
– simple protocol on the b variables.

Since all sub-protocols are variable disjoint, and guaranteed to terminate in
isolation, termination of the whole protocol is guaranteed as well. Notice that
although the sub-protocols do not share any variables, the components in the
final protocol share variables as they participate in several sub-protocols.

7 Initialisation Protocol on Acyclic Networks

In this section we discuss an implementation for an acyclic connected network
of nodes, or phrased differently, an (undirected) tree-shape network. It shows
the applicability of the rules from Section 4 in a more complicated setting. The
irreflexive symmetric relation ∼ denotes the connected pairs of nodes.

7.1 Partial Correctness

Our starting point is the specification from Section 5, with a component for each
node in the network. Splitting the required post-assertion (∀j: : Q.j) according to
single nodes is not very effective in a network where some pairs of nodes are not
directly connected. We introduce an auxiliary set F.x.y for each two connected
nodes x and y to denote the fragment of the nodes that can be reached from node
y without using the edge (x, y). Thus in any network, the set of all reachable
nodes from node x is:

{x} ∪ (
⋃
j: j ∼ x: F.x.j)

In addition we have the following important recurrence relation:

F.y.x = {x} ∪ (
⋃
j: j ∼ x ∧ j �= y: F.x.j)

This is just a property for arbitrary networks, but for acyclic networks it is even
a recursive definition. So although we have not yet used acyclicity of the network,
the interest in these properties is inspired by the network being acyclic.

To model parallelism within the nodes, we introduce in each node x an addi-
tional component I.x.y for each connected node C.y. To establish the required
assertion, we synchronise them using a fresh series of variables b as follows:

Pre: (∀i: : (∀j: : ¬b.i.j))

C.x: {Q.x}
. . .

; {? Q.x}
if (∀j: j ∼ x: b.x.j) → skip fi
{(∀j: : Q.j)}

I.x.y: . . .
; {? (∀k: k ∈ F.x.y: Q.k)}
b.x.y :=

Inv: (∀i, j: : b.i.j ⇒ (∀k: k ∈ F.i.j: Q.k))
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Notice that the precondition is the conjunction of conditions that refer to the
variables used in the components of at most one node.

The new queried assertion (∀k: k ∈ F.x.y: Q.k) in component I.x.y should be
imported from a component in node y. This time we propose to introduce an
additional component E.y.x within node y, which in general is less restrictive
than re-using an existing component. These components can be synchronised
using fresh copies of the initialisation protocol for two components (or any of
the other solutions described in Section 5). Recall that the only requirement for
partial correctness is that the condition (∀k: k ∈ F.x.y: Q.k) is stable.

Pre: (∀i: : (∀j: : ¬b.i.j))

C.x: {Q.x}
. . .

; {? Q.x}
if (∀j: j ∼ X : b.x.j) → skip fi
{(∀j: : Q.j)}

I.x.y: sync with E.y.x
; {(∀k: k ∈ F.x.y: Q.k)}
b.x.y :=

E.x.y: . . .
; {? (∀k: k ∈ F.y.x: Q.k)}
sync with I.y.x

Inv: (∀i, j: : b.i.j ⇒ (∀k: k ∈ F.i.j: Q.k))

What remains to establish in component E.x.y is a pre-assertion (∀k: k ∈
F.y.x: Q.k). This can be established by synchronisation with component C.x
using a fresh series of variables a, and re-using the variables b as follows:

Pre: (∀i: : ¬a.i ∧ (∀j: : ¬b.i.j))

C.x: {Q.x}
a.x :=

; {Q.x}
if (∀j: j ∼ X : b.x.j) → skip fi
{(∀j: : Q.j)}

I.x.y: sync with E.y.x
; {(∀k: k ∈ F.x.y: Q.k)}
b.x.y :=

E.x.y: if a.x ∧ (∀j: j ∼ x ∧ j �= y: b.x.j) → skip fi
; {(∀k: k ∈ F.y.x: Q.k)}
sync with I.y.x

Inv: (∀i, j: : b.i.j ⇒ (∀k: k ∈ F.i.j: Q.k))
Inv: (∀i: : a.i ⇒ Q.i)

Notice that the precondition is the conjunction of conditions that refer to
the variables used in the components of at most one node. The a variables
might be eliminated by implementing each assignment a.i := using a fork
construct that explicitly starts the execution of the E-components. Furthermore,
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in particular component E.x.y is implementable, as the guard of the guarded
skip refers to variables of node x only, and all its conjuncts are stable.

The leader election protocol for trees from the IEEE 1394 standard is similar to
this initialisation protocol, although they elect the leader non-deterministically.
This gives some additional troubles; the idea is that the last node that starts ex-
ecution of its E-components becomes the root of the tree, but unfortunately it
is not guaranteed that there is at most one such node. Unless probabilistic tech-
niques are used, the usual models assume that this “root contention” situation
is somehow solved in one step. In turn, the protocol from IEEE 1394 turns out
to be essentially the same as an informally described protocol in [Lyn96], and in
[DGRV00] it was presented as a challenge for the formal methods community.

7.2 Progress

The design so far has focussed on partial correctness; what remains to discuss is
termination, for which we will need the acyclicity property, since cycles inevitably
lead to deadlocks in this protocol.

Regarding each guarded skip we will exploit stability of the conjuncts of
the guard (also within the universal quantification), which guarantees that it is
equivalent to any sequential series of guarded skips with the required conjuncts
as individual guards. In forward direction this relies on the guard conjunction
lemma of [FvG99], and in backward direction it just corresponds to reducing
the possible execution traces and the fact that the state in between cannot be
detected by the other components.

To prove termination we will show how the protocol (without annotation) can
be composed from simpler terminating programs using the composition rules. It
is clear that the simple protocol on the a variables is terminating, and it can
easily be isolated using weak sequential composition. In the remainder of the
argument we do not consider this part of the protocol.

Notice that all remaining parts refer to connected pairs of nodes. We will use
an induction principle based on a recursive definition of acyclic networks, namely
any single node is an acyclic network, and recursively, connecting a single node
to a node in an acyclic network results in a larger acyclic network.

For any single node, the concurrent program is empty since there are no edges.
Then consider a terminating program for a tree that is extended with a single
node Y connecting to node X . In this case the program must be extended with
the parts that refer to the pairs (X,Y ) and (Y,X).

The C-components do not impose restrictions on the order of these parts, while
the I-components require that any b.i.j occurs after synchronisation with E.j.i.
The E-components require that any b.i.j occurs before synchronisation with I.k.i
for any j �= k. For the last requirement, the case i = Y follows immediately from y
being a new leaf. The other interesting case is i = X , for which we must consider
the two special cases j = Y and k = Y . Hence the extended program consists of
the weak sequential composition of the following sub-protocols:

– synchronisation between E.Y.X and I.X.Y ;
– full simple protocol on the b.X.Y variable;
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– terminating protocol for the smaller tree;
– synchronisation between E.X.Y and I.Y.X ;
– full simple protocol on the b.Y.X variable.

Since all sub-protocols are variable disjoint, and guaranteed to terminate in
isolation, termination of the whole protocol is guaranteed as well.

8 Conclusions and Further Work

To facilitate the manipulation of leads-to formulae, we have investigated a set
of calculational rules. The resulting rules look very similar to familiar algebraic
properties, which makes them easier to remember and to apply. It is further
work to investigate rules that address the unless relation, and combinations of
the leads-to relation and the unless relation.

To construct progress arguments for programs that can be decomposed into
programs with simpler progress arguments, we have developed some composition
rules. Apart from parallel composition, we have considered a kind of sequential
composition. In contrast to the usual strong sequential composition, we have
imported the notion of weak sequential composition, which is more practical. It
is further work to extend the applicability of the rules.

We have illustrated some of our techniques on two network initialisation pro-
tocols. By considering the initialisation protocol for two components as a build-
ing block, the derived protocols have a clean structure based on two levels of
abstraction. The external synchronisation between the (physically distributed)
nodes uses the binary initialisation protocol, while the internal synchronisation
is performed using shared variables.

Although reasoning about concurrency is generally considered to be difficult,
the derivations and descriptions of these protocols benefit from a massive use
of concurrency. For a network consisting of N nodes and E edges, respectively
N + 2 ·E and N + 4 ·E small components are used. Although the concurrency
between the nodes is prescribed by the network, the concurrency within the nodes
could be eliminated. Such an implementation would introduce a repetition with
additional variables to record the state, but it would destroy the nice structure
of the solution. Nodes that consist of a central component and some components
for each incident edge, occur at least in the IEEE 1394 standard (nodes with a
port for each bidirectional connection) and the recently approved IEEE 1394.1
standard (buses with a portal for each bidirectional bridge).

These protocols consist of arbitrary numbers of components, in contrast to
the examples in [DG06, DM06a, DM06b] that consist of only two components.
In the present work progress was a concern that was mainly discussed after the
whole derivation for safety, like in [FvG99]. It is further work to obtain a closer
integration with the derivation, like in [DM06a, DM06b]. For example, in the
challenging context of non-blocking algorithms, whose progress properties can
also be expressed using the leads-to relation [Don06]. Also the tool-support from
[MW05, Moo06, RWM07] needs to be extended to cover the progress logic.
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A Proofs of Our Calculational Rules

Lemma 1 (Distribution over existential quantification).
P.x x Q �

((∃x: : P.x) � Q) ≡ (∀x: : P.x � Q)

Implication ⇐ follows from the disjunction rule in the definition of �.
For implication ⇒ we calculate:

((∃x: : P.x) � Q) ⇒ (∀x: : P.x � Q)
≡ {logic: (. . .⇒) distributes over ∀}
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(∀x: : ((∃x: : P.x) � Q) ⇒ (P.x � Q) )
⇐ {anti-monotonicity of �}

(∀x: : [ P.x ⇒ (∃x: : P.x) ] )
≡ {logic: (. . .⇒) distributes over non-empty ∃}

��Lemma 2 (Distribution over stable universal quantification).
P stable Q.x x �

(P � (∀x: : Q.x)) ≡ (∀x: : P � Q.x)

Implication ⇐ follows from the completion theorem [CM88], using sta-
bility of Q.i for each i. For implication ⇒ we calculate:

(P � (∀x: : Q.x)) ⇒ (∀x: : P � Q.x)
≡ {logic: (. . .⇒) distributes over ∀}

(∀x: : (P � (∀x: : Q.x)) ⇒ (P � Q.x) )
⇐ {monotonicity of �}

(∀x: : [ (∀x: : Q.x) ⇒ Q.x ] )
≡ {logic: (⇒ . . .) distributes over non-empty ∀}

��
Lemma 3 (Monotonicity under disjuncts). P Q
R �

(P � Q) ⇒ (P ∨R � Q ∨R)

We calculate:

P ∨R � Q ∨R
≡ {distribution of � over disjunction in its first argument}

(P � Q ∨R) ∧ (R � Q ∨R)
⇐ {monotonicity of � (twice), reflexivity}
P � Q

��
Lemma 4 (Closure under disjuncts). P Q R �

(P � Q ∨R) ≡ (P ∨R � Q ∨R)

Implication ⇐ follows from anti-monotonicity of �. For implication ⇒
we calculate:

P ∨R � Q ∨R
≡ {idempotence of (∨R)}
P ∨R � (Q ∨R) ∨R

⇐ {monotonicity of (∨R)}
P � Q ∨R

��
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Lemma 5 (Closure under stable conjuncts). P Q
stable R �

(P ∧R � Q) ≡ (P ∧R � Q ∧R)

Implication ⇐ follows from monotonicity of �. For implication ⇒ we
calculate:

P ∧R � Q ∧R
≡ {idempotence of (∧R)}

(P ∧R) ∧R � Q ∧R
⇐ {monotonicity of (∧R) for stable R}
P ∧R � Q

��
Lemma 6 (Trading). P R stable Q �

(P � Q⇒ R) ≡ (P ∧Q � R)

The two implications ⇐ and ⇒ are proved separately:

P � Q⇒ R
≡ {contradiction}
P ∧ Q ∧ ¬R � Q⇒ R

⇐ {monotonicity of �}
P ∧Q � R

P ∧Q � R
⇐ {monotonicity of �}
P ∧Q � (Q⇒ R) ∧ Q

⇐ {monotonicity of (∧Q) for stable Q}
P � Q⇒ R ��

B Proofs of the Composition Rules

B.1 Parallel Composition (Section 4.1)

Let K denote the instances of immediate progress that are used in a proof of
A |= P � Q. Using the Immediate Progress Preservation theorem, property
A‖B |= P � Q follows from (∀R:R ∈ K: A‖B |= R). Consider such an instance
of immediate progress R: R ∈ K, including the unless condition and all the
invariants that are used in a proof of A |= R. We will show that A‖B |= R.

We will show that R is an instance of immediate progress in A‖B. The invari-
ants and the unless condition from program A are valid in program A‖B, since
the precondition of A‖B implies the precondition of program A, and since the
statements from program B are orthogonal to A. Since the statements in A are
contained in those from A‖B, the immediate progress proof of property R from
program A is also valid in A‖B. ��

B.2 Weak Sequential Composition, First Part (Section 4.2)

Let K denote the instances of immediate progress that are used in a proof of
A |= P � Q. Using the Immediate Progress Preservation theorem, property
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A ◦ B |= P � Q follows from (∀R:R ∈ K: A ◦ B |= R). Consider such an
instance of immediate progress R: R ∈ K, including the unless condition and all
the invariants that are used in a proof of A |= R. We will show that A ◦B |= R.

As the immediate progress rule refers to program counters, the invariants
may need to refer to program counters. Since the program counters are shared
between A and B, we restrict their use as follows. In program A, introduce in
the component X that is referred to in the immediate progress proof of R, a
fresh auxiliary variable v that mimics X both in the precondition and in the
statements, and replace every occurrence of X by v. To maintain the immediate
progress proof in program A, we introduce for the relevant non-final label i in
component X the invariant v = i ⇒ X = i.

Thus the program counters only occur in one invariant, which is correct in
program A ◦ B as i is not the final label of component X in program A. The
other invariants and the unless condition from program A are valid in program
A ◦ B, since the precondition of A ◦ B implies the precondition of program A,
and since the statements from program B are orthogonal to program A. Since
the statements in A are contained in those from A ◦B, the immediate progress
proof of property R from program A is also valid in A ◦B. ��

B.3 Weak Sequential Composition, Second Part (Section 4.2)

Let K denote the instances of immediate progress that are used in a proof of
A |= P � Q. Using the Immediate Progress Preservation theorem, property
B ◦ A |= P � Q follows from (∀R:R ∈ K: B ◦ A |= R). Consider such an
instance of immediate progress R: R ∈ K, including the unless condition and all
the invariants that are used in a proof of A |= R. We will show that B ◦A |= R.

As the immediate progress rule refers to program counters, the invariants
may need to refer to program counters. Since the program counters are shared
between A and B, we restrict their use as follows. In program A, introduce in
the component X that is referred to in the immediate progress proof of R, a
fresh auxiliary variable v that mimics X both in the precondition and in the
statements, and replace every occurrence of X by v. To maintain the immediate
progress proof in program A, we introduce for the relevant non-final label i in
component X the invariant v = i ⇒ X = i.

Thus the program counters only occur in one invariant, which is correct in
program B ◦ A once component X has terminated program B, using that until
then v has its initial value. The other invariants and the unless condition from
program A are valid in program B ◦ A, since the precondition of B ◦ A implies
the precondition of program A, and since the statements from program B are
orthogonal to program A. Refining R into S � T , we would obtain the weaker
immediate progress property B ◦ A |= S ∧ “X terminated program B” � T ,
by using S un T , stability of “component X terminated program B”, and the
set of statements only being extended.
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To conclude the required property S � T , we can use S un T again and the
assumption that program B terminates (which is maintained under composi-
tion), based on the following lemma:

(A� B) ∧ (C un D) ∧ (B ∧ C � D) ⇒ (A ∧C � D)

for any predicates A, B, C and D. The particular instance is A := , B :=
“X terminated program B”, C := S and D := T . The general lemma can be
proved as follows:

A ∧ C � D
⇐ {use B ∧ C � D, monotonicity of (∨D)}
A ∧ C � (B ∧ C) ∨ D

⇐ {progress-safety-progress [CM88], use C un D}
A� B

��
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