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Abstract. The paper presents a new approach based on process calculi
to systems modeling suitable for biological systems. The main character-
istic of process calculi is a linguistic description level to define incremen-
tally and compositionally executable models. The formalism is suitable
to be exploited on the same system at different levels of abstractions
connected through well defined formal rules. The abstraction principle
that represents biological entities as interacting computational units is
the basis of the computational thinking that can help biology to unravel
the functions of the cell machinery. We discuss then the perspectives that
process calculi can open to life sciences and the impact that this can in
turn produce on computer science.

1 Introduction

Systems level understanding of phenomena has recently become an issue in biol-
ogy. The complexity of molecular interactions (gene regulatory networks, signal-
ing pathways, metabolic networks, etc.) makes impossible to handle the emergent
behavior of systems simply by putting together the behavior of their compo-
nents. Interaction is a key point in the study of emergence and complexity in
any field and hence in biology as well where the molecular machinery inside a
cell determines the behavior of complex organisms.

Besides interaction, the other key issue to develop computer-based tools for
systems biology is incremental construction of models. We need to add something
to a model once new knowledge is available without altering what we already
did. This is an essential feature for modeling formalisms being applicable to real
size problems (not only in the biological applicative domain). Many approaches
have been investigated in the literature to model and simulate biological systems
(e.g., ODE or stochastic differential equations, Petri nets, boolean networks,
agent-based systems), but most of them suffer limitations with respect to the
above issues.

In recent times, programming languages based approaches have been pro-
posed to generate executable models at a linguistic level. We think that they
are a suitable tool to address interaction, incremental building of models and
complexity of emergent behavior. As usual in computer science, the definition
of a high level linguistic formalism that then must be mapped onto lower level
representations to be executed may loose efficiency but gain a lot in expressive
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power and usability. Being the systems in hand huge, we need such formalisms
to minimize the error prone activity of specifying behavior.

The main idea is that computer networks, and Internet in particular, are the
artificial systems most similar to biological systems. Languages developed in the
last twenty years to study and predict quantitatively the dynamic evolution of
these networks could be of help in modeling and analysing biological systems.
Recent results show that process calculi (very simple modeling languages includ-
ing the basic feature to model interaction of components) have been successfully
adopted to develop simulators [22I24T9] that can faithfully represent biological
behavior.

The correspondence between the way in which computer scientists attacked
the complexity of artificial systems and the way in which such complexity is
emerging in biology when interpreting living systems as information processing
unit [I3] is very strict. Therefore computational thinking [26] is a tool that can
extremely help enhance our understanding of living systems dynamics. Com-
putational thinking expresses the attitude of looking at the same problem at
different levels of abstraction and to model it through executable formalisms
that can provide insights on temporal evolution of the problem in hand. There-
fore the basic feature of computational thinking is abstraction of reality in such
a way that the neglected details in the model make it executable by a machine.
Of course, different executable abstractions of the same problem exist and the
choice is driven by the properties to be investigated. Indeed, science history
shows us that a single model for the whole reality does not exist: our modeling
activity must be driven by the properties of the phenomenon under investigation
that we want to look at.

Process calculi have been originally introduced [I5/12] as specification lan-
guages for distributed software systems. The specification can be refined towards
an actual implementation within the same formalism. Any refinement step is
validated by formal proofs of correctness. This approach is a good example of
a framework that imposes the application of the computational thinking and
therefore we work on it to obtain a similar framework for biological systems.

We here briefly and intuitively introduce process calculi (in particular we
concentrate on the [-language) to show on an example how they can be used
to model biological systems. We then investigate the potential of the approach
in a perspective vision. We first discuss how life scientists can improve their
performance by relying on software and conceptual tools that allow them to
mimick the standard activities they perform in wet labs. There are however two
main advantages to work in silico: speed and cost. Actually experiments last few
minutes instead of hours or days and the cost is extremely reduced. Once the
scientist think of having something concrete in silico can move towards the wet
lab and test in practice the hypotheses. Essentially there is an iterative loop
between in silico production of hypothesis and wet testing of them.

The longer term perspective of the approach is related to enhancement of com-
puter science. The knowledge we gain from developing linguistic mechanisms to
describe and execute the dynamics of complex biological systems could lead to
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the definition of a new generation of programming languages and new program-
ming paradigms that can enhance the software production tools now available.

2 Abstracting Biological Systems

A biological system can be studied at the molecular, cellular, tissue, organ and
population levels. The dynamic steps that drive the state change of the above
systems can be always reduced to interactions of some kind (e.g., protein-protein,
cell-cell, member-member, etc.). Actually, one of the most used concepts in sys-
tems level understanding of biology is the one of network (see Fig.[I]): a structure
made up of nodes (the components of the considered system) linked by arcs (the
interactions between components). The interaction can enhance or inhibit some
activities, thus we usually observe activation arcs (ending with an arrow) and
repressor arcs (ending with a line orthogonal to the arc).

A reasonable formalisms able to model the dynamics of biological systems
must then be able to represent components and their interactions. Since networks
are essentially graphs whose arcs represent some kind of chemical/physical reac-
tion between components, a mathematical tool to represent the system could be
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a stoichiometric matrix [I7]. Rows and columns are components, the entries store
some quantitative measure characterizing the interaction of the corresponding
components. Although the matrix contains all the relevant information, its size
is extremely large for practical useful systems.

Computer science, executable, formalisms that resemble the stoichiometric
matrix are the ones based on multi-set rewriting (e.g., P systems [I8/5] or variant
of Petri Nets, e.g., [I0]). The main limitation of the stoichiometric matrix as
well as of these computer science formalisms is that they need to represent in
the description of the model all the possible configuration in which the network
can pass and all the possible interactions explicitly. No emergent behavior can
arise from the execution or the analysis of the model if it has not been explicitly
modeled.

Since biological networks exhibit combinatorial features, i.e., the number of
possible configurations of the network grows exponentially with respect to the
number of components, the explicit representation of all the configurations is
a difficult, time-consuming and error-prone task. Summing up the approaches
mentioned above are mainly used and suitable to systematize the knowledge on
dynamics of systems and to make it unambiguous. The main applications are
then storing and comparison of models.

Another important feature of models is however the predicting power that
can help designing new experiments to discover new knowledge. To stress the
heuristic value of a model, we think that it is better to have an intentional de-
scription of the system whose dynamics as well as the set on intermediate step
and configuration is determined by the execution of the model. In other words
we are looking for a formalism that allows us to represent the components of the
network and a set of general rules that provide information on how components
may interact. Then, ”in silico” experiments (i.e., execution of the model) provide
us with possible scenarios of interaction (i.e., with possible network configura-
tions that the system can pass through). As an example, we list the proteins in a
system and their slectivity/affinity or binding/unbinding parameters and we let
the execution of the model to predict which are the actual interactions and/or
complexation/decomplexation of the proteins.

Since the most similar artificial systems to biological networks are networks
of interacting computer or of interacting software programs, we re-use in the life
science domain description languages like CCS [15], CSP [12] and then 7-calculus
[16] that have been invented to model and study properties of distributed and
mobile software systems. Actually, the first process calculus applied to biological
problem has been the stochastic m-calculus [20] (also supported by automatic
available tools for simulation [22/T9]) that opened a field of research that is more
and more populated of calculi adopted for biological modeling. To mention a few
of them we recall BioAmbients [23], CCS-R [6], PEPA [1].

The abstraction principle underlying this approach [24] is that any biological
component is represented by a program. The interaction between biological enti-
ties is then represented as an exchange of information between programs. Since
in a distributed software system in which many programs run simultaneously the
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information exchanged between them makes the future behavior of the system
change, the interaction becomes the basic step of state change exactly as it happens
in biological networks. We slightly refine this principle by equipping communica-
tion links with types that define the sensitivity of the biological component they
belong to (see Fig.[2]).
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Fig. 2. Abstraction principles to model biological systems - figure prepared by A.
Romanel and L. Dematté

The linguistic level of the calculi allows us to have representations that grow
linearly with the number of components of the net, while only the execution
of the model faces the exponential number of configurations that the network
can reach. The selection of the next state from the current configuration is
driven by the quantities that express the affinity of interaction through the
implementation of a stochastic run-time engine based on the Gillespie’s algorithm
[9]. Therefore, the execution of a model provide us with the variation over time
of the concentration of the components that form the system, i.e., the execution
of a model corresponds to the stochastic simulation of the system.

The other property that makes process calculi good candidates to overcome
the actual limitations of modeling approaches is the so-called compositionality or
capability to build models incrementally. Most of the current approaches allow
to increase the size of a model by adding new knowledge to it and performing
a partial rewriting of the current available model (think of ODE when adding
new variables, or rewriting systems when adding new interacting elements — one
needs to take care of the new comers variables or components in the existing
equations or rewriting rules). This is clearly an obstacle to the scalability of
the approach towards genome-size and organism applications. Since the combi-
natoric features of networks are handled in process calculi at execution time,
the description of new elements can be implemented just by adding to the pool
of already existing programs the new one describing the new biological entity and
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by adding to the affinity rules the values describing the interacting capabilities
of the new entity. Then the run-time engine will take care of the new program
according to its interaction capabilities. This is common practice in software de-
velopment where interfaces of programs are defined to let them interact without
the need of re-coding their internal structure. As an example see Fig. [§ where
the interface of the S-workbench introduced in the next section is reported. The
rectangles represent the bio-processes, i.e. the biological elements, and the arcs
their interaction capabilities. Adding new elements to the system is just a mat-
ter of introducing a new box with the corresponding interaction arcs. The code
generator will then take care of the new possible behavior of the overall system.
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Fig. 3. The modeling interface ((-designer) of the S-workbench

Most of the process calculi mentioned above have been applied to biological
problems although they have been defined for computer science modeling. The
result was a feasibility study of the potentials of these calculi to model and
simulate biological systems. At the same time some limitations emerged at the
modeling level. Hence, many researchers defined new variants and extensions
of the existing calculi to directly address biological features. Among them we
mention the Brane calculi [2] designed to model membrane interactions, the k-
calculus [7] designed to model complexation and decomplexation, SPICO [14]
designed to add object-oriented features to stochastic m-calculus, 8-binders [21]
designed to exploit the notion of interface of biological entities and introduce
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a sensitivity /affinity based interaction. In fact all the calculi defined before (-
binders have been implicitly assuming that two structures can interact only if
they are exactly complementary (a perfect key-lock mechanism of interaction).
Besides stochastic m-calculus, 8 binders is the only process calculus equipped
with a stochastic simulation engine [25]. Since [ binders is the last process
calculus defined and enjoys properties that the previous proposals do not have,
in the next section we introduce the basics of process calculi relying on 3 binders.

3 The B Workbench

We present in this section a frame to model and simulate biological systems
relying on process calculi. The 8 workbench (hereafter SWB) is based on beta
binders and it is made up of three components: the 3 language with its stochastic
abstract machine, the 5 designer (see Fig.B]) to help modeling activities and the 3
plotter (see Fig. M) to inspect the results of the simulations. Since the purpose of
the paper is to illustrate the perspectives of applying process calculi in modeling
biological systems, we concentrate here only on the ( language and we refer the
reader to [25] for more details on the SWB.
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Fig. 4. The output interface (S-plotter) of the S-workbench
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Every biological entity is represented as a box (e.g. a protein, a cell, a mem-
ber of a population) with a set of interfaces through which the entity interacts
with other entities (e.g. a set of receptors). Any box contains a small program
describing the activities that the box can perform in response to stimuli on its
interfaces (e.g., conformational changes, activation or deactivation of other in-
terfaces). A whole biological system is composed of a set of boxes (proteins,
cells, populations) each of them equipped with a unique name (species) and an
arity determining the available numbers or concentration of biological entities
abstracted by the box in the system. Note that a box can pass through different
states according to the configurations of its interfaces and its internal program
without the need of changing its unique name (species) in the model. For in-
stance, Fig.[0l(a) represents graphically a box where by is the unique name of the
box and 17 is the number of the copies of the box available in the system (the
concentration of the corresponding component); P inside the box is its internal
program (how the box works in response to stimuli on interfaces); and rectan-
gles, triangles and circles on the border of the box are the interfaces. The color
of an interface denotes its type, while x; denotes its name and s; is the stochastic
parameter describing a continuous time exponential distributions. The type of
an interface is used to determine the affinity of interaction between boxes. In
fact the run time engine is based on a function a between types that provides a
quantity expressing the propensity of interaction. Finally the parameter s; is a
stochastic information needed to drive the simulation of the system. Interfaces
can be active (rectangles), or hidden (circles) or complexed (triangles). An in-
terface can become hidden for instance when forming a complex that following
a conformational change makes a binding side hidden by its three dimensional
structure. An interface can become complexed when two boxes glue together by
that interface.

The actions that a box can perform are either internal to a box (monomole-
cular operations), or they affect two boxes (bimolecular operations) or they are
driven by global conditions on the system (events). Monomolecular operations
manipulates interfaces through hiding and unhiding, creating new interfaces or
changing the types (i.e., interaction capabilities) of existing interfaces. Further-
more they may allow interaction between different part of the same box or may
decide to kill the box. These operations are graphically represented in Fig. [Glb).
Bimolecular operations involve two boxes and allow them to interact. Inter-
action is implemented via exchange of information between the two boxes or
via complexation or decomplexation of interfaces. The speed and probability of
interaction is driven by the affinity function over the types of the interfaces se-
lected for the current interaction. These operations are graphically depicted in
Fig.[Bc).

Events are global rules of the execution environment triggered by conditions
such as comparison with threshold on concentrations of boxes or existence of
a given species in the current state. We can also check whether a given step
or simulation time is reached. The actions associated with conditions can be
deletion or creation of boxes, joining of two boxes into one or the splitting of



Computational Thinking in Biology 71

a a box into two. The notion of event inherited from event-based programming
allow us to control the context in which the phenomenon under investigation
is happening. Furthermore, events easily allows us to perturbate the system
modeled and to analyse the new behavior. Perturbation of models is an essential
feature if we want to develop an in-silico lab. In fact most of the experiments are
the observation of the reactions of a system to some pre-defined perturbations.

The selection of the actions to be performed is driven by the Gillespie’s al-
gorithm in connection with the flow of control of boxes coded in their internal
programs.

B1

B2

Fig. 5. Hierarchical structures. Compartments are uniquely identified by sequences of
natural numbers. The largest one is identified by 0 and it contains three comparments
identified by 02, 01 and 03. Furthermore, the compartment 02 contains the compart-
ment 024.

Due to the large number of membranes existing in biological systems, an
important feature to model real case studies is the ability of expressing com-
partments. The need of adding spatial information to models is also in computer
science when modeling distributed software systems. For instance, it is impor-
tant to partition a system into administrative domains to associate privileges
with them and to check security polices. Two approaches have been adopted in
process calculi: explicit representation of domains into hierarchical structures as
in the ambient-family calculi [3] or implicit representation of domain through
the notion of location of a program [4]. We focus here on the implicit approach
because it allows us to maintain a flat structure of boxes still describing com-
partments [T1]. Flat structures are more efficient to implement simulators. We
only need to associate every box with a location. Then all the boxes in the same
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Fig. 6. Boxes, monomolecular and bimolecular operations. (a) Representation of a bi-
ological entity named B1 of 17 copies are available. The internal program P drives the
behavior of the entity and the interfaces specify the interaction capabilities. Rectangle
interfaces are active sites, triangle interfaces are complexed interfaces and oval repre-
sents hidden sites. The color of the sites denotes their type or interaction affinity. (b)
The set of available monomolecular actions. The first one is just an internal updating
that affect the P program. The other actions are needed to manipulate interfaces. Note
that the kill action affects the number of available copies of the entity. (¢) Bimolecular
actions model exchange of information (the first action) or creation and destruction of
complexes (the last two actions).
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location are interpreted as being in the same compartment. Hierarchy of com-
partments is then obtained by imposing a containment relation over locations.
A practical solutions is to use a tree-structure imposed by indexes similar to the
ones of Dewey. For instance, consider the system represented in Fig. Bl The box
b; is represented by 024, b; or the box b; by 03, b;, where locations are paths in
the hierarchy. Furthermore, the the fact that b; and by are in the same compart-
ment is rendered by using the same location 01 for both b; and by. Summing up,
process calculi are suitable to represent compartments as well.

4 Potentials

The perspectives that emerge from the biological modeling based on process
calculi are both in the life science domain and in the computer science domain.
As far as life science is concerned, the predictive power of the approach could be
exploited to inform wet biologists and help them planning focused experiments.
An application is the description of a systems and then the study of its behavior
under predefined perturbations. A perturbation in our approach is simply the
adding of a new program to the set of the ones defining the system and inspecting
the results of the new execution of the model. Clearly this capability is of interest
both in better understanding the aetiology of diseases and in the definition of
new drugs that exactly act on the causes of diseases. Note that the perturbation
of a system can be caused by environmental factors in the case of diseases or
by drugs when we want to inspect whether a molecule can stop or even prevent
a disease. Furthermore, we can also think of perturbation caused by molecules
contained in foods to test their toxicity or their actions on some diseases (for
instance nutrigenomics could benefit from this approach).

Biology is mainly driven by quantities that emerge from real experiments.
Hence we need to connect wet experiments and models in such a way that the
available knowledge is used to inform simulators and hence constrain their levels
of freedom. The iteration of these action should lead to an exact model of the
phenomenon considered. To address this issue the bayesian inference of rate
parameters from measures of concentrations at different times seems to be a
promising approach.

Since process calculi are linguistic constructs to describe the dynamics of sys-
tems, they could heavily influence the definition of exchange model formalisms
like SBML [§]. In fact, one of the main limitation of xml-based approaches is the
inherent ambiguity of the descriptions that makes it hard to develop automatic
translators into formal tools for analysing and simulating systems. Process calculi
based notation could integrate SBML-like description languages to limit ambi-
guity and hence improve the already valuable usefulness of SBML. Of course,
adding a degree of dynamics to static xml-based descriptions could be of interest
also for computer science applications.

The real challenge we face in modeling biological systems is the definition of
artificial systems that resemble the real biological behavior at a level of details
that allows us to use them in place of animal models of diseases. This goal is still
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far from being available, but we need to work in that direction by addressing
real biology and by letting us driven by biology if we want our community to
grow and to be beneficial for life scientists.

The impact of the proposed approach on computer science can be further
explained in terms of medium and long term goal. The medium term goal is the
development of a set of quantitative tools for the modeling and analysis of com-
plex artificial systems like sensor networks or hybrid large networks. Performance
prediction, load balancing and pricing are all issues that deserve quantitative
frameworks that share the incremental properties we showed for the SWB.

Another huge applicative domain that could benefit of the outcome of bio-
logical modeling is the one of web-services. In fact, orchestration and contract
negotiation is an interaction which is inherently not key-lock. Hence understand-
ing how biological interaction is driven and modeled could provide breakthrough
insights on the definition and implementation of new and better web-services.

Long term goals concern the definition of new computational models and new
programming languages that allow us to build software systems that are more
robust, fault tolerant, secure than the current ones. All the mentioned properties
are typical of biological systems, but are lacking in the actual artifacts. If we can
enhance our understanding of biological functioning, we could get inspiration for
a new generation of software developing environments.

5 Conclusions

The new field of computational and systems biology can have a large impact on
the future of science and society. The engine driving the new coming discipline
is its inherent interdisciplinarity at the convergence of computer science and life
sciences. To continue fueling the progress of the field we must ensure a peer-
to-peer collaboration between the scientists of the two disciplines. In fact if one
discipline is considered a service for the other the cross-fertilization will stop
soon. We must create common expectations and really joint projects in which
both computer science and biology can enhance their state-of-the-art.

We must ensure a critical mass of people working in the field and a com-
mon language to exchange ideas. This is a major problem in current collabora-
tions due to the lack of curricula that form people to work in this intersection
area. We must invest time and resources in creating interdisciplinary curricula
(together with new ways of recruiting people considering interdisciplinarity an
added value) to form the new researchers of tomorrow.

Summing up, although a lot has still to be done, we started a new way of
making science that can lead in the next years to unravel the machinery of
cell behavior that in turn can lead to the creation of artificial systems enjoying
the properties of living systems. Computational thinking is different way of ap-
proaching a problem by producing descriptions that are inherently executable
(differently, e.g., from a set of equation). Furthermore the same specification
can be examined at different level of abstractions simply by building a virtual
hierarchy of interpretations. This a common practice in computer science where
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artificial systems are usually defined and described in layers depending on the
growing abstraction from the physical architecture.
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