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Abstract. We introduce the concept of guarded saturated sets, satu-
rated sets of strongly normalizing terms closed under folding of corecur-
sive functions. Using this tool, we can model equi-inductive and equi-
coinductive types with terminating recursion and corecursion principles.
Two type systems are presented: Mendler (co)iteration and sized types.
As an application we show that we can directly represent the mixed in-
ductive/coinductive type of stream processors with associated recursive
operations.

1 Introduction

Symbolic evaluation, aka evaluation of terms with free variables, is used, amongst
others, for optimization through partial evaluation in compilers and for checking
term equivalence in languages based on dependent types—such as the theorem
provers Agda, Coq, Epigram, and LEGO, founded on intensional type theory. In
these applications, symbolic evaluation is required to terminate. My long term
research goal is to develop expressive type systems that guarantee termination,
and these type system shall include inductive and coinductive types.

Most research on inductive types has focused on the iso-style, i. e., there are
explicit operations in : F (μF ) → μF and out : μF → F (μF ) for wrapping
and unwrapping inductive types. In contrast, equi-inductive types come with
the type equation μF = F (μF ), so wrapping and unwrapping is silent on the
term level. Recently [4], I have put forth a type system for strongly normalizing
terms with equi-(co)inductive types, but it behaves badly for so-called mixed
inductive/coinductive types.

However, mixed inductive/coinductive types are important in the context of
intensional type theory. Ghani, Hancock, and Pattinson [10] show how the type
νX. μY. (B×X)+(A → Y ) of stream processors is inhabited by codes of functions
from streams over A to streams over B. They define eating, a function which
takes a stream processor and an input stream and produces an output stream;
eating executes the code of a stream processor. Swierstra [17] demonstrated
how a small modification of stream processors could be used to model I/O in a
dependently typed programming language.
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In this article, I present a concept which paves the way to a satisfactory
treatment of mixed equi-(co)inductive types: guarded type expressions. The term
guardedness has been used as a criterion whether corecursive programs denote
well-defined functions. A corecursive call is guarded if it appears under a con-
structor of the coinductive type. In the same sense, a type expression is guarded
if it is headed by a proper type constructor, like function space, cartesian prod-
uct, disjoint sum, or a primitive type. Using the guardedness criterion, we can
avoid coinductive types which contain no weak head values, and the remaining
coinductive types have the pleasant property that they already contain a core-
cursive value if they contain its unfolding. This property gives rise to the new
concept of guarded saturated set, on which we base our normalization proof.

Related Work. There is a rich body of work on type systems for termination of
recursion, starting with Mendler [12], with contributions by Amadio and Coupet-
Grimal [6], a group around Giménez and Barthe [7,8], and Blanqui and Riba
[9]. All of these works are concerned with iso-(co)inductive types. Parigot [13]
introduces equi-inductive and coinductive types in second-order functional arith-
metic, an extension of System F. [15] provides Mendler iteration and coiteration
schemes for these types and proves that all well-typed terms are hereditarily
solvable, if the involved types satisfy a certain strictness condition. We require
a condition only on coinductive types. Hughes, Pareto, and Sabry [11] present
sized types in the equi-style, yet they consider only finitely branching data types
and explicitly exclude a type of stream processors. In my previous attempt at
equi-(co)inductive types [4] I constructed a semantics based on biorthogonals,
which are due to Girard and have been successfully applied at interpreting lan-
guages based on classical logic (see, e. g., Parigot [14]). However, I had to consider
a recursive function applied to a corecursive value blocked, preventing the use
of mixed inductive/coinductive types. In this article, this flaw is overcome by a
semantics based on saturated sets.

Overview. In Sec. 2, we will see a λ-calculus with recursion and corecursion and
a saturated-set semantics of strongly normalizing terms. On this semantics, we
base first a type system with Mendler (co)iteration (Sec. 3), and then a more
flexible one with sized types (Sec. 4).

2 Untyped Language and Semantics

As an idealized purely functional programming language, we consider the λ-
calculus with pairs and projections, injections and case analysis, and recursion
and corecursion. In this section, we define semantical types as sets of strongly
normalizing terms and prove formation, introduction and elimination rules for
these semantical types. Especially interesting will be the principles for termi-
nating recursion and corecursion which will be derived from the construction of
inductive and coinductive types by ordinal iteration.

In all expressions throughout this article a dot “.” denotes an opening paren-
thesis closing as far to the right as syntactically meaningful. [M/x]N denotes
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the capture avoiding substitution of M for x in N . Let x range over a count-
ably infinite set Var of variables. We define our language as the lambda calculus
equipped with constants c. The values v are λ-abstractions, pairs, injections,
and not fully applied constants (including recursive functions and corecursive
values).

c ::= () | pair | fst | snd | inl | inr | case
| fixμ | fixν

n (n ∈ N) constants
r, s, t ::= c | x | λxt | r s terms

v, w ::= c | λxt | pair r | pair r s | inl r | inr r
| fixμ s | fixν

ns t (|t| ≤ n) (weak-head) values

e−( ) ::= s | fst | snd | case s t non-recursive evaluation frames
e( ) ::= e−( ) | fixμ s evaluation frames
E( ) ::= | E(e( )) evaluation contexts.

We distinguish between possibly recursive e( ) and non-recursive e−( ) eval-
uation frames. An evaluation context is E( ) is a stack of evaluation frames.
Corecursive functions are only unfolded in a non-recursive evaluation frame

Reduction. Computation is modeled as small-step reduction relation. These are
the axioms of β-contraction e(v) � t.

(λxt) s � [s/x]t
fixμ s v � s (fixμ s) v
e−(fixν

n s t1..n) � e−(s (fixν
n s) t1..n)

fst (pair r s) � r
snd (pair r s) � s
case (inl r) s t � s r
case (inr r) s t � t r

One-step reduction −→ is the closure of � under all term constructors, multi-
step reduction −→+ its transitive closure and −→∗ its reflexive-transitive closure.
Weak head reduction is defined by E(t) −→w E(t′) ⇐⇒ t � t′.

By only unfolding corecursive values in non-recursive evaluation frames, we
avoid critical pairs. This does not lead to stuck terms, since in such a case the
recursive function constituting the frame can be unfolded instead. In previous
work [4], we considered a corecursive value in a recursive frame as stuck, lead-
ing to an unsatisfactory treatment of mixed induction/coinduction. The present
work overcomes this flaw.

Strong normalization and saturated sets. A term t is strongly normalizing (s.n.),
written t ∈ SN, if all reduction sequences starting with t are finite. Note that
subterms and reducts of s.n. terms are also s.n. Terms E(x) ∈ SN are called s.n.
and neutral and their collection is denoted by SNe.

A set of terms A is a semantical type, written A ∈ SATu, if

1. SNe ⊆ A ⊆ SN,
2. each term in A weak-head reduces either to a value or a neutral term,
3. A is closed under weak head expansion that does not introduce diverging

terms.
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The first condition ensures that each semantical type contains all variables, such
that we can construct an open s.n. term model of our calculus. The second
condition is used to justify recursive functions fixμ s, which reduce under call-
by-(weak-head)-value (see Lemma 3). The third condition ensures that a redex
like (λxt) s inhabits a semantical type if its reduct (here [s/x]t) does so. This is
needed, for instance, to establish that λxt is in the semantical function space,
and similarly for pair r s, case distinctions and recursive functions.

The third condition can be made precise by defining safe weak head reduction,
�, by the following rules:

(λxt) s � [s/x]t if s ∈ SN
fixμ s v � s (fixμ s) v
e−(fixν

n s t1..n) �e−(s (fixν
n s) t1..n)

E(t) � E(t′) if t � t′

fst (pair r s) � r if s ∈ SN
snd (pair r s) � s if r ∈ SN
case (inl r) s t � s r if t ∈ SN
case (inr r) s t � t r if s ∈ SN

We define � as the reflexive-transitive closure of the above rules. Now if t � t′ ∈
SN, then t ∈ SN. For a reduction relation R, let RA := {t | t R t′ ∈ A} and
AR := {t′ | A � t R t′}. Condition 3 of semantical types can then be written as
�A ⊆ A.

The greatest semantical type is called S, it contains all s.n. terms except those
whose weak-head reduction gets stuck, like fst (λxx). The least semantical type
is N := �SNe, and it is closed under s.n. evaluation contexts: if r ∈ N and
E(x) ∈ SNe then E(r) ∈ N .

Guarded semantical types. A semantical type A is guarded, written A ∈ SATg, if
s (fixν

n s) t1..n ∈ A implies fixν
n s t1..n ∈ A. Let � ⊇ � be the reflexive-transitive

closure of safe weak head reduction plus the axiom

fixν
n s t1..n � s (fixν

n s) t1..n.

Note that r � r′ implies e−(r) � e−(r′).
A semantical type A is guarded iff �A ⊆ A. The premier example of a non-

guarded type is N . Note that S is closed under �-expansion, since fixν
n s t1..n is

a strongly normalizing value if s, t1..n ∈ SN. Thus, S is guarded.

Constructions on semantical types. The following constructions produce guarded
semantical types, even for unguarded A, B ∈ SATu.

A → B := {r | r s ∈ B for all s ∈ A}
A × B := {r | fst r ∈ A and snd r ∈ B}
A + B := �(inl(A) ∪ inl(B) ∪ SNe)
1 := �({()} ∪ SNe)

Note that SATg and SATu are closed under arbitrary intersections and unions.
The last property is the advantage of saturated-sets semantics, it does not always
hold for candidates of reducibility or biorthogonals, and even when it holds the
proof is non-trivial [16].
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If F is a monotone operator on sets of terms, and α an ordinal, we define the
term sets μαF and ναF by iteration on α as follows.

μ0 F := N
μα+1 F := F(μαF)
μλ F :=

⋃
α<λ μαF

ν0 F := S
να+1 F := F(ναF)
νλ F :=

⋂
α<λ ναF

Herein, λ denotes limit ordinals > 0. Let ∞ denote the ordinal at which, for
any F , iteration from below reaches the least fixed-point μ∞F = F(μ∞F), and
iteration from above reaches the greatest fixed-point ν∞F = F(ν∞F). Since
term sets are countable, ∞ is at most the first uncountable ordinal.

Now if F(A) is guarded for any A ∈ SATu, then μαF will be guarded for
α ≥ 1. If F(A) is guarded for any guarded A, then ναF is guarded for all α.

Lemma 1 (Semantical formation). The following implications, written as
rules, hold:

A, B ∈ SATu

A � B ∈ SATg
� ∈ {→, ×, +}

1 ∈ SATg N ∈ SATu S ∈ SATg

F ∈ SATu → SATb

μ∞F ∈ SATb
b ∈ {u, g} F ∈ SATg → SATb

ν∞F ∈ SATb
b ∈ {u, g}

Proof. We show the first implication, A → B ∈ SATg. It is sufficient to assume
{x} ⊆ A ⊆ SN and B ∈ SATu. Let r ∈ A → B. First, r x ∈ B ⊆ SN by
assumption, hence r ∈ SN. Second, we know that r x weak-head reduces to
either a neutral term or a value. Hence, either r weak-head reduces to a neutral
term, or to a λ-abstraction, which is a value. Third, let r′ � r. Then for any
s ∈ A we have r′ s � r s which, since B ∈ SATu, implies r′ s ∈ B. This entails
r′ ∈ A.

Lemma 2 (Semantical typing). The following implications hold:

[s/x]t ∈ B for all s ∈ A
λxt ∈ A → B

r ∈ A → B s ∈ A
r s ∈ B

r ∈ A s ∈ B
pair r s ∈ A × B

r ∈ A × B
fst r ∈ A

r ∈ A × B
snd r ∈ B () ∈ 1

t ∈ A
inl t ∈ A + B

t ∈ B
inr t ∈ A + B

r ∈ A + B s ∈ A → C t ∈ B → C
case r s t ∈ C

Proof. The rules for λ, pair, and case are proven by closure of saturated sets under
safe weak head expansion. (The remaining rules hold already by definition.) We
show the last implication. Assume r ∈ A+B, then r � r′ where r′ is either neutral
or a left or right injection. We observe that case r s t � case r′ s t and distinguish
the three cases: In the first case case r′ s t ∈ SNe, hence, case r s t ∈ N ⊆ C. In
the second case, r′ = inl r′′ with r′′ ∈ A, thus, case r s t � s r′′ ∈ C. The third
case is analogous to the second.
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The following semantical typing for recursion is the foundation of type-based
termination à la Mendler [12], Amadio et al. [6] and Barthe et al. [7]. In a
typical application of the following lemma, I(α) will be some inductive type
μαF ; then I(0) = N .

Lemma 3 (Recursion). For all ordinals α ≤ ∞ let I(α), C(α) ∈ SATu with
I(0) ⊆ N . Set A(α) := I(α) → C(α) and stipulate continuity:

⋂
α<λ A(α) ⊆

A(λ) for all limit ordinals λ > 0. Then the following implication holds for all
β ≤ ∞:

s ∈
⋂

α<∞ A(α) → A(α + 1)
fixμ s ∈ A(β)

.

Proof. By transfinite induction on β. The limit case is handled by the continuity
condition on A. For the other cases, assume r ∈ I(β) and show fixμ s r ∈ C(β).
If r ∈ N then fixμ s r ∈ N ⊆ C(β); since I(0) ⊆ N , this handles the case β = 0.
Otherwise r � v and β = α + 1 for some α. It is sufficient to show that the
weak head reduct s (fixμ s) v of fixμ s r is in C(α + 1), but this follows from the
induction hypothesis fixμs ∈ A(α) by the assumption s ∈ A(α) → A(α + 1).

The proof for β = 0 needs N to be closed under evaluation contexts, fixμs in
our case. If N was also guarded, then fixν

0λ x ∈ N and fixμ(λff)(fixν
0λ x) ∈ N ,

a diverging term. Thus, the least type needs to be classified as unguarded.

Remark 1 (Continuity). Let Natα = μα(X → 1 + X ) be the semantical type
corresponding to the set of natural numbers < α. The function A(α) = (Natω →
Natα) → 1 violates the continuity condition: one can implement a test p(f) in our
calculus that halts whenever it has found numbers n, m with f(n) = f(m). The
test will halt for bounded functions f ∈ Natω → Natα for α < ω, but diverges
on, for example, any strictly monotone unbounded function f ∈ Natω → Natω.
This justifies the necessity of the continuity condition for the soundness of our
semantics [2].

The following lemma dualizes Lemma 3; it is tailored for guarded C(α) = ναF .
To prove it, we have introduced the concept of guardedness in the first place.

Lemma 4 (Corecursion). For α ≤ ∞ let B1(α), . . . , Bn(α) ∈ SATu and C(α)∈
SATg such that S ⊆ C(0). Set A(α) := B1(α) → · · · → Bn(α) → C(α) and
stipulate

⋂
α<λ A(α) ⊆ A(λ) for limits λ. Then for all β ≤ ∞,

s ∈
⋂

α<∞ A(α) → A(α + 1)
fixν

n s ∈ A(β)
.

Proof. By transfinite induction on β, limits again handled by continuity of A.
Assume ti ∈ Bi(β) for i = 1..n and show r := fixν

n s t1..n ∈ C(β). In case β = 0
it is sufficient to show r ∈ S, but this holds since r is a value and its direct
subterms are all s.n. In case β = α+1, observe that r � s (fixν

n s) t1..n ∈ C(α+1)
by induction hypothesis fixν

n s ∈ A(α) and assumption s ∈ A(α) → A(α + 1).
Since C(α + 1) is guarded, we are done.

We have identified semantically sound principles for recursion and corecursion.
In the next sections, we implement two type systems on this basis.
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3 A Basic Type System: Mendler (Co)Iteration

In this section, we consider a type system for iteration over equi-inductive
types and coiteration over equi-coinductive types in the style of Mendler [12].
Mendler-iteration, like conventional iteration coming from initial algebra seman-
tics, is usually formulated for iso-inductive types, with an explicit constructor
in : F (μF ) → μF . Our developments in the last section paved the way for
equi-style formulations.

Types are given by the following grammar

� ::= → | × | +
A, B, C ::= X | 1 | A � B | ∀XA | μXA | νXA.

The type constructors ∀, μ, and ν bind variable X in A. The type μXX is an
empty, unguarded type; we especially need to avoid unguarded coinductive types
like νY μXX . To this end, we present a kinding judgement with two base kinds:
∗g, guarded types, and ∗u, unguarded types.

Let θ be a map from type variables to semantical types. We define the seman-
tics [[A]]θ of type A by recursion on A as follows:

[[X ]]θ = θ(X)
[[A � B]]θ = [[A]]θ � [[B]]θ
[[1]]θ = 1

[[∀XA]]θ =
⋂

X∈SATu
[[A]]θ[X �→X ]

[[μXA]]θ = μ∞(X ∈ SATu → [[A]]θ[X �→X ])
[[νXA]]θ = ν∞(X ∈ SATg → [[A]]θ[X �→X ])

Kinding. Let Δ be a finite map from type variables to base kinds. We write
Δ, X : κ for the updated map Δ′ with Δ′(X) = κ and Δ′(Y ) = Δ(Y ) in case
Y �= X . In the update operation, we presuppose X �∈ dom(Δ). The judgment
Δ � A : κ is inductively given by the following rules (where b ∈ {u, g}).

Δ � X : Δ(X) Δ � 1 : ∗g

Δ � A : ∗g

Δ � A : ∗u

Δ � A : ∗u Δ � B : ∗u

Δ � A � B : ∗g

Δ, X :∗u � A : ∗b

Δ � ∀XA : ∗b

Δ, X :∗u � A : ∗b

Δ � μXA : ∗b
pos

Δ, X :∗g � A : ∗g

Δ � νXA : ∗g
pos

In the formation rules for (co)inductive types we require (pos) that X appears
only positively in A (otherwise, the denoted fixed-points might not exist).

The soundness of kinding is immediate. Let θ ∈ [[Δ]] iff Δ(X) = ∗b implies
θ(X) ∈ SATb for all X .

Theorem 1 (Soundness of kinding). If Δ � A : ∗b and θ ∈ [[Δ]] then [[A]]θ ∈
SATb.

Type equality. Let Δ � A = A′ be the least congruence over the two axioms

Δ � μXA : ∗u

Δ � μXA = [μXA/X ]A
Δ � νXA : ∗g

Δ � νXA = [νXA/X ]A
.
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Lemma 5 (Soundness of type substitution and equality)

1. [[[B/X ]A]]θ = [[A]]θ[X �→[[B]]θ ].
2. If Δ � A = A′ and θ ∈ [[Δ]] then [[A]]θ = [[A′]]θ.

Typing. Let Γ be a finite map from type variables to kinds and term variables
to types, with additional update operation Γ, x :A. Each Γ can be viewed as a
Δ, by ignoring the term variable bindings. The typing judgement Γ � t : A is
inductively given by the following rules:

Γ � Γ (x) : ∗u

Γ � x : Γ (x)
Γ, x :A � t : B

Γ � λxt : A → B

Γ � r : A → B Γ � s : A

Γ � r s : B

Γ, X :∗u � t : A

Γ � t : ∀XA

Γ � t : ∀XA Γ � B : ∗u

Γ � t : [B/X ]A
Γ � t : A Γ � A = B

Γ � t : B

Γ � c : Σ(c)
Γ � μXA : ∗u Γ � C : ∗u

Γ � fixμ : (∀X. (X → C) → A → C) → μXA → C

Γ � νXA : ∗g Γ � Bi : ∗u for i = 1..n

Γ � fixν
n : (∀X. (B1..n → X) → B1..n → A) → B1..n → νXA

Herein, the signature Σ assigns the following types to constants c:

pair : ∀A∀B. A → B → A × B
fst : ∀A∀B. A × B → A
snd : ∀A∀B. A × B → B
() : 1

inl : ∀A∀B. A → A + B
inr : ∀A∀B. B → A + B
case : ∀A∀B∀C. A + B →

(A → C) → (B → C) → C

Example 1. If we drop the guardedness condition in the corecursion rule, then
the diverging term fixμ(λff) (fixν

0λ x) can be typed. First observe that fixμλff :
μXX → C for any C. In the context x : μXX we have λ x : ∀Y. Y → μXX ,
hence, fixν

0λ x : νY μXX . With νY μXX = μXX we get the typing x :μXX �
fixμ(λff) (fixν

0λ x) : C. This demonstrates that guardedness is vital for the
termination of open expressions when mixing recursion and corecursion. Non-
emptiness is not necessary, however; an analogous term constructed with the
empty, but guarded type νY. 1 → μXX is not diverging.

Let θ now be a finite map from type variables to semantical types and from
term variables to terms. We write θ ∈ [[Γ ]] if additionally to the condition on
type variables θ(x) ∈ [[Γ (x)]]θ for all term variables x ∈ dom(Γ ). Let tθ denote
the simultaneous (capture-avoiding) substitution of all x ∈ FV(t) by θ(x).

Theorem 2 (Soundness of typing). If Γ � t : A and θ ∈ [[Γ ]] then tθ ∈ [[A]]θ.

Proof. By induction on the typing derivation, using the result of the last section.
In case of fixμ, assume s ∈

⋂
X∈SATu

[[(X → C) → A → C]]θ[X �→X ] and show
fixμ s ∈ [[μXA → C]]θ. Lemma 3 (recursion) is applicable with types I(α) =
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μα(X → [[A]]θ[X �→X ]) and C(α) = [[C]]θ. Since r ∈ I(λ) =
⋃

α<λ I(α) implies
r ∈ I(α) for some α < λ and C does not depend on its ordinal argument, the
continuity condition is trivially satisfied for A(α) = I(α) → C(α). For all α, the
typing s ∈ A(α) → A(α + 1) requested by the lemma is an instance of the given
typing with X = I(α), since [[A]]θ[X �→I(α)] = I(α + 1).

In case of fixν , Lemma 4 is applicable, analogously to the case of fixμ. The
kinding ensures that C(α) := να(X → [[A]]θ[X �→X ]) is guarded for all α ≤ ∞. The
continuity condition is again trivially satisfied.

Corollary 1 (Strong normalization and consistency). Each typable term
is strongly normalizing. Each closed well-typed term weak-head reduces to a value.
No closed term inhabits ∀XX.

Proof. By soundness of typing, letting θ(X) = N for all type variables X and
θ(x) = x for all term variables x. Consistency, the last statement, follows since
there are no closed terms in N .

Example: Stream Eating with Mendler (Co)Iteration

We first allow ourselves some syntactic sugar: we write (r, s) for pair r s and use
matching abstraction λ(x, y).t as a shorthand for λz. [fst z/x][snd z/y]t. ML-style
pattern matching match t with pi → ti for patterns pi composed from variables,
(), pair, inl, and inr, can also be defined easily [5, Sec. 2.4].

To provide some help for type-checking (by the reader and by the machine),
we sometimes will use Church-style syntax and allow type-annotations t : A in
the example programs:

Γ � t : A

Γ � (t : A) : A

Γ, x :A � t : B

Γ � λx :A. t : A → B

Γ, X :∗u � t : A

Γ � ΛXt : ∀XA

Γ � t : ∀XA Γ � B : ∗b

Γ � t[B] : [B/X ]A

Streams Stream A := νX. A × X can be constructed by pair : ∀A.A →
Stream A → Stream A and destructed by fst : ∀A. Stream A → A and snd :
∀A. Stream A → Stream A. In Haskell, stream processors are defined as a data
type and the code of the mapping function is generally recursive.

data SP a b where
get :: (a -> SP a b) -> SP a b
put :: b -> SP a b -> SP a b

map :: (a -> b) -> SP a b
map f = get (\ a -> put (f a) (map f))

In our system, we define the type of codes for stream processing functions [10]
as a interleaved coinductive-inductive type.

SP AB := νXμY.B × X + (A → Y )
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The equi-style enables a direct representation of the constructors:

put := inl : ∀A∀B. B × SP AB → SP AB
get := inr : ∀A∀B. (A → SP AB) → SP AB

The code of the stream-mapping function can be defined by Mendler coiteration
as follows:

map : ∀A∀B. (A → B) → SP AB
map := ΛAΛBλf :A → B.

fixν
0 ΛXλmap : X. inr (λa :A. inl (f a, map) : μY. B × X + (A → Y ))

Stream eating executes the code of a stream processor, consuming an input
stream and producing an output stream. In Haskell it is again defined by general
recursion:

eat :: SP a b -> [a] -> [b]
eat (get f) (a:as) = eat (f a) as
eat (put b t) as = b : eat t as

We define eating by an outer Mendler coiteration on the output stream and an
inner Mendler iteration on the stream processor.

eat : SP AB → StreamA → StreamB
eat := fixν

2 ΛXλeatν :SP AB → Stream A → X
fixμ ΛY λeatμ :Y → StreamA → B × X

λt :B × SP AB + (A → Y ). λ(a, as). match t with
put (b, t′) → (b, eatν t′ (a, as)) : B × X
get f → eatμ (f a : Y ) as

Some interesting functions, like composition of stream processors, are not (co)ite-
rative, hence cannot be defined directly in the present type systems. Therefore,
we introduce a more expressive system of sized types in the next section.

4 A Fancy Type System: Sized Types

Sized types allow a greater flexibility in defining recursive and corecursive func-
tions by mapping the semantics more directly into the syntax of types. In the
following, we describe an extension of the type system Fω that makes the fol-
lowing features of semantics available in syntax:

1. Ordinals a and approximations μaF and νaF of inductive and coinductive
types. The syntax of ordinals will be restricted to variables, successor and
∞. There is no need to provide notation for limit ordinals.

2. Distinction between guarded (∗g) and unguarded types (∗u). This feature is
new in comparison to previous works [2,8,9].

3. Monotonicity information (polarity) of type constructors. For instance, the
function space constructor is antitone in its first argument and monotone in
its second argument, thus, it receives kind ∗u

−→ ∗u
+→ ∗g. Using polarities,

the positivity test for (co)inductive types scales to higher-orders [1].
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Kinds classify type constructors. Besides ∗g and ∗u we introduce a kind ordu

of ordinals and a subkind ordg ≤ ordu of non-zero ordinals. Function kinds are
annotated with a polarity p.

p, q ::= ◦ mixed-variant (no monotonicity information)
| + covariant (monotone)
| − contravariant (antitone)
| � constant (both mono- and antitone)

κ ::= ∗u | ∗g | ordu | ordg base kind
| κ

p→ κ′ function kind

Subkinding κ ≤ κ′ is defined inductively by the following rules:

∗g ≤ ∗u ordg ≤ ordu

κ′
1 ≤ κ1 p′ ≤ p κ2 ≤ κ′

2

κ1
p→ κ2 ≤ κ′

1
p′
→ κ′

2

Herein, the order on polarities is the reflexive-transitive closure of the axioms
◦ ≤ p and p ≤ �. If one composes a function in κ1

p→ κ2 with a function in
κ2

q→ κ3 one obtains a function in κ1
pq→ κ3. For the associative and commutative

polarity composition pq we have the laws �p = �, ◦p = ◦ (for p �= �), +p = p,
and −− = +. Inverse application p−1q of a polarity p to a polarity q is defined
as the solution of

∀q, q′. p−1q ≤ q′ ⇐⇒ q ≤ pq′.

Type constructors F are type-level λ-terms over constants C:

C ::= → | × | + | 1 | ∀κ | μ | ν | 0 | s | ∞
A, B, F, G ::= C | X | λXF | F G

We use →, ×, + infix and write ∀X :κ.A for ∀κλXA. If κ is ∗u, it can be dropped.
We write the ordinal argument a to μ and ν superscript, e.g., μaF .

Let Δ denote a finite map from type (constructor) variables X to pairs pκ
of a polarity p and a kind κ. Inverse application p−1Δ of a polarity p to Δ is
defined by Δ(X) = qκ =⇒ (p−1Δ)(X) = (p−1q)κ. The following kinding rules
[1] and kind assignments to constants handle polarities properly:

C : κ

Δ � C : κ

Δ(X) = pκ p ≤ +
Δ � X : κ

Δ, X :pκ � F : κ′

Δ � λXF : κ
p→ κ′

Δ � F : κ
p→ κ′ p−1Δ � G : κ

Δ � F G : κ′
Δ � F : κ κ ≤ κ′

Δ � F : κ′

0 : ordu

s : ordu
+→ ordg

∞ : ordg

→ : ∗u
−→ ∗u

+→ ∗g

× : ∗u
+→ ∗u

+→ ∗g

+ : ∗u
+→ ∗u

+→ ∗g

1 : ∗g

∀κ : (κ ◦→ ∗b)
+→ ∗b

μ : ordb
+→ (∗u

+→ ∗b)
+→ ∗b

ν : ordu
−→ (∗g

+→ ∗g)
+→ ∗g
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These kindings express, for instance, that successor ordinals s a and the closure
ordinal ∞ are “guarded” (i.e., non-zero), each of the proper constructions →, ×,
+, and 1 produces guarded types, a universal type ∀κλXA is guarded if its body
A is. Interesting is the kinding of inductive types: μaF is guarded if a is non-zero
and F X is guarded even for unguarded X . For example, μ0F and μaλXX are
always unguarded, μs aλX. 1 + X is always guarded. Finally, coinductive types
νaF are always guarded, but they are only well-kinded if F maps guarded types
to guarded types. Hence, the type ν∞λXX , which contains only the inhabitant
fixν

0λxx, is allowed, but νaλX.μ∞λY Y is prohibited, and so is νaλX. μ0F .

Type equality and subtyping. The judgement Δ � F = F ′ : κ is the least
congruence over the following axioms [1], including a subsumption rule:

Δ, X :pκ � F : κ′ p−1Δ � G : κ

Δ � (λXF )G = [G/X ]F : κ′
Δ � F : pκ → κ′

Δ � λX. F X = F : pκ → κ′ X �∈ FV(F )

Δ � F : �κ → κ′ Δ � G : κ Δ � G′ : κ

Δ � F G = F G′ : κ′

Δ � s ∞ = ∞ : ordg

Δ � a : ordu b ∈ {u, g}
Δ � μsa = λF. F (μa F ) : (∗u

+→ ∗b)
+→ ∗b

Δ � a : ordu

Δ � νsa = λF. F (νa F ) : (∗g
+→ ∗g)

+→ ∗g

Subtyping Δ � F ≤ F ′ : κ is induced by axioms expressing relations between
ordinals and equipped with congruence rules that respect polarities.

Δ � a : ordu

Δ � 0 ≤ a : ordu

Δ � a : ordb

Δ � a ≤ s a : ordb

Δ � a : ordb

Δ � a ≤ ∞ : ordb

Δ � F ≤ F ′ : κ
p→ κ′ p−1Δ � G : κ

Δ � F G ≤ F ′ G : κ′

Δ � F : κ
+→ κ′ Δ � G ≤ G′ : κ

Δ � F G ≤ F G′ : κ′
Δ � F : κ

−→ κ′ Δ � G′ ≤ G : κ

Δ � F G ≤ F G′ : κ′

Additionally, we have a congruence rule for λ-abstraction and rules for reflexivity,
transitivity, antisymmetry, and subsumption. Typically, we will use subtyping
to derive μaF ≤ μs aF ≤ μ∞F and ν∞F ≤ νs aF ≤ νaF .

Kind interpretation. Kinds are interpreted as expected: [[∗u]] = SATu, [[∗g]] =
SATg, [[ordu]] = {α | 0 ≤ α ≤ ∞}, [[ordg]] = {α | 0 < α ≤ ∞}, and [[κ

p→ κ′]] is
the space of p-variant operators from [[κ]] to [[κ′]]. For base kinds κ0 let A �κ0 A′

hold iff A ⊆ A′. For higher kinds, let F �
κ

p→κ′ F ′ iff F(G) �κ′ F ′(G) for all
G ∈ [[κ]]. With these definitions, we can set

[[κ
p→ κ′]] = {F ∈ [[κ]] → [[κ′]] | F(G) � F(G′) for all G �p G′ ∈ [[κ]]}.
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Herein, �+ denotes �, �− denotes �, �◦ denotes equality, and G �
 G′ always
holds.

Lemma 6 (Soundness of subkinding). If κ ≤ κ′ then [[κ]] ⊆ [[κ′]].

Type interpretation. We interpret the type constants C as follows:

[[0]] = 0
[[s]](∞) = ∞
[[s]](α < ∞) = α + 1
[[∞]] = ∞

[[∀κ]](F) =
⋂

G∈[[κ]] F(G)
[[C]] = C for C ∈ {→, ×, +, 1, μ, ν}

This interpretation can be lifted to an interpretation [[F ]]θ of well-kinded con-
structors F . We let θ � θ′ ∈ [[Δ]] if θ(X) �p θ′(X) ∈ [[κ]] for all (X : pκ) ∈ Δ.

Theorem 3 (Soundness of kinding, equality, and subtyping). Let θ �
θ′ ∈ [[Δ]].

1. If Δ � F : κ then [[F ]]θ � [[F ]]θ′ ∈ [[κ]].
2. If Δ � F = F ′ : κ then [[F ]]θ � [[F ′]]θ′ ∈ [[κ]].
3. If Δ � F ≤ F ′ : κ then [[F ]]θ � [[F ′]]θ′ ∈ [[κ]].

Typing. The rules for λ-abstraction, application, basic constants c remain in
place. The type conversion rule is replaced by a subsumption rule, and the gen-
eralization and instantiation rules for universal types are now higher-kinded.

Γ � Γ (x) : ∗u

Γ � x : Γ (x)
Γ � t : A Γ � A ≤ B : ∗u

Γ � t : B

Γ, X :κ � t : F X

Γ � t : ∀κF
X �∈ FV(F )

Γ � t : ∀κF Γ � G : κ

Γ � t : F G

Γ � F : ∗u
+→ ∗u Γ � G : ordu

◦→ ∗u Γ � a : ordu

Γ � fixμ : (∀ı :ordu. (μıF → G ı) → μs ıF → G(s ı)) → μaF → G a
admμ

Γ � F : ∗g
+→ ∗g Γ � Gi : ordu

◦→ ∗g for i = 1..n Γ � a : ordu

Γ � fixν
n : (∀ı :ordu. (G1..n ı → νıF ) → G1..n (s ı) → νs ıF ) → G1..n a → νaF

admν

In the recursion rule, the side condition admμ needs to ensure that the type
λı. μıF → Gı is continuous in the sense of Lemma 3. Systematic criteria have
been developed based on a saturated-set semantics in the context of iso-(co)in-
ductive types [2], and these criteria are directly applicable for the equi-setting
described in this article. Due to space restrictions, we only give a sound approx-
imation here: There must be an n ≥ 0, Γ � Fi : ∗u

+→ ∗u for i = 1..n and
Γ � B : ordu

+→ ∗u such that Γ � Gı = μıF1 → · · · → μıFn → B ı : ∗u.
For the criterion admν we give the following sound approximation: For each

j = 1..n, either Γ � Gj : ordu
−→ ∗u, or there exists Γ � Fj : ∗u

+→ ∗u such that
Γ � Gj ı = μıFj : ∗u.
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Theorem 4 (Soundness of typing). If Γ � t : A and θ ∈ [[Γ ]] then tθ ∈ [[A]]θ.

Proof. By induction on the typing derivation. The connection of the typing rules
for recursion and corecursion to lemmata 3 and 4 is now immediate.

Corollary 2 (Strong normalization and consistency). Each typable term
is strongly normalizing. Each closed well-typed term weak-head reduces to a value.
No closed term inhabits ∀XX.

Example: Composition of Stream Processors

The sized type system encompasses a number of recursion schemes: primitive re-
cursion, Mendler (co)recursion, course-of-value recursion, and indirect recursion
(where the recursive arguments are obtained via another function, like the filter-
ing function in case of quicksort). In the following, we implement composition
comp of stream processors such that eat (comp t1 t2) = eat t2 ◦ eat t1. There are
two possible implementations for the case that t1 wants to read an element and
t2 wants to output one. We give the latter priority and arrive at the following
Haskell code:

comp :: SP a b -> SP b c -> SP a c
comp t1 (put c t2) = put c (comp t1 t2)
comp (put b t1) (get f2) = comp t1 (f2 b)
comp (get f1) t2 = get (\ a -> comp (f1 a) t2)

We express SP through sized types and define two useful approximations of this
type.

SP AB := ν∞λX. μ∞λY. B × X + (A → Y )

SPı AB := νıλX. μ∞λY. B × X + (A → Y )
SPs ı AB = B × SPı AB + (A → SPs ı AB)
put : B × SPı AB → SPs ı AB
get : (A → SPs ı AB) → SPs ı AB

SPj AB := μjλY. B × SP AB + (A → Y )
SPs j AB = B × SP AB + (A → SPj AB)
get : (A → SPj AB) → SPs j AB
put : B × SP∞ AB → SPs j AB

We will use the derived types of the constructors put and get below. Note the
asymmetry between SPı and SPj, which shows in the last type of put.

In our analysis, comp t1 t2 is defined by corecursion into SPAC using a lexico-
graphic recursion on (t2, t1). It is conveniently coded with a generalized recursor
fixμ

n, which recurses on the n + 1st argument and is definable from fixμ [3].

comp
: SP AB → SP B C → SP AC
:= fixν

2Λı. λcompν :SP AB → SP B C → SPı AC.
fixμ

1Λj. λcompμ
1 :SP AB → SPj B C → SPs ıAC.

fixμ
0Λk. λcompμ

2 :SPk AB → SPs j B C → SPs ıAC.
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λt1 :SPs k A B. λt2 :SPs j B C. match t2 with
put (c, t′2 : SP B C) → put (c, compν t1 t′2) : SPs ı AC
get (f2 : B → SPj B C) → match t1 with

put (b, t′1 : SP AB) → compμ
1 t′1 (f2 b) : SPs ı AC

get (f1 : A → SPk AB) → get (λa. compμ
2 (f1 a) t2) : SPs ı AC

In the corecursive call to compν , the first argument is casted from SPs k AB
to SP∞ AB using subtyping of inductive types. Such a cast is not available in
Mendler iteration, but could be simulated with Mendler recursion. Hence, comp
is a mixed coiterative/recursive/recursive function.

5 Conclusions

We have presented a construction of saturated sets for equi-inductive and coin-
ductive types and derived two type systems which guarantee termination of
recursion and corecursion under lazy unfolding. In contrast to candidates of re-
ducibility or biorthogonals, saturated sets are closed under unions, hence, the
continuity criteria for sized iso-(co)inductive types developed in previous work
[2] are directly transferable to the equi-setting.

We have given two type systems for terminating (co)recursion in the presence
of equi-(co)inductive types and showed by some examples that they handle mixed
inductive/coinductive types properly. The system of sized types is ready for
extension to higher-kinded (co)inductive types.

Although the operational semantics of corecursive values in the equi-setting
suggests a semantics using biorthogonals, we have succeeded to apply a modifi-
cation of the saturated sets approach. This substantiated the conjecture Colin
Riba made to me, namely, biorthogonals are only required to justify languages
inspired by classical logic.
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