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Preface

This volume contains the proceedings of the Fifth Asian Symposium on Program-
ming Languages and Systems (APLAS 2007), which took place in Singapore,
November 29 – December 1, 2007. The symposium was sponsored by the
Asian Association for Foundation of Software (AAFS) and School of Computing,
National University of Singapore.

In response to the call for papers, 84 full submissions were received. Each sub-
mission was reviewed by at least three Program Committee members with the
help of external reviewers. The Program Committee meeting was conducted elec-
tronically over a 2-week period. After careful discussion, the Program Committee
selected 25 papers. I would like to sincerely thank all the members of the APLAS
2007 Program Committee for their excellent job, and all the external reviewers
for their invaluable contribution. The submission and review process was man-
aged using the EasyChair system.

In addition to the 25 contributed papers, the symposium also featured three
invited talks by Vincent Danos (University of Paris VII and CNRS, France),
Sriram Rajamani (Microsoft Research India), and Vijay Saraswat (IBM T.J.
Watson Research Lab, USA).

Many people helped to promote APLAS as a high-quality forum in Asia to
serve programming language researchers worldwide. Following a series of well-
attended workshops that were held in Singapore (2000), Daejeon (2001), and
Shanghai (2002), the first four formal symposiums were held in Beijing (2003),
Taipei (2004), Tsukuba (2005), and Sydney (2006).

I am grateful to the General Chair, Joxan Jaffar, for his invaluable support
and guidance that made our symposium in Singapore possible and enjoyable.
I am indebted to our Local Arrangements Chair, Wei-Ngan Chin, for his con-
siderable effort to plan and organize the meeting itself. I thank Eijiro Sumii for
serving as the Poster Chair and Alexandru Stefan for his help with the conference
Web site and posters. Last but not least, I would like to thank the AAFS Chair
Tetsuo Ida, and the program chairs of the past APLAS symposiums, especially
Naoki Kobayashi, for their advice.

September 2007 Zhong Shao
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X10: Concurrent Programming for Modern

Architectures

Vijay Saraswat

IBM TJ Watson Research Center
PO Box 704, Yorktown Heights, NY 10598

Abstract. Two major trends are converging to reshape the landscape
of concurrent object-oriented programming languages. First, trends in
modern architectures (multi-core, accelerators, high performance clus-
ters such as Blue Gene) are making concurrency and distribution in-
escapable for large classes of OO programmers. Second, experience with
first-generation concurrent OO languages (e.g. Java threads and synchro-
nization) have revealed several drawbacks of unstructured threads with
lock-based synchronization.

X10 is a second generation OO language designed to address both
programmer productivity and parallel performance for modern architec-
tures. It extends the sequential Java programming language with a hand-
ful of constructs for concurrency and distribution: a clustered address
space (with global data-structures) to deal with distribution; lightweight
asynchrony to deal with massive parallelism; recursive fork-join paral-
lelism for structured concurrency; termination detection for sequencing,
and atomic blocks for mutual exclusion.

Additionally, it introduces a rich framework for constraint-based de-
pendent types (and annotations) in OO languages. Specifically, the frame-
work is useful for statically specifying the shape of various data-structures
(e.g. multidimensional arrays) and the location of objects and distribution
of arrays in the clustered address space.

X10 is being developed jointly with several colleagues (at IBM and
elsewhere) as part of the DARPA-IBM high performance computing
project, PERCS. X10 is being developed under the Eclipse open-source li-
cence. A first implementation of the language is available at http://x10.
sf.net. It compiles X10 source programs to Java class files and calls to a
runtime. A distributed implementation suitable for clusters is currently
under development.

This material is based upon work supported by the Defense Advanced
Research Projects Agency under its Agreement No. HR0011-07-9-0002.

Z. Shao (Ed.): APLAS 2007, LNCS 4807, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



The Nuggetizer: Abstracting Away

Higher-Orderness for Program Verification

Paritosh Shroff1, Christian Skalka2, and Scott F. Smith1

1 The Johns Hopkins University, Baltimore, MD, USA
{pari,scott}@cs.jhu.edu

2 The University of Vermont, Burlington, VT, USA
skalka@cs.uvm.edu

Abstract. We develop a static analysis which distills first-order compu-
tational structure from higher-order functional programs. The analysis
condenses higher-order programs into a first-order rule-based system, a
nugget, that characterizes all value bindings that may arise from program
execution. Theorem provers are limited in their ability to automatically
reason about higher-order programs; nuggets address this problem, being
inductively defined structures that can be simply and directly encoded
in a theorem prover. The theorem prover can then prove non-trivial pro-
gram properties, such as the range of values assignable to particular
variables at runtime. Our analysis is flow- and path-sensitive, and incor-
porates a novel prune-rerun analysis technique to approximate higher-
order recursive computations.

Keywords: program analysis, higher-order, 0CFA, program verification.

1 Introduction

Higher-order functional programming is a powerful programming metaphor, but
it is also complex from a program analysis standpoint: the actual low-level op-
erations and the order in which they take place are far removed from the source
code. It is the simpler first-order view that is easiest for automated verifica-
tion methods to be applied to. In this paper we focus on defining a new form
of program abstraction which distills the first-order computational structure
from higher-order functional programs. The analysis is novel in how it condenses
higher-order programs into a first-order inductive system, a nugget, which char-
acterizes all value bindings that can result from program execution. Nuggets can
be extracted automatically from the program source of any untyped functional
language, and without any need for programmer annotation.

A major advantage of the nuggets is that they are inductively defined struc-
tures which can be directly expressed as inductive definitions in a theorem prover.
So in effect, our analysis produces an output, a nugget, which is ideally suited as
input to a theorem prover. We use Isabelle/HOL [1] to reason about nuggets in
this paper since it has built-in mechanisms to define and reason about inductively
defined first-order entities (although other provers with a similar mechanism, e.g.
ACL2 [2], could be employed as well). The theorem prover can then be used to

Z. Shao (Ed.): APLAS 2007, LNCS 4807, pp. 2–18, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Abstracting Away Higher-Orderness for Program Verification 3

automatically prove desirable properties of the corresponding program. Putting
these steps together gives a method for automatically proving complex inductive
properties of higher-order programs. The alternative approach to formally prove
program properties in a theorem prover involves writing an operational or deno-
tational semantics for the programs and proving facts about those definitions,
or using an existing axiomatized programming logic. While these approaches are
effective, there is a high user overhead due to all of the program features such as
higher-order functions that clutter up the semantics or axioms, and a great deal
of time and effort is thus required. Nuggets are not complete in that some pro-
gram information is abstracted out, but enough information remains for a wide
class of program properties to be verified. So, we are trading off the complete-
ness of full verification for the speed and simplicity of partial verification. For
concreteness, we focus here on solving the value range problem for functional
programs—deducing the range of values that integer variables can take on at
runtime. While this is a narrow problem it is a non-trivial one, and it serves as a
testbed for our approach. Our analysis grew out of a type-and-effect constraint
type system [3], and is also related to abstract interpretation [4].

2 Informal Overview

In this section we give an informal description of our analysis. We start by
showing the form of the nuggets, their expressiveness, and the technique to prove
properties they encapsulate. Then we describe the nugget-generation algorithm.
Consider the following simple untyped higher-order program which computes
the factorial of 5, using recursion encoded by “self-passing”,

let f = λfact . λn. if (n != 0) then n ∗ fact fact (n − 1) else 1 (1)
in f f 5 .

We want to statically analyze the range of values assignable to the variable n
during the course of computation of the above program. Obviously this program
will recurse for n from 5 down to 0, each time with the condition (n != 0)
holding, until finally n = 0, thus the range of values assignable to n is [0, . . . , 5].
The particular goal of this paper is to define an analysis to automatically infer
basic properties such as value ranges. For non-recursive programs it is not hard
to completely track such ranges; the challenge is to track ranges in the presence
higher-order recursive functions.

2.1 Nuggets

There is a huge array of potential program abstractions to consider: type sys-
tems, abstract interpretations, compiler analyses, etc. All of these can be viewed
as abstracting away certain properties from program executions. Type systems
tend to abstract away the control-flow, that is, flow- and path-sensitivity, but
retain much of the data-flow including infinite datatype domains; abstract in-
terpretations, on the other hand, generally make finitary abstractions on infinite
datatype domains, but tend to preserve flow- and path-sensitivity. Our approach
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is somewhat unique in that we wish to abstract away only the higher-order na-
ture of functional programs, and preserve as much of the other behavior as pos-
sible, including flow- and path-sensitivity, infinite datatype domains, and other
inductive program structure.

The core of our analysis is the nuggetizer, which automatically extracts nuggets
from source programs. We begin with a description of the nuggets themselves
and their role in proving program properties; subsequently, we discuss the nugge-
tizing process itself.

Nuggets are purely first-order inductive definitions; they may contain higher-
order functions but in a nugget they mean nothing, they are just atomic data. All
higher-order flows that can occur in the original program execution are reduced
to their underlying first-order actions on data by the nuggetizer, the algorithm
for constructing nuggets described in the next subsection. We illustrate the form
and the features of nuggets by considering the nugget produced by the nugge-
tizer for program (1),

Nugget:
{
n �→ 5, n �→ (n − 1)n != 0

}
. (2)

(We are leaving out the trivial mappings for f and fact here.) As can be seen,
nuggets are sets of mappings from variables to simple expressions—all higher-
order functions in program (1) have been expanded. The mapping n �→ 5 rep-
resents the initial value 5 passed in to the function (λn. . . .) in program (1).
The mapping n �→ (n − 1)n != 0 additionally contains a guard, n != 0, which is a
precondition on the usage of this mapping, analogous to its role in dictating the
course of program (1)’s computation. Note the inductive nature of this mapping:
n maps to n−1 given the guard n != 0 holds. The mapping can then be read as:
during the course of program (1)’s execution, n may be also bound to (ni − 1),
for some value ni, such that n �→ ni is an already known binding for n, and the
guard ni != 0 holds. It corresponds to the fact that the recursive invocation of
function (λn. . . .) at call-site ‘(fact fact) (n− 1)’ during program (1)’s computa-
tion results in (ni − 1) being the new binding for n, given n is currently bound
to ni and the guard ni != 0 holds.

Denotational semantics of nuggets. Nuggets are in fact nothing more than in-
ductive definitions of sets of possible values for the variables—the least set of
values implied by the mappings such that their guards hold. So, the denotational
semantics of a nugget is nothing more than the values given by this inductive
definition. The above nugget has the denotation

{n �→ 5, n �→ 4, n �→ 3, n �→ 2, n �→ 1, n �→ 0} .
This is because n �→ 0 does not satisfy the guard n != 0, implying it cannot be
inlined in the right side of mapping n �→ (n − 1)n != 0, to generate the mapping
n �→ (−1) for n. Notice that the above nugget precisely denotes the range of
values assignable to n during the course of program (1)’s computation.

The key soundness property is: a nugget N for a program p must denote each
variable x in p to be mapping to at least the values that may occur during the
run of p. Thus the nugget (2) above serves to soundly establish the range of n
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to be [0, . . . , 5] in program (1), which is also precise in this case: n will take on
exactly these values at runtime.

Defining and reasoning about nuggets in Isabelle/HOL. Properties of a nugget
can be manually computed as we did above, but our goal is to automate proofs
of such properties. Since nuggets are inductive definitions, any nugget can be
automatically translated into an equivalent inductive definition in a theorem
prover. The theorem prover can then be used to directly prove, for example,
that 0 ≤ n ≤ 5 in program (1). The Isabelle/HOL encoding of the above nugget
is presented in Section 5. Theorem proving aligns particularly well with nuggets
for two reasons: 1) since arbitrary Diophantine equations can be expressed as
nuggets there can be no complete decision procedure; and, 2) theorem provers
have built-in mechanisms for writing inductive definitions, and proof strategies
thereupon.

Two more complex examples. To show that the nuggets can account for fancier
higher-order recursion, consider a variation of the above program which employs
a fixed-point combinator Z = λf.

(
λx. f (λy. x x y)

) (
λx. f (λy. x x y)

)
to per-

form recursion. Z is a version of the Y combinator, given by η-expansion on a
part of it, to be used in call-by-value evaluations.

let f ′ =
(
λfact .λn. if (n != 0) then n ∗ fact (n − 1) else 1

)
in Z f ′ 5 . (3)

The nugget at n as extracted by the nuggetizer is
{
n �→ 5, n �→ y, y �→ (n −

1)n != 0
}

which, by transitive closure, maps n equivalently as in nugget (2). The
more complex higher-order structure of the above program proves no more de-
manding to the nuggetizer.

Now, consider another variation of program (1), but with higher-order mutual
recursion,

let g = λfact ′. λm. fact ′ fact ′ (m − 1) in
let f = λfact . λn. if (n != 0) then n ∗ g fact n else 1 (4)
in f f 5 .

The nugget at n and m as extracted by the nuggetizer is,

Nugget:
{
n �→ 5, m �→ nn != 0, n �→ (m − 1)

}
. (5)

The mutually recursive computational structure between the functions (λn. . . .)
and (λm. . . .) in the above program is reflected as a mutual dependency between
the mappings of n and m in the extracted nugget above. The denotational se-
mantics at n and m for the above nugget are,

{n �→ 5, n �→ 4, n �→ 3, n �→ 2, n �→ 1, n �→ 0} and
{m �→ 5, m �→ 4, m �→ 3, m �→ 2, m �→ 1},

respectively. Note the binding m �→ 0 is not added because the guard n != 0
on the mapping m �→ nn != 0 fails—even though the mapping n �→ 0 is present,
it does not satisfy the guard n != 0 and hence cannot be used to generate the
mapping m �→ 0.

External inputs. The above examples assume a concrete value, such as 5, to be
flowing into functions. In general the value can come from an input channel,
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and properties can still be proven. Since we do not have input statements in
our language, we only sketch how inputs can be handled. Imagine a symbolic
placeholder, inp, corresponding to the input value. Now consider the nugget,{
n �→ inpinp≥ 0, n �→ (n−1)n != 0

}
, extracted from a program which invokes the

factorial function, from the above examples, on inp under the guard inp ≥ 0.
The bindings for n in the denotation of this nugget lie in the symbolic range
[0, . . . , inp], which, along with the guard inp ≥ 0, establishes that n is never
assigned a negative number over any program run.

2.2 The Nuggetizer

We now describe the process for creating nuggets, the nuggetizer. It constructs
the nugget via a collecting semantics—the nugget is incrementally accumulated
over an abstract execution of the program.

The challenge. Our goal is to abstract away only the higher-orderness of pro-
grams and preserve as much of the other behavior as possible including flow- and
path-sensitivity, and infinite datatype domains. In other words, we aim to define
an abstract operational semantics (AOS) which structurally aligns very closely
with the concrete operational semantics (COS) of programs. This is a non-trivial
problem as concrete executions of programs with recursively invoked functions
may not terminate; however, abstract executions must always terminate in or-
der to achieve a decidable static analysis. Further, recursive function invocations
need not be immediately apparent in the source code of higher-order programs
due to the use of Y-combinators, etc., making them hard to detect and even
harder to soundly approximate while preserving much of their inductive struc-
ture at the same time.

The AOS. Our AOS is a form of environment-based operational semantics,
wherein the environment collects abstract mappings such as n �→ (n − 1)n != 0;
the environment is monotonically increasing, in that, mappings are only added,
and never removed from the environment. The AOS closely follows the control-
flow of the COS, that is, the AOS is flow-sensitive. Further, the AOS keeps track
of all guards that are active at all points of the abstract execution, and tags
the abstract mappings with the guards in force at the point of their addition
to the environment; the AOS is path-sensitive. So for example, when analyzing
the then-branch of the above programs, the AOS tags all mappings with the
active guard n != 0, before adding them to the environment, as for mappings
n �→ (n − 1)n != 0 and m �→ nn != 0 in nuggets (2) and (5), respectively.

The prune-rerun technique. A novel prune-rerun technique at the heart of the
nuggetizer is pivotal to ensuring its convergence and soundness in presence of
a flow-sensitive AOS. All recursive function invocations are pruned, possibly at
the expense of some soundness, to ensure convergence of the AOS. The AOS
is then repeatedly rerun on the program, a (provably) finite number of times,
while accumulating mapping across subsequent runs, until all soundness lost by
way of pruning, if any, is regained.
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Finiteness of the abstract environment. The domain and range of all mappings
added to the environment during abstract execution, e.g. n, y, m, 5, (n − 1),
(m−1) and (n != 0) in the above shown nuggets, are fragments that directly ap-
pear in corresponding source programs—no new subexpressions are ever created
in the nuggets, either by substitution or otherwise. For this reason, the maxi-
mum number of distinct mappings in the abstract environment of the AOS is
finite for any given program. Since the nuggetizer accumulates mappings across
subsequent runs of the AOS on a given program, all feasible mappings must
eventually appear in the environment after some finite number of reruns. Thus
the environment must stop growing and the analysis must terminate, producing
the nugget of the program.

An Illustration. We now discuss the abstract execution of program (1) placed
in an A-normal form [5], for technical convenience, as follows:

let f = λfact . λn. let r = if (n != 0) then let r′ = fact fact (n − 1)
in n ∗ r′

else 1 (6)
in r

in f f 5 .
The abstract execution of the above program closely follows the control-flow of
its concrete execution. It is summarized in Fig. 1. The column labeled “Stack”
indicates the state of the abstract stack at the corresponding step. The “Collected
Mappings” column indicates the mappings collected by the nuggetizer, if any,
during the indicated step. The collected mappings are added to the environment
of the nuggetizer, and so the environment at any step is the union of all collected
mappings up to the current step. The environment is initially empty. The “Curr.
Guard(s)” column , where “Curr.” is short for “Current”, indicates the guard(s)
in force, if any, at the corresponding step. The “Redex” column holds the redex
of the abstract execution at the end of the corresponding step. We now highlight
the significant steps in Fig. 1.

Setup and forking the branches. During step 1, the mapping of f to (λfact . λn . . .)
is collected in the environment, and then the function (λfact . λn . . .) is invoked
during step 2 by placing it in the abstract stack and collecting the mapping
fact �→ f . Step 3 pops the stack and results in the function application ‘(λn . . .) 5’
being the redex at the end of step 3. Step 4 invokes the function (λn . . .) by
placing it in the abstract stack and collecting the mapping n �→ 5. At step 5
the abstract execution is forked into two, such that the then- and else-branches
are analyzed in parallel under their corresponding guards, that is, (n != 0) and
(n == 0), and under the subcolumns labeled ‘T’ and ‘F’, respectively; since the
abstract stack remains unchanged during each of these parallel executions, only
one column labeled ‘T/F’ is used for brevity.

Now, as n is bound to only 5 in the environment, the guard (n != 0) is
resolvable to only true, and we could have chosen to analyze only the then-
branch at step 5; however, that would have required invocation of a decision
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# Stack Collected Mappings Curr. Guard(s) Redex Next Action
0 let f = collect let-binding

(λfact .λn . . .)
in f f 5

1 f �→ (λfact .λn . . .) f f 5 invoke f

2 (λfact . fact �→ f
�
(λn . . .)

�
5 pop (λfact .λn . . .)

λn . . .)

3 (λn . . .) 5 invoke (λn . . .)

4 (λn . . .) n �→ 5 let r =
(if (n != 0) . . .) fork execution

in r

T/F T F T F T F T F

5 n != 0 n==0 let r′ = 1
(λn . . .) fact fact (n − 1) invoke fact nop

in n ∗ r′

6 fact �→ factn != 0 n != 0 n==0 let r′ = 1 prune
(λn . . .) (λn . . .) (n − 1) re-activation nop

in n ∗ r′ of (λn . . .)

7 (λn . . .) n �→ (n − 1)n != 0 n != 0 n==0 n ∗ r′ 1
r′ �→ r merge executions

8 (λn . . .) r �→ (n ∗ r′)n != 0 (r) pop (λn . . .)
r �→ 1n==0

9 r

Fig. 1. Example: Abstract Execution of Program (6)

procedure at the branch site to decide on the branch(es) needing analysis given
the current environment. Since the environment can have multiple bindings for
the same variable, it is likely that a branching condition will resolve to both true
and false in which case both branches would have to be analyzed in any case. So,
for efficiency we forgo the decision procedure and always analyze both branches
in parallel. Note that this does not lead to a loss in precision as all mappings
collected during the abstract execution of each of the branches are predicated
on their respective guards, thus preserving the conditional information in the
nugget. Step 6 under subcolumn labeled ‘T’, is similar to step 2, except the
collected mapping, fact �→ factn != 0, is now tagged with the current guard,
n != 0.

Pruning recursion. The redex (λn . . .) (n − 1) at the end of step 6 entails a
recursive invocation of the function (λn . . .), which is already on the stack. The
abstract execution has two options at this point: i) follow the recursive invo-
cation, as the concrete execution would, opening the possibility of divergence
if later recursive invocations are followed likewise, or ii) prune, that is, ignore,
the recursive invocation in order to achieve convergence, while (possibly) losing
soundness. The first option is obviously infeasible to obtain a convergent anal-
ysis, hence we choose the second option. We show later that soundness can be
achieved by simply rerunning the abstract execution. The pruning of the function
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invocation, (λn . . .) (n−1), involves (a) collecting the mapping, n �→ (n−1)n != 0,
which captures the flow of the symbolic argument (n−1), under the guard n != 0,
to the parameter variable n, and (b) skipping over the abstract execution of the
body of (λn . . .) by collecting the mapping r′ �→ r, simulating the immediate
return from the recursive invocation. Now, since the function was not in fact
recursively invoked, the abstract execution is yet to collect any binding for r,
hence, at this point in the abstract execution, r only serves as a placeholder for
the return value of the recursive call, to be filled in by later analysis. We say
return variables r and transitively, r′, are inchoate as of the end of step 7 since
they have no mappings in the environment. Consequently, later invocations of r
and r′, if any, would be skipped over as well until they are choate (this example,
however, has no such invocations). (Note, the mapping r′ �→ r is not tagged
with any guard so as to allow any binding for r, that may appear later, to be
transitively bound to r′ as well.)

This pruning technique was in fact inspired by the type closure rule for func-
tion application in type constraint systems (which is itself isomorphic [6] to
0CFA’s [7] handling of function application): τ1 → τ2 <: τ ′

1 → τ ′
2 implies τ ′

1 <: τ1
and τ2 <: τ ′

2. The recursive invocation at step 7 can be thought of as generating
a type constraint n → r <: (n − 1) → r′ (punning by using program point ex-
pressions as type variables) which by the above function type closure rule would
give (n − 1) <: n and r <: r′, which are in turn isomorphic in structure to the
mappings collected in step 7, minus the guard. So, this work can be viewed as
a method of extending type constraints or 0CFA to incorporate flow- and path-
sensitivity while preserving infinite datatype domains. The close alignment of
the AOS with the COS imparts flow-sensitivity to our analysis, while the guards
on the mappings furnish path-sensitivity.

Merging branches and completing. Step 8 merges the completed executions of the
two branches by collecting the resulting values tagged with their corresponding
guards, that is, adding mappings r �→ (n ∗ r′)n != 0 and r �→ 1n==0, respectively,
depicting the flow of each of the tagged resulting values into the outer let-binding(
let r = (if . . .) in r

)
. Now r and, by transitivity, r′ are no longer inchoate.

The redex at the end of step 8 is (r). Step 9 pops the stack, and the abstract
execution terminates.

Environment has a fixed-point. The environment at the end of this abstract
execution is,

{
f �→ (λfact . λn . . .), fact �→ f, fact �→ factn != 0, (7)
n �→ 5, n �→ (n − 1)n != 0, r′ �→ r, r �→ (n ∗ r′)n != 0, r �→ 1n==0

}
,

which is, in fact, the nugget for program (6). It is identical to (2) but with the
mappings elided there now shown. In general, the nugget is the least fixed-point
of the symbolic mappings collectable by the AOS for a given program. A rerun
of the AOS on the program (6), but this time using the above environment as
its initial environment, will yield the same environment at its end i.e., it is a
fixed-point. In general, however, the initial run need not result in a fixed-point
of the environment.
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The need for rerunning The above example does not need to be rerun other than
to observe that a fixed-point has been reached. To show the need for rerunning,
consider the following variation of program (6) where the return value of the
function (λn . . .) is changed to be a function,

let f = λfact . λn. let r = if (n != 0) then let r′ = fact fact (n − 1) in
let r′′ = r′() in

λy. (n ∗ r′′) (8)
else λx. 1

in r
in f f 5 () .

During the initial run of the AOS on the above program, the return variable r′ is
inchoate in the analysis of the then-branch, as in the previous example. Hence,
when the redex is ‘r′()’, the environment of the abstract execution has no known
function mapping to r′. So the abstract execution simply skips over the call site
‘r′()’ and proceeds without adding any mapping for r′′, either. At the merging
of the branches the abstract execution adds the mappings r �→ (λy. n ∗ r′′)n != 0

and r �→ (λx. 1)n==0 to the environment, finally giving mappings to r and r′.
Since the AOS is flow-sensitive it must not now jump back, out of context, to
the skipped-over call-site ‘r′()’ and reanalyze it with the now-known bindings
for r′—if it were to do so it would lose flow-sensitive information. Although
the pruning step was inspired by flow-insensitive type constraint systems, as
discussed above, the closure process in a constraint system is flow-in-sensitive
and can ignore the order of steps; we cannot follow that lead here and must
instead align the closure step order with the computation itself. The way we
achieve this alignment is by continuing with and finishing the current run, and
then rerunning the AOS on the same program, but with an initial environment
of the one at the end of the just concluded run. This rerun will collect the new
bindings for the call r′() in proper execution order, and the environment at the
end of the rerun will be

{
f �→ (λfact . λn . . .), fact �→ f, fact �→ factn != 0, n �→ 5, n �→ (n − 1)n != 0,
x �→ ()n != 0, y �→ ()n != 0, r′ �→ r, r �→ (λy. n ∗ r′′)n != 0, r �→ (λx. 1)n==0,
r′′ �→ 1n==0, r′′ �→ (n ∗ r′′)n != 0

}
,

This is in fact the least fixed-point of the mappings collected for program (8),
that is, the nugget ; the AOS is run one last time to verify a fixed-point has indeed
been reached. As pointed out earlier, the maximum size of the environment is
strongly bound by the number of program subexpressions, and the environment
itself is monotonically increasing in size during the course of nuggetizing, thus it
must always converge at a fixed-point nugget. The number of reruns required by
the nuggetizer depends on the level of nesting of higher-order recursive functions
which themselves return functions; we believe it will be small in practice.

Value range of return values. The core analysis tracks function argument values
well, but loses information on values returned from recursive functions. The part
of the nugget (7) at the return variable r of the function (λn . . .) is,
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{n �→ 5, n �→ (n − 1)n != 0, r �→ 1n==0, r �→ (n ∗ r)n != 0} . (9)

Note the mapping r′ �→ r is inlined into mapping r �→ (n ∗ r)n != 0 for simplicity.
Observe that r in the range of the mapping r �→ (n ∗ r)n != 0 is not guarded—in
effect allowing any known value of r to be multiplied with any known non-zero
value of n in order to generate a new value for r. The denotational semantics at
n and r of the above nugget is,

{n �→ 0, n �→ 1, n �→ 2, n �→ 3, n �→ 4, n �→ 5} and

{r �→ 1, r �→ 2, r �→ 6, r �→ 24, r �→ 120, r �→ 5, r �→ 8, r �→ 18, r �→ 48, . . .}
which is sound but not precise at r: r maps to 5 because n �→ 5 and r �→ 1 are
present, but 5 is not in the range of runtime values assignable to r. The corre-
lation between the argument and return values of recursive function invocations
is not captured by the nuggetizer while pruning re-activations of a function, as
shown in step 7 of Fig. 1 for (λn . . .); hence, precision for the analyzed return
value is lost. The nuggetizer can, however, be extended to capture the above
mentioned correlation and thus perform a precise analysis on the range of return
values as well; this extension is presented in [8].

Incompleteness. To better show the scope of the analysis, we give an example of
an incomplete nugget, the handling of which is beyond the scope of this paper.
The following program is inspired by a bidirectional bubble sort.

let f = λsort . λx. λlimit . if (x < limit) then sort sort (x + 1) (limit − 1)
else 1 (10)

in f f 0 9 .
The nugget at x and limit as extracted by the nuggetizer is,

{
x �→ 0, x �→ (x + 1)x < limit , limit �→ 9, limit �→ (limit − 1)x < limit

}

and their corresponding denotational semantics are,

{x �→ 0, x �→ 1, . . . , x �→ 9}, and {limit �→ 9, limit �→ 8, . . . , limit �→ 0},
respectively; while the exact ranges of values assigned to x and limit during
the computation of the above program are [0, 5] and [4, 9] respectively. The
nuggetizer does not record the correlation between the order of assignments to
x and limit in the computation of the above program, that is, the fact that the
assignment of (x+1) to x is immediately followed by the assignment of (limit −1)
to limit , and vice-versa. Note, however, that the analysis still manages to bound
x to a narrow range—if x had been used as an index into an array of length 10,
then the above nugget could have been used to prove that all accesses to such
an array would be in-bounds.

3 Language Model and Concrete Operational Semantics

Our programming language model is an untyped pure higher-order functional
language with variables x, integers i, booleans b ∈ {true, false}, and
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⊕ ::= + | − | ∗ | / | == | != | < | > binary operator
F ::= λx. p function
η ::= x | i | b | F | x ⊕ x lazy value
κ ::= η | p | x x atomic computation
p ::= x | let x = κ in p A-normal program

〈η, E〉 concrete closure
E ::= {x �→ 〈η, E〉} concrete environment

The grammar assumes expressions are already in an A-normal form [5], so that
each program point has an associated program variable. 〈η, E〉 represents a clo-
sure, for a lazy (discussed below) value η, and an environment E. The overbar
notation indicates zero or more comma separated repetitions and {·} denotes
a set, so for example ‘{x �→ 〈η, E〉}’ is shorthand for the set ‘{x �→ 〈η, E〉, x �→
〈η, E〉, . . .}’; while the subscripted overbar notation denotes a fixed number of
repetitions, such that, for example, ‘{xk �→ 〈ηk, Ek〉}’ where k ≥ 0, is shorthand
for the set ‘{x1 �→ 〈η1, E1〉, x2 �→ 〈η2, E2〉, . . . , xk �→ 〈ηk, Ek〉}’. Fig. 2 gives the
COS for our language. The semantics is mixed-step, that is, a combination of
both small- and big-step reductions; it allows for an elegant alignment with the
AOS. The COS is otherwise standard. The mixed-step reduction relation −→
is defined over configurations, which are tuples, (E, p); while −→n is the n-step
reflexive (if n = 0) and transitive (otherwise) closure of −→. The environment
lookup function on variables is the partial function defined as, E(x) = 〈η′, E′〉
iff x �→ 〈η′, E′〉 is the only binding for x in E. The transitively closed environ-
ment λ-lookup function on variables and function values is inductively defined
as, E(x)+λ = E′(η′)+λ iff E(x) = 〈η′, E′〉, and E(F )+λ = 〈F , E〉, respectively.
The binary operations (x ⊕ x) are evaluated in a maximally lazy fashion; hence
the term lazy values. So for example, the reduction of the abstract value x + y,
given its environment {x �→ 〈1, ∅〉, y �→ 〈2, ∅〉}, to integer 3, is postponed until
it is absolutely essential to do so for the computation to proceed, that is, the
branching condition of the if rule needs to be resolved. Again, lazy values allow
for a closer alignment between the COS and the AOS. The following function
reduces a closure to its smallest equivalent form, or as we say “grounds” it.

Definition 1 (Ground of a Concrete Closure). The function �·� : {〈η, E〉} →
{〈η, E〉} is inductively defined as,

1. �〈x, E〉� = �E(x)�; �〈i, E〉� = 〈i, ∅〉; �〈b, E〉� = 〈b, ∅〉; �〈F , E〉� = 〈F , E′〉,
where free(F ) ∩ dom(E) = {xk} and E′ =

{
xk �→ �〈xk, E〉�

}
; and,

2. �〈x1⊕x2, E〉� = 〈η, ∅〉, if �〈x1, E〉� = 〈i1, ∅〉, �〈x2, E〉� = 〈i2, ∅〉, and i1⊕i2 =
η; else, �〈x1 ⊕ x2, E〉� = 〈x1 ⊕ x2, E′〉, where E′ =

{
x1 �→ �〈x1, E〉�, x2 �→

�〈x2, E〉�
}

.
A program p is said to be canonical iff all its local variables are distinct. The
canonicality of programs allows new mappings to be simply appended to the
environment in the semantics rules, as opposed to overwriting any previous
bindings—by keeping local variables distinct we reduce the amount of renaming
needed in the COS to zero. The function ·� : {p} → {x} returns the variable
x serving as a placeholder for the result value of a program p; it is inductively
defined as let x = κ in p� = p�, and x� = x.
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(E, let x = η in p) −→
�
E ∪ {x �→ 〈η, E〉}, p

�let
�〈x, E〉� = 〈bi, ∅〉 (b1, b2) = (true, false) (E, pi) −→n (E′, y′)�

E, let y = (p2) in p
�

−→
�
E′ ∪ {y �→ 〈y′, E′〉}, p

� if

E(f)+λ = 〈λx. p, Ef 〉
�
Ef ∪ {x �→ 〈x′, E〉}, p

�
−→n (E′, r′)

(E, let r = f x′ in pnext) −→
�
E ∪ {r �→ 〈r′, E′〉}, pnext

� app

Fig. 2. Concrete Operational Semantics (COS) Rules

4 Abstract Operational Semantics and Nuggetizer

The additional syntax needed for the AOS is as follows:
P ::= b | η = η | P ∧ P | P ∨ P predicate

〈η, P〉 abstract closure
E ::= {x �→ 〈η, P〉} abstract environment
S ::= {〈F , P〉} abstract “stack”

The abstract environment E is a set of mappings from variables to abstract
closures; it may have multiple mappings for the same variable. Unlike concrete
closures, abstract closures 〈η, P〉 do not come with full environments but with
their abstracted forms, the predicates P , which are simple propositional for-
mulae. The predicate P was informally called a “guard” in Section 2, and no-
tated slightly differently: for example, n �→ (n − 1)n != 0 in Section 2 is formally
n �→ 〈(n − 1), n != 0〉. The abstract “stack” S is a set of abstract function
closures; this stack is not used as a normal reduction stack, it is only used to
detect recursive calls for pruning. Fig. 3 presents the AOS rules; observe how
the AOS rules structurally align with the COS rules of Fig. 2. The AOS re-
duction −→ is defined over configurations which are 4-tuples, (S, E , P , p). The
predicate P in abstract configurations indicates the constraints in force right
now in the the current function activation. The transitively closed abstract en-
vironment λ-lookup function on variables, E(x)+λ , is inductively defined to be
the smallest set {〈Fk, Pk〉}, such that ∀x �→ 〈y, P〉 ∈ E . E(y)+λ ⊆ {〈Fk, Pk〉},
and ∀x �→ 〈F , P〉 ∈ E . 〈F , P〉 ∈ {〈Fk, Pk〉}.

The let rule collects the let-binding as an abstract closure x �→ 〈η, P〉, anal-
ogous to the let rule collecting it as a concrete closure. The current predicate
is then updated to reflect the just-executed let-assignment by conjoining the
equality condition (x = η), which is the new constraint in force, hereafter, in the
current function activation. The equality predicates were ignored in Section 2
for simplicity of presentation.

The if rule performs abstract execution of the then- and else-branches in paral-
lel under the current predicate appended with their respective guards, as discussed
in Section 2.2, and then merges their resulting environments and predicates.

The app rule performs abstract execution of all possible function invocations
at the corresponding call-site in parallel under their respective predicates (recall
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�
S , E ,P , let x = η in p

�
−→

�
S ,E ∪

�
x �→ 〈η, P〉

�
, P ∧ (x = η), p

� let

P1 = P ∧ (x = true) P2 = P ∧ (x = false)�
S ,E ,P1, p1

�
−→n1

�
S ,E1, P ′

1, y
′
1
� �

S ,E , P2, p2
�

−→n2
�
S ,E2, P ′

2, y
′
2
�

E ′ = E1 ∪
�
y �→ 〈y′

1, P ′
1〉
�

∪ E2 ∪
�
y �→ 〈y′

2, P ′
2〉
�

P ′ =
�
P ′

1 ∧ (y = y′
1)
�

∨
�
P ′

2 ∧ (y = y′
2)
�

�
S ,E , P , let y = (p2) in p

�
−→

�
S , E ′, P ′, p

� if

E(f)+λ = {〈Fk, Pk〉} Fk = λxk. pk

∀1 ≤ i ≤ k CALL
�
S , 〈Fi, Pi〉

�
= p′

i Si = S ∪ {〈Fi, Pi〉}�
Si, E ∪

�
xi �→ 〈x′, P〉

�
, Pi, p

′
i

�
−→ni

�
Si, Ei, P ′

i , r
′
i

�
�
S ,E , P , let r = f x′ in pnext

�
−→

�
S ,E ∪

�
1≤i≤k

Ei ∪
�
r �→ 〈r′

i, P ′
i〉
�
, P , pnext

	app

Fig. 3. Abstract Operational Semantics (AOS) Rules

that E may map a variable multiply), and then merges their resulting environ-
ments and values. Observe various analogies between the app and app rules—for
example, the app rule pulls the concrete environment Ef from the concrete clo-
sure of the corresponding function being invoked, while the app rule pulls its
abstracted form, that is, the predicate Pi, from the corresponding abstract clo-
sure. The function CALL : {S} × {〈F , P〉} → {p} returns the redex p to be
executed when an abstract function closure 〈F , P〉 is invoked given an abstract
stack S—if it is not a recursive call, the body of F is returned, while if it is a
recursive call, it should be pruned, and only the return variable of F is returned,
as discussed in Section 2.2. Formally, for F = λx. p, CALL

(
S, 〈F , P〉

)
= p if

〈F , P〉 �∈ S, and CALL
(
S, 〈F , P〉

)
= p� if 〈F , P〉 ∈ S. If E(f)+λ = ∅, that is, f

is inchoate in E , the app rule simply skips over the call-site and steps the AOS
over to pnext ; as discussed in Section 2.2 this skipping over call-sites is sound
from the point of view of the nuggetizer as later steps will fill in the appropriate
values which will then be used for analysis in later rerun(s).

We now formally define the nugget and state that it is computable. The formal
proofs can be found in [8].

Definition 2 (Nugget). The nugget of a 3-tuple (E , P , p) is the the smallest
set E ′ such that (∅, E , P , p) −→n (∅, En, Pn, r), for some n, Pn and r, and either
E = En = E ′, or inductively, E ′ is the nugget of 3-tuple (En, P , p).

The nuggetizer is then defined as the function that builds a nugget starting from
an empty environment.

Definition 3 (Nuggetizer). nuggetizer(p) = E, where E is the nugget of 3-
tuple (∅, true, p).

As discussed in Section 2.2, the combination of guaranteed termination of the
AOS, monotonic growth of the abstract environment during nuggetizing, and
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existence of a finite upper bound on the abstract environment, implies the ab-
stract environment of the nuggetizer is guaranteed to reach a fixed-point after a
finite number of reruns.

Lemma 4 (Computability of the Nugget). The function nuggetizer : {p} →
{E} is computable.

In theory, the worst-case runtime complexity of the nuggetizer is O(n!·n3), where
n is the size of a program; we expect it to be significantly less in practice.

4.1 Towards Automated Theorem Proving

In this subsection we provide “glue” which connects the notation of the formal
framework above with the syntax of the Isabelle/HOL theorem prover, and then
we prove the soundness of the nuggetizer. We relax the grammar for lazy values,
atomic computations and programs to be used in this subsection as follows:
η ::= x | i | b | F | η ⊕ η, κ ::= η | p | η η, and p ::= η | let x = κ in p,
respectively. We write p[η/x] to denote the capture-avoiding substitution of all
free occurrences of x in p with η. The following function then reduces a lazy
value to its smallest equivalent form, or as we say grounds it.

Definition 5 (Ground a Lazy Value). The function �·� : {η} → {η} is
inductively defined as, �x� = x; �i� = i; �b� = b; �F� = F; and, �η1 ⊕η2� = η,
if �η1� = i1, �η2� = i2, and i1 ⊕ i2 = η; else, �η1 ⊕ η2� = �η1� ⊕ �η2�.

We now define a new concrete environment, denoting the environment in the
theorem prover, as E ::= {x �→ η}. Further we write p[E], for E = {xk �→ ηk}, as
shorthand for p[ηk/xk].

Definition 6 (Predicate Satisfaction Relation: E � P). E � true; E � η1 =
η2, iff �η1[E]� = �η2[E]�; E � P ∧ P ′, iff E � P and E � P ′; and E � P ∨ P ′, iff
either, E � P or E � P ′.

Definition 7 (Denotational Semantics of E: �E�). �E� is smallest set E such
that,
1. x �→ η′ ∈ E, if x �→ 〈η, P〉 ∈ E, ∅ � P, �η� = η′, and η′ is closed; and,
2. x �→ η′ ∈ E, if x �→ 〈η, P〉 ∈ E, E

′ ⊆ E, E
′ � P, �η[E′]� = η′ and η′ is closed.

Given the relaxed grammar, we redefine the ground of a concrete closure as,

Definition 8 (Ground of a Concrete Closure). The function �·� :{〈η, E〉}→
{η} is inductively defined as, �〈x, E〉� = �E(x)�; �〈i, E〉� = i; �〈b, E〉� = b;
�〈F , E〉� = F [E], where free(F ) ∩ dom(E) = {xk} and E =

{
xk �→ �〈xk, E〉�

}
;

and, �〈η1 ⊕ η2, E〉� = η, if �〈η1, E〉� = i1, �〈η2, E〉� = i2, and i1 ⊕ i2 = η; else,
�〈η1 ⊕ η2, E〉� = �〈η1, E〉� ⊕ �〈η2, E〉�.

The following theorem then shows that all values arising in variables at runtime
will be found in the denotation of the nugget, meaning the latter is a sound
reflection of the runtime program behavior.
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Theorem 9 (Soundness of the Nuggetizer). For a closed canonical program
p, if nuggetizer(p) = E, (E′, p′) is a node in the derivation tree of (∅, p) −→n

(En, pn), and x �→ 〈η, E〉 ∈ E′ then �〈η, E〉� = η′, for some η′, such that x �→
η′ ∈ �E�.

5 Automated Theorem Proving

In this section we discuss how we use the Isabelle/HOL proof assistant [1] to
formalize and prove properties of the nugget. Isabelle/HOL has a rich vocabulary
that is well-suited to the encoding of nuggets, and has a number of powerful built-
in proof strategies. We translate each nugget into an inductively defined set in
the prover. For any such definition, Isabelle/HOL automatically generates an
inductive proof strategy which can be leveraged to prove properties of programs.

For brevity we elide formal details of the encoding here, but they can be found
in [8]. In summary, the encoding of a given nugget E , denoted �E�HOL, is defined
inductively as a set of (var, nat) pairs called “abstractenv”, where the elements
of var are of the form X(n) with n ∈ nat, representing variables xn from a given
nugget domain. Each mapping xi �→ 〈η, P〉 in E defines a separate clause in
the inductive definition, where P defines a set of preconditions. The encoding is
straightforward, the main trick being that any variable xj referenced in η and P
needs to be changed to an Isabelle/HOL variable vj , and associated with xj via
the precondition (X(j), vj) ∈ abstractenv. If η is variable-free, then it is a basic
clause, otherwise the clause is inductive.

Our main result for the encoding is that the Isabelle/HOL least fixpoint in-
terpretation of �E�HOL is provably equivalent to the interpretation of E , i.e. �E�.
Thus, by Theorem 9, any property of �E�HOL verified in Isabelle/HOL for all
values of variables is a property of the runtime variables of the corresponding
program p whose nugget is E . For example, consider the nugget {x0 �→ 5, x0 �→
(x0 − 1)x0 != 0} for program (1) from Section 2, assuming x0 in place of n. The
encoding of this nugget will generate the following Isabelle/HOL definition:

inductive abstractenv intros
“(X (0 ), 5) ∈ abstractenv”
“((X (0 ), v0) ∈ abstractenv ∧ v0 �= 0) =⇒ (X (0 ), v0 − 1) ∈ abstractenv”

To prove that x0 falls in the range [0, 5], we state the following theorem in
Isabelle/HOL: “(X (0 ), v0) ∈ abstractenv =⇒ (v0 ≤ 5 ∧ v0 ≥ 0)”. Following
this, a single application of the elimination rule abstractenv.induct will unroll the
theorem according to the inductive definition of abstractenv, and the resulting
subgoals can be solved by two applications of the arith strategy. While we have
proved this and other more complicated examples in an interactive manner, the
strategy in each case is the same: apply the inductive elimination rule, followed
by one or more applications of the arith strategy. This suggests a fully automated
technique for proof. We note that the nugget encoding itself is fully automated. In
a deployed system we could imagine writing statements such as assert(x0 ≥ 0)
in the source code of the function, and such asserts would then be compiled
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to theorems and automatically proved over the automatically generated nugget.
This yields a general, powerful, end-to-end programming logic.

6 Related Work

We know of no direct precedent for an automated algorithm that abstracts arbi-
trary higher-order programs as inductive definitions; however, our work is both
related to other verification efforts and to previous techniques in program anal-
ysis. We address these two topics in turn.

There is a wide class of research also aimed at partial, more automated verifi-
cation of program properties than that obtained by full formal verification with
a theorem prover. Examples that we would consider more close to our work in-
clude systems with dependent and refinement types [9,10,11,12]. Our approach
has a good combination of expressiveness and automation in comparison to the
aforementioned works in that it gives precise, automatic answers to verification
questions. Several projects also similarly aim to combine a program analysis with
a theorem prover in a single tool, e.g. [9,12,13]; we believe this general approach
has much promise in the future.

This work is an abstract interpretation [4] in the sense that an abstraction
of an operational semantics is defined. It differs from abstract interpretation in
that we are not interested in abstracting away any of the (infinite) structure of
the underlying data domains, and that we wish to derive an inductive structure.
The most related abstract interpretation is LFA [13], which addresses a similar
problem but by a different technical means. LFA is more a proposal in that it
has no formal proofs. Further, it does not generate inductive definitions (like our
nuggets) to be fed into a theorem prover at the end of the analysis; rather it relies
on invoking a theorem prover on-the-fly to verify first-order logical propositions
about the program. We are concerned about the feasibility of implementing LFA
in practice, as it fundamentally relies on an initial CPS transformation step which
removes the join points of conditional branching statements; hence LFA must
explore nearly all paths of the conditional tree in parallel. Our work evolved
from attempts to incorporate flow- and path-sensitivity into a type constraint
system [3]. Since simple type constraint systems are closely related to 0CFA [7],
our work is also a logical descendant of that work.

7 Conclusion

We have defined a static analysis which distills the first-order computational
structure from untyped higher-order functional programs, producing a nugget.
We believe this work has several novel aspects. Most importantly, the analysis
produces nuggets which are simple inductive definitions. Inductive definitions
provide the best abstraction level for modern theorem-provers—modern provers
do their best when reasoning directly over inductively defined structures since
that gives a natural induction principle. There are several other features of our
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approach which make it appealing. The nuggets include guards indicating de-
pendencies. The analysis is fully supportive of higher-order programs—nuggets
reflect the higher-order flow of the original program, but expressed as a first-
order entity. The nuggetizer algorithm which collects a nugget is completely
automated and always terminates. The prune-rerun technique, a synthesis of
existing ideas in type constraint systems and abstract interpretation, provides
a new method for soundly interpreting higher-order functions in presence of
flow- and path-sensitivity. We show how the meaning of nuggets can be easily
formalized in the HOL theorem-prover.

While in this paper we focus on value range analysis for a pure functional lan-
guage, our general goal is much broader. We have done initial work on extensions
to incorporate flow-sensitive mutable state and context-sensitivity.
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Abstract. We present a resource oriented program logic that is able to
reason about concurrent heap-manipulating programs with unbounded
numbers of dynamically-allocated locks and threads. The logic is inspired
by concurrent separation logic, but handles these more realistic concur-
rency primitives. We demonstrate that the proposed logic allows local
reasoning about programs for which there exists a notion of dynamic
ownership of heap parts by locks and threads.

1 Introduction

We are interested in modular reasoning, both manual and automatic, about con-
current heap-manipulating programs. Striking progress in this realm has recently
been made by O’Hearn [10], who proposed concurrent separation logic as a basis
for reasoning about such programs. Concurrent separation logic is a Hoare logic
with two novel features: the assertion language of the logic contains the ∗ con-
nective that splits the program state into disjoint parts, and the proof system
has two important rules:

{P} C {Q}
{P ∗ R} C {Q ∗ R} Frame

{P1} C1 {Q1} {P2} C2 {Q2}
{P1 ∗ P2} C1 ‖ C2 {Q1 ∗ Q2}

Par

According to the Frame rule, if P includes the part of the program state that C
accesses, then executing C in the presence of additional program state R results
in the same behavior, and C does not touch the extra state. The Par rule says
that if two processes access disjoint parts of the program state, they can safely
execute in parallel and the final state is given by the ∗-conjunction of the post-
conditions of the processes. Therefore, to reason about a command (or a process)
in a program, it is sufficient to consider only the part of the program state that
the command actually accesses, a feature that greatly simplifies program proofs
and is referred to as the principle of local reasoning [9].

In the Par rule it is intended that the processes access a finite set of shared
resources using conditional critical regions to synchronize access. Process inter-
action is mediated in the logic by assigning to every resource an assertion – its
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resource invariant – that describes the part of the heap owned by the resource
and must be respected by every process. For any given process, resource invari-
ants restrict how other processes can interfere with it, and hence, the process
can be reasoned about in isolation. In this way the logic allows local reasoning
about programs consistent with what O’Hearn terms the Ownership Hypothesis
(“A code fragment can access only those portions of state that it owns.”) [10],
i.e., programs that admit a notion of ownership of heap parts by processes and
resources. At the same time, the ownership relation is not required to be static,
i.e., it permits ownership transfer of heap cells between areas owned by different
processes and resources. The resource-oriented flavor of the logic makes it possi-
ble to use it as a basis for thread-modular program analysis [7]: certain classes of
resource invariants can automatically be inferred by an abstract interpretation
that analyzes each process separately in contrast to a straightforward analysis
that just enumerates all execution interleavings.

However, concurrent separation logic [10], its derivatives [1,12,3], and a corre-
sponding program analysis [7] all suffer from a common limitation: they assume
a bounded number of non-aliased and pre-allocated locks (resources) and threads
(processes) and, hence, cannot be used to reason about concurrency primitives
present in modern languages and libraries (e.g., POSIX threads) that use un-
bounded numbers of storable locks and threads. Here “storable” means that locks
can be dynamically allocated and destroyed in the heap; threads can be dynami-
cally created and can terminate themselves, and moreover, thread identifiers can
be stored and subsequently used to wait for termination of the identified thread.

Reasoning about storable locks is especially difficult. The issue here is not that
of expressiveness, but of modularity: storable locks can be handled by building a
global invariant describing the shared memory as a whole, with all locks allocated
in it. However, in this case the locality of reasoning is lost, which kicks back
in global invariants containing lots of auxiliary state, proofs being extremely
complex and program analyses for discovery of global invariants being infeasible.
Recent efforts towards making proofs in this style of reasoning modular [4,15] use
rely-guarantee reasoning to simplify the description of the global invariant and
its possible changes (see Section 9 for a detailed comparison of such techniques
with our work).

What we want is a logic that preserves concurrent separation logic’s local
reasoning, even for programs that manipulate storable locks and threads. To
this end, in this paper we propose a logic (Section 3), based upon separation
logic, that treats storable locks along with the data structures they protect as
resources, assigning invariants to them and managing their dynamic creation and
destruction. The challenges of designing such a logic were (quite emotionally)
summarized by Bornat et al. in [1]:

...the idea of semaphores in the heap makes theoreticians wince. The
semaphore has to be available to a shared resource bundle:1 that means
a bundle will contain a bundle which contains resource, a notion which

1 Here the term “resource bundle” is used to name what we, following O’Hearn’s
original paper, call “resource invariant”.
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makes everybody’s eyes water. None of it seems impossible, but it’s a
significant problem, and solving it will be a small triumph.

Less emotionally, stored locks are analogous to stored procedures in that, unless
one is very careful, they can raise a form of Russell’s paradox, circularity arising
from what Landin called knots in the store. Stored locks can do this by refer-
ring to themselves through their resource invariants, and here we address this
foundational difficulty by cutting the knots in the store with an indirection.

Our approach to reasoning about storable locks is to represent a lock in the as-
sertion language by a handle whose denotation cuts knots in the store. A handle
certifies that a lock allocated at a certain address exists and gives a thread own-
ing the handle a permission to (try to) acquire the lock. By using the mechanism
of permissions [1] the handle can be split among several threads that can then
compete for the lock. Furthermore, a handle carries some information about the
part of the program state protected by the lock (its resource invariant), which
lets us mediate the interaction among threads, just as in the original concur-
rent separation logic. Handles for locks can be stored inside resource invariants,
thereby permitting reasoning about the situation described in the quote above.
In this way we extend the ability of concurrent separation logic to reason lo-
cally about programs that are consistent with the Ownership Hypothesis to the
setting with storable locks and threads. As we show in Section 4, the class of
such programs contains programs with coarse-grained synchronization and some,
but not all, programs with fine-grained synchronization, including examples that
were posed as challenges in the literature.

We prove the logic sound with respect to an interleaving operational semantics
(Section 7). It happens that even formulating the soundness statement is non-
trivial as we have to take into account resource invariants for locks not mentioned
directly in the local states of threads.

The technical issues involved in reasoning about storable locks and storable
threads are similar. To make the presentation more approachable, we first present
a logic for programs consisting of one top-level parallel composition of several
threads. In Section 8 we extend the logic to handle dynamic thread creation.

2 Technical Background

In this section we review some technical concepts of (sequential) separation logic
that we reuse in ours. We consider a version of separation logic that is a Hoare
logic for a heap-manipulating programming language with the following syntax:

V ::= l, x, y, . . . variables
E,F ::= nil | V | E + F | . . . expressions
G ::= E = F | E �= F branch guards
C ::= V = E | V = [E] | [E] = F | V = new | delete E primitive commands
S ::= C | S; S | if G then S else S fi | while G do S od commands

Here square brackets denote pointer dereferencing; the meaning of the rest of
the language is standard.
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Formulae in the assertion language of separation logic denote program states
represented by stack-heap pairs and have the following syntax:

Φ ::= false | Φ ⇒ Φ | ∃X.Φ | Φ ∗ Φ | Φ −−∗ Φ | emps | emph

| E = F | π = μ | Ownπ(x) | E �→F

We can define usual connectives not mentioned in the syntax definition using
the provided ones. Note that we treat variables as resources [12] to avoid side
conditions in proof rules, i.e., we treat the stack in the same way as the heap,
Thus, the assertion E �→F denotes the set of stack-heap pairs such that the heap
consists of one cell allocated at the address E and storing the value F , and the
stack contains all variables mentioned in E and F . The assertion Own1(x) (the
general form Ownπ(x) is explained later) restricts the stack to contain only the
variable x and leaves the heap unconstrained. We can separate assertions about
variable ownership Own1(x) with ∗ in the same way as assertions E �→F about
ownership of heap cells. emps describes the empty stack and emph the empty
heap. We distinguish integer program variables x, y, . . . (which may appear in
programs) and logical variables X, Y, . . . (which do not appear in programs, only
in formulae). In the assertion language definition E and F range over expressions,
which are the same as in the programming language, but can contain logical
variables. We write E �→ for ∃X.E �→X where X does not occur free in E.

The assertion language includes fractional permissions [1] for variables, which
are necessary for getting a complete (in the sense of [12]) proof system when vari-
ables are treated as resources. For clarity of presentation we omit the treatment
of permissions for heap cells. Permissions are denoted with permission expres-
sions (ranged over by π and μ), which are expressions evaluating to numbers
from (0, 1]. A permission shows “how much” of a variable is owned by the as-
sertion. For example, variable x represented by Own1(x) can be split into two
permissions Own1/2(x), each of which permits reading the variable, but not writ-
ing to it. Two permissions Own1/2(x) can later be recombined to obtain the full
permission Own1(x), which allows both reading from and writing to x. We make
the convention that � binds most loosely, use π1x1, . . . , πkxk � P to denote
Ownπ1(x1) ∗ . . . ∗ Ownπk

(xk) ∧ P and abbreviate 1x to x.
The proof rules (see [6]) are the same as in [13,12] modulo treating variables

as resources in heap-manipulating commands. In the rules and the following, O
ranges over assertions of the form π1x1, . . . , πkxk. We also allow O to be empty,
in which case we interpret O � P as emps ∧ P .

3 Logic

We now consider a concurrent programming language based on the sequential
one presented in Section 2:

C ::= . . . | init(E) | finalize(E) | acquire(E) | release(E) primitive commands
P ::= S ‖ . . . ‖ S programs

We assume that each program consists of one parallel composition of several
threads. Synchronization is performed using locks, which are dynamically created
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and destroyed in the heap. init(E) converts a location allocated at the address
E to a lock. After the completion of init(E) the thread that executed it holds
the lock. acquire(E) and release(E) try to acquire, respectively, release the
lock allocated at the address E. finalize(E) converts the lock into an ordinary
heap cell containing an unspecified value provided that the lock at the address
E is held by the thread that is executing the command.

As in concurrent separation logic [10], with each lock we associate a resource
invariant – a formula that describes the part of the heap protected by the lock.
(This association is considered to be part of the proof, rather than of the pro-
gram.) To deal with unbounded numbers of locks we assume that each lock has a
sort that determines its invariant. Formally, we assume a fixed set L of function
symbols with positive arities representing lock sorts, and with each A ∈ L of ar-
ity k we associate a formula IA(L, �X) containing k free logical variables specified
as parameters – the resource invariant for the sort A. The meaning of the first
parameter is fixed as the address at which the lock is allocated. Other parame-
ters can have arbitrary meaning. In Sections 5 and 7 we give certain restrictions
that resource invariant formulae must satisfy for the logic to be sound.

We extend the assertion language of separation logic with two extra forms:
Φ ::= . . . | πA(E, �F ) | LockedA(E, �F ). An expression of the form A(E, �F ), where
A ∈ L, is a handle for the lock of the sort A allocated at the address E. It can be
viewed as an existential permission for the lock: a thread having A(E, �F ) knows
that the heap cell at the address E is allocated and is a lock, and can try to
acquire it. A(E, �F ) does not give permissions for reading from or writing to the
cell at the address E. Moreover, it does not ensure that the part of the heap
protected by the lock satisfies the resource invariant until the thread successfully
acquires the lock. We allow using A(E, �F ) with fractional permissions [1] writing
πA(E, �F ). The intuition behind the permissions is that a handle for a lock with
the full permission 1 can be split among several threads, thereby allowing them
to compete for the lock. A thread having a permission for the handle less than 1
can acquire the lock; a thread having the full permission can in addition finalize
the lock. We abbreviate 1A(E, �F ) to A(E, �F ). Assertions in the code of threads
can also use a special form LockedA(E, �F ) to represent the fact that the lock at
the address E is held by the thread in the surrounding code of the assertion.
LockedA(E, �F ) also ensures that the cell at the address E is allocated and is a
lock of the sort A with parameters �F .

Our logic includes the proof rules of sequential separation logic and four new
rules for lock-manipulating commands shown in Figure 1. We do not provide
a rule for parallel composition as our programs consist of only one top-level
parallel composition, and in Section 8 we instead treat dynamic thread creation.
We write 
 {P} C {Q} to denote that the triple {P} C {Q} is provable in our
logic.

Initializing a lock (Init) converts a cell in the heap at the address E to a
lock. Upon completion of init(E) the thread that executed it gets both the
ownership (with the full permission) of the handle A(E, �F ) for the lock and the
knowledge that it holds the lock, represented by LockedA(E, �F ). Note that for
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(O � E �→ ) ⇒ �F = �F

{O � E �→ } initA, �F (E) {O � A(E, �F ) ∗ LockedA(E, �F )}
Init

{O � A(E, �F ) ∗ LockedA(E, �F )} finalize(E) {O � E �→ }
Finalize

{(O � πA(L, �X)) ∧ L=E} acquire(E) {(O � πA(L, �X) ∗ LockedA(L, �X)) ∗ IA(L, �X)}
Acquire

{((O � LockedA(L, �X)) ∗ IA(L, �X)) ∧ L=E} release(E) {O � emph}
Release

Fig. 1. Proof rules for lock-manipulating commands

the precondition O � E �→ to be consistent O must contain variables mentioned
in E. In this and other rules we use O to supply the permissions for variables
necessary for executing the command. For initA,�F (E) commands to be safe
the stack must contain variables mentioned in E and �F , hence, the premiss
(O � E �→ ) ⇒ �F = �F additionally requires that variables be contained in O
(see [12]). An implicit side condition in the Init rule is that in all branches of a
proof of a program, the sort A of the lock and the values of parameters �F have to
be chosen consistently for each init command (as otherwise the conjunction rule
of Hoare logic becomes unsound). This is formally enforced by annotating each
init command with the sort of the lock that is being created and its parameters
(defined by arbitrary expressions �F over program variables). In general, the
lock sort can also be computed as a function of program variables. To simplify
notation we assume the sort of the lock is fixed for each init command in the
program. We note that although we use the sort of the lock and its parameters
for conceptually different purposes (see the examples in Section 4), technically
they are merely pieces of auxiliary state associated with the handle for the lock
that carry some information about the resource invariant of the lock. Therefore,
the annotations of lock sorts and parameters at init commands can be viewed
as just assignments to auxiliary cells in memory.

Finalizing a lock results in it being converted into an ordinary cell. To finalize
a lock (Finalize) a thread has to have the full permission for the handle A(E, �F )
associated with the lock. Additionally, the lock has to be held by the thread,
i.e., LockedA(E, �F ) has to be in its local state.

A thread can acquire a lock if it has a permission for the handle of the lock.
Acquiring a lock (Acquire) results in the resource invariant of the lock (with
appropriately instantiated parameters) being ∗-conjoined to the local state of the
thread. The thread also obtains the corresponding Locked fact, which guarantees
that it holds the lock. A thread acquiring the same lock twice deadlocks, which
is enforced by LockedA(E, �F )∗LockedA(E, �F ) being inconsistent (see Section 5).
Conversely, a thread can release a lock (Release) only if it holds the lock, i.e.,
the corresponding Locked fact is present in the local state of the thread. Upon
releasing the lock the thread gives up both this knowledge and the ownership of
the resource invariant associated with the lock. The fact that resource invariants
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struct RECORD {
LOCK Lock;
int Data;

};

main() {
RECORD *x;
{x � emph}
x = new RECORD;
{x � x �→ ∗ x.Data�→ }
initR(x);
{x � x.Data�→ ∗ R(x) ∗
LockedR(x)}

x->Data = 0;
{x � x.Data�→0 ∗ R(x) ∗
LockedR(x)}

release(x);
{x � R(x)}
// ...
{x � R(x)}
acquire(x);
{x � x.Data�→ ∗ R(x) ∗
LockedR(x)}

x->Data++;
{x � x.Data�→ ∗ R(x) ∗
LockedR(x)}

release(x);
{x � R(x)}
// ...
{x � R(x)}
acquire(x);
{x � x.Data�→ ∗ R(x) ∗
LockedR(x)}

finalize(x);
{x � x �→ ∗ x.Data�→ }
delete x;
{x � emph}

}

IR(L)
Δ
= emps ∧ L.Data �→

Fig. 2. A very simple example of reasoning in the logic

can claim ownership of program variables complicates the rules Acquire and
Release. E.g., in the postcondition of Acquire we cannot put IA(L, �X) inside
the expression after � as it may claim ownership of variables not mentioned in
O. This requires us to use a logical variable L in places where the expression E
would have been expected.

4 Examples of Reasoning

We first show (in Example 1 below) that straightforward application of rules
for lock-manipulating commands allows us to handle programs in which locks
protect parts of the heap without other locks allocated in them. We then present
two more involved examples of using the logic, which demonstrate how extend-
ing the logic with storable locks has enabled reasoning more locally than was
previously possible in some interesting cases (Examples 2 and 3).

Instead of the minimalistic language presented in Section 3, in our examples we
use a language with some additional C-like syntax (in particular, C structures)
that can easily be desugared to the language of Section 3. For an address x of
a structure, we use x.F in the assertion language as syntactic sugar for x + d,
where d is the offset of the field F in the structure. We assume that each field
in a structure takes one memory cell. We also use an obvious generalization of
new and delete that allocate and deallocate several memory cells at once.

Example 1: A simple situation. Figure 2 shows a proof outline for a program
with a common pattern: a lock-field in a structure protecting another field in the
same structure. We use a lock sort R with invariant IR(L). The proof outline
shows how the “life cycle” of a lock is handled in our proof system: creating a
cell, converting it to a lock, acquiring and releasing the lock, converting it to an
ordinary cell, and disposing the cell. For simplicity we consider a program with
only one thread.

Example 2: “Last one disposes”. This example was posed as a challenge for local
reasoning in [1]. The program in Figure 3 represents a piece of multicasting code:
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struct PACKET {
LOCK Lock;
int Count;
DATA Data;

};

PACKET *p;

initialize() {
{p � emph}
p = new PACKET;
{p � p�→ ∗ p.Count�→ ∗ p.Data �→ }
p->Count = 0;
{p � p�→ ∗ p.Count�→0 ∗ p.Data�→ }
initP,M (p);
{p � p.Count�→0 ∗ p.Data �→ ∗ P (p, M) ∗
LockedP (p, M)}

// ...Initialize data...
release(p);
{p � P (p, M)}

}

thread() {
{(1/M)p � (1/M)P (p, M)}
acquire(p);
{(1/M)p � ∃X.0 ≤ X < M ∧ p.Count�→X ∗
p.Data �→ ∗((X+1)/M)P (p, M)∗LockedP (p, M)}

// ...Process data...
p->Count++;
{(1/M)p � ∃X.1 ≤ X ≤ M ∧ p.Count�→X ∗
p.Data �→ ∗ (X/M)P (p, M) ∗ LockedP (p, M)}

if (p->Count == M) {
{(1/M)p � p.Count�→M ∗ p.Data �→ ∗
P (p, M) ∗ LockedP (p, M)}

// ...Finalize data...
finalize(p);
{(1/M)p � p.Count�→M ∗ p.Data �→ ∗ p�→ }
delete p;

} else {
{(1/M)p � ∃X.1 ≤ X < M ∧ p.Count�→X ∗
p.Data�→ ∗ (X/M)P (p, M) ∗ LockedP (p, M)}

release(p);
}
{(1/M)p � emph}

}

IP (L, M)
Δ
= emps ∧ ∃X.X < M ∧ L.Count �→X ∗ L.Data �→ ∗

((X = 0 ∧ emph) ∨ (X ≥ 1 ∧ (X/M)P (L, M)))

Fig. 3. Proof outline for the “Last one disposes” program

a single packet p (of type PACKET) with Data inside the packet is distributed
to M threads at once. For efficiency reasons instead of copying the packet, it is
shared among threads. A Count of access permissions protected by Lock is used
to determine when everybody has finished and the packet can be disposed. The
program consists of a top level parallel composition of M calls to the procedure
thread. Here M is a constant assumed to be greater than 0. For completeness,
we also provide the procedure initialize that can be used to initialize the packet
and thereby establish the precondition of the program.

To prove the program correct the resource invariant for the lock at the address
p has to contain a partial permission for the handle of the same lock. This is
formally represented by a lock sort P with the resource invariant IP (L, M).
Initially the resource invariant contains no permissions of this kind and the
handle P (p, M) for the lock is split among M threads (hence, the precondition
of each thread is (1/M)p � (1/M)P (p, M)). Each thread uses the handle to
acquire the lock and process the packet. When a thread finishes processing and
releases the lock, it transfers the permission for the handle it owned to the
resource invariant of the lock. The last thread to process the packet can then
get the full permission for the lock by combining the permission in the invariant
with its own one and can therefore dispose the packet.

Example 3: Lock coupling list. We next consider a fine-grained implementation
of a singly-linked list with concurrent access, whose nodes store integer keys.
The program (Figures 4 and 5) consists of M operations add and remove running



Local Reasoning for Storable Locks And Threads 27

locate(int e) {
NODE *prev, *curr;
{O � −∞ < e ∧ (1/M)H(head)}
prev = head;
{O � −∞ < e ∧ prev = head ∧ (1/M)H(head)}
acquire(prev);
{O � ∃V ′.−∞ < e ∧ −∞ < V ′ ∧ (1/M)H(head) ∗ LockedH(prev) ∗
∃X.prev.Val�→−∞ ∗ prev.Next�→X ∗ N(X, V ′)}

curr = prev->Next;
{O � ∃V ′.−∞ < e ∧ −∞ < V ′ ∧ (1/M)H(head) ∗ LockedH(prev) ∗
prev.Val�→−∞ ∗ prev.Next�→curr ∗ N(curr, V ′)}

acquire(curr);
{O � ∃V ′.−∞ < e ∧ −∞ < V ′ ∧ (1/M)H(head) ∗ N(curr, V ′) ∗ LockedH (prev) ∗
LockedN (curr, V ′) ∗ prev.Val�→−∞ ∗ prev.Next�→curr ∗ curr.Val�→V ′∗
((curr.Next�→nil ∧ V ′ = +∞) ∨ (∃X, V ′′.curr.Next�→X ∗ N(X, V ′′) ∧ V ′ < V ′′))}

while (curr->Val < e) {
{O � ∃V, V ′.V ′ < e ∧ (1/M)H(head) ∗ N(curr, V ′) ∗ LockedN (curr, V ′) ∗
(LockedH(prev) ∧ V = −∞ ∨ LockedN (prev, V )) ∗ prev.Val�→V ∗ prev.Next�→curr ∗
∃X, V ′′.curr.Val�→V ′ ∗ curr.Next�→X ∗ N(X, V ′′) ∧ V < V ′ < V ′′}

release(prev);
{O � ∃X, V ′, V ′′.V ′ < e ∧ V ′ < V ′′ ∧ (1/M)H(head) ∗ LockedN (curr, V ′)∗
curr.Val�→V ′ ∗ curr.Next�→X ∗ N(X, V ′′)}

prev = curr;
curr = curr->Next;
{O � ∃V, V ′.V < e ∧ V < V ′ ∧ (1/M)H(head) ∗ LockedN (prev, V )∗
prev.Val�→V ∗ prev.Next�→curr ∗ N(curr, V ′)}

acquire(curr);
{O � ∃V, V ′.V < e ∧ V < V ′ ∧ (1/M)H(head) ∗ LockedN (prev, V ) ∗
LockedN (curr, V ′) ∗ N(curr, V ′) ∗ prev.Val�→V ∗ prev.Next�→curr ∗ curr.Val�→V ′ ∗
((V ′ = +∞ ∧ curr.Next�→nil) ∨ ∃X, V ′′.curr.Next�→X ∗ N(X, V ′′) ∧ V ′ < V ′′)}

}
{O � ∃V, V ′.V < e ≤ V ′ ∧ (1/M)H(head) ∗ LockedN (prev, V ) ∗ LockedN (curr, V ′) ∗ N(curr, V ′) ∗
prev.Val�→V ∗ prev.Next�→curr ∗ curr.Val�→V ′ ∗ ((V ′ = +∞ ∧ curr.Next�→nil) ∨
∃X, V ′′.curr.Next�→X ∗ N(X, V ′′) ∧ V ′ < V ′′)}

return (prev, curr);
}

IH(L)
Δ
= emps ∧ ∃X, V ′.L.Val �→−∞ ∗ L.Next �→X ∗ N(X, V ′) ∧ −∞ < V ′

IN(L, V )
Δ
= emps ∧ ((L.Val �→V ∗ L.Next �→nil ∧ V = +∞) ∨

(∃X,V ′.L.Val �→V ∗ L.Next �→X ∗ N(X, V ′) ∧ V < V ′))

Fig. 4. Proof outline for a part of the lock coupling list program. Here O is e, prev,
curr, (1/M)head.

in parallel. The operations add and remove an element with the given key to
or from the list. Traversing the list uses lock coupling: the lock on one node is
not released until the next node is locked. The list is sorted and the first and
last nodes in it are sentinel nodes that have values −∞, respectively, +∞. It is
initialized by the code in procedure initialize. We only provide a proof outline for
the procedure locate (Figure 4), which is invoked by other procedures to traverse
the list. We use lock sorts H (for the head node) and N (for all other nodes) with
the invariants IH(L) and IN (L, V ). In this example the resource invariant for
the lock protecting a node in the list holds a handle for the lock protecting the
next node in the list. The full permission for N(X, V ′) in the invariants above
essentially means that the only way a thread can lock a node is by first locking
its predecessor: here the invariant enforces a particular locking policy.
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struct NODE { LOCK Lock;
int Val;
NODE *Next; }

NODE *head;

initialize() {
NODE *last;
last = new NODE;
last->Val = INFINITY;
last->Next = NULL;
initN,+∞(last);
release(last);
head = new NODE;
head->Val = -INFINITY;
head->Next = last;
initH(head);
release(head);

}

add(int e) {
NODE *n1, *n2, *n3, *result;
(n1, n3) = locate(e);
if (n3->Val != e) {

n2 = new NODE;
n2->Val = e;
n2->Next = n3;
initN,e(n2);
release(n2);
n1->Next = n2;
result = true;

} else {
result = false;

}
release(n1);
release(n3);
return result;

}

remove(int e) {
NODE *n1, *n2, *n3;
NODE *result;
(n1, n2) = locate(e);
if (n2->Val == e) {

n3 = n2->Next;
n1->Next = n3;
finalize(n2);
delete n2;
result = true;

} else {
release(n2);
result = false;

}
release(n1);
return result;

}

Fig. 5. Lock coupling list program. The procedure locate is shown in Figure 4.

nil = 0 Values = {. . . , −1, 0, 1, . . .}
Perms = (0, 1] Vars = {x, y, . . .}
Stacks = Vars ⇀fin (Values × Perms) Locs = {1, 2, . . .}
LockPerms = [0, 1] ThreadIDs = {1, 2, . . .}
LockVals = {U, 0} ∪ ThreadIDs States = Stacks × Heaps
Heaps = Locs ⇀fin (Cell(Values) ∪ Lock(L × LockVals × LockPerms)

� Lock(L × {U} × {0}))

Fig. 6. Model of the assertion language

We were able to present modular proofs for the programs above because in
each case we could associate with every lock a part of the heap such that a thread
accessed the part only when it held the lock, that is, the lock owned the part of
the heap. We note that we would not be able to give modular proofs to programs
that do not obey this policy, for instance, to optimistic list [14] – another fine-
grained implementation of the list from Example 3 in which the procedure locate
first traverses the list without taking any locks and then validates the result by
locking two candidate nodes and re-traversing the list to check that they are still
present and adjacent in the list.

5 Model of the Assertion Language

As usual, assertion language formulae denote sets of pairs of a stack and a heap,
both represented by finite partial functions. They are interpreted over the domain
in Figure 6. However, in contrast to the standard domain used in separation logic,
here cells in the heap can be of two types: ordinary cells (Cell) and locks (Lock).
A lock has a sort, a value, and is associated with a permission from [0, 1]. To
simplify notation, here and in the further semantic development we assume that
lock sorts have no parameters other than the address of the lock. Our results can
straightforwardly be adjusted to the general case (parameters can be treated in
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(s, h, i) |=k E �→F ⇔ �E�(s,i)↓ ∧ �F �(s,i)↓ ∧ h = [�E�(s,i) : Cell(�F �(s,i))]
(s, h, i) |=k Ownπ(x) ⇔ ∃u.�π�(s,i)↓ ∧ s = [x : (u, �π�(s,i))] ∧ 0 < �π�(s,i) ≤ 1
(s, h, i) |=k πA(E) ⇔

�E�(s,i)↓ ∧ �π�(s,i)↓ ∧ h = [�E�(s,i) : Lock(A,U, �π�(s,i))] ∧ 0 < �π�(s,i) ≤ 1
(s, h, i) |=k LockedA(E) ⇔ �E�(s,i)↓ ∧ h = [�E�(s,i) : Lock(A, k, 0)]
(s, h, i) |=k emps ⇔ s = [ ]
(s, h, i) |=k emph ⇔ h = [ ]
(s, h, i) |=k E = F ⇔ �E�(s,i)↓ ∧ �F �(s,i)↓ ∧ �E�(s,i) = �F �(s,i)

(s, h, i) |=k π = μ ⇔ �π�(s,i)↓ ∧ �μ�(s,i)↓ ∧ �π�(s,i) = �μ�(s,i)

(s, h, i) |=k P ⇒ Q ⇔ ((s, h, i) |=k P ) ⇒ ((s, h, i) |=k Q)
(s, h, i) |=k false ⇔ false
(s, h, i) |=k P ∗ Q ⇔

∃s1, h1, s2, h2.s = s1 ∗ s2 ∧ h = h1 ∗ h2 ∧ (s1, h1, i) |=k P ∧ (s2, h2, i) |=k Q
(s, h, i) |=k P −−∗ Q ⇔

∀s′, h′.s � s′ ∧ h � h′ ∧ ((s′, h′, i) |=k P ) ⇒ ((s ∗ s′, h ∗ h′, i) |=k Q)
(s, h, i) |=k ∃X.P ⇔ ∃u.(s, h, i[X : u]) |=k P

Fig. 7. Satisfaction relation for the assertion language formulae: (s, h, i) |=k Φ

the same way as lock sorts). The permission 0 is used to represent the existential
permission for a lock that is carried by LockedA(E, �F ). Locks are interpreted as
follows: 0 represents the fact that the lock is not held by any thread (i.e., is free),
values from ThreadIDs represent the identifier of the thread that holds the lock,
and U means that the status of the lock is unknown. U is not encountered in the
states obtained in the operational semantics we define in Section 6, but is used
for interpreting formulae representing parts of complete states. The semantics of
formulae and commands never encounter locks of form Lock(A, U, 0) for any A,
and so the definition of Heaps removes them in order to make the ∗ operation
on states cancellative [3].

Note how Heaps in the domain of Figure 6 is not defined recursively, but in-
stead uses an indirection through L, whose elements are associated with resource
invariants, and hence indirectly to Heaps. It is this indirection that deals with
the foundational circularity issue raised by locks which may refer to themselves.

In this paper we use the following notation for partial functions: f(x)↓ means
that the function f is defined on x, f(x)↑ that the function f is undefined on x,
and [ ] denotes a nowhere-defined function. Furthermore, we denote with f [x : y]
(defined only if f(x)↑) the function that has the same value as f everywhere,
except for x, where it has the value y. We abbreviate [ ][x : y] to [x : y].

We now define ∗ on states in our domain, which interprets the ∗-connective in
the logic. We first define the ∗ operation on values of locks in the following way:
U ∗ U = U, k ∗ U = U ∗ k = k, and k ∗ j is undefined for k, j ∈ {0} ∪ ThreadIDs.
Note that k∗k is undefined as it arises in the cases when a thread tries to acquire
a lock twice (recall that we specify that a thread deadlocks in this case).

For s1, s2 ∈ Stacks let

s1 � s2 ⇔ ∀x.s1(x)↓ ∧s2(x)↓ ⇒ (∃v, π1, π2.s1(x) = (v, π1)∧s2 = (v, π2)∧π1+π2 ≤ 1) .
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If s1 � s2, then

s1 ∗ s2 = {(x, (v, π)) | (s1(x) = (v, π) ∧ s2(x)↑) ∨ (s2(x) = (v, π) ∧ s1(x)↑) ∨
(s1(x) = (v, π1) ∧ s2(x) = (v, π2) ∧ π = π1 + π2)} ,

otherwise s1 ∗ s2 is undefined. For h1, h2 ∈ Heaps let

h1 � h2 ⇔ ∀u.h1(u)↓ ∧ h2(u)↓ ⇒ ((∃v.h1(u) = h2(u) = Cell(v)) ∨ (∃A, v1, v2, π1, π2.

h1(u) = Lock(A, v1, π1) ∧ h2(u) = Lock(A, v2, π2) ∧ v1 ∗ v2↓ ∧ π1 + π2 ≤ 1)) .

If h1 � h2, then

h1 ∗ h2 = {(u, Cell(v)) | h1(u) = Cell(v) ∨ h2(u) = Cell(v)} ∪
{(u, Lock(A, v, π)) | (h1(u) = Lock(A, v, π) ∧ h2(u)↑) ∨ (h2(u) = Lock(A, v, π) ∧ h1(u)↑)
∨ (h1(u) = Lock(A, v1, π1) ∧ h2(u) = Lock(A, v2, π2) ∧ π = π1 + π2 ∧ v = v1 ∗ v2)} ,

otherwise h1 ∗ h2 is undefined. We lift ∗ to states and sets of states pointwise.
The satisfaction relation for the assertion language formulae is defined in

Figure 7. A formula is interpreted with respect to a thread identifier k ∈ {0} ∪
ThreadIDs, a stack s, a heap h, and an interpretation i mapping logical variables
to Values. Note that in this case it is convenient for us to consider 0 as a dummy
thread identifier. We assume a function �E�(s,i) that evaluates an expression with
respect to the stack s and the interpretation i. We consider only interpretations
that define the value of every logical variable used. We omit i when s suffices
to evaluate the expression. We let �P �k

i denote the set of states in which the
formula P is valid with respect to the thread identifier k and the interpretation
i and let Ik(A, u) = �IA(L) ∗ LockedA(L)�k

[L:u].
We say that a predicate p ⊆ States is precise [10] if for any state σ, there

exists at most one substate σ0 (i.e., σ = σ0 ∗ σ1 for some σ1) satisfying p. We
say that a predicate p is intuitionistic [8] if it is closed under stack and heap
extension: if p is true of a state σ1, then for any state σ2, such that σ1 ∗ σ2 is
defined, p is also true of σ1 ∗ σ2. We say that a predicate p has an empty lockset
if the value of any lock in every state satisfying p is U. A formula is precise,
intuitionistic, or has an empty lockset if its denotation with respect to any thread
identifier and interpretation of logical variables is precise, intuitionistic, or has
an empty lockset. We require that formulae representing resource invariants be
precise and have an empty lockset, i.e., that for each u and k the predicate
�IA(L)�k

[L:u] be precise and have an empty lockset. The former requirement is
inherited from concurrent separation logic, where it is required for soundness of
the conjunction rule. The latter requirement is necessary for soundness of our
logic and stems from the fact that in our semantics we do not allow a thread that
did not acquire a lock to release it (in agreement with the semantics of mutexes
in the POSIX threads library). If we were to allow this (i.e., if we treated locks
as binary semaphores rather than mutexes), then this requirement would not be
necessary. It is easy to check that the invariants for lock sorts R, P , H , and N
from Section 4 satisfy these constraints.
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x = E, (s[x : (u, 1)], h) �k (s[x : (�E�s[x:(u,1)], 1)], h)
x = [E], (s[x : (u, 1)], h[e : Cell(v)]) �k (s[x : (v, 1)], h[e : Cell(v)]), e = �E�s[x:(u,1)]

[E] = F, (s, h[�E�s : Cell(u)]) �k (s, h[�E�s : Cell(�F �s)])
x = new, (s[x : (u, 1)], h) �k (s[x : (v, 1)], h[v : Cell(w)]), if h(v)↑
delete E, (s, h[�E�s : Cell(u)]) �k (s, h)
assume(G), (s, h) �k (s, h), if �G�s = true
assume(G), (s, h) ��k if �G�s = false
initA(E), (s, h[�E�s : Cell(u)]) �k (s, h[�E�s : Lock(A, k, 1)])
finalize(E), (s, h[�E�s : Lock(A, k, 1)]) �k (s, h[�E�s : Cell(u)])
acquire(E), (s, h[�E�s : Lock(A, 0, π)]) �k (s, h[�E�s : Lock(A, k, π)])
acquire(E), (s, h[�E�s : Lock(A, j, π)]) ��k if j > 0
release(E), (s, h[�E�s : Lock(A,k, π)]) �k (s, h[�E�s : Lock(A, 0, π)])
C, (s, h) �k �, otherwise

Fig. 8. Transition relation for atomic commands. ��k is used to denote that the com-
mand does not fault, but gets stuck. � indicates that the command faults.

6 Interleaving Operational Semantics

Consider a program S consisting of a parallel composition of n threads. We
abstract away from the particular syntax of the programming language and rep-
resent each thread by its control-flow graph (CFG). A CFG over a set C of atomic
commands is defined as a tuple (N, F, start, end), where N is the set of program
points, F ⊆ N × C × N the control-flow relation, start and end distinguished
start and end program points. We note that a command in our language can
be translated to a CFG. Conditional expressions in if and while commands
are translated using the assume(G) statement that acts as a filter on the state
space of programs – G is assumed to be true after assume(G) is executed. We
let the set of atomic commands consist of primitive commands and the assume
command. Let (Nk, Fk, startk, endk) be the CFG of thread with identifier k and
let N =

⋃n
k=1 Nk and F =

⋃n
k=1 Fk. First, for each thread k = 1..n and atomic

command C we define a transition relation �k shown in Figure 8.
The interleaving operational semantics of the program S is defined by a tran-

sition relation →S that transforms pairs of program counters (represented by
mappings from thread identifiers to program points) pc ∈ {1, . . . , n} → N and
states σ ∈ States ∪ {�}. The relation →S is defined as the least one satisfying:

(v, C, v′) ∈ F k ∈ {1, . . . , n} C, (s, h) �k σ

pc[k : v], (s, h) →S pc[k : v′], σ
.

We denote with →∗
S the reflexive and transitive closure of →S . Let us denote

with pc0 the initial program counter [1 : start1] . . . [n : startn] and with pcf the
final one [1 : end1] . . . [n : endn]. We say that the program S is safe when run from
an initial state σ0 if it is not the case that for some pc we have pc0, σ0 →∗

S pc, �.
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{x, y � x �→ ∗ y �→ }
initA,y(x);
initB,x(y);
{x, y � A(x, y)∗LockedA(x, y)∗B(y, x)∗LockedB(y, x)}
release(x);
{x, y � A(x, y) ∗ LockedB(y, x)}
release(y);
{x, y � emph}

IA(X, Y )
Δ
= emps ∧ B(Y, X) and IB(X, Y )

Δ
= emps ∧ A(Y, X)

Fig. 9. A pathological situation

7 Soundness

As it stands now, the logic allows some unpleasant situations to happen: in
certain cases the proof system may not be able to detect a memory leak. Figure 9
shows an example of this kind. We assume defined lock sorts A and B with
invariants IA(X, Y ) and IB(X, Y ). In this case the knowledge that the locks at
the addresses x and y exist is lost by the proof system: the invariant for the lock
x holds the full permission for the handle of the lock y and vice versa, hence,
local states of the threads are then left without any permissions for the locks
whatsoever.

Situations such as the one described above make the formulation of the sound-
ness statement for our logic non-trivial. We first formulate a soundness statement
(Theorem 1) showing that every final state of a program (according to the op-
erational semantics of Section 6) can be obtained as the ∗-conjunction of the
postconditions of threads and the resource invariants for the free locks allocated
in the state. Note that here a statement about a state uses the information about
the free locks allocated in the same state. We then put restrictions on resource
invariants that rule out situations similar to the one shown in Figure 9 and for-
mulate a soundness statement (Theorem 4) in which the set of free locks in a
final state is computed solely from the postconditions of threads.

For a state σ let Free(σ), respectively, Unknown(σ) be the set of pairs from
L×Locs consisting of sorts and addresses of locks allocated in the state that have
value 0, respectively, U. We denote with � iterated separating conjunction [13]:
�k

j=1 Pj = (emps ∧ emph) ∗ P1 ∗ · · · ∗ Pk. The soundness of the logic with respect
to the interleaving operational semantics from Section 6 is established by:

Theorem 1. Let S be the program C1 ‖ . . . ‖ Cn and suppose 
 {Pk} Ck {Qk} for
k = 1..n. Then for any interpretation i and state σ0 such that σ0 ∈

(
�n

k=1 �Pk�k
i

)
∗(

�(A,u)∈Free(σ0) I0(A, u)
)
the program S is safe when run from σ0 and if pc0, σ0 →∗

S

pcf , σ, then σ ∈
(
�n

k=1 �Qk�k
i

)
∗

(
�(A,u)∈Free(σ) I0(A, u)

)
.

The proof is given in a companion Technical Report [6]. We do not follow
Brookes’s original proof of soundness of concurrent separation logic [2]. Instead,
we prove soundness with the aid of an intermediate thread-local semantics de-
fined by fixed-point equations that can be viewed as the scheme of a thread-
modular program analysis in the style of [7]. This method of proving soundness
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should facilitate designing program analyses based on our logic. The idea of our
proof, however, is close to that of Brookes’s and consists of establishing what is
called the Separation Property in [10] and is formalized as the Parallel Decom-
position Lemma in [2]:2At any time, the state of the program can be partitioned
into that owned by each thread and each free lock. As a direct consequence of
the Separation Property, we can also show that provability of a program in our
proof system ensures the absence of data races (see [6] for details).

We now proceed to formulate a soundness statement in which the component
�(A,u)∈Free(σ) I0(A, u) from Theorem 1 representing the resource invariants for
free locks in the final state is obtained directly from the thread postconditions
Qk. To this end, we introduce an auxiliary notion of closure. Intuitively, closing a
state amounts to ∗-conjoining it to the invariants of all free locks whose handles
are reachable via resource invariants from the handles present in the state.

Definition 2 (Closure). For p ⊆ States let c(p) ⊆ States be the least predicate
such that p ∪ {σ1 ∗ σ2 | σ1 ∈ c(p) ∧ σ2 ∈ �(A,u)∈Unknown(σ1) I0(A, u)} ⊆ c(p). The
closure 〈p〉 of p is the set of states from c(p) that do not contain locks with the
value U.

In general, the closure is not guaranteed to add invariants for all the free locks
allocated in the state. For example, the closure of the postcondition of the pro-
gram in Figure 9 still has an empty heap while in the final states obtained
by executing the operational semantics there are locks allocated at addresses x
and y. The problem is that there may exist a “self-contained” set of free locks
(containing the locks at the addresses x and y in our example) such that the
corresponding resource invariants hold full permissions for all the locks from the
set. Local states of threads are then left without any permissions for the locks in
the set, and hence, closure is not able to reach to their invariants. The following
condition on resource invariants ensures that this does not happen.

Definition 3 (Admissibility of resource invariants). Resource invariants
for a set of lock sorts L are admissible if there do not exist non-empty set L ⊆ L×
Locs and state σ ∈ �(A,u)∈L I0(A, u) such that for all (A, u) ∈ L the permission
associated with the lock at the address u in σ is 1.

Definitions 2 and 3 generalize to the case when resource invariants have more
than one parameter in the obvious way. Revisiting Example 3 of Section 4, we
can check that any state satisfying the closure of �O � (1/M)H(head)�k for
any thread identifier k represents an acyclic sorted list starting at head. It is
easy to check that resource invariants for the set of lock sorts {R, P, H, N} from
Section 4 are admissible whereas those for {A, B} from this section are not. The
admissibility of N is due to the fact that IN implies sortedness of lists built out
of resource invariants for N , hence, the invariants cannot form a cycle.

We say that a state is complete if permissions associated with all the locks
allocated in it are equal to 1. Note that according to the semantics in Section 6,
2 We call it the Over-approximation Lemma in [6] due to the analogy between our

proof and proofs of soundness of program analyses based on abstract interpretation.
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if σ0 is complete and pc0, σ0 →∗
S pc, σ, then σ is also complete. We can now

formulate and prove the desired soundness statement.

Theorem 4. Let S be the program C1 ‖ . . . ‖ Cn and suppose 
 {Pk} Ck {Qk}
for k = 1..n. Suppose further that either at least one of Qk is intuitionistic or
resource invariants for lock sorts used in the proofs are admissible. Then for any
interpretation i and complete state σ0 such that σ0 ∈

〈
�n

k=1 �Pk�k
i

〉
the program

S is safe when run from σ0 and if pc0, σ0 →∗
S pcf , σ, then σ ∈

〈
�n

k=1 �Qk�k
i

〉
.

Proof. Consider an interpretation i and a complete state σ0 ∈
〈
�n

k=1 �Pk�k
i

〉
.

Therefore σ0 ∈
(
�n

k=1 �Pk�k
i

)
∗

(
�(A,u)∈Free(σ0) I0(A, u)

)
from the definition of

closure. Then by Theorem 1 the program S is safe when run from σ0 and if
pc0, σ0 →∗

S pcf , σ, then σ ∈
(
�n

k=1 �Qk�k
i

)
∗

(
�(A,u)∈Free(σ) I0(A, u)

)
. Hence, by

the definition of closure, we have σ ∈ σ1 ∗ σ2 where σ1 ∈
〈
�n

k=1 �Qk�k
i

〉
and

σ2 ∈ �(A,u)∈L I0(A, u) for some L ⊆ Free(σ). If one of Qk is intuitionistic, then
from this it directly follows that σ ∈

〈
�n

k=1 �Qk�k
i

〉
.

Suppose now that L �= ∅ and the resource invariants for lock sorts mentioned
in L are admissible. Consider any (A, u) ∈ L. The state σ is complete, therefore,
the permission associated with the lock at the address u in σ is 1. Besides, since
L ⊆ Free(σ), the value associated with u in σ is 0. Hence, if the permission
associated with u in σ2 were less than 1, then u would have to be allocated
in σ1 with a non-zero permission and the value U, which would contradict the
definition of closure (a state in a closure cannot contain locks with the value
U). So, for any (A, u) ∈ L the permission associated with u in σ1 is 1, which
contradicts the admissibility of resource invariants for lock sorts used in the
proof of the program. Therefore, L = ∅ and, hence, σ ∈

〈
�n

k=1 �Qk�k
i

〉
. ��

Note that for garbage-collected languages we can use the intuitionistic version
of the logic [8] (i.e., one in which every assertion is intuitionistic) and, hence, do
not have to check admissibility. Also, admissibility does not have to be checked if
we are not interested in detecting memory leaks, as then Theorem 1 can be used.

8 Dynamic Thread Creation

We now extend the programming language with dynamically created threads:

T ::= f, f1, f2, . . . procedure names
C ::= . . . | V = fork(T ) | join(E) primitive commands
P ::= let T = S, . . . , T = S in S programs

We represent the code of threads by parameterless procedures (passing param-
eters to threads at the time of their creation is orthogonal to our concerns here
and can be handled in a way similar to the one used for handling procedure
calls when variables are treated as resources [12]; see [6] for details). A pro-
gram consists of several procedure declarations along with the code of the main
thread. We consider only well-formed programs in which all declared procedure
names are distinct and all procedures used are declared. x = fork(f) creates a
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new thread executing the code of the procedure f and stores the corresponding
thread identifier into the variable x. join(E) waits until the thread with the
identifier E finishes executing. In our semantics we allow at most one thread to
wait for the termination of a given thread.

We add two new forms to our assertion language: Φ ::= . . . | tidf (E) | empt.
A formula tidf (E), which we call a thread handle, represents the knowledge that
the thread with the identifier E exists and executes the code of the procedure
f , and gives its owner a permission to join the thread. empt denotes that the
assertion does not contain any permissions of this kind. Note that a thread is
deallocated (only) when it is joined.

Judgements are now of the form Γ 
 {P} C {Q} where Γ is a context consist-
ing of a set of procedure specifications, each of the form {P} f {Q}. We consider
only contexts in which there is at most one specification for each procedure. As
procedures are parameterless, we restrict our attention here to contexts in which
pre- and postconditions do not contain free logical variables. We add Γ 
 to all
the triples in the rules from Figure 1 as well as in the standard rules of sepa-
ration logic. In addition, we ∧-conjoin empt to every pre- and postcondition in
the axioms for primitive commands (except for the postcondition of Acquire

and the precondition of Release: in the postcondition of Acquire and the pre-
condition of Release we ∧-conjoin empt right after LockedA(L, �X)). To reason
about fork and join we introduce two new axioms:

Γ, {P} f {Q} � {(x � emph ∧ empt) ∗ P} x = fork(f) {x � emph ∧ tidf (x)} Fork

Γ, {P} f {Q} � {O � emph ∧ tidf (E)} join(E) {(O � emph ∧ empt) ∗ Q} Join

That is, upon creating a new thread executing the code of procedure f , the
thread that executed fork obtains the thread handle tidf (x) for the newly-
created thread and gives up ownership of the precondition of f . Joining a thread
with the identifier E requires the joining thread to own the handle tidf (E). When
join succeeds, the thread exchanges the handle for the postcondition of f .

The model of the assertion language has to be adapted to account for thread
handles. A state of the program is now represented by a triple of a stack, a
heap, and a thread pool, the latter represented by a finite partial function from
thread identifiers to procedure names. Now a lock can be free, held by the main
thread, held by a thread, or its status may be unknown. Assertions are then
interpreted with respect to a thread identifier, a stack, a heap, a thread pool, and
an interpretation of logical variables. We define the ∗ operation on thread pools
as disjoint union of the partial functions representing them, and the semantics of
P ∗ Q and P −−∗ Q are then straightforwardly adjusted so as to partition thread
pools. In addition, we add clauses for the new forms in our assertion language
such that tidf (E) describes singleton thread pools and empt describes the empty
thread pool. The satisfaction relation for all other formulae just ignores the
thread pool. The notion of precision of formulae does not change.

Due to space constraints, we omit the detailed development of semantics and
soundness for the extended logic, which can be found in [6]. Instead, we just
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state the conditions under which the logic is sound. A proof of the program
let f1 = C1, . . . , fn = Cn in C is given by triples Γ 
 {P1} C1 {Q1}, . . . , Γ 

{Pn} Cn {Qn}, Γ 
 {P} C {Q}, where Γ = {P1} f1 {Q1}, . . . , {Pn} fn {Qn}.
For the proof to be sound, Pk must be precise, and Pk and Qk must have empty
locksets, for all k = 1..n. We note that the operational semantics of Section 6 can
be adjusted to our setting and a soundness statement similar to Theorem 1 can
then be formulated. The proof of soundness is then done in the same style as that
of Theorem 1. The notions of closure and admissibility can also be generalized
to the new setting and a theorem similar to Theorem 4 can be proved.

9 Conclusions and Related Work

We have presented a logic that allows reasoning about concurrent heap-
manipulating programs with realistic concurrency primitives including
unbounded numbers of locks dynamically allocated and destroyed in the heap
and threads dynamically created and terminating themselves. We have demon-
strated that the logic makes it possible to reason locally about programs with
a notion of dynamic ownership of heap parts by locks and threads. We believe
that in the future this aspect of the logic will produce some additional pay-offs.
First, the resource-oriented flavor of the logic should make it easy to design pro-
gram analyses on the basis of it following the lines of [7]. In fact, the fixed-point
equations defining the thread-local semantics used in the proof of soundness of
our logic can be seen as a scheme of a thread-modular program analysis in the
style of [7]. Second, lock handles in our logic’s assertion language are somewhat
reminiscent of abstract predicates used for modular reasoning in separation logic
about object-oriented programs [11]. This is not a coincidence as object-oriented
programs use information hiding extensively in their locking mechanisms, and
hence, often satisfy the Ownership Hypothesis. For this reason, we believe that
our logic, combined with the techniques from [11], should be convenient for
reasoning about concurrent object-oriented programs. Note, however, that lock
handles and abstract predicates are different, in particular, we cannot see a way
in which the former can be encoded in terms of the latter.

Two papers [4,15] have recently suggested combinations of separation logic
and rely-guarantee reasoning that, among other things, can be used to reason
about storable locks. For example, in [15] locks are not treated natively in the
logic, but are represented as cells in memory storing the identifier of the thread
that holds the lock; rely-guarantee is then used to simplify reasoning about the
global shared heap with locks allocated in it. The logic allows modular reasoning
about complex fine-grained concurrency algorithms (e.g., about the optimistic
list mentioned in Section 4), but loses locality of reasoning for programs that
allocate and deallocate many simple data structures protected by locks, which
results in awkward proofs. In other words, as the original concurrent separation
logic, the logics in [4,15] are designed for reasoning about the concurrent control
of bounded numbers of data structures whereas our logic is designed to reason
about the concurrent control of unboundedly many data structures that are
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dynamically created and destroyed. Ideally, one wants to have a combination
of both: a logic in which on the higher-level the reasoning is performed in a
resource-oriented fashion and on the lower-level rely-guarantee is applied to deal
with complex cases. Achieving this is another direction of our future research.

Feng and Shao [5] presented a rely-guarantee logic for reasoning about concur-
rent assembly code with dynamic thread creation. They do not have analogs of
our rules for ownership transfer at fork and join commands. On a higher level,
our logic for storable threads relates to theirs in the same way as separation logic
relates to rely-guarantee reasoning: the former is good at describing ownership
transfer, the latter at describing interference. As in the case of storable locks,
investigating possible combinations of the two approaches would be fruitful.

Acknowledgments. We would like to thank Richard Bornat, Cristiano Calcagno,
Peter O’Hearn, and Matthew Parkinson for comments and discussions that
helped to improve the paper.
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Abstract. Assertions test expected properties of run-time values
without disrupting the normal computation of a program. We present a
library for enriching Haskell programs with assertions. Expected proper-
ties can be specified in a parser-combinator like language. The assertions
are lazy: they do not force evaluation but only examine what is evaluated
by the program. They are also prompt: assertion failure is reported as
early as possible. The implementation is based on lazy observations and
continuation-based coroutines.

1 Introduction

Assertions are parts of a program that, instead of contributing to the functional-
ity of the program, express properties of run-time values the programmer expects
to hold. It has long been recognised that augmenting programs with assertions
improves software quality. An assertion both documents an expected property
(e.g. a pre-condition, a post-condition, an invariant) and tests this property at
run-time. For example, an assertion may express that the argument of a square
root function has to be positive or zero and likewise the result is positive or zero.
Assertions can be an attractive alternative to unit tests. Assertions simplify the
task of locating the cause of a program fault: in a computation faulty values
may be propagated for a long time until they cause an observable error, but
assertions can detect such faulty values much earlier.

We can easily define a combinator for attaching assertions to expressions:
assert :: Bool -> a -> a
assert b x = if b then x else error "Assertion failed."

The assertion is an identity function when the expected property holds, but raises
an exception otherwise1. Then, assertions can be defined as normal Haskell func-
tions to express expected properties, for example

ordered :: Ord a => [a] -> Bool
ordered [] = True
ordered [_] = True
ordered (x:y:ys) = x<y && ordered (y:ys)

� This work has been partially supported by the German Research Council (DFG)
under grant Ha 2457/5-2 and by the United Kingdom under EPSRC grant
EP/C516605/1.

1 The Glasgow Haskell Compiler provides a variant that produces a more informative
error message that includes the source location of the failed assert call.
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and use them to assert for example a pre-condition:
checkedInsert :: Ord a => a -> [a] -> [a]
checkedInsert x xs = assert (ordered xs) (insert x xs)

insert :: Ord a => a -> [a] -> [a]
insert x [] = [x]
insert x (y:ys) = if x < y then x:y:ys else y : insert x ys

In many applications such assertions work fine
> checkedInsert 4 [1,3,2,5]
Assertion failed.

but sometimes they do not, as the following non-terminating expression shows:

> take 4 (checkedInsert 4 [1,2..])

In our example the function ordered, which expresses our expected property,
is fully strict and thus forces evaluation of the whole infinite list. Programming
with assertions as above results in strict programs and thus a loss of the ex-
pressive power of laziness, for example, the use of infinite data structures and
cyclic definitions. As long as an assertion does not fail, a program augmented
with assertions should have exactly the same input/output behaviour as the one
without assertions. Hence assertions for a lazy language should be lazy, that is, a
property should only be checked for the part of a data structure that is evaluated
during the computation anyway.

Our example above also demonstrates that using Boolean functions for spec-
ifying properties is rather limiting in expressiveness. We want to say that any
list containing two neighbouring elements in the wrong order should raise an
assertion failure, also when most of the rest of the list has not been evaluated.
However, ordered only decides on totally evaluated finite lists. We present a
parser-combinator like monadic language for expressive lazy assertions. Parser
combinators are a well-known tool for describing a set of token sequences. Simi-
larly our assertion combinators describe a set of possibly partial expected values.

Whenever a part of a value is evaluated that violates an asserted property,
the assertion immediately fails. We say our assertions are prompt. Promptness
ensures that the reported unexpected value is as unevaluated as possible and thus
smaller to read. Furthermore, a program fault usually violates many assertions,
but promptness ensures that the assertion that is closest to the fault with respect
to data flow is reported. In summary, our assertions have the following properties:

– Lazy: They do not modify the lazy behaviour of a program.
– Prompt: The violation of an assertion is reported as early as possible, before

a faulty value is used by the surrounding computation.
– Expressive: Complex properties can be expressed using full Haskell.
– Portable: Assertions are implemented as a library and do not need any com-

piler or run-time modifications; the only extension to Haskell 98 used for the
implementation are unsafePerformIO and IORefs.
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2 Using the Assertion Monad

Expected properties are specified in an assertion monad Try a that combines pat-
tern matching and non-deterministic computations. The combinators are used
very similarly to standard monadic parser combinators [8].

Here is a specification of the ordered property from the Introduction:

ordered :: Ord a => Lazy [a] -> Try ()
ordered xs = pNil xs

||| (do (_,ys) <- pCons xs; pNil ys)
||| (do (x,ys) <- pCons xs; (y,_) <- pCons ys;

((do rx <- pVal x; ry <- pVal y; guard (rx < ry))
&&& ordered ys))

The tested argument is wrapped within a new type constructor Lazy and the re-
sult type has to be Try (). Together these two types enable prompt and lazy eval-
uation of assertions. To specify the three different cases for lists of length zero,
one, and longer lists, the assertion monad Try a provides the non-deterministic
choice operator (|||) :: Try a -> Try a -> Try a. For a fair evaluation, that
is, there is no fixed order in which the different cases are evaluated. Similarly,
we provide a fair, parallel2 conjunction operator (&&&) :: Try () -> Try () ->

Try (), which here allows independent testing at every position within the list.
For pattern matching we provide the following pattern combinators within

the assertion monad:
pNil :: Lazy [a] -> Try ()
pCons :: Lazy [a] -> Try (Lazy a,Lazy [a])
pVal :: Lazy a -> Try a

For each data constructor we provide a pattern combinator that matches only the
constructor and that yields the sub-structure as a tuple within the Try monad.
For example, for the empty list it returns the empty tuple and for (:) it returns
a pair consisting of the element and the remaining list. The combinator pVal

matches every value and directly corresponds to a variable in a Haskell pattern.
Finally, the function guard is the standard Haskell function that integrates a
Boolean test into a MonadPlus.

To attach an assertion to an expression we provide the function assert ::

String -> (Lazy a -> Try ()) -> a -> a. The first parameter is a label naming
the assertion. When an assertion fails, the computation aborts with an appro-
priate message that includes the assertion’s label. As further parameters assert
takes the property and the value on which it behaves as a partial identity.

For expected values an assertion is an identity function. For partial values
that are smaller than expected values (in the standard ordering where unevalu-
ated/undefined is less than any value) the assertion cannot be decided and hence
it is also the identity function. For any unexpected value the assertion raises an
exception.

2 That is, it has no fixed sequential evaluation order for the two arguments.
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To prevent an assertion from evaluating too much, the property has to be de-
fined as a predicate on the tested data structure. The implementation of assert
uses a class Observe to ensure that only the context in which the application of
assert appears determines how far the tested data structure is evaluated and
only that part is passed to the predicate.

insertWithPre :: (Ord a,Observe a) => a -> [a] -> [a]
insertWithPre x xs = insert x (assert "insert input ordered" ordered xs)

The assertion is evaluated in a prompt, lazy manner, as the following call shows:
> take 4 (insertWithPre 4 ([3,4] ++ [1,2..]))
[3,4,
Assertion (insert input ordered) failed: 3 :4:1: _

Beside reporting the failed assertion, we also present the wrong value to the user
and highlight those parts that contribute to the failure. Here these are, beside
the unordered values, all (:) constructors above the unordered values, because
the assertion would not have failed if any of them was [].

Similar to this precondition, we can add a postcondition specifying that the
result of insert is ordered. However, this is not exactly what one would like to
specify as a property of insert. In case insert is called with an unordered list,
this fault should not be blamed on insert, but on the function applying insert

to an unordered list. A better specification for insert is: if the argument list is
ordered, then the result is ordered as well. In contrast to the first assertion, this
property is defined for a function. It specifies properties for an argument and
the result. Functional assertions can be expressed by means of function funn 3

for functions of arity n:
insertChecked :: (Ord a, Observe a) => a -> [a] -> [a]
insertChecked = assert "insert preserves ordered property"

(fun2 (\ _ ys zs -> ordered ys ==> ordered zs))
insert

To express the dependence between the two ordered properties, we can use an im-
plication (simply defined as x ==> y = notAssert x ||| y). Executing insertChecked

yields the following behaviour:
> insertChecked 3 [5,3,4]
[5,3,3,4]
> insertChecked 3 [2,3,4]
[2,3,
Assertion (insert preserves ordered property) failed:

3 -> ( 2:3:4:[] -> 2 :3:3: 4:_)

In the second case highlighting shows that for the ordered input list [2,3,4] the
duplicate occurrence of 3 in the result list does not meet the specification. To
correct the program, we could omit duplicated elements.

3 fun2 :: (Lazy a -> Lazy b -> Lazy c -> Try ()) -> Lazy (a -> b -> c) ->
Try ().
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3 The Idea of Respecting Laziness

This section outlines how the types Try a and Lazy a enable Haskell computa-
tions to respect how far arguments are evaluated. We introduce the data type

data EvalTree = Eval [EvalTree] | Uneval

An EvalTree represents how far a corresponding data structure is evaluated. It
has the same tree structure as the data structure itself except that parts may be
cut off by the constructor Uneval; that is, if the data structure contains an n-ary
evaluated constructor, then the corresponding EvalTree contains an Eval node
with n EvalTrees in the argument list. For instance, the evaluation of list [1,2,3]
in the call of [1,2,3]!!1 is represented by the EvalTree: Eval [Uneval,Eval [Eval

[],Uneval]]. In later sections we will refine the definition of EvalTree further.
Now we can introduce the type synonym

type Lazy a = (EvalTree,a)

in which values are paired with their corresponding evaluation information. Be-
cause in Haskell pattern matching works from left to right, some of our later
definitions are simplified by having the evaluation information as first compo-
nent of the pair. The Lazy a type enables us to define an assertion that respects
the evaluation state of the tested value, for example a function checkOrdered

that checks whether a given list is ordered with respect to its evaluated parts:
checkOrdered :: Lazy [Int] -> Maybe Bool
checkOrdered (Eval [], []) = Just True
checkOrdered (Eval [_,Eval []], [_]) = Just True
checkOrdered (Eval [eX,eYXs@(Eval [eY,eXs])], (x:yxs@(y:xs))) =

leq (eX,x) (eY,y) &|& checkOrdered (eYXs,yxs)
checkOrdered _ = Nothing

leq :: Lazy Int -> Lazy Int -> Maybe Bool
leq (Eval [],x) (Eval [],y) = Just (x <= y)
leq _ _ = Nothing

(&|&) :: Maybe Bool -> Maybe Bool -> Maybe Bool
(Just True) &|& (Just True) = Just True
(Just False) &|& _ = Just False
_ &|& (Just False) = Just False
_ &|& _ = Nothing

The result type of checkOrdered reflects that besides being ordered or not, there
is a third alternative (Nothing), namely that at this stage of evaluation it is not
possible to decide whether the list is ordered or not. For comparing two elements
of the list we use a variation of (<=) that also respects the EvalTree. Finally, the
results of each comparison of two elements are combined by a modified version of
(&&). Besides using the extended type Maybe Bool this function also implements
a parallel version of (&&) by means of its third rule. Independent of the other
argument, (&|&) propagates an argument Just False as a result.
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How can this approach be generalised to arbitrary computations on lazy val-
ues? Although, assertions have to return Boolean values as result, subcomputa-
tions may return other result types. Here we can also use the Maybe a type to
express that we either obtain a result of type a or have a suspension.

4 Non-determinism

Looking ahead, we do want to restart suspensions when more parts of a tested
data structure have been evaluated. Hence we need to keep track of all separate
suspensions and cannot simply conflate several into one (Nothing &|& Nothing =

Nothing). The solution is to use a list of Maybe values as result for computations
on lazy values. Each individual result may not be computable because of insuf-
ficient evaluation.

newtype Try a = Try [Maybe a]

failT = Try []
suspT = Try [Nothing]

The type constructor Try forms a monad, namely the standard combination of
the non-determinism list monad and the Maybe monad, in which functions are
applied to all list elements.

instance Monad Try where
(Try as) >>= f = Try $ concatMap (applyRes (fromTry . f)) as

where fromTry (Try x) = x
applyRes :: (a -> [Maybe b]) -> Maybe a -> [Maybe b]
applyRes f (Just x) = f x
applyRes f Nothing = [Nothing]

return x = Try [Just x]

For non-deterministic branching we define a parallel disjunction operator, which
collects all possible results4:

(|||) :: Try a -> Try a -> Try a
(Try xs) ||| (Try ys) = Try (xs++ys)

Within the Try monad we can now define pattern combinators for matching lazy
values. For example:

pCons :: Lazy [a] -> Try (Lazy a,Lazy [a])
pCons (Eval [eX,eY],(x:xs)) = return ((eX,x),(eY,xs))
pCons (Eval _,_) = failT
pCons (Uneval,_) = suspT

pNil :: Lazy [a] -> Try ()
pNil (Eval _,v) = if null v then return () else failT
pNil (Uneval,_) = suspT

4 In fact, Try can also be made an instance of MonadPlus with mplus = (|||) and
mzero = failT.



44 O. Chitil and F. Huch

These pattern combinators respect the evaluation of a given argument. If the ar-
gument is not evaluated at all, then the result is a suspension. If the constructor
is evaluated and it is the wrong constructor, then matching fails. Finally, if
the constructor matches, then we succeed and return the sub-terms together
with their evaluation information. Similarly we define a pattern combinator that
strictly matches any value.

pVal :: Lazy a -> Try a
pVal (et,v) = condEval et (return v)

condEval :: EvalTree -> a -> a
condEval (Eval ets) tv = foldr condEval tv ets
condEval Uneval _ = suspT

The combinator pVal is mostly used for flat data types such as Int or Char.
Next we define the parallel (&&) function within our framework. We start with

a more general function, which applies arbitrary result functions to Try results:
(***) :: Try (a -> b) -> Try a -> Try b
(***) (Try fs) (Try xs) = Try [res | fRes <- fs, xRes <- xs,

let res = do f <- fRes
x <- xRes
return (f x)]

type Assert = Try ()

(&&&) :: Assert -> Assert -> Assert
t1 &&& t2 = (return (\x1 x2 -> ()) *** t1) *** t2

Whereas our old (&|&) on type Maybe Bool could produce only one of three
values, the new (&&&) may produce a value representing many successful and
suspended computations.

Now it is possible to define the ordered assertion from Section 2. For a com-
plete implementation it remains to show how the EvalTree can successively be
constructed during the computation.

5 Generating EvalTrees

To generate evaluation information for data structures we use the idea of ob-
servations, first introduced by Hood [6]. All values for which an assertion is
specified are observed. An observation constructs a corresponding EvalTree rep-
resenting how far the data structure has been evaluated. The key idea is that
the context of a computation demands head normal forms (hnf). Whenever such
an hnf is computed we extend its EvalTree by means of a side effect. This means
an Uneval leaf is replaced by Eval [Uneval,...,Uneval] where the number of
Unevals within the list is equal to the arity of the constructor of the hnf.

Because we construct and use EvalTrees in program parts that are not linked
by data-flow and for efficiency reasons, we use mutable references (IORefs) in our
new EvalTree representation:
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data EvalTree = EvalR [EvalTreeRef] | UnevalR
type EvalTreeRef = IORef EvalTree

With this representation it is not necessary to descend into the whole data struc-
ture, when extending it in a leaf position. Instead, we can directly update the
leaf.

Observable data types are represented by the following class:
class Observe a where
obs :: a -> EvalTreeRef -> a

We demonstrate how an instance of this class can be defined by means of the
list data type:

instance Observe a => Observe [a] where
obs (x:xs) r = unsafePerformIO $ do [aRef,bRef] <- mkEvalTreeCons r 2

return (obs x aRef : obs xs bRef)
obs [] r = unsafePerformIO $ do mkEvalTreeCons r 0

return []

Whenever the context demands the evaluation of an observed value, the corre-
sponding node in the EvalTree is extended by means of the function

mkEvalTreeCons :: EvalTreeRef -> Int -> IO [EvalTreeRef]
mkEvalTreeCons r n = do refs <- sequence (replicate n emptyUnevalRef)

writeIORef r (EvalR refs)
return refs

emptyUnevalRef :: IO EvalTreeRef
emptyUnevalRef = newIORef UnevalR

Furthermore, observers are added to the (not yet evaluated) arguments of the
resulting constructor. These observers extend on demand the IORefs returned by
mkEvalTree (aRef and bRef), which are also added to the new EvalR node within
the EvalTree. The initial observer can be added with the function

observe :: Observe a => a -> IO (EvalTreeRef,a)
observe x = do r <- emptyUnevalRef

return (r,obs x r)

This function is called whenever an assertion is added to a data structure, as
discussed in the next section.

On top of these functions, it is possible to define a late (in contrast to prompt)
implementation of our lazy assertions. Such an implementation stores all asser-
tions of the program within a global state. At the end of the execution, all checks
within this state are executed. Failed assertions are reported to the user.

6 Promptness

So far, our assertions meet two major goals. They respect the laziness of the
program and they provide non-determinism by means of the operators (|||),
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(***), and (&&&). However, we still want our assertions to be prompt for the
following reasons:

– Currently substantial memory is consumed, because the assertions them-
selves and the underlying data structures have to be kept until the final
check can be performed. The more assertions are added the more memory is
needed, although some data structure is fully evaluated or the assertion can
be decided already by the evaluated part. When checking assertions directly
at run-time large parts of the memory would become garbage and could be
reused.

– Evaluating assertions at the end of the computation means the assertion is
checked on maximally evaluated data structures. If a failed assertion would
be reported earlier, then smaller data structures would be presented to the
user. It will often be easier to understand why an assertion was violated.

– It will often be the case that in the end not only one assertion fails. There
may be many consecutive faults. But how can a user know which was the ini-
tial fault to detect the bug in the program? The order in which the assertions
are printed at the end of the execution does not reflect how different asser-
tions depend on each other. Having prompt assertions, the computation can
directly stop after reporting the first violated assertion. Consecutive faults
are not reported anymore.

– In non-terminating systems such as most reactive applications (e.g. a web-
server or a web-browser) it is inconvenient to stop the application just for
checking assertions. Users want them to be checked in parallel in the back-
ground, without effecting the run-time behavior of the program.

The implementation shall suspend checks on unevaluated parts of data structures
and directly awake them when these parts are evaluated to hnf.

6.1 Preparing the EvalTrees

For checking an assertion many checks have to be executed concurrently on
different parts of the tested data structure. Many of these checks will have to
suspend, because specific parts of the data structure are not yet evaluated. We
store each suspended check in the Uneval leaf associated with the part of the
data structure that it is suspended on, so that the checks can be executed when
that data part is demanded. Several checks may be associated with the same
part and hence many suspended checks may have to be stored in one Uneval

leaf. A check does not return any value (it may just raise an exception), but it
reads IORefs to read the growing EvalTree and hence it is of type IO (). Checks
may be added to an Uneval leaf at different times. We simply compose all checks
for one Uneval leaf sequentially as an IO action stored within an IORef. Arbitrary
sequential composition works, because we assume that all checks terminate.

We redefine the EvalTree with a reference containing an IO action:
data EvalTree = Eval [EvalTreeRef] | Uneval (IORef (IO ()))
type EvalTreeRef = IORef EvalTree
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For the construction of the new EvalTree only two modifications have to be
made:

mkEvalTreeCons :: EvalTreeRef -> Int -> IO [EvalTreeRef]
mkEvalTreeCons r n = do refs <- sequence (replicate n emptyUnevalRef)

Uneval aRef <- readIORef r
action <- readIORef aRef
writeIORef r (Eval refs)
action
return refs

emptyUnevalRef :: IO EvalTreeRef
emptyUnevalRef = do aRef <- newIORef (return ())

newIORef (Uneval aRef)

The function mkEvalTreeCons is called whenever an observed expression is evalu-
ated to hnf. Then we read the suspended assertion checks (action) and execute
them before we return the list of new sub-references. The emptyUnevalRef con-
tains an IORef with no action, since there is no lazy computation to be performed
for that sub-value yet.

6.2 Coroutines

In our outline in Section 3 we defined the data type Try as a list of Maybe val-
ues. However, for implementing promptness we have to compute the assertion
checks step by step whenever the EvalTree is extended. Hence non-determinism
or coroutines through continuation passing style is a more appropriate means
of implementation. We have a success continuation and a fail continuation, just
like continuation-based parser combinators [9]. The success continuation must
take a fail continuation as argument to support non-determinism. We already
established that checks are of type IO ().

type FailCont = IO ()
type SuccCont a = FailCont -> a -> IO ()

newtype Try a = Try (SuccCont a -> FailCont -> IO ())

If there exists an alternative for a failed assertion, for example bynon-deterministic
branching in (|||), then the SuccCont can discard the current FailCont.

Now we are ready to define the Monad instance for the new type Try:
instance Monad Try where

(Try asIO) >>= f =
Try (\sc fc -> asIO (\sfc x -> fromTry (f x) sc sfc) fc)

return x = Try (\sc fc -> sc fc x)

fromTry :: Try a -> SuccCont a -> FailCont -> IO ()
fromTry (Try x) = x
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failT :: Try a
failT = Try (\sc fc -> fc)

Similar to constructing success continuations by means of return, it is handy to
have a function failT for constructing fail continuations.
To see how this lazy Try monad works, we first redefine the list patterns:

pNil :: Lazy [a] -> Try ()
pNil (Eval _ _,[]) = return ()
pNil (Eval _ _,(_:_)) = failT
pNil rx@(Uneval ref,v) = Try (suspTIO ref (pNil rx))

If the data structure is already evaluated, then we either succeed or fail. If the
data structure is not yet evaluated, we add a suspended computation to the
corresponding IORef within the EvalTree. The action to be performed when the
constructor is evaluated to hnf is the same matching again (pNil rx). In the
definition of suspTIO the action within the IORef is extended accordingly:

suspTIO :: IORef (IO ()) -> Try a -> SuccCont a -> FailCont -> IO ()
suspTIO ref try c fc = do io <- readIORef ref

writeIORef ref (io >> (fromTry try) c fc)

Similarly we can define the pattern combinator pCons:
pCons :: Lazy [a] -> Try (Lazy a,Lazy [a])
pCons (Eval _ [eX,eY],(x:y)) = return ((eX,x),(eY,y))
pCons (Eval _ _,[]) = failT
pCons rx@(Uneval ref,v) = Try (suspTIO ref (pCons rx))

Next we define the operator (|||) which allows a parallel, independent execution
of two Try computations:

(|||) :: Try a -> Try a -> Try a
(Try x) ||| (Try y) = Try (\c fc -> do
ref <- newIORef True
x c (orIORef ref fc) >> y c (orIORef ref fc))

orIORef :: IORef Bool -> FailCont -> IO ()
orIORef ref fc = do v <- readIORef ref

if v then (writeIORef ref False)
else fc

Both computations have to be performed in parallel because they may com-
pute different results of type a. The whole computation only fails if both sub-
computations fail. For this purpose we create a synchronisation IORef which
is set to False by the first failing alternative. If the other alternative fails too
this alternative continues with the fail continuation fc. The fail continuation is
passed to both alternatives, but only the second failing alternative (with respect
to time, not order in the code!) executes this continuation.

We define the parallel conjunction (&&&) again in terms of the more general
operator (***):
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(***) :: Try (a -> b) -> Try a -> Try b
(***) (Try f) (Try x) = Try $ \sc fc -> do
fRef <- newIORef []
xRef <- newIORef []
ref <- newIORef True
f (\ffc f’ -> do updateIORef ((ffc,f’):) fRef

xs <- readIORef xRef
mapM_ (\(xfc,x) -> sc (ffc >> xfc) (f’ x)) xs)

(andIORef ref fc)
x (\xfc x’ -> do updateIORef ((xfc,x’):) xRef

fs <- readIORef fRef
mapM_ (\(ffc,f) -> sc (ffc >> xfc) (f x’)) fs)

(andIORef ref fc)

(&&&) :: Assert -> Assert -> Assert
t1 &&& t2 = (return (\x1 x2 -> ()) *** t1) *** t2

andIORef :: IORef Bool -> IO () -> IO ()
andIORef ref fc = do v <- readIORef ref

if v then writeIORef ref False >> fc
else return ()

The computation of both arguments of (***) may introduce non-determinism,
that is, multiple values. Whenever a new value is produced within the success
continuation we extend the corresponding list in fRef and xRef. Besides the dif-
ferent values, this list also contains the corresponding fail continuations within a
pair. Furthermore, we directly apply a new function to every already computed
argument in the success continuation of f, as well as every stored function to a
new argument in the success continuation of x. Thus every function is applied
to every argument exactly once.

If any computation fails, we update the Boolean value in ref to False and
directly continue with the fail continuation. Then, if the other coroutine fails
as well, the IORef already contains False and it stops immediately. Like for the
disjunction operator, the fail continuation is executed at most by one coroutine.

Finally we need the definition of assert:
assert :: Observe a => String -> (Lazy a -> Assert) -> a -> a
assert label p x = unsafePerformIO (do
(eT,x’) <- observe x
let Try check = p (eT,x)
check (const (putStrLn ("Assertion succeeded: "++label)))

(fail ("Assertion failed: "++label))
return x’)

After installing an observer for x, we directly start the coroutine check for the
asserted property p. Usually this coroutine directly suspends itself. Its SuccCont

ignores its current FailCont and simply prints that the assertion succeeded. The
FailCont aborts the whole computation reporting the failed assertion. We have
to pass x, not the observer-wrapped variant x’, to the property p, because a
partial value of x’ is only available after all necessary assertion checks have been
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performed on it. As shown in Section 2, the real implementation reports a fail-
ure with a highlighted presentation of the wrong value, which we will discuss
in the next section. Furthermore, success messages are written to a file to avoid
conflicts with the program output.

To provide a comfortable library, we provide some further functions on as-
sertions, like negation, implication, and assertion variations of standard Haskell
function such as elem and any.

7 Failure Highlighting

As presented in Section 2, the data structure violating an assertion is also pre-
sented to the user. All parts responsible for the failure are marked such that
the problematic sub-structures can easily be detected. This section gives a brief
overview of how this highlighting is realised in our implementation.

So far the EvalTree does not contain any information about the names of the
constructors inside the data structure. Hence it is not possible to print data
structures at all. Therefore we add a String parameter to the constructor Eval

that can easily be set in obs. Knowing all constructor names of the observed
data structure, it is straightforward to generate a string representation of the
data structure containing underscores for unevaluated parts.

For syntax highlighting we have to collect some more information while check-
ing assertions. We identify every node in the EvalTree with a position Pos:

data EvalTree = Eval Pos String [EvalTreeRef] | Uneval (IORef (IO ()))

While checking an assertion, we can then collect sets of positions (PosSet), rep-
resenting the nodes visited during the check. We extend the success and the fail
continuations with a set of positions as additional parameter:

type SuccCont a = PosSet -> FailCont -> a -> IO ()
type FailCont = PosSet -> IO ()

When a check splits into (parallel, independent) sub-checks, both checks generate
their own sets of positions which are later combined according to the branching
operator. For (|||) both sub-checks have to fail and, hence, the sets of positions
are joined. For (***) (e.g. (&&&)) only the set of positions of the failing sub-check
has to be considered.

In our implementation Pos and PosSet are defined as abstract data types with
functions for set manipulation. Internally, a Pos is implemented as a list of Ints
where the Ints successively express which branch in the EvalTree is chosen. The
set of positions is implemented as a Trie [10] over lists of Ints.

Although the Trie of positions has the same structure as the EvalTree, it is not
possible to directly integrate the position information into the EvalTree. Many
assertions are checked in parallel and for each of these parallel checks different
positions have to be considered. Parts of these assertions may have succeeded
and their position sets should be discarded since this part of the data structure
was not responsible for the failure.
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8 Assertions for Functions

One of the most important features of our library is the ability to assert prop-
erties of functions. This allows programmers to express pre- and postconditions
as well as invariants of functions. It is possible to express arbitrary relations
between arguments and results.

The basic idea of the implementation is to represent a function as its graph, as
far as it is used/constructed during the program execution. At each application
of the function the graph is extended with a new pair of lazily constructed values.
Functional assertions usually contain checks applied to function arguments or
results which have to be checked by the mechanism described so far.

In the data type EvalTree we add a representation for functions

data EvalTree = ... | Fun Pos EvalTreeRef EvalTreeRef () () EvalTreeRef

where the first two EvalTreeRefs represent the argument and result value of the
(curried) function and the last EvalTreeRef represents the next application of
the function. The two arguments of type () are used to store the concrete ar-
gument and result value (of arbitrary type) by means of a type-cast5 inside the
monomorphic data structure EvalTree. An instance of the class Observe is defined
to construct and extend EvalTrees for functions.

In the Try monad we give access to the graph of an observed function through
a function which converts the observed function into a lazily constructed (infi-
nite) list of argument-result pairs:

pFun :: Lazy (a -> b) -> Try (Lazy [(a,b)])

Assertions defined on this lazily constructed list are stepwise evaluated whenever
the list is extended by a new function application. Functional assertions have to
hold for each application. We apply them to all list elements by means of the
assertion variant of the Haskell function all.

This conversion through a lazily constructed list is hidden in functions for a
convenient construction of functional assertions of arbitrary arity:

fun1 :: (Lazy a -> Lazy b -> Assert) -> Lazy (a -> b) -> Assert
fun2 :: (Lazy a -> Lazy b -> Lazy c -> Assert) -> Lazy (a -> b -> c)

-> Assert
...

An example for a functional assertion is presented in Section 2.

9 Related Work

The first systematic approach to adding assertions to a functional language tar-
gets the strict language Scheme [5]. It provides convenient constructs for express-
ing properties of functions, including higher-order functions, and augmenting

5 A function coerce :: a -> b can be defined using the Haskell 98 extension IORefs
in combination with unsafePerformIO.
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function definitions with assertions. Laziness is irrelevant and promptness triv-
ial for strict functional languages. Instead a major concern of this work is which
program part to blame when an assertion fails. The approach to blaming can-
not directly be transferred to a lazy language, because there the run-time stack
does not reflect the call structure. Instead a cooperation with the Haskell tracer
Hat [11] may provide a solution in the future. The Scheme approach has been
transferred to Haskell [7], but without taking its lazy semantics into account.

The first paper on lazy assertions for the lazy language Haskell [2] uses normal
functions with Boolean result for expressing properties and hence the assertions
are not prompt. The paper gives several examples of where the lack of prompt-
ness renders the assertions useless. Furthermore, expressibility of properties of
functions is limited and the implementation requires concurrency language ex-
tensions as provided only by GHC.

In the first paper on lazy and prompt assertions for Haskell [1] properties
are expressed in a pattern logic. The logic provides quantifiers and context pat-
terns that allow referring to substructures of the tested value. However, most
Haskell users find this logic hard to understand and many simple properties,
such as that two lists have the same lengths, require complex descriptions. The
implementation of the pattern logic is only sketched.

QuickCheck is a library for testing Haskell functions with random data [3].
Normal Boolean functions express expected properties, for example

prop :: Int -> [Int] -> Property
prop x xs = ordered xs ==> ordered (insert x xs)

where ordered :: [Int] -> Bool states that the function insert preserves order.
Normal Boolean functions can be used, because only total, finite data structures
are tested. An extension for (finite) partial values [4] has fundamental limits
whereas our assertions fully support laziness. It can be very hard to generate
random test data, for example input strings for a parser that are likely to be
parseable. QuickCheck can only test top-level functions whereas an assertion
can be attached to any local definition or subexpression. So testing with random
data and testing with real data as our assertions do are two different methods
which complement each other.

10 Conclusions

We have presented a new approach to augmenting lazy functional programs
such as Haskell with assertions. The implementation is based on a technically
interesting combination of continuation-based non-determinism, explicit schedul-
ing of concurrent processes and HOOD-like observation of values. However, it
is a portable library that requires only two common extensions of Haskell 98,
unsafePerformIO and IORefs, which are supported by all Haskell compilers.
The assertions are lazy and prompt. Most importantly, the combinator language
for expressing asserted properties is easy to use, because it is similar to familiar
parser combinator libraries. It combines pattern matching and non-deterministic
computations. Furthermore, it is very expressive, allowing the formulation of
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any imaginable computable property. Assertions for functional values are easy
to write and syntax highlighting simplifies the identification of parts of a value
that are relevant for a failure.

The library does not prevent the user from writing assertions that change the
program semantics by causing non-termination or raising an exception; after all,
an asserted property may evaluate any Haskell expression, including undef or
error. However, the library enables the user to formulate complex properties for
partial and infinite values.

In the future we intend to investigate a theoretical formalisation of our asser-
tions and to import ideas from strict assertions for Haskell [7].
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Abstract. Pattern matching makes ML programs more concise and readable,
and these qualities are also sought in object-oriented settings. However, objects
and classes come with open class hierarchies, extensibility requirements and the
need for data abstraction, which all conflict with matching on concrete data types.
Extractor-based pattern matching has been proposed to address this conflict. Ex-
tractors are user-defined methods that perform the task of value discrimination
and deconstruction during pattern matching. In this paper, we give the first for-
malization of extractor-based matching, using a first-order object-oriented calcu-
lus. We give a direct operational semantics and prove it sound. We then present
an optimizing translation to a target language without matching, and prove a cor-
rectness result stating that an expression is equivalent to its translation.

1 Introduction

Algebraic datatypes and pattern matching render ML programs more concise, easier to
read, and amenable to mathematical proof by structural induction [1]. Match expres-
sions are high-level constructs with good properties: Compilers can translate them very
efficiently [2,3,4,5,6]. However, ML style pattern matching is often incompatible with
data abstraction.

To see why, consider the ML datatype definition in Fig. 1 which introduces a type
name and its constructors. Constructors play the double role of tags and functions that
aggregate data. Every list instance is tagged with either Nil or Cons. In match expres-
sions, values are distinguished by their tag to recover their data. In the example, the
append function concatenates lists by matching its argument xs: if it is the empty list,
we return the second argument zs. If xs is a Cons cell, a non-destructive update appends
zs to its tail via a recursive call.

This style of programming is concise and readable. The programs can be efficient,
since tags can be translated to integers and match expressions to cascaded switch state-
ments. However, note that the set of constructors as well as the arrangement of data
items is fixed once and for all. Furthermore, the grouping of data items for the Cons
constructor (e.g. int ∗ list ) exposes the representation of the data, making it harder to
change.

Representation independence forms the basis for data abstraction. Researchers have
suggested to reconcile pattern matching and data abstraction [7,8]. However, slow
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datatype l i s t = Ni l | Cons of int ∗ l i s t

fun append (xs , zs) = case xs of
Nil ⇒ zs

| Cons(y , ys) ⇒ Cons(y ,append(ys , zs ) ) ;

Fig. 1. Algebraic Matching in ML

adoption suggests that data abstraction, while desirable, is not considered essential for
functional programming. In object-oriented programming, data abstraction is essential:
it is one of the principles that permit object-oriented programmers to describe systems
using class hierarchies.

Pattern matching in object-oriented systems is appropriate when the set of operations
cannot be anticipated (cf. the Visitor design pattern [9]). Like functional pattern match-
ing, the Visitor pattern breaks encapsulation: the internal object representation has to be
exposed in order for operations like append to access them.

In order to use pattern matching without tying it to a closed set of types that ex-
pose their representation, a semantics for pattern matching based on user-defined func-
tions has been proposed independently by Emir, Odersky and Williams [10], and Syme,
Neverov and Margetson [11]. A pattern is interpreted as the invocation of a so-called
extractor method, which discriminates and deconstructs the input value. This decouples
the type of an accepted value from the representation extracted from it.

A short example of matching with extractors is given in Fig. 2. It defines a List class,
three subclasses Nil , Cons, and Singleton as well as two extractors cons and nil . These
extractors are methods, which here use test expressions a?{x : C ⇒ d}/{e}. Such a test
expression is the contraction of the Java code

if (a instanceof C) { C x = (C)a; d } else e .

The append implementation demonstrates the use of extractors. A pattern invokes an
extractor method with an implicit argument — the List().cons(y, ys) pattern expresses
two steps:

1. invoke method List().cons with the input value xs of the match expression as single
argument

2. if the method returns null, the input value is rejected. Otherwise, it is accepted:
bind the first field of the result to y and the second one to ys.

The return value of the extractor is a representation object that groups data items, which
can be matched against subpatterns or bound to local variables. The type Cons is the
result type of method cons, so it is used internally and externally to represent lists.
Representation can be chosen independently though: note that lists that contain only
one element can internally be represented with class Singleton , which is never exposed
through pattern matching. This class could have been added later, without breaking
client code that references cons and nil extractors.

We are interested in the question whether algorithms for optimized translation of
pattern matching can be applied to extractors and the object-oriented context. Also, the
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class List() � Obj {
def nil(x : Obj) : Nil = { /* extractor */

x?{y : Nil ⇒ y}/{null}
}
def cons(x : Obj) : Cons = { /* extractor */

x?{y : Cons ⇒ y}/{x?{y : Singleton ⇒ Cons(y.i, Nil())}/{null}}
}

}
class Nil() � List {}
class Cons(hd : int, tl : List) � List {}
class Singleton(i : int) � List {} /* internal representation class */

def append(xs : List, zs : List) : List = {
xs match {
case List().nil() ⇒ zs
case List().cons(y, ys) ⇒ Cons(y, append(ys, zs))

}}

Fig. 2. Extractor-based Matching in the FPat Calculus

question arises which conditions (if any) have to be satisfied by extractors in order to
prove that optimizing translation preserves the meaning of the program.

In this paper, we present possible answers to these questions. For this purpose, we
adapted the translation to decision-trees described by Pettersson [4] to extractors. Us-
ing a formal calculus based on Featherweight Java (FJ) [12], we define a first-order
object-oriented calculus FPat that offers runtime type inspection and pattern matching.
A generic version is presented elsewhere [13]. We give a direct operational semantics
and then show a straightforward translation algorithm to compile match expressions
down to the fragment without pattern matching. This translation is proven correct, un-
der the hypothesis that extractor methods do not diverge and do not throw exceptions.
To the best of our knowledge, this hypothesis was never mentioned in the literature,
though its necessity is easily justified in our development.

Extractor-based pattern matching has been implemented independently in F� (there
called “active recognizer”) and Scala. In contrast to previous work [10], this paper aims
to shed light on its formal underpinnings. In summary, we contribute:

– a formal calculus that precisely describes extractor-based pattern matching,
– a formal definition and correctness proof of an optimized translation of match ex-

pressions,
– and formal conditions extractors have to satisfy in order for optimization to be

correct.

The rest of the paper is organized as follows. We define FPat in Section 2. We present
the translation of pattern matching in Section 3. We describe the correctness proof in
Section 4. Section 5 discusses related work and Section 6 concludes.
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2 An Object-Oriented Calculus with Pattern Matching

The syntax and operational semantics of FPat are given in Fig. 3, and the typing rules
and auxiliary definitions are given in Fig. 4 and Fig. 5. The calculus is based on FJ, but
with semantics defined using a strict, left-to-right big-step semantics. We will briefly
review the definitions. We then define divergent programs and show type soundness.

2.1 Syntax

What follows is a short presentation of the rules and notation. A sequence α1..αn is ab-
breviated as α�

1..n, where α can be an expression, a name-type binding, or a judgment.
The empty sequence is written •. Multiple occurrence of the � indicate that the same
index appears at multiple positions. Moreover, we shall need to express sequences with
holes, so α�, β, α�

1..]i[..n stands for α 1..i−1
� , β, α i+1..n

� .
An FPat program cd�

1..n; e is a set of class definitions and a top-level expression.
Class definitions are kept in a class table, which we leave implicit throughout the pa-
per and which satisifies the important properties that inheritance cycles and duplicate
entries are absent. Classes have an explicit superclass as well as field declarations and
method definitions, all publicly accessible. Methods can have an @safe annotation to
indicate that they terminate without throwing an exception. The class hierarchy induces
a subtype relation <:, of which the magic class Obj forms the largest element and the
magic class Exc forms the smallest. These two types are magic because they do not
have definitions in the class table. We also have a least upper bound C � D operation,
which is the least type E in the hierarchy that satisfies C<:E and D<:E.

There are 8 expression forms: null, variables x, field selection e.f, method invo-
cation e.m(e�

1..n), object construction C(e�
1..n), exception throw, test expressions

a?{x : C ⇒ d}/{e} and match expressions e�
1..n match {c�

1..k}. The calculus does
not model assignment nor object identity. The free variables fv and the defined variables
dv are defined in the straightforward manner.

2.2 Semantics

We briefly describe operational semantics of the fragment without pattern matching,
in order to be self-contained. Semantics specific to pattern matching are deferred to a
separate section below.

Terminating computation of meaningful expressions is modeled by a big-step eval-
uation relation e ⇓ q that takes expressions e to results q. A result q is either a value
v ∈ Values, the null result or the exception throw. Note that substitutions are all re-
stricted to map variables only to values or null. A dotted metavariable v̇ indicates either
a value v or null.

A value is the outcome of an object construction C(v̇�
1..n), which is written without

new. There is no explicitly declared constructor, instead the field order determined by
the inheritance hierarchy (specified in the auxiliary judgment fields(C)) is used. The
following correct program illustrates how arguments in object construction relate to
fields in class definitions:
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class D(f : A) � Obj {. . .}
class C(g : B) � D {. . .}
C(A(), B())

Rules (Rfld), (Rinvk), (Rnew) in Fig. 3 describe field access, method invocation and
object construction. The auxiliary judgment mbody(m, C) specifies how to lookup
method bodies. Rules (Cfld), (Crcv), (Carg), (Cnew) throw or propagate exceptions.

The only significant use of null happens in test expressions. Their behavior is speci-
fied in rules (Rcst) and (Rskp): if the tested expression, or scrutinee, is not null and its
type is lesser than the required type, it is bound to a local variable and the first branch
is evaluated (Rcst). Otherwise, the second branch is evaluated (Rskp). If the scrutinee
throws, the exception is propagated (Ctst).

The relation ⇓ does not specify the behavior of meaningless or non-terminating pro-
grams. To show type soundness, divergent programs are defined using a relation ⇑ in
Fig. 6. Meaningless expressions are then precisely those that neither terminate nor di-
verge.

2.3 Semantics of Matching

Pattern matching expressions contain one or more case clauses, each of which compares
the n input values against n patterns. The last clause may only have variable patterns.
This excludes pathological expressions of the form e�

1..k match {} and ensures that
the behavior is defined for any possible combination of input values. It is easy to enforce
this convention in a compiler.

Matching depends on judgments describing acceptance and rejection of patterns and
cases. Rule (Rmch) describes evaluation of cases according to the first match policy:
an accepting case is evaluated only if all preceding cases rejected the input.

Two separate judgments describe acceptance for cases v̇�
1..n; c ⇓ q and patterns

v̇ � p � σ. We explain the judgments for case clauses first. A case accepts and eval-
uates to result q if each input value is accepted by the corresponding pattern (mcase).
Analogously, a case rejects v̇�

1..n; c ⇓ reject if an initial segment of patterns accept
and the following pattern rejects its input (rcase). Together, these rules describe a left-
to-right evaluation of patterns. If a pattern accepts, it yields a substitution, and if all
patterns accept, the combined substitution is applied to the body of the case (the merg-
ing of substitutions is indicated by juxtaposition).

The judgment v̇ � p � σ describes that pattern p accepts v̇ and yields substitution
σ. Analogously, the judgment v̇ � p � reject describes rejection. A variable pattern
always accepts its input (mvar), yielding the obvious substitution. An extractor pattern
C(v̂�

1..n).m(p�
1..n) accepts (mextr) if:

1. evaluation of the extractor call returns a value w, yielding so-called case fields ẇ�
1..k

2. all subpatterns accept the case fields, yielding substitutions σ�
1..k

The extractor pattern rejects if the call returns null (rnull) or if one of its subpattern
rejects its input (rchild). Case fields casefld(E, w) are determined for the return type E
of the extractor method, as specified in the auxiliary judgment xtype(•, v̂, m). They are
the fields declared in the class definition of E itself. Note that we will often abbreviate
C(v̂�

1..n) with v̂.
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Subtyping C<:D

(Sobj)
C<:Obj

(Sthr)
Exc<:C

(Sref)
C<:C

C<:D D<:E
(Stran)

C<:E

class C(f� : C�
1..n) � D {md 1..m

� }
(Sext)

C<:D

C � D
def= smallest E such that C<:E and D<:E.

Computation e ⇓ q

e ⇓ C(v̇�
1..n) fields(C) = f� : C�

1..n

(Rfld)
e.fi ⇓ v̇i

e ⇓ C(v̇�
1..l) e� ⇓ ẇ�

1..n

mbody(m, C) = (x 1..n
� )d

d {this �→ C(v̇�
1..l), x� �→ ẇ�

1..n} ⇓ q
(Rinvk)

e.m(e�
1..n) ⇓ q

e� ⇓ v̇�
1..n

(Rnew)
C(e�

1..n) ⇓ C(v̇�
1..n)

e ⇓ C(v̇�
1..l) C<:D e1{x �→ C(v̇�

1..l)} ⇓ q
(Rcst)

e?{x : D ⇒ e1}/{e2} ⇓ q

e ⇓ null or
h
e ⇓ C(v̇�

1..l) C �<:D
i

e2 ⇓ q
(Rskp)

e?{x : D ⇒ e1}/{e2} ⇓ q

e� ⇓ v̇�
1..n ∀j < i . v̇�

1..n; cj ⇓ reject

v̇�
1..n; ci ⇓ q

(Rmch)
e 1..n

� match {c�} ⇓ q

(Cthr)
throw ⇓ throw

(Rnul)
null ⇓ null

e ⇓ throw or e ⇓ null
(Cfld)

e.f ⇓ throw

e ⇓ throw or e ⇓ null
(Crcv)

e.m(e�
1..n) ⇓ throw

e� ⇓ v̇�
1..i−1 ei ⇓ throw

(Carg)
e.m(e�

1..n) ⇓ throw

e� ⇓ v̇�
1..i−1 ei ⇓ throw

(Cnew)
C(e�

1..n) ⇓ throw

e ⇓ throw
(Ctst)

e?{x : C ⇒ e1}/{e2} ⇓ throw

Syntax

cd ::= class C(f� : C�
1..n) � D {md�

1..k}
md ::= an def m(x� : C�

1..n) : C = {e}
an ::= @safe | (empty)
a, b, d, e ::= null

| x
| e.f
| e.m(e�

1..n)
| C(e�

1..n)
| throw
| e?{x : C ⇒ e}/{e}
| e�

1..n match {c�
1..m}

(convention: cm ≡ case x�
1..n ⇒ e)

c ::= case p�
1..n ⇒ e

p, π ::= x | C(v̂�
1..n).m(p�

1..k)
q ::= v | throw | null
u, v, w ::= C(v̇�

1..k)
v̂ ::= x | C(v̂�

1..k)
v̇ ::= v | null

e� ⇓ v̇�
1..i−1 ei ⇓ throw

(Cmch)
e�

1..n match {c�
1..k} ⇓ throw

Acceptance v̇�
1..n; c ⇓ q
v̇ � p 
 σ

c ≡ case p�
1..n ⇒ b

v̇� � p� 
 σ�
1..n b σ�

1..n ⇓ q
(mcase)

v̇�
1..n; c ⇓ q

(mvar)
v̇ � x 
 {x �→ v̇}

v.m(u̇) ⇓ w xtype(•, v, m) = E

casefld(E, w) = ẇ�
1..k ẇ� � p� 
 σ�

1..k

(mextr)
u̇ � v.m(p�

1..k) 
 σ�
1..k

Rejection v̇�
1..n; c ⇓ reject
v̇ � p 
 reject

c ≡ case p�
1..n ⇒ b

v̇� � p� 
 σ�
1..i−1 v̇i � pi 
 reject

v̇�
1..n; c ⇓ reject

(rcase)

v.m(u̇) ⇓ null
(rnull)

u̇ � v.m(p�
1..k) 
 reject

v.m(u̇) ⇓ w xtype(•, v, m) = E

casefld(E, w) = ẇ�
1..k ẇ� � p� 
 σ�

1..i−1

ẇi � pi 
 reject
(rchild)

u̇ � v.m(p�
1..k) 
 reject

Fig. 3. FPat Syntax and Semantics
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The outcome is undefined when extractors throw exceptions or diverge. For this rea-
son, the @safe annotation is required on any method that is referenced as an extractor.
Safety in the above sense is an undecidable property or programs, but restrictions and
approximations are available to tackle this problem. Our focus in this paper is on justify-
ing the condition, not checking it. Avoiding exceptions is also the reason for excluding
extractor calls x.m(. . .).

Discussion. In any statically-typed definition of pattern matching, order and types of
subpatterns must be specified. The benefit of using extractors lies in decoupling the
matched type from the representation type.

Pattern matching usually includes matching on literals like 42, true and named con-
stants like foo. While literal expressions are constructors without arguments, a corre-
sponding convention for extractors can be assumed. Named constants are added by al-
lowing tests for singleton types v.type. Structural equality then ensures that C(ẇ�

1..k) ∈
v.type if v ≡ C(ẇ�

1..k).

2.4 Typing

The FPat type system is specified through a set of syntax-directed typing rules in Fig.4.
The rules specific to matching are described in a separate section below.

Type judgments for expressions have the form Γ 	 e ∈ C where Γ is a type en-
vironment (a finite mapping from variables to types), e an expression and C a class.
The judgments cd 
 and an md 
 in C assert well-typedness of class and method
definitions. Methods annotated with @safe are assumed to terminate and never throw
exceptions for any input (including null). A class definition is well-typed if all its
methods are well-typed, and a method is well-typed if its return expression is well-
typed under the appropriate type environment. If the method overrides a method in
a superclass, their signatures have to be identical, which is asserted by the judgment
override(an(B�

1..n)B, m, D). A program is well-typed if all its class definitions are
well-typed, and its top-level expression is well-typed in the empty environment.

Typing expressions is straightforward. Rules (Tthr) and (Tnul) give the most specific
type Exc to the throw and null results. (Tvar) takes the type of a variable from the type
environment, and field access (Tfld) and object construction (Tnew) is checked against
the fields of the class as calculated by the judgment fields(C). A similar judgment for
method signatures mtype(m, C) is used to type-check method invocation (Tinvk). Thus,
well-typed method calls and objects constructions have the right number and types of
arguments.

Test expressions are checked with rule (Ttst), which modifies the type environment
for the succeeding branch to account for the new local variable. Binding in test expres-
sions can be used to define a derived form val x : C = a; b, which we will introduce in
Section 3.1.

2.5 Typing of Match Expressions

Match expressions are well-typed if all their clauses are well-typed (Tmch), using
the least upper bound to combine the clauses’ result types. To type-check a single
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Expression Typing Γ � e ∈ C

(Tvar)
Γ � x ∈ Γ (x)

(Tnul)
Γ � null ∈ Exc

(Tthr)
Γ � throw ∈ Exc

Γ � e ∈ C fields(C) = f� : C�
1..n

(Tfld)
Γ � e.fi ∈ Ci

Γ � e ∈ C mtype(m, C) = an(D�
1..n)E

Γ � e� ∈ C�
1..n C�<:D�

1..n

(Tinvk)
Γ � e.m(e 1..n

� ) ∈ E

fields(C) = f� : D�
1..n

Γ � e� ∈ C�
1..n C�<:D�

1..n

(Tnew)
Γ � C(e�

1..n) ∈ C

Γ � e ∈ A

Γ, x : C � a ∈ D Γ � b ∈ E
(Ttst)

Γ � e?{x : C ⇒ a}/{b} ∈ D � E

Γ � e� ∈ C 1..n
�

Γ ; C�
1..n � c� ∈ D�

1..m

(Tmch)
Γ � e 1..n

� match {c�
1..m} ∈

F
D�

1..m

(TPvar)
Γ ; D � x � x : D

Pattern and Case Typing Γ ; C�
1..n � c ∈ D

Γ ; C � p � Δ

xtype(Γ, v̂, m) = E

class E(f� : C�
1..m) � E′ {an�md�

1..k}
Γ ; C� � p� � Γ ′

�
1..m

Γ ′ ≡ Γ ′1..m
�

(TPext)
Γ ; D � v̂.m(p 1..m

� ) � Γ ′

Γ ; C� � p� � Δ�
1..n

Γ, Δ�
1..n � b ∈ D

(Tcase)
Γ ; C�

1..n � case p�
1..n ⇒ b ∈ D

Method Typing md 
 in C

this : C, x� : C 1..n
� � e ∈ E E<:B

class C(f� : D�
1..m) � D {md�

1..k}
override(an(C�

1..n)B, m, D)

an def m(x� : C�
1..n) : B = {e} 
 in C

Extractor Type xtype(Γ, v̂, m)

Γ � v̂ ∈ B mtype(m, B) = @safe(Obj)E
xtype(Γ, v̂, m) = E

Class Typing cd 


an�md� 
 in C1..k

class C(f� : D�
1..n) � D {an�md�

1..k} 


Fig. 4. Typing Rules

clause case p 1..n
� ⇒ b (Tcase), each pattern in p 1..n

� is type-checked w.r.t. the type
environment Γ and an “expected type” C�, yielding a type environment Δ� as in
Γ ; C� � p� � Δ1..n

� . Then, the body is type-checked against the combined type en-
vironments as in Γ, Δ 1..n

� 	 b ∈ D. Variables introduced in patterns must be pair-wise
different and may not clash with Γ , which is implicit in the juxtaposition of environ-
ments.

Pattern typing Γ ; E � p � Δ is type-checked as follows: For variable patterns
(TPvar), the expected type E is used to produce a singleton environment. For extractor
patterns (TPextr), the judgment xtype(Γ, v̂, m) looks up the type of receiver and the
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Field Lookup fields(C)

fields(Obj) = •

fields(D) = f� : C�
1..m

class C(g� : D�
1..n) � D {an�md�

1..k}
fields(C) = f� : C�

1..m; g� : D�
1..n

Case Field Lookup casefld(C, v)

fields(D) = f� : C�
1..m

class C(g� : D�
1..n) � D {an�md�

1..k}
casefld(C, C(v�

1..m+n)) = vm+1..m+n
�

E �≡ C fields(D) = f� : C�
1..m

class C(g� : D1..n
� ) � D {an�md�

1..k}
casefld(E, C(v�

1..m+n)) = casefld(E, D(v�
1..m))

Overriding override(an(B�
1..n)B, m, D)

mtype(m, D) = an(B�
1..n)B or undefined

override(an(B�
1..n)B, m, D)

Method Lookup mtype(m, C) mbody(m, C)

class C(f� : C�
1..m) � D {an�md�

1..k}
ani ≡ an

md i ≡ def m(x� : B�
1..n) : B = {e}

mtype(m, C) = an(B�
1..n)B

mbody(m, C) = (x�
1..n)e

class C(f� : C�
1..m) � D {an�md�

1..k}
m �≡ md�

1..k

mtype(mi , C) = mtype(m, D)
mbody(m, C) = mbody(m, D)

Fig. 5. Auxiliary Definitions

signature of the extractor method in order to recover the representation type. It also
ensures that extractors are @safe. The case field types are then used as expected types to
check the subpatterns. Finally, the environments Δ�

1..m obtained from the subpatterns
are merged into one environment Δ.

2.6 Divergent Programs

Our approach to type soundness, following Leroy and Grall [14], is to characterize
meaningless programs as those that neither terminate nor diverge. Divergent programs
are defined coinductively by the set of divergence rules in Fig. 6. These rules are tailored
to establish that any well-typed term that does not terminate necessarily diverges. Their
coinductive nature is indicated by horizontal double lines: coinductive derivations are
infinite trees with the root being the assertion to derive and the successors of each node
being determined by a derivation rule.

Let us consider the rules one by one. Rule (Dfld) and (Drcv) express that accessing
a field or invoking a method on a divergent expression yields a divergent expression.
Rules (Darg) and (Dnew) say that object construction and method invocation diverges
if one of their arguments diverge. Note that a strict call-by-value, left-to-right evaluation
order is followed also here. Rule (Dinvk) says that calling a method with arguments
that make the method body diverge yields a divergent expression. Similarly, (Dtst),
(Dcst) and (Dskp) characterize divergent test expressions by locating divergence in the
respective subexpression.



Translation Correctness for First-Order Object-Oriented Pattern Matching 63

Divergent Computation e ⇑

e ⇑
(Dfld)

e.f ⇑
e ⇑

(Drcv)
e.m(e�

1..n) ⇑
e ⇓ v e� ⇓ v̇�

1..i−1 ei ⇑
(Darg)

e.m(e�
1..n) ⇑

e ⇓ C(v̇�
1..m) e� ⇓ ẇ�

1..n

mbody(C, m) = (x�
1..n)b

b {this �→ C(v̇�
1..m), x� �→ ẇ�

1..n} ⇑
(Dinvk)

e.m(e�
1..n) ⇑

e� ⇓ v̇�
1..i−1 ei ⇑

(Dnew)
C(e�

1..n) ⇑

e ⇑
(Dtst)

e?{x : C ⇒ a}/{b} ⇑
e ⇓ D(v̇�

1..n) D<:C a{x �→ D(v̇�
1..n)} ⇑

(Dcst)
e?{x : C ⇒ a}/{b} ⇑

e ⇓ null or
ˆ
e ⇓ D(v̇�

1..n) D �<:C
˜

b ⇑
(Dskp)

e?{x : C ⇒ a}/{b} ⇑

e� ⇓ v̇�
1..i−1 ei ⇑

(Dmch)
e�

1..n match {c�
1..m} ⇑

e� ⇓ v̇�
1..n ∀j < i . v̇�

1..n
� cj � reject

v̇�
1..n; ci ⇑ e

(Dcase)
e�

1..n match {c�
1..m} ⇑

Divergent Cases and Patterns v̇�
1..n; c ⇑ e

c = case p�
1..n ⇒ b v̇� � p� � σ�

1..n b σ�
1..n ⇑

(Dbdy)
v̇�

1..n; c ⇑ b σ�
1..n

Fig. 6. Divergent Programs

In match expressions, a divergent match expression can be traced back to some
(possibly empty) initial segment of rejecting case clauses followed by a divergent case
clause. A case clause may only diverge because its body diverges (Dbdy).

Discussion. If we did not rely on the @safe annotation, divergence could also be caused
by extractor calls during pattern match evaluation. It is possible but tedious to omit
the @safe hypothesis, give divergence and exception propagation rules for extractor
calls and adapt the soundness proof accordingly. Moreover, we discover that @safe
is actually needed for correctness of the optimizing translation (see section 3.2). As a
consequence, we chose the simpler route by defining only those divergent programs
that are needed for (Progress). Here and in the proofs, bold-face names and phrases in
parentheses refer to lemmata and theorems.

2.7 Soundness

We now prove type soundness using big-step versions of the standard lemmata.

Lemma 1 (Uniqueness). For all a, if a ⇓ q then for all q′, if a ⇓ q′ then q = q′.
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Lemma 2 (Termination). For all a and all q, it holds that if a ⇓ q then a �⇑.

Lemma 3 (Subtypes have all Fields)
If C<:D, C �= Exc then fields(C) = fields(D); g� : E�

1..m.

Lemma 4 (Subtypes have all Methods). If C<:D, C �= Exc and mtype(m, D) =
an(C�

1..n)B, then mtype(m, C) = an(C�
1..n)B.

The following two lemmata are needed to prove the substitution lemma for pattern
matching expressions. We have to deal with the typing rule for variables which might
end up producing a “better” environment for input values whose type has become more
precise after substitution. We write Δ′<:Δ when dom(Δ) = dom(Δ′) and x : B ∈ Δ
implies x : A ∈ Δ′ with A<:B.

Lemma 5 (Subtypes yield Refined Environment)
If C<:D and Γ ; D � p � Γ ′ then Γ ; C � p � Γ ′′ for some Γ ′′<:Γ ′ .

Lemma 6 (Refined Environment preserves Typing)
If C�<:D�

1..n and Γ, x� : D 1..n
� 	 e ∈ B then Γ, x� : C 1..n

� 	 e ∈ A for A<:B.

Lemma 7 (Weakening) If Γ 	 d ∈ S and x /∈ fv (d), then Γ, x : T 	 d ∈ S for any T .

Lemma 8 (Substitution Lemma). If Γ, x� : B 1..n
� 	 b ∈ D and • 	 u̇� ∈ A�

1..n for
A�<:B�

1..n, u̇� ∈ Values ∪ {null} then Γ 	 b {x� �→ u̇�
1..n} ∈ C, for C<:D.

Lemma 9 (Preservation)
If a ⇓ q and • 	 a ∈ C, then • 	 q ∈ C′ for some C′<:C.

The big-step version of the progress lemma uses coinduction.

Lemma 10 (Progress)
If • 	 a ∈ C and a �⇓ q for all q, then a ⇑.

Theorem 1 (Type Soundness)
If • 	 a ∈ C then either a ⇑ or a ⇓ q for some q with • 	 q ∈ C′, C′<:C.

3 Translation

3.1 Rewriting Match Expressions

An elegant way to describe translation is to give a set of rewrite rules, which are applied
successively until all match expressions are replaced with lower-level operations. Apart
from being easy to understand and implement, correctness can then be established for
each rule separately.

There are two approaches to the compilation of pattern matching, one based on
decision-trees and the other based on backtracking automata [6,5]. We chose the trans-
lation to decision trees, which in the functional setting guarantees that no input value is
tested more than once. Our presentation of the algorithm follows Pettersson’s [4].
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The central idea is to remove a top-level pattern of a case clause, lifting its subpat-
terns to the top-level. Consider the two expressions below, for fresh y, y1, y2, y3

//recall xtype(Γ, List(), cons) = Cons
x match {

case List().cons(π1, π2) ⇒ a
case y0 ⇒ b

}

List().cons(x)?{y : Cons ⇒
(x, y.hd, y.tl) match {

case y1 , π1 , π2 ⇒ a
case y0 , y2 , y3 ⇒ b

}}/{ x match {case y0 ⇒ b}}

Some scrutiny reveals that these are actually equivalent. The extractor of the first pat-
tern List().cons(π1, π2) in the first case has been pulled out and a test is done on the
outcome: if it is non-null, it is bound to the fresh variable y and the subpatterns are
matched against the case fields y.hd, y.tl. Note that the width of the original match is
augmented by lifting the nested patterns to the top-level. Since π1, π2 can potentially
reject the input, all cases of the original match are copied to the new one. Some entries
need to be expanded to match the arity of the new match, which is done by using fresh
variable patterns y1, y2, y3. If the extractor returns null, the first clause rejects and so
the second branch of the test expression deals with the remaining cases of the match.

The algorithm performs optimization by reusing results of an extractor call: calls to
the same extractor in the same column are replaced with clauses that match subpatterns
(if the call succeeded), or discarded altogether (if the result was null). We illustrate the
optimization with an example.

x match {
case List().cons(π1, π2) ⇒ a
case List().nil() ⇒ b
case List().cons(π3, π4) ⇒ d
case y0 ⇒ e

}

List().cons(x)?{y : Cons ⇒
(x, y.hd, y.tl) match {

case y1 , π1 , π2 ⇒ a
case List().nil() , y2 , y3 ⇒ b
case y4 , π3 , π4 ⇒ d
case y0 , y5 , y6 ⇒ e

}}/{
x match { case List().nil() ⇒ b

case y0 ⇒ e }}

Here, the first and third case (on the left) test the same extractor List().cons. This ex-
tractor call has been pulled out into a test expression. If it succeeds (then-branch), the
resulting value is deconstructed and matched against the subpatterns. Again, since pat-
terns π1, π2 may fail, we include all other cases, but we do not need to repeat the ex-
tractor call. If the extractor call returns null, then (else-branch) the remaining test cases
are those that have extractor patterns other than List().cons. This suggests a recursive
algorithm that identifies common patterns and translates them into test expressions and
new, smaller match expressions.

Figure 7 contains the rewrite rules used by the algorithm. The translation relies on
the static types of expressions, and is thus expressed as a translation of type deriva-
tions. The rules use a derived form val x : C = a; b which has the double purpose
of simplifying the presentation and catching divergent and exception-throwing input
values. The derived form is only used when a is of static type C, and abbreviates
a?{x : C ⇒ b}/{b′} where b′ = b {x �→ null} .
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Translation [[Γ � a match {c1..m
� } ∈ D]] = e

(Tmp)

[[
. . . Γ � a� ∈ C�

1..n

Γ � a�
1..n match {c�

1..m} ∈ D
]] = val z� : C� = a1..n

� ; z1..n
� match {c1..m

� }

condition: – a� are not all variables

(Var)

[[
. . . Γ � z� ∈ C�

1..n

Γ � z�
1..n match {c�

1..m} ∈ D
]] = b {x� �→ z�

1..n}

condition: – c1 has the shape case x�
1..n ⇒ b

(Mix)

[[
. . . Γ � z� ∈ C�

1..n

Γ � z�
1..n match {c�

1..m} ∈ D
]] = v̂.m(zi)?{y : C ⇒ val y� : D� = y.f�

1..k; d}/{e}

condition: – c1 has the shape case x1..i−1
� v̂.m(p′1..k

� ) p i+1..n
� ⇒ b

translation steps:

– v̂.m(zi) has pattern typing
xtype(Γ, v̂, m) = C . . .

(TPext)
Γ ; Ci � v̂.m(p′1..k

� ) � Δ

– the definition of C is class C(f� : D 1..k
� ) � E {md�

1..n}
– y, y�

1..k are fresh variables
– d = z�, y, y1..k

� , z1..]i[..n
� match {expand v̂.m(c�

1..m)}
– e = z�

1..n match {other v̂.m(c�
1..m)}

– where expand v̂.m and other v̂.m are defined for arbitrary patterns p�, p′
�, as (subscript omitted):

expand(•) = •

expand(case p� v̂.m(p�
1..k) p

1..]i[..n
� ⇒ b; c�

1..m) =

case p� z′ p′
1 · · · p′

k p
1..]i[..n
� ⇒ b; expand(c�

1..m) z′fresh

expand(case p� p p
1..]i[..n
� ⇒ b; c�

1..m) =

case p� p z′
1 · · · z′

k p
1..]i[..n
� ⇒ b; expand(c�

1..m) z′1..k
� fresh p �= v̂.m(p�

1..k)

other(•) = •

other(case p� v̂.m(p′1..k
� ) p

1..]i[..n
� ⇒ b; c�

1..m) = other(c�
1..m)

other(case p� p p
1..]i[..n
� ⇒ b; c�

1..m) =

case p� p p
1..]i[..n
� ⇒ b; other(c�

1..m) p �= v̂.m(p�
1..k)

Fig. 7. FPat Translation Rules

Rule (Tmp) introduces val definitions, so that input values are always variables.
Rule (Var) handles matches that are known to accept. The essential rule is (Mix) which
performs the optimizing translation described above. If the extractor returns value w,
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then the subvalues casefld(C, w) can be obtained with field accesses w.f�
1..k, and the

return value as well as the subvalues are bound to fresh local variables y, y�
1..k. The

function expand adapts the width of case clauses as mentioned before. If the extractor
returns null, we continue matching on those clauses that have a different extractor,
computed by function other .

In contrast to functional pattern matching, we cannot assume that e.g. a rejecting
extractor cons means that nil will necessarily accept the input value. The user-defined
methods could be annotated to supply this information, an extension that we do not
pursue in this paper. We shall call rewrite the function that applies a rule to a suitable
term (with its typing derivation).

3.2 Why Must Extractors Be @safe to Allow Optimized Translation?

Recall the example above. Suppose π1 was a variable pattern and π2, π4 test the same
extractor. Optimizing for the failing pattern π2 causes omission of the entire third case
clause.

When omitting this case clause, we are already assuming that π3 will either accept or
reject its input. However, if π3 were allowed to throw an exception or diverge, it would
not be possible to omit its evaluation without changing the meaning of the program. For
this reason, the semantics does not cover these anomalous situations (if we included
them, we could not prove our optimization correct). Any semantics for pattern matching
that involves user-defined code depends on this assumption if optimized translation
of matching is to preserve the meaning of programs, since we usually do not expect
divergent or exception throwing programs to turn into normally terminating ones. A
correct translation without the @safe assumption would have to include case clauses
that are known to fail for the sole purpose of preserving their exception-throwing or
divergent behavior.

The assumption that extractors are @safe complements the assumptions formulated
by Syme et al [11] and Okasaki [8] that informally require extractors to be side-effect
free and return the same result in all execution contexts in order for optimization to
work. Of course in this calculus, absence of side-effects is guaranteed by the absence
of assignment.

3.3 The Algorithm

We define a function transform that recursively traverses expressions, rewriting any
match statements it finds.

transform(null) = null
transform(x) = x
transform(e.f) = transform(e).f
transform(e.m(e�

1..n)) = transform(e).m(e′�1..n)
where e′� = transform(e�)1..n

transform(throw) = throw
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transform(a?{x : C ⇒ d}/{e}) = a′?{x : C ⇒ d′}/{e′}
where a′ = transform(a)

and d′ = transform(d)
and e′ = transform(e)

transform(e�
1..n match {c�

1..k}) = transform(rewrite(e�
1..n match {c�

1..k}))

The transform function is then naturally extended to method definitions and class
definitions. A program is translated by translating all class definitions and the top-level
expression. Note that a single application of a rewrite rule takes place in one of the
following contexts:

Definition 1 (Target Context). A target context is defined by the following grammar:

ξ, ζ ::= [ ] | ξ.f | ξ.m(b�
1..n) | a.m(b�, ξ, b�

1..]i[..n)
| ξ?{x : C ⇒ d}/{e} | a?{x : C ⇒ ξ}/{e} | a?{x : C ⇒ d}/{ξ}

By the reasoning in the next section, this rewrite preserves the meaning of the program.
A subsequent call of transform performs the same for subexpressions of a′, until all
match expressions are translated away.

4 Correctness

We define a formal notion of equivalence. Recall that a substitution always satisfies
xσ ≡ null or xσ ∈ Values for all x ∈ dom(σ). We proceed in two steps, following
the démarche of [15]: we define a notion of equivalence and show that it is stable under
contexts. Then we show that an expression is equivalent to its translation.

4.1 Equivalence and Open Equivalence

Definition 2 (Equivalence). For d, e expressions with fv(d) = fv (e) = ∅, d is equiv-
alent to e (written d ≈ e), if both of these conditions hold: 1. for all q, if d ⇓ q then
e ⇓ q, and 2. if d ⇑ then e ⇑.

Showing that ≈ is an equivalence relation is easy using (Uniqueness),(Termination).
Equivalence alone is not enough for our purpose, since rewrite rules take place in con-
text. We now define an equivalence on open terms and show it is stable under contexts.

Definition 3 (Open Equivalence). For expressions d, e with fv(d) ∪ fv (e) ⊆ X , d is
open-equivalent to e (written X � d ≈ e) if dσ ≈ eσ for all substitutions σ with
X ⊆ dom(σ).

Lemma 11 (Substitution preserves Equivalence). If X � d ≈ e, then for any sub-
stitution σ with dom(σ) ⊆ X , it holds that X\dom(σ) � dσ ≈ eσ.

Theorem 2 (Congruence). If X � d ≈ e, then Y � ξ[d] ≈ ξ[e] for Y = fv(ξ[d]) ∪
fv(ξ[e]).
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We now have everything we need for proving the correctness theorem. Since equiva-
lence is a congruence, it is enough to show correctness of the rewrite rules. The proof of
the following theorem references the @safe assumption, to derive case clause rejection
for clauses omitted by other v̂.m – this requires normal termination of extractor calls to
the left of the v̂.m.

Theorem 3 (Correctness of [[ ]]). For a ≡ a�
1..n match {c�

1..m}, fv(a) = X , typing
Γ 	 a ∈ A, translation a′ = [[Γ 	 a ∈ A]] it holds that X � a ≈ a′.

Corollary 1 (Complete Algorithm) The algorithm described in Section 3.3 is correct.

Proof Consequence of the above theorem, applied sequentially to every application
of a rewrite rule [[ ]], and transitivity of ≈. For termination, observe that each match
expression produced by a rewriting rule is smaller than the original match expres-
sion using the lexicographically ordered tuples 〈i, j, k〉 where i is the number of non-
variable input values, j the number of case clauses, and k the number of extractor
patterns in c�

1..j . This ordering shows that for any e, all chains of dependency-pairs
〈transform(e), transform(rewrite(e))〉 must be finite. �

5 Related Work

Pettersson [4] and Ramsay and Scott [5] describe a matrix-based algorithm for trans-
lating match expressions to decision trees (the latter allowing heuristics other than left-
to-right). Since an algebraic data type defines a closed set of constructors, different
optimizations are available. Maranget [16] treats clause matrices and incompleteness
checking in more detail.

If extractors came with coverage annotations, then more optimizations and incom-
pleteness checking could be integrated. Syme, Neverov and Margetson [11] use struc-
tured names for this purpose. The authors also introduce parameterized patterns and
give strong informal guidelines to restrict extractors (there called recognizers) in order
to allow optimizations.

Extractors are rooted in Wadler’s work on views [7], which Okasaki adapted to
ML [8]. The design in a functional language context that comes closest to ours is
Gostanza [17]. A more detailed discussion of the literature on views is presented in
[10,13].

Zenger and Odersky use pattern matching and algebraic datatypes in an object-
oriented setting to handle the extensibility problem [18]. Liu and Myers add pattern
matching to a Java like language by introducing forwards and backwards modes of
evaluation [19].

6 Conclusion

We presented a formal object-oriented calculus with pattern matching. We proved the
calculus sound, and gave an optimizing translation algorithm. We then proved the trans-
lation correct, revealing an important assumption required for correctness: that extrac-
tor patterns may not throw exceptions or diverge. We emphasize that non-optimizing
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translation is not affected by this requirement – yet, optimizing pattern matching by
factoring out common test seems essential for good performance.

In future work, we would like to extend our formalization to support incomplete-
ness checking and further optimizations as known from algebraic data types. The Scala
language offers matching on specific types (case classes) and the sealed keyword to
this end. Specifying the completeness of a set of extractors for a given domain would
be possible through source annotations. Apart from this, further study is necessary to
analyze how the backtracking approaches to pattern match translation can be adapted.
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Abstract. This paper presents the programming language Persistent
Oberon, which offers persistence as a naturally inbuilt concept. Program
data is automatically kept durable and stored in non-volatile memory,
without the programmer having to write explicit code for the interactions
with an external database system. In the case of a system interruption
or failure, the program can directly continue from its latest consistent
state. In contrast to other existent persistent programming languages,
this language does not need any artificial programming interfaces or
commands to use persistence. The programming language is completely
implemented and offers a high scalability and performance.

1 Introduction

As a consequence of the traditional computer architecture with volatile main
memory, programming languages also only support a volatile memory model.
Unless the programmer takes extra efforts, the state of a program is lost when
the system or application is terminated. As a result of performance advantages
on current machines, this design may be reasonable for applications which only
perform temporary computations. However, many practical programs work on
data that should be persistent and remain present even if the system is inter-
rupted. For this area of application, programming languages currently leave the
programmer unsupported and require them to explicitly employ a separate per-
sistence system, such as a database, a serialization framework, or a file system.
Even with the help of existing software tools, the programming work and er-
ror proneness for managing persistent data within a program are still immense.
Complicated and time-consuming work is typically involved in the effective map-
ping of the program data to the persistent secondary memory (e.g. a disk) and
in programming the necessary interactions with the persistence system, for stor-
ing and loading the data at the right moments. Especially for object-oriented
programs, the intricacy is particularly high, as the dynamic reference-linked ob-
ject structures need to be efficiently represented in the persistent storage and a
memory-safe runtime support with garbage collection has to be provided on all
levels of the memory (main memory and disk).

In order to improve the support of persistent data in a program, various ap-
proaches have been taken to directly provide persistence as an inbuilt feature
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of the programming language [3,4,5,6,12,14,15,19,20,22,24,34]. Although this ap-
proach seems to be the most obvious step towards simple and efficient program-
ming with persistent data, none of these programming models have received
widespread recognition in practice. A reason for this fact is certainly, that vari-
ous fundamental problems are still open in this field, such that the programmer
may decide against using a persistent language:

– Language-support
To the best of our knowledge, no programming language exists that really
features data persistence as a fully integrated concept. Existing persistent
programming languages still require artificial programming interfaces when
working with persistent data.

– Interoperability
The range of practical applicability can be substantially widened for a per-
sistent programming language by introducing a more general data model,
which facilitates consistent and uniform interoperability with data of arbi-
trary longevity and already existing software.

– Safety
The runtime support for object-oriented persistent programs is often not
fully memory safe. Many persistent languages for example, require that
garbage collection has to be performed when the system is turned off.

– Efficiency
Persistent programming languages are often less efficient than a conventional
solution which uses customized interactions with a database or a persistent
storage.

A sustainable solution to these issues seems to be a prerequisite for a potential
successful prevalence of the persistent programming vision. For this purpose, we
have developed the new programming language Persistent Oberon that aims to
address these open problems. The language offers the following key features:

– Language-integrated persistence
The programming language supports data persistence as an elementary fea-
ture, without requiring any persistence-specific programming interfaces and
thinking about a separate external persistence system.

– General data longevity
The programming language is based on a data model, which uniformly covers
data of arbitrary longevity, i.e. persistent, volatile and cached data can be
used in a consistent way.

– Effective and safe memory management
The runtime system incorporates effective non-disruptive and complete gar-
bage collection with simultaneous caching in volatile main memory. To our
knowledge, none of the existing systems is capable of such effective caching
for persistent garbage-collection, which works for this general programming
model.

While Persistent Oberon has already been very briefly presented in a poster
session [11], here we describe the language in more detail, explain its rationale
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and also report on its implementation. The programming language has been
completely implemented on the basis of Active Oberon [16,28,32], which is the
object-oriented descendant of Oberon [37,38]. The system supplies the entire
infrastructure that is necessary for persistent programming, including a compiler
and runtime system, as well as a disk storage and program evolution facility. By
means of an experimental evaluation, we also show that the new language offers
a high scalability and performance.

The remaining paper is organized as follows: Section 2 motivates the idea of
persistent programming and identifies the main shortcomings of existing persis-
tent languages. Section 3 then describes the new programming language Persis-
tent Oberon. In Section 4, the design and implementation of the runtime system
is presented together with a performance evaluation. Section 6 reports on related
work, before we conclude this paper in Section 7.

2 State of the Art

For object-orientation, concrete criteria of a seamless integration of persistence
within a language have already been postulated by the principles of orthogonal
persistence [8,7]:

– Persistence independence
All program operations look the same irrespective of the lifetime of the
accessed data.

– Type orthogonality
An object type does not predetermine the lifetime of its instances.

– Persistence identification
The concepts of object identification and implicit object lifetimes remain
unchanged.

The main idea of orthogonal persistence is to avoid any special handling, which
is only applicable to persistent data and to preserve the philosophy of the under-
lying programming paradigm. Although many persistent languages [3,12,24,19,6]
(including non object-oriented ones) are claimed to be orthogonally persistent,
regrettably none of them fulfils this goal of language-institutionalized persis-
tence:

– Special program functions and explicit interfaces are required in these lan-
guages, to query and fix a root of the persistent object graph, something that
is clearly contradicting the principle of persistence independence. Persistent
roots have to be handled entirely differently in comparison to the transient
ones (such as static variables in Java, module variables in Persistent Modula-
3). Figure 1 illustrates how cumbersome it is to set up the initial persistent
state in these languages. As an implication of the special persistent roots, a
program also has to explicitly determine whether it is started for the first
time or is simply resumed after interruption.
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– To maintain consistency for the interruptible execution, the abovementioned
languages often require explicit stabilization (checkpointing) or starting and
stopping database transactions via a dedicated persistence interface. These
mechanisms also form persistence-specific artifacts that are quite unnatu-
ral and complicated to use. More especially, the approach of global check-
points necessitates the knowledge over the entire program, in order not to
prematurely save the temporary modifications of a non-completed logical
transaction.

INTERFACE MyModule; 
  IMPORT Database; 
  DataEntry = OBJECT  (* … *) END; 
  VAR myData: DataEntry; p: Database.Public 
BEGIN  
    TRY 
      p := NARROW(Database.Open(“MyModuleData”), 
                                Database.Public); 
      myData := NARROW(p.getRoot(), DataEntry) 
    EXCEPT 
     Database.DatabaseNotFound =>  
       Database.Create(“MyModuleData”);  
       p := NARROW(Database.Open(“MyModuleData”, 
                                 Database.Public) 
       NEW(myData); p.SetRoot(myData) 
    END 
END MyModule. 

Persistent Modula 3 (PM3) 

import org.opj.store; 
class DataEntry { /* … */ } 
class MyProgram { 
  static DataEntry myData; 
  public static void main(String args[]) { 
    PJStore p = PJStoreImpl.getStore(); 
    if (p.existsPRoot(“MyProgramData”)) { 
      myData =  
               (DataEntry) p.getPRoot(“MyProgramData”)); 
   } 
   else { 
      myData = new DataEntry; 
      p.newPRoot(“MyProgramData, myData); 
   } 
  } 
} 

PJama 

Fig. 1. Explicit accesses to the persistent state

3 Persistent Oberon

Persistent Oberon is based on a modular object-oriented programming model,
which combines the notion of conventional objects with the concept of modules,
as they are known in Oberon [37,38] and Modula [36]. Modules thereby turn
out to be a key concept for introducing persistence in a natural way. Besides
being a static compilation and deployment unit, a module represents a single-
ton instance at runtime that maintains an individual data state. A module is
dynamically loaded by the system, as soon as it is used for the first time by the
user or another importing module. In the following sections, we explain the main
language concepts that are related to persistence support.

3.1 Modules

In our language, a module is designed to live infinitely long in the system. Once
loaded and initialized, the module and its contained state stays permanently
alive and survives all system restarts. Naturally, references also belong to this
persistent state and by default, remain valid at system restart. In other words,
modules constitute the persistent roots, implicitly making all transitively reach-
able objects of the modules persistent. To illustrate the meaning of this, Figure 2
outlines a persistent bank system, together with an exemplary runtime topol-
ogy of the corresponding object instances. Notably, the code of the module is
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MODULE Bank; 
  TYPE  
    Account = OBJECT 
      VAR  
        customer: Customer; 
        balance: REAL; 
    END Patient; 
    Customer = OBJECT (* … *) END Customer; 
    AccountList = OBJECT (* … *) END AccountList; 
  VAR accounts: AccountList; 
END Bank.  

Bank accounts 

Account 1 

Account 3 

Customer 1 

module 
(persistent) 

object 
(persistent) 

reference 
(persistent) 

Account 2 

Customer 2 

Fig. 2. A persistent program

identical to a conventional transient program and no persistence-specific pro-
gramming constructs are involved here. In Persistent Oberon, a module can
only be unloaded for the reason of changing the program definition. In this case,
the runtime system provides an evolution facility that supports the programmer
to migrate the persistent data of the former module version to the newer one.

In ordinary languages, a seamless integration of persistence is usually not so
simple because of the absence of the module concept. Though class variables
(static keyword) may represent a part of the persistent root set, a program is
usually completely executed by the main-method without a separation between
the initialization phase and the actual main program activity. Hence, the pro-
gram state that ought to be valid during the entire program is not necessarily
contained in the (static) class variables but may just as well be contained as
local variables of procedures invoked by the main-method (including the main-
procedure itself).

3.2 Transactions

As the persistent state should always be available in a consistent way when
the system is resumed after an interruption or failure, the program execution
has to necessarily reflect the states of consistency. For this purpose, the lan-
guage features the concept of transactions, which define statement sequences that
change the program from one consistent state to another. In Persistent Oberon,
a normal statement sequence (BEGIN-END block) can be annotated by the
TRANSACTION-attribute in order to represent a transaction, see Figure 3. All
modifications, which are performed by the execution of a transaction (including
the code of directly or indirectly called procedures), are either completely applied
or not at all. During the unfinished transactions, these changes are only tem-
porarily valid and are discarded at a system interruption. A transaction may also
be prematurely stopped by the programmer by way of the ABORT-statement. In
this case, the corresponding transaction statement block is immediately exited
and none of its modifications to the program state become effective.

Naturally, a transaction may also execute statement sequences which are de-
fined as transactions. Such transactions (executed as part of another transac-
tion) are called sub-transactions [25]. A sub-transaction can be aborted without
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terminating its surrounding transaction. However, an abort of the surrounding
transaction always cancels all the sub-transactions and discards all the effects
that have been performed by the sub-transactions. Therefore, the effects of a
sub-transaction only become durable when the surrounding procedure is also
successfully finished. In other words, only the changes of a successfully finished
top-level transaction (not enclosed by another transaction) are made persistent.
In Persistent Oberon, a single modifying operation automatically forms an im-
plicit transaction if it is not enclosed by an explicit transactional statement
sequence.

Figure 3 explains the use of transactions through the bank example. The
Transfer procedure contains a transactional statement block, which runs as a
top-level transaction. The transactional statement blocks within the procedures
Withdraw and Deposit are called by the Transfer procedure and hence only
represent sub-transactions.

Account = OBJECT  
  VAR balance: REAL; 

  PROCEDURE Withdraw(amount: REAL): BOOLEAN; 
  BEGIN {TRANSACTION} 
    IF balance >= amount THEN 
       balance:= balance - amount; RETURN TRUE 
    ELSE RETURN FALSE 
    END 
  END Withdraw;  

  PROCEDURE Deposit(amount: REAL); 
  BEGIN {TRANSACTION} 
    balance:= balance + amount 
  END Deposit; 
END Account; 

PROCEDURE Transfer(from, to: Account; amount: REAL); 
VAR success: BOOLEAN; 
BEGIN 
   BEGIN {TRANSACTION} 
     success := from.Withdraw(amount); 
     IF success THEN  
       to.Deposit(amount)  
     END 
   END; 
   ReportStatus(success) 
END Transfer; 

Fig. 3. Transactions

Both top-level and sub-transactions feature isolation with respect to
serializability[9], of read- and write-accesses on the granularity of objects and
modules. This means that concurrent transactions can only see effects of others
as if the transactions were executed in a strictly serial order. A sub-transaction
is however not isolated from its enclosing transactions, as it has access to the
temporary state of its surrounding transactions.

It should be noted that the transactional statement block is a language-
integrated feature that is not only applicable for persistence but it is also useful
for volatile data due to the rollback-possibility and the isolation. Contrary to
other persistent languages, the begin and end points of a transaction is implic-
itly defined by the transactional statement block and no explicit invocation of
database methods such as Transaction.Begin and Transaction.Commit is needed.

3.3 Interoperability

To allow interoperability with existing non-persistent programs, Persistent Obe-
ron also supports references to objects that do not necessarily have to be
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persistent but can be of shorter longevity. For example, this could be tran-
sient objects, which are only available during an uninterrupted system phase, or
cached objects, which can even vanish during the running system when memory
space becomes scarce. To enable such shorter object lifetimes, a reference can be
declared as transient or weak, to deviate from the default semantics of a usual
persistent reference. The meaning of a transient reference is that the target data
does not need to be retained at system interruptions. Analogously, a weak ref-
erence permits the disposal of the target reference at any time during program
execution. However, transient or weak references do not force shorter lifetime for
the referenced objects but merely figure as a suggestion for the runtime system.
The value of transient references is safely reset to NIL on system restart and
a weak reference is cleared on removal of the referenced object. Significantly,
object lifetimes are still determined by transitive reachability, such that in com-
bination with an appropriate runtime system, memory safety can be completely
ensured. This may be illustrated by Figure 4, showing an extension of the pre-
vious bank example. Everything that is not explicitly declared as transient or
weak should be persistent, that is particularly true for all data associated with
accounts. The list of account managers, which are currently logged in the system,
can be maintained as transient, since they have to logon again after a system
interruption. Furthermore, the module also maintains an object cache of the
least recently accessed accounts, which are only retained as long as free memory
space is not sought by automatic garbage collection. The right-hand side of Fig-
ure 4 shows the potential states of the program object graph in different stages,
the initial topology, after garbage collection and at system restart. Thereby, the
object lifetimes are specified as follows: All objects being transitively reachable
from a module via persistent references, are persistent. The other non-persistent
objects are transient, if they are reachable via persistent or transient references
from a module or the transient state of a running procedure (or transaction).
All remaining objects form garbage, which are possibly used as cached data, and
are eventually removed from the system.

As a result, the introduced reference semantics enable a general data model,
safely interoperable with other preexisting transient programs, such as with low-
level operating system modules. Modules written in the persistent programming
language may then import classical transient modules and reuse the therein pro-
vided logic, with the restriction that the persistent program part only interacts
with the data of the imported module by using transient (or weak) references.

3.4 Particular Functionality

We deliberately do not provide the same amount of functionality as a database
system offers. The presented model is rather designed for general-purpose pro-
gramming with a minimum set of fundamental concepts for persistence. Ad-
vanced functionality, such as special querying languages, mechanism of data
distributions and security policies, can be individually provided by customized
program logic.
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MODULE Bank; 
  TYPE 
    Account = OBJECT  
      VAR  
         customer: Customer; 
         balance: REAL; 
    END Account; 

    Customer = OBJECT (* … *) END Customer; 
    AccountList = OBJECT (* ... *) END AccountList;
    BankManager = OBJECT (* ... *) END BankManager;
    ManagerList = OBJECT (* ... *) END ManagerList;
  VAR 
    accounts: PatientList; 
    managers: ManagerList; 
     
    loggedInManagers: {TRANSIENT} ManagersList; 

    leastRecentlyAccessed: {WEAK} AccountList; 
END Bank. 

persistent 
reference 

transient 
reference 

persistent
object

weak  
reference 

transient
object

garbage
object

module
(persistent)

Initial state 

After garbage collection 

At system restart 

Manager 1 

Manager 2 

Account 1 

Bank 

managers 

loggedIn 
Managers 

leastRecently 
Accessed 

Account 3 
(closed) 

accounts 

Manager 1 

Manager 2 

Account 1 

Bank 

managers

loggedInManagers 

Manager 1 

Account 1 

Bank 
managers

Fig. 4. Using data with shorter lifetimes

4 Runtime System

We have implemented an entire execution platform Persistent Oberon, to provide
evidence that the proposed persistent programming model can be efficiently
realized on conventional computer machines. As a fundament, we have chosen
the operating system AOS [28], which employs Active Oberon as the native
programming language.

4.1 Memory Management

The basic infrastructure of the memory system is the persistent object store
(POS), managing the non-volatile memory heap on a disk and enabling fault-
tolerant atomic updates or allocations. Furthermore, the system supports main
memory caching with a lazy-loading mechanism, where an object is only loaded
into memory, when requested for the first time after a system restart. As the
normal main memory addresses depend on a system run, synthetic unique ob-
ject identifiers are used for the reference values, also allowing flexible memory
movement of the objects. Consequently, these identifiers need to be mapped to
both main memory addresses and locations in the POS. This translation is re-
alized by a residency object table, implemented as a high-scalable and efficient
hash table with splay-trees as table entries [17]. Automatic garbage collection
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is another decisive issue, in continuously ensuring the following memory safety
requirements:

– Durability of the latest committed states of each persistent object and mod-
ule at any time. (Only the top-level transactions change the stable state).

– Exclusion of dangling pointers, i.e. a reference pointing to an object with
shorter lifetime than the source object or module.

– Absence of memory leaks, where each non-persistent object is eventually
freed from the persistent store and each garbage object is removed from all
memory spaces with finite delay.

For this purpose, modules and objects are conceptually classified into two
disjoint sets P and T . The set P contains at least all modules and persistent
objects and furthermore, forms a transitive closure of reachability via persistent
references in the stable states. All transient objects, which are not contained in
P , belong to T . The union of P and T represents the transitive closure of reach-
ability via non-weak references in all states (persistent store and main memory).
It is essential for correctness that the latest stable states of modules and objects
of P always reside in the POS, whereas for all other objects, the POS does not
hold a value state. The accuracy of these two sets can be established by two
independent automatic garbage collectors: One, called the POS garbage collec-
tor, removes objects from P and frees the occupied space in the POS; the other
is only responsible for disposing of garbage in the main memory and is hence
named the main memory garbage collector.

At system startup, P is initialized with the set of all objects in the POS
and T is empty. When a module is activated for the very first time, an empty
state is immediately allocated for this module in the POS and the module is
added to P . Subsequently, each state modification has to be performed within a
transaction. Each transaction has an associated set, called the write-object-set
(WOS), recording all objects and modules, which have been modified or allocated
during the execution of the transaction. The write-object-set is implemented as
a combination of a bucketed list for rapid iteration and a hash-splay [17] for fast
searching.

On the commit of a top-level transaction, the system collects all object states
that have to be propagated to the persistent store, as specified on the left-hand
side of Figure 5. Thereby, it tracks the stable states for the entities unmodified
by the current transaction and otherwise, the current states in the transaction’s
WOS. Transactions cannot commit concurrently, implying that the commit pro-
cess always maintains a coherent view of the stable states. Conversely, the com-
mit of a subtransaction (in the context of nested transactions [25]) causes each
entry of its WOS to be transferred to the super-transaction, if the entry is not yet
contained in the super-transaction’s WOS. In addition, each transaction main-
tains a backup of the original states of its modified objects or modules. In the
case of a transaction abort, the corresponding backup states are restored in main
memory.

The POS garbage collector detects non-persistent objects in the POS and
safely reclaims the corresponding free space. Therefore, the collector also has to
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PROCEDURE Commit(top-level transaction A); 
  AcquireLock(TopLevelTransactionCommit); 
  NewP := {}; MarkStack := Empty; 
  FOREACH x ∈  WOS(A) with x ∈ P DO 
    RefSet := persistent references in current state of x

    FOREACH reference in RefSet pointing to y ≠  NIL DO 
      MarkStack.Push(y)  
    END 
  END; 
  WHILE MarkStack is not empty DO 
    x := MarkStack.Pop(); 

    IF x is in main memory and x ∉ P and x ∉ NewP THEN 

      NewP := NewP ∪  {x};  
      IF x ∈  WOS(A) THEN  
        RefSet := persistent references in current state of x
      ELSE  
        RefSet := persistent references in stable state of x  
      END; 

      FOREACH reference in RefSet pointing to y ≠  NIL DO 
        MarkStack.Push(y)  
      END 
  END; 
  Begin atomic POS update; 
  FOREACH x ∈  WOS(A) with (x ∈ P or x ∈ NewP) DO 
     Store current state of x in POS and set it as the stable state 
  END; 
  FOREACH x ∈  (NewP \ WOS(A)) DO 
     Promote stable state of x to POS. 
  END; 
  P := P ∪ NewP; 
  End atomic POS update; 
  ReleaseLock(TopLevelTransactionCommit); 
END Commit;

PROCEDURE RemoveNonPersistentData(object set S); 
AcquireLock(TopLevelTransactionCommit); 
FOREACH object x ∈ S DO  
  IF x is not present in main memory THEN  
    Load x into main memory 
  END 
END; 
P := P \ S; T := T ∪ S
Delete S in the POS 
ReleaseLock(TopLevelTransactionCommit); 
END RemoveNonPersistentData; 

Fig. 5. Cache interaction mechanism

correctly interact with the simultaneous main memory object cache. To do so,
all objects that are detected as non-persistent by the POS garbage collector, are
atomically moved to set T under exclusion of intermediate concurrent transac-
tions. As the non-persistent objects may still have transient lifetime, they are
loaded to main memory before removal from the persistent storage. The right-
hand side of Figure 5 shows the detailed cache interaction by the disposal process
of the persistent garbage collector. The described cache interaction mechanism is
combinable with any correct (and thus necessarily complete) persistent garbage
collector. Because of the characteristics of the non-volatile disk storage, such a
collector should specifically support incremental execution, fault-tolerance, min-
imal I/O-overheads and maximum progress on each collection run [23,2]. For
these requirements, we have chosen the persistent mature object space (PMOS)
[26], as a suited underlying garbage collector. It allows incremental and com-
plete collection by using a partitioned object space. A disadvantage of PMOS
is however the overhead involved in storing small partitions, because each parti-
tion records all incoming references. On the other hand, longer disruptions of the
POS result from larger partitions, since the POS is locked during a collection and
thus blocks concurrent transaction commits. We have abandoned this trade-off
by using larger partitions and only blocking the POS during the evacuation of
a small amount of objects per partition. The disposal of non-persistent objects
is done within a single blocking period.
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The main memory collector has only the task of reclaiming garbage objects
in the set T by immediately removing them from the main memory space. As
for garbage objects of P , the POS collector first moves them to T , before they
can be definitively discarded. This two-step disposal process is necessary because
objects in P may still be reachable from a root in the POS, even though they
are not so in main memory. Therefore, objects of P are considered as additional
root elements for main memory garbage collection. All states must be traced
for references and the collector can ignore references pointing to not yet loaded
objects. Before garbage is finally deleted, weak references on these objects are
reset to NIL, to avoid dangling references.

Transactional isolation can be supported by different concurrency control
mechanisms. The transaction scheduling may be serial or relaxed, by using strict
two-phase locking or optimistic concurrency control (such as software transac-
tional memory [33]). However, the relaxed mechanisms possibly abort transac-
tions, in order to prevent deadlocks or unserializable accesses, respectively. In
such a case, the unexpectedly aborted transactions need to be restarted. The
problem of this approach is that long running transactions may suffer from star-
vation, since they could be continuously aborted by the scheduler. Therefore, we
currently use a serial transaction scheduler as default mechanism in the runtime
system. Preclaiming two-phase locking would be less strict but require static
analysis to conservatively determine the potentially accessed objects of a trans-
action.

4.2 Experimental Evaluation

To give an impression of our system’s functionality and efficiency, we have mea-
sured the performance by the OO7 benchmark [13]. The results are compared to
a classical approach, which a user would probably take if they have to develop
this persistent application (i.e. the benchmark) within a similar time frame.
Such an alternative could be JDO [35], which has been recently advertised as a
transparent persistence framework for Java, interacting with a normal database
system. Regrettably, the framework does not entirely fulfill this ideal: A pro-
grammer has to interact with special persistence API’s and needs to provide
additional XML-metadata for database mapping1. An even greater drawback is
that objects are not automatically managed by the runtime system but must be
explicitly deleted or made transient. This disagrees with the conventional Java
programming model and allows violations of the referential integrity. All tests
were run on a PC with Intel Pentium 4, 3GHz, 8KB L1 and 512KB L2 cache,
as well as 1GB main memory. The hard disk was a Seagate ST3200822AS with
200GB capacity, 8.5ms average read seek time, 7200 rpm and about 16MB/s
transfer-bandwidth. In Persistent Oberon, the data store space resided on a
10GB partition with POS-partition size of 4KB. The garbage collector was con-
tinuously active to measure the real efficiency. The JDO system is based on
1 For some JDO implementations, one must even account for foreign key constraints

in the database: An acyclic data topology first needs to be allocated in the database,
before cyclic references may be set in the program.
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Windows XP with JDK 1.5SE, JDO 1.0, JPOX 1.0.4 vendor implementation,
and MySQL 4.0 database2. Initially, the measurements should be performed with
the small OO7 configuration (about 53,000 objects inclusive collection entries).
However, this amount already exceeds the capabilities of the JDO implemen-
tation, whereas our system runs perfectly with this configuration3. Therefore,
we had to scale down the configuration to make the comparison possible (8,300
objects inclusive collection entries, see the right-hand side of Figure 6). The
results are restricted to the most interesting traversals, each forming a single
top-level transaction. The remaining tests gave no further information nor did
they show up any contradictions. The left-hand side of Figure 6 summarizes
the average execution times including the commit overheads, rounded to two
significant figures. T1 is a read-only traversal, whereas T3C updates the data
set. Both traversals are distinguished by whether the transaction operates on a
cold main memory cache (meaning it is empty) or a warm cache, which already
contains all needed objects. CU resembles the costs of solely updating the warm
main memory cache. As a result, our system is not only scaling well for higher
data loads but also greatly outperforms the JDO system by a factor of about 30
to 80. As for the cache updates, the discrepancy is not that high but this time
only accounts for a small part of the total runtime cost. More details about the
benchmark implementation, as well as the complete experimental results can be
found in [10].

Persistent Oberon JDO 
cold warm cold warm 

T1 91 ms 23 ms 3400 ms 1800 ms 
T3 C 390 ms 300 ms 13000 ms 11000 ms 
CU 81 ms 115 ms 

NumAtomicPerComp 10 
NumConnPerAtomic 3 
DocumentSize bytes 200 
ManualSize bytes 1024 
NumCompPerModule 30 
NumAssmPerAssm 3 
NumAssmLevels 3 
NumCompPerAssm 3 
NumModules 1 

Fig. 6. OO7 performance comparison

5 Related Work

Persistent programming has a long tradition and therefore, our language is re-
lated to various existing works.

Persistent programming languages. One of the earliest programming lan-
guages with support of persistence is PS-algol [3]. It already features persistence
by referential reachability, as well as a transactional execution model. Napier88
[24] is a successor of PS-algol. Pointer type annotations were already introduced

2 Many other database systems and JDO vendor implementations could not be used
because corresponding license contracts forbid the publication of performance re-
sults.

3 The JDO system fails with stack overflow errors even for very high stack sizes, or
runs out of connection ports (increasing the system parameters only helped to a
certain degree).
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in object-oriented Persistent Modula-3 [19] for fine-granular specification of per-
sistence reachability [18]. In Persistent Modula-3, a reference can also be de-
clared to refer to an object that ought to be always transient, even if it could
be reached over persistent references [27]. This is different to our model, where
a chain of persistent references from a persistent root cannot be broken by an
object explicitly forced to always be transient, which implies the risk of dan-
gling persistent references in Persistent Modula-3. [21] shows the integration of
transitive persistence into classical non-concurrent Oberon but does not support
any transactional features. Optional custom internalization and externalization
functions are proposed by [21], to ignore certain references for persistence reach-
ability, which is solved in our work using transient or weak references. PJama
[5,6] is a system providing persistence for Java, also based on reachability from
a persistent root. Checkpoints may be performed under PJama, to update mod-
ifications of a program in the persistent store but no fine-grained transaction
model exists for threads within an application. All of the mentioned languages
do not offer a fully language-integrated persistence. They still require artificial
programming constructs to deal with persistent roots or to define transactions or
checkpoints. Software transactional memory [33] supports isolated transactions
on the granularity of memory reads and writes. While we do not prejudice a
specific implementation of transactional isolation, software transactional mem-
ory is realized by optimistic concurrency control (possibly leading to continuous
aborts of transactions).

Caching-aware garbage collection. We have designed our own cache mech-
anism for simultaneous garbage collection in the persistent store, because we
could not find another such cache mechanism, which is applicable to our general
data model. A series of work on garbage collectors for persistent object systems
points out this issue of cache-coordination but does not address it [31,23,29]. An
interesting collector is reported by [1,2], which allows concurrent modifications
in main memory. The system is however not designed (and does not work) in
the presence of non-persistent references, since only reference cuts and newly
allocated objects are recorded. In our model, a transient or garbage object can
become persistent again, by converting a transient reference to a persistent one.
The collector of [30] manages both a transitory and persistent memory heap but
does not discard objects from the disk space without system restart. The copying
collector of Persistent Modula-3 [20] works in the presence of caching but com-
putes all persistent objects for the entire system with a global stabilization. This
is unsuited for our system, since an atomic transaction should only update its
own modified objects and should not save the temporary state of other objects
used by a different concurrent transaction. To ensure that our caching algorithm
is correct, we have formally proved the memory safety of it [10].

6 Conclusion

We have demonstrated that data persistence can be featured as a naturally in-
built concept of a programming language, enabling the uniform, flexible and safe
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use of data with arbitrary longevity. Such a language eventually facilitates the
development of persistent applications without bothering programmers to write
cumbersome and vulnerable code for database interactions. The programming
model is intentionally kept to a minimum of fundamental concepts and there-
fore, does not provide inbuilt mechanisms for special purposes. Instead, one can
individually augment this functionality by using customized logic or interoper-
ating with classical non-persistent program modules. The runtime system and
its source code are available at [10].
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Abstract. We propose a series of type systems for the information-flow security
of assembly code. These systems extend previous work TALC with some tim-
ing annotations and associated judgments and rules. By using different timing
rules, these systems are applicable to different practical settings. In particular,
they can be used to prevent illicit information flow through the termination and
timing channels in sequential programs as well as the possibilistic and probabilis-
tic channels in multi-threaded programs. We present the formal details of these
as a generic type system TAL+

C and prove its noninterference. TAL+
C is designed

as a core target language for certifying compilation. We illustrate its use with a
formal scheme of type-preserving translation.

1 Introduction

Language-based techniques are promising in enforcing information-flow security [19].
An information-flow problem typically concerns a program which operates on data of
different security levels, e.g., low and high. Low data are public data that may be dis-
closed to all principals; high data are secret data whose access must be restricted. An
information-flow policy, such as noninterference, typically requires that no information
about high input data can be inferred from observing low output data. In practice, the
security levels can be generalized to a lattice [26].

Whereas most existing work on information flow has focused on high-level lan-
guages, low-level languages are gradually receiving more attention, especially from the
perspective of typed assembly languages [13] and for the purpose of certifying compi-
lation [10,21]. In recent work [12,31], type annotations are used to restore the missing
abstraction in assembly code, and type-preserving translation is used to preserve se-
curity evidence from the source to the target. By security-type checking directly at the
target level, the compiler is lifted out of the trusted computing base, yielding higher con-
fidence on the code behavior. In addition, in the context of mobile code security where
code providers are potentially malicious and source code is typically not available for
analysis, certifying compilation allows code producers to provide security evidence in
the form of types and other annotations to accompany the target code for separate veri-
fication on the code consumer’s side.

Although a good start, such low-level information-flow analysis only investigated
relatively simple settings. In particular, only sequential programs were considered, and
attackers were assumed to be unable to observe beyond the regular machine states (e.g.,
heaps and register files). In practice, however, attackers may also be able to observe
some timing behaviors, either by observing physically the execution time of a program

Z. Shao (Ed.): APLAS 2007, LNCS 4807, pp. 86–104, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



More Typed Assembly Languages for Confidentiality 87

(external timing) or by exploiting thread interaction (internal timing). Such timing be-
haviors, unfortunately, provide some covert channels of information flow.

This paper presents solutions that address information-flow security for low-level
languages in more practical settings. For sequential programs, we propose type sys-
tems for closing up some covert channels, namely termination [25] and timing [1]
channels. For multi-threaded programs, we propose type systems that guarantee possi-
bilistic [23] and probabilistic [20] noninterference. Our solutions are inspired by source-
level security-type systems which account for program timing behaviors. Based on our
previous work [31] on a typed assembly language for confidentiality (TALC), we intro-
duce additional annotations to document the timing of program execution. These timing
annotations are used to express various source-level constraints, such as the absence of
loops in high security contexts.

We observed that different timing annotations were needed to address different
information-flow channels. Nonetheless, there was much similarity between the under-
lying type systems. We have formulated a generic type system TAL+

C , which addresses
different information-flow channels when given different “timing rules.” The formal re-
sults of this paper is given in terms of the generic TAL+

C . By giving TAL+
C different

“parameters,” we obtain specialized systems for different situations. As expected, the
trivial “empty” parameter reduces the generic TAL+

C to the original TALC .
An advantage of the generic treatment, and of TAL+

C , lies in simplicity. The exten-
sions we propose are self-contained and easy to understand, yet they suffice in ad-
dressing all the above mentioned practical settings. They also interact naturally with
advanced features of typed assembly languages. These enable the potential use of TAL+

C

in a more sophisticated typed assembly language, which in turn may serve as a general
target for certifying compilation. The smooth transition from TALC to TAL+

C also serves
as a validation that TALC is a good platform for low-level information-flow analysis.

The remainder of this paper is organized as follows. Section 2 provides background
on security-type systems at a source level and at a target level. Section 3 illustrates
the problems introduced by termination channels and outlines the ideas behind our so-
lution. A rigorous treatment is given in Section 4, where we present our type system
for closing up termination channels, prove its noninterference, and outline a certifying
compilation scheme targeting it. Although focusing on termination channels for ease
of understanding, the formal details in Section 4 are organized generically so that later
sections simply provide different “parameters” to obtain type systems and certifying
compilation schemes for addressing other information-flow channels. Following this
generic treatment, Section 5 discusses timing channels, and Section 6 discusses possi-
bilistic and probabilistic noninterference in multi-threaded programs. Finally, Section 7
discusses related and future work, and Section 8 concludes.

2 Background

2.1 Security-Type System

Suppose we introduce two security levels, low and high, into a simple imperative lan-
guage. Variables of this language are classified into low and high variables, meaning
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that they hold low and high data respectively. For convenience, we use l as a low vari-
able and h as a high variable. We wish to enforce a policy that there should be no flow
of information from high variables to low variables. More specifically, we must prevent,
among others, the following two kinds of illicit information flow:

1. Explicit flow through assignments, such as l := h.
2. Implicit flow through program structures (conditionals and while-loops), such as

if h then l := 1 else l := 0.

A security-type system typically addresses these requirements by:

1. To track security levels in the types of expressions. This helps preventing informa-
tion leak through explicit flow—mismatch of security levels in assignments will be
disallowed.

2. To mark the program counters (PC) with security levels. If a conditional expression
has a high guard, its branches will be type-checked under a high PC. This essen-
tially marks the branches as falling in a “sensitive region,” under which updates
to low variables are disallowed. This idea applies also to other program structures
such as while-loops.

2.2 TALC

TALC [31] adapts source-level information-flow analysis for assembly code. The main
challenge is that assembly code does not present as much abstraction as does source
code. Whereas the program structures of source code help to determine the security
levels of various program points, such structures are not available in assembly code.

For example, a conditional statement in a source program can be type-checked so
that both branches respect the security level of the guard expression. Such checks be-
come difficult in assembly code, where the “flattened” control flow provides little help
in identifying the program structure. A conditional is typically translated into a branch-
ing instruction and some code blocks, where the ending points of the two branches are
no longer apparent. Although control-flow analysis can be used to compute such in-
formation [3], it expands the trusted computing base substantially—the analysis itself
would be trusted.

TALC recovers the missing structure using type annotations. These annotations pro-
vide explicit information on the security levels of instructions as well as the ending
points of the security levels. Two new security operations are introduced to manipulate
the annotations, and appropriate typing rules are used to make sure that the annotations
faithfully reflect the actual structure of the code.

The syntax of a simplified version of TALC is given in Figure 1. Compared with
the original TALC , we have omitted stacks and polymorphism because they are mainly
for supporting functions and procedures in source programs and their handling is or-
thogonal to the TALC extensions in this paper. We use θ to represent security levels. A
security context θ � l indicates that the security level of the PC will be no less than θ
until the program point l is reached.

A raise κ operation is used to increase the security level, which corresponds to
the beginning of a sensitive region such as those introduced by a high conditional. A
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(contexts) κ ::= • | θ � l

(pre-types) τ ::= int | 〈σ1, . . . , σn〉 | ∀[].〈κ〉 Γ
(types) σ ::= τθ

(heap ty) Ψ ::= {l1 : σ1, . . . ln : σn}
(reg file ty) Γ ::= {r1 : σ1, . . . rn : σn}

(registers) r ::= r1 | r2 | . . .

(word val) w ::= l | i

(small val) v ::= r | w

(heap val) h ::= 〈w1, . . . , wn〉 | code[]〈κ〉Γ.I
(heaps) H ::= {l1 �→ h1, . . . , ln �→ hn}

(reg files) R ::= {r1 �→ w1, . . . , rn �→ wn}

(instr) ι ::= add rd, rs, v | ld rd, rs(i) | st rd(i), rs | mov rd, v | bnz r, v | raise κ

(instr seq) I ::= ι; I | lower l | jmp v | halt [σ]
(prog) P ::= (H, R, I)κ

Fig. 1. Syntax of a simplified TALC

lower l is used to restore the security level and transfer the control to label l, which
marks the end of a sensitive region. These two security operations can be placed into
the target code by a certifying compilation process based on the structures and the
typing of source programs.

Given these, the security levels of all program points become apparent through the
annotations. The adaptation of the source level solutions is then straightforward. High
branching must happen in high contexts, and updates to low data in high contexts are
disallowed. In addition, every pointer is given two security levels, one for the pointer,
the other for the data or code being referenced.

This concludes our introduction to TALC . Interested readers are referred to previous
work [30,31] for more details, including the support for functions and pointers, the exact
semantics and noninterference proof, and a certifying compilation scheme.

3 Termination Channels

TALC assumes that the only means for observing program behaviors is by inspecting
the content of certain program variables (or heap and register file for assembly code).
In practice, termination channels enable some attacks not prevented by TALC . In the
following two examples, no low variable is updated. However, the values of the high
variable h can be learned by observing whether the programs terminate.

1. Nonterminating high loop: while h do skip;
2. Nonterminating loop in a high branch: if h then {while true do skip} else

skip.

Volpano and Smith [25] close termination channels by putting restrictions on pro-
gram constructs that could potentially lead to nontermination. In essence, if a program
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construct is potentially nonterminating, then it must have the minimum typing (one that
corresponds to the lowest security level). For example, all while-loops are restricted to
have the type low. This is reflected in the type system as allowing a while-loop only
under a low PC. In the first example earlier, the high loop is now disallowed, because
the high loop guard cannot be typed under a low PC. In the second example, the loop
in the high conditional is now also disallowed, because the body of the high conditional
has a high PC, but a loop is allowed only under a low PC.

The correctness of this approach with respect to termination is intuitive. Consider
executing a program twice on different high variables but same low variables. Upon a
high conditional, both executions will terminate because of the absence of loops in the
conditional body. Upon a low conditional, both executions will follow the same path,
resulting in the same behavior on termination.

3.1 Idea at an Assembly Level

In a typed assembly language, one cannot easily identify loops, because both loops and
conditionals are implemented using branching instructions. Nonetheless, the essence
of the source-level approach is that high branches must be terminating. The security
annotations of TALC are handy for identifying such branches—a branch is high if and
only if it has a high context. On top of this, we attach to high branches some new timing
annotations that mark the upper bound of their execution steps before returning to low
regions. The solution of TALC guarantees that terminating high branches will meet
eventually in a low region with matching low variables. The new timing annotations
introduced here are to guarantee that high branches do terminate.

More specifically, we introduce a timing tag t for this purpose, where t is either
a natural number (indicating that the execution will leave the current high region in at
most this number of steps) or ∞ (indicating “unknown” or “potentially infinite”). Under
a high context, the type system allows a branching instruction only if both branches have
finite timing tags. This prevents potentially nonterminating “backward jumps” later on.
Note that when giving a timing tag to the branching instruction itself (needed for nested
branches), one must take the longer branch into account.

The correctness intuition of this approach is similar to that of the minimum typings
at a source level—upon a high branching, two executions of a program may split but
will meet in a low region in a finite number of steps.

These timing annotations can come from the compilation of security-typed source
code. A conditional will be compiled with finite timing if and only if both branches
yield finite timing. A loop can be compiled conservatively with infinite timing. By ac-
cepting only finite timing annotations in high regions, a type system would reject the
two counter examples given earlier. Such timing annotations also work naturally with
functions and abnormal termination (see the companion technical report [29]).

3.2 Allowing Terminating Loops

The key idea above conservatively disallows potentially nonterminating constructions
in high contexts. It is sometimes useful to relax this restriction by allowing terminating
loops (or well-founded recursions). This can be achieved using singleton types.
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l : ∀[t : nat | t ≥ 1]. 〈2t〉 {r1 : int(t)}
sub r1, r1, 1 % r1 ← r1 − 1
∀[t : nat | t ≥ 1]. 〈2t − 1〉 {r1 : int(t − 1)}
bnz r1, l % to branch if r1 �= 0
〈0〉 {r1 : int(0)}
halt [int]

The above example code demonstrates some simple concepts of singleton types. In the
type annotations, t is a type variable of kind (or sort) nat mimicking natural numbers,
and t ≥ 1 is a constraint. The initial type annotation at label l essentially means that
there exists a natural number t satisfying t ≥ 1 such that the “clock” (timing annota-
tion) is 2t and r1 has type int(t) (an integer of value t). Note how the clock depends
on the value in r1. In the next program point, the annotation reflects the execution of the
subtraction instruction (sub). Interesting manipulation happens when type-checking the
branching instruction (bnz), where the result of the comparison is used in establishing
the typing of the next program points. In the case where r1 is not zero, a newly intro-
duced constraint (t − 1 �= 0) would be used in establishing the typing annotation at the
target l of the branching, with the type variable at l now instantiated with (t− 1). In the
case where r1 is zero, a constraint (t − 1 = 0) would be used in establishing the typing
annotation at halt.

In essence, singleton types are used here to connect the clock, a type-level con-
cept, with values. More generally, the applications of singleton types have been detailed
both in the context of resource bounds certification [7] and for a typed assembly lan-
guage [28]. The work is applicable here with little adaptation. Since the use of singleton
types is orthogonal to our main contribution (certifying compilation for information-
flow analysis in certain practical settings), we omit its formal handling for a simpler
exposition, instead briefly pointing out the potential use when introducing the typing
rule of the branching instruction. In any case, the formal contents of this paper already
suffice in supporting certifying compilation from related source-level systems.

4 TAL+
C

Now we present a typed assembly language TAL+
C following the above idea. In partic-

ular, we present TAL+
C as an extension to TALC (the version in Figure 1 is used, where

features orthogonal to timing behaviors are omitted as explained in Section 2.2). For ease
of reading, we put the new additions in shaded boxes. By removing the shaded boxes,
we get exactly TALC .

Although we are focusing on termination channels for now, TAL+
C can also be used

to prevent illicit flow through other channels. The details will follow in later sections.

4.1 Type System

Following TALC , we assume security labels form a lattice L. We use θ to range over
elements of L. We use ⊥ and 
 as the bottom and top of the lattice, ∪ and ∩ as the
lattice join and meet operations, and ⊆ as the lattice ordering.
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(timing anno) t ::= n (natural numbers) | ∞

(pre-type) τ ::= int | 〈σ1, . . . , σn〉 | ∀[].〈κ; t〉Γ

(heap val) h ::= 〈w1, . . . , wn〉 | code[]〈κ; t〉Γ.I

Fig. 2. TAL+
C syntax

The syntax extension is given in Figure 2. Timing annotations t are either natural
numbers n or the special ∞. They accompany security contexts κ in code types and
code values.

Judgment Meaning

Γ1 ⊆ Γ2 Register file type Γ1 weakens Γ2

	 H : Ψ Heap H has type Ψ

Ψ 	 R : Γ Register file R has type Γ

Ψ 	 h : σ Heap value h has type σ

Ψ 	 w : σ Word value w has type σ

Ψ ; Γ 	 v : σ Small value v has type σ

Ψ ; Γ ; κ; t 	 I I is a valid sequence of instructions
Ψ ; Γ ; t 	 P P is a valid program

|comm| = n Command comm requires time n

θ 	 t t′
−→ t′′ Timing may change from t to t′′ after t′

θ 	 t Timing t is OK under security level θ

θ 	 t ∼ t′ t and t′ match under security level θ

Fig. 3. TAL+
C typing judgments

In Figure 3, typing judgments are extended for the timing annotations. Instruction
sequences and programs are further checked with respect to t. We introduce four new
judgment forms on timing annotations. By using different definitions of these four judg-
ment forms, we obtain type systems for closing different information channels. For
termination channels, the definitions are in Figure 4.

comm ∈ {add, ld, st, mov, bnz, raise, lower, jmp, halt}
|comm| = 1

⊥ 	 t t′
−→ t′′

t ≥ t′ + t′′

θ 	 t t′
−→ t′′

⊥ 	 t

t �= ∞
θ 	 t θ 	 t ∼ t′

Fig. 4. Timing rules on termination channels

|comm| is designed to track the progress of time during program execution. With re-
spect to termination, it suffices to consider any assembly command (or security
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operation) as consuming one unit of time. The time passage θ � t t′
−→ t′′ is irrele-

vant in low security contexts ⊥. In other security contexts, it requires that t be no less
than the sum of t′ and t′′; it is used in the typing rules to ensure that the timing tag is
monotonically decreasing with respect to the control flow. Here the addition + is ex-
tended straightforwardly to work with ∞. This judgment may seem unwieldy when ∞
is involved. Fortunately, a premise in a rule of well-typed programs, to be shown later,
will prevent ∞ from being used in high contexts for well-typed programs.

Two rules are used for establishing the judgment of valid timing θ � t. Any timing is
valid under a low security context ⊥. In contrast, under high security contexts, a timing
is valid if and only if it is finite. Finally, we define matching timing θ � t ∼ t′ to hold
trivially, since it does not play a role for termination channels. It is a placeholder for the
extensions in later sections.

m ≤ n

{r1 :σ1 . . . rm :σm}⊆{r1 :σ1 . . . rn :σn}

Ψ = {l1 : σ1, . . . ln : σn} Ψ 	 hi : σi

	 {l1 �→ h1, . . . , ln �→ hn} : Ψ

Γ = {r1 : σ1, . . . rn : σn} Ψ 	 wi : σi

Ψ 	 {r1 �→ w1, . . . , rn �→ wn} : Γ

Ψ 	 wi : σi

Ψ 	 〈w1, . . . , wn〉 : 〈σ1, . . . , σn〉θ

Ψ ; Γ ; κ; t 	 I

Ψ 	 code[]〈κ; t〉Γ.I : (∀[].〈κ; t〉 Γ )
θ

Ψ 	 i : intθ
Ψ(l) = σ

Ψ 	 l : σ

Γ (r) = σ

Ψ ; Γ 	 r : σ

Ψ 	 w : σ

Ψ ; Γ 	 w : σ

	 H : Ψ Ψ 	 R : Γ Ψ ; Γ ; κ; t 	 I SL(κ) 	 t

Ψ ; Γ ; t 	 (H,R, I)κ

Fig. 5. TAL+
C typing rules: non-instructions

The extended typing rules are in Figures 5 and 6. For understanding the timing re-
lated aspects, it suffices to focus on the shaded boxes. Interested readers are referred to
previous work [31] for details of the TALC type system.

In TAL+
C , only a few changes are made to TALC on the rules for non-instructions.

Notably, there is an extra invariant in the rule for checking programs, namely the timing
t must be valid with respect to the security level of the context κ. Here we use SL(κ)
to refer to the security label component of κ; SL(•) is defined to be ⊥. This timing
invariant ensures that ∞ cannot be used to type program points in high contexts, even
though the previously shown judgment of time passage is permissive in the case of ∞.
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SL(κ) = θ Γ (rs) = intθ1 Ψ ; Γ 	 v : intθ2

Ψ ; Γ{rd : intθ∪θ1∪θ2}; κ; t′ 	 I θ 	 t |add|−→ t′

Ψ ; Γ ; κ; t 	 add rd, rs, v; I

SL(κ) = θ Γ (rs) = 〈σ1, . . . , σn〉θ1
σi = τθ2

Ψ ; Γ{rd : τθ∪θ1∪θ2}; κ; t′ 	 I θ 	 t |ld|−→ t′

Ψ ; Γ ; κ; t 	 ld rd, rs(i); I

SL(κ) = θ Ψ ; Γ 	 v : τθ′

Ψ ; Γ{rd : τθ∪θ′}; κ; t′ 	 I θ 	 t |mov|−→ t′

Ψ ; Γ ; κ; t 	 mov rd, v; I

SL(κ) = θ Γ (r) = intθ1

Ψ ; Γ 	 v : (∀[].〈κ; t′〉Γ ′)
θ2

θ1 ∪ θ2 ⊆ θ Γ ′ ⊆ Γ Ψ ; Γ ; κ; t′′ 	 I

θ 	 t |bnz|−→ t′ θ 	 t |bnz|−→ t′′ θ 	 t′ ∼ t′′

Ψ ; Γ ; κ; t 	 bnz r, v; I

SL(κ) = θ Γ (rd) = 〈σ1, . . . , σn〉θ1
σi = τθ′

Γ (rs) = τθ2 θ ∪ θ1 ∪ θ2 ⊆ θ′ Ψ ; Γ ; κ; t′ 	 I

θ 	 t |st|−→ t′

Ψ ; Γ ; κ; t 	 st rd(i), rs; I

SL(κ) = θ κ′ = θ′ � w′ θ ⊆ θ′

Ψ 	 w′ : (∀[].〈κ; t1〉 Γ ′)
θ1

Ψ ; Γ ;κ′; t′ 	 I

θ 	 t |raise|−→ t′ θ′ 	 t′

Ψ ; Γ ; κ; t 	 raise κ′; I

κ = θ � w Ψ 	 w : (∀[].〈κ′; t′〉Γ ′)
θ1

θ1 ⊆ SL(κ′) Γ ′ ⊆ Γ

θ 	 t |lower|−→ t1 where t1 =

�
0 if SL(κ′) = ⊥
t′ otherwise

Ψ ; Γ ;κ; t 	 lower w

SL(κ) = θ Ψ ; Γ 	 v : (∀[].〈κ; t′〉 Γ ′)
θ1

θ1 ⊆ θ Γ ′ ⊆ Γ θ 	 t |jmp|−→ t′

Ψ ; Γ ; κ; t 	 jmp v

κ = • Γ (r1) = σ

Ψ ; Γ ; κ; t 	 halt [σ]

Fig. 6. TAL+
C typing rules: instructions
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The rules for add, ld, mov and st are all extended in the same way. An extra check
on the time passage is used to ensure that the timing annotations match the instructions.

Instruction bnz has two potential successors. Therefore, both branches must be
checked with respect to the time passage. The matching judgment trivially holds for
now. Note that if singleton types are used to allow terminating loops, an instantiation of
the timing annotation at the code label v would be required, and the comparison result
on the register r (whose type may be dependent on a value related to the timing anno-
tation) would be used together with existing constraints to establish the judgments on
time passage.

Upon entering a new security context marked by raise, we check that the new
timing t′ is valid under the new security level θ′. In addition, the time passage is also
checked; this is useful in a multi-level security lattice where the current security level θ
might not be ⊥. There is no need to check the timing t1 of the end point w′ of the new
context κ′ directly at this point.

For lower, we make sure that the time passage is valid under θ. In the case of going
to the lowest security level, this trivially holds. For jmp, we simply check the time
passage. Finally, nothing special is needed for halt. TALC allows halt only in the
empty security context. In such a context, all timing annotations are valid.

4.2 Soundness

The noninterference proof of TAL+
C extends that of TALC . We first define the equiva-

lence of two programs with respect to a security level θ. Intuitively, two programs (heaps
and register files) are equivalent if and only if they agree on low-security contents.

Definition 1 (Heap Equivalence). Ψ � H1 ≈θ H2 ⇐⇒ ∀ l ∈ dom(Ψ), if Ψ(l) = τθ′

and θ′ ⊆ θ then H1(l) = H2(l).

Definition 2 (Register File Equivalence). Γ � R1 ≈θ R2 ⇐⇒ ∀ r ∈ dom(Γ ), if
Γ (r) = τθ′ and θ′ ⊆ θ, then R1(r) = R2(r).

Definition 3 (Program Equivalence). Ψ ; Γ � P1 ≈θ P2 ⇐⇒ P1 = (H1, R1, I1)κ1 ,
P2 = (H2, R2, I2)κ2 , Ψ � H1 ≈θ H2, Γ � R1 ≈θ R2, and either:

1. κ1=κ2, SL(κ1) ⊆ θ, and I1 = I2, or
2. SL(κ1)⊆/ θ, SL(κ2)⊆/ θ.

The above relations are all reflexive, symmetrical, and transitive. Our noninterference
theorem relates the executions of two equivalent programs that both start in a low secu-
rity context (relative to the security level of concern). In TALC , we showed that if both
executions terminate, then the result programs are equivalent. The extra timing anno-
tations now guarantee that nontermination can only happen in a context at the lowest
security level.

The idea of the proof is intuitive. Given a security level of concern, the executions
are phased into “low steps” and “high steps.” It is easy to relate the two executions
under a low step, because they involve the same instructions. Under a high step, the two
executions are no longer in lock step. Recall that raise and lower mark the beginning



96 D. Yu

and end of a secured region. We relate the program states before the raise and after
the lower, circumventing directly relating two executions under high steps. In addition,
there would be no nontermination in the secured region.

We give the formal details in three lemmas and a noninterference theorem. Lemma 1
indicates that a security context in a high step can be changed only with raise or
lower. Lemma 2 says that a program in a high context will eventually reduce to a
step that discharges the current security context with a lower. Lemma 3 articulates
the lock step relation between two equivalent programs in a low step. Theorem 1 of
noninterference then follows: given two equivalent programs, if one terminates, then
the other terminates in a state equivalent to the first. As a corollary, if one does not
terminate, then the other does not either.

In the following, �−→∗ represents the reflexive and transitive closure of a single-step
relation �−→ of the operational semantics. Γ �θ Γ ′ means that Γ (r) = Γ ′(r) for every
r such that Γ ′(r) = τθ′ and θ′ ⊆ θ. We use Q in addition to P to denote programs
when comparing two executions. The proofs are given in the companion TR [29].

Lemma 1 (High Step). If P = (H, R, I)κ, SL(κ)⊆/ θ, Ψ ; Γ ; t � P , then either:

1. there exists Γ1, t1 and P1 = (H1, R1, I1)κ such that P �−→ P1, Ψ ; Γ1; t1 � P1,
Γ �θ Γ1, t1 < t, and Ψ ; Γ1 � P ≈θ P1, or

2. I is of the form (raise κ′; I ′) or (lower w).

Lemma 2 (Context Discharge). If P = (H, R, I)θ�w, θ⊆/ θ′, Ψ ; Γ ; t � P , then there

exists Γ ′,t′andP ′=(H ′, R′, lower w)θ�w such that P �−→∗P ′, Ψ ; Γ ′; t′ � P ′,Γ �θ′ Γ ′,
t′ ≤ t, and Ψ ; Γ ′ � P ≈θ′ P ′.

Lemma 3 (Low Step). If P = (H, R, I)κ, SL(κ) ⊆ θ, Ψ ; Γ ; t � P , Ψ ; Γ ; t � Q,
Ψ ; Γ � P ≈θ Q, P �−→ P1, Q �−→ Q1, then exists Γ1 and t1 such that Ψ ; Γ1; t1 � P1,

Ψ ; Γ1; t1 � Q1 and Ψ ; Γ1 � P1 ≈θ Q1.

Theorem 1 (Noninterference). If P=(H, R, I)κ, SL(κ)⊆ θ, Ψ ; Γ ; t �P , Ψ ; Γ ; t �Q,
Ψ ; Γ � P ≈θ Q, and P �−→∗ (Hp, Rp, halt [σp])•, then exists Hq, Rq , σq and
Γ ′ such that Q �−→∗ (Hq, Rq, halt [σq ])•, and Ψ ; Γ ′ � (Hp, Rp, halt [σp])• ≈θ

(Hq, Rq, halt [σq ])•.

4.3 Certifying Compilation

We now outline a translation that preserves security types from a minimal source lan-
guage. The complete formal translation is given in the companion TR.

This source language is an imperative language with two security levels (low and
high). An expression (E) is either a constant (i), a variable (V) or an addition (E1 + E2).
A command (C) is either a no-op (skip), an assignment (V := E), a sequence (C1; C2), a
conditional (if E then C1 else C2), or a while-loop (while E do C). The type system
maintains an environment (Φ) specifying the security levels of variables. For example,
the following typing rule says that a conditional (if E then C1 else C2) is well-typed
with respect to an environment (Φ) and a PC type (pc) if, under the same environment
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(Φ), the guard (E) and the branches (C1 and C2) are all well-typed with respect to the PC
type (pc).

Φ � E : pc Φ; [pc] � C1 Φ; [pc] � C2

Φ; [pc] � if E then C1 else C2

The low-high security hierarchy of this language defines a simple lattice consisting
of two elements: ⊥ and 
. We use |t| to denote the translation of source type t in
TAL+

C : |low| ≡ int⊥ and |high| ≡ int�.
We assume that the program translation starts in a heap H0 and a heap type Ψ0

which satisfy � H0 : Ψ0 and contain entries for all the variables of the source program.
For any source variable v that Φ(v) = t, there exists a location lv in the heap such that
Ψ(lv) = 〈|t|〉⊥. We use Φ ∼ Ψ to refer to this correspondence.

We define expression translation of the form |E| = 	ι ‖ r; t. The instruction vector 	ι
computes the value of E, and the result is put in the register r. The time needed to com-
plete 	ι is t. For example, the translation rule for the addition expression is as follows:

[TREadd]

|E| = 	ι ‖ r; t |E′| = 	ι′ ‖ r′; t′

	ι′ does not use r t′′ = t + t′ + |add|

|E + E′| = 	ι; 	ι′; add r′′, r, r′ ‖ r′′; t′′

We define command translation based on the structure of the typing derivation of
the source program. Which translation rule to apply is determined by the last typing
rule used to check the source command. We use TD to denote (possibly multiple) typing
derivations. In particular, the command translation has the form:

∣
∣
∣
∣∣

TD

[pc] � C

∣
∣
∣
∣∣

⎡

⎣
Ψ
H

lstart; lend :t; κ

⎤

⎦ =

⎡

⎣
Ψ ′

H ′

t′

⎤

⎦.

The 6 arguments are: a code heap type Ψ , a code heap H , starting and ending labels
lstart and lend for the computation of C, the timing annotation t of the code at the
ending label lend, and a security context κ. It generates the extended code heap type Ψ ′

and code heap H ′, and produces the timing annotation for the starting label lstart.
The command translation maintains the following invariants:

– H is well-typed under Ψ ; it contains entries for all source variables and procedures;
– Ψ and H contain the continuation code labeled lend;
– The code at lend has the timing behavior t;
– The new code labeled lstart will be put into Ψ ′ and H ′;
– The produced annotation t′ will reflect the timing behavior of the code at lstart;
– The security context κ must match pc.

The rule for translating a conditional is given below. Suppose addition + is extended in
the expected way to work with ∞. This rule translates the guard expression E and the
two branches C1 and C2, obtaining the timing information t0, t1 and t2. It then pieces
together the translation results in assembly code using a code block l. The final timing
annotation obtained for l takes into account the timing of the “longer” branch.

The companion TR contains the formal translation details and correctness lemmas.
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|E| = �ι ‖ r; t0 l1, l2 are fresh t′ = t0+max{(t1+|bnz|), (t2+|bnz|+|jmp|)}
∣
∣
∣
∣

TD1

Φ; [pc] � C1

∣
∣
∣
∣

⎡

⎣
Ψ
H

l1; l′ :t; κ

⎤

⎦ =

⎡

⎣
Ψ1
H1

t1

⎤

⎦
∣
∣
∣
∣

TD2

Φ; [pc] � C2

∣
∣
∣
∣

⎡

⎣
Ψ1
H1

l2; l′ :t; κ

⎤

⎦ =

⎡

⎣
Ψ2
H2

t2

⎤

⎦

∣
∣
∣
∣
∣
∣

Φ � E : pc
TD1

Φ; [pc] � C1

TD2

Φ; [pc] � C2

Φ; [pc] � if E then C1 else C2

∣
∣
∣
∣
∣
∣

⎡

⎣
Ψ
H

l; l′ :t; κ

⎤

⎦

=

⎡

⎢
⎣

Ψ2{l : (∀[].〈κ; t′〉 {})⊥}
H2{l �→ code[]〈κ; t′〉{}.�ι; bnz r, l1; jmp l2}
t′

⎤

⎥
⎦

5 Timing Channels

In this section, we extend the machine model to explicitly specify execution time t and
output actions output n [1], allowing the observation of more exact timing information
of the program execution.

On top of TALC ’s small-step state transition in the form of P �−→ P ′, we further
specify the action sequences produced along with the program execution in the form
of P

as�−→ P ′. This means that P steps to P ′ producing observable action sequence as,
where as is a mixed sequence of output numbers n and execution times t.

(Action Sequences) as ::= ε | t as | n as

In the operational semantics, the value of as would be determined by the current in-
struction. Consider the following sample case:

(H, R, mov rd, w; I)κ
tmovi�−→ (H, R{rd �→ w}, I)κ

This is the operational semantics case of executing a mov instruction on an immediate
operand w. Besides the regular machine state update, the above also specifies the time
tmovi needed for completing this instruction. We omit the straightforward definition of
the operational semantics, and use tcomm to represent the execution time of instruc-
tion comm. Following previous source-level techniques [1], we assume that a primitive
operation (i.e., an assembly instruction) should execute in constant time, regardless of
the values given as arguments. The reflexive transitive closure of the step transition is
extended accordingly.

This extended machine model exposes information leak through the timing channels.
Take the following source-level program as an example:

if h then {time-consuming operation} else skip;
output n

If h �= 0, the program produces observable action sequence tlong n, where tlong is
the execution time of the “time-consuming operation.” If h = 0, the program produces
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tskip n, where tskip is the execution time of the skip command. Obviously, this presents
information leak, even if no low data is updated in the program.

The approach of the previous sections for closing termination channels can be
extended to account for such information leak through timing channels. Instead of
recording an upper bound of execution steps till the end of a high region, we use tim-
ing annotations to record the exact observable action sequence as. Based on the same
reasoning for disallowing low updates in a high region, we also disallow output actions
in a high region. In essence, the extended timing annotations reflect execution time. In
such an extended system, the typing rule for branching should check that the timing
annotations of the two branches match.

comm is any instruction

|comm| = tcomm ⊥ 	 t t′
−→ t′′

t = t′ + t′′

θ 	 t t′
−→ t′′

⊥ 	 t

t �= ∞
θ 	 t ⊥ 	 t ∼ t′

t = t′

θ 	 t ∼ t′

Fig. 7. Timing rules on timing channels

The exact adaptation to TAL+
C is given in Figure 7. By giving the timing judgments

different definitions, we obtain a type system for closing timing channels, and the typ-
ing rules of Figures 5 and 6 remain the same. For time passage θ � t t′

−→ t′′ in a high
context, t must reflect the sum of t′ and t′′ exactly. ∞ is still only allowed in low con-
texts. Finally, the matching of timing θ � t ∼ t′ requires the equality of t and t′ unless
in a low context; recall that this is used when type-checking a branching instruction to
make sure that the branches exhibit the same timing behavior in high contexts.

The correctness of this approach is intuitive. At the beginning of a high branch, based
on the extended timing annotations, the branches will meet at the end of the high re-
gion in the same amount of time. In addition, there are no outputs or updates to low
variables in a high region. On the technical side, the noninterference proof follows that
of Section 4, with minor difference on how to perform the induction. The proof for the
termination-based system sometimes (Lemma 2 in particular) conducts induction di-
rectly on the timing annotation, which happens to reflect an upper bound of the number
of operation steps. For this timing-based system, the timing annotation is different. By
introducing a notion of “operation steps” and conducting induction on it, the proof goes
through in the same way as before.

In terms of expressiveness, this system has decidable typing and is more restric-
tive than previous work by Agat [1] where type checking is undecidable. In particular,
Agat’s type system allows some low updates in high branches, such as the following:

if h then l := 1 else l := 1

In general, Agat’s type system allows a high conditional as long as the two branches
have the same “externally observable behavior.” This notion is supported with a typ-
ing rule based on Γ -bisimulation, which is undecidable. For practical use, Agat uses
“padding” commands to equalize the execution times of the branches. For example, a
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padding command for h := 1 would be a special skip-command SkipAsn h 1, which
costs the same time but does not perform actual state update. Using these padding com-
mands, Agat proposes a cross-copying transformation that generates Γ -bisimular con-
ditionals. In this transformation, Γ -bisimulation is used conservatively—a command is
Γ -bisimular to itself and a high command is also Γ -bisimular to its padding counterpart.

This transformation does not accept programs which update low variables in high
branches. Therefore, the above example is no longer considered valid. In the companion
TR, we show that TAL+

C is expressive enough to support all such transformed programs:
if a program P is accepted by the cross-copying transformation and transformed into P′,
then a certifying compilation scheme will translate P′ into well-typed TAL+

C code.

6 Multi-threading and Internal Timing

6.1 Possibilistic Noninterference

To consider the problem of information flow in a multi-threaded setting, we need to
extend the notion of noninterference to account for the nondeterministic execution of
threads. A straightforward generalization is to define the observable behavior of a pro-
gram as the set of possible execution results.

The interaction between threads can be exploited as a channel of information flow.
Even if an attacker cannot observe the external timing behaviors of a program, some
internal timing behaviors may still result in illicit information flow, e.g., by affecting
the execution order of interacting threads. An example is given in the companion TR.

Smith and Volpano [23] proposed a source-level information-flow type system for
multi-threaded programs, and showed that it guarantees possibilistic noninterference in
the presence of nondeterministic thread scheduling. In this type system, every thread is
checked separately to satisfy two requirements in addition to those enforced for nonin-
terference in the sequential setting:

1. The guard of a while-loop must have type low;
2. The while-loop itself must also have type low.

It is curious that these conditions happen to be the same as those for closing termi-
nation channels. Essentially, loops can only happen under low PCs. This is convenient,
because we can now reused the techniques described in Section 3. In particular, we
enforce the absence of backward jumps in high regions with monotonically decreasing
timing annotations. The introduction of multi-threading does not affect the treatment
described earlier, because the type checking is carried out separately for each thread.

6.2 Probabilistic Noninterference

The generalization of noninterference in Section 6.1 considers the set of possible execu-
tion results. This is sometimes not strong enough to prevent certain exploits in practice.
For example, the probability distribution of the possible results may serve as a channel
of information flow. An example is given in the companion TR.



More Typed Assembly Languages for Confidentiality 101

Such probabilistic attacks exploit the internal timing behaviors of programs. There-
fore, it is natural to adapt the techniques for closing timing channels in Section 5 from
addressing external timing to addressing internal timing. More specifically, instead of
reflecting the external execution time of the program instructions, we let the timing an-
notations reflect the number of potential context switches—the “internal time” observ-
able by threads. This internal time advances by one unit whenever there is a potential
context switch. The analysis of Section 5 would be adapted accordingly, enforcing:

1. To disallow low assignments in high regions;
2. To disallow while-loops in high regions;
3. To allow a high conditional only if the two branches have matching internal timing.

This approach is inspired by Sabelfeld and Sands [20], who obtained the desired prob-
abilistic noninterference result for a source language by connecting context switches
with the probability distribution of program execution paths in the context of arbitrary
schedulers. Similar to Agat’s transformation system [1], the system of Sabelfeld and
Sands uses “padding” instructions to equalize program branches. Focusing on inter-
nal timing, their system uses skip instructions and dummy forks instead of the “skip-
commands” (e.g., SkipAsn) used by Agat. Transformed programs of their system will
have the same number of atomic commands in high branches. It is natural for TAL+

C to
support the certifying compilation of such transformed programs, as long as one takes
care to implement atomic commands, skip instructions, and dummy forks correctly.

In related work, Volpano and Smith [27] proposed a system that requires high con-
ditionals to be protected so that the branches execute atomically. This can be viewed
as a special instance of the above idea, because the atomic branches exhibit the same
internal timing behavior (i.e., no context switch).

More recently, Smith [22] proposed a less restrictive system that allows a high vari-
able to appear in the guard of a while-loop as long as no assignment to a low variable
follows. The key idea is that a command may be given a type of the form t1 cmd t2,
meaning that the command assigns only to variables of level t1 or higher, and has
running time that depends only on variables of level t2 or lower. It is conceivable to
adapted this idea for assembly code, since both security levels and running times have
clear counterparts in TAL+

C . We leave the details of this as future work.
We have elided the support for thread synchronization in this paper. The secure

support for semaphore-based synchronization at a source level has been studied by
Sabelfeld [18], where semaphore variables are restricted to have type low.

7 Related and Future Work

TAL+
C is motivated by the need of certifying compilation for information-flow secu-

rity [19,10,21]. On the technical aspects, TAL+
C is inspired mainly by two lines of work:

language-based information-flow security [19] and typed assembly languages [13].
From the perspective of information-flow security, we are inspired by previous work

on covert channels and concurrency in high-level languages. Volpano and Smith [25]
studied termination-sensitive noninterference, and proposed a type system that closes
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termination channels by disallowing loops from occurring at sensitive program points.
Agat [1] used program transformation to prevent timing leaks, where the execution
times of high branches are equalized by cross-padding with appropriate dummy in-
structions. Smith and Volpano [23] established possibilistic noninterference for a multi-
threaded language by, again, disallowing loops from occurring at sensitive program
points. Sabelfeld and Sands [20] proved a probabilistic noninterference result with re-
spect to a scheduler-independent security condition. These systems are closely related
to our solutions and have been discussed in the main body of this paper to illustrate the
expressiveness of TAL+

C .
From the perspective of typed assembly languages, there are some recent efforts

toward enforcing information-flow security directly at the target-code level
[33,9,4,12,31,5]. However, relatively little is done on addressing covert channels or con-
currency. Kobayashi and Shirane [9] proposed a JVML-based type system for timing-
sensitive noninterference. The system relies on the computation of control dependency
for identifying sensitive regions, and closes timing channels in sequential code by in-
serting a delay linear with respect to the normal execution time. Hedin and Sands [8]
proposed another JVML-based type system parameterized over an abstract timing
model characterizing execution times of instructions and an algorithm enforcing low-
observable equivalence. When given a proper timing model and a corresponding algo-
rithm, the system guarantees timing-sensitive noninterference in sequential code. The
system relies on the computation of the least merge points of branch instructions to
address the lack of program structures in low-level code. Barth et al. [6] proposed a
framework for enforcing secure information flow for multi-threaded low-level code.
Special primitives for interacting with the scheduler are introduced during compilation
to prevent internal timing leaks. The system assumes that the low-level code comes with
a security environment produced by the compiler for describing the security levels of
program points.

In general, the lack of a suitable target for certifying compilation, especially one that
handles both covert channels and concurrency uniformly, presents difficulty when ap-
plying related solutions to the real world, where covert channels and concurrency are
easily exploitable. In this paper, we introduced timing extensions to TALC applicable
under various security assumptions. Only simple arithmetic manipulations on the timing
annotations are required during type checking. Although the annotations are produced
by a compiler, they are verified separately by the TAL+

C type system, thus bad annota-
tions will be caught. As a result, only the type checker is in the trusted computing base,
and the system correctness will not be affected by (a buggy implementation of) the com-
putation on dependence regions, least merge points, or security environments. Using the
generic TAL+

C framework, it is promising to build a common typed assembly language
for “customized” noninterference (termination-sensitive, timing-sensitive, possibilistic,
probabilistic, and plain). In addition, it is interesting to note that timing extensions of
typed assembly languages also have applications beyond noninterference [16,24].

There are nonetheless still many aspects that deserve further research, especially on
the practical implementation of the theoretical ideas. In particular, the interaction be-
tween security-type preserving compilation and optimization remains an open question.
In this paper, we provided a compilation scheme that preserves security types, where
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we did not perform any optimizations. Conventional compilers perform sophisticated
optimizations to produce efficient code. Some of these optimizations may invalidate
the security guarantees established for source programs. A simple example is that an
optimization might change the execution time of program branches, affecting timing-
sensitive noninterference. Whereas there is likely a trade-off between security and effi-
ciency, optimizations that preserve types and security are worth investigating.

There are also topics which have been studied for high-level languages, but not for
low-level code. Some examples include related security policies [14,32,11,17], practical
implementation and type inference [15,2], and abstraction-violating attacks [2].

8 Conclusion

We have presented a generic type system TAL+
C for information-flow security in assem-

bly code under various practical settings. Since some useful abstractions (e.g., program
structures) are missing from assembly code, TAL+

C introduces various timing anno-
tations to guide the information-flow analysis. When equipped with different timing
annotations, TAL+

C can guarantee termination-sensitive, timing-sensitive, possibilistic
and probabilistic noninterference. Besides proving the soundness of the type system,
we also provide a certifying compilation scheme targeting TAL+

C . We consider this as a
useful step toward the practical use of security-type systems in assembly code.
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Abstract. A natural way to generate test cases for a Prolog program is to view 
the call patterns of the procedures in the program as an implicit representation 
of the control flow graph (CFG) of the program. This paper explores the idea by 
proposing a call patterns-based test case generation method, where a set of call 
patterns or computed answers is used to describe the paths in a CFG. With a 
constraint-based call patterns semantics, this method is formalized. Through the 
use of a proper constraints solver, we can generate test cases automatically from 
the sets of constraints. This method can be based on any approximation of the 
call patterns semantics. So compared with traditional CFG-based test case gen-
eration, the method is more flexible and can be easily adapted to meet the re-
quirements of a tester expressed by the approximation of the call patterns se-
mantics we use. 

1   Introduction 

Test case generation is a key issue in software testing for which mainly two ap-
proaches have been proposed in literature. With specification-based testing (black-
box testing), test cases are generated from the specification of a program; and with 
implementation-based testing (white-box testing), test cases are produced by consid-
ering the code of a program. This paper is concerned with the latter.  

In the testing of Prolog programs, both approaches have been applied. [12,14] stud-
ied category partitioning method (CPM) testing [3,18], where test cases for a Prolog 
procedure are generated from a set of user defined test frames, and [1,2,17] studied 
implementation-based testing for logic or Prolog programs, where test cases are gen-
erated by making use of a structure analysis or control flow based path analysis.  

A call pattern of a goal in a program P is a procedure call that is selected during 
the SLD-resolution or execution of the goal in P. By definition the call patterns of a 
goal describe the control transfer in the execution of the goal. If we express the con-
trol transfer with a CFG, a subset of the set of call patterns of a goal in a program P 
will denote one or more paths in the CFG of P. In some sense the set of call patterns 
of a procedure call can be viewed as an implicit representation of the CFG for the 
procedure. Therefore it’s very natural to use call patterns as the base for generating 
test cases that are supposed to cover certain paths in the CFG of a Prolog program. To 
what we have known no work has been done on this issue. 
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This paper fills the gap by proposing a test case generation method based on a con-
straint-based call patterns semantics (cp semantics for short) of Prolog programs. A 
consistent set of constraints, denoting a set of call patterns or computed answers of a 
procedure call, is used to describe the path(s) in a CFG of a program. Through the use 
of a proper constraints solver, we can generate a test case from a consistent set of 
constraints. Moreover we can base this method on the approximation of the cp seman-
tics used in this paper, which provides a way to meet the particular requirement of a 
tester and makes the proposed method very flexible. 

The remainder of this paper is organized as follows. Section 2 introduces the con-
straint-based cp semantics we use in this paper. Section 3 describes the test case gen-
eration method. Section 4 presents an approximation of the cp semantics and gives an 
example to illustrate the application of the proposed method. Related work is pre-
sented in section 5, with the emphasis on the relationship between our method and 
CFG-based testing. Finally we conclude in section 6 by discussing the future work. 

2   A Constraint-Based Call Patterns Semantics for Prolog 

In this section we introduce a simplified version of the Spoto’s call patterns semantics 
proposed in [20] by assuming that the Prolog programs under consideration do not 
contain cut operators. This semantics will serve as the base for our test case genera-
tion method. We note that the simplification of the original cp semantics has nothing 
to do with the applicability of our method, and is only for the convenience of presen-
tation.  

The reason for us to choose the Spoto’s cp semantics is two-fold. Firstly, the se-
mantics is goal-independent, which means that the denotation, i.e. the set of call pat-
terns of any goal in a program can be achieved from the semantics of the program; in 
other words, the semantics of a program contains complete information that is neces-
sary to describe the control flow transfer that may arise in any execution of the  
program. Secondly, the semantics uses as semantic domain the set of constraints  
sequences, which makes it possible for us to use a constraints solver to derive test 
cases for a procedure. 

We assume the familiarity with the basic algebraic structures and Prolog language. 
The basic notations are used in the usual way. A sequence is an ordered collection of 
elements possibly with repetitions. The set of non-empty sequences of elements of E 
is denoted by Seq+(E). The symbol :: represents sequence concatenation. A sequence 
is denoted by a variable. 

Syntax of Prolog 
To simplify the design of semantic operators, Spoto’s cp semantics uses an abstract 
syntax for Prolog programs. The basic idea is to look at Prolog as an instance of the 
general CLP scheme [13]. Since atom p(X,Y) can be represented as 

∃Z(Z=(X,Y)∧p(Z)), without loss of generality all the predicates in Prolog programs 

are assumed to be unary. The clause has the form p(X):- G1 or…or Gn with n 1, 

where G1,…,Gn are goals defined by the grammar  

G ::= c | p(X) | exists X. G | G and G 
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where c is a constraint, and X is a program variable. The expression p(X), where p is 
a predicate symbol, is called a procedure call. A goal is called divergent if it contains 
a procedure call. A goal which is not divergent is said to be convergent. The con-
straint domain from which c is taken is defined as a lattice <B, ≤, ∨, ∧, true, false>. It 
is assumed that B contains the element δX,Z for each pair of variables X and Z, which 
represents the constraint identifying the variables X and Z. Moreover, there is a fam-
ily of monotonic operators ∃X on the set of constraints, representing the restriction of 
a constraint obtained by hiding all the information related to the variable X. Operator 
∃X and δX,Z provide a simple way to avoid renaming problems. For example, instead 
of explicitly renaming variable X in expression T to a new variable α, we can use the 
expression ∃X(δX,α∧T) to model the effect. In the following sections the constraints in 
B are called basic constraints. 

Standard Prolog program can be translated in a straightforward way. For example, 
the following Prolog program P':  

{ p(X):-q(X), r(X). p(X):-X=4. q(X):-X=5. r(X):- X=5, q(X).}  

can be translated into P: 

{ p(X):- q(X) and r(X) or X=4. q(X):- X=5. r(X):- X=5 and q(X).}. 

Semantic domain 
The main idea of Spoto’s cp semantics is to make use of constraints to model the 
control of Prolog, as well as the computed answer substitutions (computed answers 
for short) and partially computed answer substitutions (partial answers for short) pro-
duced in the resolution of a goal. Basic constraints are adequate for the description of 
the partial answers associated with call patterns. For example, the substitution (X/2, 
Y/3) can simply be described as basic constraint (X=2∧Y=3). For the purpose of 
modeling control of Prolog the concept of observability constraints is introduced. 

Definition 2.1. The set O of observability constraints is defined as the minimal set 
containing B such that if S⊆O then S and S belong to O and such that if o∈O then 
its negation −o∈O. We will often write o1  . . . on for {o1,...,on} and o1  . . . on 
for {o1,...,on}. Moreover trueO and falseO are shorthands for ∅ and ∅, respec-
tively.  

Definition 2.2. The usual notion of satisfiability is defined on basic constraints. A 
basic constraint b is satisfiable in a constraint store S and in a structure interpretation 
I, if and only if there exists an environment ρ such that ρ ∧( )S bI . Satisfiability for 

observability constraints is different in that different environments can be used in 
different proofs. 

1) o∈B is satisfiable in S and I, if and only if o is satisfiable in S and I as a basic 
constraint; 
2)o1 o2 is satisfiable in S and I if and only if both o1 and o2 are satisfiable in S and I; 
3) o1 o2 is satisfiable in S and I, if and only if o1 or o2 is satisfiable in S and I; 
4) −o is satisfiable in S and I, if and only if o is not satisfiable in S and I. 
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An observability constraint can be viewed as a set of basic constraints. The satisfi-
ability of an observability constraint models the satisfiability of the individual com-
ponent basic constraints. Let o=(X=4) (X=2), S=∅, then o is satisfiable in S because 
both (X=4) and (X=2) are satisfiable in S. It’s obvious that under the satisfiability 
definition of definition 2.2,  is different from the greatest lower bound operator ∧ 
and  is different from least upper bound operator ∨. 

Note that observability constraint trueO is satisfiable in a constraint store S and in a 
structure interpretation I if and only if S is satisfiable in I, and falseO is not satisfiable 
in any given constraint store and structure interpretation. In this paper we assume that 
the satisfiability of a basic or observability constraint is decidable. For simplicity, 
we’ll not explicitly mention the structure interpretation when we state the satisfiability 
of a basic or observability constraint in the following sections. 

A unary operator ∝obs is defined on B which converts a basic constraint to an ob-
servability constraint. For simplicity we write b for b∝obs when it does not make 
confusions. A bullet operator “•” is used to instantiate an observability constraint with 
a basic constraint and is defined as:  
b′•(b∝obs)=(b′∧b)∝obs; b′• S= {b′• o|o∈S}; b′• S= {b′•o|o∈S}; b′•(−o)=−(b′•o). 
The operation ∃X(o) is used for changing the variable X in o to a bounded variable 
and is defined as  

∃X(b∝obs)= (∃X(b))∝obs; ∃X( S)= {∃X(o)|o∈S};  
∃X( S)= {∃X(o)|o∈S}; ∃X(−o)= −(∃X(o)). 

Roughly, basic constraints are used to describe computed answers and partial an-
swers; observability constraints are used to tell how a call pattern or computed answer 
obtained at a certain step in the resolution of a goal is affected by divergent computa-
tion, and therefore it can be used to determine whether the call pattern or computed 
answer can actually be produced. 

Based on the above definition the semantic domain Seq+(CP) for computed answer 
semantics is defined as CP=Cc∪Cp∪Cd, where Cc is the set of convergent constraints 
and Cc = {o+c b | o∈O, b∈B}, Cp is the set of call patterns constraints and Cp ={o+pb, 
p | o∈O, b∈B and p is a predicate}, Cd is the set of divergent constraints and Cd = 
{o+db | o∈O, b∈B}. A convergent constraint (o+cb) represents a computed answer 
described by b such that it can actually be produced only if o is satisfiable in a given 
constraint store. A call patterns constraint (o+pb, p) denotes a call pattern for p, where 
b describes the partial answer obtained when the call pattern arises and o describes the 
conditions for the call pattern to arise. A divergent constraint (o+db) denotes a diver-
gent computation, where b describes the substitution when the divergence happens 
and o describes the conditions for the divergence to happen. The order of the con-
straints in a constraint sequence s∈Seq+(CP) will reflect the order in which different 
constraints are obtained in the resolution of a goal.  

Example 2.3. Given a Prolog program P: {p(X):-(X=4 and p(X)) or q(X). q(X):- X=3 
or X=5.}, the resolution from the goal p(X) will produce a constraints sequence: 

s=(trueO+ptrue, p) :: (trueO+pX=4, p) :: (trueO+dX=4) :: (–(X=4)+ptrue, q) 
:: (–(X=4)+cX=3) :: (–(X=4)+cX=5). 
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This sequence suggests that the resolution diverges after producing two call patterns 
(i.e. p(X) and p(4)) for p. By (trueO+dX=4) it is meant that the computation diverges 
when (X=4) is satisfiable. The observability constraint –(X=4) suggests that the com-
puted answer X/3 and X/5 can be obtained only when (X=4) is not satisfied, otherwise 
the computation from p(4) will encounter an infinite resolution path which makes the 
above two computed answers not achievable. 

Definition 2.4. The following maps describe the properties of a sequence of con-
straints.  

δ(s) = {o b∝obs | o+db∈s};  ξ(s1, s2)= {o (b•δ(s2)) | o+cb∈s1}. 

Intuitively, if δ(s) is satisfiable divergence happens in s. ξ(s1, s2) denotes the condi-
tions for s1 to have a solution which makes s2 diverge. 

Call patterns semantics 
Definition 2.5. A call patterns interpretation I is a map that associates to any predicate 
symbol p in a program an element I(p) of Seq+(CP) which models the behavior, i.e. 
the collection of call patterns achieved in all possible resolutions of procedure call 
p(α) in the program, where α is a distinguished variable that is not allowed in the 
syntax of the clauses. 

The immediate consequence operator TP of program P is defined as 

TP (I)(p)=∃Y (δ Y,α (φ p(JP G1 I ⊕…⊕JP Gn I)), 

where p(Y):-G1 or…or Gn is the definition of p in P, I is a call patterns interpretation 
representing the environment, i.e. the denotation of program P computed so far, and 
JP G I is the denotation of goal G computed from environment I and is defined as: 

JP c I=trueO+cc; JP p(X) I=I(p)[X/α];  

JP exists X.G I=∃X(JP G I); JP G1 and G2 I=JP G1 I ⊗JP G2 I;

 

The operators present in the above definition are defined as follows. 

Definition 2.6 
(1) Given b'∈B, the instantialization of a sequence s with a basic constraint b' is ac-
complished by operation b' s and is defined as b' (s1:: s2)= b' s1:: b' s2, where  
b' (o+pb, p)= (b'•o+p b'∧b, p); b' (o+cb)= b'•o+c b'∧b; b' (o+db)= b'•o+d b'∧b. 
(2) Operation ∃X(s) makes variable X in s a bounded variable and is defined as 
∃X(s1:: s2)= ∃X(s1):: ∃X(s2), where ∃X(o+pb, p)= (∃X(o)+p ∃X(b), p);  
∃X (o+cb)= ∃X(o)+c ∃X(b); ∃X(o+db)= ∃X(o)+d ∃X(b).  
(3) Given o'∈O, the instantialization of a sequence s with an observability constraint 
o' is accomplished by operation o' s and is defined as o'  (s1:: s2)= o' s1:: o' s2, 
where o'  (o+pb, p)= (o' o+p b, p); o'  (o+cb)= o' o+c b; o'  (o+db)= o' o+db. 
(4) Product operator ⊗ is defined as (s1:: s2) ⊗s=s1⊗s::−ξ(s1,s) (s2 ⊗s), where 
(o+pb, p) ⊗s=(o+pb, p); (o+cb) ⊗s = o (b s); (o+db) ⊗s=o+db. 
(5) Sum operator ⊕ is defined as s1⊕s2 =s1::−δ(s1)  s2.  
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(6) Expansion operator φ p(s) and substitution operator s[X/α] are defined as  
φ p(s)= (trueO+ptrue, p):: s and s[X/α]=∃α(δX,α s), respectively.  

On a properly defined ordering on the set of call patterns interpretations, the cp se-
mantics of a program P can be defined as the least fixpoint of TP. The minimal inter-
pretation I0 is such that: I0(p)= (trueO+ptrue, p)::(trueO+dtrue) for every predicate p. 
The least fixpoint of TP is defined as: lfp(TP)=lubi≥0((TP)i(I0)). 

Definition 2.7. The cp semantics FP of a program P is defined as the least fixpoint of 

TP: FP =lfp(TP). 

3   Test Case Generation 

Since call patterns are denoted by call patterns constraints in the semantics in section 
2, a set of call patterns constraints possibly describes one or more control transfer 
paths in a CFG. In this section, we’ll explore the idea by studying the consistency 
among call patterns constraints, divergent constraints and convergent constraints. Two 
types of consistent constraints subsets, maximum consistent and divergent subset and 
maximum consistent and convergent subset, will be proposed to describe the paths in 
a CFG, from which test cases for a procedure could be generated by a constraints 
solver. 

Definition 3.1. A constraint set C⊆Cc∪Cp∪Cd is called consistent if there exists a 
constraint store S and a structure interpretation I such that ∧{b' | (o'+pb', q)∈C 
∨(o'+db')∈C ∨(o'+cb')∈C} is satisfiable in S and I and for each (o+pb, p), (o+db) and 
(o+cb) of C o is satisfiable in S∪{b' | (o'+pb', q)∈C ∨(o'+db')∈C ∨(o'+cb')∈C} and I. 

Since by definition the consistency of a set of call patterns, divergent and convergent 
constraints is deduced to the satisfiability of basic and observability constraints, it’s 
possible to decide the consistency with a constraints solver. For example, the call 
patterns constraints set {(trueO+pX=4, r), (–(X=4)+pX=5, r)} is not consistent because 
X=4∧X=5 is not satisfiable under the same constraint store and structure interpreta-
tion. The constraints solver will be discussed later in this section. 

Definition 3.2. Let C⊆Cc∪Cp∪Cd be a set of constraints, C' is called a Maximum 
Consistent Subset (MCS) of C if C' is consistent and for each element r∈C–C', {r}∪C' 
is not consistent. 

Let C be a set of call patterns, divergent and convergent constraints, the following 
procedure MCS_finder(C, r) computes a MCS of C that contains r. 

Set MCS_finder(C, r)  
{ Cr :={r};  

For each element s of C,  

if {s}∪Cr is consistent, then Cr:= {s}∪Cr ;  

Return(Cr); } 
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Note that there may exist more than one MCS of a set C that contains r. Which 
MCS is produced by procedure MCS_finder depends on the order in which the ele-
ments of C are considered.  

For example, let C={(trueO+ptrue, p), (trueO+ptrue, q), (trueO+pX=4, r), 
trueO+dX=4, (–(X=4)+pX=5, r), (–(X=4)+pX=5, q), –(X=4)+dX=5}, we compute the 
MCS of C containing (trueO+ptrue, p). If we consider (trueO+pX=4, r) and 
(trueO+dX=4) before (–(X=4)+pX=5, r), (–(X=4)+pX=5, q) and (–(X=4)+dX=5), the 
resultant MCS is  

C1={(trueO+ptrue, p), (trueO+ptrue, q), (trueO+pX=4, r), trueO+dX=4}; 

Otherwise the resultant MCS will be  

C2={(trueO+ptrue, p), (trueO+ptrue, q), (–(X=4)+pX=5, r), 
 (–(X=4)+pX=5, q), –(X=4)+dX=5}. 

In order to create test cases on which the executions of a procedure diverge we 
consider the divergent and call patterns constraints in the cp semantics of a program.  

Definition 3.3. Let C ⊆ Cd∪Cp be a set of divergent and call patterns constraints, C' is 

called a Maximum Consistent and Divergent Subset (MCDS) of C if C' is a MCS of C 

and C' contains at least one divergent constraint. 

Definition 3.4. Let C⊆ Cd∪Cp be a set of divergent and call patterns constraints, and 
∑={C1,…,Cm} be a set of MCDSs of C, we say ∑ covers C if for each divergent 
constraint r∈C there exists Ci∈∑ such that r∈Ci. 
In the above example, both C1 and C2 are MCDSs of C, and {C1, C2} obviously cov-
ers C. Next we present an algorithm CoveringSet-1 for obtaining a set of MCDSs of C 
that covers C. 

Input: a set C⊆ Cd∪Cp; 

Output: a set ∑ of MCDSs of C that covers C; 

CoveringSet-1(C) 

{ R:={r| r∈C is a divergent constraint} ; ∑=∅; 

   WHILE( R is not empty) 

       {       Draw an element r of R and C′ := MCS_finder(C, r); 

R:=R–C′ ; ∑:=∑∪{C′}; } 

} 
Let P={p1,..,pk} denote a Prolog program, where pi (i=1,…,k) is a procedure. The 

domain of the interpretation is assumed to be the set D. 

Definition 3.5. Let p be a procedure of P and n be the input arity of p, an element of 
Dn is called a test case for procedure p. 

Definition 3.6. A test case (d1,…,dn) for procedure p respects a call patterns con-
straint (o+pb, q) if both o and b are satisfiable in the constraint store {α=(d1,…,dn)}; 
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and (d1,…,dn) respects a divergent constraint (o+db) if both o and b are satisfiable in 
the same constraint store. 

Definition 3.7. Let C⊆Cd∪Cp be a consistent set of constraints, and (d1,…,dn) be a test 

case for procedure p, (d1,…,dn) respects C if (d1,…,dn) respects each element of C. 

By the definitions of the satisfiability of basic and observability constraints, we have 
the following proposition. 

Proposition 3.8. Let C={op1+ pbp1, p1,…, opw+ pbpw, pw, oc1+ cbc1,…, ocv+ cbcv} be a 

consistent set of constraints and (d1,…,dn) be a test case for procedure p, (d1,…,dn) 

respects C if both (op1 … opw oc1 … ocv) and (bp1∧…∧bpw∧bc1∧…∧bcv) are satis-

fiable in the constraint store {α=(d1,…,dn)}. 
In order to generate test cases respecting a set of divergent and call patterns con-

straints, constraints solvers could be applied. This viewpoint critically depends on one 
feature of the semantics in section 2, namely, Prolog is regarded as an instance of 
constraint logic programming (CLP) language [13], where B is the constraint domain. 

Recall that every implementation of CLP is parametric w.r.t. a constraint domain D 
(such as the domain of linear arithmetic constraints, the domain of Boolean con-
straints) and contains a corresponding constraints solver, which given a set C of con-
straints on D judges the satisfiability of C, and in the case C is satisfiable gives in-
stances of the variables appearing in C. Given a goal made up of constraints and ordi-
nary sub-goals, CLP engine will reduce the goal to a collection of constraints and 
solve the constraints by the constraints solver embedded in the engine.  

For example, given a CLP program: 

{ sumto(0, 0). sumto(N, S):- N>1, N<=S, sumto(N-1, S-N). } 

The goal “ S<=3, sumto(N, S)” will give rise to the answer (N=0, S=0), (N=1, 
S=1), (N=2, S=3) and terminates. 

Let sol be a constraints solver on the set B of basic constraints. By the definition of 

observability constraints, sol can also be used for deciding the satisfiability of ob-
servability constraints. With this solver test cases respecting a set of divergent and 
call patterns constraints could be produced automatically. If B is the set of equations 

over terms, linear arithmetic constraints and Boolean constraints, sol is similar to the 
solvers used in CHIP [10] or Prolog III [4] systems. The details of the solver cannot 
be discussed here. 

Based on the above definitions we can define the set of test cases for a procedure p 
on which the executions of p diverge. 

Definition 3.9. Let FP be the cp semantics of a program P, p be a procedure, C be the 

set of divergent and call patterns constraints contained in FP(p) and ∑={C1,…,Cm} be 

a set of MCDSs of C that covers C, the set T of test cases for p respecting ∑ is de-

fined as T={d1,…,dm} where di (i=1,…,m) is a test case for p that respects Ci. 
By definition 3.9 and proposition 3.8 we can use the constraints solver sol to derive 

test cases for a procedure that respect a given set of MCDSs. Given a test case for a 
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procedure p obtained according to definition 3.9, the call patterns that actually arise in 
the execution of p on the test case are determined as follows. 

Proposition 3.10. Given a program P and a procedure p, let C' be a MCDS of the set 
C of divergent and call patterns constraints contained in FP(p), d be the test case gen-

erated from C', then the divergent computation and call patterns arising in the execu-

tion of p(d) are described by the constraints set C''={ o''+pb'', q∈C | d respects 

(o''+pb'', q)}∪{ o''+db'' ∈C | d respects (o''+db'')}. 

By the above proposition, we easily have C'⊆C''. Moreover we can show that 

C'=C'', since otherwise an element r∈C''–C' will be such that {r}∪C' is consistent, i.e. 

{r}∪C' is satisfiable in the constraint store {α=(d1,…,dn)}, which contradicts the 

definition of MCDS.  
Next we give a simple example to illustrate the test case generation for a procedure. 

Example 3.11. Take the example 2.3 again, the denotations of p and q are initialized 
to I0(p)=trueO+ptrue, p and I0(q)=trueO+ptrue, q. 

The computation reaches a fixpoint at the second step with the resulting semantics 
as follows. 

FP(p) =TP
2(I0)(p)=(trueO+ptrue, p) :: (trueO+pα=4, p) :: trueO+dα=4 

                     :: (–(α=4)+p true, q) :: –(α=4)+cα=3:: –(α=4)+cα=5; 
FP(q) =TP

2(I0)(q)=(trueO+ptrue, q) :: trueO+cα=3:: trueO+cα=5. 
From FP(p) we have the set C of call patterns constrains and divergent constraints: 
C={(trueO+ptrue, p), (trueO+pα=4, p), (–(α=4)+ptrue, q), trueO+dα=4}, from which 
we get a MCDS of C:  

C1={(trueO+ptrue, p), (trueO+pα=4, p), trueO+dα=4}. 
By definition 3.9 we get a test case p(4) from C1. The divergent computation and call 
patterns that arise in the execution of p(4) are described exactly by C1. 

In order to create test cases that surely succeed we now consider the convergent 
constraints in the cp semantics of a program. In this case we need another specializa-
tion of the notion of MCSs.  

Definition 3.12. Let C⊆ Cc∪Cp be a set of convergent and call patterns constraints, C' 

is called a Maximum Consistent and Convergent Subset (MCCS) of C if C' is a MCS 

of C and C' contains at least one convergent constraint. 

Definition 3.13. Let C⊆Cc∪Cp be a set of convergent and call patterns constraints, 

and ∑={C1,…,Cm} be a set of MCCSs of C, we say ∑ covers C if for each convergent 

constraint r∈C there exists Ci∈∑ such that r∈ Ci. 

Given a set C⊆Cc∪Cp, the algorithm CoveringSet-2 for finding a set of MCCSs of 

C that covers C can be obtained from algorithm CoveringSet-1 by changing “R:={r | 

r∈C is a divergent constraint}” to “R:={r| r∈C is a convergent constraint}”. 
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A test case that respects a convergent constraint can be defined in the same way as 
definition 3.6. Definition 3.9 can easily be adapted for the case of MCCSs. So given 
the cp semantics FP of a program P we can generate test cases for a procedure p that 

respect a given set of MCCSs that covers the set C of convergent and call patterns 
constraints contained in FP(p). 

Similar to the case for MCDS, we have the following proposition. 

Proposition 3.14. Given a program P and a procedure p, let C' be a MCCS of the set 
C of convergent and call patterns constraints contained in FP(p) and d be the test case 

that respects C', then the set of computed answers obtained and the call patterns aris-
ing in the execution of p(d) is described exactly by C'. 

Next we consider the problem of generating test cases on which the executions of a 
procedure fail. Since the cp semantics we use does not explicitly describe the failure 
computation, an alternative way is to consider the computation that neither diverges 
nor succeeds. The following definition will serve this purpose. 

Definition 3.15. Given a set C⊆Cc∪Cp∪Cd of constraints, the failure condition ΨC 
w.r.t. C is defined as follows: ΨC =( {–(o b∝obs) | o+db∈C})  ( {–(o b∝obs) | 
o+cb∈C}). 

Given a set C⊆Cc∪Cp∪Cd, ΨC can be used to generate test cases that make the exe-
cutions of a procedure fail. A test case d respects ΨC if it belongs to the following  
set F: 

F={d | ΨC is satisfiable in {α=d}.}. 

In example 3.11, by applying algorithm CoveringSet-1 to set C={(trueO+ptrue, p), 
(trueO+pα=4, p), (–(α=4)+ptrue, q), trueO+dα=4} we have obtained an MCDS C1. 
Now by applying CoveringSet-2 we find two MCCSs of C'={(trueO+ptrue, p), 
(trueO+pα=4, p), (–(α=4)+p true, q), –(α=4)+cα=3, –(α=4)+cα=5}, i.e.  

C2={(trueO+ptrue, p), (–(α=4)+ptrue, q), –(α=4)+cα=3} and 

C3={(trueO+ptrue, p), (–(α=4)+ptrue, q), –(α=4)+cα=5}. 

Let C''={(trueO+ptrue, p), (trueO+pα=4, p), trueO+dα=4, (–(α=4)+ptrue, q), –
(α=4)+cα=3,  –(α=4)+cα=5}, the failure condition ΨC'' is: 

ΨC''= –(α=4)  (α=4  –(α=3 α=5)). 

From C2 and C3 we get two test cases, p(3) and p(5), and from ΨC'' we get one test 
case, say p(7), that respects ΨC''. So in total we generate four test cases for procedure 
p, i.e. p(4), p(3), p(5) and p(7).  
    Finally we can define the set of test cases that are generated for a procedure of a 
program based on the cp semantics of the program. 

Definition 3.16. Let FP be the cp semantics of a program P, p be a procedure, C1, C2 

and C3 be the set of call patterns constraints, divergent constraints and convergent 
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constraints contained in FP(p), respectively, ∑d={C11,…,C1m} be a set of MCDSs of 

C1∪C2 that covers C1∪C2 and ∑c={C21,…,C2t} be a set of MCCSs of C1∪C3 that cov-

ers C1∪C3, the set T of test cases for p is defined as T ={d11,…,d1m, d21,…,d2t} 

∪{df}where d1i (i =1,…, m) is a test case for p that respects C1i, d2j (j =1,…, t) is a test 

case for p that respects C2j, and df is a test case that respects ΨC', where C'=C1∪C2∪C3 

and ΨC' is called the failure condition of p. 
Recall that in Prolog program testing we have the notion of test cases selection cri-

teria, such as the path coverage in CFG-based testing and clause coverage in PROTest 
II [17,1,2]. Definition 3.16 implies that the test case selection criteria used in our 
method is the MCDS/MCCS coverage and failure coverage, i.e. we require that: for 
each procedure p, 1) the MCDSs and MCCSs, from which test cases are produced, 

cover the set C1∪C2 of call patterns and divergent constraints of p and the set C1∪C3 

of call patterns and convergent constraints of p, respectively; and 2) there exist test 
cases that respect the failure condition of p. 

4   Test Case Generation on an Approximation CP Semantics 

The method in section 3 requires the existence of a finitely computable cp semantics 
of a program. Unfortunately, the cp semantics in section 2 is not generally comput-
able. In order to apply our method to ordinary Prolog programs we can make use of 
existing semantics approximation techniques [7,8,15,21]. Two techniques in the 
framework of abstract interpretation can be used for this purpose [7]. One is to design 
widening/narrowing operators on infinite semantic domain to assure or speed up the 
convergence of the semantics computation process, the other is to follow the Galois 
connection approach to abstract interpretation to design a finite abstract semantic 
domain on which to build a finite abstraction of the cp semantics. Next we present a 
finite cp semantics using the second method. 

We assume that testers are interested in the lists [e1, …, ew] containing no more than 
k elements, i.e. w≤k. If ei∈D (i=1, …, w) with D being a finite set, the number of such 
lists must be finite. By requiring that in the computation of cp semantics any element 
ti (i=1, …, m) of a term (t1, …, tm) could only be a variable or a list having a maximum 
length of k, we could get a finite semantic domain. Formally, the length of a term is 
defined as follows. 

Definition 4.1. Given a term T=(t1, …, tm), the length |T| of T is defined as: 
|T|=MAX{|t1|, …, |tm|}, where |ti| is defined as:  

1            if  is a variable;

| | 0            if =[];

1+         if =[X| '] and | '|= .

i

i i

i i i

t

t t

n t t t n

⎧
⎪= ⎨
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⎩

 

Note that this is a partial definition on the set of Prolog terms, but is enough for our 
purpose. Now we can adapt the definition of the immediate consequence operator TP 

of program P by adding a constraint |α|≤k:  
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TP (I)(p)= (|α|≤k) ∃Y (δ Y,α (φ p(JP G1 I ⊕…⊕JP Gn I)). 

The definitions of the semantic operators present in the above definition are kept 
unchanged. With this definition of cp semantics we can carry out the testing of some 
ordinary Prolog programs. Next we present an example to illustrate the application of 
our test case generation method based on the adapted semantics with k=2. 

Example 4.2. Given a program P': 

{ insert (X, [Y|U], [Y|V]) :- Y<X, insert(X, U, V).  
                   insert(X, [Y|U], [X,Y|U]) :- X Y. insert(X,[],[X]). }, 

it can be translated into P: 

{ insert(T):- exists X, Y, U, V, S. (T=(X, [Y|U], [Y|V]) and  
                                         (Y<X) and S=(X, U, V) and insert(S)) or 

exists X, Y, U. (T=(X, [Y|U], [X,Y|U]) and X Y) or  
exists X. (T=(X, [], [X]). ). 

Let cond=∃X, Y, U, V, S (α=(X, [Y|U], [Y|V]) ∧ (Y<X) ∧ S=(X, U, V)) and  
cond '=∃X', Y', U', V', S' (S=(X', [Y'|U'], [Y'|V']) ∧ (Y'<X') ∧ S'=(X',U',V')). 
The computation of the approximation cp semantics of P reaches a fixpoint at the 

fourth step with the resulting semantics as follows. For simplicity, we write ∃X1, …, 
Xn(T) as T in the following. 

FP (insert)= trueO+p true, insert  
:: trueO+p (α=(X, [Y|U], [Y|V]) ∧ (Y<X) ∧ |α|≤2), insert 
:: trueO+p (α=(X, [Y, Y'|U'], [Y, Y'|V']) ∧ (Y<X)∧ (Y'<X) ∧|α|≤2), insert 
:: −(cond ∧cond ') +c (α=(X, [Y], [Y, X]) ∧ Y<X∧ |α|≤2) 
:: −cond +c (α=(X, [Y|U], [X,Y|U]) ∧ X Y∧ |α|≤2)  
:: −cond +c (α=(X, [], [X]) ∧ |α|≤2). 

Let C={(trueO+p true, insert), (trueO+p(α=(X, [Y|U], [Y|V])∧ (Y<X) ∧ |α|≤2), insert),  

(trueO+p (α=(X, [Y, Y'|U'], [Y, Y'|V']) ∧ (Y<X)∧ (Y'<X) ∧ |α|≤2), insert),  
−(cond ∧cond ') +c (α=(X, [Y], [Y, X]) ∧ Y<X∧ |α|≤2), 
−cond +c (α=(X, [Y|U], [X,Y|U]) ∧ X Y∧ |α|≤2),  
−cond +c (α=(X, [], [X]) ∧ |α|≤2)},  

then we get the following set of MCCSs:  

C1={(trueO+p true, insert), (trueO+p(α=(X, [Y|U], [Y|V])∧(Y<X)∧|α|≤2), insert), 
−(cond ∧cond ') +c (α=(X, [Y], [Y, X]) ∧ Y<X∧ |α|≤2)}; 

C2={(trueO+p true, insert), −cond +c (α=(X, [Y|U], [X,Y|U]) ∧ X Y∧ |α|≤2)}; 
C3={(trueO+p true, insert), −cond +c (α=(X, [], [X]) ∧ |α|≤2)}. 

The failure condition of insert is  

ΨC =((cond ∧cond ')  −(α=(X, [Y], [Y, X]) ∧ Y<X∧ |α|≤2))  
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(cond −(α=(X, [Y|U], [X,Y|U]) ∧ X Y∧ |α|≤2))  
(cond −(α=(X, [], [X]) ∧ |α|≤2)). 

From the above sets of constraints we get the following test cases for procedure in-
sert: 

 insert(5, [3], [3, 5]) respecting C1,  
 insert(1, [4, 9, 8], [1,4, 9, 8]) respecting C2, 
 insert(2, [], [2]) respecting C3. 
 insert(5, [2,3], [2, 3]) respecting ΨC. 

5   Related Work 

In this section we compare the test case generation method in this paper with the work 
proposed in literature. Generally, the effort in the testing of Prolog programs falls into 
two categories, i.e. specification-based testing and implementation-based testing. An 
example of specification-based testing is the CPM testing [3,18,12,14] that is imple-
mented in the IDTS system−an environment for algorithmic debugging and specifica-
tion-based testing of Prolog programs. The main purpose of the IDTS system is to 
make use of CPM testing to improve the efficiency of diagnosing Prolog programs. 
The test case generation is mainly produced from a user-defined set of test frames and 
is improved with the result of algorithmic diagnosis [19].  

With implementation-based testing, the generation of test cases is usually guided 
by a formal analysis of the program under consideration. Our method and the works 
presented in [1,2,17] belong to this class.  

The PROTest II system [1,2] is a Prolog test environment developed by Belli and 
Jack. In this system every program to be tested is augmented with declarative infor-
mation about the types and modes of the arguments of a procedure. A structure 
checker is used to validate that a procedure is consistent with the types declarations 
for the procedure. The test cases are generated by structural induction using types 
declarations, and in this process modes declarations are used to partition the test 
cases. The advantage of our method is that beside types and modes information we 
can make use of more information about a program through the means of semantics 
approximation. 

Yan [22] studied the declarative testing of logic programs using a reliable test set. 
A test set T is reliable for program P and specification IP if that P computes the same 
value as IP on each point of T implies that P computes the same value as IP on each 
point at which P is defined. If a finite set of reliable test set is available the testing 
will be efficient. Unfortunately it’s shown that there is no effect procedure to generate 
reliable test data. 

Considerable effort on logic program testing has been devoted to the work under 
the title abstract debugging, abstract interpretation based debugging and deductive 
debugging [5,6,9,11,16]. The main idea of this kind of work is to compare the formal 
specification I of a program P with the formal semantics O(P) of P that describes the 

interested behaviors of P. If I≠O(P), some fault must exist in the clauses of the pro-

gram, and in this case a particularly designed method will be applied to find the fault. 
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The call patterns of a goal describe the control transfer in the execution of the goal 
in a program. From this viewpoint, the work that has close relation to our method is 
Luo’s [17] control flow based testing of Prolog programs, where P-flowgraph (Prolog 
control flow graph) and reduced global P-flowgraph are used to describe the control 
flow of a Prolog program. The following constructs or events are represented as nodes 
of a P-flowgraph: 

 The head of each clause of a procedure, whose corresponding node is called a 
head node in the following; 

 Each sub-goal in the body of a clause, whose corresponding node is called a 
sub-goal node in the following; 

 The successes of the unifications of all sub-goals in the body of a clause, whose 
corresponding node is called T node; and 

 The failure of the execution of a procedure, whose corresponding node is called 
F-node.  

T-node exists for each clause of a procedure, however, there is only one F-node for a 
P-flowgraph or a reduced global P-flowgraph. So in total there are four types of nodes 
in the control flow graph of a procedure. Directed edges (branches) are created to 
describe possible control transfer between each pair of nodes. By selecting an appro-
priate test selection criteria based on a P-flowgraph, such as the branch coverage and 
branch-to-branch coverage of a P-flowgraph, the test cases for a procedure in a Prolog 
program can be generated. As an example, branch coverage criteria requires that the 
running of the test cases generated for a procedure traverse every branch of the P-
flowgraph of the procedure. Since the global P-flowgraph of a Prolog program is 
generally infinite, a reduced global P-flowgraph is adopted to describe a part of it. 
Similar criteria can also be defined on the reduced global P-flowgraph. 

Next we show some correspondence between our method and P-flowgrph based 
method. Since the successes of a procedure call are represented as convergent con-
straints, a path ending with a T-node corresponds to a consistent constraint set con-
taining convergent constraints; and a path ending with a F-node corresponds to a 
consistent constraint set that contains no convergent constraints. 

Take example 2.3 again, the P-flowgraph of a procedure p is described in Fig.1(a). 
Note that we delete the branches between the head nodes for the same procedure and 
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Fig. 1. (a) P-flowgraph of procedure p; and (b) part of global P-flowgraph of p 
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the branches between a head node and F-node to fit the abstract syntax in section 2, 
since these control transfer actually cannot happen according to the abstract syntax. 
The MCDS C1={(trueO+ptrue, p), (trueO+pα=4, p), trueO+dα=4} corresponds to an 
infinite path: 1-2-5-2-5-2-5-… in Fig.1(a).  

Since the cp semantics of a procedure describes all possible call patterns that are di-
rectly or indirectly called in the procedure execution, a consistent sets of constraints 
also describe the paths of a reduced global P-flowgraph and global P-flowgraph. In 
this example, the reduced global P-flowgraph for p is the P-flowgraph itself. Fig.1(b) 
presents a part of the global P-flowgraph of p. The MCCS C2={(trueO+ptrue, p), (–
(α=4)+ptrue, q), –(α=4)+cα=3} corresponds to the path: 1-6-7-8-9-10 in the graph; 
and C3={(trueO+ptrue, p), (–(α=4)+ptrue, q), –(α=4)+cα=5} corresponds to the path: 
1-6-7-8-11-12-13-14. If we generate a test case p(7) from ΨC'', its execution will trav-
erse the path: 1-6-7-8-11-12-15. 

In practice, it’s not uncommon for a tester to be interested only in some properties 
of a program expressed by means of approximation or abstraction. When taking this 
concern into consideration in the testing of a program, the main problem with the 
reduced global P-flowgraph lies in its flexibility, i.e. it provides only one reduced 
version of the global P-flowgraph, which cannot be adjusted according to the re-
quirement of a tester. On the contrary, our method is very flexible. Our method is 
based a Prolog cp semantics whose approximation techniques have been studied ex-
tensively in literature [15,21]. By designing a widening/narrowing operator or a finite 
abstract semantic domain (and corresponding semantic operators on it), an approxi-
mation semantics of the cp semantics can be achieved. So we can generate test cases 
based on the approximation cp semantics of a program. In this way we achieve the 
effect of merging in a global P-flowgraph the paths that are equivalent in the view of 
a tester. This means that we can test a Prolog program according to testers’ require-
ments expressed by means of approximations. So in summary the flexibility of our 
method comes from the ability that we can design multiple approximation semantics 
based on the cp semantics in section 2. 

6   Conclusion and Future Work 

It’s a natural idea to generate test cases for a Prolog procedure based the call patterns 
of the procedure. This paper proposes a novel call patterns-based method for generat-
ing test cases for a Prolog program, which is based on a constraint-based call patterns 
semantics, where call patterns, divergent computation and computed answers are 
denoted by call patterns constraints, divergent constraints and convergent constraints, 
respectively. By studying the consistency among these constraints, we propose to use 
the maximum consistent and divergent subsets-MCDSs and maximum consistent and 
convergent subsets–MCCSs to describe the control flow path(s) of a program. Test 
cases respecting a set of MCDSs or MCCSs could be generated with a proper con-
straints solver. Moreover, failure condition of a procedure is used to generate test 
cases on which the executions of the procedure fail. Compared with traditional CFG-
based test case generation method, our method is very flexible. By selecting a proper 
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approximation of the call patterns semantics we use, test cases can be generated 
automatically according to the particular requirements of a tester. The applicability of 
our method is illustrated by examples in this paper. 

The development of a testing tool for Prolog programs based on our method is now 
in progress. We plan to use them in the testing of non-trivial applications. The further 
work will integrate it with the existing program analysis tools. 
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Abstract. The integration of functional and logic programming is a
well developed field of research. We discuss that the integration could
be improved significantly in two separate aspects: sharing computations
across non-deterministic branching and the declarative encapsulation of
logic search. We then present a formal approach which shows how these
improvements can be realized and prove the soundness of our approach.

1 Introduction

There are two main streams in declarative programming: functional and logic
programming. For several years now a third stream aims at combining the key
advantages of these two paradigms. This third stream is often called “functional
logic programming” but could also be simply denoted as “declarative program-
ming”. Declarative programming languages try to bridge the chasm between the
deterministic world of (lazy) functional programming and the non-deterministic
multiverse of logic programming. By now the theory is well developed and among
the many approaches we name only three works we consider the main theoretic
fundament: A denotational semantics was developed in [9] and extended in many
subsequent publications. A formal base on narrowing was given in [3] and an op-
erational semantics was introduced in [1].

There are, however, reasons to believe that the integration of both paradigms
could be tighter, demonstrated by two examples in the functional logic language
Curry:

Example 1 (Sharing across Non-Determinism). We consider parser combinators
which can elegantly make use of the non-determinism of functional logic lan-
guages to implement the different rules of a grammar. A simple set of parser
combinators, consisting of the always successful parser succ, a parser for a sin-
gle character sym and the sequential composition of two parsers (<*>), can be
defined as follows:

type Parser a = String -> (String,a)

succ :: a -> Parser a
succ r cs = (cs,r)

� This work has been partially supported by DFG grant Ha 2457/5-1.

Z. Shao (Ed.): APLAS 2007, LNCS 4807, pp. 122–138, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



On a Tighter Integration of Functional and Logic Programming 123

sym :: Char -> Parser Char
sym c (c’:cs) | c==c’ = (cs,c)

(<*>) :: Parser (a -> b) -> Parser a -> Parser b
(p1 <*> p2) str = case p1 str of

(str1,f) -> case p2 str1 of
(str2,x) -> (str2,f x)

parse :: Parser a -> String -> a
parse p str = case p str of ("",r) -> r

As an example, we construct a non-deterministic parser for the inherent ambigu-
ous language of palindromes without marked center L = {w←−w | w ∈ {a, b}}1,
which, if parsing is possible, returns the word w and fails otherwise:

pal :: Parser String
pal = succ (\ c str -> c:str) <*> sym ’a’ <*> pal <*> sym ’a’

? succ (\ c str -> c:str) <*> sym ’b’ <*> pal <*> sym ’b’
? succ ""

where (?) :: a -> a -> a induces non-deterministic branching and is defined by:

x ? _ = x
_ ? y = y

In all Curry implementations the parser pal analyses a String of length 100
within milliseconds. We call this time tparse. Unfortunately, this program does
not scale well with respect to the time it takes to compute the argument string,
which we consider to be a list of expressions [e1, . . . , e100] where each ei evaluates
to a character taking an amount of time t >> tparse and constructing the string
[e1, . . . , e100] takes time 100·t. Then one would expect the total time to compute
parse pal [e1,...,e100] is 100 · t + tparse ≈ 100 · t. But measurements for the
Curry implementation PAKCS ([10]) show that, e.g., for t = 0.131s it takes
more than 5000 · t to generate a solution for a palindrome [e1, . . . , e100] and
9910 · t to perform the whole search for all solutions. We obtain similar results
for other implementations of lazy functional logic languages, like the Münster
Curry Compiler [15].

The reason is that these systems do not provide sharing across non-determi-
nism. For all non-deterministic branches in the parser the elements of the re-
maining list are computed again and again. Only values which are evaluated
before non-determinism occurs are shared over the non-deterministic branches.
This behavior is not only a minor implementation detail but poses problems con-
cerning the fundamentals of declarative languages. These problems have never
been treated at a formal level before.

The consequence of Example 1 is that programmers have to avoid using non-
determinism for functions that might be applied to expensive computations.
But in connection with laziness a programmer cannot know which arguments
are already computed because evaluations are suspended until their value is
demanded. Hence, the connection of laziness with logic search always threatens
to perform with the considerable slowdown discussed above. Thus, sadly, when

1 We restrict to this small alphabet for simplicity.
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looking for possibilities to improve efficiency, the programmer in a lazy functional
logic language is well advised to either try to eliminate the logic features he
might have employed or to strictly evaluate expressions prior to each search.
Both alternatives show that he still follows either the functional or the logic
paradigm but cannot profit from a seamless integration of both.

A second important topic when connecting logic search with the lazy func-
tional paradigm is encapsulated search. Encapsulated search is employed when-
ever different values of one expression have to be related in some way, e.g., to
compute a list of all values or to find the minimal value and also to formulate
a search strategy. But again we find that the connection of this feature with
laziness is problematic as illustrated by the following example.

Example 2 (Encapsulated Search). Reconsider the notion of palindrome and the
parser definitions of Example 1. We call a palindrome prime, if it does not contain
a proper, non-empty prefix which is also a palindrome. For a given string s we
can check this property by inspecting the result of applying our parser. s is a
prime palindrome if (pal s) meets two conditions: 1) s is a palindrome, i.e., the
parser succeeds consuming the whole input and 2) there are only two successful
parses as the empty prefix is a palindrome by definition. Hence, we can use
the operation allValues, which performs encapsulated search to yield a list
containing all values of its argument, to count the number of successful parses
and we define:

prime : (String,a) -> Success
prime r = fst r =:= "" & length (allValues r) =:= 2

To express the conditions, we use the strict equality operator (=:=)) which
implements unification. The two conditions are expressed as constraints on the
parse results connected by the operator (&). (&) is called “concurrent conjunc-
tion” and is a primitive, i.e., an externally defined operator. The adjective “con-
current” suggests that the result should not depend on the order in which the
constraints are evaluated. But if allValues is based on encapsulated search as
available in PAKCS, the result of, e.g., prime (pal "abba") does indeed depend
on the order of evaluation. If the constraint fst r =:= "" is solved first then
PAKCS yields no solution and if the second constraint is preferred, the compu-
tation is successful. We will not explain how this behavior comes to pass and
refer to [5] for a detailed discussion. Here, it is only important that this problem
also stems from the connection of laziness with logic search and is caused by the
sharing of r in both constraints.

In an alternative approach as implemented in the Münster Curry Compiler
(MCC) [14] the result does not depend on the order in which the two constraints
are evaluated. The evaluation of (prime (pal "abba")) fails in any case, again
cf. [5] for details. Although the approach of [14] does not require any knowledge
about the order of evaluation, detailed knowledge about the compiler and the
executed optimizations are needed to successfully employ encapsulated search
in the MCC. For instance, a program can yield different values if one writes
(\x -> x=:=(0 ? 1)) instead of (=:=(0 ? 1)) although by the very definition
of the language Curry [11] the latter expression is just an abbreviation of the
former.
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P ::= D1 . . . Dm

D ::= f(x1, . . . , xn) = e
e ::= x (variable)

| c(x1, . . . , xn) (constructor call)
| f(x1, . . . , xn) (function call)
| case e of {p1 → e1; . . . ; pn → en} (rigid case)
| fcase e of {p1 → e1; . . . ; pn → en} (flexible case)
| e1 or e2 (disjunction)
| let x1 = e1, . . . , xn = en in e (let binding)

p ::= c(x1, . . . , xn)

where P denotes a program, D a function definition, p a pattern and e ∈ Expr an
arbitrary expression.

Fig. 1. Syntax for Normalized Flat Curry Programs

Example 2 shows that encapsulated search is a second area on which the
integration of functional and logic programming could be tighter. The work pre-
sented in this paper does not suffer from the illustrated problems: The time to
parse a string which is expensive to construct is not multiplied by the number of
non-deterministic branches and the evaluation of, e.g., (prime (pal "abba"))
is successful regardless of the order of evaluation. In general, the use of encapsu-
lated search does neither depend on evaluation order nor on the way the compiler
transforms the programs. The approach has been successfully implemented in
our Curry to Haskell Compiler, the Kiel Curry System (KiCS), available at
www-ps.informatik.uni-kiel.de/∼bbr/download/kics src.tgz.

functions of arity 0. In the following sections we show that both problems,
sharing across non-determinism and encapsulation, can be interleaved in such a
way that a solution to one also solves the other. While we are not the first to
present an approach to sharing across non-determinism, cf. Section 5, the seam-
less integration of both aspects, and especially the purity of encapsulation, is the
contribution of the presented work. We propose a natural (big step) semantics
for functional logic languages which features sharing across non-determinism.
This semantics can be seen as an extension of the one presented in [1] and
we formally relate our results to that work. The key idea of the extension
is to treat non-deterministic branching as constructors, so called “or-nodes”.
This enables sharing beneath these nodes just as beneath any other construc-
tor. As a consequence, however, an or-node is also in head normal form. As
the semantics of a given expression in [1] is normally its head normal form,
we need a further concept to yield values in the sense of [1]. Surprisingly, this
additional concept is encapsulated search. Adding this feature, we can show a
strong relationship between the values computed by our semantics and the one
of [1].

The paper mainly consists of enhancing the semantics proposed in [1] step-
wise. First, the semantics is substantially simplified and then extended to cover
sharing across non-determinism and encapsulated search. We only sketch the
ideas of the proofs. The complete proofs are presented in [7].

www-ps.informatik.uni-kiel.de/~bbr/download/kics_src.tgz
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2 Preliminaries

For the syntax of functional logic programs we consider the first-order core lan-
guage Flat Curry. Furthermore, we restrict to normalized Flat Curry, in which
only variables are allowed as arguments of constructors and functions. The nor-
malization of arbitrary Flat Curry programs is defined in [1]. This normalization
is the key idea to express sharing, the main concept of laziness in the functional
setting [13] and call-time choice in the functional logic setting. The syntax is
presented in Figure 1. Free variables are introduced as circular let bindings of
the form let x=x in e. To keep programs containing multiple ors more readable,
we omit brackets for or expressions and assume that or binds left associatively.
We also omit argument brackets for constructors and

The semantics is similarly defined to the semantics in [1], with the exception
that a black hole detection (like present in [13]) is added in the rule (VarExp).
Without this black hole detection, a non-deterministic choice might produce a
proof tree in which the same variable is updated with different values in the
heap. [7] presents such an undesired derivation. Hence, this slight modification
can be seen as a correction of [1]. We refer to this semantics as ⇓0 and will
stepwise modify it. For lack of space, we cannot explain the ideas of the rules in
this paper and refer to [1]. Nevertheless, we want to introduce some notations
used in the semantics.

(VarCons) Γ [x �→ t] : x ⇓0 Γ [x �→ t] : t where t is constructor-rooted

(VarExp)
Γ \ {(x, Γ (x))} : Γ (x) ⇓0 Δ : v

Γ : x ⇓0 Δ[x �→ v] : v

where Γ (x) is not constructor-rooted
and Γ (x) �= x

(Val) Γ : v ⇓0 Γ : v where v is constructor-rooted
or a variable with Γ (v) = v

(Fun)
Γ : σ(e) ⇓0 Δ : v

Γ : f(xn) ⇓0 Δ : v
where f(yn) = e ∈ P and σ = {yn �→ xn}

(Let)
Γ [yk �→ σ(ek)] : σ(e) ⇓0 Δ : v

Γ : let {xk = ek} in e ⇓0 Δ : v

where σ = {xk �→ yk}
and yk are fresh variables

(Or)
Γ : ei ⇓0 Δ : v

Γ : e1 or e2 ⇓0 Δ : v
where i ∈ {1, 2}

(Select)
Γ : e ⇓0 Δ : c(yn) Δ : σ(ei) ⇓0 Θ : v

Γ : (f)case e of {pk → ek} ⇓0 Θ : v

where pi = c(xn)
and σ = {xn �→ yn}

(Guess)
Γ : e ⇓0 Δ : x Δ[x �→ σ(pi), yn �→ yn] : σ(ei) ⇓0 Θ : v

Γ : fcase e of {pk → ek} ⇓0 Θ : v

where pi = c(xn), σ = {xn �→ yn}, and yn are fresh variables

Fig. 2. Natural Semantics for Functional Logic Programs

Definition 1 (Heap, Update Γ [�→]). Let Var = {x, y, z, . . .} be a finite set
of variables, Expr the set of expressions, as defined in Figure 1, and Heap ⊂
Var×Expr a finite set, called heap, where each element x ∈ Var appears at most
once in a pair (x, e) within the set, i.e. a heap represents a partial function from
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Var to Expr. Heaps will be denoted with upper case greek letters (e.g. Γ, Δ, Θ)
and we adopt the usual notation for functions to write Γ (x) = e for (x, e) ∈ Γ .
A heap update Γ [x �→ e] is an abbreviation for (Γ \ {(x, Γ (x))}) ∪ {(x, e)}. We
will also make use of the usual notations Dom(Γ ) and Rng(Γ ) to denote the
domain and range of a heap, respectively.

Note that an updated heap is again a heap and that for all heaps Γ the equation
Γ [x �→ e] [x �→ e] = Γ [x �→ e] holds. Like in the rules (Let), (Select), and (Guess)
of Figure 2, we often refer to a sequence of arguments, bindings, expressions, or
similar objects. We usually write on as an abbreviation for a sequence of n objects
o1, . . . , on. Finally, in example programs, we will often use non-normalized pro-
grams and Curry-like notations in which we may use pattern matching instead of
case expressions and write function and constructor application in curried form.

3 Simplifications of the Semantics

Before we extend the semantics, we apply some further simplifications.

3.1 Elimination of Free Variables

In [4], Antoy and Hanus presented the surprising result that under certain cir-
cumstances one can replace free variables by generator functions. Unfortunately,
they prove their result only for a term-rewriting based semantics not considering
sharing. A similar result was presented in [8] in the context of the Constructor-
based ReWriting Logic (CRWL), a different semantic framework for functional
logic languages. Unfortunately, this result cannot be transfered to our framework
so easily. Since, on the other hand, this technique is crucial for our semantics
extensions, we transfer this result to the setting with sharing. To do this we
change the setting from ⇓0 as follows and refer to the new semantics as ⇓1.

1. Replace in each heap and each expression program bindings of the form x = x
by x = generate, cf. Definition 2 below.

2. Add to each program the definition of the special function generate:

generate = (let {xn1 = generate} in c1(xn1))
or . . .
or (let {xnk

= generate} in ck(xnk
))

where ck are all program constructors and ci has arity ni for all 1 ≤ i ≤ k.

Note that normally, the generator is type oriented, i.e., it generates only values
of the correct type. This greatly prunes the search space and can be implemented
by approaches analogous to those used for type classes.

Now all free variables in a program can be replaced by such generators.

Definition 2 (Free Variable Eliminations e† and Γ⊗). We eliminate free
variables in expressions by replacing them with a call to the special function
generate.
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x† = x
s(xn)† = s(xn) s function or constructor

(e1 or e2)† = e†1 or e†2
((f)case e of {pk → ek})† = (f)case e† of {pk → e†k}

(let {xk = ek} in e)† = let {(xk = ek)‡} in e†

(x = e)‡ =
{

x = generate , if e = x
x = e† , otherwise

Likewise, we replace free variables in heaps by defining:

Γ⊗ = {(x, e†) | (x, e) ∈ Γ ∧ x �= e} ∪ {(x, generate) | (x, x) ∈ Γ}
We also write P † for the result of transforming all expressions in a program P
by means of †.

Note that both e† and Γ⊗ are unambiguously invertible.
The evaluation of the special function generate is a linear proof tree which

non-deterministically chooses one of the constructors of the program as a value.
In order to be able to refer to such a tree, we define:

Definition 3 (Generator Tree gT ). For an arbitrary heap Γ , a variable x
with Γ (x) = x and an ni-ary constructor ci the generator tree is defined as:

Δ⊗ := Γ ′⊗[xni �→ generate] : ci(xn) ⇓1 Δ⊗ : ci(xn)
Γ ′⊗ : ei = let {yni = generate} in ci(yn) ⇓1 Δ⊗ : ci(xni)

×i−1
j=1

(
Γ ′⊗ : ej+1 or . . . or ek ⇓1 Δ⊗ : ci(xn)

Γ ′⊗ : ej or ej+1 or . . . or ek ⇓1 Δ⊗ : ci(xn)

)

Γ ′⊗ := Γ⊗ \ {(x, generate)} : generate ⇓1 Δ⊗ : ci(xn)
Γ⊗ : x ⇓1 Θ⊗ := Δ⊗[x �→ ci(xn)] : ci(xn)

(Γ, x)gT (Θ, ci(xn)) =

where ej := let {xnj = generate} in cj(xnj ), j ∈ {1, . . . , k} and ck are all con-
structors of the program. Note that, by construction, Θ=Γ [x �→ ci(xn), xn �→ xn]
Now we are ready to establish the link between ⇓0 and ⇓1.

Theorem 1. Let P be a program, e an expression, and C the set of all con-
structors used in P. Then the following properties hold:

If Γ : e ⇓0 Δ : c(xn) , then Γ⊗ : e† ⇓1 Δ⊗ : c(xn).
If Γ : e ⇓0 Δ : x , then ∀c ∈ C : Γ⊗ : e† ⇓1 Δ⊗

1 : c(xn)
and Δ1 = Δ[x �→ c(xn), xn �→ xn].

If Γ⊗ : e† ⇓1 Δ⊗
1 : c(xn), then Γ : e ⇓0 Δ1 : c(xn)

or Γ : e ⇓0 Δ : x and Δ1 = Δ[x �→ c(xn), xn �→ xn].

Proof (Central Idea). Whenever the intermediate result of a sub computation
in ⇓0 is a free variable, the corresponding application of (Val) Γ : x ⇓0 Γ : x
is replaced by the generator tree gT (Γ, x, Γ [x �→ c(xn), xn �→ xn], c(xn)). The
differences between the resulting heaps is effectively eliminated when the rule
(Guess) is applied for ⇓0. The remaining proof is concerned with showing that
the mappings ⊗ and † correctly replace free variables by calls to the generator
function.
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According to this theorem, we can eliminate the rule (Guess), the distinction
between case and fcase and also all conditions concerned with free variables
in the remaining rules. Note, however, that for each free variable used in the
proof tree for ⇓0 one generator tree is used in the proof tree for ⇓1. I.e., variable
elimination does not imply loss of efficiency. Furthermore, another simplification
is possible, as the next section shows.

3.2 Elimination of (VarCons)

After eliminating variables from the semantics, the rule (VarCons) is not needed
anymore, because now it is a simple short-cut for applying rules (VarExp) directly
followed by (Val). We only have to omit the restrictions, when (Val) and (VarExp)
can be applied. We replace (VarExp) by the similar rule (Lookup) and refer to
this new semantics without (VarCons) as ↓:

(Lookup)
Γ \ {(x, Γ (x))} : Γ (x) ↓ Δ : v

Γ : x ↓ Δ[x �→ v] : v

We obtain the following theorem, which can easily be proven by a direct deriva-
tion by rule (Lookup) and (Val).

Theorem 2. Γ : e ⇓1 Δ : v iff Γ : e ↓ Δ : v

3.3 Summarization of the Simplified Semantics

In the semantics considered so far, it was not necessary to normalize the ar-
guments of or. We want to introduce sharing over non-determinism, for which
the main idea is to handle or as a kind of constructor. Hence, it is necessary
to normalize or expressions as well and introduce variables by means of a let
expression for or.

Definition 4 (Stronger Normalization e�). Stronger normalization of an
expression e flattens the arguments of “ or” by means of the mapping e� which
is defined inductively as follows:

x� = x
s(xn)� = s(xn)

(e1 or e2)� = let {x1 = e�
1, x2 = e�

2} in (x1 or x2)
((f)case e of {pk → ek})� = (f)case e� of {pk → e�

k}
(let {xk = ek} in e)� = let {xk = e�

k} in e�

It is easy to see that the stronger normalization conserves all values of the seman-
tics. With this last simplification we obtain a condensed semantics which we have
shown to be equivalent to the one defined in [1]. Since this semantics is the basis
for our extensions, we summarize its rules again in Figure 3 and refer to it as ↓.

4 Extending the Semantics

4.1 Constructors Representing Non-determinism

There have been several attempts to define libraries for logical features for
lazy functional programming, e.g. [12]. All these approaches encode the non-
deterministic search as a kind of lazily constructed data structure, e.g. a list
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(Lookup)
Γ \ {(x, Γ (x))} : Γ (x) ↓ Δ : v

Γ : x ↓ Δ[x �→ v] : v

(Val) Γ : v ↓ Γ : v where v is constructor-rooted

(Fun)
Γ : σ(e) ↓ Δ : v

Γ : f(xn) ↓ Δ : v
where f(yn) = e ∈ P

and σ = {yn �→ xn}

(Let)
Γ [yk �→ σ(ek)] : σ(e) ↓ Δ : v

Γ : let {xk = ek} in e ↓ Δ : v
where σ = {xk �→ yk}

and yk are fresh variables

(Or)
Γ : xi ↓ Δ : v

Γ : x1 or x2 ↓ Δ : v
where i ∈ {1, 2}

(Select)
Γ : e ↓ Δ : c(yn) Δ : σ(ei) ↓ Θ : v

Γ : case e of {pk → ek} ↓ Θ : v
where pi = c(xn)

and σ = {xn �→ yn}

Fig. 3. Simplified Natural Semantics for Functional Logic Programs

(embedded in some backtracking monad). The context demands elements from
this list (requires their evaluation) which relates to searching solutions within
non-deterministic computations in the logical setting.

Our idea is similar in the sense that we employ a data structure repre-
senting the values computed in all non-deterministic computations. Since non-
deterministic branching may result in an infinite search-space, this data structure
may by infinite which is no problem in a lazy language. We just need to ensure
that it is built only if demanded by the surrounding computation.

But what is an appropriate structure to represent the non-determinism of our
semantics? Since it has to reflect the branching of non-determinism, a tree is most
appropriate. The nodes in this structure (labeled with OR) relate to the evaluation
of or expressions. Since we use binary ors in Flat Curry, we obtain a binary tree
as well.2 The leafs in this tree contain either values or failed computations.

Example 3. We consider the following Flat Curry program (Zero, One, and Two
are constructors):
coin = Zero or One
add x y = case x of { Zero -> y;

One -> case y of { Zero -> One;
One -> Two } }

main = add coin coin

Computing the semantics of coin yields the tree OR [Zero,One]. Now in the
computation of main the result of coin has to be combined twice. We obtain OR
[OR [Zero,One], OR [One,Two]]. But consider the definition
main = let { c = coin } in add c c

In a call-time choice semantics, like ⇓0 and ↓ as well, it is important that there are
only two results for this computation: Zero and Two. But how can we guarantee
call-time choice when we twice combine the OR tree representation of c in add?
2 Note however, that we present more general or nodes with a list of branches. This

becomes useful when considering the fairness of search strategies, cf. Section 4.3.
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We identify each OR by a special reference. In the example with sharing, this
is OR r1 [OR r1 [Zero,One], OR r1 [One,Two]] with the same reference r1
for every OR node. When later the value is presented to the user or consumed by
the context we can consider which branching was chosen for which reference and
choose exactly the same branching for this reference everywhere within the OR
structure. Especially, in the example the result One is not reachable anymore.

4.2 Sharing Across Non-determinism

In the semantics we replace the non-deterministic or by introducing an internal
constructor OR which may not appear in any Flat Curry program. Later, we will
introduce another internal constructor FAIL. To distinguish internal constructors
from other constructors, we write them with all upper case letters.

(OR) Γ : x1 or x2 ⇓ Γ : OR r [x1, x2] where r fresh

(Lift)
Γ : e ⇓ Δ : OR r [xn]

Γ : case e of {bs} ⇓ Δ[yn �→ case xn of {bs}] : OR r [yn]
where yn fresh

By replacing the rule (Or) by the rule (OR), we obtain a deterministic semantics.
Beside its children (the variables x1 and x2), the introduced OR constructor also
contains a reference which identifies it in more complex OR structures and which
is used to realize call-time choice. The rule (Lift) is used to push computations
inside an OR-branching, i.e. lift the OR constructor one level up.

But, how does this modification relate to the original semantics ↓? The original
semantics ↓ computes the head-normal form of the expression on the control.
The same holds for the new semantics ⇓, but now also OR expressions are
constructor terms. Hence, the semantics stops whenever the original semantics
branches non-deterministically. To retrieve values in the original sense, we have
to add a special computation yielding head-normal forms underneath OR nodes
for the new semantics. We extend the relation ⇓ as follows:

(Hnf-Val)
Γ : e ⇓ Δ : c(xn)

Γ : hnf ρ e ⇓ Δ : c(xn)
where c �= OR

(Hnf-Choose)
Γ : e ⇓ Δ : OR r [xn] Δ : hnf ρ xρ(r) ⇓ Θ : v

Γ : hnf ρ e ⇓ Θ : v
if r ∈ Dom(ρ)

The branching information ρ is a partial function from OR references to branch-
ing positions, i.e. the natural numbers (for binary ors: {1, 2}). It expresses which
branch is to be selected for which OR reference. Later, it will be computed by
the surrounding computation. For the moment, it is chosen arbitrarily and corre-
sponds exactly to one non-deterministic computation of ↓. When the branching
information ρ is given, it is straight forward to prune a heap constructed in a ⇓-
proof to a simple heap constructed by the corresponding ↓-proof. Such a pruning
is defined next.

Definition 5 (Heap Pruning cut(ρ, Γ ))

cut(ρ, Γ )(x) =
{

cut(ρ, Γ )(xρ(r)) , if Γ (x) = OR r [xn]
Γ (x) , otherwise
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cut is not well defined for all possible arguments ρ and Γ . However, this is not
a problem since we only use the definition to prove the existence of a heap with
certain properties. Hence, cut will only be applied to appropriate arguments.

Theorem 3 (Completeness of ⇓)
If Γ : e ↓ Δ : v then there exist a heap Δ′ and a sequence s of branching updates
such that Γ : hnf ρ e ⇓ Δ′ : v and Δ = cut(ρ, Δ′) where ρ := ∅s.

Proof (Central Idea). The main difference between ↓ and ⇓ is the treatment of
expressions (x1 or x2). In ↓ such an expression is derived from the value of one
of the xi whereas in ⇓ the expression directly yields the value OR r [x1, x2].
The key idea to construct a corresponding proof tree in ⇓ from one in ↓ is to
update ρ with [r �→ i] whenever xi is chosen in ↓. Furthermore, the rule (Lift) of
⇓ makes sure that each case is finally applied to a head normal form according
to the choice represented by ρ. The rest of the proof consists of showing that cut
correctly maps between corresponding heaps.

We achieve sharing across non-determinism as the following example shows.

Example 4 (Sharing in action). In Example 1 we showed the importance of shar-
ing across. As a simpler example for sharing across non-determinism, we consider
the function ins which non-deterministically inserts an element to arbitrary po-
sition in a list:

ins x ys = case ys of {[] -> x:[];
(a:as) -> (x:a:as) or (a:ins x as)}

Similar to our parser example, the evaluation of the element added to the list
would be performed in every non-deterministic computation in most functional
logic languages. To demonstrate how our new semantics shares these evaluation,
we consider the following simple expression (let {x = long} in ins(x,[x])),
which computes only two results non-deterministically. Usually, the demands for
different results of ins come from the context ins is used in. Here, we some-
what artificially force the demand by the context (&&(hnf ρ h, hnf τ h)) where
h denotes the application of the head function to the above expression and ρ, τ
contain branching information such that ρ(1) = 1, τ(1) = 2. This keeps the
example manageable while proving the main point.

A linearization of the proof tree for this example is presented in Figure 4. For
space constraints and sake of readability, the computation is somewhat abbre-
viated. Constructors are not normalized and sub computations are only intro-
duced, if a look up in the heap occurs.

4.3 Encapsulated Search

The goal of this section is to provide a primitive function which computes the
internal branching information and represents the search space as a search tree
according to the definition (cf. [5]):

data SearchTree a = Value a | Or [SearchTree a] | Fail
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∅ : let {x= long, i= ins(x, x : []), h=head(i), n=hnf ρ h, m=hnf τ h} in &&(n,m)
Γ := [x �→ long, i �→ ins(x, x : []), h �→ head(i), n �→ hnf ρ h, m �→ hnf τ h] : &&(n, m)
Γ : case n of {T → m, F → F}�
�������������������������������������������

Γ : n
Γ : hnf ρ h�
��������������������

Γ : h
Γ : head(i)
Γ : case i of {z :zs → z}�
��������

Γ : i
Γ : ins(x, x : [])
Γ : case x : [] of {[]→x : [], a : as→ let {l= ins(x, as)} in (x : a : as) or (a : l)}
Γ : let {l= ins(x, [])} in (x : x : []) or (x : l)
Γ ′ := Γ [l �→ ins(x, [])] : (x : x : []) or (x : l)
Γ ′ : OR 1 [x : x : [], x : l]
Γ ′′ := Γ ′[i �→ OR 1 [x : x : [], x : l]] : OR 1 [x : x : [], x : l]

Δ := Γ ′′[y1 �→ case x : x : [] of {z : zs → z},
y2 �→ case x : l of {z : zs → z}]: OR 1 [y1, y2]

Δ′ := Δ[h �→ OR 1 [y1, y2]] : OR 1 [y1, y2]
Δ′ : hnf ρ yρ(1)�
����������

Δ′ : y1

Δ′ : case x : x : [] of {z : zs → z}�
����

Δ′ : x
Δ′ : long
. . .
Δ′ : T
Θ := Δ′′[x �→ T ] : T

�����
����

here the long deterministic evaluation takes place

Θ′ := Θ[y1 �→ T ] : T
Θ′′ := Θ′[n �→ T ] : T�

����������������

Θ′′ : m
Θ′′ : hnf τ h�

Θ′′ : h
Θ′′ : OR 1 [y1, y2]

Θ′′ : hnf τ yτ(1)�
����

Θ′′ : y2

Θ′′ : case x : l of {z : zs → z}�
Θ′′ : x
Θ′′ : T

	
here the result of the long computation is looked up in the heap

Ω := Θ′′[y1 �→ T ] : T
Ω[m �→ T ] : T

Fig. 4. Semantics of Example 4 – Proof Tree presented in Linearized Form
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The programmer should be able to access the search tree of a given expression
via the function searchTree :: a -> SearchTree a, which should provide the
tree in a lazy manner (cf. [5]) such that different search strategies like breadth
first and depth first search can easily be formulated just by matching the tree
structure. Although we use the same definition for a search tree, in comparison
to [5] the approach in this paper provides sharing across non-determinism and
employs a much simpler mechanism with just a single heap.

Before we can reach our goal, we have to extend the setting by information
about failure. To do this, we add the following rule:

(Fail)
Γ : e ⇓ Δ : c(xn)

Γ : case e of {pk → ek} ⇓ Δ : FAIL

where for all i with 1 ≤ i ≤ k
holds: pi �= c(yn).

Note, that especially, since FAIL is an internal constructor, it cannot be a pattern
of any case expression. Furthermore, FAIL is a valid result of an application of
rule (Hnf-Val), as defined above. By adding rule (Fail), we do neither introduce
new results other than FAIL nor lose existing results:

Theorem 4

a) If Γ : e ⇓ Δ : FAIL then there exists no Δ′, v �= FAIL such that Γ : e ⇓ Δ′ : v.
b) If Γ : e ⇓ Δ : v with v �= FAIL then there exists no Δ′ such that Γ : e ⇓ Δ′ :

FAIL.

Proof

a) The internal constructor FAIL is only introduced by the rule (Fail). This rule
is applicable only if no rule of ⇓ can be applied.

b) The only rule that changes the result of a derivation is (Select). Since FAIL is
an internal constructor there can be no pattern matching it in any program.
Thus, FAIL is the final result whenever it appears.

So far we have presented how a head normal form can be computed if the branch-
ing information ρ is already given. The next step is to define how this information
is introduced. This is the responsibility of encapsulation. The first thing to do
is to define how the hnf function should behave if the reference of a computed
OR node is not contained in the given branching information ρ. In this case the
evaluation to head normal form should stop:

(Hnf-Stop)
Γ : e ⇓ Δ : OR r [xn]

Γ : hnf ρ e ⇓ Δ : OR r [xn]
if r �∈ Dom(ρ)

We are now ready to define encapsulated search. We introduce the function st
which mostly translates internal (untyped) OR and FAIL constructors with call-
time choice references to the typed search trees without references, as defined
at the beginning of this section. There is only one more thing, st does: the OR
references are added to the branching information for hnf:
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(St-Val)
Γ : hnf ρ x ⇓ Δ : c(xn)

Γ : st ρ x ⇓ Δ [y �→ c(xn)] : Value(y)
where c �∈ {OR, FAIL}

and y fresh

(St-Fail)
Γ : hnf ρ x ⇓ Δ : FAIL
Γ : st ρ x ⇓ Δ : Fail

(St-Or)
Γ : hnf ρ x ⇓ Δ : OR r [xn]

Γ : st ρ x ⇓ Δ
[
yn �→ st (ρ∪{(r, n)}) xn, y �→ (y1 : . . . :yn : [ ])�

]
: Or(y)

where y,yn fresh

As mentioned above, we provide the function searchTree which can now be
defined such that each expression of the form (searchTree x) is replaced by
(st ∅ x). Our final theorem states that the programmer is thus provided with
a complete representation of the search which he can traverse according to his
needs.

Theorem 5 (Completeness of Representation). If Γ : e ↓ Δ : v then there
exist a heap Δ′ and a case expression c := case x of {bs} such that Γ : let {x =
st ∅ e} in c ⇓ Δ′ : v.

Proof (Central Idea). By Theorem 3 there exists a sequence of updates s such
that if Γ : e ↓ Δ : v then Γ : hnf (∅s) e ⇓ Δ′ : v. As the function st invokes
the function hnf systematically with all possible alternatives such that the ith
element beneath an Or constructor contains the evaluation of hnf with the up-
date [r �→ i] we need only to construct a case expression which chooses that ith
element beneath Or while also eliminating the Value constructor at the end of
the evaluation.

There are various reasons to employ encapsulated search. One is to express prop-
erties about all possible non-deterministic branches (e.g., their number) as given
in the introduction. Other reasons are pruning the search space like done in the
branch and bound method, to encapsulate non-determinism for the integration
of external functions, which normally are defined on ground terms only, or to
ensure that I/O operations do not perform conflicting actions. This latter use,
called complete encapsulation, requires that arguments of the encapsulation’s
Value constructor are solutions, i.e. do not contain the internal constructors OR
or FAIL. This can only be ensured by an evaluation to normal form. We include
a simple example for computing a normal form mainly because the importance
of complete encapsulation was convincingly discussed in [5].

Example 5 (Complete Encapsulation). We restrict ourselves to the simplest form
of a recursive data structure. The extension to more complex structures is
straight forward.

data Nat = Z | S Nat
nf Z = Z
nf (S x) = case nf x of {Z -> S Z; S y -> S (S y)}

Now the expression (searchTree (nf x)) will compute a complete encapsula-
tion of x, i.e. a search tree where the arguments of the Value constructor are
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solutions, they do not contain any internal constructor OR or FAIL. Note that
nf copies the given data structure regardlessly. There are of course ways to
do this more cleverly by defining a suitable primitive function. Also it could be
convenient to define a polymorphic function which ensures the required property
for any data structure, maybe using an overloaded function, like possible with
Haskells type classes, or use =..-like term deconstruction methods as in Prolog.

Whether or not the encapsulation is complete, an important point about the
presented encapsulation is that the result of the function searchTree is generated
lazily. This implies that different search strategies can easily be defined on the
level of the source language. E.g., for Curry we can easily define depth-first and
breadth-first search, from which we only present the more interesting breadth-
first search:

allValuesB :: SearchTree a -> [a]
allValuesB t = all [t]

where all ts | null ts = []
| otherwise = [x | Val x <- ts] ++

all [t | Or ts’ <- ts, t <- ts’]

Also, a fair search can be implemented by an action fair :: SearchTree a
-> IO [a], which forks a thread for each child of an Or node. As such a search
essentially realizes a committed choice by computing the results in arbitrary or-
der, it destroys the purity of the encapsulations presented so far. In consequence,
we regard this function as an I/O-Operation.

5 Related Work

There has been only one other approach prior to this work to formalize sharing
deterministic computations across non-deterministic branches which is called
bubbling [2]. Bubbling is defined as a graph rewriting technique and the call-
time choice semantics is realized by manipulating the graph globally. We, in
contrast, do only the local manipulation of lifting or-nodes and realize call-time
choice by storing branching information and comparing or-references later on.
This definitely speeds up deterministic computations in comparison, putting the
whole overhead on branching. Since the implementation of bubbling is not yet
finished, it remains difficult to judge which approach performs better in practice.
The amount of sharing, however, is the same.

Our previous work [6] exhaustively discussed all aspects of encapsulation, but
did not solve it as elegantly as the work presented here. Furthermore, sharing
across non-determinism was not covered. However, it formulates a “wish list” for
implementations of encapsulation, which is fully met by the presented approach.
The general considerations of [6] also show that bubbling prohibits to reach the
level of purity achieved here, because it executes a fair search beneath or-nodes
prior to induce the non-determinism globally. This can be expected to increase
the efficiency of a certain class of programs. But it can not lead to deterministic
encapsulation as fair search is essentially a committed choice.
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6 Conclusion

We have presented a new operational semantics for functional logic languages,
like Curry [11]. It covers in a clear and seamless way two main problems of the
integration of functional and logic languages: encapsulated search and sharing
across non-determinism. Both are in our opinion key issues for the applicability of
functional logic languages in practice. The key idea is to handle non-determinism
as a (lazily constructed) data structure. We obtain a deterministic semantics in
which search strategies, like depth-first and breadth-first search, can easily be
defined as pure functions on top of the resulting SearchTree by the user. The
up to now unreached purity of encapsulation enables new programming methods
like the delaying of non-deterministic choices.

At the moment we have two implementations based on this semantics. The
first is an interpreter, exactly implementing the operational semantics ⇓. It is
very useful for analyzing how the operational semantics works and for com-
puting small examples. We also developed a compiler for this semantics. The
key feature of the implementation is the representation of the search tree as a
data structure in the heap, which is not provided by the existing Curry imple-
mentation and makes the extension of these systems very difficult. Hence, we
implemented a new compiler which translates Curry to Haskell (the Kiel Curry
System, KiCS). It implements Curry’s non-determinism by means of extended
Haskell data structures providing special constructors for representing the inter-
nal OR and FAIL constructors of our semantics. The implementation handles
encapsulated search and sharing across non-determinism similar to the seman-
tics presented in this paper. In many practical applications this compiler has
proven that the presented approach is feasible for general use.
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Abstract. Given the combinatorial nature of cellular signalling path-
ways, where biological agents can bind and modify each other in a large
number of ways, concurrent or agent-based languages seem particularly
suitable for their representation and simulation [1,2,3,4]. Graphical mod-
elling languages such as κ [5, 6, 7, 8], or the closely related BNG lan-
guage [9,10,11,12,13,14], seem to afford particular ease of expression. It
is unclear however how such models can be implemented.1 Even a simple
model of the EGF receptor signalling network can generate more than
1023 non-isomorphic species [5], and therefore no approach to simulation
based on enumerating species (beforehand, or even on-the-fly) can handle
such models without sampling down the number of potential generated
species.

We present in this paper a radically different method which does not
attempt to count species. The proposed algorothm uses a representation
of the system together with a super-approximation of its ‘event horizon’
(all events that may happen next), and a specific correction scheme to
obtain exact timings. Being completely local and not based on any kind
of enumeration, this algorithm has a per event time cost which is inde-
pendent of (i) the size of the set of generable species (which can even be
infinite), and (ii) independent of the size of the system (ie, the number of
agent instances). We show how to refine this algorithm, using concepts
derived from the classical notion of causality, so that in addition to the
above one also has that the even cost is depending (iii) only logarithmi-
cally on the size of the model (ie, the number of rules). Such complexity
properties reflect in our implementation which, on a current computer,
generates about 106 events per minute in the case of the simple EGF
receptor model mentioned above, using a system with 105 agents.
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EGFR network can be analyzed using these programs”.
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1 Introduction

An important thread of work in systems biology concerns the modelling of
the intra-cellular signalling networks triggered by extra-cellular stimuli (such as
hormones and growth factors). Such networks determine growth, differentiation,
and other cell responses. Many pathological states and diseases are now traced
down to subtle dysfunctions of components in those noteworks. Accordingly there
is a increasing need for fine-grained, executable, and quantitative descriptions of
those pathways [16].

Early on, Regev et al. [1, 2, 3] have proposed to describe those complex net-
works using π-calculus [17], a minimal language for concurrent systems. Vari-
ants emphasizing different types of biological processes have been put forward
since [18,19,20,4,21,22]. While the syntactic choices differ, they share a same con-
cern, namely to rescue the structure-less language of chemical reactions, and to
convey the combinatorics of real biological networks in a natural and executable
notation. We shall use here an agent-based language called κ [8,7,6,5]. The agents
we consider have internal states, accommodating protein post-translational mod-
ifications. They can also bind each other at certain specific sites called ‘domains’,
allowing for a direct representation of protein assembly into so-called ‘complexes’.
This simple graph-rewriting framework naturally captures the domain level de-
scription of protein-protein interactions [23].

An example of a signalling model written in κ is that of the EGF receptor
signalling network presented in Ref. [5]. This simple model generates more than
1023 distinct species, and that places specific demands on a simulation algorithm.
Any simulation method based on enumerating species beforehand, or on-the-fly,
has to sample down the combinatorics of such models to make them amenable to
species counting. This is the approach followed by the current implementations of
the BNG language which attempts to generate species beforehand, as well as by
the recent SPIM (an implementation of stochastic π-calculus) and beta-binders
(another process language for representing biological systems) implementations
which register species on-the-fly [24,25]. It is also the route taken by differential
models which ignore altogether the structure of agents and so don’t have the
advantage of a rule-based or contextual semantics in the first place.

We propose here a radically different method which does not attempt to count
species, and works even if there is an infinite number of them. The obtained algo-
rithm has a per event cost which does not depend on the number of distinct species,
nor does it depend on the number of agent instances in the system. The next sec-
tion gives a preliminary description of the algorithm. (Some of the relevant notions
only find a complete definition later in the text.) We must hasten to say that our
method is not unconditionally faster, and enumeration-based techniques, includ-
ing differential equations, when they apply, that is to say when the combinatorial
complexity is limited, will in general be more efficient. However for the particular
application to signalling systems where the combinatorial complexity makes enu-
meration unfeasible, only such an approach can take the complexity upfront. The
simulation algorithm was implemented and tested on the EGFR example model.
Using 105 initial agent instances of various types, it takes 30’ to run that model
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for a total of 107 events on an ordinary computer. Thus this methodological route,
which can non doubt still be perfected, seems to make hitherto unfeasibly complex
cellular signalling models amenable to simulation.

2 Preliminaries

We recall first the generic derivation of a continuous time Markov chain from
a labelled transition system. In the particular case of flat chemical reactions
(aka multiset rewriting, or equivalently Petri nets) this derivation has come to
be known as Gillespie’s algorithm [26, 27, 28]. This method is widely used to
simulate the kinetics of coupled elementary chemical reactions. The idea is to
assign to a reaction a probability which is proportional to the number of its
instances (or matches), while the frequency at which events are produced is
obtained from the total number of rule instances.

2.1 Exponential Distributions

We start with a few definitions relevant to exponential distributions, which we
will need when considering the temporal aspects of the simulation algorithm.

For a > 0, n ∈ N, t ∈ R
+ define:

expa,n(t) = ae−at(at)n/n! (1)

Lemma 1. For all n ∈ N, expa,n is a probability density on R
+ with comple-

mentary cumulative distribution function Ha,n(t) := (
∑n

0 (at)i/i!)e−at.

Proof. Ha,n is clearly decreasing and continuous in t; Ha,n(0) = 1, Ha,n(∞) = 0;
so Ha,n is a complementary distribution function, and since expa,n =− d

dtHa,n(t),
expa,n is the density associated to Ha,n.

Since Ha,n is increasing with n, the associated probability shifts to the right
when n increases (see Fig. 1).

Lemma 2. Define inductively on f in N
R (equipped with the product ordering):

Ha,f (t) =
∑

r∈R

f(r)
F

Ha,f−1r(t) + e−at (at)F

F !

with a > 0, 1r ∈ N
R the indicator function of {r}, and F :=

∑
r∈R f(r). (By

convention all terms including an f(r) < 0 are supposed to be zero.)
One has Ha,f = Ha,F .

Proof. The definition above is a well-formed inductive definition on the product
ordering on N

R and therefore uniquely defines Ha,f . Now, defining Ga,f (t) :=
Ha,f (t) − (

∑F
0 (at)i/i!)e−at, it is easy to see that

Ga,f (t) =
∑

r∈R

f(r)
F

Ga,f−1r(t)

and since Ga,f (t) ≡ 0 is a (unique) solution the conclusion follows. �
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Fig. 1. Shifted exponential distributions: H1,0, H1,1, and H1,2. The base curve H1,0 is
the usual exponential distribution with density expa(t) = ae−at = expa,0(t).

So Ha,f is just a complicated way to write Ha,F ; this will be used later where f
will map a reaction s to f(s) the number of clashes on an s selection attempt as
defined below (F is then the total number of clashes).

2.2 The Basic CTMC Construction

Usually one sees a labelled transition system (LTS) as an R-indexed family of
binary relations →r on the state space X . But in a quantitative setting it is
important to know in how many distinct ways one can go from a state x to
another one x′, since the more, the likelier.2 We will therefore start with a slight
variant of LTSs that represent events explicitly and allows for counting them.

Suppose given a state space X , a finite set of labels R, a rate map τ from
R to R

+, and for each r ∈ R, and x ∈ X , a finite set of r-events E(x, r), and
an action map · x from E(x, r) to X . The action map specifies the effect of an
event on the state x. We write E(x) for the (finite) disjoint sum

∑
r∈R E(x, r)

which we will call the event horizon.
One can think of r as a reaction or a rewrite rule, of τ(r) as a relative measure

of the rule rate, and of an event e ∈ E(x, r) as a particular application of r.
Define the activity of r at x as the quantity a(x, r) := τ(r)|E(x, r)|, and the

global activity at x as a(x) :=
∑

r∈R a(x, r) ≥ 0.
Supposing a(x) > 0, the probability at x that the next event is e ∈ E(x, r),

and the subsequent time advance are given by:

p(x, e) := τ(r)/a(x) (2)
2 An example is r1 = A →, r2 = A, B → A, then A,nB →r1 nB and A, nB →r2

A, (n − 1)B, but the latter can happen in n different ways, whereas the former can
happen in only one way. As a consequence A is protected from erasure by r1 as long
as there is a significant number of Bs.
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p(δt(x) > t) := e−a(x)t (3)

The probability that the next event will be an r-event is a(x, r)/a(x), which
justifies calling a(x, r) the activity of r. The time advance δt(x) is an exponential
random variable with parameter a(x), ie has density expa(x). Note that the time
advance is independent from the actual event e that took place and only depends
on x. Therefore, the lower the activity, the slower the system, and in the limit
where the activity is zero, ie a(x) = 0, the time advance is infinite, which means
that the system is deadlocked. This implies among other things that the right
unit of measure for performance of a simulation algorithm is the cost of an event,
not the cost of a unit of simulation time. Indeed how many events are needed
for a time unit to pass depends on the activity.

The above data (X, R, E , τ, ·) defines a continuous time Markov chain (CTMC)
with values in X , where the time advance is as in (3) above and:

p(x → x′) =
∑

r∈R

∑
{e∈E(x,r)|e·x=x′} p(x, e)

2.3 Implementation by Conditioning

Let us write rand(A, f) for the random variable which returns an element of
the set A according to the unique probability on A which has density f wrt to
the uniform one. That definition will only be used for sets A with a canonical
structure of measurable space that evidently carries a uniform distribution.

One gets a straightforward implementation P (x) of the CTMC above as a
random function that takes as an input x the current state, and returns a selected
event e and a time advance δt:

r := rand(R, λr.a(x, r)/a(x));
e := rand(E(x, r), 1);
δt := rand(R+, expa(x))

The question one wishes to address is how to implement this Markov chain
efficiently when the underlying labelled transition system is generated by a κ
model. In that case x stands for the current system of agents, including their
bindings and internal states, and an event x →r x′ corresponds to the application
of a graph-rewriting rule r to x (which kind of graph rewriting we are using is not
important at this stage of the discussion). That brings additional structure to the
transition system. Specifically each rule r has a left hand side that decomposes
as a multiset of connected components C(r), and the set E(x, r), ie the set of the
instances of r in x, can be naturally seen as a subset of the Cartesian product
×c∈C(r)[c, x], where [c, x] is the set of matches for c in x. Depending on how
a match is defined, E(x, r) may be a proper subset of the above product and
therefore contain pseudo-events that do not correspond to the application of a
rule.3 Using this approximate decomposition of the event horizon E(x) makes it
3 In our specific case one requires that two distinct connected components in C(r) be

matched to disjoint set of agents in x. For instance a rule A,A → B will mean that
one must pick in x two distinct As in x. In categorical terms the ‘disjoint sum’ is only
a weak sum in the category of graphs and graph embeddings we are considering.
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possible to handle states and events locally, and at the same time preserves the
CTMC semantics above as we will show now.

Suppose given for each x, and r a finite E ′(x, r) ⊇ E(x, r) (and therefore
a′(x, r) ≥ a(x, r)). We can define an alternative implementation Q(x):

[0] f := 0;
[1] r := rand(R, λr.a′(x, r)/a′(x));
[2] e := rand(E ′(x, r), 1);
[3] if(e �∈ E(x, r))(f := f + 1; goto [1]);
[4] δt := rand(R+, expa(x),f)

Just as P (x), Q(x) defines a distribution on E(x, r) since pseudo-events are
rejected at step [3]. We call such a rejection a clash. This new procedure also
defines a time distribution at step [4], the choice of which depends on f the
number of successive clashes.

The probability to fail at step [3] given that r was chosen at step [1] is given
by εr(x) = |E ′(x, r)�E(x, r)|/|E ′(x, r)|. Define ε(x) := maxs∈R εs(x). If ε(x) = 0
then no clash can happen, and P (x) and Q(x) are clearly equivalent. In fact this
is always true:

Proposition 1. For all x ∈ X, P (x) and Q(x) generate the same probability
distribution on E(x) (next event), and R

+ (time advance). The expected number
of clashes for Q(x) is bounded by ε(x)/(1 − ε(x))2.

Proof. The probability to draw a rule s at step [4] and then fail at step [3] is
(a′(x, s)/a′(x))εs(x). Therefore the probability to eventually obtain an event in
E(x, r) is:4

(1 − εr(x))
a′(x, r)
a′(x)

· 1
(1 −

∑
s∈R(a′(x, s)/a′(x))εs(x))

=
(1 − εr(x))a′(x, r)

a′(x) −
∑

s∈R a′(x, s)εs(x)
=

(1 − εr(x))a′(x, r)
∑

s∈R a′(x, s)(1 − εs(x))

and since a′(x, s)(1−εs(x)) = a(x, s), the above probability is a(x, r)/a(x) which
is the same as the one defined by P (x).5

Hence the Q(x) selection scheme is equivalent to that of P (x) for the next event,
whatever the values of εr are. Of course its expected time of convergence will de-
pend on those values. The probability of converging after exactly n clashes is:

4 the left term represent the successful drawing of r at step 1, and of an e in E(x, r)
at step 2, and the right one includes all possible sequences of failures according to
the usual formula 1/(1 − x) =

�
xn.

5 A limit case being when for all s, εs(x) = 1, or equivalently a′(x) =
�

a′(x, r)εr(x)
(which prevents the above computation to work, see second line above), or yet equiv-
alently when the real activity a(x) is zero. In this case the protocol will loop forever
never finding a legitimate event, since there is none. Concretely, one stops the simu-
lation after a certain number of successive clashes, and it works well. Such precisions
are necessary since this case will happen in practice.
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(
∑

s εs(x)a′(x, s)/a′(x))n(
∑

s(1 − εs(x))a′(x, s)/a′(x)) ≤
ε(x)n(

∑
s(1 − εs(x))a′(x, s)/a′(x)) ≤ ε(x)n

So the expected number of clashes is bounded by
∑

n nε(x)n = ε(x)/(1− ε(x))2.
To see that Q(x) has also the time advance right, let us start with the case of

a single reaction with clash probability ε in a given state. In this case the real
activity at x is a′(x)(1 − ε), so what we need to prove is:

∑
n εn(1 − ε)Ha′(x),n(t) = e−a′(x)t(1−ε)

or equivalently:

ea′(x)t ∑
n εnHa′(x),n(t) = e−a′(x)tε/(1 − ε)∑

n εn
∑

0≤i≤n(a′(x)t)i/i! = e−a′(x)tε/(1 − ε)

Developing the right hand side as a power series of ε gives:

e−a′(x)tε/(1 − ε) = (
∑

i

(a′(x)t)i

i!
εi)(

∑
j εj) =

∑
n(

∑
0≤i≤n

(a′(x)t)i

i!
)εn

So the time advance is correct. The case of many reactions follows easily from
the same computation and Lemma 2. �

We have obtained a flexible scheme that we will use to ‘pad’ the event horizon
and make random selections and updates of events feasible. We now turn to
a definition of κ including a description of its LTS semantics (from which the
CTMC semantics follows as in the general case above); we will then proceed to
the detailed definition of the simulation algorithm; and finish with a discussion
of the complexity aspects of the algorithm.

3 κ

We have made a certain number of simplifications to the actual language to keep
the notations and definitions simple.

3.1 Agents and Interfaces

Atomic elements of the calculus are called agents (a, a′, . . . ) and represent basic
Lego pieces of the system. The grammar describing an agent is given Fig. ??.
Each agent has a name and an interface, that is to say a set of interaction sites
(x, y, z, . . .) where each site is equipped with an internal state ι, and a link state
λ. The former is used to denote post-translational modifications and sometimes
cellular locations.

A site may have an unknown link state (λ = ?), or be connected to an unde-
termined site (λ = ), or be connected via a particular edge (λ = α ∈ L), or be
free (λ = ε). The associated ordering is given Fig. ??.

Let Site(a) denote the sites of the agent a, Intf (a) its interface, and Name(a)
its name. We suppose given a signature function Σ which maps an agent’s name
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a ::= N(σ) (Agent)
N ::= A, B, · · · ∈ N (Name)

σ ::= ∅ | xι,λ, σ (Interface)
ι ::= ε (Any state)

| m ∈ I (Internal state)
λ ::= ε (Free site)

| ? (Bound or free site)
| (Semi link)
| α, β, · · · ∈ L (link)

Fig. 2. Syntax of agents, assuming 3 disjoint sets of agent names N , link names L, and
internal states I

m ∈ I

ε

��
ε α ∈ L��

?

�����������
��������

Information

��

Fig. 3. Ordering internal and link state values

to the set of sites its interface may contain and we assume that Site(a) ⊆
Σ(Name(a)).

An agent a is said partial if its interface is partial, ie:
- there exists xι,λ ∈ Intf (a) such that ι = ε or λ ∈ {?, }.
- or Site(a) ⊂ Σ(Name(a)).

Note that the form A(xε,?, σ) is equivalent (in terms of potential interactions)
to the simpler form A(σ) since no information is required concerning the states
of site x. We shall thus consider agents up to the following equivalence:

A(xι,λ, yι′,λ′
, σ) ≡ A(yι′,λ′

, xι,λ, σ)
A(xε,?, σ) ≡ A(σ)

for x, y in Σ(A).

3.2 Solutions and Embeddings

We use the chemical term solution to denote a syntactical term of the form:

S ::= ∅ | a, S (Solution)

Solutions are considered as multisets of agents and are thus taken up to congru-
ence a, S ≡ S, a. In the following we will consider them as sets of occurrences of
agents and by convention we use a, b, · · · ∈ S to denote occurrences of agents in
a solution S. In particular a �= a′ indicates different occurrences of agents even
though a may be syntactically equal to a′. We will write (a, x) ∈ S to mean
a ∈ S with x ∈ Intf (a).
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Say a solution S is well formed if eack link name in S occurs exactly twice.
Say a well formed solution is partial if it contains partial agents, and complete
otherwise.

Link names α, β, . . . are implicitly bound in all solutions, and we extend the
equivalence on agents, and consider two solutions differing only in the names of
their edges and in the position of their agents to be equivalent. As a result solu-
tions may be seen as (site) graphs, and we shall use graph-theoretic terminology
freely. We give Fig. 4 an example of the graphical notation we commonly use.

A B
y

phos

t

z

x

y

S

Fig. 4. Graphical representation of the solution S = A(xα, yphos,?, z , t), B(yα). The
dotted semi edge indicates that the link state of site y is unknown, while the solid
semi edge shows that site z is bound in the context. Internal state phos denotes a
phosphorylated site.

A map φ between solutions S and T is an embedding if for all a, b ∈ S:

φ(a) = φ(b) ⇒ a = b
Name(a) = Name(φ(a))
Site(a) ⊆ Site(φ(a))
xι,λ ∈ Intf (a) ⇒ xι′,λ′ ∈ Intf (φ(a)) with ι ≤ ι′, λ ≤ λ′

where ≤ denotes the partial order induced by the semi lattices given Fig. ??.
Given a possibly partial map between solutions S and T , we write cod(φ) for

the sets of occurrences of sites in the image or codomain of φ in T , and dom(φ)
for those in its domain.

We say an embedding φ is an iso if it is bijective on nodes, and φ−1 is also an
embedding. Two embeddings φ1, φ2 between S and T are said to be equivalent
if there is an iso ψ from S to S such that φ1 = ψφ2, and one writes [φ] for φ’s
equivalence class. Finally we write [S, T ] for all embedding of S in T .

We give an example of an embedding Fig. 5. Contrary to the usual notion of
graph morphism, one asks embeddings to ‘reflect’ edges, ie a free site can only
be mapped to a free one. Another unusual fact is the following simple rigidity
lemma which is key for the control of the simulation complexity:

Lemma 3 (rigidity). If S is connected, a non-empty partial map φ : S → T
extends to at most one embedding of S into T .

So if S is connected, the number of embeddings of S in T is linear in |T |, and so
is the cost of verifying the existence of an embedding, given a particular ‘anchor’
agent or site in T .
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A B
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z

x

y

S
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phos

x

y
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z
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x

t

ubi

T

x

y

Fig. 5. Solution S embeds into T : note that site t on A has to stay free in the codomain
of the embedding

3.3 Rules and Transitions

In contrast with process algebras where rules are simple and behaviours are
mostly encoded in the processes, the dynamics of solutions in κ is expressed in
rewriting rules. Rules can test the immediate environment of an agent, whereas
in a process approach one would have to encode that exploration in the partici-
pating processes, (although a translation from κ to π-calculus is possible [7,6]).

One could use double push-out methods to describe our rewrite rules, but
we have found more convenient to define a rule as a pair 〈S, act〉 where S is a
solution, and act is a map from agents in S to sets of actions subject to certain
conditions explained below.

The actions one may perform on agents are:6

- set(x, m) to set the internal state of site x to m ∈ I,
- bnd(x, α) to set the link state of site x to α,
- and brk(x, α) to set the link state of site x to ε.

Given a rule r = 〈S, act〉, one says:
- (a, x) ∈ S is ι-modified by r if set(x, m) ∈ act(a) for some m;
- (a, x) ∈ S is λ-modified by r if bnd(x, α) or brk(x, α) ∈ act(a) for some α.
One says (a, x) ∈ S is modified by r if it is either ι-modified, or λ-modified.

An action map act on S is said to be valid if:
- every (a, x) ∈ S is ι-modified at most once and

set(x, m) ∈ act(a) ⇒ xι,λ ∈ Intf (a), ι �= ε

- every (a, x) ∈ S is λ-modified at most once and

bnd(x, α) ∈ act(a) ⇒ xι,ε ∈ Intf (a) , ∃!(b, y) ∈ S : bnd(y, α) ∈ act(b) , α �∈ S,
a �= b
brk(x, α) ∈ act(a) ⇒ xι,α ∈ Intf (a) , ∃!(b, y) ∈ S : brk(y, α) ∈ act(b), a �= b

Well formedness of solutions is evidently preserved by valid actions.
6 The full language also allows the deletion and creation of agents, but that complicates

the presentation of the operational semantics. Eg if one erases an agent then one has
to erase all the links it shares with its neighbours. We have refrained from presenting
the full set of actions since the simulation strategy can be discussed just as well in
this simpler ‘mass-preserving’ fragment.
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Whenever act is an action map over S, we write act ·S for the solution obtained
by applying act to agents of S, with the obvious definition. Given an embedding
φ : S′ → S, one writes φ(act) · S for the result of act on S along φ, again with
the obvious definition.

Definition 1 (Transition system). Let R be a set of rules, S a complete
solution, r = 〈Sr, actr〉 a rule in R, and φ : Sr → S an embedding. One defines
the transition relation over complete solutions associated to R as:

S →r
φ φ(act r) · S

That definition of the LTS of a rule set fits in the in the framework of the
preceding section:
- the state space X is the set of all complete solutions,
- the set R is the set of rules of interest,
- the r-event horizon E(x, r) is {[φ] | φ ∈ [Sr, x]} (instances of r),
- and [φ] · x = φ(actr) · x.

Thus one obtains from any κ rule set a CTMC as in Subsection 2.2.

3.4 Rule Activation and Inhibition

We need one last preparatory step pertaining to a well studied notion in concur-
rency theory namely causality [29,30,31]. In the particular framework of process
algebra numerous notions of causality have been studied [32,33,34,35] and some
were used to study dependencies among events in biological systems [36, 37].
Causality is a relation among computation events, and we wish to define here
an analog notion between rules.

Consider for instance a solution composed of a thousand As and a thousand
Bs together with two rules r1 = A → B, and r2 = B → C. Then it is always the
case that the application of r1 increases the probability to trigger r2. Thus, we
may say that r1 activates r2 although it is not always the case that an instance
of r2 will use a B created by an instance of r1 (B could be created in another
way). In Section 4, activation and inhibition will allow us to bound the cost
of updating various data structures after the application of a given rule in the
stochastic simulation, and obtain a neat statement of its complexity properties.

A rule r1 = 〈S1, act1〉 activates a rule r2 = 〈S2, act2〉, written r1 ≺ r2 if there
exists S, φ : act1 · S1 → S, and ψ : S2 → S such that cod(φ) ∩ cod(ψ) contains
at least one site modified by r1.

Similarly, r1 inhibits r2, written r1#r2, if there exists S, φ : S1 → S, and
ψ : S2 → S such that cod(φ) ∩ cod(ψ) contains at least one site modified by r1.

Note that neither inhibition nor activation is a priori a symmetric relation.
Fig. 6 shows an example of an activation.

4 The Simulation Algorithm

There are three ingredients to the algorithm. The first is to introduce in the
state of the simulation an explicit representation of the event horizon E(x).
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Fig. 6. Activation relation: the image by the upper embedding φ of B’s modified site
x is also in the image of the lower embedding ψ in S; therefore the upper reaction
activates the lower one

The second is to use a product approximation of E(x), and maintain separately
a representation of the embeddings of each component of a given rule. The
last ingredient is to correct for that approximation by using the time advance
corrections introduced in Section 2.

4.1 The State

Given a fixed set of rules R, the simulation state consists in:
- a complete solution S
- a matching map which associates a connected component c of a rule r to the
set of its possible embeddings in S:

Φ(r, c) := [c, S]

- an (overestimated) activity map, with aut(Sr) is the set of automorphisms of
the left hand side of rule r:7

a′(r) = τ(r)/|aut(Sr)| · ×c∈C(r)|Φ(r, c)|

- a lift map which maps (a, x) ∈ S to the set of embeddings in Φ(r, c) that have
(a, x) in their codomain, for some r, and c ∈ C(r):

�(a, x) := {〈r, c, φc〉 | φc ∈ Φ(r, c), (a, x) ∈ cod(φc)}

The maps Φ and a′ track all rule applications and their activities. Both are
computed once during an initialization phase and then updated with local cost at
7 Recall from the preceding section that an event is isomorphism class of embeddings;

the term aut(Sr) makes sure that one is counting events and not embeddings.
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each simulation step. The associated data structure has a size which is controlled
as follows:

Proposition 2. The size of the matching map is linear in the size of S and
bounded by amax(R) · |R| · |S| where amax(R) is the maximum arity in R.

Proof. By Lemma 3, each component in Φ(r, c) is uniquely defined by the image
of any agent of c in S. Therefore, |Φ(r, c)| ≤ |S|, and the size of the injection
map is bounded by amax(R) · |R| · |S| �

4.2 The Event Loop

The event generating loop naturally decomposes into a drawing phase and an
update phase described below (See Fig 7).

draw rule R for the 

next event and 

advance time

apply rule R 

and update

R-related counts

negative update 

via RIM or via 

matching maps

positive update 

via RAM

precompute RIM, 

RAM, and 

matching maps

Fig. 7. The event generating loop; the RIM is the rule inhibition map, the RAM is the
rule activation map

The drawing phase:

1. set clash := 0
2. draw some r with probability a′(r)/a′(R)
3. for c ∈ C(r) draw uniformly φc ∈ Φ(r, c)
4. if

∑
C(r) φc is not injective increment clash and go to 2

5. draw time advance δt with Ha′(S),clash and increase global time
6. do S →r

φ S′ with φ := 〈φc; c ∈ C(r)〉
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The drawing phase is a straightforward specialisation of the protocol Q(x) of
Section 2 and is therefore correct. Note that the criterion for a clash is the lack
of joint injectivity of the component embeddings φc. It remains now to see how
to perform the updates to the event horizon that the application of the selected
event made necessary.

The negative update phase:
for all pairs (a, x) ∈ S modified by r, φ and 〈r′, c, φc〉 ∈ �(a, x) do:

1. remove φc from Φ(r′, c) and decrease a′(r′) accordingly
2. for all pairs (b, y) ∈ cod(φc) remove 〈r′, c, φc〉 from �(b, y)
3. set �(a, x) := ∅

The positive update phase:
for all pairs (a, x) ∈ S modified by r, φ and r′ such that r ≺ r′ do:

1. for every c ∈ C(r′) try to find a (unique) embedding extension φc ∈ [c, S′]
of the injection c �→ {a}

2. for all obtained φcs add φc to Φ(r′, c), increase a′(r′) accordingly, and add
〈r′, c, φc〉 to �(b, y) for all pairs (b, y) ∈ cod(φc).

The negative update consists in deleting all embeddings using sites which
were modified by the application of r (and deleting associations in the lift map
accordingly). It results in a decrease of the (strictly positive) activities of all
the rules which were using those embeddings. In particular the activity of r
decreases at this step. During the positive update one first proceed by “waking-
up” all the rules which are activated by r in the sense defined in Subsection 3.4.
(This is essential to control the dependency in |R|, but otherwise not related to
the other complexity properties). Then one tries to apply those rules using the
modified agent as an anchor to build new embeddings. For each of the obtained
new embeddings, one updates the matching map (and the lift map accordingly)
which results in a potential increase of the activities of the rules which in turn
may use those embeddings.

4.3 Complexity

We bound the cost of an event loop in terms of the following parameters of the
rule set:
- smax(R) the maximal number of sites modified by a rule,
- cmax(R) the maximal size of a rule connected component, and
- amax(R) for the maximal rule arity (usually 2).
- δ≺(R) (resp. δ#(R)) the maximum out-degree of the activation (resp. inhibi-
tion) map (see Subsection 3.4).

We neglect the cost induced by clashes as they only have an impact on small
solutions which are not the target of our algorithm. Indeed the simulation of the
EGFR example [5] for 106 events, with a total of 3000 agents produced only 4
clashes. The algorithm uses extensible arrays whose size is bound according to
Prop. 2, so that the deletion (negative update) and insertion (positive update)
or uniform selection of a component in the matching map takes a constant time.
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Proposition 3. For any rule set R, there exists constants C1 and C2 such that
the event loop cost is bounded above by:

C1 · log(|R|) + C2 · amax(R) · cmax(R) · smax(R) · (δ#(R) + δ≺(R))

Proof. The dominant cost in the drawing phase is step 2 which can be done
in C1 · log(|R|) for some constant C1 using an appropriate tree representa-
tion.8 Applying r at step 6 is linear in smax(R) since rules perform at most
one modification per site. The complexity of the negative update is the follow-
ing: the number of pairs (a, x) in S modified by r is bounded by smax(R) and
for any such pair (a, x), the number of triple 〈r′, c, φc〉 in �(a, x) is bounded by
amax(R)·δ#(R). Indeed suppose (a, x) is modified by r, φ. Then if there is ψ �= φ
such that 〈r′, c, ψ〉 ∈ �(a, x), by definition r#r′. And for any rule r′ there are
at most amax(R) embeddings having (a, x) in their codomain. Steps 1 and 3
are performed in negligible time and step 2 takes a time at most proportional
to cmax(R). Hence the overall cost of the negative update is proportional to
amax(R) · cmax(R) · smax(R) · δ#(R).

The cost of the positive update is straightforward. The number of pairs (a, x)
modified by r is bounded by smax(R) and the number of rules to wake up is
bounded by δ≺(R). For each of these rules one has to look for amax(R) new
injections each of them being constructed in a time proportional to cmax(R). So
the overall positive update phase takes a time proportional to amax(R)·cmax(R)·
smax(R) · δ≺(R), and the overall time of the update phase is proportional to
amax(R) · cmax(R) · smax(R) · (δ#(R) + δ≺(R)). �

Note that the rule inhibition map is not used in the algorithm above, but is used
in giving an upper bound on the per event cost.

5 Conclusion

We have presented a low event cost stochastic simulation algorithm for κ. This
algorithm generalises the Gillespie algorithm. The key insight is to keep a repre-
sentation of the next events which is linear in the size of the state, and does not
present unfeasible space requirements, while being locally updatable. Although
this representation introduces event clashes, it can be made to coincide with the
intended stochastic semantics, by skewing the next reaction and time advance
distributions in a suitable way.

In practice, as one would expect from the complexity analysis, the algorithm
indeed scales well. We were able to run simulations involving a million agents,
8 The rule set can be represented as a tree of size |R| whose nodes are triples

〈ri,a′(ri),a′(subi)〉 where a′(subi) is the sum of the activities of the rules contained
in the left and right subtrees. Drawing a random rule according to its activity con-
sists in generating a random number 0 < n ≤ a′(R) and, at node i, either returning
ri if n < a′(ri) or doing one of the following alternatives: either going to the left sub-
tree j whenever n < subj or to the right subtree k and it that case set n := n−subj .
This drawing scheme is in logarithmic time.
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with about 50 rules, and about 10000 non-isomorphic reachable configurations,
resulting in a simulation time of about 15 minutes for a million events. So even in
conditions where agents far exceed in number the possible combinations, which
are a priori not the best for our dimension-insensitive method, the algorithm still
works. It also scales well with respect to the number of rules, because it is using
a static approximate causality structure to determine whether a rule should be
activated, and we ran simulations on (machine-generated) systems comprising
thousands of rules, with no detectable impact on event costs.

Previous simulation methods include the traditional species-sensitive
procedures, working on a ground rewriting system where every configuration is
identified beforehand. This is the way the current BNG implementation works,
although it is rule-based (hence the name biological network generator). The sim-
ulation then boils down to the simulation of stochastic Petri nets, and a natural
implementation is to partition events into the ground reactions they correspond
to, and count each class, which is an efficient thing to do for small dimensions.
The fact is that all such methods have to sample the dimensionality of the rule
set (since the generated network could be infinite), either explicitly, as in the
current BNG implementation, or implicitly as in traditional ODE modelling,
whereas as said above, the method we present here does not.

An intermediate approach one might think is worth pursuing, as in the recent
betaWB implementation [25] of an extension of the beta-binders language to
enable the description of complexes [38], or the latest SPIM implementation [24],
is that of computing the species produced during a single trajectory on-the-fly.
This will certainly fare better than a prior enumeration as in the current BNG
implementation, however it is still showing a dependency in the size of that
increasing set of species, because one has to scan it at each step to identify
(up to isomorphism) the species just produced. In signalling systems where the
set of on-the-fly species becomes large, this dependency could slow down the
simulation.

The StochSim [39] simulation is based on a different agent-centric scheme,
whereby one picks two agents A, B (supposing all rule are binary to simplify),
and apply a reaction if any does. It shares an interesting feature with ours,
namely that it behaves well with respect to the number of reactions |R|, an
effect obtained in our case by resorting to the activation relation. However,
it generates as many unproductive steps on average as there are non-reacting
pairs of agents, and that number is typically O(N2) where N is the number of
distinct species. This can be efficient only if the number of reactions |R| � N ,
ie if the reaction network is dense, which is not the expected case for signalling.
Specifically, the probability of success, meaning of picking two reacting agents, is
about dm/N where dm is the mean number of co-reactants; so the mean time for
success will be N/dm, which is increasingly bad if dm is constant or logarithmic
in N (a reasonable assumption for signalling). So the Stochsim method cost may
be independent of |R|, but it is getting slower linearly in N (supposing dm to be
constant in N) the dimension of the system, so is highly species sensitive.
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There are various attempts at general simulation engines for grammars of
various sorts. An interesting one is in Ref. [40], where the authors develop a
formal semantics in terms of operator algebras; another is MGS [41]. Those
generic engines address a much more general situation than we have done in this
paper. It should be instructive however to see to which extent the event horizon
methods we have developed here apply.
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Abstract. This paper studies types and probabilistic bisimulations for a timed
π-calculus as an effective tool for a compositional analysis of probabilistic dis-
tributed behaviour. The types clarify the role of timers as interface between non-
terminating and terminating communication for guaranteeing distributed liveness.
We add message-loss probabilities to the calculus, and introduce a notion of ap-
proximate bisimulation that discards transitions below a certain specified prob-
ability threshold. We prove this bisimulation to be a congruence, and use it for
deriving quantitative bounds for practical protocols in distributed systems, includ-
ing timer-driven message-loss recovery and the Two-Phase Commit protocol.

1 Introduction

Designing formalisms for the development and verification of distributed systems (DS),
understood as computation in the presence of partial failures and malevolent adver-
saries [26], is challenging: DS are often written in semantically rich high-level lan-
guages with expressive typing systems. Failures in DS (e.g. message-loss) are typi-
cally detected by timing. Hence programming environments for DS feature sophisti-
cated timer mechanisms. State explosion, the key problem in verification, is worse in
DS because timing and partial failures increase dramatically the space of possible sys-
tem behaviour. Finally, although DS operate in adversarial environments, the behaviour
of adversaries and the occurrences of failures is nevertheless structured: for example
message-loss in the Internet can be assumed to occur only rarely, and cryptography is
based on similar frequentist suppositions about attackers guessing passwords correctly.
Such structural assumptions are usually phrased in probabilistic terms. We propose a
type-based analysis for DS that addresses these points using a distributed, timed and
probabilistic π-calculus: our formalism is not intended as an ultimate model for all is-
sues pertaining to DS, but a good starting point for further investigations, capturing the
above central elements in DS.

Following [3], we turn the π-calculus into a model for DS by adding locations and
allowing messages travelling between locations (but not within a location) to be lost.
This notion of failure exhibits a key feature of DS (as timers usually are provided to
handle message-loss), and is a stepping stone towards more advanced forms of fail-
ure. As timed computation is not known to be reducible to untimed computation, we
introduce (discrete) timing directly into our model via timers.

To allow compositional verification, to reduce the state space of checking distributed
process behaviour and to aid programming DS, we use types. Types constrain processes
and their contexts, leading to a marked reduction of possible behaviour. In this pa-
per, we focus on the linear type discipline studied and extended for various purposes

Z. Shao (Ed.): APLAS 2007, LNCS 4807, pp. 158–174, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Timed, Distributed, Probabilistic, Typed Processes 159

since [18, 23]. One of the key concepts of this discipline is to distinguish terminating
and (potentially) non-terminating communication channels [19] (often called deadlock-
freedom [20, 22]). This distinction is highly useful in DS, where exchanges on (po-
tentially) non-terminating channels correspond to remote communication, while termi-
nation is restricted to local interaction. For example loss of liveness due to failure is
counteracted in DS by aborting distributed invocations that do not respond within some
expected time. We model this situation with typing rules for timers such that a timer is
a converter from (potential) non-terminating to terminating channels. Timers thus offer
channel-based distributed liveness where an output at a certain channel can eventually
happen, despite failures, thus guaranteeing transparency between remote and local in-
vocations in the presence of message-loss. In addition, the linear type discipline has
the capability to model DS with failures and timers where applications written in typed
high-level languages run inside distributed locations, without losing expressivity and
usability. For example it can be extended to type-based programming analyses such
as secure information flow [19, 21], it embeds various higher-order programming lan-
guages fully abstractly [6, 19, 32] and models distributed Java [1] and web services [8].
The main contribution of this paper is to show that the linear type discipline generalises
smoothly to distributed computation: no new types have to be invented and all existing
typing rules stay unchanged.

To demonstrate the stability and applicability of our types, we add message-loss
probabilities to reason about fine-grained behaviour of distributed processes. We use
probabilistic automata [28] so non-determinism and probabilities can coexist. We define
a new form of approximate bisimulation that expresses that two processes are equiva-
lent, except that some of their transitions are allowed not to be matched, as long the
probability of those unmatched transitions is below some factor ε ∈ [0,1]. Because the
typing system works for non-deterministic message loss, it is also sound when message-
loss is governed by probabilities, justifying our typing system. We prove our approxi-
mate bisimulation to be a congruence, allowing compositional reasoning for DS. We
then use this approximate bisimulation to analyse message failure recovery mecha-
nisms. An RPC protocol (similar to a concurrent alternating bit protocol in [2], but
extended with timers and message forwarding), distributed leases [16] and the Two-
Phase Commit protocol (2PCP) with probabilistic message-loss are specified in our
timed π-calculus and reasoned about with the approximate bisimulation. Types and
their liveness property reduce the number of transitions to be compared in proofs for
DS. Omitted definitions and proofs are in [7]. We close with a summary of our results.

– We present the first typing for timers as a smooth generalisation of the linear type
disciplines. This clarifies the behavioural status of timers as a converter from non-
terminating to terminating behaviour. As a simple instance, we use the linear/affine
typing system from [19] where linear and affine stand for termination and (poten-
tial) non-termination, respectively. This extension is achieved without additional
types. All existing typing rules are unchanged on processes. The usefulness of the
typing system is demonstrated by examples.

– We introduce approximate bisimulation for the distributed π-calculus and prove
congruency. As far as we know, this is the first congruency result for probabilistic
bisimulations of the π-calculus.
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– We offer convenient verification of quantitative bounds for probabilistic processes.
We reason about some distributed protocols, and demonstrate the use of types for
reducing the burden of checking for bisimilarity of probabilistic processes.

2 Distributed Timed Processes

The syntax of processes (P,Q, ...) and networks (M,N, ...) is given by the following
grammar where a,b,x,y,v, ... range over a countably infinite set of names.

P ::= 0 || a〈ṽ〉 || a(x̃).P || !a(x̃).P || P |Q || (νa)P || timert〈a(x̃).P, Q〉
M ::= 0 || [P] || M | N || (νa)M

In applications we also communicate values in outputs, e.g. x〈3〉. We abbreviate x〈〉
to x, x().P to x.P and write x(c̃)P for (νc̃)(x〈c̃〉|P) when x /∈ c̃. Free names fn(·) are
standard, except that fn(timert〈a(x̃).P, Q〉) = fn(a(x̃).P)∪ fn(Q) and fn([P]) def= fn(P).
The structural congruence ≡ is defined as usual, but over our extended syntax: for
example, we have [(νa)P] ≡ (νa)[P]. The timer construct timert〈a(x̃).P, Q〉, with t > 0
being an integer, supports two operations: (1) timeout which means that after t steps it
turns into Q, unless (2) it has been stopped, i.e. that a message has been received by the
timer at a. It is easy to modify timers so they can be stopped at multiple channels.

STOP
timert+1〈a(x̃).P, Q〉 | a〈ṽ〉 → P{ṽ/x̃}

The flow of time is communicated at each step in the computation by a timestepper
function φ, which acts on processes. It models the implicit broadcast of time passing.
The main two rules are:

φ(timert+1〈P, Q〉) = timert〈P, Q〉 φ(timer1〈P, Q〉) = Q

The others are: φ(P | Q) = φ(P) | φ(Q), φ((νa)P) = (νa)φ(P) and otherwise φ(P) = P.
The remaining reduction rules for processes are given as follows:

PAR
P → Q

P|R → Q|φ(R) COM
a〈ṽ〉|a(x̃).P → P{ṽ/x̃} REP

a〈ṽ〉|!a(x̃).P → P{ṽ/x̃}|!a(x̃).P

RES
P → Q

(νa)P → (νa)Q IDLE
P → φ(P) CONG

P ≡ P′ → Q′ ≡ Q
P → Q

Note that we have φ(R) in the conclusion of [PAR]: this ensures that each active
timer, that is any timer not under a prefix, is ticked one unit at each interaction. [IDLE]
prevents the flow of time from ever being halted by deadlocked processes. The reduction
relation of the networks, →, is defined as:

INTRA
P → Q

[P] → [Q] PAR M → N
M|L → N|L RES M → N

(νa)M → (νa)N CONG M ≡ M′ → N′ ≡ N
M → N

LOSS [P|a〈ṽ〉] | [Q|a(ỹ).R] → [φ(P)] | [Q|a(ỹ).R] COM [P|a〈ṽ〉]|[Q|a(ỹ).R] → [φ(P)]|[φ(Q)|R{ṽ/ỹ}]

Rules for replicated input or timer input corresponding to [LOSS, COM] have been omit-
ted. We define: →→def= (≡ ∪ →)∗. [PAR] at the network level prevents the synchronisation
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of clocks between sites: this models that over the Internet, clock-synchronisation bet-
ter than about 100 milliseconds (which is several orders of magnitude coarser than the
temporal resolution available within CPU) is not currently achievable [25].

Example 1. The remote invoker a〈ṽ〉; (x̃).P �t Q sends a message on a to a remote site
and awaits a reply for t ticks on a private channel.

a〈ṽ〉; (x̃).P �t Q
def= (νr)(a〈ṽr〉 | timert〈r(x̃).P, (r(x̃).0 | Q)〉)

(Note that r(x̃).0 in the timeout continuation is necessary only for the typing to be
introduced in §3.) While the remote invoker can be used locally, its intended use can be
seen in the network M

def= [!a(ỹr).r〈b̃〉] | [a〈ṽ〉; (x̃).P�t Q] which has two reductions:

M →→ [!a(ỹr).r〈b̃〉] | [P{b̃/x̃}] M →→ [!a(ỹr).r〈b̃〉] | [Q | (νr)r(x̃).0]

Often such invocations are iterated: if the server does not reply within time t, we assume
message-loss to have occurred and resend the invocation a bounded number of times n
before giving up. This recovery mechanism can be defined inductively.

a〈ṽ〉n; (x̃).P�t Q
def= a〈ṽ〉; (x̃).P�t Qn−1 with Q0

def= Q, Qk+1
def= a〈ṽ〉; (x̃).P�t Qk

For example, we can model a remote arithmetic operation (using an extended syntax
with numbers and their operations).

[!a(yr).r〈y × 3〉] | [(νb)(a〈10〉100; (x̃).b〈x + 7〉�5 b〈0〉 | b(z).R)] (1)

This remote invoker tries to get 3×10 evaluated remotely and if there is no reply within
5 timesteps, it re-sends a request again. This routine is repeated until success or until
100 tries have been fruitless, when the invoker gives up and emits an exception (here in
form of a value 0): this is in essence what real DS do to deal with message failure.

3 A Typing System for Distribution and Timer

Our typing system is based on the linear/affine typing of [19] but without a sequentiality
constraint (i.e. multiple threads of control are permitted) and augmented for timers and
message-loss. This system is a proper generalisation of [5,6,19] and a simple instance of
various linearity-based typing systems which ensure that interactions at certain channels
will eventually succeed. [32] is the most accessible introduction to the key ideas behind
linear typing. Our aim is for the extension to DS to preserve the ability to embed high-
level sequential and concurrent multi-threaded languages [6, 19, 32].

3.1 Linear/Affine Typing System: Basic Idea

The linear/affine typing system introduced in [19] assigns types to free channels, which
constrain the direction of information flow, the kind of information that flows on a
channel, and how often a channel may be used: linear (exactly once), affine (at most
once) or replicated (an unlimited number of times, including not at all).
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This is achieved with the following basic constraints: first, each channel is classified
as either linear, affine, replicated-linear or replicated-affine; orthogonally, each channel
is either input or output. Affinity denotes possibly diverging behaviour in which a ques-
tion is given an answer at most once. Linearity means terminating behaviour in which
a question is always given an answer precisely once. Replicated-linear channels stand
for servers that are guaranteed to return an answer, while replicated-affine channels are
for servers that may exhibit divergence. Syntactically, typing enforces the following
constraints:

1. For each replicated name there is a unique replicator with zero or more outputs
2. For each linear or affine name there is a unique input with a unique output
3. Linear channels have no circular dependency
4. Affine input channels cannot prefix linear channels
5. Replicators cannot prefix linear or affine channels

Under (1) above, P1
def= !b.a | !b.c is not typable because b is associated with two repli-

cators, but P2
def= !b.a | b | !c.b is typable since, while the output at b appears twice, there

is just one replicator at b. As an example for (2), P3
def= b.a | c.a is untypable with a

being linear, as a appears twice as output. P4
def= b.a | c.b | a.(c | e) is typable since each

channel appears at most once as input and output. By (3), we can ensure termination
behaviour over linear channels. For example, P5

def= !b.a | !a.b is untypable under this
constraint: if we compose it with a, then the computation does not terminate. P4 is also
untypable under (3). As given above, “linearity” means more than just termination: it
indicates a process always returns an answer if it is asked for, which we call liveness.
(4) ensures liveness at linear channels in the presence of termination: P6 = a.b where
a is affine and b is linear should be untypable since we do not know the input a surely
happens. (5) is a standard constraint for affinity/linearity, by which !a.b where b is either
linear or affine output is untypable.

Linear and Affine Types. We outline the formal definitions of types and the typ-
ing system, introducing the minimum definitions needed. Action modes (ranged over
p, p′, ...) [5, 32] prescribe different modes of interaction at each channel. The L-modes
correspond to linear [32] while the A-modes to affine [5]. The last line denotes the
grammar of types.

↓L Linear input ↑L Linear output ↓A Affine input ↑A Affine output
!L Linear server ?L Client request to !L !A Affine server ?A Client request to !A

τ ::= (τ̃)p | 

The modes in the first and third columns are input while the second and forth are output.
The input and output modes in each row are dual to each other, writing p for the dual
of p. In types, τ̃ is a vector of types.  indicates that a channel is no longer available
for further composition with the outside; for example, if x.0 has a ↓L-mode and x has
a ↑L-mode, then x.0 | x has -mode at x. The -mode at x indicates that the process
x.0 | x cannot be composed with any process that has x as a free name. ’s mode is
. We assume a replicated affine input does not carry linear output (and dually). This
condition ensures an invocation at linear replication will eventually terminate, firing
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an associated linear output [19]. We write md(τ) for the outermost mode of τ; τp also
indicates that p is the (outermost) mode of τ. The dual of τ, written τ, is the result
of dualising all action modes. Then the least commutative partial operation, �, which
controls the composition of channels is defined as:

(a) τ� τ = τ and τ� τ = τ with md(τ) = ? (b) τ� τ = with md(τ) =↑

(a) and (b) ensure the two constraints (1) and (2) in the list of § 3.1.
An action type, denoted A,B, . . ., is a finite directed graph with nodes of the form x : τ,
such that no names occur twice; and causality edges x :τ → y :τ′ is of the form: from a
linear input ↓L to a linear output ↑L; or from a linear replication !L to a linear client ?L.
A dualises all types in A. We write A(x) for the channel type assigned to x occurring in
A. The partial operator A�B is defined iff channel types with common names compose
and the adjoined graph does not have a cycle. This avoids divergence on linear channels.
For example, a :τ1 →b :τ2 and b :τ2 →a :τ1 are not composable, hence a process such as
P5

def=!a.b | !b.a is untypable. We write A1 � A2 when such composition is possible, while
the result of composition is written A1 � A2 (see [7] for details). By this operation, we
can guarantee the condition (3) in § 3.1 for the linear channels. Non-circular causality
between linear channels guarantees liveness at linear output channels, resulting in the
distributed liveness theorem below.

3.2 Typing Systems for Message-Loss and Timers

The typing judgements for processes forms P � A (a process P has an action type A)
and networks forms N � A (a network N has an action type A). We list the selected rules
below. Types and rules for non-distributed processes identical with those in [19].

LOC

P � A
A distributable

[P] � A
TIMER

x(ỹ).P � A
Q � A

timert〈x(ỹ).P, Q〉 � A
TIMERc

x(ỹ).P � (x : (τ̃)↓L →A),B
Q � x : (τ̃)↓A ,A,B

timert〈x(ỹ).P, Q〉 � x : (τ̃)↓A ,A,B

Typing Networks. The key difficulty in typing networks is that messages can get lost,
but we must ensure that linear inputs and outputs do not get lost, i.e. linear names must
never be sent to remote sites. We achieve this by imposing that free names observable at
the network level cannot be linear input or linear output, and cannot carry such names
recursively: we say type τ is distributable if τ does not contain either linear input or lin-
ear output in its subexpressions. For example, neither ()↑L nor (()↓L)?L is distributable.
We say A is distributable if A(x) is distributable for all x. Then by [LOC], we transfer
a process P which has a distributable type to the network level as [P]. Note that lin-
ear names can also exist hidden by a restriction or bound by prefixes. But because by
construction distributable types cannot carry linear names, no hidden linear name can
escape to the network, thus preserving linearity.

Typing Timers. Timers can be seen as a form of mixed choice (ignoring timing,
timert〈x(ṽ).P, Q〉 can be translated as x(ṽ).P + τ.Q) where one branch is chosen by
the environment while the other can be triggered internally. Hence, if both branches can
be given the same type A, then the timer also has type A, thus explaining [TIMER].
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While natural, this rule is not expressive enough: the most important use of timers,
detection of message-loss is not typable. To see why, consider

[!x(vr).P] | [(νr)(x〈ar〉 | timert〈r(ṽ).Q, R〉|...)]

a simplified version of the remote invoker from Example 1 where the timer triggers
some recovery action in R if the remote action does not reply in time. For this process
to be typable, x must not carry linear names, hence r must be affine. (4) in §3.1 does
not allow to suppress linear names under an affine input, hence r(ṽ).Q would not have
any linear (liveness) behaviour. Timers are used to make liveness guarantees so that a
computation does not hang forever, even if messages get lost or servers do not reply.

To overcome this lack of expressivity, we introduce [TIMERc] that allows to suppress
linear names under an affine output without breaking the typing system. We can then use
timers to ensure distributed liveness, but refining the concept of liveness from “the result
of an invocation will always eventually be returned” to “either a result or an indication
of error will be returned”. Formally, [TIMERc] first types x(ṽ).P assuming x is a linear
input x :(τ̃)↓L , hence permitting to suppress linear outputs A (here x :(τ̃)↓L →A is a type
which is obtained by adding edges from x :(τ̃)↓L to A). Notice that we cannot apply the
same method for Q since after t-ticks, when Q is launched, it may wait forever on x (see
Example 2 below). Hence, the second premise assumes that x is an affine input, and
no linear names can depend causally on x, i.e. linear names must be available without
external interaction, and are hence guaranteed to fire eventually. This means Q will be
of the form (νz̃)(R|x(ṽ).Q′),x /∈ z̃, with all free linear names being in R. [TIMERc] then
gives the timer the type of its timeout continuation. Note that the typing rules for timers
do not depend on the concrete details of the timing model (e.g. discrete or continuous),
but rather apply to all.

Theorem 1. If P � A and P → Q then Q � A, and likewise for networks.

Next we formulate a distributed liveness property which states that linear local outputs
always fire (under the usual implicit fairness assumptions that each process that is not
deadlocked or terminated will eventually be scheduled [7]). Write P ⇓a if there exist
b̃,R, ṽ s.t. P →→ (νb̃)(R | a〈ṽ〉) with a �∈ {b̃}.

Definition 1. 1. (local liveness) We say A is closed if md(A) ∈ {!A, !L,}. Suppose
P � A,a : τ with A closed and md(τ) = ↑L. Then we say P satisfies liveness at a if
whenever P →→ P′, P′ ⇓a.

2. (distributed liveness) We say network N satisfies distributed liveness, if, for all P
such that N ≡ (νã)([P | Q] | M) which is derived from P � A,a :τ with A closed and
md(τ) = ↑L, P has a local liveness at a.

The following is proved from Theorem 1 as stated in [19].

Theorem 2. For all N such that N � A, N satisfies distributed liveness.

Example 2. Suppose that a,b are linear names and c,u are affine.

1. a.b, b.c and c.0 | b are typable as a.b � a : ()↓L →b : ()↑L , b.c � b : ()↓L ,c :()↑A and
c.0 | b � c :()↓A ,b :()↑L , respectively. But c.b is not typable.
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2. Let Ωu
def= (νy)(fwuy|fwyu) with fwxy

def=!x(z).y〈z〉. fwxy is called a forwarder, while
Ωu is an omega which diverges with a message as: Ωu|u〈e〉 → Ωu|u〈e〉 → .... It is
typed as Ωu � u : (()↑A)?A .

3. timer5〈a.b, a.b〉, timer5〈c.0, c.0〉 and P
def= timer5〈c.b, (c.0 | b)〉 are typable but

Q
def= timer5〈c.b, c.b〉 is not typable. The first two are by [TIMER], and P is by

[TIMERc]. We shall see how the liveness at b is guaranteed in P by dividing into
the two cases. The first case is when c is returned within the time limit 5 because
the call between the first and second processes terminates.

!e(y).y | (νx)(e〈x〉 | x.c) | P →→!e(y).y | c | φ2(P) →!e(y).y | b

The second case is a time-out due to non-termination of the call.

Ωu | (νx)(e〈x〉 | x.c) | P →5 Ωu | (νx)(e〈x〉 | x.c) | φ5(P) ≡ Ωu | (νx)(e〈x〉 | x.c) | c.0 | b

This shows if we replace P by Q, we cannot guarantee the liveness at b.
4. We show typing of the remote invoker from (1) in Example 1. First we type the

server as: [!a(yr).r〈y×3〉] � a :τ with τ = (nat(nat)↑A)!A Then the remote invoker
has type a〈10〉100; (x̃).b〈x+7〉�5 b〈0〉 � a:τ,b:(nat)↑L . Here we assume nat is the
type of natural numbers. Note that b has a linear output, hence ensuring liveness.
By hiding b, the client location can also have a distributable type.

4 Probabilistic Distributed Timed Processes and Bisimulation

We refine our model by replacing non-deterministic message-loss with a probabil-
ity r ∈ [0,1] which structures all message-loss globally and independently (i.e. the
message-loss probability does not change throughout the course of a computation, and
the events that two different messages get lost are independent). More general forms
of probability like having different message-loss probabilities for different channels, or
having probabilities change over time, are easily expressible in our framework, but have
been omitted for brevity. Our approach to adding probabilities, inspired by [11, 12], is
classical in that we use probabilistic automata [28].

Definition 2. Let A be a discrete set (i.e. finite or countably infinite). A formal quantity
over A is a relation R ⊆ A×R

+, where R
+ denotes the non-negative real numbers. The

support of R is support(R ) def= {a ∈ A | (a,r) ∈ R ,r > 0}. We often omit A. We can
add formal quantities, and multiply them with scalars: if r ∈ R

+ then r · R def= {(a,r ·
a) | (a,r) ∈ R }. Likewise Σi∈IRi

def=
�

i∈I Ri. We often write Σ(a,r)∈R r ·a for R . If R is
a function, we call R a quantity over A. An important example of a quantity over A is
a

def= {(a,1)}∪{(a′,0) | a′ �= a}. We call a the Dirac-distribution for a (in A), and often
write simple a for a. Many formal quantities R can be flattened into a quantity �(R )
which is the map a �→ Σ(a,r)∈R r, assuming that the sum in this expression converges
for every a. Hence �(·) is a partial operation. Scalar multiplication of quantities is that
of formal quantities, whereas summation on quantities is given by Σi∈I fi

def= �(
�

i∈I fi),
which is only defined where �(·) is defined.
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A subprobability distribution, ranged over by Δ, ..., over a discrete set A is a quantity
over A such Δ : A → [0,1] such that ∑a∈A Δ(a) ≤ 1. We often call subprobability distri-
butions just distributions. A subprobability distribution Δ is a probability distribution if
∑a∈A Δ(a) = 1. We write Δ1|Δ2 for the distribution Δ such that Δ(M) = Δ1(N) ·Δ2(L),
provided that M = N|L, and Δ(M) = 0 otherwise. Δ|M is short for Δ|M. Similarly,
(νx)Δ is the distribution Δ′ such that Δ′(N) is Δ(M) if N = (νx)M and 0 otherwise. If
support(Δ) = {M1, ...,Mn} and Δ(Mi) = pi, we also write (M1 : p1, ...,Mn : pn) or just
M̃ : p̃ for Δ. We write () for the subprobability distribution that is 0 everywhere, and
often do not specify 0 probabilities. We call a formal quantity R such that �(R ) is a
subprobability distribution a formal subprobability distribution. We write Δ1 ≡ Δ2 pro-
vided Δi = (Mi

1 : p1, ...,Mi
n : pn) for i = 1,2 and for all j: M1

j ≡ M2
j . If R is a relation

on networks, its lifting to subprobability distributions is: �(M̃ : r̃)R �(Ñ : r̃) iff for all i:
Mi R Ni. By ∼ we denote the usual probabilistic strong bisimilarity and also its lifting.

Reductions and Transitions. We define probabilistic reductions on networks by the
rules below. Reductions are of the form M → Δ where Δ is a probability distribution
over networks. Δ(N) expresses the probability that M can evolve into N in one step.
Probabilistic choices are made only about loosing messages in remote communication.
All other choices relating are resolved non-deterministically.

INTRA
P → Q

[P] →1 [Q] PAR M → Δ
M|N → Δ|N RES M → Δ

(νa)M → (νa)Δ CONG M ≡ M′ → Δ′ ≡ Δ
M → Δ

COM

[P|x〈ỹ〉] | [Q|x(ṽ).R] →
{

[φ(P)]|[Q|x(ṽ).R] : r

[φ(P)]|[φ(Q)|R{ỹ/ṽ}] : 1− r

}

REP

[P|x〈ỹ〉] | [Q|!x(ṽ).R] →
{

[φ(P)]|[Q|!x(ṽ).R] : r

[φ(P)]|[φ(Q)|R{ỹ/ṽ}|!x(ṽ).R] : 1− r

}

Here r ∈ [0,1] is the aforementioned message-loss probability. The corresponding re-
ductions for replicated input and timed input are omitted. Reductions on processes are
unchanged. We write M →1 N to mean M → N. Network transitions are of the form

P
l−→ Δ where Δ is a probability distribution, and l is a label generated as usual by

l ::= τ | x(ỹ) | x〈(νỹ)z̃〉. The process transitions are standard [4], non-probabilistic and

listed in [7]. We write M
l−→1 N for M

l−→ N. The transition system is given by the
rules:

P
l−→ Q

[P] l−→1 [Q]
LOC

M
l−→ Δ fn(N)∩bn(l) = /0

M|N l−→ Δ|N
PAR

M
l−→ Δ x /∈ n(l)

(νx)M l−→ (νx)Δ
RES

M
x〈(νỹ)z̃〉−→ Δ1 N

x(z̃)−→ Δ2 ỹ∩ fn(N) = /0
M|N τ−→ r · (νỹ)(Δ1|N)+(1− r)(νỹ)(Δ1|Δ2)

COM

M
x〈(νỹ)z̃〉−→ Δ a ∈ z̃\ (ỹ∪{x})

(νa)M
x〈(νaỹ)z̃〉−→ Δ

OPEN
M ≡α M′ M′ l−→ Δ

M
l−→ Δ

ALPHA
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It is easy to show that M → Δ iff M′ ≡ M
τ−→ Δ′ ≡ Δ. Clearly, whenever M

l−→ Δ
then |support(Δ)| < 3 and Δ is a probability distribution. Next we prepare for defining
our notion of bisimilarity. For this we need to abstract from τ-transitions with transitions

M
l̂−→ Δ and define Δ l̂=⇒ Δ′ where Δ and Δ′ are subprobability distributions. The need

for subprobability distributions is explained below.

Definition 3. The auxiliary transitions
l� are defined by: (1) M

l−→ Δ implies M
l� Δ

and (2) M
l� (). Now weak transitions M

l̂−→ Δ are defined if (1) M
l� Δ or (2) l = τ

and Δ = M. This is extended to distributions as follows. We write Δ l̂−→ Δ′ provided: (1)

Δ = Σi∈I pi ·Mi, (2) for all i ∈ I with pi > 0: Mi
l̂−→ Δi, (3) Δ′ = Σi∈I pi ·Δi. Now we set

Δ τ̂=⇒ Δ′ whenever Δ( τ̂−→)∗Δ′. We define Δ l̂=⇒ Δ′ when Δ τ̂=⇒ l−→ τ̂=⇒ Δ′. Similarly,

for l �= τ, we also write Δ l̂=⇒ Δ′ for Δ l=⇒ Δ′. M
l̂=⇒ Δ stands for M

l̂=⇒ Δ.

Example 3. Let M
def= [x〈y〉]|[x(v).v], Δ = ([0]|[x(v).v] : r, [0]|[y] : 1−r),Δ′ def= ([0]|[x(v).v] :

0, [0]|[0] : 1−r). Note that Δ′ is a subprobability distribution. Then M’s (auxiliary/weak)
transitions and reductions include:

M → Δ M
τ� Δ M

τ̂� M M
τ̂� Δ M

ŷ
=⇒ Δ′

Weak transitions have a proper subprobability distribution as target. It is inferred as

M
τ̂� Δ ŷ

=⇒ Δ′. Then Δ ŷ
=⇒ Δ′ is inferred as the combination of [0]|[y] ŷ� [0]|[0] and

[0]|[x(v).v] ŷ� (). Note that this last transition uses () only to specify that [0]|[x(v).v]
does not in fact have a transition labelled y. Presenting the absence of a transition this
way simplifies defining bisimulations.

4.1 Approximate Bisimulation

We introduce probabilistic approximate bisimulations. They are useful in the study of
DS where we often want to give erroneous behaviour a different status from normal
operation. To explain the issue, consider:

M
def= (νx)([x〈y〉] | [x(v).P]) N

def= [P{y/v}]

Assuming x /∈ fn(P) and no message-loss, we expect M≈N, where ≈ is a chosen notion
of weak equivalence. However, if r > 0 is the global message-loss probability, such an
equality can no longer hold, irrespective of how negligible r may be. This often stands
in the way of reasoning, because we want to abstract away from negligible probabilities.
Now consider

Mn def= (νx)([Πn
i=1x〈y〉] | [x(v).P]) (n > 0)

In general, with x /∈ fn(P), Mn can only be distinguished from N if that all n outputs
x〈y〉 get lost. The probability of this happening is rn. We would like to have a notion
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of equality ≈ε such that Mn ≈rn
N, i.e. ε ∈ [0,1] gives a quantitative bound on how

much the processes compared by ≈ε are allowed to mismatch. Approximate notions
of equality are of prime importance in cryptography where one usually demonstrates
the safety of a cryptographic protocol by showing that the probability that it can be
broken vanishes exponentially quickly in a chosen system parameter (like password
length). Approximate bisimulations are intended to generalise this style of verification
and connect it with standard methods in concurrency theory.

Definition 4. An approximate bisimulation is a family {R ε}ε∈B where B ⊆ [0,1] of

relations on networks such that M R ε N implies: whenever M
l−→ Δ then also N

l̂=⇒ Δ′

for some Δ′ with Δ R ε Δ′, and vice versa. Here Δ R ε Δ′ means that we can find two
formal subprobability distributions M̃ : r̃,M̃′ : s̃ and Ñ : r̃, Ñ′ : t̃ such that: (1) Δ =
�(M̃ : r̃,M̃′ : s̃); (2) Δ′ = �(Ñ : r̃, Ñ′ : t̃); (3) 1 − Σiri ≤ ε; (4) for all i: Mi R ε′

i Ni for
some ε′

i ≤ ε
ri

. We call ε the discount of R ε and R ε on distributions the ε-lift. Strong
approx. bisimulations are defined similarly.

This definition refines [15] by weighting discounts through clause (4). Similar tech-
niques can be used to produce approx. forms of other equivalence (e.g. traces). Without
refinement, one cannot prove, e.g. Mn ≈rn

N, only the weaker Mn ≈r N.

Lemma 1. 1. {≡0} is an approx. bisimulation.
2. {R 1} is an approx. bisimulation for every R .
3. If {R εi}i∈I is an approx. bisimulation and εi ≤ ε′

i for all i then {R ε′
i}i∈I is an

approx. bisimulation.
4. If {R ε

j }ε∈B j is an approx. bisimulation for each j then so is {S ε | ε ∈� j B j} where

S ε def= {(M,N) | ∃ j.(M,N) ∈ R ε
j }.

5. {R 0} is an approx. bisimulation, where R def= {([P], [Q]) | P≈Q} with ≈ being the
usual bisimulation on processes [19, 4].

Lemma 1.5 transfers the chosen equivalence on processes to networks.

Definition 5. M and N are ε-bisimilar if M R ε N for some approx. bisimulation {R εi}i.
In this case we also write M ≈ε N.

To aid reasoning about approx. bisimulations one can use up-to techniques.

Definition 6. {R εi}i is an approx. bisimulation up to ∼ (resp. up to restriction) if

M R ε N implies that whenever M
l−→ Δ there is N

l̂=⇒ Δ′ such that Δ (∼◦ R ε ◦∼) Δ′

(resp. Δ0 R ε Δ′
0 with Δ = (νx̃)Δ0,Δ′ = (νx̃)Δ′), and vice versa.

The main result follows.

Theorem 3 (congruency). ≈ε is a congruence.

The following theorem offers compositional and tractable verification tools for ap-
prox. bisimulations.

Theorem 4. 1. If {R ε}ε∈B is an ε-bisimulation up to ∼ or up to restriction then R ε ⊆
≈ε for all ε ∈ B.
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2. If M ≈r N and N ≈s L then M ≈min(r+s,1) L.
3. With r being the global message-loss probability, (νx̃)([P|Q])≈r (νx̃)([P]|[Q]) for

all x̃ and all timer-free P,Q.

The restriction to timer-free processes in (3) is vital because the relative timing between
P and Q is very different if these processes run in a single location rather than in two.

We can now motivate subprobability distributions and the shape of auxiliary transi-
tions: consider (νx)M with M as in Example 3. If we want to show that (νx)M≈r [y], we

need to match [y]
y−→ [0]. But (νx)M can do an output on y only if the internal message

on x is not lost. This is expressed by the subprobability appearing in the matching weak

transition (νx)M τ̂−→ (νx)Δ ŷ
=⇒ (νx)Δ′. Without this definition of weak transitions, the

definition of approx. bisimulation would be more complicated.

Typed Approximate Bisimulations. We now show how types lead to more efficient
approximate reasoning. The key point [5] is that some transitions cannot be observed in
a typed setting because no well-typed observer can interact with it. E.g. P

def= x〈v〉|x(y).Q
has transitions at x, but if P � x :,A then x is not available for further composition.
Hence we need not consider transitions at x when comparing P with another process of
the same type. Similarly from x〈v〉|!x(y).Q, we cannot observe the output at x since it
should be consumed in the unique replicator. This intuition is formalised as follows: let
A be an action type and l an action. The predicate A � l is defined if (1) l = x〈(νỹ)z̃〉
implies md(A(x)) ∈ {↑L,↑A,?L,?A}; or (2) l = x(ỹ) implies A(x) ∈ {↓L,↓A, !L, !A}; or (3)
l = τ. A (sub)probability distribution has type A if Δ(M) > 0 implies M � A. Typed

labelled transitions P
l−→ Q � A are defined if P � A, A � l and P

l−→ Q. For networks

we have M
l−→ Δ � A provided M � A, A � l and M

l−→ Δ.

Definition 7. A typed approximate bisimulation is a family {R ε}ε∈B where B ⊆ [0,1]
of binary relations on typed networks, relating only terms of the same type, such that

M R ε N implies that whenever M
l−→ Δ � A then also N

l̂=⇒ Δ′ for some Δ′ with ΔR ε Δ′,
and vice versa. The definition of Δ R ε Δ′ is similarly adapted.

We note that Theorems 3 and 4 also hold for the typed bisimilarity.

4.2 Examples of Distributed Protocols

Verifying an RPC Protocol with Message Recovery. We show how to use approx. bi-
simulations to reason about remote procedure calls (RPCs), an important distributed
algorithm that uses timers to increase the reliability of remote communication. In this
subsection, we assume that [IDLE] is only used when no other rules apply. This standard
assumption is called maximal progress in the literature and prevents the timer aborting
by itself even when communication is possible. Consider:

P
def=!x(mv).v〈m+ 2〉 Q

def= (νy)(x〈5y〉|y(m).a〈m+ 1〉)

We type: P|Q � A with A
def= x : (nat(nat)↑A)!A ,a : (nat)↑L . It is easy to show that P|Q≈

P|a〈8〉 (where ≈ is the typed bisimilarity on processes [19]), hence by Theorem 4 and
Lemma 1, we have:
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[P|a〈8〉|a(z).R] ≈0 [P|Q|a(z).R] ≈r [P] | [Q|a(z).R]

Theorem 4 is thus useful because it gives a straightforward upper bound on how differ-
ent (untimed) processes can be when distributed. But since it does so without assump-
tions on P and Q, the bounds are weak. To improve on the right bound, we can use the
remote invoker from Example 1:

Qn def= x〈5〉n;(m).a〈m+ 1〉�t a〈0〉

The timer is used to amplify the reliability of communication over an unreliable channel
x. It uses a hidden name, generated at the client, to get the acknowledgement. The timer
re-sends the invocation repeatedly, if the acknowledgement is not received within time
t. The receiver a(z).R at the server side knows whether it was correctly delivered a
datum or whether a timeout happened, because a〈0〉 signals n-ary timeout, which can
be taken as indicating failure. Assuming that r is the global message-loss probability,
we want to establish that

[P] | [Qn | a(z).R] ≈rn
[P] | [a〈8〉 | a(z).R] (2)

provided t > 1 and x /∈ fn(R). Note that a in (2) has type x :. Establishing (2) is
straightforward by induction. The base case is trivial. For the inductive step note that

[P]|[a〈8〉 | a(z).R] τ̂−→1 [P]|[0 | R{8/z}]. This can be matched in several ways: either
the first invocation attempt already succeeds with probability 1 − r, or the first fails
but the second succeeds (probability r · (1 − r)) and so on, giving the weak transition

[P]|[Qn | a(z).R] τ̂=⇒ ([P]|[0 | R{8/z}] : 1 − rn). The other remaining transitions can be
matched exactly since linear liveness at a guarantees that the interaction with a(z).R
will always happen. Due to typing, we do not need to consider output transitions of Qn

because no typable observer can interact with them. This way, typing reduces the num-
ber of transitions to be matched in approx. bisimulations. Overall we easily establish
(2) which means that n-ary remote invokers are an effective error recovery technique,
reducing the possibility of message failures exponentially quickly in the parameter n.

Next we show that conversely, the more a DS relies on networked communication,
the more error-prone it becomes. To this end, define

Mn+1 def= (νx̃)([x1〈v〉] | Πn−1
i=1 [xi(y).xi+1〈y〉] | [xn(y).y]) M0 def= [v]

As in the previous examples one can then show that Mn ≈1−(1−r)n
[v]. This says that the

chance of Mn behaving like [v] diminishes exponentially quickly.

Leases. Another important example for fault-tolerant DS are leases [16] which allow
clients to access a remote service for a limited amount of time. Once that time has ex-
pired without the client renewing the lease, access is denied to the client, and the server
holding the service is free to close it, to make it available to others, or to withdraw it
completely. In our setting, leases are naturally expressed using typed, timed forwarders.
A timed forwarder tfwt·P

xy does the same, but only for t units of time, and after expiry of
the lease executes the ’clean-up process’ P.

tfw0·P
xy

def= P|x(ṽ).0 tfwt+1·P
xy

def= timer1〈x(ṽ).(y〈v〉 | tfwt·0
xy ), tfwt·P

xy 〉
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where x,y are affine input and output. This is vital for consistent usage of the clean-up
process P. Timed forwarders can be typed in two easy ways: (1) with the tailor-made
rules below, or (2) in the system that replaces replication with general recursion, given
in [7].

IGN
a(x̃).P � a :(τ̃)↓A ,A-a

a(x̃).(P | !a(x̃).0) � a :(τ̃)!A ,A
TFW0

P � A-xy

tfw0·P
xy � x :(τ̃)↓A ,y :(τ̃)↑A ,A

TFWt
tfwt+1·P

xy � A

tfwt+2·P
xy � A

Now tfwt·P
xy is typable as tfwt·P

xy � x : τ,y : τ,A assuming τ is an distributable affine output,
A is a type of P, and x,y do not occur in A. We now consider a simple use of leases. Let
the resource in question be y.a: all we can do with it is to close it by sending a message
to the affine name y. Clearly (νy)[y.a | y]≈0 [a]. When we access the resource over the
net, message loss may leave the resource unclosed: (νy)([y.a] | [y]) → (νy)[y.a]. Now we
employ a lease P

def=!b(r).r(x)tfwt·y
xy to ensure that the resource gets closed automatically

if the leaseholder does not close it explicitly.

M
def= (νyb)([P|y.a] | [b(r)r(x).x])

Then we show that message-loss does not affect closing the resource: M ≈0 [a].

Verifying the 2PCP. The Two-Phase Commit protocol (2PCP) is a ubiquitous dis-
tributed algorithm [3]. It is a network of the form

2PCP def= (νd̃ṽ)([P1] | ... | [Pn] | [C])

It has a coordinator C and n participants Pi, all of which can decide to commit or abort.
If all processes decide to commit and the coordinator receives all the votes towards
commitment in time, then every participant will commit, otherwise they will all abort.
We shall verify this property using our formalism. The protocol is described as follows:

Pi
def= Pa

i ⊕ Pc
i Pa

i
def= vi

k〈true〉|ai|!di(b).0 Pc
i

def= vi
k〈false〉 | !di(b).if b then ai else ci

C
def= (νac̃)(Cwait|Cand|Cab) Cwait

def= Πivi(b).if b then ei〈d̃〉 else a〈d̃〉
Cand

def= e1(d̃). ... en(d̃).Πidi
k〈false〉 Cab

def= a(d̃).(Πidi
k〈true〉 | !a(d̃).0)

Here we use standard extended syntax P ⊕ Q (internal choice) and if-branch (see [7]
for their straightforward typing rules). Pi makes a non-deterministic choice between
aborting (Pa

i ) and committing (Pc
i ). Pa

i does two things: it signals its decision to abort
to the outside world by sending an ai. At the same time, the coordinator is informed
of its choice, by sending a vote vi〈true〉 on the internal voting channel vi. Pc

i is similar
in that it sends its vote to the coordinator, but it externalises its decision only after
having received back the overall decision from the coordinator. The coordinator has
a subprocess Cwait that awaits the votes from all participants. Communication between
participants and the coordinator happens on vi, where the votes are cast, and di where the
coordinator returns its decision back to the participants. This protocol guarantees that
either all participants will commit or all participants will abort, assuming that eventually
all sent messages will be delivered with high probability. In Pi, xk〈ỹ〉 with k > 0 is
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a simpler version of the remote invoker in Example 1 with the following semantics:
φ(xk〈ỹ〉) = xk〈ỹ〉 and, writing x0〈ỹ〉 for 0,

[P|xk〈ỹ〉] | [x(ṽ).Q|R] →
{

[φ(P)|xk−1〈ỹ〉] | [x(ṽ).Q|R] : r

[φ(P)] | [Q{ỹ/ṽ}|R] : 1 − r

}

.

Here x is of affine type (τ̃)↑A with yi typed by τi. The detailed types of this protocol,
including the choice and if-branch are given in [7].

Next we state the main result of this subsection that the probability this protocol fails
vanishes exponentially quickly in the parameter k.

Theorem 5. Recall that r is the global message-loss probability. Then:

2PCP ≈e(k) (Πi[ai])⊕ (Πi[ci]) with e(k) def= 1 − (1 − rk ·n)n

Here ≈e(k) is the typed approx. bisimulation.

This theorem states that the probability that the protocol does not reach a consensus
is negligible in k. This result improves on [3] in that precise quantities for failure of
the protocol are derived. The types are also useful in compositional and quick rea-
soning about this 2PCP. First the protocol is typed as 2PCP � ã : ()?A , c̃ : ()?A where
c̃ : τ means c1 : τ, ..,cn : τ. Then, for example when considering C we use the fact that
C � ṽ:(bool)↓A , d̃ :(bool)?A , ẽ:. This means we do not have to consider input or output
actions happening on a or ei in the external environment. Likewise, we do not observe
non-τ actions from [P1] | ... | [Pn] | [C] by types. This significantly reduces a number of
transitions needed to be considered in reasoning.

5 Conclusion and Related Work

We introduced a convenient typing system for a timed, distributed π-calculus that gener-
alises the existing linear/affine typing discipline [19] for the asynchronous π-calculus.
We refined some of the non-determinism in our calculus into probabilities and pro-
posed a notion of typed approximate bisimulation to discard behaviour under a proba-
bility threshold. The timed calculus was originally introduced in [3,4]; [27,10] propose
different timed π-calculi without distribution. Neither alternative considers typing or
probabilities. Probabilistic π-calculi are investigated in [9,11,12,17,30]. None of these
works considers types, timing or distribution, except that [30] uses the affine typing
system [5] to prove a correspondence between probabilistic automata, confusion-free
event structures and a typed probabilistic π-calculus. The notions of equivalence stud-
ied in these works are not directly applicable to our setting because they are not approx-
imate (i.e. they do not allow to quantify parts of the computation that is discarded when
considering equality), hence it is not possible to verify the examples in § 4.2.

Our work can be extended in several dimensions. One topic is to investigate our ap-
proximate bisimulation, for example by asking how to axiomatise it. We believe the
techniques developed for axiomatising weak bisimilarity in [32] to be applicable to
the present probabilistic extension, leading to a tractable transformation for reasoning
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about liveness at each location. It would also be fruitful to use probabilities for con-
straining other forms of non-determinism. A starting point would be the [IDLE] rule:
rather than requiring maximal progress, we could have probabilistic idling. More ambi-
tiously, timer behaviour could be guided by a probability distribution: the key technical
challenge here is to find a tractable way of expressing the correlations between different
probabilistic timers running in parallel.

The paper proposes a general way to integrate the timer with linearity, offering ex-
tensibility of various type-based analyses of processes [1, 5, 6, 8, 20, 22, 32] to timing
and distribution. First, the secure information flow analysis (SIF) from [19, 21] can be
adapted to study timing attacks [24] in distribution. Following [20, 22] an extension
of types that accounts of usage numbers of linear channels can lead to more precise
type-based SIF analysis in the presence of timers. Secondly, more complicated forms
of failure can be considered, like message duplication, correlations between message
failures (e.g. if a channel looses a message, the probability of subsequent message-
losses increases), site failure [3] or byzantine message corruption [31]. It would also be
fruitful to use probabilities for constraining other forms of non-determinism such as the
permissible amount of idling. Finally, there is much recent work on (pseudo-)metrics
for probabilistic automata [13,14,29]. These works do not feature distribution or types,
but forging connections with the present approach would be very interesting.

Acknowledgements. We thank anonymous reviewers for their helpful comments. This
work is partially supported by EPSRC GR/T04724, GR/T03208 and IST-2005-015905
MOBIUS.
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Abstract. We propose an extension of the Applied Pi–calculus by
introducing nondeterministic and probabilistic choice operators. The se-
mantics of the resulting model, in which probability and nondetermin-
ism are combined, is given by Segala’s Probabilistic Automata driven by
schedulers which resolve the nondeterministic choice among the probabil-
ity distributions over target states. Notions of static and observational
equivalence are given for the enriched calculus. In order to model the
possible interaction of a process with its surrounding environment a la-
beled semantics is given together with a notion of weak bisimulation
which is shown to coincide with the observational equivalence. Finally,
we prove that results in the probabilistic framework are preserved in a
purely nondeterministic setting.

1 Introduction

Security protocols are a critical element of the infrastructures needed for secure
communication and processing information. Most security protocols are quite
simple if only their length is considered. However, the properties they are sup-
posed to ensure are extremely subtle, hence it is hard to get protocols correct just
by informal reasoning. The history of cryptography and security protocols has a
lot of examples where weaknesses of supposedly correct algorithms or protocols
were discovered even years later. Thus, security protocols are excellent candi-
dates for rigorous formal analysis. They are critical components of distributed
security, are very easy to express and very difficult to evaluate by hand.

The use of formal methods for modeling and analyzing cryptographic proto-
cols is now well-established. After the seminal paper by Dolev and Yao [11], which
introduced a simple and intuitive description for cryptographic protocols, many
alternative definitions have been proposed on the basis of several approaches,
ranging from modal logics to process algebras (see the calculi in [15,25,2]).

Probabilistic models are nowadays widely used in the design and verification
of complex systems in order to quantify unreliable or unpredictable behaviour in
security, performance and reliability analysis. Probability is taken into account
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when analyzing quantitative security properties (measuring, in a sense, the se-
curity level of the protocol) or when dealing with probabilistic protocols. Proba-
bilistic frameworks applied to security analysis are, just as an example, [3,10,20]).
In particular, in [20] Mitchell et al. introduce a variant of CCS allowing prob-
abilistic polynomial-time expressions in messages and boolean tests. The se-
mantics of the calculus schedules probabilistically the exchanged messages. The
authors also define a form of asymptotic protocol equivalence that allows security
properties to be expressed using observational equivalence.

In [1], Abadi and Fournet introduce the Applied Pi–calculus, an extension
of the Pi–calculus [18] with functions and equations allowing to treat messages
not only as atomic names, but also as more complex terms constructed from
names and functions. Such an extension gives rise to an important interaction
between the new construct and value–passing communication allowing to model
unforgeable capabilities. Applications to security are immediate. Moreover, the
Applied Pi–calculus permits a general and systematic development of syntax,
operational semantics, equivalences and proof techniques.

It has been remarked that the Applied Pi–calculus, thanks to its explicit
substitutions, is similar to Concurrent Constraint calculi like CCP [24], the ρ–
calculus [21] and the CC–pi calculus [5].

Bisimulation relations [17] are well–established behavioural equivalences and
are now widely used for the verification of properties of computer systems. Ac-
tually, a property can be verified by assessing the bisimilarity of the considered
system with a specification one knows to enjoy the property. Moreover, bisimu-
lations can sometimes be verified automatically thanks to successful implemen-
tations of verification tools like, e.g., the Concurrency Workbench [7] or the
Mobility Workbench [28]. It is also extremely important for bisimulations to be
congruences in order to account on compositional behavioural equivalences.

Contribution

In this paper we introduce an extension of the Applied Pi–calculus, called Prob-
abilistic Applied Pi–calculus (PAPi for short), where both nondeterministic and
probabilistic choices are taken into account. The semantics of the resulting model
is given by Segala’s Probabilistic Automata [26] driven by schedulers which re-
solve the nondeterministic choice among the probability distributions over target
states (see [27]).

For the enriched calculus, we propose a notion of static equivalence (inher-
ited from the Applied Pi–calculus) and a notion of probabilistic observational
congruence. We also give a labeled semantics for modeling the interaction of a
process with its surrounding environment. We derive a notion of weak bisimula-
tion and show that it is a congruence relation coinciding with the observational
equivalence defined for the unlabeled semantics. Finally, abstracting away from
probabilities, we prove that results holding in the probabilistic version of the
calculus are preserved within a purely nondeterministic framework.
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As an application, we use PAPi to model and analyze the 1-out-of-2 oblivi-
ous transfer protocol given in [12]. Such a protocol makes use of cryptographic
operations and randomization to achieve fairness in information exchange.

2 Preliminaries

In this section we recall some preliminary notions about terms, equational the-
ories and probability distributions.

Terms. A signature Σ = {(f1, a1), . . . , (fn, an)} consists of a finite set of func-
tion symbols fi each with an arity ai. A function with arity 0 denotes a constant
symbol. Given a signature Σ, and infinite set of names and variables, the set of
terms is defined by the grammar:

M, N ::= a, b, c, . . .
∣
∣ x, y, z, . . .

∣
∣ f(M1, . . . , Ml)

where M, N are terms, a, b, c are names, x, y, z are variables and f(M1, . . . , Ml)
denotes function application with (f, l) ∈ Σ. With T we denote the set of terms.
A term is called ground when it does not contain free variables and we use TG

to denote the set of ground terms. Metavariables u, v range over both names
and variables. Tuples u1, . . . , ul and M1, . . . , Ml are abbreviated to ũ and M̃ ,
respectively.

As in [1], we rely on a sort system for terms. It may include a set of base types,
such as Integer, Key, etc., or simply a universal base type Data. In addition, if
S is a sort, then Channel(S) is the sort of those channels that convey messages
of sort S. Variables and names can have any sort. We would use a, and c as
channel names, s and k as names of some base type, and m and n as names of
any sort. For simplicity, function symbols take arguments and produce results
of base types only. In the following of the paper we always assume that terms
are well-sorted and that substitutions preserve sorts.

Equational Theories. Given a signature Σ, we equip it with an equational
theory E. An equational theory is a congruence over terms closed under substi-
tutions of terms for variables (see [19,9,13]). We require this equational theory
to be also closed under one-to-one substitutions on names. We use the standard
notation Σ � M =E N when the equation M = N is in the theory E of Σ, and
Σ �� M =E N for the negation of Σ � M =E N .

In [1] one may find several examples of equational theories for the modeling
of different kinds of cryptographic applications such as pairing, symmetric and
asymmetric encryption, hashing, probabilistic encryption (modeled in a nonde-
terministic sense), signatures and XOR. We recall just some of them.

Algebraic data types such as pairs and lists could be defined by equipping a
signature Σ with the binary function symbol pair and the unary function symbols
fst and snd, with equations fst(pair(x, y)) = x and snd(pair(x, y)) = y.

Now, the equational theory for algebraic data types consists of these equa-
tions and all the ones obtained by reflexivity, symmetry and transitivity and by
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substituting terms for variables. The sort system should enforce that fst and snd
are applied only to pairs (alternatively a boolean function recognizing pairs
may be added). Equations can be added to describe particular behaviours.
For example, a constant symbol wrong can be considered such that fst(M) =
snd(M) = wrong for appropriate ground terms M which are not pairs. In the
following we use the abbreviations (M, N) for pair(M, N) and (L, M, N) for
pair(pair(L, M), N).

A one-way hash function can be represented as a unary function symbol h
with no equations. The one-wayness of h is modeled by the absence of an inverse
while the fact that h is collision-free results from h(M) = h(N) only for M = N .

Symmetric cryptography (shared-key cryptography), is modeled via binary
function symbols enc and dec for encryption and decryption with equation
dec(enc(x, y), y) = x, where x represents the plaintext and y the key.

Asymmetric encryption can be modeled introducing two unary function sym-
bols pk and sk for generating the public and the secret keys from a seed with
the equation dec(enc(x, pk(y)), sk(y)) = x.

Sometimes, it may be useful to assume that encrypted messages come with
sufficient redundancy such that decryption with a wrong key is evident. We may
incorporate this property by adding equations dec(M, N) = wrong for all ground
terms M and N such that M �= enc(L, N) for all L.

Probability Measures. A discrete probability measure over a countable set X
is a function μ : 2X → [0, 1] such that μ(X) = 1 and for each countable family
{Xi} of pairwise disjoint elements of 2X , μ(∪iXi) =

∑
i μ(Xi). We adopt the

convenient abuse of notation μ(x) for μ({x}). Let us denote by D(X) the set of
discrete probability measures over X . Given an element x ∈ X , we denote by δx

the Dirac measure on x, namely, the probability measure μ such that μ(x) = 1.
Given two probability measures μ1, μ2 and a real number p ∈ [0, 1], we define

the convex combination μ1 +p μ2 to be the probability measure μ such that for
each set Y ∈ 2X , μ(Y ) = p · μ1(Y ) + (1 − p) · μ2(Y ).

Recall that any discrete probability measure is the countable linear combina-
tion

∑
x.μ(x) �=0 μ(x) · δx.

3 The Probabilistic Applied Pi–Calculus

In this section we introduce the Probabilistic Applied Pi–calculus (PAPi).

3.1 Syntax

The grammar of PAPi processes is obtained by extending the one for the Applied
Pi–calculus with a nondeterministic (+) and a probabilistic (⊕p) choice operator:

P, Q ::= 0
∣
∣ u〈M〉.P

∣
∣ u(x).P

∣
∣ P +Q

∣
∣ P ⊕pQ

∣
∣

P | Q
∣
∣ !P

∣
∣ νn.P

∣
∣ if M = N then P else Q
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The null process 0 does nothing; u〈M〉.P outputs the term M on channel
u and then behaves like P ; u(x).P is ready to perform an input on channel u,
then to behave like P with the actual received message replacing the formal
parameter x; P +Q denotes a process which may behave either like P or Q;
P ⊕pQ behaves like P with probability p, like Q with probability 1 − p; P | Q is
the parallel composition of P and Q; the replication !P behaves as an infinite
number of copies of P running in parallel; νn.P generates a fresh private name
n and then behaves like P ; if M = N then P else Q is the usual conditional
process, it behaves like P if M = N and like Q otherwise. Note that M = N
represents equality (i.e. with respect to some equational theory) rather than
syntactic identity. We may omit a process when it is equal to 0.

As was done for the Applied Pi–calculus, we extend plain processes with active
substitutions:

A, B ::= P
∣
∣ νn.A

∣
∣ νx.A

∣
∣ A | B

∣
∣ {M/x}

where P is a plain process. We denote with A the set of extended processes.
We write {M/x} for the active substitution that replaces the variable x with
the term M . The substitution {M/x} is like let x = M in..., with the ability
to float and to apply to any process that comes in contact with it. By applying
a restriction νx.({M/x} | P ) we obtain exactly let x = M in P . Intuitively, a
substitution {M/x} denotes either a static public information known to every
participant of the protocol, or it may appear when the term M has been sent
to the environment, and the environment may not contain the atomic names
appearing in M ; in this situation, the variable x is just a way to refer to M . We
write {M1/x1, . . . , Ml/xl} for the parallel substitutions {M1/x1} | . . . | {Ml/xl}.
We denote substitutions by σ, the image of a variable x according to σ as xσ and
the result of applying σ to the free variables of a term T as Tσ. In the following
we identify the empty frame and the null process 0.

Extending the sort system for terms, we rely on a sort system for extended
processes. This should enforce that M and N are of the same sort in the condi-
tional expression, that u has sort Channel(S) for some S in the input and output
expressions, and that x and M have the corresponding sort S in those expres-
sions. As done before, we omit the details of the sort system, and we just assume
that extended processes are well-sorted.

Names and variables have scopes which are delimited by restrictions and by
inputs. As usual, we denote with fv(A) and fn(A) the free variables and names
of A which do not occur within the scope of any binder νu and v(u). With bv(A)
and bn(A) we denote the bound variables and names of A, respectively.

An extended process is closed when every variable is either bound or de-
fined by an active substitution. With AC we denote the set of closed extended
processes. We may use the abbreviation νũ for the (possibly empty) series of
pairwise-distinct binders νu1.νu2 . . . νul.

Intuitively, we may see extended processes as plain processes extended with a
context for the interpretation of their variables. As usual, an evaluation context is
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an expression (an extended process) with a hole. Formally, an evaluation context
C[ ] is defined by the following grammar:

C[ ] ::= �
∣
∣ νn.C[ ]

∣
∣ νx.C[ ]

∣
∣ A | C[ ]

∣
∣ C[ ] | A

where A ∈ A is an extended process. A context C[ ] closes A when C[A] is closed.
A frame is an extended process built up from 0 and active substitutions by

parallel composition and restriction. The domain dom(ϕ) of a frame ϕ is the
set of variables that ϕ exports (those variables x for which ϕ has an active
substitution {M/x} not under a restriction on x). We assume all substitutions
in a frame to be cycle-free, and that there is at most one substitution for each
variable (and exactly one when the variable is restricted).

A frame can be viewed as an approximation of an extended process A that
accounts for the static knowledge exposed by A to its environment, but not for
A’s dynamic behaviour. Given a probabilistic extended process A, with ϕ(A) we
denote the frame obtained from A by replacing every plain process embedded
in A with 0. For example, given the process A = (P ⊕pQ) | {M/x} | {N/x}, we
have that ϕ(A) = 0 | {M/x} | {N/x}. The domain dom(A) of A is the domain of
its frame ϕ(A); namely, dom(A) = dom(ϕ(A)).

3.2 Semantics

Structural congruence (≡) is the smallest equivalence relation on extended pro-
cesses that is closed (i) by α-conversion on both names and variables, (ii) by
application of evaluation contexts, and such that:

(Par-0) A ≡ A |0 (Par-C) A | B ≡ B | A
(Par-A) A | (B | C) ≡ (A | B) | C (Repl) !P ≡ P | !P

(New-0) νn.0 ≡ 0 (New-C) νu.νv.A ≡ νv.νu.A

(New-Par) A | νu.B ≡ νu.(A | B) if u �∈ fv(A) ∪ fn(A)

(Alias) νx.{M/x} ≡ 0 (Subst) {M/x} | A ≡ {M/x} | A{M/x}
(Rewrite) {M/x} ≡ {N/x} if Σ � M =E N

Rules for parallel composition and restriction are standard. Alias enables the
introduction of an arbitrary active substitution, Subst describes the application
of an active substitution to a process in contact with it, and Rewrite deals
with equational term rewriting. As pointed out in [1], Alias and Subst yield
A{M/x} ≡ νx.({M/x} | A) for x �∈ fv(M).

We let μ range over distributions over the classes of extended processes defined
by the structural congruence relation. Namely, μ : 2A/≡ → [0, 1]. In the following
we abbreviate μ([B]) with μ(B), where [B] is the equivalence class of B up to
structural congruence ≡.

The internal probabilistic reduction A −→ μ, which describes a transition that
leaves from A and leads to a probability distribution μ, is the smallest relation
satisfying the following axioms:
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(Id) P −→ δP (Comm) a〈x〉.P | a(x).Q −→ δP | Q

(NdBran)
P −→ μ

P +Q −→ μ
(NdBran’)

Q −→ μ

P +Q −→ μ

(PrBran)
P −→ μ1 Q −→ μ2

P ⊕pQ −→ μ1 +p μ2
(Then) if M = M then P else Q −→ δP

(Else) if M = N then P else Q −→ δQ for M, N ∈ TG s.t.Σ �� M =E N

(EvCon)
A −→ μ

C[A] −→ μC

A stuttering reduction (Id) is needed to deal with + and ⊕p (see Example 1).
Communication (Comm) is kept simple considering as a variable the message
sent. There is no loss of generality since Alias and Subst can introduce a vari-
able to stand for a term (see [1]). Nondeterministic branching (NdBran) is as
usual. Probabilistic branching (PrBran) results from the convex combination
of probability measures. Comparisons (Then and Else) rely on the underlying
equational theory E; using Else may sometimes require to apply active substi-
tutions in the context in order to get ground terms M and N . Note that the
only rule that gives rise to a probabilistic choice is PrBran, the other ones just
return a Dirac measure.

Since reduction rules should be closed under application of evaluation con-
texts, we need to define extensions of the distributions μ such that given A −→ μ
we could define μC such that C[A] −→ μC . Formally, given an evaluation context
C[ ] and a distribution μ, we define the unique distribution μC such that for any
extended process A, μC(C[A]) = μ(A). For example, with μ� | B we denote the
distribution μ′ such that μ′(A | B) = μ(A), with μνu.� we denote the distribution
μ′ such that μ′(νu.A) = μ(A).

Example 1. Consider the process A = (a〈M〉+b〈M〉)⊕pc〈M〉. We have A −→ μ
and A −→ μ′, where μ = δa〈M〉 +p δc〈M〉 and μ′ = δb〈M〉 +p δc〈M〉. Moreover, we
have A | B −→ μ� |B and A | B −→ μ′

� |B for any process B.

There is a step from a process A to a process B through the distribution μ
(denoted A −→μ B) if A −→ μ and μ([B]) > 0.

An execution of A is a finite (or infinite) sequence of steps e = A −→μ1 A1 −→μ2

. . . −→μk
Ak, where A0, . . . , Ak ∈ A and μi ∈ D(A/≡). With ExecA we denote

the set of executions starting from A. For the finite execution e = A −→μ1 A1 −→μ2

. . . −→μk
Ak we define last(e) = Ak and |e| = k. For any j ≤ |e|, with ej we

define the sequence of steps A −→μ1 A1 −→μ2 . . . −→μj Aj .
Finally, with e↑ we denote the set of executions e′ such that e ≤prefix e′, where

≤prefix is the usual prefix relation over sequences.

Example 2. Consider again process A of Example 1, and process B = a(x). We
have A | B −→μ� | B

a〈M〉 | a(x) −→δ0 0, with μ = δa〈M〉+pδc〈M〉 and a〈M〉 | a(x) ≡
νx.(a〈x〉 | a(x) | {M/x}). Note that we also have A | B −→μ� | B

c〈M〉 | a(x).

Since we allow nondeterministic choices, an extended process may behave in
several different ways. Intuitively, the nondeterministic choice is among the pos-
sible probability distributions that a process may follow. Given a process A, we
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denote with behave(A) the set of the possible behaviours of A, i.e., behave(A) =
{μ | A −→ μ}. Hence, each possible probabilistic transition A −→μ can be seen
as arising from a scheduler resolving the nondeterminism in A (see [27]). A
scheduler is a total function F assigning to a finite execution e a distribution
μ ∈ behave(last(e)). Given a scheduler F and a process A, we define ExecF

A as
the set of executions starting from A and driven by F , namely the set of exe-
cutions {e = A −→μ1 A1 −→μ2 A2 −→μ3 . . . | ∀i, μi(Ai) > 0 where μi = F (ei−1)}.
Given the finite execution e = A −→μ1 A1 −→μ2 . . . −→μk

Ak ∈ ExecF
A, we define

PF
A (e) = μ1(A1) · . . . · μk(Ak).
We define the probability space on the executions starting from a given process

A ∈ A, as follows. Given a scheduler F , σFieldF
A is the smallest sigma field on

ExecF
A that contains the basic cylinders e↑, where e ∈ ExecF

A. The probability
measure ProbF

A is the unique measure on σFieldF
A such that ProbF

A(e↑) = PF
A (e).

Example 3. Consider again the process A of Example 1, and the scheduler F such
that F (A) = μ = δa〈M〉 +p δc〈M〉. We have that the executions e = A −→μ a〈M〉
and e′ = A −→μ c〈M〉 are in ExecF

A with PF
A (e) = p and PF

A (e′) = 1 − p. Note
that with the chosen F , action b〈M〉 is never performed.

Given a scheduler F , a process A and a measurable set of processes H ⊆ A, with
ExecF

A(H) we denote the set of executions starting from A that cross a process
in the set H . Namely, ExecF

A(H) = {e ∈ ExecF
A | last(ei) ∈ H, for some i}.

We define the probability of reaching a process in H starting from A according
to the policy given by F as ProbF

A(H) = ProbF
A(ExecF

A(H)).

4 Equivalences

In this section we recall the definition of static equivalence for frames introduced
in [1]. We also introduce a notion of observational congruence allowing to argue
when PAPi extended processes cannot be distinguished by any context. Contexts
can be used to represent active attackers and observational congruence may
capture security properties. For example, secrecy and authentication properties
have been defined in this way in [2] for the Spi–calculus.

4.1 Static Equivalence

Two frames should be considered equivalent when they behave equivalently when
applied to terms obeying a certain equational theory E. We denote this equiv-
alence (also called static equivalence) with ≈E . As pointed out in [1], defining
a static equivalence in presence of the ν construct becomes somehow delicate.
Consider, for instance, the three frames:

ϕ0 = νk.{k/x} | νs.{s/y} ϕ1 = νk. {f(k)/x, g(k)/y} ϕ2 = νk. {k/x, f(k)/y}

where f and g are unary functions with no equations (two independent one-way
hash functions). In ϕ0, since k and s are new, variables x and y are mapped to
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unrelated values different from any value a context may build. This also holds for
ϕ1 (even if f(k) and g(k) are based on the same fresh value, they look unrelated).
Thus, a context obtaining values for x and y cannot distinguish between ϕ0 and
ϕ1. However, a context may discriminate ϕ2 by checking the predicate f(x) = y.
Hence, static equivalence is defined so that ϕ0 ≈E ϕ1 �≈E ϕ2.

Definition 1. Given an equational theory E, two terms M and N are equal
in the frame ϕ ≡ νñ.σ (written (M =E N)ϕ), if and only if Mσ =E Nσ and
{ñ} ∩ (fn(M) ∪ fn(N)) = ∅.

Hence, for the previous example, we have (f(x) = y)ϕ2 but not (f(x) = y)ϕ0.

Definition 2. Given an equational theory E, two closed frames ϕ and ψ are
statically equivalent (written ϕ ≈E ψ) when dom(ϕ) = dom(ψ) and for all terms
M and N , (M =E N)ϕ iff (M =E N)ψ.

We say that two closed extended processes A and B are statically equivalent
(written A ≈E B) iff ϕ(A) ≈E ϕ(B).

Note that deciding static equivalence can be quite hard to check (it depends on
E and Σ) [8]. The next lemma, proved in [1], states a basic property of ≈E.

Lemma 1. Static equivalence is closed by structural congruence, by reduction,
and by application of closing evaluation contexts.

4.2 Observational Congruence

We write A ⇓F
p a (a probabilistic barb) when A can send a message on a with

probability p according to the scheduler F , namely, when ProbF
A(H) = p where

A′ ∈ H if and only if A′ = C[a〈x〉.P ] for some evaluation context C[ ] that
does not bind a. Notice that the set of executions starting from A and crossing
a process in H is measurable since it can be seen as the countable union of
measurable sets

⋃
C,P,x,e.e∈ExecF

A∧last(e)=C[a〈x〉.P ] e↑.

Definition 3. Observational congruence (≈) is the largest symmetric relation
R between closed extended processes with the same domain such that ARB
implies:

1. for all schedulers F such that A ⇓F
p a, there exists a scheduler F ′ such that

B ⇓F ′

p a;
2. for all schedulers F there exists a scheduler F ′ such that for all classes

C ∈ AC/R, ProbF
A(C) = ProbF ′

B (C);
3. C[A]RC[B] for all closing evaluation contexts C[ ].

The quantification on the schedulers means, intuitively, that given A ≈ B, for
any possible behaviour (scheduler) of A there exists an analogous behaviour of
B and viceversa.

As pointed out in [1], if A ≈ B, then, for any test C of the form if M =
N then a〈s〉 else 0, where a does not occur in A or B, A | C and B | C should have
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the same barbs, thus implying static equivalence for A and B. As a consequence,
the following lemma holds, stating that observational congruence is finer than
static equivalence.

Lemma 2. Given A, B ∈ A, A ≈ B implies A ≈E B.

4.3 Labeled Semantics and Weak Bisimulation

In process calculi theory, a labeled semantics usually allows describing the po-
tential interactions of a process with other ones that could occur in its envi-
ronment. Such interactions are modeled by allowing the process to perform as
many transitions as its active actions are. Each transition has the corresponding
action as label and leads to a new process which corresponds to the result of the
execution of that action. Moreover, a labeled semantics may include silent (or
internal) transitions, usually labeled with τ , which describe the internal activity
of the process, namely the interactions occurring between internal components
of the system. Furthermore, the actions performed may include parameters. As
an example, since the action of sending or receiving a message on a channel may
require the transmitted message as parameter, one should explicitly show the
parameter within the transition label.

Thus, to model the interaction of PAPi processes with the environment, a
labeled operational semantics can be provided which defines a relation A

α−→ μ,
where α is a label of one of the following forms:

– the symbol τ (corresponding to an internal reduction);
– a label a(M), where M may contain names and variables (corresponding to

an input of M on a);
– a label a〈u〉 or νu.a〈u〉, where u is either a channel name or a variable of

base type (corresponding to an output of u on a).

In addition to the structural congruence rules and the internal reduction seman-
tics of Section 3.2 (where each reduction rule should be equipped with the label
τ), we adopt the following rules:

(In) a(x).P
a(M)−−−→ δP{M/x} (Out-Atom) a〈u〉.P a〈u〉−−−→ δP

(Open-Atom)
A

a〈u〉−−−→ μ u �= a

νu.A
νu.a〈u〉−−−−−→ μ

(Scope)
A

α−→ μ u does not occur in α

νu.A
α−→ μνu.�

(Par)
A

α−→ μ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B α−→ μ� | B

(Struct)
A ≡ B B

α−→ μ

A
α−→ μ

There is a step from a process A to a process B through the distribution μ with
label α (denoted A

α−→μ B) if A
α−→ μ and μ(B) > 0. Given a process A, different
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reaction rules A
α−→ μ may be applied according to α and μ. As a consequence,

we redefine the set of possible behaviours of A as behavel(A) = {(α, μ) | A α−→ μ}.
A labeled execution of A is a finite (or infinite) sequence of steps e = A

α1−→μ1

A1
α2−→μ2 . . .

αk−−→μk
Ak, where A0, . . . , Ak ∈ A and μi ∈ D(A/≡). With abuse

of notation, we define ExecA, last(e) = Ak, |e|, ej and e ↑ as for unlabeled
executions.

Executions arise by resolving the nondeterminism on both α and μ. As a
consequence, a scheduler for the labeled semantics is a function F assigning to
a finite labeled execution e a pair (α, μ) ∈ behavel(last(e)).

Given a scheduler F and a process A, we define ExecF
A as the set of executions

starting from A and driven by F , namely the set of executions {e = A
α1−→μ1

A1
α2−→μ2 A2

α3−→μ3 . . . | ∀i, μi(Ai) > 0 where (αi, μi) = F (ei−1)}. Given the
finite execution e = A

α1−→μ1 A1
α2−→μ2 . . .

αk−−→μk
Ak ∈ ExecF

A, we define PF
A (e) =

μ1(A1) · . . . · μk(Ak).

Example 4. Consider the process A of Example 1 and the scheduler F such that
F (A) = (τ, μ), with μ defined as in Example 1, and, trivially, F (A τ−→μ a〈M〉) =

(a〈M〉, δ0) and F (A τ−→μ c〈M〉) = (c〈M〉, δ0). We have e = A
τ−→μ a〈M〉 a〈M〉−−−→δ0

0 and e′ = A
τ−→μ c〈M〉 c〈M〉−−−→δ0 0 with PF

A (e) = p and PF
A (e′) = 1 − p. Note,

again, that with such a scheduler the label b〈M〉 does never appear. Also note
that the process νc.A may reach with probability (1 − p) the process νc.c〈M〉
from which it cannot perform any other step.

Again, given a scheduler F , a finite execution e and a measurable set H , ProbF
A

(e↑), ExecF
A(H) and ProbF

A(H) are defined analogously as for the unlabeled case.
Let ExecF

A(τ∗ατ∗, H) be the set of executions that, starting from A, lead to a
process in H via an execution performing an α action preceded and followed by
an arbitrary number of τ steps. We define the probability ProbF

A(τ∗ατ∗, H) =
ProbF

A(ExecF
A(τ∗ατ∗, H)).

Definition 4. Weak bisimulation (≈l) is the largest symmetric relation R be-
tween closed extended processes with the same domain such that ARB implies:

1. A ≈E B;
2. for all schedulers F there exists a scheduler F ′ such that for all classes

C ∈ AC/R, ProbF
A(C) = ProbF ′

B (C);
3. for all schedulers F there exists a scheduler F ′ such that ProbF

A(α, C) =
ProbF ′

B (τ∗ατ∗, C), for all classes C ∈ AC/R and for all α �= τ with fv(α) ⊆
dom(A) and bn(α) ∩ fn(B) = ∅.

The following lemma states that given A ≈l B and a closing evaluation context
C[ ], C[A] ≈l C[B] holds.

Lemma 3. ≈l is closed under application of closing evaluation contexts.

The next theorem derives immediately from the previous lemma.
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Theorem 1. ≈l is a congruence.

We can also show that ≈l and ≈ coincide. Even if the notion of weak bisimulation
does not include an explicit condition about contexts, it is still closed under
application of evaluation contexts. As a consequence, ≈l is simpler than the
notion of observational congruence given in Definition 3. The following theorem
holds.

Theorem 2. A ≈l B if and only if A ≈ B.

5 An Application

We give an implementation of the 1-out-of-2-oblivious transfer protocol (OT1
2)

in PAPi. The notion of oblivious transfer (OT) was first introduced by Ra-
bin [22] in a number theoretic context and then generalized by Even, Goldreich
and Lampel [12] with the OT1

2 notion. Intuitively, OT1
2 allows one party (S) to

transfer exactly one secret, out of two different recognizable secrets (M0, M1),
to his counterpart (R). Each secret is received with probability one half and
the sender is completely ignorant of which secret has been received. Intuitively,
OT1

2(S, R, M0, M1) is a protocol that should satisfy the following axioms: (A)
R can read exactly one message: either M0 or M1, the probability of each to
be read is one half; (B) if R does not read Mi he gains no useful information
about Mi by the execution of OT1

2; (C) for S, the a posteriori probability that
R got M0 (M1) remains one half. Oblivious transfer is widely used in protocols
for secure multiparty computation and has been shown to be rather efficient.

In order to describe OT1
2 in PAPi, and recalling the notation in [12], we

should extend the equational theory for asymmetric encryption with two binary
functions � and � such that (x � y) � y = x and the mappings x �→ x � y and
y �→ x�y are permutations on the set of terms. Intuitively, when using RSA [23],
x� y is implemented as reduction modulo N (the RSA modulus) of x+ y, while
x � y is the reduction modulo N of x − y. The full list of equations is:

(1) fst(pair(x, y)) = x (2) snd(pair(x, y)) = y
(3) dec(enc(x, pk(y)), sk(y)) = x (4) enc(dec(x, sk(y)), pk(y)) = x
(5) (x � y) � y = x (6) x � (y � x) = y
(7) x � y = y � x

We are now ready to implement OT1
2 in PAPi in the following way:

OT1
2(S, R,M0, M1) ::= S(M0, M1) | R where:

S(M0, M1) ::= νe.νm0.νm1.
�
c〈pk(e),m0, m1〉.c(y).(c〈T00, T11, 0〉⊕ 1

2
c〈T01, T10, 1〉)

�

with Tij = Mi � dec(y � mj , sk(e)) and:

R ::= νl.
�
c(z, x0, x1).(c〈enc(l, z) � x0〉.P0⊕ 1

2
c〈enc(l, z) � x1〉.P1)

�

with, for i ∈ {0, 1} Pi ::= c(y0, y1, y2). (if y2 =E 0 then a〈yi � l〉 else a〈y1−i � l〉) .

For simplicity we write input actions with multiple variables (this can be easily
encoded with pair, fst and snd). S picks two fresh messages m0 and m1 and
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transmits them to R, together with the public key of the fresh secret e. The
receiver R receives this triple and randomly (with probability 1

2 ) sends back to
S the term T = enc(l, pk(e))�mi, for i ∈ {0, 1}. Since S does not know the secret
value l, it cannot tell whether T has been obtained from m0 or m1. S generates
the messages Tij obtained by combining Mi and mj and with probability 1

2 sends
to R the Mi combined with the right mj used by R. The flag 0 (1, resp.) is used
to indicate that S used m0 (m1, resp.) for the first part of the message. The
receiver can now compute the secret (M0 or M1) from the right Tij and l. At
the final step, R sends the value of the received secret on channel a.

Note that we do not consider equations of the form dec(M, sk(e)) = wrong
when M is not encrypted with sk(e). Otherwise, S may be able to know which
mj was used by R through the test dec(enc(l, pk(e)) � mi � mj , sk(e)) = wrong.
Such a test is true only if i �= j. In the case of i = j, S is able to compute the
secret l as dec(enc(l, pk(e)) � mi � mj , sk(e)). This problem is avoided by using
an asymmetric cipher (e.g., RSA), obtained with equations (4) and (5) such that
enc and dec commute. In this way, the test never returns the value wrong and S
cannot tell whether the result of dec(enc(l, pk(e)) � mi � mj , sk(e)) is l or just a
random decryption.

By means of our notion of weak bisimulation we can show that the protocol
implementation in PAPi, given the well–behaving sender S(M0, M1) and receiver
R, satisfies the OT1

2 axioms. In particular, we can show that the receiver R
receives M0 or M1 with probability 1

2 by checking the weak bisimulation of the
protocol implementation with the process that simply outputs M0 or M1 on a
channel a with probability 1

2 . Such a system, which captures axioms (A), (B)
and (C) required by OT1

2, may be seen as the correct behaviour of the protocol.
Namely, imposing a restriction on channel c, thus forcing synchronization among
S and R, it holds that:

νc.OT1
2(S, R, M0, M1) ≈l a〈M0〉⊕ 1

2
a〈M1〉.

This can be proved easily, since νc.OT1
2(S, R, M0, M1) performs only internal

reductions labeled with τ before performing the output of M0 or M1 (with prob-
ability 1

2 , resp.) on channel a. The two bisimilar labeled probabilistic automata
modeling the behaviour of νc.OT1

2(S, R, M0, M1) and a〈M0〉⊕ 1
2
a〈M1〉 are shown

in Figure 1 (probabilities equal to 1 are omitted). Notice that at each step there
is just a probability distribution that a scheduler can choose (the only nonde-
terministic choices are among blocking schedulers).

6 A Conservative Extension

Many process algebraic approaches are non–probabilistic and, in general, prob-
abilistic choice can be approximated by suitable nondeterministic mechanisms.
Using probabilistic features, however, provides stronger safety and security guar-
antees. We give formal substance to this claim (Proposition 1 below), by show-
ing that ≈ is a conservative extension of an appropriate notion of observational
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Fig. 1. νc.OT1
2(S, R, M0, M1) ≈l a〈M0〉⊕ 1

2
a〈M1〉

congruence for the purely Nondeterministic Applied Pi–calculus (NAPi), obtained
by removing the probabilistic choice operators from the syntax of plain processes.

With ANP we denote the set of extended processes in NAPi. The internal re-
duction A −→ A′, becomes now the smallest relation on ANP closed by structural
congruence and application of evaluation contexts such that:

a〈x〉.P | a(x).Q −→ P | Q P −→ P ′

P +Q −→ P ′
Q −→ Q′

P +Q −→ Q′

if M = M then P else Q −→ P

if M = N then P else Q −→ Q for M, N ∈ TG s.t.Σ �� M =E N

Given a process A ∈ A we define the plain process ANP ∈ ANP obtained
by replacing each probabilistic choice operator appearing in A with a purely
nondeterministic choice operator.

As an example, given A = (P ⊕pQ) | {M/x}, we get ANP = (P +Q) | {M/x}.
Note that NAPi essentially results in the Applied Pi–calculus given in [1]

enriched with a nondeterministic choice operator. Actually, the lack of an explicit
nondeterministic choice operator in [1] is not a real limitation since it can be
derived by means of restriction and parallel composition in the standard way.

The notion of observational congruence introduced in the probabilistic frame-
work (see Definition 3) can be rewritten for the purely nondeterministic case.

For A ∈ ANP , we write A ⇓ a when A can send a message on a, namely when
A −→∗ C[a〈x〉.P ] for some evaluation context C[ ] that does not bind a.

Definition 5. Nondeterministic observational congruence (≈NP ) is the largest
symmetric relation R between closed extended processes in ANP with the same
domain such that ARB implies:

1. if A ⇓ a, then B ⇓ a;
2. if A −→∗ A′, then B −→∗ B′ and A′RB′ for some B’;
3. C[A]RC[B] for all closing evaluation contexts C[ ].

The following proposition states that removing probabilities from two observa-
tionally equivalent probabilistic extended processes the equivalence is preserved
in the purely nondeterministic setting.

Proposition 1. Given A, B ∈ A such that A ≈ B, then ANP ≈NP BNP .

Hence, if a system satisfies an observational equivalence property in the prob-
abilistic setting, its nondeterministic counterpart does still satisfy the property
in the nondeterministic setting. The converse implication does, in general, not
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hold, since systems satisfying a property in the nondeterministic setting may
turn out to lose the property in the more expressive probabilistic framework.

Example 5. Consider the process A = νc.OT1
2(S, R, M0, M1) introduced in Sec-

tion 5 and the family of processes B = a〈M0〉⊕p a〈M1〉. It is easy to see that
ANP ≈NP BNP (both processes have just a barb on channel a). However, it is
not true that A ≈ B for all p. Actually, the equivalence holds just for p = 1

2 .

7 Conclusions

In this paper we have introduced the Probabilistic Applied Pi–calculus (PAPi),
an extension of the Applied Pi–calculus ([1]) for dealing with probability, non-
determinism and equations (which are shown to be rich enough for modeling the
most common cryptographic operations). We have given a labeled operational
semantics and a labeled weak bisimulation, which we have then shown to be a
congruence. As one expects, the results given in the probabilistic framework are
preserved with respect to the results given in the non-probabilistic one.

As an application, we have shown how PAPi applies to the OT1
2 protocol

where probability and cryptographic operations play an important role. While
we just prove the correct execution of the protocol for two given parties, it would
be quite natural to develop a framework for the analysis of security properties
(as, for example, in [2]) in order to prove more general properties.

As another possible future application, we mention, just as an example, sensor
networks, for which: (a) environmental distributed sensing can be modeled with
a nondeterministic choice among input channels waiting for external stimuli; (b)
randomization is crucial (see the probabilistic routing policies introduced in [4],
or the randomized sleeping architecture proposed in [6]); (c) cryptography is fun-
damental when dealing with secure wireless communication. Notice, moreover,
that thanks to the generality of equational theories, PAPi can also be applied to
domains different from security.
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Abstract. Gordon and Jeffrey developed a type system for checking
correspondence assertions. The correspondence assertions, proposed by
Woo and Lam, state that when a certain event (called an “end” event)
happens, the corresponding “begin” event must have occurred before.
They can be used for checking authenticity in communication protocols.
In this paper, we refine Gordon and Jeffrey’s type system and develop a
polynomial-time type inference algorithm, so that correspondence asser-
tions can be verified fully automatically, without any type annotations.
The main key idea that enables polynomial-time type inference is to
introduce fractional effects; Without the fractional effects, the type in-
ference problem is NP-hard.

1 Introduction

Woo and Lam [11] introduced the notion of correspondence assertions for stating
expected authenticity properties formally. The correspondence assertions consist
of begin-assertions and end-assertions, and assert that whenever an end-event
occurs, the corresponding begin-event must have occurred before. For example,
consider a simple transmit-acknowledgment-handshake protocol, where a process
A sends a message to B and waits for an acknowledgment. Let the event that
B receives a message from A be a begin-event, and the event that A receives
an acknowledgment be an end-event. By checking that the begin event always
precedes the end-event, one can verify that whenever A believes that the message
has been received by B, the message has indeed been delivered to B.

Gordon and Jeffrey [7] introduced an extension of the π-calculus with corre-
spondence assertions, and proposed a type-and-effect system for checking
correspondence assertions. Since well-typed processes satisfy correspondence as-
sertions, the problem of checking correspondence assertions is reduced to the
type-checking problem. They further extended the type system to deal with
cryptographic primitives [4, 6, 5].

In this paper, we refine Gordon and Jeffrey’s type system for correspon-
dence assertions and develop a polynomial-time type inference algorithm, so that
correspondence assertions can be verified fully automatically without any type
annotations (which were necessary for Gordon and Jeffrey’s type checking algo-
rithm [7]). The key idea to enable type inference is to introduce fractional effects,
which are mappings from events to rational numbers; In Gordon and Jeffrey’s

Z. Shao (Ed.): APLAS 2007, LNCS 4807, pp. 191–205, 2007.
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type system, effects are multisets of events, or mappings from events to natural
numbers. We show that with fractional effects (and with the assumptions that
the size of simple types is polynomial in the size of untyped programs and that
the size of events is bound by a constant), type inference can be performed in
polynomial time, while without fractional effects, the type inference problem is
NP-hard (even with the assumption that both the size of simple types and the
size of events are bound by a constant).

The rest of this paper is structured as follows. Section 2 introduces πCA,
Gordon and Jeffrey’s calculus without type-and-effect annotations. Section 3
introduces a type system with fractional effects. Section 4 describes a polynomial-
time type inference algorithm, and also shows that the type inference problem is
NP-hard without fractional effects. Section 5 discusses related work and Section 6
concludes.

2 πCA: π-Calculus with Correspondence Assertions

In this section, we introduce the language πCA, the π-calculus extended with
correspondence assertions. The language is essentially the same as Gordon and
Jeffrey’s calculus [7], except that there are no type annotations in our language.

2.1 Syntax

Definition 1 (processes). The set of processes, ranged over by P , is given by:

P (Processes) ::= 0 | x![ỹ] | x?[ỹ].P | (P1 | P2) | ∗P | (νx)P
| if x = y then P else Q | begin L.P | end L.P

L (Event labels) ::= 〈x1, . . . , xn〉

Here, ỹ abbreviates a sequence of names y1, . . . , yn. The meta-variables xi and
yj range over the set N of names.

The processes begin L.P and end L.P are special processes for declaring cor-
respondence assertions; begin L.P raises a “begin L” event and then behaves
like P , while end L.P raises an “end L” event and then behaves like P . An
event label L is a sequence of names.

The remaining processes are those of the standard polyadic, asynchronous π-
calculus. The process 0 is an inaction. The process x![ỹ] sends a tuple of names ỹ
on channel x. The process x?[ỹ].P waits to receive a tuple of names on channel x,
binds ỹ to them, and then behaves like P . P1 | P2 runs P1 and P2 in parallel, while
∗P runs infinitely many copies of P in parallel. The process (νx)P creates a fresh
name, binds x to it, and behaves like P . The process if x = y then P else Q
behaves like P if x and y are the same name, and behaves like Q otherwise.

The prefixes x?[ỹ] and (νx) bind ỹ and x respectively. We identify processes
up to α-conversion. We assume that α-conversion is implicitly applied so that
bound variables are always different from each other and free variables. We often
omit trailing 0, and write end L for end L.0.
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Example 1. The transmit-acknowledgment-handshake protocol mentioned in
Section 1 can be expressed as follows [7]:

(νc)(Sender (a, b, c) | Receiver(a, b, c)),

where Sender(a, b, c) and Receiver(a, b, c) are:

Sender(a, b, c)
�
= (νmsg)(νack )(c![msg , ack ] | ack?[ ].end 〈a, b,msg〉)

Receiver(a, b, c)
�
= c?[m, r].begin 〈a, b, m〉.r![ ]

Sender(a, b, c) creates a fresh message msg , creates a new channel for receiving an
acknowledgment, and sends a pair consisting of them on channel c. It then waits
for an acknowledgment and raises the “end 〈a, b,msg〉”-event. Receiver(a, b, c)
waits to receive a pair [m, r] on channel c, raises a “begin 〈a, b, m〉”-event (where
m is bound to msg), and then sends an acknowledgment on r.

As explained in Section 1, the property “whenever Sender receives an acknowl-
edgment for msg , Receiver has received it” can be captured by the property that
whenever an “end 〈a, b,msg〉”-event occurs, a “begin 〈a, b,msg〉”-event must
have occurred before.

2.2 Semantics

We give below the operational semantics of πCA and then define the safety of a
process, meaning that whenever an end-event occurs, the corresponding begin-
event must have occurred before. Note that the semantics is essentially the same
as that of Gordon and Jeffrey’s calculus.

The operational semantics is defined via the reduction relation 〈Ψ, E, N〉 −→
〈Ψ ′, E′, N ′〉, where Ψ is a multiset of processes, N is a set of names, and E is a
multiset consisting of event labels L such that the event begin L has been raised
but end L has not. The reduction relation is defined by the rules in Figure 1.

〈Ψ � {x?[ỹ].P, x![z̃]}, E,N〉 −→ 〈Ψ � {[z̃/ỹ]P}, E, N〉
〈Ψ � {P | Q}, E, N〉 −→ 〈Ψ � {P, Q}, E, N〉
〈Ψ � {∗P}, E, N〉 −→ 〈Ψ � {∗P, P}, E,N〉

〈Ψ � {(νx)P}, E, N〉 −→ 〈Ψ � {[y/x]P}, E, N ∪ {y}〉 (y /∈ N)
〈Ψ � {if x = y then P else Q}, E, N〉 −→ 〈Ψ � {P}, E, N〉 (if x = y)
〈Ψ � {if x = y then P else Q}, E, N〉 −→ 〈Ψ � {Q}, E, N〉 (if x 	= y)

〈Ψ � {begin L.P}, E, N〉 −→ 〈Ψ � {P}, E � {L}, N〉
〈Ψ � {end L.P}, E � {L}, N〉 −→ 〈Ψ � {P}, E, N〉

Fig. 1. Operational Semantics

We write 〈Ψ, E, N〉 −→ Error if end L.P ∈ Ψ but L /∈ E. We write −→∗ for
the reflexive and transitive closure of −→. The safety of a process is defined as
follows.
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Definition 2 (safety). A process P is safe if 〈{P}, ∅, N〉 �−→∗ Error, where
N is the set of free names in P .

3 Type System

In this section, we introduce a type-and-effect system for checking the safety of a
process. The main differences between our type system and Gordon and Jeffrey’s
type system [7] (GJ type system, in short) are (i) an effect in our type system is
a mapping from event labels to rational numbers whereas an effect in GJ type
system is a mapping from event labels to natural numbers, and (ii) processes are
implicitly-typed in our type system.

3.1 Types and Effects

We first introduce the syntax of types and effects.

Definition 3 (effects). The sets of types and effects, ranged over by T and e,
are given by:

T (Types) ::= Name | Ch(T1, . . . , Tn)e
e (Effects) ::= [L1 	→ t1, . . . , Ln 	→ tn]

L (extended event labels) ::= 〈α1, . . . , αk〉
α (extended names) ::= x | ι

ι (indices) ::= ↑ ι | 1 | 2 | · · ·

Here, t1, . . . , tn ranges over the set of non-negative rational numbers.

Note that an event label has been extended to a sequence of extended names.
An extended name is either a name (ranged over by x, y, . . .), or an index ι of
the form ↑ · · · ↑n.

An effect [L1 	→ t1, . . . , Ln 	→ tn] denotes the mapping f from the set of
events to the set of rational numbers such that f(Li) = ti for i ∈ {1, . . . , n} and
f(L) = 0 for L �∈ {L1, . . . , Ln}.

A type is either the type Name of pure names (which are not used as a chan-
nel), or a channel type of the form Ch(T1, . . . , Tn)e. Here, Ch(T1, . . . , Tn)e is the
type of channels that can be used for transmitting tuples consisting of values of
types T1, . . . , Tn with a latent effect e. The latent effect e describes capabilities
for raising end-events that are passed from a sender to a receiver through the
channel. For example, if x has type Ch(Name)[〈y〉 	→ 2, 〈z, w〉 	→ 1], then x can
be used for passing one name, and when a communication on x occurs, the capa-
bilities to raise “end 〈y〉” events twice and an “end 〈z, w〉” event once are passed
from the sender to the receiver (so that x?[u].end 〈y〉.end 〈z, w〉.end 〈y〉 is a
valid process). Note that we allow fractional effects. For example, if x has type
Ch( )[〈y〉 	→ 0.5], then a half of the capability to raise an end 〈y〉 event is passed
each time x is used for communication. The process x?[ ].end 〈y〉 is therefore in-
valid, but x?[ ].x?[ ].end 〈y〉 is valid. Dependencies of a latent effect on transmit-
ted names are expressed by using indices. The type Ch(Name,Name)[〈1, 2〉 	→
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1], which corresponds to the type Ch(x : Name, y : Name)〈x, y〉 in GJ type
system, describes a channel such that when a pair of names x and y are passed
through the channel, a capability to raise an end 〈x, y〉 event is passed. The in-
dex constructor ↑ is used to refer to the name occurring in an outer position. For
example, ↑ 1 in the type Ch(Name,Ch( )[〈↑ 1〉 	→ 1])〈1, 2〉 refers to the name
passed as the first argument (of type Name). Note that the type corresponds
to Ch(x : Name, y : Ch( )〈x〉)〈x, y〉 in GJ type system. Thanks to this canoni-
cal representation of types, renaming is unnecessary for unification or matching
of two types; That is convenient for the type inference algorithm described in
Section 4.

A substitution [x1/ι1, . . . , xk/ιk], denoted by meta-variable θ, is a mapping
from indices to names, The substitution, summation, least upper-bound, and
order ≤ on effects are defined by:

(θe)(L) = Σ{e(L′) | θL′ = L}
(e1 + e2)(L) = e1(L) + e2(L)
(e1 ∨ e2)(L) = max(e1(L), e2(L))
e ≤ e′ ⇔ ∀L.e(L) ≤ e′(L)

The substitution θT on types is defined by:

θName = Name
θCh(T1, . . . , Tn)e = Ch((↑ θ)T1, . . . , (↑ θ)Tn)θe

Here, ↑[x1/ι1, . . . , xk/ιk] denotes [x1/ ↑ ι1, . . . , xk/ ↑ ιk].

3.2 Typing Rules

We introduce three judgment forms: Γ � �, meaning that the type environment
Γ is well-formed; N � T , meaning that the type T is well-formed under the
set N of names; and Γ � P : e, meaning that P has effect e under the type
environment Γ . The judgment N � T is used to exclude ill-formed types like
Ch(Name)[〈2〉 	→ 1] (which refers to a non-existent index 2). The judgment
Γ � P : e intuitively means that P may raise end-events described by e that
are not preceded by begin-events. In other words, P is a good process on the
assumption that P is given the capabilities to raise end-events described by e.
For example, x : Name, y : Name � begin 〈x〉.end 〈x, y〉.end 〈x〉 : [〈x, y〉 	→ 1]
and x : Ch(Name)[〈1〉 	→ 2] � x?[y].end 〈y〉.end 〈y〉 : [ ] are valid judgments.
The latter process receives a capability to raise two “end 〈y〉” events through
x. On the other hand, x : Name � begin 〈x〉.end 〈x〉.end 〈x〉 : [ ] is an invalid
judgment.

The relations Γ � �, N � T , and Γ � P :e are defined by the rules in Figure 2.
In the figure, θy1,...,yk

denotes the substitution [y1/1, . . . , yk/k]. N(e) denotes
the set

⋃
{N(L) | e(L) > 0}, where N(L) is the set of extended names occuring

in L. For example, N([〈x, y〉 	→ 0.5, 〈y, z〉 	→ 0]) = {x, y}. The typing rules
are basically the same as those of Gordon and Jeffrey’s type system [7], except
that the syntax of types has been changed and effects have been replaced by
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mappings from names to rational numbers. In rule WT-Chan, ↑N denotes the
set {↑ ι | ι ∈ N} ∪ (N ∩ N ). For example, ↑{x, 1, ↑ 2} = {x, ↑ 1, ↑ ↑ 2}. In T-If,
[y/x]Γ is defined as follows.

[y/x]Γ = [y/x](x1 : T1, . . . , xn : Tn) =
([y/x]x1) : ([y/x]T1); . . . ; ([y/x]xn) : ([y/x]Tn)

where Γ ; x : T is Γ if x ∈ dom(Γ ), and is Γ, x : T otherwise

Example 2. The process Receiver(a, b, c) in Example 1 is typed as follows.

Γ0, m : Name, r : T2 � r![ ] : [〈a, b, m〉 	→ 1]
Γ0, m : Name, r : T2 � begin 〈a, b, m〉.r![ ] : [ ]

Γ0 � Receiver (a, b, c) : [ ]

Here, Γ0 = a : Name, b : Name, c : Ch(Name,Ch( )[〈a, b, ↑ 1〉 	→ 1])[ ] and T2 =
Ch( )[〈a, b, m〉 	→ 1].

Similarly, Sender(a, b, c) is typed as follows.

Γ2 � c![msg, ack ] : [ ]
Γ2 � end 〈a, b,msg〉 : [〈a, b,msg〉 	→ 1]

Γ2 � ack?[ ].end 〈a, b,msg〉 : [ ]
Γ2 � c![msg, ack ] | ack?[ ].end 〈a, b,msg〉 : [ ]

Γ1 � (νack )(c![msg , ack ] | ack?[ ].end 〈a, b,msg〉) : [ ]
Γ0 � Sender (a, b, c) : [ ]

Here, Γ1 = Γ0,msg : Name and Γ2 = Γ1, ack : Ch( )[〈a, b,msg〉 	→ 1]. By using
T-Par, we obtain:

Γ0 � Sender(a, b, c) |Receiver(a, b, c) : [ ].

3.3 Type Soundness

The following theorem states that a process is safe if it is well-typed and has an
empty effect.

Theorem 1 (type soundness). If Γ � P : [ ], then P is safe.

The proof is essentially the same as that of the type sound theorem for GJ type
system [7].

3.4 Comparison with GJ Type System

Our type system is strictly more expressive than GJ type system [7]. Note that
the only difference between our type system and GJ type system is that an effect
is a mapping from names to rational numbers in our type system, while it is a
mapping from names to natural numbers in GJ type system. Therefore, it should
be trivial that any process well-typed in GJ type system is also well-typed in
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∅ � �
(TE-Empty)

dom(Γ ) � T x /∈ dom(Γ )

Γ, x : T � �
(TE-Ext)

N � Name
(WT-Name)

↑(N ∪ {1, . . . , i − 1}) � Ti (for each i ∈ {1, . . . , n})
N(e) ⊆ N ∪ {1, . . . , n}
N � Ch(T1, . . . , Tn)e

(WT-Chan)

Γ � P : e e ≤ e′ N(e′) ⊆ dom(Γ )

Γ � P : e′ (T-Subsum)

Γ � �
Γ � 0 : [ ]

(T-Zero)

Γ � x : Ch(T1, . . . , Tn)e
Γ � yi : (↑ θy1,...,yi−1)Ti (for each i ∈ {1, . . . , n})

Γ � x![y1, . . . , yn] : θy1,...,yne
(T-Out)

Γ � x : Ch(T1, . . . , Tn)e1 Γ, y1 : T ′
1, . . . , yn : T ′

n � P : e2

T ′
i = (↑ θy1,...,yi−1)Ti (for each i ∈ {1, . . . , n})

e2 ≤ θy1,...,yne1 + e (N(e) ∪ N(e1)) ∩ {y1, . . . , yn} = ∅
Γ � x?[y1, . . . , yn].P : e

(T-In)

Γ � P1 : e1 Γ � P2 : e2

Γ � P1 | P2 : e1 + e2
(T-Par)

Γ � P : [ ]

Γ � ∗P : [ ]
(T-Rep)

Γ, x : T � P : e x /∈ N(e)

Γ � (νx)P : e
(T-Res)

Γ � x : T Γ � y : T [y/x]Γ � [y/x]P : [y/x]eP Γ � Q : eQ

Γ � if x = y then P else Q : eP ∨ eQ

(T-Cond)

Γ � P : e + [L �→ 1] N(L) ⊆ dom(Γ )

Γ � begin L.P : e
(T-Begin)

Γ � P : e N(L) ⊆ dom(Γ )

Γ � end L.P : e + [L �→ 1]
(T-End)

Fig. 2. Typing Rules

our type system. On the other hand, there is a process that is typable in our
type system but not in GJ type system. Consider the following process:1

begin 〈a〉.(c![ ] | c![ ]) | c?[ ].c?[ ].end 〈a〉.
1 The example was suggested by Tachio Terauchi.
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The process on the lefthand side first raises a begin-event, and then sends a
capability to raise an end-event on channel c, while the process on the righthand
side receives the capability from channel c, and raises the end-event.

In our type system, the process is typed under the type environment: a :
Name, c : Ch(Name)[〈a〉 	→ 0.5]. Note that c carries a half of the capability to
raise the end-event. Since two messages are sent on c, 0.5 + 0.5 = 1 capability is
passed from the left process to the right process.

To see why the above process is not typable in GJ type system, let the type
of c be Ch( )e where e(〈a〉) = n. In order for the left process to be typable, it
must be the case that n + n ≤ 1. On the other hand, for the right process to be
typable, it must be the case that n + n ≥ 1. There is no natural number n that
satisfies both the constraints.

4 Type Checking Algorithm

This section describes an algorithm which, given a process P , judges whether
there exists a type environment Γ such that Γ � P : [ ].

The algorithm consists of the following steps.

– Step 1: Generate constraints on effects based on the typing rules.
– Step 2: Reduce the constraints on effects into linear inequalities on rational

numbers.
– Step 3: Check whether the linear inequalities have a solution.

We first explain the first and second steps below. We then show in Subsection 4.4
that the algorithm runs in time polynomial in the size of the process (provided
that the size of the simple type of each name is polynomial in the size of the
process and that the size of each begin/end-event is bound by a constant). In
Subsection 4.5, we show that without fractional effects, the type inference prob-
lem is NP-hard.

4.1 Step 1: Generating Constraints on Effects

Figure 3 gives an algorithm Inf , which takes a closed process P as an input, and
generates a set C of constraints. C expresses a necessary and sufficient condition
for Γ � P : [ ] where all the effects in Γ are empty.

Inf calls a sub-procedure inf , which takes a type environment and a process,
and generates a pair (e, C) where C is a necessary and sufficient condition for
Γ � P : e. We assume that the simple type of each name has been already inferred
by the standard type inference algorithm,2 and that typeof(x) decorates the
simple type of x with fresh effect variables and returns it. For example, if the sim-
ple type of x is Ch(Ch(Name)), typeof(x) returns Ch(Ch(Name)ρ1)ρ2 where
ρ1 and ρ2 are fresh. In the definition of inf (the clauses for input and output pro-
cesses), Ch(T1, . . . , Tn)e = Γ (x) expresses a matching of Γ (x) against the pat-
tern Ch(T1, . . . , Tn)e. For example, if n = 1 and Γ (x) = Ch(Ch(Name)ρ1)ρ2,
2 If there is an undetermined type, let it be Name.
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then T1 and e are instantiated to Ch(Name)ρ1 and ρ2 respectively. In the
clauses for input and output processes, a substitution θ works as an operation
for types but as an constructor for effects. For example, let θ = [a/x, b/1]. Then
θCh(Ch(Name)ρ1)ρ2 is Ch(Ch(Name)[a/x, b/ ↑ 1]ρ1)[a/x, b/1]ρ2. teq(T1, T2)
matches T1 and T2, and generates equality constraints on effects. For example,
teq(Ch(Ch(Name)e1)e2,Ch(Ch(Name)e′1)e

′
2) generates {e1 = e′1, e2 = e′2}.

Note that the number of equality constraints generated by teq(T1, T2) is linear
in the size of T1 and T2. Note also that the matching of types never fails be-
cause of the assumption that type inference for the simple type system has been
already performed. The substitution operation θT can be performed in time
O(mn), where m is the size of T and n is the size of θ. wf (N, T ) generates the
conditions for T being well-formed under the names N .

Inf generates constraints of the following forms:

– inequalities on effects e1 ≥ e2, where e1 and e2 are expressions constructed
from effect constants ([L 	→ 1]), effect variables, substitutions, and summa-
tion (+).

– equalities on effects e1 = e2, where e1 and e2 are either [ ] or of the form
θ1 · · · θkρ.

– notin(x, e), where e is [ ] or an effect variable.
– N(e) ⊆ N , where e is of the form θ1 · · · θkρ.

The algorithm Inf is sound and complete with respect to the type system in
Section 3 in the following sense.

Lemma 1. Inf (P ) is satisfiable if and only if Γ � P : [ ] holds for a type envi-
ronment Γ such that all the effects in Γ are empty.

Remark 1. The reason why we require that all the effects in Γ are empty is
that P may be executed in parallel with an untrusted process Q. The condition
that the effects in Γ are empty ensures that P does not expect to receive any
capability (to raise end-events) from Q. Thus, even in the presence of the un-
trusted process Q, the correspondence assertions in P hold. (Since Q may not
be simply-typed, execution of P | Q may get stuck, however.)

4.2 Step 2: Reducing Constraints on Effects

Let N1 be the set of all the names occurring in P (including bound names), and
let N2 be the set of indices of the form ↑k l. Here, k is less than or equal to the
maximum depth of the type of a channel occurring in P , and l is less than or
equal to the maximum width of the type of a channel occurring in P (in other
words, the maximum size of tuples sent along channels). Let w be the maximal
size of the begin/end-events occurring in P . (Here, the size of 〈x1, . . . , xk〉 is k.)
Then, we need to consider only events in the following set L:

{〈α1, . . . , αk〉 | k ≤ w, α1, . . . , αk ∈ N1 ∪ N2}.

Note that the size of N1 ∪ N2 is polynomial in the size of P , since both the
maximum depth and the maximum width of simple types are polynomial in the
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Inf (P ) =
let

Γ = {x : typeof(x) | x ∈ N(P )}
(e, C1) = inf (Γ, P )
C2 = {e = [ ]}

∪{e1 = [ ] | e1 appears in Γ}
in C1 ∪ C2

inf (Γ,0) = ([ ], ∅)

inf (Γ, x![y1, . . . , yn]) =
let

Ch(T1, . . . , Tn)e = Γ (x)
C = {teq(Γ (yi), (↑ θy1,...,yi−1)Ti)

| i ∈ {1, . . . , n}}
in (ρ, C ∪ {ρ ≥ θy1,...,yne})

where ρ is fresh

inf (Γ, x?[y1, . . . , yn].P ) =
let

Γ ′ = Γ, ỹ : typeof(ỹ)
(eP , CP ) = inf (Γ ′, P )
Ch(T1, . . . , Tn)e = Γ (x)
C1 = {teq(Γ ′(yi), (↑ θy1,...,yi−1)Ti)

| i ∈ {1, . . . , n}}
C2 = {notin(yi, ρ) | i ∈ {1, . . . , n}}
C3 = {ρ + θy1,...,yne ≥ eP }
C4 =

S
1≤i≤n wf (↑({y1, . . . , yi−1}

∪dom(Γ )), Γ (yi))
in (ρ, CP ∪ C1 ∪ C2 ∪ C3 ∪ C4)

where ρ is fresh

inf (Γ, P | Q) =
let

(eP , CP ) = inf (Γ, P )
(eQ, CQ) = inf (Γ, Q)

in (ρ, CP ∪ CQ ∪ {ρ ≥ eP + eQ})
where ρ is fresh

inf (Γ, ∗P ) =
let (eP , CP ) = inf (Γ, P )
in ([ ], CP ∪ {eP = [ ]})

inf (Γ, (νx)P ) =
let T = typeof(x)

(eP , CP ) = inf ((Γ, x : T ), P )
in (ρ, CP ∪ {ρ ≥ eP } ∪ {notin(x, eP )}

∪wf (dom(Γ ), T ))
where ρ is fresh

inf (Γ, if x = y then P else Q) =
let

(eP , CP ) = inf ([y/x]Γ, [y/x]P )
(eQ, CQ) = inf (Γ, Q)
C1 = {[y/x]ρ ≥ eP , ρ ≥ eQ}

in (ρ, CP ∪ CQ ∪ C1 ∪ {teq(Γ (x), Γ (y))})
where ρ is fresh

inf (Γ,begin L.P ) =
let (eP , CP ) = inf (Γ, P )
in (ρ, CP ∪ {ρ + [L �→ 1] ≥ eP })

where ρ is fresh and N(L) ⊆ dom(Γ )

inf (Γ, end L.P ) =
let (eP , CP ) = inf (Γ, P )
in (ρ, CP ∪ {ρ ≥ eP + [L �→ 1]})

where ρ is fresh and N(L) ⊆ dom(Γ )

teq(T, T ) = ∅

teq(Ch(T̃ )e1,Ch(T̃ ′)e2) =

{e1 = e2} ∪ teq(T̃ , T̃ ′)

wf (N,Name) = ∅

wf (N,Ch(T1, . . . , Tn)e)
= (

S
1≤i≤n wf (↑(N ∪ {1, . . . , i − 1}), Ti))

∪{N(e) ⊆ N ∪ {1, . . . , n}}

Fig. 3. Constraint Generation Algorithm

size of P . On the assumption that the maximum size of events is bound by a
constant, therefore, the size N of L is polynomial in the size of P .
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Let L = {L1, . . . , LN}. For each effect variable ρ in C, prepare N variables
ξρ,L1 , . . . , ξρ,LN , ranging over rational numbers. Then, the constraints C on effect
variables are replaced with constraints on ξρ,L as follows.

cconv(e1 ≥ e2) = {econv(e1)(L) ≥ econv(e2)(L) | L ∈ L}
cconv(e1 = e2) = {econv(e1)(L) = econv(e2)(L) | L ∈ L}

cconv(notin(x, e)) = {econv(e)(L) = 0 | L ∈ L ∧ x ∈ N(L)}
cconv(N(e) ⊆ N) = {econv(e)(L) = 0 | L ∈ L ∧ N(L) �⊆ N}

econv(ρ) = {L1 	→ ξρ,L1 , . . . , LN 	→ ξρ,LN }
econv(e1 + e2) = {L1 	→ econv(e1)(L1) + econv(e2)(L1), . . . ,

Ln 	→ econv(e1)(LN ) + econv(e2)(LN )}
econv(θe) = {L1 	→ Σ{econv(e)(L) | θL = L1}, . . . ,

LN 	→ Σ{econv(e)(L) | θL = LN}}

4.3 Example

Recall the process in Example 1. By the standard type inference, the following
types are assigned to names:

a : Name, b : Name, c : Ch(Name,Ch( )ρ0)ρc,msg : Name,
ack : Ch( )ρack , m : Name, r : Ch( )ρr

Here, ρ0, ρc, ρack are effect variables to express unknown effects.
By running the constraint generation algorithm for Sender(a, b, c), we obtain

the following constraints.

ρc! ≥ [msg/1, ack/2]ρc, ρack? + ρack ≥ [〈a, b,msg〉 	→ 1]
ρs ≥ ρc! + ρack?, ρack = [msg/ ↑ 1]ρ0,notin(msg , ρs),notin(ack , ρs)
N(ρ0) ⊆ {a, b, ↑ 1}, N(ρc) ⊆ {a, b, 1, 2}, N(ρack) ⊆ {a, b, c,msg}

Here, ρs, ρc!, and ρack? are effects of the processes Sender (a, b, c), c![msg, ack ],
and ack?[ ]. · · · respectively. The constraints on the first line come from the out-
put and input processes, and those on the second line come from the parallel com-
position and ν-prefixes. Those on the third line come from the well-formedness
conditions (wf in the algorithm).

Similarly, we obtain the following constraints from Receiver(a, b, c):

ρbg + [〈a, b, m〉 	→ 1] ≥ ρr, ρrec + [m/1, r/2]ρc ≥ ρbg , ρr = [m/ ↑ 1]ρ0
notin(m, ρrec),notin(r, ρrec),N(ρr) ⊆ {a, b, c, m}

From the entire process (νc)(Sender (a, b, c) | Receiver(a, b, c)), we also obtain:

ρsys ≥ ρs + ρrec, ρsys = [ ]

The next step is to reduce the above constraints into linear inequalities. The
set L of relevant events is:

{〈x1, x2, x3〉 | x1, x2, x3 ∈ {a, b, c,msg, ack , m, r, 1, 2, ↑ 1}}
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We prepare a variable ξi,L for each effect variable ρi and event L. (In practice,
we can reduce the number of variables by looking at the substitutions and events
occurring in the effect constraints.)

We show only inequalities relevant to 〈a, b,msg〉:

ξc!,〈a,b,msg〉 ≥ ξc,〈a,b,↑ 1〉, ξack?,〈a,b,msg〉 + ξack ,〈a,b,msg〉 ≥ 1
ξs,〈a,b,msg〉 ≥ ξc!,〈a,b,msg〉 + ξack?,〈a,b,msg〉, ξack ,〈a,b,msg〉 = ξ0,〈a,b,↑ 1〉
ξs,〈a,b,msg〉 = 0
ξbg,〈a,b,m〉 + 1 ≥ ξr,〈a,b,m〉, ξc,〈a,b,1〉 ≥ ξbg,〈a,b,m〉, ξr,〈a,b,m〉 = ξ0,〈a,b,↑ 1〉
ξsys,〈a,b,msg〉 ≥ ξs,〈a,b,msg〉 + ξrec,〈a,b,msg〉, ξsys,〈a,b,msg〉 = 0

Additionally, we have the inequality ξi,L ≥ 0 for every variable.
The above inequalities have the following solution:

ξack ,〈a,b,msg〉 = ξr,〈a,b,m〉 = ξ0,〈a,b,↑ 1〉 = 1,
ξc!,〈a,b,msg〉 = ξc,〈a,b,msg〉 = ξc,〈a,b,1〉 = ξack?,〈a,b,msg〉 = ξbg,〈a,b,m〉

= ξrec,〈a,b,msg〉 = ξs,〈a,b,msg〉 = ξsys,〈a,b,msg〉 = 0.

Thus, we obtain the following type for each name:

a : Name, b : Name, c : Ch(Name,Ch( )[〈a, b, ↑ 1〉 	→ 1])[ ],msg : Name,
ack : Ch( )[〈a, b,msg〉 	→ 1], m : Name, r : Ch( )[〈a, b, m〉 	→ 1],

4.4 Efficiency of the Algorithm

Let |P | be the size of the input P of the algorithm Inf . We show that, if the size of
simple types is polynomial in |P |, and the size of begin/end-events is bounded by
a constant, then our algorithm runs in time polynomial in |P |. First, the number
of the constraints generated by Inf (P ) is polynomial in |P |. Note here that by the
assumption on the size of simple types, the size of teq(T1, T2) is also polynomial
in |P |: the number of effect equalities generated by teq(T1, T2) is linear in the
size of T1, and the size of effect expressions occurring in each equality is also
polynomial in |P |. Since the size of the event set L is polynomial in the size of
the process, the second step runs in time polynomial in |P | and generates linear
inequalities of size polynomial in |P |. Since linear inequalities can be solved in
polynomial time, the third step can also be performed in polynomial time.

Remark 2. Note that in general, the size of simple types (expressed as terms
instead of graphs) can be exponential in the size of |P |. For example consider
the following process:

x0![x1, x1] | x1![x2, x2] | · · · | xn![xn+1, xn+1]

The size of the type of x0 is exponential in n. We believe, however, that in
practice, the maximum size of types depends on what data structures and com-
munication protocols are used in the program, and it is generally independent
of the size of the program itself. If the assumption on the size of simple types is
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not met or if there are recursive types, we can use graph representation of simple
types and assign the same effect to the same type node. Then, our algorithm still
runs in time polynomial in the size of the program, although the completeness
of the inference algorithm would be lost.

4.5 Complexity of GJ Type System

Next, we show that the typability in GJ type system [7] is NP-hard without type
annotations (in other words, if fractional effects in our type system are replaced
by multisets of events as in GJ type system).

Since the 3-SAT problem is NP-complete, in order to prove NP-hardness, it
suffices to show that any instance q of 3-SAT problem can be encoded into a
process SAT2P(q) so that the size of SAT2P(q) is polynomial in the size of q,
and so that q is satisfiable if and only if ∅ � SAT2P(q) : [ ] is typable.

Let a 3-SAT problem q be d1∧· · ·∧dn where di is Ai1∨Ai2∨Ai3 and Aij is either
a variable Xk or its negation Xk. By representing the truth value by 1 and 0 (and
assuming that each variable ranges over {0, 1}), we can encode each disjunction
di into an integer constraint f2ic(di), which is one of the following forms:

X + Y + Z ≥ 1 X ≤ Y + Z X + Y ≤ Z + 1 X + Y + Z ≤ 2

For example, X1 ∨ X2 ∨ X3 is expressed by X1 + (1 − X2) + X3 ≥ 1, which is
equivalent to X2 ≤ X1 + X3.

For each of the above inequalities, define the following processes:

PX+Y +Z≥1 = cX?[x].cY ?[y].cZ?[z].
if x = y then if y = z then end 〈x〉 else 0 else 0

PX≤Y +Z = cY ?[y].cZ?[z].if y = z then cX ![y] else 0
PX+Y ≤Z+1 = cZ?[z].begin 〈z〉.(cX ![z] | cY ![z])
PX+Y +Z≤2 = (νa)begin 〈a〉.begin 〈a〉.(cX ![a] | cY ![a] | cZ ![a])

Then, for each inequality β, β holds if and only if

cX : Ch(Name)[〈1〉 	→ X ], cY : Ch(Name)[〈1〉 	→ Y ],
cZ : Ch(Name)[〈1〉 	→ Z] � Pβ : [ ]

holds.
For each variable X , let QX be the process (νa)begin 〈a〉.cX ![a]. Then, 0 ≤

X ≤ 1 if and only if cX : Ch(Name)[〈1〉 	→ X ] � QX .
For an instance of 3-SAT problem q = d1 ∧ · · · ∧ dn, define SAT2P(q) by:

SAT2P(d1 ∧ · · · ∧ dn) =
(νcX1) · · · (νcXm)(QX1 | · · · | QXm | Pf2ic(d1) | · · · | Pf2ic(dn)).

Here, X1, . . . , Xm are the variables in q. Then, q is satisfiable if and only if
∅ � SAT2P(q) : [ ] holds. Since the size of SAT2P(q) is linear in the size of q and
the 3-SAT problem is NP-complete, the typability (i.e., the problem of judging
whether there exists Γ such that Γ � P : [ ] holds) is NP-hard.
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Remark 3. Note that the above encoding uses only events of the form 〈a〉 and
types of the form Ch(Name)e and Name. Thus, the type inference problem is
NP-hard even on the assumption that the sizes of simple types and events are
bound by a constant.

5 Related Work

As already mentioned, this work is based on Gordon and Jeffrey’s type system
for correspondence assertions [7]. We have extended effects to fractional effects
and removed explicit type annotations. The resulting type system is more expres-
sive than their type system, and is more suitable for automatic type inference.
Gordon and Jeffrey [4, 6, 5] have extended their type system to verify authen-
ticity of security protocols using cryptographic primitives. It is left for future
work to check whether type inference algorithms for those type systems can be
constructed in a similar manner.

Blanchet [1, 2] studied completely different techniques for checking correspon-
dence assertions in cryptographic security protocols, and implemented protocol
verification systems. Like in our type system (and unlike in Gordon and Jeffrey’s
type systems [7,4,6,5]), his systems do not require any annotations (except for cor-
respondence assertions). It is difficult to make fair comparison between our work
and his techniques because we have not yet extended the type system to deal with
cryptographic primitives. A possible advantage of our type-based approach is that
our algorithmruns inpolynomial time.Ontheother hand, there seemtobenoguar-
antee that his systems terminate [1]. A clear advantage of his recent work [2] over
the type-based methods is that it can guarantee soundness in the computational
model (rather than in the formal model with the perfect encryption assumption).

The idea of using rational numbers in type systems have been proposed by
Boyland [3] and Terauchi and Aiken [9,10]. They used rational numbers (ranging
over [0, 1], rather than [0, ∞) in our type system) to prevent interference of
read/write operations on reference cells or channels. Terauchi and Aiken [10]
observed that type inference can be performed in polynomial time thanks to
the use of rational numbers. A main difference between their system and ours
is that effects are mapping from channel handles to rational numbers in their
system [10], while effects are mapping from names to rational numbers in ours.
Because of the name-dependent feature of GJ type system, reduction of the
typability to linear programming was less trivial.

Gordon and Jeffrey’s type system for checking correspondence assertions [7]
can be regarded as an instance of the generic type system for the π-calculus [8].
Thus, it would be interesting to extend the idea of this paper to develop a type
inference algorithm for the generic type system.

6 Conclusion

We have extended Gordon and Jeffrey’s type system by introducing fractional
effects, and developed a polynomial-time type inference algorithm. Future work
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includes implementation of the type inference algorithm and extension of the
type system to deal with cryptographic primitives.
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Abstract. We develop virtual machines and compilers for a multi-level
language, which supports multi-stage specialization by composing pro-
gram fragments with quotation mechanisms. We consider two styles of
virtual machines—ones equipped with special instructions for code gen-
eration and ones without—and show that the latter kind can deal with,
more easily, low-level code generation, which avoids the overhead of (run-
time) compilation by manipulating instruction sequences, rather than
source-level terms, as data. The virtual machines and accompanying
compilers are derived by program transformation, which extends Ager
et al.’s derivation of virtual machines from evaluators.

1 Introduction

Multi-level (or multi-stage) languages are designed to support manipulation of
program fragments as data and execution of generated code, often by the mech-
anism of quasi-quotation and eval as in Lisp. Most of those languages are consid-
ered extensions of the two-level λ-calculus [1] to an arbitrary number of levels,
which has been proposed and studied by Glück and Jørgensen [2].

In the last decade, designs, semantics, and type systems of multi-level lan-
guages have been studied fairly extensively by many people [3,4,5,6,7,8,9,10,11].
On the other hand, implementation issues have been discussed mostly in the
context of two-level systems [12,13,14,15], in which generated code itself does
not generate code. As is pointed out by Wickline et al. [4], implementation of
two-level languages does not extend straightforwardly to multi-level, especially
when one wants a program to generate low-level machine code directly, since
there is possible code-size blow-up in generating instructions that themselves
generate instructions.

Wickline et al. [4] have addressed this problem by developing an extension of
the Categorical Abstract Machine (CAM) [16] with a facility for run-time code
generation and a compilation scheme for a multi-level extension of ML called
ML�. Unfortunately, however, the design of the extended CAM is rather ad-hoc
and it is not clear how their technique can be applied to different settings.
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Our Approach and Contributions. We develop virtual machines (VMs) and com-
pilers for multi-level languages as systematically as possible, by extending Ager
et al.’s technique [17,18] to derive from evaluators, by a sequence of well-known
program transformations, abstract machines (which take a source term as an in-
put) or VMs (which take an instruction sequence) with compilers. Although this
technique has been shown to be applicable to various evaluation strategies in-
cluding call-by-value, call-by-name, call-by-need, and even strong reduction [19],
application to multi-level languages is new (at least, to our knowledge).

We also identify the following two aspects of compilation schemes and how
they appear in the derivation of VMs.

– One aspect is whether a VM generates low-level code or source-level code.
It would be desirable that a VM support low-level code generation since the
overhead of compilation of the generated code can be reduced.

– The other is whether or not a VM is equipped with instructions dedicated
for emitting instructions. At first, it may sound counter-intuitive that a VM
supports code generation without such instructions. It is, however, possible
by introducing two execution modes to a VM: in one mode, an instruction is
executed as usual, and in the other, the same instruction emits some code.
Correspondingly, a compiler will generate the same instruction for the same
source language construct, however deep it appears under quotation. We
call this scheme uniform compilation, while we call the other scheme, using
a dedicated instruction set for code generation, non-uniform compilation.

Interestingly, the choice between uniform or non-uniform compilation naturally
arises during the derivation process. We also find out that deriving VMs sup-
porting low-level code generation fails when non-uniform compilation is chosen;
we discuss why it is difficult from the viewpoint of our derivation scheme.

Our main technical contributions can be summarized as follows:

– Derivation of compilers and VMs for a foundational typed calculus λ© by
Davies [3] for multi-level languages; and

– Identification of the two compilation schemes of uniform and non-uniform
compilation, which, in fact, arise naturally during derivation.

Although we omit it from this paper for brevity, we have also succeeded to apply
the same derivation scheme to another calculus λ� [8] of multi-level languages.

The Rest of the Paper. We start with reviewing λ© in Section 2. Then, we first
describe the uniform compilation scheme and a VM that generates low-level
code in Section 3 and then the non-uniform compilation, which fails at low-level
code generation, in Section 4. After discussing related work in Section 5, we
conclude in Section 6. The concrete OCaml code of the derivation is available at
http://www.sato.kuis.kyoto-u.ac.jp/∼igarashi/papers/VMcircle.html.

2 λ©

λ© [3] is a typed λ-calculus, which corresponds to linear-time temporal logic
with the temporal operator © (“next”) by the Curry-Howard isomorphism. A

http://www.sato.kuis.kyoto-u.ac.jp/~igarashi/papers/VMcircle.html
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λ©-term is considered a multi-level generating extension, which repeatedly takes
part of the input of a program and yields a residual program, which is a spe-
cialized generating extension; and its type system can be considered that for
a multi-level binding-time analysis [2,3]. The term syntax includes next and
prev, which roughly correspond to backquote and unquote in Lisp, respectively.
So, in addition to the usual β-reduction, λ© has reduction to cancel next by
prev: prev(next t) −→ t. Unlike Lisp, however, all variables are statically bound
and substitution is capture-avoiding, or “hygienic” [20]. For example, the term
(λx. next(λy. prevx)) (next y) reduces to next(λz. y) in two steps—notice that
the bound variable y has been renamed to a fresh one to avoid variable capture.
It is a common practice to generate fresh names in implementations where vari-
ables have named representation. In this paper, we adopt de Bruijn indices to
represent variable binding with a low-level, nameless implementation in mind.
So, index shifting will be used to avoid variable capture, instead of renaming
bound variables.

2.1 Syntax and Operational Semantics

We first give the syntax and a big-step semantics of a variant of λ©, in which
variables are represented by de Bruijn indices. The definitions of terms t, values
v, and environments E, are given by the following grammar:

t ::= n | λt | t0 t1 | next t | prev t v ::= 〈E, t〉 | �t� E ::= · | v :: E

The level of a (sub)term is the number of nexts minus the number of prevs to
reach the (sub)term. A variable n refers to the n-th λ-binder at the same level.
For example, λy. next(λx. x(prev y)) will be represented by λnext(λ0(prev 0)),
not λnext(λ0(prev 1)), since x appears at level 1 but y at level 0. This indexing
scheme is required because an environment is a list of bindings of level-0 variables
and variables at higher levels are treated like constants—so, in order for indices to
correctly work, binders at higher levels have to be ignored in computing indices.
A value is either a function closure 〈E, t〉 or a quotation �t�1. An environment
E is a list of values. We focus on a minimal set of language features in this paper
but our derivation works when recursion or integers are added.

These definitions can be easily represented by datatype definitions in OCaml,
which we use as a meta language in this paper.

type term = Var of int | Abs of term | App of term * term
| Next of term | Prev of term

type value = Clos of env * term | Quot of term and env = value list

As we have mentioned evaluation in λ© can go under λ-binders. To deal with
it, we need “shift” operations to adjust indices. The expression t ↑�

j denotes a
term obtained by incrementing the indices of free level-� variables by 1. The
1 In Davies [3], next is used for �·�. Our intention here is to distinguish an operator

for quotation and the result of applying it. Also, we do not stratify values by levels
as in [3] since it is not really necessary—the type system does the stratification.
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auxiliary argument j counts the number of λ-binders encountered, in order to
avoid incrementing the indices of bound variables.

n ↑�
j =

{
n + 1 (if n ≥ j and � = 0)
n (otherwise)

(λt) ↑�
j = λ(t ↑�

j+1)

(t0 t1) ↑�
j = (t0 ↑�

j) (t1 ↑�
j)

(next t) ↑�
j = next(t ↑�−1

j )
(prev t) ↑�

j = prev(t ↑�+1
j )

Notice that � is adjusted when next or prev is encountered. Shifting E ↑� of
environments is defined as a pointwise extension of term shifting; we omit the
definition. We implement these functions as shift and shiftE, respectively,
whose straightforward definitions are also omitted.

Now, we define the call-by-value, big-step operational semantics of λ© with
the judgment E � t ⇓� r where r is either a value v (when � = 0) or a term
t′ (otherwise), read “level-� term t evaluates to r under environment E”. The
inference rules for this judgment are given in Fig. 1, in which E(n) stands for
the n-th element of E. As usual, bottom-up reading gives how to evaluate an
expression, given an environment and a level. The rules for the case � = 0 are
straightforward extensions of those for the λ-calculus. The rules Eq-— mean
that, when � ≥ 1 (i.e., the term is under next), the result of evaluation is almost
the input term; only subterms inside prev at level 1 is evaluated, as is shown
in E-Prev, in which the quotation of the value is canceled. To avoid variable
capture, indices of quoted terms in the environment have to be shifted (by E ↑�),
when evaluation goes under λ-bindings (Eq-Abs).2 Fig. 2 shows the derivation
for the evaluation of next(λprev(λnext(λprev 0))(next 0)), which could be writ-
ten ‘(lambda (x),((lambda (y) ‘(lambda (z) ,y)) ‘x)) in Scheme.

The type system, which we omit mainly for brevity, guarantees the absence of
type errors and that a term of a quotation type evaluates to a quoted term �t�,
where t is well typed at level 0 and does not contain subterms at a negative level.
Our evaluator simply discards type information and types do not play important
roles in our development. We assume every term is well typed.

2.2 Environment-Passing, Continuation-Passing Evaluator for λ©

Once an operational semantics is defined, it is a straightforward task to write an
environment-passing, continuation-passing evaluator. It takes not only a term,
an environment, and a continuation, but also a level of the input term; hence, the
evaluator has type term * int * env * (value -> value) -> value (the re-
turn type of continuations is fixed to value).

type cont = value -> value
(* eval0 : term * int * env * cont -> value *)
let rec eval0 (t, l, e, k) = match t, l with
Var n, 0 -> k (List.nth e n)

2 In the implementation below, shifting is applied to values in an environment eagerly,
but it can be delayed to reduce overhead, until the values are referred to by a
corresponding variable.
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E � t ⇓0 v

(E(n) = v)

E � n ⇓0 v
(E-Var)

E � λt ⇓0 〈E, t〉
(E-Abs)

E � t0 ⇓0 〈E′, t〉 E � t1 ⇓0 v
v :: E′ � t ⇓0 v′

E � t0 t1 ⇓0 v′ (E-App)

E � t ⇓1 t′

E � next t ⇓0 �t′�
(E-Next)

E � t ⇓� t′ (� ≥ 1)

E � t ⇓0 �t′�
E � prev t ⇓1 t′ (E-Prev)

E � n ⇓� n
(Eq-Var)

E ↑�� t ⇓� t′

E � λt ⇓� λt′ (Eq-Abs)

E � t0 ⇓� t′
0

E � t1 ⇓� t′
1

E � t0 t1 ⇓� t′
0 t′

1
(Eq-App)

E � t ⇓�+1 t′

E � next t ⇓� next t′ (Eq-Next)

E � t ⇓� t′

E � prev t ⇓�+1 prev t′ (Eq-Prev)

Fig. 1. The operational semantics of λ©

D ≡

�1� :: · � 0 ⇓0 �1�
E-Var

�1� :: · � prev 0 ⇓1 1
E-Prev

�0� :: · � λ prev 0 ⇓1 λ1
Eq-Abs

�0� :: · � next(λ prev 0) ⇓0 �λ1�
E-Next

· � λ next(λ prev 0) ⇓0 〈·, next(λ prev 0)〉
E-Abs

· � 0 ⇓1 0
Eq-Var

· � next 0 ⇓0 �0�
E-Next

....
D

· � (λ next(λ prev 0)) next 0 ⇓0 �λ1�
E-App

· � prev((λ next(λ prev 0)) next 0) ⇓1 λ1
E-Prev

· � λ prev((λ next(λ prev 0)) next 0) ⇓1 λλ1
Eq-Abs

· � next(λ prev((λ next(λ prev 0)) next 0)) ⇓0 �λλ1�
E-Next

Fig. 2. The derivation of · � next(λprev((λ next(λ prev 0)) next 0)) ⇓0 �λλ1�
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| Abs t0, 0 -> k (Clos (e, t0))
| App(t0, t1), 0 -> eval0 (t0, 0, e, fun1 (Clos(e’,t’)) ->

eval0 (t1, 0, e, fun2 v -> eval0 (t’, v::e’, k)))
| Next t0, 0 -> eval0 (t0, 1, e, fun3 (Quot t) -> k (Quot t))
| Prev t0, 1 -> eval0 (t0, 0, e, fun4 (Quot t) -> k (Quot t))
| Var n, l -> k (Quot (Var n))
| Abs t0, l -> eval0 (t0, l, shiftE (e, l), fun5 (Quot t) ->

k (Quot (Abs t)))
| App(t0, t1), l -> eval0 (t0, l, e, fun6 (Quot t2) ->

eval0 (t1, l, e, fun7 (Quot t3) ->
k (Quot (App(t2, t3)))))

| Next t0, l -> eval0 (t0, l+1, e, fun8 (Quot t) -> k (Quot (Next t)))
| Prev t0, l -> eval0 (t0, l-1, e, fun9 (Quot t) -> k (Quot (Prev t)))
(* main0 : term -> value *)
let main0 t = eval0 (t, 0, [], fun0 v -> v)

Underlines with subscripts are not part of the program—they will be used to
identify function abstractions in the next section. We use a constructor Quot of
value to represent both quoted values �t� and terms returned when l > 0. So,
the continuations in the fourth and fifth branches (corresponding to E-Next

and E-Prev) are (essentially) the identity function (except for checking the
constructor). Note that, in the last five branches, which correspond to the rules
Eq-—, a term is constructed by using the same constructor as the input.

3 Deriving a Uniform Compiler and VM with Low-Level
Code Generation

We first give a very brief review of Ager et al.’s functional derivation of a compiler
and a VM [17,18]. A derivation from a continuation-passing evaluator consists
of the following steps:

1. defunctionalization [21] to represent continuations by first-order data;
2. currying transformation to split compile- and run-time computation; and
3. defunctionalization to represent run-time computation by first-order data.

The first step makes a tail-recursive, first-order evaluator, which can be viewed
as an abstract machine.3 The succeeding steps decompose the abstract machine
into two functions: the first function that takes a λ-term and generates an in-
termediate datum is a compiler and the second function that interprets inter-
mediate data is a VM—the intermediate data, obtained by the the third step of
defunctionalization, are VM instructions.

We will follow these steps mostly but claim, however, that it is not just an
exercise. We will see an interesting issue of the distinction between uniform and
non-uniform compilation naturally arises from how the abstract machine can be
curried. Also, a VM with low-level code generation cannot be obtained solely
3 According to Ager et al.’s terminology, an abstract machine takes a λ-term as an

input whereas a VM takes an instruction sequence obtained by compiling a term.
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by following this scheme: since these derivation steps preserve the behavior of
the original evaluator, the resulting VM would yield quoted source terms even
when VM instructions are introduced. So, we have to devise an additional step
to derive a new VM for low-level code generation.

The following commuting diagram illustrates our derivation scheme:

terms: t0
AM ��

compile ����
��

��
��

�t1� ��

����
��

��
��

�t2� ��

����
��

��
��

instructions: I0

V MH
���������

������� V ML �� I1

���������

������� �� I2

���������

�������

The solid arrows on top represent executions of an abstract machine, which is
extensionally equal to the initial evaluator; since λ©-terms are multi-level gener-
ating extensions, a residual program t1 (possibly with further inputs) obtained
by executing t0 will be executed again. We decompose −→ into a compiler �
and a VM V MH=⇒ ; and then derive a VM V ML=⇒ with low-level code generation,
which commutes with V MH=⇒ followed by compilation. So, once t0 is compiled, the
run-time system (that is, V ML=⇒ ) can forget about source-level terms.

The following subsections describe each step of the derivation in detail.

3.1 Defunctionalizing Continuations

The first step is defunctionalization of continuations. The basic idea of defunc-
tionalization [21] is to represent functional values by datatype constructors and
to replace function applications by calls to an “apply” function. This function
executes the function body corresponding to the given constructor, which also
carries the value of free variables in the original function abstraction. In the def-
inition of the evaluator in the last section, there are ten function abstractions of
type value -> value: one in main0 and nine in eval0. So, the datatype cont
is given ten constructors.

The resulting code is as follows (throughout the paper, shaded part represents
main changes from the previous version):

type cont = Cont0 | Cont1 of term * env * cont | ... | Cont9 of cont
(* eval1 : term * int * env * cont -> value *)
let rec eval1 (t, l, e, k) = match t, l with
Var n, 0 -> appK1 (k, List.nth e n )

| App (t0, t1), 0 -> eval1 (t0, 0, e, Cont1 (t1, e, k) )

| Var n, l -> appK1 (k, Quot (Var n) )

| App (t0, t1), l -> eval1 (t0, l, e, Cont6 (t1, l, e, k) ) ...

(* appK1 : cont * value -> value *)

and appK1 (k, v) = match k, v with

Cont0, v -> v

| Cont1 (t1, e, k), v -> eval1 (t1, e, Cont2 (v, k))

| Cont2 (Clos (e’, t’), k), v -> eval1 (t’, v::e’, k)
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| Cont5 k, Quot t -> appK1 (k, Quot (Abs t))

| Cont6 (t1, l, e, k), Quot t2 -> eval1 (t1, l, e, Cont7 (t2, k))

| Cont7 (t2, k), Quot t3 -> appK1 (k, Quot (App (t2, t3)))
...
(* main1 : term -> value *)
let main1 t = eval1 (t, 0, [], Cont0)

The occurrences of funi have been replaced with constructors Conti, applied
to free variables in the function body. The bodies of those functions are moved
to branches of the apply function appK1. For example, the initial continuation
is represented by Cont0 (without arguments) and the corresponding branch in
appK1 just returns the input v.

The derived evaluator can be viewed as a CEK-style abstract machine [22]
for λ©. Indeed, for the pure λ-calculus fragment, this evaluator behaves exactly
like the CEK-machine [18].

3.2 Currying and Primitive Recursive Evaluator

Now, we decompose eval1 above into two functions for compilation and ex-
ecution. For this purpose, we first curry eval1 so that it takes compile-time
entities such as terms as arguments and returns a “run-time computation,” i.e.,
a function, which takes run-time entities such as environments and continua-
tions as arguments and returns a value. Also, the evaluator is transformed into
a primitive recursive form in such a way that closures carry run-time computa-
tion, instead of terms. This transformation removes the dependency of run-time
entities on compile-time entities.

Actually, at this point, we have two choices about how it is curried: one choice
is to curry to term * int -> env * cont -> value and the other is to term
-> int * env * cont -> value. The former choice amounts to regarding a
level as compile-time information, so the resulting compiler can generate different
instructions from the same term, depending on its levels; it leads to non-uniform
compilation, which will be discussed in Section 4. In this section, we proceed
with the latter choice, in which the resulting compiler will depend only on the
input term, so it necessarily generates the same instruction from the same term,
regardless of its levels.

The currying transformation yields the following code:

type value = Clos of env * compt | Quot of term and env = ...

and compt = int * env * cont -> value

and cont = Cont0 | Cont1 of compt * env * cont | ...

| Cont6 of compt * int * env * cont | Cont7 of term * cont | ...

(* appK2 : cont * value -> value *)
let rec appK2 (k, v) = match k, v with
Cont0, v -> v

| Cont1 (c1, e, k), v -> c1 ( 0, e, Cont2 (v, k) )

| Cont6 (c1, l, e, k), Quot t2 -> c1 ( l, e, Cont7 (t2, k) )
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| Cont7 (t2, k), Quot t3 -> appK2 (k, Quot (App (t2, t3)))
...
(* eval2 : term -> compt *)
let rec eval2 t = match t with

Var n -> (fun0 (l, e, k) -> if l = 0 then appK2 (k, List.nth e n)

else appK2 (k, Quot (Var n)))

| Abs t0 -> let c0 = eval t0 in

(fun1 (l, e, k) -> if l = 0 then appK2 (k, Clos (e, c0))

else c0 (l, shiftE (e, l), Cont5 k))

| App(t0,t1) -> let c0 = eval2 t0 and c1 = eval2 t1 in

(fun2 (l, e, k) -> if l = 0 then c0 (0, e, Cont1 (c1, e, k))

else c0 (l, e, Cont6 (c1, l, e, k))) ...
(* main2 : term -> value *)
let main2 t = eval2 t (0, [], Cont0)

Case branching in eval2 is now in two steps and the second branching on
levels is under function abstractions, which represent run-time computation.
Some occurrences of term in cont have been replaced with compt, but arguments
to Cont7 (as well as Quot) remains the same because it records the result of
evaluation of the function part of an application at a level greater than 0.

Note that the definitions of value, env and cont are now independent of that
of term, indicating the separation of compile- and run-time. Also, unlike the
previous version, functions appK2 and eval2 are not mutually recursive. The
function eval2 becomes primitive recursive and also higher-order (it returns a
functional value); we get rid of funs by another defunctionalization.

3.3 Defunctionalizing Run-Time Computation

The next step is to make compt first-order data by applying defunctionalization.
Here, the datatype for compt will be represented by using lists:

type compt = inst list
and inst = Compt0 of int | Compt1 of compt | Compt2 of compt | ...

rather than

type compt = Compt0’ of int | Compt1’ of compt
| Compt2’ of compt * compt | ...

which would be obtained by straightforward defunctionalization. In fact, the
latter can be embedded into the former—Compt0’ n and Compt2’(c0,c1) are
represented by [Compt0 n] and [Compt2 c1; c0], respectively. This scheme
allows defunctionalized run-time computation to be represented by a linear data
structure, that is, a sequence of instructions. Indeed, as its name suggests, inst
can be viewed as machine instructions. The resulting evaluator eval3, which
generates a value of type compt from a term, is a compiler; a new apply function
appC3, which interprets compt, together with appK3 is a VM. In the following
code, constructors of inst are given mnemonic names.
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type value = ... and env = ... and cont = ... and compt = inst list

and inst = Access of int | Close of compt | Push of compt | Enter | Leave

(* eval3 : term -> compt *)
let rec eval3 t = match t with
Var n -> [Access n] | Abs t0 -> [Close (eval3 t0)]

| App (t0, t1) -> Push (eval3 t1) :: (eval3 t0)

| Next t0 -> Enter :: eval3 t0 | Prev t0 -> Leave :: eval3 t0
(* appK3 : cont * value -> value *)
let rec appK3 (k, v) = match k, v with ...

| Cont1 (c1, e, k), v -> appC3 (c1, 0, e, Cont2 (v,k) )

| Cont6 (c1, l, e, k), Quot t2 -> appC3 (c1, l, e, Cont7(t2, k) )
...
(* appC3 : compt * int * env * cont -> value *)
and appC3 (c, l, e, k) = match c, l with

[Access n], 0 -> appK3 (k, List.nth e n)

| [Access n], l -> appK3 (k, Quot (Var n))

| [Close c0], 0 -> appK3 (k, Clos (e, c0))

| [Close c0], l -> appC3 (c0, l, shiftE (e, l), Cont5 k)

| Push c1::c0, 0 -> appC3 (c0, 0, e, Cont1 (c1, e, k))

| Push c1::c0, l -> appC3 (c0, l, e, Cont6 (c1, l, e, k))
...
(* main3 : term -> value *)
let main3 t = appC3 (eval3 t, 0, [], Cont0)

The compiler eval3 is uniform since it generates the same instruction re-
gardless of the levels of subterms and the VM interprets the same instruction
differently, according to the level.

3.4 Virtual Machine for Low-Level Code Generation

Code generation in the VM derived above is still high-level: as shown in the
branch for Cont7 of appK3 (or appK2), terms, not instructions, are generated
during execution. The final step is to derive a VM that generates instructions.
This is, in fact, rather easy—everywhere a term constructor appears, we apply
the compiler by hand (but leave variables unchanged): for example, the branch

| [Access n], l -> appK3 (k, Quot (Var n))

in appC3 becomes

| [Access n], l -> appK3 (k, Quot [Access n ]))

Other changes include replacement of type term with compt in value or cont
and new definitions to shift indices in an instruction list.

Here is the final code:

type value = ... | Quot of compt and compt = ... and inst = ...

and cont = ... | Cont7 of compt * cont | ... and env = ...
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let rec shift_inst (i, l, j) = ... and shift_compt (c, l, j) = ...

let rec shiftE (e, l) = ...

(* eval4 : term -> compt *)
let rec eval4 t = ... (* the same as eval3 *)

(* appK4 : cont * value -> value *)
and appK4 (k, v) = match k, v with ...

| Cont7 (c2, k), Quot c3 -> appK4 (k, Quot (Push c3::c2))
...
(* appC4 : compt * int * env * cont -> value *)
and appC4 (c, l, e, k) = match (c, l) with

| [Access n], l -> appK4 (k, Quot [Access n])
...
(* main4 : term -> value *)
let main4 t = appC4 (eval4 t, 0, [], Cont0)

The definitions of code blocks c, instructions I, continuations k, the compiler
[[t]], and the transition =⇒ of the VM states are summarized in Fig. 3 (in which
the names of continuation constructors are also renamed). An (intermediate)
state is of the form 〈c, �, E, k〉 (corresponding to an input to appC4), 〈k, v〉,
or 〈k, c〉 (corresponding to an input to appK4). A VM instruction is executed
differently according to �. For example, close(c) creates a function closure and
passes it to the current continuation when � = 0, whereas the same instruction
generates code to build a closure when � > 0, by first pushing QAbs onto the
continuation stack and executing the body—when this execution finished, the
VM reaches the state 〈QAbs(k), c〉, in which c is the generated function body;
finally the VM returns an instruction to build a closure (that is, close).

4 Non-uniform Compilation and Failure of Low-level
Code Generation

In this section, we briefly describe the derivation of a non-uniform compiler
with a VM and see how and why low-level code generation fails. As we already
mentioned, currying the evaluation function as term * int -> env * cont ->
value, by regarding levels as compile-time information, leads us to a non-uniform
compiler, which generates special instructions for code generation if the given
level is greater than 0. We skip the intermediate steps and show only the resulting
non-uniform compiler and VM for high-level code generation, obtained after
defunctionalizing compt, which is first defined to be env * cont -> value.

type value = ... and env = ... and cont = ... and compt = inst list

and inst = Access of int | ... | Leave | QVar of int | PushQAbs of int

| PushQApp of compt | PushQNext | PushQPrev

(* eval3’ : term * int -> inst list *)
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Instructions, values, and continuations:

I ::= access n | close(c) | push(c) | enter | leave
c ::= I0; · · · ; In

v ::= 〈E, c〉 | �c�
k ::= Halt | EvArg(c, E, k) | EvBody(v, k) | Quote(k) | Unquote(k)

| QAbs(k) | QApp’(c, �, E, k) | QApp(c, k) | QNext(k) | QPrev(k)

Compilation:

[[n]] = access n
[[λt]] = close([[t]])

[[t0 t1]] = push([[t1]]); [[t0]]

[[next t]] = enter; [[t]]
[[prev t]] = leave; [[t]]

VM transition:

c =⇒ 〈c, 0, ·, Halt〉
〈access n, 0, E, k〉 =⇒ 〈k, E(n)〉
〈close(c), 0, E, k〉 =⇒ 〈k, 〈E, c〉〉

〈push(c′); c, 0, E, k〉 =⇒ 〈c, 0, E, EvArg(c′, E, k)〉
〈enter; c, 0, E, k〉 =⇒ 〈c, 1, E, Quote(k)〉
〈leave; c, 1, E, k〉 =⇒ 〈c, 0, E, Unquote(k)〉

〈access n, �, E, k〉 =⇒ 〈k, access n〉 (� ≥ 1)

〈close(c), �, E, k〉 =⇒ 〈c, �, E ↑�, QAbs(k)〉 (� ≥ 1)
〈push(c′); c, �, E, k〉 =⇒ 〈c, �, E, QApp’(c′, �, E, k)〉 (� ≥ 1)

〈enter; c, �, E, k〉 =⇒ 〈c, � + 1, E, QNext(k)〉 (� ≥ 1)
〈leave; c, � + 1, E, k〉 =⇒ 〈c, �, E, QPrev(k)〉 (� ≥ 1)

〈EvArg(c, E, k), v〉 =⇒ 〈c, 0, E, EvBody(v, k)〉
〈EvBody(〈E, c〉, k), v〉 =⇒ 〈c, 0, v :: E, k〉

〈Quote(k), c〉 =⇒ 〈k, �c�〉
〈Unquote(k), �c�〉 =⇒ 〈k, c〉

〈QAbs(k), c〉 =⇒ 〈k, close(c)〉
〈QApp’(c′, �, E, k), c〉 =⇒ 〈c′, �, E, QApp(c, k)〉

〈QApp(c, k), c′〉 =⇒ 〈k, push(c′); c〉
〈QNext(k), c〉 =⇒ 〈k, enter; c〉
〈QPrev(k), c〉 =⇒ 〈k, leave; c〉

〈Halt, v〉 =⇒ v

Fig. 3. The derived uniform compiler and VM with low-level code generation

let rec eval3’ (t, l) = match t, l with

Var n , 0 -> [Access n] | Var n, l -> [QVar n]

| App (t0, t1) , 0 -> Push (eval3’ (t1, 0)) :: eval3’ (t0, 0)

| App (t0, t1), l -> PushQApp (eval3’ (t1, l)) :: eval3’ (t0, l)
...
(* appK3’ : cont * value -> value *)
let rec appK3’ (k, v) = (* the same as appK2 *) ...
| Cont7 (t2, k), Quot t3 -> appK3’ (k, Quot (App (t2, t3)))
...
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(* appC3’ : compt * env * cont -> value *)
and appC3’ (c, e, k) = match c with
[Access n] -> appK3’ (k, List.nth e n)

| [QVar n] -> appK3’ (k, Quot (Var n))

| Push c1::c0 -> appC3’ (c0, e, Cont1 (c1, e, k))
| PushQApp c1::c0 -> appC3’ (c0, e, Cont6 (c1, e, k))
...
(* main3’ : term -> value *)
let main3’ t = appC3’ ( eval3’ (t, 0), [], Cont0 )

The resulting instruction set is twice as large as that for uniform compila-
tion. Instructions PushQXXX push onto a continuation stack a marker that repre-
sents the corresponding term constructor; the marker is eventually consumed by
appK3’ to attach a term constructor to the current result: for example, Cont6
and Cont7 are markers for application.

Unfortunately, we fail to derive a VM for low-level code generation. This is
simply because the compiler now takes a pair of a term and a level but a level
is missing around term constructors in appK3’ or appC3’!

We think that this failure is inherent in multi-level languages. In a multi-
level language, one language construct has different meanings, depending on
where it appears: for example, in λ©, a λ-abstraction at level 0 evaluates to a
function closure, whereas one at level � > 0 evaluates to quoted λ-abstraction at
level � − 1. Now, notice that the compiler derived here is still uniform at levels
greater than 0 (one term constructor is always compiled to the same instruction,
regardless of its level). So, it would not be possible for a VM to emit different
instructions without level information, which, however, has been compiled away.
If the number of possible levels is bounded, “true” non-uniform compilation
would be possible but would require different instructions for each level, which
would be unrealistic. We conjecture that this problem can be solved by a hybrid
of uniform and non-uniform compilation, which is left for future work.

5 Related Work

Implementation of Multi-Level Languages. A most closely related piece of work
is Wickline et al. [4], who have developed a compiler of ML�, which is an exten-
sion of ML with the constructs of λ� [8], and the target virtual machine CCAM,
an extension of the Categorical Abstract Machine [16]. The CCAM is equipped
with, among others, a set of special (pseudo) instructions emit I, which emit
the single instruction I to a code block and are used to implement generating
extensions. The instruction emit, however, is not allowed to be nested because
such nested emits would be represented by real instructions whose size is expo-
nential in the depth of nesting. They developed a strategy for compiling nested
quotation by exploiting another special instruction lift to transform a value into
a code generator that generates the value and the fact that environments are
first-class values in the CAM. In short, their work supports both non-uniform
compilation and low-level code generation in one system. Unfortunately, the de-
sign of the abstract machine is fairly ad hoc and it is not clear how the proposed
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compilation scheme can be exported to other combinations of programming lan-
guages and VMs. Our method solves the exponential blow-up problem above
simply because a compound instruction emit I is represented by a single VM
instruction I. Although our method does not support non-uniform compilation
with low-level code generation, it would be possible to derive a compiler and
a VM for one’s favorite multi-level language in a fairly systematic manner. It
might be interesting future work to incorporate their ideas into our framework
to realize non-uniform compilation with low-level code generation.

MetaOCaml4 is a multi-level extension of Objective Caml5. Calcagno et al. [23]
have reported its implementation by translation to a high-level language with
datatypes for ASTs, gensyms, and run-time compilation but do not take direct
low-level code generation into account. We believe our method is applicable to
MetaOCaml, too.

As mentioned in Section 1, there are several practical systems that are capable
of run-time low-level (native or VM) code generation. Tempo [14] is a compile-
time and run-time specialization system for the C language; DyC [15] is also a
run-time specialization system for C; ‘C [12] is an extension of C, where program-
mers can explicitly manipulate, compile, and run code fragments as first-class
values with (non-nested) backquote and unquote; Fabius [24] is a run-time spe-
cialization system for a subset of ML. They are basically two-level systems but
Tempo supports multi-level specialization by incremental self-application [2,25].
The code-size blowup problem is solved by the template filling technique [14,26],
which amounts to allowing the operand to the emit instruction to be (a pointer
to) a block of instructions.

Functional Derivation of Abstract and Virtual Machines. Ager et al. describe
derivations of abstract and virtual machines from evaluation functions by pro-
gram transformation [18,17] and have shown that the Krivine machine [27] is
derived from a call-by-name evaluator and that the CEK machine [22] indeed
corresponds to a call-by-value evaluator. They also applied the same technique
to call-by-need [28], monadic evaluators [29], or strong reduction [19,17]. How-
ever, they mainly focus on different evaluation strategy or side-effects and have
not attempted to apply their technique to multi-level languages.

6 Conclusions

In this paper, we have shown derivations of compilers and VMs for a foundational
multi-level language λ©. We have investigated the two compilation schemes of
uniform compilation, which compiles a term constructor to the same instruction
regardless of the level at which the term appears, and non-uniform compila-
tion, which generates different instructions from the same term according to its
level, and have shown that the former is more suitable for low-level code gen-
eration. Our derivation is fairly systematic and would be applicable to one’s
4 http://www.metaocaml.org/
5 http://caml.inria.fr/ocaml/

http://www.metaocaml.org/
http://caml.inria.fr/ocaml/
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favorite multi-level language. In fact, although omitted from this paper, we have
successfully derived a compiler and a VM for another calculus λ� [8].

The final derivation step for low-level code generation may appear informal
and ad hoc. We are developing a formal translation based on function fusion.

Although it would not be easy to implement our machines for uniform compi-
lation directly by the current, real processor architecture, we think they still can
be implemented fairly efficiently as a VM. Our future work includes implemen-
tation of a uniform compiler and a corresponding VM by extending an existing
VM, such as the ZINC abstract machine [30]. We believe our method is applica-
ble to VMs with different architectures, which correspond to different evaluation
semantics of the λ-calculus, and is useful to see how they can be extended for
multi-level languages.

Acknowledgments. We thank anonymous reviewers for providing useful com-
ments and for pointing out missing related work.
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Abstract. We have built the first family of tagless interpretations for a
higher-order typed object language in a typed metalanguage (Haskell or
ML) that require no dependent types, generalized algebraic data types,
or postprocessing to eliminate tags. The statically type-preserving in-
terpretations include an evaluator, a compiler (or staged evaluator), a
partial evaluator, and call-by-name and call-by-value CPS transformers.

Our main idea is to encode HOAS using cogen functions rather than
data constructors. In other words, we represent object terms not in an
initial algebra but using the coalgebraic structure of the λ-calculus. Our
representation also simulates inductive maps from types to types, which
are required for typed partial evaluation and CPS transformations.

Our encoding of an object term abstracts over the various ways to
interpret it, yet statically assures that the interpreters never get stuck.
To achieve self-interpretation and show Jones-optimality, we relate this
exemplar of higher-rank and higher-kind polymorphism to plugging a
term into a context of let-polymorphic bindings.

It should also be possible to define languages with a highly refined syntactic
type structure. Ideally, such a treatment should be metacircular, in the sense
that the type structure used in the defined language should be adequate for
the defining language. John Reynolds [28]

1 Introduction

A popular way to define and implement a language is to embed it in another [28].
Embedding means to represent terms and values of the object language as terms
and values in the metalanguage. Embedding is especially appropriate for domain-
specific object languages because it supports rapid prototyping and integration
with the host environment [16]. If the metalanguage supports staging, then the
� We thank Martin Sulzmann and Walid Taha for helpful discussions. Sam Staton,

Pieter Hofstra, and Bart Jacobs kindly provided some useful references. We thank
anonymous reviewers for pointers to related work.
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[x : t1]···
e : t2

λx. e : t1 → t2

[f : t1 → t2]···
e : t1 → t2

fix f. e : t1 → t2

e1 : t1 → t2 e2 : t1

e1e2 : t2

n is an integer

n : Z

b is a boolean

b : B

e : B e1 : t e2 : t

if e then e1 else e2 : t

e1 : Z e2 : Z

e1 + e2 : Z

e1 : Z e2 : Z

e1 × e2 : Z

e1 : Z e2 : Z

e1 ≤ e2 : B

Fig. 1. Our typed object language

embedding can compile object programs to the metalanguage and avoid the
overhead of interpreting them on the fly [23]. A staged definitional interpreter is
thus a promising way to build a domain-specific language (DSL).

We focus on embedding a typed object language into a typed metalanguage.
The benefit of types in this setting is to rule out meaningless object terms, thus
enabling faster interpretation and assuring that our interpreters do not get stuck.
To be concrete, we use the typed object language in Figure 1 throughout this pa-
per. We aim not just for evaluation of object programs but also for compilation,
partial evaluation, and other processing.

Pašalić et al. [23] and Xi et al. [37] motivated interpreting a typed object
language in a typed metalanguage as an interesting problem. The common so-
lutions to this problem store object terms and values in the metalanguage in
a universal type, a generalized algebraic data type (GADT), or a dependent
type. In the remainder of this section, we discuss these solutions, identify their
drawbacks, then summarize our proposal and contributions. We leave aside the
solved problem of writing a parser/type-checker, for embedding object language
objects into the metalanguage (whether using dependent types [23] or not [2]),
and just enter them by hand.

1.1 The Tag Problem

It is straightforward to create an algebraic data type, say in OCaml, Fig. 2(a),
to represent object terms such as those in Figure 1. For brevity, we elide treating
integers, conditionals, and fixpoint in this section. We represent each variable
using a unary de Bruijn index.1 For example, we represent the object term
(λx. x) true as let test1 = A (L (V VZ), B true).

Following [23], we try to implement an interpreter function eval0, Fig. 2(b).
It takes an object term such as test1 above and gives us its value. The first
argument to eval0 is the environment, initially empty, which is the list of values
bound to free variables in the interpreted code. If our OCaml-like metalanguage
were untyped, the code above would be acceptable. The L e line exhibits in-
terpretive overhead: eval0 traverses the function body e every time (the result
of evaluating) L e is applied. Staging can be used to remove this interpretive
overhead [23, §1.1–2].

1 We use de Bruijn indices to simplify the comparison with Pašalić et al.’s work [23].
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(a) type var = VZ | VS of var
type exp = V of var | B of bool | L of exp | A of exp * exp

(b) let rec lookup (x::env) = function VZ -> x | VS v -> lookup env v
let rec eval0 env = function
| V v -> lookup env v
| B b -> b
| L e -> fun x -> eval0 (x::env) e
| A (e1,e2) -> (eval0 env e1) (eval0 env e2)

(c) type u = UB of bool | UA of (u -> u)

(d) let rec eval env = function
| V v -> lookup env v
| B b -> UB b
| L e -> UA (fun x -> eval (x::env) e)
| A (e1,e2) -> match eval env e1 with UA f -> f (eval env e2)

Fig. 2. OCaml code illustrating the tag problem

However, the function eval0 is ill-typed if we use OCaml or some other typed
language as the metalanguage. The line B b says that eval0 returns a boolean,
whereas the next line L e says the result is a function, but all branches of a
pattern-match form must yield values of the same type. A related problem is
the type of the environment env: a regular OCaml list cannot hold both boolean
and function values.

The usual solution is to introduce a universal type [23, §1.3] containing both
booleans and functions, Fig. 2(c). We can then write a typed interpreter,
Fig. 2(d), whose inferred type is u list -> exp -> u. Now we can evaluate
eval [] test1 obtaining UB true. The unfortunate tag UB in the result re-
flects that eval is a partial function. First, the pattern match with UA f in
the line A (e1,e2) is not exhaustive, so eval can fail if we apply a boolean,
as in the ill-typed term A (B true, B false). Second, the lookup function as-
sumes a nonempty environment, so eval can fail if we evaluate an open term
A (L (V (VS VZ)), B true). After all, the type exp represents object terms
both well-typed and ill-typed, both open and closed.

If we evaluate only closed terms that have been type-checked, then eval
would never fail. Alas, this soundness is not obvious to the metalanguage, whose
type system we must still appease with the nonexhaustive pattern matching in
lookup and eval and the tags UB and UA [23, §1.4]. In other words, the algebraic
data types above fail to express in the metalanguage that the object program is
well-typed. This failure necessitates tagging and nonexhaustive pattern-match-
ing operations that incur a performance penalty in interpretation [23] and impair
optimality in partial evaluation [33]. In short, the universal-type solution is un-
satisfactory because it does not preserve typing.

It is commonly thought that to interpret a typed object language in a typed
metalanguage while preserving types is difficult and requires GADTs or depen-
dent types [33]. In fact, this problem motivated much work on GADTs [24, 37]
and on dependent types [11, 23]. Yet other type systems have been proposed to
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distinguish closed terms like test1 from open terms [9, 21, 34], so that lookup
never receives an empty environment. We discuss these proposals further in §5.

1.2 Our Final Proposal

We represent object programs using ordinary functions rather than data con-
structors. These functions comprise the entire interpreter, shown below.

let varZ env = fst env let b (bv:bool) env = bv
let varS vp env = vp (snd env) let lam e env = fun x -> e (x,env)
let app e1 e2 env = (e1 env) (e2 env)

We now represent our sample term (λx. x) true as let testf1 = app (lam
varZ) (b true). This representation is almost the same as in §1.1, only written
with lowercase identifiers. To evaluate an object term is to apply its representa-
tion to the empty environment, testf1 (), obtaining true. The result has no
tags: the interpreter patently uses no tags and no pattern matching. The term
b true evaluates to a boolean and the term lam varZ evaluates to a function,
both untagged. The app function applies lam varZ without pattern matching.
What is more, evaluating an open term such as app (lam (varS varZ)) (b
true) gives a type error rather than a run-time error. The type error correctly
complains that the initial environment should be a tuple rather than (). In other
words, the term is open.

In sum, by Church-encoding terms using ordinary functions, we achieve a
tagless evaluator for a typed object language in a metalanguage with a sim-
ple Hindley-Milner type system. In this final rather than initial approach, both
kinds of run-time errors in §1.1 (applying a nonfunction and evaluating an open
term) are reported at compile time. Because the new interpreter uses no univer-
sal type or pattern matching, it never results in a run-time error, and is in fact
total. Because this safety is obvious not just to us but also to the metalanguage
implementation, we avoid the serious performance penalty [23] of error check-
ing. Glück [12] explains deeper technical reasons that inevitably lead to these
performance penalties.

Our solution is not Church-encoding the universal type. The Church encod-
ing of the type u in §1.1 requires two continuations; the function app in the
interpreter above would have to provide both to the encoding of e1. The contin-
uation corresponding to the UB case of u must either raise an error or loop. For
a well-typed object term, that error continuation is never invoked, yet it must
be supplied. In contrast, our interpreter has no error continuation at all.

The evaluator above is wired directly into the functions b, lam, app, and so
on. We explain how to abstract the interpreter so as to process the same term in
many other ways: compilation, partial evaluation, CPS conversion, and so forth.

1.3 Contributions

The term “constructor” functions b, lam, app, and so on appear free in the encod-
ing of an object term such as testf1 above. Defining these functions differently
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gives rise to different interpreters, that is, different folds on object programs.
Given the same term representation but varying the interpreter, we can

– evaluate the term to a value in the metalanguage;
– measure the size or depth of the term;
– compile the term, with staging support such as in MetaOCaml;
– partially evaluate the term, online; and
– transform the term to continuation-passing style (CPS), even call-by-name

(CBN) CPS, so as to isolate the evaluation order of the object language from
that of the metalanguage.2

We have programmed our interpreters in OCaml (and, for staging, MetaOCaml
[19]) and standard Haskell. The complete code is available at http://okmij.org/
ftp/packages/tagless-final.tar.gz to supplement the paper. For simplicity,
main examples in the paper will be in MetaOCaml; all examples have also been
implemented in Haskell.

We attack the problem of tagless (staged) typed-preserving interpretation
exactly as it was posed by Pašalić et al. [23] and Xi et al. [37]. We use their
running examples and achieve the result they call desirable. Our contributions
are as follows.

1. We build interpreters that evaluate (§2), compile (or evaluate with staging)
(§3), and partially evaluate (§4) a typed higher-order object language in a
typed metalanguage, in direct and continuation-passing styles.

2. All these interpreters use no type tags, patently never get stuck, and need
no advanced type-system features such as GADTs, dependent types, or in-
tentional type analysis.

3. The partial evaluator avoids polymorphic lift and delays binding-time anal-
ysis. It bakes a type-to-type map into the interpreter interface to eliminate
the need for GADTs and thus remain portable across Haskell 98 and ML.

4. We use the type system of the metalanguage to check statically that an
object program is well-typed and closed.

5. We show clean, comparable implementations in MetaOCaml and Haskell.
6. We specify a functor signature that encompasses all our interpreters, from

evaluation and compilation (§2) to partial evaluation (§4).
7. We point a clear way to extend the object language with more features such

as state.3

8. We describe an approach to self-interpretation compatible with the above.
Self-interpretation turned out to be harder than expected.3

Our code is surprisingly simple and obvious in hindsight, but it has been cited as
a difficult problem ([32] notwithstanding) to interpret a typed object language in
a typed metalanguage without tagging or type-system extensions. For example,
Taha et al. [33] say that “expressing such an interpreter in a statically typed

2 Due to serious lack of space, we refer the reader to the accompanying code for this.
3 Again, please see our code.

http://okmij.org/ftp/packages/tagless-final.tar.gz
http://okmij.org/ftp/packages/tagless-final.tar.gz
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programming language is a rather subtle matter. In fact, it is only recently that
some work on programming type-indexed values in ML [38] has given a hint of
how such a function can be expressed.” We discuss related work in §5.

To reiterate, we do not propose any new language feature or new technique.
We use features already present in mainstream functional languages—Hindley-
Milner type system with either an inference-preserving module system or con-
structor classes, as realized in ML and Haskell 98—and techniques which have
all appeared in the literature (in particular, [32, 38]), to solve a problem that
was stated in the published record as unsolved and likely unsolvable in ML or
Haskell 98 without extensions. The simplicity of our solution and its use of only
mainstream features make it more practical to build typed, embedded DSLs.

2 The Object Language and Its Tagless Interpreters

Figure 1 shows our object language, a simply-typed λ-calculus with fixpoint, in-
tegers, booleans, and comparison. The language is close to Xi et al.’s [37], without
their polymorphic lift but with more constants so as to more conveniently ex-
press Fibonacci, factorial, and power. In contrast to §1, we encode binding using
higher-order abstract syntax (HOAS) [20, 25] rather than de Bruijn indices. This
makes the encoding convenient and ensures that our object programs are closed.

2.1 How to Make Encoding Flexible: Abstract the Interpreter

We embed our language in (Meta)OCaml and Haskell. In Haskell, the functions
that construct object terms are methods in a type class Symantics (with a
parameter repr of kind * -> *), Fig. 3(a). The class is so named because its
interface gives the syntax of the object language and its instances give the seman-
tics. For example, we encode the term test1, or (λx. x) true, from §1.1 above as
app (lam (\x -> x)) (bool True), whose inferred type is Symantics repr
=> repr Bool. For another example, the classical power function is in Fig. 3(b)
and the partial application λx. power x 7 is in Fig. 3(c). The dummy argu-
ment () above is to avoid the monomorphism restriction, to keep the type of
testpowfix and testpowfix7 polymorphic in repr. The methods add, mul, and
leq are quite similar, and so are int and bool. Therefore, we often show only
one method of each group and elide the rest. The accompanying code has the
complete implementations.

Comparing Symantics with Fig. 1 shows how to represent every typed, closed
object term in the metalanguage. Moreover, the representation preserves types.

Proposition 1. If an object term has the object type t, then its representation
in the metalanguage has the type forall repr. Symantics repr => repr t.

Conversely, the type system of the metalanguage statically checks that the rep-
resented object term is well-typed and closed. If we err, say replace int 7 with
bool True in testpowfix7, Haskell will complain there that the expected type
Int does not match the inferred Bool. Similarly, the object term λx. xx and
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(a) class Symantics repr where
int :: Int -> repr Int; bool :: Bool -> repr Bool
lam :: (repr a -> repr b) -> repr (a -> b)
app :: repr (a -> b) -> repr a -> repr b
fix :: (repr a -> repr a) -> repr a

add :: repr Int -> repr Int -> repr Int
mul :: repr Int -> repr Int -> repr Int
leq :: repr Int -> repr Int -> repr Bool
if_ :: repr Bool -> repr a -> repr a -> repr a

(b) testpowfix () = lam (\x -> fix (\self -> lam (\n ->
if_ (leq n (int 0)) (int 1)

(mul x (app self (add n (int (-1))))))))

(c) testpowfix7 () = lam (\x -> app (app (testpowfix ()) x) (int 7))

Fig. 3. Symantics in Haskell

its encoding lam (\x -> app x x) both fail occurs-checks in type checking.
Haskell’s type checker also flags syntactically invalid object terms, such as if we
forget app somewhere above.

To embed the same object language in (Meta)OCaml, we replace the type
class Symantics and its instances by a module signature Symantics and its
implementations. Figure 4 shows a simple signature that suffices until §4. The
two differences are: the additional type parameter ’c, an environment classifier
[34] required by MetaOCaml for code generation in §3; and the η-expanded type
for fix and thunk types in if_ since OCaml is a call-by-value language.

The functor EX in Fig. 4 encodes our running examples test1 and the power
function (testpowfix). The dummy argument to test1 and testpowfix is an
artifact of MetaOCaml, related to monomorphism: in order for us to run a piece
of generated code, it must be polymorphic in its environment classifier (the type
variable ’c in Figure 4). The value restriction dictates that the definitions of our
object terms must look syntactically like values. (Alternatively, we could have
used the rank-2 record types of OCaml to maintain the necessary polymorphism.)
Thus, we represent an object expression in OCaml as a functor from Symantics
to an appropriate semantic domain. This is essentially the same as the constraint
Symantics repr => in the Haskell embedding.

2.2 Two Tagless Interpreters

Having abstracted our term representation over the interpreter, we are now
ready to present a series of interpreters. Each interpreter is an instance of the
Symantics class in Haskell and a module implementing the Symantics signature
in MetaOCaml.

The first interpreter evaluates an object term to its value in the metalanguage.
The module below interprets each object-language operation as the correspond-
ing metalanguage operation.
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module type Symantics = sig type (’c, ’dv) repr
val int : int -> (’c, int) repr
val bool: bool -> (’c, bool) repr

val lam : ((’c, ’da) repr -> (’c, ’db) repr) -> (’c, ’da -> ’db) repr
val app : (’c, ’da -> ’db) repr -> (’c, ’da) repr -> (’c, ’db) repr
val fix : (’x -> ’x) -> ((’c, ’da -> ’db) repr as ’x)

val add : (’c, int) repr -> (’c, int) repr -> (’c, int) repr
val mul : (’c, int) repr -> (’c, int) repr -> (’c, int) repr
val leq : (’c, int) repr -> (’c, int) repr -> (’c, bool) repr
val if_ : (’c, bool) repr

-> (unit -> ’x) -> (unit -> ’x) -> ((’c, ’da) repr as ’x)
end

module EX(S: Symantics) = struct open S
let test1 () = app (lam (fun x -> x)) (bool true)
let testpowfix () =

lam (fun x -> fix (fun self -> lam (fun n ->
if_ (leq n (int 0)) (fun () -> int 1)

(fun () -> mul x (app self (add n (int (-1))))))))
let testpowfix7 = lam (fun x -> app (app (testpowfix ()) x) (int 7))

end

Fig. 4. A simple (Meta)OCaml embedding of our object language, and examples

module R = struct type (’c,’dv) repr = ’dv (* no wrappers *)
let int (x:int) = x let bool (b:bool) = b
let lam f = f let app e1 e2 = e1 e2
let fix f = let rec self n = f self n in self
let add e1 e2 = e1 + e2 let mul e1 e2 = e1 * e2
let leq x y = x <= y
let if_ eb et ee = if eb then et () else ee () end

As in §1.2, this interpreter is patently tagless, using neither a universal type
nor any pattern matching: the operation add is really OCaml’s addition, and
app is OCaml’s application. To run our examples, we instantiate the EX functor
from §2.1 with R: module EXR = EX(R). Thus, EXR.test1 () evaluates to the
untagged boolean value true. It is obvious to the compiler that pattern matching
cannot fail, because there is no pattern matching. Evaluation can only fail to
yield a value due to interpreting fix. (The source code shows a total interpreter
L that measures the size of each object term.) We can also generalize from R to
all interpreters; these propositions follow immediately from the soundness of the
metalanguage’s type system.

Proposition 2. If an object term e encoded in the metalanguage has type t,
then evaluating e in the interpreter R either continues indefinitely or terminates
with a value of the same type t.
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(a) module C = struct type (’c,’dv) repr = (’c,’dv) code
let int (x:int) = .<x>. let bool (b:bool) = .<b>.
let lam f = .<fun x -> .~(f .<x>.)>.
let app e1 e2 = .<.~e1 .~e2>.
let fix f = .<let rec self n = .~(f .<self>.) n in self>.
let add e1 e2 = .<.~e1 + .~e2>. let mul e1 e2 = .<.~e1 * .~e2>.
let leq x y = .<.~x <= .~y>.
let if_ eb et ee = .<if .~eb then .~(et ()) else .~(ee ())>. end

(b) let module E = EX(C) in E.test1 ()

(c) let module E = EX(C) in E.testpowfix7

(d) .<fun x_1 -> (fun x_2 -> let rec self_3 = fun n_4 ->
(fun x_5 -> if x_5 <= 0 then 1 else x_2 * self_3 (x_5 + (-1)))
n_4 in self_3) x_1 7>.

Fig. 5. The tagless staged interpreter C

Proposition 3. If an implementation of Symantics never gets stuck, then the
type system of the object language is sound with respect to the dynamic semantics
defined by that implementation.

3 A Tagless Compiler (or, a staged interpreter)

Besides immediate evaluation, we can compile our object language into OCaml
code using MetaOCaml’s staging facilities. MetaOCaml represents future-stage
expressions of type t as values of type (’c, t) code, where ’c is the environment
classifier [6, 34]. Code values are created by a bracket form .<e>., which quotes
the expression e for evaluation at a future stage. The escape .~e must occur
within a bracket and specifies that the expression e must be evaluated at the
current stage; its result, which must be a code value, is spliced into the code
being built by the enclosing bracket. The run form .!e evaluates the future-
stage code value e by compiling and linking it at run time. Bracket, escape, and
run are akin to quasi-quotation, unquotation, and eval of Lisp.

Inserting brackets and escapes appropriately into the evaluator R above yields
the simple compiler C in Fig. 5(a). This is a straightforward staging of module R.
This compiler produces unoptimized code. For example, interpreting our test1
with Fig. 5(b) gives the code value .<(fun x_6 -> x_6) true>. of inferred type
(’c, bool) C.repr. Interpreting testpowfix7 with Fig. 5(c) gives a code value
with many apparent β- and η-redexes, Fig. 5(d). This compiler does not incur
any interpretive overhead: the code produced for λx. x is simply fun x_6 -> x_6.
The resulting code obviously contains no tags and no pattern matching. The
environment classifiers here, like the tuple types in §1.2, make it a type er-
ror to run an open expression. The accompanying code shows the Haskell
implementation.
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4 A Tagless Partial Evaluator

Surprisingly, we can write a partial evaluator using the idea above, namely to
build object terms using ordinary functions rather than data constructors. We
present this partial evaluator in a sequence of three attempts. It uses no universal
type and no tags for object types. We then discuss residualization and binding-
time analysis. Our partial evaluator is a modular extension of the evaluator
in §2.2 and the compiler in §3, in that it uses the former to reduce static terms
and the latter to build dynamic terms.

4.1 Avoiding Polymorphic Lift

Roughly, a partial evaluator interprets each object term to yield either a static
(present-stage) term (using R) or a dynamic (future-stage) term (using C). To dis-
tinguish between static and dynamic terms, we might try to define repr in the
partial evaluator as type (’c,’dv)repr = S0 of (’c,’dv)R.repr | E0 of
(’c,’dv)C.repr. Integer and boolean literals are immediate, present-stage val-
ues. Addition yields a static term (using R.add) if and only if both operands are
static; otherwise we extract the dynamic terms from the operands and add them
using C.add. We use C.int to convert from the static term (’c,int) R.repr,
which is just int, to the dynamic term.

Whereas mul and leq are as easy to define as add, we encounter a problem
with if_. Suppose that the first argument to if_ is a dynamic term (of type
(’c,bool) C.repr), the second a static term (of type (’c,’a) R.repr), and
the third a dynamic term (of type (’c,’a) C.repr). We then need to convert
the static term to dynamic, but there is no polymorphic “lift” function, of type
’a -> (’c,’a) C.repr, to send a value to the future stage [34, 37].

Our Symantics only includes separate lifting methods bool and int, not a
parametrically polymorphic lifting method, for good reason: When compiling
to a first-order target language such as machine code, booleans, integers, and
functions may well be represented differently. Thus, compiling polymorphic lift
requires intensional type analysis. To avoid needing polymorphic lift, we turn to
Asai’s technique [1, 32]: build a dynamic term alongside every static term.

4.2 Delaying Binding-Time Analysis

We switch to the data type type (’c,’dv) repr = P1 of (’c,’dv) R.repr
option * (’c,’dv) C.repr so that a partially evaluated term always contains a
dynamic component and sometimes contains a static component. By distributiv-
ity, the two alternative constructors of an option value, Some and None, tag each
partially evaluated term with a phase: either present or future. This tag is not an
object type tag: all pattern matching below is exhaustive. Because the future-
stage component is always present, we can now define the polymorphic func-
tion let abstr1 (P1 (_,dyn)) = dyn of type (’c,’dv) repr -> (’c,’dv)
C.repr to extract it without requiring polymorphic lift into C. We then try to
define the interpreter P1—and get as far as the first-order constructs of our
object language, including if_.
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module P1 : Symantics = struct
let int (x:int) = P1 (Some (R.int x), C.int x)
let add e1 e2 = match (e1,e2) with
| (P1 (Some n1,_),P1 (Some n2,_)) -> int (R.add n1 n2)
| _ -> P1 (None,(C.add (abstr1 e1) (abstr1 e2)))

let if_ = function
| P1 (Some s,_) -> fun et ee -> if s then et () else ee ()
| eb -> fun et ee -> P1 (None, C.if_ (abstr1 eb)

(fun () -> abstr1 (et ()))
(fun () -> abstr1 (ee ())))

However, we stumble on functions. According to our definition of P1, a partially
evaluated object function, such as the identity λx. x embedded in OCaml as
lam (fun x -> x) : (’c,’a->’a) P1.repr, consists of a dynamic part (type
(’c,’a->’a) C.repr) and maybe a static part (type (’c,’a->’a) R.repr).
The dynamic part is useful when this function is passed to another function that
is only dynamically known, as in λk. k(λx. x). The static part is useful when
this function is applied to a static argument, as in (λx. x) true. Neither part,
however, lets us partially evaluate the function, that is, compute as much as
possible statically when it is applied to a mix of static and dynamic inputs. For
example, the partial evaluator should turn λn. (λx. x)n into λn. n by substituting
n for x in the body of λx. x even though n is not statically known. The same
static function, applied to different static arguments, can give both static and
dynamic results: we want to simplify (λy. x × y)0 to 0 but (λy. x × y)1 to x.

To enable these simplifications, we delay binding-time analysis for a static
function until it is applied, that is, until lam f appears as the argument of app.
To do so, we have to incorporate f as it is into the P1.repr data structure: the
representation for a function type ’a->’b should be one of

S1 of (’c,’a) repr -> (’c,’b) repr | E1 of (’c,’a->’b) C.repr
P1 of ((’c,’a) repr -> (’c,’b) repr) option * (’c,’a->’b) C.repr

unlike P1.repr of int or bool. That is, we need a nonparametric data type,
something akin to type-indexed functions and type-indexed types, which Oliveira
and Gibbons [22] dub the typecase design pattern. Thus, typed partial evaluation,
like typed CPS transformation, inductively defines a map from source types
to target types that performs case distinction on the source type. In Haskell,
typecase can be equivalently implemented either with GADTs or with type-class
functional dependencies [22]. The accompanying code shows both approaches,
neither portable to OCaml. In addition, the problem of nonexhaustive pattern-
matching reappears in the GADT approach because GHC 6.6.1 cannot see that
a particular type of a GADT value precludes certain constructors. Thus GADTs
fail to make it syntactically apparent that pattern matching is exhaustive.

4.3 The “Final” Solution

Let us re-examine the problem in §4.2. What we would ideally like is to
write type (’c,’dv) repr = P1 of (repr pe (’c,’dv)) R.repr option *
(’c,’dv) C.repr where repr_pe is the type function defined by
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repr_pe (’c,int) = (’c,int); repr_pe (’c,bool) = (’c,bool)
repr_pe (’c,’a->’b) = (’c,’a) repr -> (’c,’b) repr

Although we can use type classes to define this type function in Haskell, that is
not portable to MetaOCaml. However, these three typecase alternatives are al-
ready present in existing methods of Symantics. A simple and portable solution
thus emerges: we bake repr_pe into the signature Symantics. We recall from
Figure 4 in §2.1 that the repr type constructor took two arguments ’c and ’dv.
We add an argument ’sv for the result of applying repr_pe to ’dv. Figure 6
shows the new signature.

module type Symantics = sig type (’c,’sv,’dv) repr
val int : int -> (’c,int,int) repr
val lam : ((’c,’sa,’da) repr -> (’c,’sb,’db) repr as ’x)

-> (’c,’x,’da -> ’db) repr
val app : (’c,’x,’da -> ’db) repr

-> ((’c,’sa,’da) repr -> (’c,’sb,’db) repr as ’x)
val fix : (’x -> ’x) -> ((’c, (’c,’sa,’da) repr -> (’c,’sb,’db) repr,

’da -> ’db) repr as ’x)
val add : (’c,int,int) repr -> (’c,int,int) repr -> (’c,int,int) repr
val if_ : (’c,bool,bool) repr

-> (unit->’x) -> (unit->’x) -> ((’c,’sa,’da) repr as ’x) end

Fig. 6. A (Meta)OCaml embedding of our object language that supports partial eval-
uation (bool, mul, leq are elided)

The interpreters R, L and C above only use the old type arguments ’c and ’dv,
which are treated by the new signature in the same way. Hence, all that needs
to change in these interpreters to match the new signature is to add a phantom
type argument ’sv to repr. For example, the compiler C now begins module C
= struct type (’c,’sv,’dv) repr = (’c,’dv) code with the rest the same.
In contrast, the partial evaluator P relies on the type argument ’sv.

Figure 7 shows the partial evaluator P. Its type repr literally expresses the
type equation for repr_pe above. The function abstr extracts a future-stage
code value from the result of partial evaluation. Conversely, the function pdyn
injects a code value into the repr type. As in §4.2, we build dynamic terms
alongside any static ones to avoid polymorphic lift.

The static portion of the interpretation of lam f is Some f, which just wraps
the HOAS function f. The interpretation of app ef ea checks to see if ef is
such a wrapped HOAS function. If it is, we apply f to the concrete argument
ea, giving us a chance to perform static computations (see the example below).
If ef has only a dynamic part, we residualize.

To illustrate how to add optimizations, we improve add (and mul, elided) to
simplify the generated code using the monoid (and ring) structure of int: not
only is addition performed statically (using R) when both operands are stati-
cally known, but it is eliminated when one operand is statically 0; similarly for
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module P = struct
type (’c,’sv,’dv) repr = {st: ’sv option; dy: (’c,’dv) code}
let abstr {dy = x} = x let pdyn x = {st = None; dy = x}

let int (x:int) = {st = Some (R.int x); dy = C.int x}
let add e1 e2 = match e1, e2 with
| {st = Some 0}, e | e, {st = Some 0} -> e
| {st = Some m}, {st = Some n} -> int (R.add m n)
| _ -> pdyn (C.add (abstr e1) (abstr e2))
let if_ eb et ee = match eb with
| {st = Some b} -> if b then et () else ee ()
| _ -> pdyn (C.if_ (abstr eb) (fun () -> abstr (et ()))

(fun () -> abstr (ee ())))
let lam f = {st = Some f; dy = C.lam (fun x -> abstr (f (pdyn x)))}
let app ef ea = match ef with {st = Some f} -> f ea

| _ -> pdyn (C.app (abstr ef) (abstr ea)) end

Fig. 7. Our partial evaluator (bool, mul, leq and fix are elided)

multiplication by 0 or 1. Such optimizations can be quite effective in a large
language with more base types and primitive operations.

Any partial evaluator must decide how much to unfold recursion. Our code
näıvely unfolds fix whenever the argument is static. In the accompanying source
code is a conservative alternative P.fix that unfolds recursion only once, then
residualizes. Many sophisticated approaches have been developed to decide how
much to unfold [17], but this issue is orthogonal to our presentation.

Given this implementation of P, our running example let module E = EX(P)
in E.test1 () evaluates to {P.st = Some true; P.dy = .<true>.} of type
(’a, bool, bool) P.repr. Unlike with C in §3, a β-reduction has been stati-
cally performed to yield true. More interestingly, whereas testpowfix7 compiles
to a code value with many β-redexes in §3, the partial evaluation let module
E = EX(P) in E.testpowfix7 gives the desired result

{P.st = Some <fun>;
P.dy = .<fun x -> x * (x * (x * (x * (x * (x * x)))))>.}

All pattern-matching in P is syntactically exhaustive, so it is patent to the meta-
language implementation that P never gets stuck. Further, all pattern-matching
occurs during partial evaluation, only to check if a value is known statically,
never what type it has. In other words, our partial evaluator tags phases (with
Some and None) but not object types.

5 Related Work

Our initial motivation came from several papers [23, 24, 33, 37] that use em-
bedded interpreters to justify advanced type systems, in particular GADTs. We
admire all this technical machinery, but these motivating examples do not need
it. Although GADTs may indeed be simpler and more flexible, they are un-
available in mainstream ML, and their implementation in GHC 6.6.1 fails to
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detect exhaustive pattern matching. We also wanted to find the minimal set of
widespread language features needed for tagless type-preserving interpretation.

Even a simply typed λ-calculus obviously supports self-interpretation, pro-
vided we use universal types [33]. The ensuing tagging overhead motivated Taha
et al. [33] to propose tag elimination, which however does not statically guarantee
that all tags will be removed [23].

Pašalić et al. [23], Taha et al. [33], Xi et al. [37], and Peyton Jones et al. [24]
seem to argue as follows that a self-interpreter of a typed language cannot be
tagless or Jones-optimal: (1) One needs to encode a typed language in a typed
language based on a sum type (at some level of the hierarchy); (2) A direct
interpreter for such an encoding of a typed language in a typed language requires
either advanced types or tagging overhead; (3) Thus, an indirect interpreter is
necessary, which needs a universal type and hence tagging. While the logic is
sound, we (following Yang [38]) showed that the first step’s premise is not valid.

Danvy and López [8] discuss Jones optimality at length and apply HOAS to
typed self-interpretation. However, their source language is untyped. Therefore,
their object-term encoding has tags, and their interpreter can raise run-time
errors. Nevertheless, HOAS lets the partial evaluator remove all the tags. In
contrast, our object encoding and interpreters do not have tags to start with
and obviously cannot raise run-time errors.

Our partial evaluator establishes a bijection repr_pe between static and dy-
namic types (the valid values of ’sv and ’dv), and between static and dynamic
terms. It is customary to implement such a bijection using an injection-projec-
tion pair, as done for interpreters [4, 27], partial evaluation [7], and type-level
functions [22]. As explained in §4.3, we avoid injection and projection at the
type level by adding an argument to repr. Our solution could have been even
more straightforward if MetaOCaml provided total type-level functions such as
repr_pe in §4.3—simple type-level computations ought to become mainstream.

At the term level, we also avoid converting between static and dynamic terms
by building them in parallel, using Asai’s method [1]. This method type-checks
in Hindley-Milner once we deforest the object term representation. Put another
way, we manual apply type-level partial evaluation to our type functions (see
§4.3) to obtain simpler types acceptable to MetaOCaml.

Sumii and Kobayashi [32] also use Asai’s method, to combine online and offline
partial evaluation. They predate us in deforesting the object term representa-
tion to enable tagless partial evaluation. We strive for modularity by reusing
interpreters for individual stages [31]: our partial evaluator P reuses our tagless
evaluator R and tagless compiler C, so it is patent that the output of P never gets
stuck. It would be interesting to try to derive a cogen [35] in the same manner.

It is common to implement an embedded DSL by providing multiple inter-
pretations of host-language pervasives such as addition and application. It is
also common to use phantom types to rule out ill-typed object terms, as done
in Lava [5] and by Rhiger [29]. However, these approaches are not tagless be-
cause they still use universal types, such as Lava’s Bit and NumSig, and Rhiger’s
Raw (his Fig. 2.2) and Term (his Chap. 3), which incur the attendant overhead of
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pattern matching. The universal type also greatly complicates the soundness and
completeness proofs of embedding [29], whereas our proofs are trivial. Rhiger’s
approach does not support typed CPS transformation (his §3.3.4).

We are not the first to implement a typed interpreter for a typed language.
Läufer and Odersky [18] use type classes to implement a metacircular interpreter
(rather than a self-interpreter) of a typed version of the SK language, which is
quite different from our object language. Their interpreter appears to be tagless,
but they could not have implemented a compiler or partial evaluator in the same
way, since they rely heavily on injection-projection pairs.

Fiore [10] and Balat et al. [3] also build a tagless partial evaluator, using
delimited control operators. It is type-directed, so the user must represent, as a
term, the type of every term to be partially evaluated. We shift this work to the
type checker of the metalanguage. By avoiding term-level type representations,
our approach makes it easier to perform algebraic simplifications (as in §4.3).

We encode terms in elimination form, as a coalgebraic structure. Pfenning
and Lee [26] first described this basic idea and applied it to metacircular inter-
pretation. Our approach, however, can be implemented in mainstream ML and
supports type inference, typed CPS transformation and partial evaluation. In
contrast, Pfenning and Lee conclude that partial evaluation and program trans-
formations “do not seem to be expressible” even using their extension to Fω ,
perhaps because their avoidance of general recursive types compels them to in-
clude the polymorphic lift that we avoid in §4.1.

Our encoding of the type function repr_pe in §4.3 emulates type-indexed
types and is related to intensional type analysis [13, 14]. However, our object
language and running examples in HOAS include fix, which intensional type
analysis cannot handle [37]. Our final approach seems related to Washburn and
Weirich’s approach to HOAS using catamorphisms and anamorphisms [36].

We could not find work that establishes that the typed λ-calculus has a final
coalgebra structure. (See Honsell and Lenisa [15] for the untyped case.)

We observe that higher-rank and higher-kind polymorphism lets us type-check
and compile object terms separately from interpreters. This is consistent with
the role of polymorphism in the separate compilation of modules [30].

6 Conclusions

We solve the problem of embedding a typed object language in a typed meta-
language without using GADTs, dependent types, or a universal type. Our fam-
ily of interpreters include an evaluator, a compiler, a partial evaluator, and CPS
transformers. It is patent that they never get stuck, because we represent object
types as metalanguage types. This work makes it safer and more efficient to
embed DSLs in practical metalanguages such as Haskell and ML.

Our main idea is to represent object programs not in an initial algebra but
using the existing coalgebraic structure of the λ-calculus. More generally, to
squeeze more invariants out of a type system as simple as Hindley-Milner, we
shift the burden of representation and computation from consumers to producers:
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encoding object terms as calls to metalanguage functions (§1.2); build dynamic
terms alongside static ones (§4.1); simulating type functions for partial evalua-
tion (§4.3) and CPS transformation. This shift also underlies fusion, functional-
ization, and amortized complexity analysis.

Our representation of object terms in elimination form encodes primitive
recursive folds over the terms. We still have to understand if and how non-
primitively recursive operations can be supported.
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Abstract. This paper presents a polymorphic type system for a lan-
guage with delimited control operators, shift and reset. Based on the
monomorphic type system by Danvy and Filinski, the proposed type sys-
tem allows pure expressions to be polymorphic. Thanks to the explicit
presence of answer types, our type system satisfies various important
properties, including strong type soundness, existence of principal types
and an inference algorithm, and strong normalization. Relationship to
CPS translation as well as extensions to impredicative polymorphism
are also discussed. These technical results establish the foundation of
polymorphic delimited continuations.

Keywords: Type System, Delimited Continuation, Control Operator,
CPS Translation, Predicative/Impredicative Polymorphism.

1 Introduction

Delimited continuation operators enable us to manipulate control of programs
in a concise manner without transforming them into continuation-passing style
(CPS). In particular, shift and reset, introduced by Danvy and Filinski [6], have
strong connection to CPS, and thus most of the control effects compatible with
CPS can be expressed using shift and reset [8]. They have been used, for example,
to program backtracking [6], A-normalization in direct style [1], let-insertion in
partial evaluation [1], and type-safe “printf” in direct style [2].

Despite the increasing interest in the use of delimited continuations in typed
programming languages, there has been little work that investigates their basic
properties without sacrificing their expressive power. The original type system
for shift and reset by Danvy and Filinski [5] is the only type system that allows
modification of answer types but is restricted to monomorphic types. Polymor-
phism in the presence of call/cc has been discussed in the context of ML [11]
but strong type soundness [21] does not hold for their type system. Gunter,
Rémy, and Riecke [10] proposed typed cupto operator with strong type sound-
ness theorem as well as various properties, but their type system is restricted to
a fixed answer type for each prompt. As such, none of the above type systems
can type check, for instance, the “printf” program written with shift and reset.

To establish the basic properties of shift and reset without sacrificing their
expressive power, we present in this paper a polymorphic type system, an ex-
tension of the monomorphic type system by Danvy and Filinski, and show that
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it satisfies a number of basic properties needed to use them in ordinary pro-
gramming languages. In particular, we show strong type soundness, existence of
principal types and an efficient type inference algorithm, and strong normaliza-
tion among others. The polymorphism does not break the semantic foundation
of the original monomorphic type system: CPS translation is naturally defined
for our polymorphic calculus and preserves types and equivalence. Because of its
natural connection to CPS, our framework can be extended to a calculus with
impredicative polymorphism [9].

Unrestricted polymorphism in the presence of control operators leads to an
unsound type system [11]. We introduce and employ a new criteria called “pu-
rity” restriction instead of more restrictive value restriction. An expression is
said to be pure if it has no control-effects [18]. By allowing pure expressions to
be polymorphic, an interesting non-value term can be given a polymorphic type.

Based on these results, we have implemented a prototypical type inference
algorithm, and applied it to many interesting programs to obtain their principal
types.

The rest of this paper is organized as follows: Section 2 illustrates a few
programming examples to give intuition about the type structure for shift and
reset. In Section 3, we formalize a predicatively polymorphic calculus for shift
and reset, and prove its properties such as type soundness. We then study a CPS
translation for our calculus in Section 4. In Section 5, we extend our study to
cover impredicative polymorphism under two evaluation strategies. In Section 6,
we compare our work with related work and give conclusion. Proofs of theorems
in this paper can be found in the extended version of this paper [3].

2 Programming Examples

Polymorphism is inevitable in programming [17]. A simple example of polymor-
phism is found in list manipulating functions: a reverse function works for a
list of elements of any type. In this section, we introduce the control operators,
shift and reset, and show examples of polymorphism that involves control
operators.

2.1 List Append: Answer Type Modification

Consider the following program [5] written in OCaml syntax:

let rec append lst = match lst with
[] -> shift (fun k -> k)

| a :: rest -> a :: append rest

This program is a curried version of list append, written with control operators.
Here, shift captures its current continuation and passes it to its argument
(typically a one-argument function fun k -> . . .) in the empty context. Unlike
callcc, however, continuations are captured only up to its enclosing reset
(hence called delimited continuations).
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When append is invoked in a delimited context as follows:

let append123 = reset (fun () -> append [1; 2; 3])

append recursively stores each element of its argument into the control stack.
When all the elements are stacked, the control stack could be thought of as a
term with a hole: 1 :: 2 :: 3 :: •, waiting for the value for the [] case. Then, shift
(fun k -> k) captures it, turns it into an ordinary function λx.1 :: 2 :: 3 :: x,
and returns it. The returned continuation append123 is the partially applied
append function: given a list, it appends 1, 2, and 3 to it in the reversed order.

When shift is used in a program, it typically has an impact on the answer
type of its enclosing context. Before shift (fun k -> k) is executed, the con-
text 1 :: 2 :: 3 :: • was supposed to return a list (given a list for •). In other words,
the answer type of this context was a list. After shift (fun k -> k) is exe-
cuted, however, what is returned is the captured continuation λx.1 :: 2 :: 3 :: x
of type int list -> int list. In other words, execution of shift (fun k ->
k) modifies the answer type from ’a list to ’a list -> ’a list, where ’a
is the type of the elements of the list.

To accommodate this behavior, Danvy and Filinski used a function type of the
form S / A -> T / B [5]. It is the type of a function from S to T, but modifies the
answer type from A to B when applied. Using this notation, append has the type
’a list / ’a list -> ’a list / (’a list -> ’a list) for all ’a: given a
list of type ’a list, append returns a list of type ’a list to its immediate
context; during this process, however, the answer type of the context is modified
from ’a list to ’a list -> ’a list.

Gunter, Rémy, and Riecke mention the type of context (prompt) in their type
system [10]. However, they fix the answer type and do not take the answer type
modification into account, limiting the use of control operators. To characterize
the full expressive power of shift and reset, it is necessary to cope with two
answer types together with polymorphism.

2.2 List Prefix: Answer Type Polymorphism

Once answer types are included in a function type, polymorphism becomes more
important in programming. First of all, the conventional function type S -> T is
regarded as polymorphic in the answer type [18]: S / ’a -> T / ’a for a new
type variable ’a. This indicates that even a simple, apparently monomorphic,
function like:

let add1 x = x + 1

has to be treated as polymorphic in the answer type. Otherwise, it cannot be
used in different contexts as in:

reset (fun () -> add1 2; ()); reset (fun () -> add1 3; true)

The first occurrence of add1 is used at type int / unit -> int / unit whereas
the second one at type int / bool -> int / bool. To unify them, add1 has to be
given a polymorphic type: int / ’a -> int / ’a.
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Answer type polymorphism plays an important role in captured continuations,
too. Consider the following program [4]:

let rec visit lst = match lst with
[] -> shift (fun h -> [])

| a :: rest -> a :: shift (fun k ->
(k []) :: reset (k (visit rest)))

let rec prefix lst = reset (visit lst)

When applied to a list, e.g., [1; 2 3], prefix returns a list of its prefixes: [[1];
[1; 2]; [1; 2; 3]]. In this example, there are two occurrences of shift. In-
tuitively, the continuation captured by the second shift represents consing of
elements read so far. It is applied twice: once to an empty list to construct a
current prefix and once to construct a list of longer prefixes. Finally, the first
occurrence of shift initiates the construction of prefixes by returning an empty
list of type ’a list list, discarding the current continuation.

It is important that the captured continuation k is polymorphic in its answer
type. A closer look at the function reveals that k is used in two different contexts:
the first occurrence of k has type ’a list / ’a list list -> ’a list / ’a
list list whereas the second one has type ’a list / ’a list -> ’a list
/ ’a list. This demonstrates that without answer type polymorphism in the
captured continuations, the above program does not type check.

2.3 Printf

Finally, we present a type-safe printf program written in direct style with shift
and reset (detailed in [2]). Given a representation of types:

let int x = string_of_int x
let str (x : string) = x

the following program achieves the behavior of printf in a type-safe manner:

let % to_str = shift (fun k -> fun x -> k (to_str x))
let sprintf p = reset p

Namely, the following programs are all well-typed:

sprintf (fun () -> "Hello world!")
sprintf (fun () -> "Hello " ^ % str ^ "!") "world"
sprintf (fun () -> "The value of " ^ % str ^ " is " ^ % int) "x" 3

and give "Hello World!" for the first two and "The value of x is 3" for
the last. Depending on % appearing in the formatting text, sprintf returns a
different type of values.

The dependent behavior of sprintf is well understood by examining its type:
(unit / string -> string / ’a) -> ’a. The formatting text is represented
as a thunk that modifies the final answer type into ’a according to the occurrence
of %. Then, the type of the return value of sprintf is polymorphic to this ’a.
The dependent behavior of sprintf is only achievable through the support of
both the answer type modification and polymorphism.
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v ::= c | x | λx.e | fix f.x.e value

e ::= v | e1e2 | Sk.e | 〈e〉 | let x = e1 in e2

| if e1 then e2 else e3 expression

α, β, γ, δ ::= t | b | (α/γ → β/δ) monomorphic type

A ::= α | ∀t.A polymorphic type

Fig. 1. Syntax of λ
s/r
let

3 Predicative Polymorphism with Shift/Reset

We now introduce polymorphic typed calculi for shift and reset, and study their
properties such as type soundness. Following the literature, we distinguish two
versions of polymorphism: predicative polymorphism (let-polymorphism) found
in ML and impredicative polymorphism which is based on the second order
lambda calculus (Girard’s System F [9]). In this section, we give the predicative
version λ

s/r
let . The impredicative version will be given in later sections.

3.1 Syntax and Operational Semantics

We assume that the sets of constants (denoted by c), variables (denoted by
x, y, k, f), type variables (denoted by t), and basic types (denoted by b) are
mutually disjoint, and that each constant is associated with a basic type. We
assume bool is a basic type which has constants true and false.

The syntax of λ
s/r
let is given by BNF in Figure 1. A value is either a constant,

a variable, a lambda abstraction, or a fixpoint expression fix f.x.e which repre-
sents a recursive function defined by the equation f(x) = e. The variables f and
x are bound in fix f.x.e. An expression is either a value, an application, a shift
expression, a reset expression, a let expression, or a conditional. The expressions
Sk.e and 〈e〉, resp., correspond to OCaml expressions shift (fun k -> e) and
reset (fun () -> e), resp. Types are similar to those in ML except that the
function type is now annotated with answer types as (α/γ → β/δ). Free and
bound variables (type variables, resp.) in expressions (types, resp.) are defined
as usual, and FTV(α) denotes the set of free type variables in α.

We give call-by-value operational semantics for λ
s/r
let . First we define evaluation

contexts (abbreviated as e-contexts), pure e-contexts, and redexes as follows:

E ::= [ ] | vE | Ee | 〈E〉 | let x = E in e | if E then e else e e-context
F ::= [ ] | vF | Fe | let x = F in e | if F then e else e pure e-context
R ::= (λx.e)v | 〈v〉 | 〈F [Sk.e]〉 | let x = v in e

| if true then e1 else e2 | if false then e1 else e2

| (fix f.x.e)v redex
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(λx.e)v � e[v/x]

(fix f.x.e)v � e[fix f.x.e/f ][v/x]

〈v〉 � v

〈F [Sk.e]〉 � 〈let k = λx.〈F [x]〉 in e〉
let x = v in e � e[v/x]

if true then e1 else e2 � e1

if false then e1 else e2 � e2

Fig. 2. Reduction rules for λ
s/r
let

A pure e-context F is an evaluation context such that no reset encloses the hole.
Therefore, in the redex 〈F [Sk.e]〉, the outermost reset is guaranteed to be the
one corresponding to this shift, i.e., no reset exists inbetween.

A one-step evaluation in λ
s/r
let is E[R] � E[e] where R � e is an instance

of reductions in Figure 2 where e[v/x] denotes the ordinary capture-avoiding
substitution. For example, prefix [1; 2] is reduced as follows. (We use fix
implicitly through recursion, and assume that lists and other constructs are
available in the language).

prefix [1; 2]
� 〈1 :: Sk.(k[] :: 〈k (visit [2])〉)〉
� 〈let k = λx.〈1 :: x〉 in k[] :: 〈k (visit [2])〉〉
� 〈(λx.〈1 :: x〉)[] :: 〈(λx.〈1 :: x〉)(visit [2])〉〉
�+ 〈[1] :: 〈(λx.〈1 :: x〉)(2 :: Sk.(k[] :: 〈k (visit [])〉))〉〉
� 〈[1] :: 〈let k = λx.〈(λx.〈1 :: x〉)(2 :: x)〉 in k[] :: 〈k (visit [])〉〉〉
� 〈[1] :: 〈(λx.〈(λx.〈1 :: x〉)(2 :: x)〉)[] :: 〈(λx.〈(λx.〈1 :: x〉)(2 :: x)〉)(visit [])〉〉〉
�+ 〈[1] :: 〈[1; 2] :: 〈(λx.〈(λx.〈1 :: x〉)(2 :: x)〉)(Sh.[])〉〉〉
� 〈[1] :: 〈[1; 2] :: let h = λx.〈(λx.〈(λx.〈1 :: x〉)(2 :: x)〉)x〉 in []〉〉
� 〈[1] :: 〈[1; 2] :: []〉〉 �+ [[1]; [1; 2]]

The notion of reduction � is defined as the compatible closure1 of those in
Figure 2, and �∗ (and �+, resp.) denotes the reflexive-transitive (transitive,
resp.) closure of �.

3.2 Type System

We begin with Danvy and Filinski’s monomorphic type system for shift and
reset [5]. Since the evaluation of an expression with shift and reset may modify
answer types, a type judgment in their type system involves not only a type of
an expression being typed, but also answer types before and after evaluation.
Symbolically, a judgment takes the form:

1 A binary relation is compatible if it is closed under term-formation, for instance,
whenever e1 and e2 are related by this relation, λx.e1 and λx.e2 are related.
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Γ ; α � e : τ ; β

which means that, under the type context Γ , the expression e has type τ and
the evaluation of e changes the answer type from α to β. A rationale behind this
formulation is that, the CPS counterpart of e has type (τ∗ → α∗) → β∗ under
the type context Γ ∗ in the simply typed lambda calculus, where ( )∗ is the CPS
translation for types and type contexts defined in the next section.

Introducing polymorphism into their type system is, however, not straightfor-
ward since the subject reduction property fails for the system with unrestricted
uses of let-polymorphism and side effects such as references and control effects.
In the literature, there are many proposals to solve this problem by restricting
the let-expression let x = e1 in e2 or by changing its operational semantics,
some of which are:

– Value restriction [20]: e1 must be a value.
– Weak type variables [19]: the type variable in the type of e1 can be general-

ized only when it is not related to side effects.
– Polymorphism by name [15]: the evaluation of e1 is postponed until x is

actually used in e2, thus enforcing the call-by-name evaluation to e1.

We take an alternative approach: we restrict that e1 in let x = e1 in e2 must
be free from control effects, that is, pure. Intuitively, an expression is pure when
it is polymorphic in answer types.2 In Danvy and Filinski’s type system, we can
define that e is pure if the judgment Γ ; α � e : τ ; α is derivable for any type
α. Typical examples of pure expressions are values but the expression 〈e〉 is also
pure, since all control effects in e are delimited by reset. To represent purity of
expressions, we introduce a new judgment form Γ �p e : τ .

Now let us formally define the type system of λ
s/r
let . A type context (denoted by

Γ ) is a finite list of the form x1 : A1, · · · , xn : An where the variables x1, · · · , xn

are mutually distinct, and A1, · · · , An are (polymorphic) types. Judgments are
either one of the following forms:

Γ �p e : τ judgment for pure expression
Γ ; α � e : τ ; β judgment for general expression

Figure 3 lists the type inference rules of λ
s/r
let where τ ≤ A in the rule (var)

means the instantiation of type variables by monomorphic types. Namely, if A ≡
∀t1. · · · ∀tn.ρ for some monomorphic type ρ, then τ ≡ ρ[σ1, · · · , σn/t1, · · · , tn]
for some monomorphic types σ1, · · · , σn. The type Gen(σ; Γ ) in the rule (let) is
defined by ∀t1. · · · ∀tn.σ where {t1, · · · , tn} = FTV(σ) − FTV(Γ ).

The type inference rules are a natural extension of the monomorphic type
system by Danvy and Filinski [5]. Pure expressions are defined by one of the

2 Thielecke studied the relationship between answer type polymorphism and the ab-
sence of control in depth [18].
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(x : A ∈ Γ and τ ≤ A)

Γ �p x : τ
var

(c is a constant of basic type b)

Γ �p c : b
const

Γ, f : (σ/α → τ/β), x : σ; α � e : τ ; β

Γ �p fix f.x.e : (σ/α → τ/β)
fix

Γ, x : σ; α � e : τ ; β

Γ �p λx.e : (σ/α → τ/β)
fun

Γ ; γ � e1 : (σ/α → τ/β); δ Γ ; β � e2 : σ; γ

Γ ; α � e1e2 : τ ; δ
app

Γ �p e : τ

Γ ; α � e : τ ; α
exp

Γ, k : ∀t.(τ/t → α/t); σ � e : σ; β

Γ ; α � Sk.e : τ ; β
shift

Γ ;σ � e : σ; τ

Γ �p 〈e〉 : τ
reset

Γ �p e1 : σ Γ, x : Gen(σ; Γ ); α � e2 : τ ; β

Γ ; α � let x = e1 in e2 : τ ; β
let

Γ ; σ � e1 : bool; β Γ ; α � e2 : τ ; σ Γ ; α � e3 : τ ; σ

Γ ; α � if e1 then e2 else e3 : τ ; β
if

Fig. 3. Type Inference Rules of λ
s/r
let

rules (fix), (fun), or (reset).3 They can be freely turned into general expressions
through the rule (exp). Pure expressions can be used polymorphically through
the rule (let). It generalizes the standard let-polymorphism found in ML. We
can allow a let expression let x = e1 in e2 even when e1 is not pure, in which
case it is macro-expanded to (λx.e2)e1 where e1 is treated monomorphically.
Finally, the rule (shift) is extended to cope with the answer type polymorphism
of captured continuations: k is given a polymorphic type ∀t.(τ/t → α/t).

Examples. We show the principal types for the examples shown in Section 2.
Using the type inference rules (augmented with rules for lists, etc.), we can

deduce that append (rewritten with fix) has type ’a list / ’b -> ’a list /
(’a list -> ’b),4 where ’a list -> ’b is a shorthand for ’a list / ’c ->
’b / ’c for a new type variable ’c. Given this type, the type of append123, i.e.,
reset (fun () -> append [1; 2; 3]), becomes int list -> int list (or
int list / ’c -> int list / ’c). Since it is pure, append123 can be given
a polymorphic type in its answer type ’c. Notice that append123 is not bound
to a value but an effectful expression enclosed by reset. If we employed value
restriction, append123 could not be polymorphic, and thus could only be used
in a context with a fixed answer type.

3 We could have introduced a more general rule such as: if Γ ; t � e : τ ; t is derivable
for t 	∈ FTV(Γ, τ ), then Γ �p e : τ . It would then allow expressions that are not
syntactically values nor reset expressions but in fact pure, such as Sk.k3. We did
not take this approach, because we can always insert reset around pure expressions
to make them syntactically pure.

4 This is the principal type for append. In the typical case where the call to append is
immediately enclosed by reset as is the case for append123, ’b is instantiated to ’a
list.
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Next, the principal type for visit is ’a list / ’b -> ’a list / ’b list.5 To
deduce this type, we need to use the rule (shift) to give k a polymorphic type in
its answer type. Then, the type of prefix becomes ’a list -> ’a list list. In
other words, it accepts a list of any type ’a. Since it is pure (that is, answer type
polymorphic), it can be used in any context.

Finally, the principal type for % is somewhat complicated:

(’a / ’p -> ’s / ’q) / ’t -> ’s / (’a / ’p -> ’t / ’q)

In the typical case where to_str is pure (’p=’q) and has type ’a -> string,
and the output ’t is string, the above type becomes:

(’a -> string) / string -> string / (’a -> string)

This type describes the behavior of %: given a representation of a type (of type ’a
-> string), it changes the answer type from string to a function that receives
a value of the specified type ’a. Then, sprintf returns a function of this final
answer type, thus accepting an argument depending on the occurrence of %.

3.3 Properties

We have introduced the polymorphic calculus λ
s/r
let with shift and reset. We

claim that our calculus provides a good foundation for studying the interaction
between polymorphism and delimited continuations. To support this claim, we
prove the following properties:

– Subject reduction (type preservation).
– Progress and unique decomposition.
– Principal types and existence of a type inference algorithm.
– Preservation of types and equality through CPS translation.
– Confluence.
– Strong normalization for the subcalculus without fix.

We first show type soundness, i.e., subject reduction and progress.

Theorem 1 (Subject Reduction). If Γ ; α � e1 : τ ; β is derivable and e1 �∗

e2, then Γ ; α � e2 : τ ; β is derivable. Similarly, if Γ �p e1 : τ is derivable and
e1 �∗ e2, then Γ �p e2 : τ is derivable.

The above theorem not only assures that a well-typed program does not go wrong
(so-called weak type soundness [21]) but also guarantees that the evaluated term
has the same type as the original term (strong type soundness [21]). This is the
consequence of having answer types explicitly in our type system. We need three
lemmas to prove this theorem.

Lemma 1 (Weakening of Type Context). Suppose Γ1 ⊂ Γ2 and Γ2 is a
valid type context. If Γ1; α � e : σ; β is derivable, then Γ2; α � e : σ; β is
derivable. Similarly for Γ1 �p e : σ.
5 Again, ’b is typically instantiated to ’a list.



248 K. Asai and Y. Kameyama

Lemma 2 (Substitution for Monomorphic Variables). Suppose Γ1 ⊂ Γ2,
Γ2 is a valid type context, and Γ1 �p v : σ is derivable.

If Γ2, x : σ; α � e : τ ; β is derivable, then Γ2; α � e[v/x] : τ ; β is derivable.
Similarly, if Γ2, x : σ �p e : τ is derivable, then Γ2 �p e[v/x] : τ is derivable.

Lemma 3 (Substitution for Polymorphic Variables). Suppose Γ1 ⊂ Γ2,
Γ2 is a valid type context, and Γ1 �p v : σ is derivable.

If Γ2, x : Gen(σ; Γ1); α � e : τ ; β is derivable, then Γ2; α � e[v/x] : τ ; β is
derivable. Similarly for Γ2, x : Gen(σ; Γ1) �p e : τ .

We next prove the progress property, which states that evaluation of a program
does not get stuck. Although a program is usually defined as an expression with
no free variables, we need to refine it, since, for instance, Sk.k3 cannot be reduced
further due to the absence of an enclosing reset. Here, we define a program to be
an expression with a toplevel reset of the form 〈e〉 which has no free variables.

Theorem 2 (Progress and Unique Decomposition). If �p 〈e〉 : τ is deriv-
able, then either e is a value, or 〈e〉 can be uniquely decomposed into the form
E[R] where E is an evaluation context and R is a redex.

By Theorems 1 and 2, we can conclude that our type system is sound (Type
Soundness).

Although our type system may look rather complex, we can smoothly extend
Hindley-Milner type inference algorithm W to accommodate λ

s/r
let . The extended

algorithm W ′ takes two arguments as its inputs: Γ (for a valid context) and e
(for a raw expression) such that all free variables in e are contained in Γ . Then,
W ′ either fails or returns a tuple (θ; α, τ, β) where θ is a substitution for type
variables, and α, τ , and β are types.

Theorem 3 (Principal Type and Type Inference). We can construct a
type inference algorithm W ′ for λ

s/r
let such that:

1. W ′ always terminates.
2. if W ′ returns (θ; α, τ, β), then Γθ; α � e : τ ; β is derivable. Moreover, for

any (θ′; α′, τ ′, β′) such that Γθ′; α′ � e : τ ′; β′ is derivable, (Γθ′, α′, τ ′, β′) ≡
(Γθ, α, τ, β)φ for some substitution φ.

3. if W ′ fails, then Γθ; α � e : τ ; β is not derivable for any (θ; α, τ, β).

We have implemented a prototypical type inference algorithm system for our
language based on this theorem. The principal types shown in Section 3.2 are
all inferred by it.

Finally, we can show confluence for λ
s/r
let , and strong normalization for the

subcalculus without fix. This is in contrast to cupto operator, where strong
normalization does not hold.6

Theorem 4 (Confluence and Strong Normalization)
1. The reduction � in λ

s/r
let is confluent.

2. The reduction � in λ
s/r
let without fix is strongly normalizing.

6 See http://okmij.org/ftp/Computation/Continuations.html
#cupto-nontermination.
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b∗ = b for a basic type b

t∗ = t for a type variable t

((α/γ → β/δ))∗ = α∗ → (β∗ → γ∗) → δ∗

(∀t.A)∗ = ∀t.A∗

(Γ, x : A)∗ = Γ ∗, x : A∗

Fig. 4. CPS translation for types and type contexts

c∗ = c

v∗ = v

(λx.e)∗ = λx.[[e]]

(fix f.x.e)∗ = fix f.x.[[e]]

[[v]] = λκ.κv∗

[[e1e2]] = λκ.[[e1]](λm.[[e2]](λn.mnκ))

[[Sk.e]] = λκ.let k = λnκ′.κ′(κn) in [[e]](λm.m)

[[〈e〉]] = λκ.κ([[e]](λm.m))

[[let x = e1 in e2]] = λκ.let x = [[e1]](λm.m) in [[e2]]κ

[[if e1 then e2 else e3]] = λκ.[[e1]](λm.if m then [[e2]]κ else [[e3]]κ)

Fig. 5. CPS translation for values and expressions

4 CPS Translation of λ
s/r
let

The semantics of control operators have often been given through a CPS trans-
lation. In their first proposal, Danvy and Filinski gave the precise semantics of
shift and reset in terms of a CPS translation [6,7]. In this section, we show that
it can be naturally extended to polymorphic setting.

Harper and Lillibridge [12] were the first to systematically study CPS trans-
lations in polymorphic language with control operators. They introduced CPS
translations from Fω+call/cc to Fω, and proved that, under a condition sim-
ilar to the value restriction, a call-by-value CPS translation preserves types
and semantics (equality). We follow Harper and Lillibridge to give a type-and-
equality preserving CPS translation for polymorphic calculi with shift and reset.

The CPS translation for λ
s/r
let is a Plotkin-style, call-by-value translation, and

is defined in Figures 4 and 5, where the variables κ, m and n are fresh. The target
calculus (the image) of the translation is λlet, the minimum lambda calculus with
let-polymorphism and conditional expressions.7

7 λlet may be obtained from λ
s/r
let by eliminating shift, reset, and answer types α and

β in Γ ; α � e : τ ; β and (σ/α → τ/β). Since all expressions are pure in λlet, we do
not distinguish two kinds of judgments.
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The type (α/γ → β/δ) is translated to the type of a function which, given
a parameter of type α∗ and a continuation of type β∗ → γ∗ returns a value of
type δ∗. For instance, the type of the visit function (in the prefix example)
’a list / ’b -> ’a list / ’b list is CPS translated to ’a list -> (’a
list -> ’b) -> ’b list.

The translation of reset is the same as that in Danvy and Filinski’s. For
shift, we use a let-expression rather than substitution, so that the captured
continuation λnκ′.κ′(κn) may be used polymorphically in the body [[e]](λm.m).
This is essential to retain enough polymorphism for delimited continuations.

The translation of the let expression let x = e1 in e2 needs care to take
polymorphism into account. We use a let-expression to express the polymorphism
in the source term, and supply the identity continuation λm.m to the CPS
transform [[e1]]. This is typable in the target calculus, since a pure expression is
translated to an expression of type ∀t.((τ → t) → t).

We can prove that the CPS translation preserves types and equality:

Theorem 5 (Preservation of Types). If Γ ; α � e : τ ; β is derivable in λ
s/r
let ,

then Γ ∗ � [[e]] : (τ∗ → α∗) → β∗ is derivable in λlet.
If Γ �p e : τ is derivable in λ

s/r
let , then, Γ ∗ � [[e]] : (τ∗ → γ) → γ is derivable

for an arbitrary type γ in λlet.

Theorem 6 (Preservation of Equality). If Γ ; α � e1 : τ ; β is derivable
and e1 �∗ e2 in λ

s/r
let , then [[e1]] = [[e2]] in λlet where = is the least congruence

relation which contains � in λlet.8

5 Impredicative Polymorphism with Shift and Reset

The second order lambda calculus (Girard’s System F) is a solid foundation for
advanced concepts in programming languages, since its impredicative polymor-
phism is strictly more expressive than the predicative one. In this section, we
study an extension of (call-by-value version of) System F with shift and reset.
It is an explicitly typed calculus rather than an implicitly typed calculus like
λ

s/r
let . Hence, we add two constructs to the expressions: Λt.e for type-abstraction

and e{α} for type-application. Following Harper and Lillibridge [12], we consider
two calculi with impredicative polymorphism that differ in evaluation strategies.
The first calculus, λ

s/r,Std
2 , adopts the “standard” strategy: Λt.e is treated as a

value, and hence we do not evaluate under Λ. The second one, λ
s/r,ML
2 , adopts

the “ML-like” strategy: Λt.e is a value only when e is a value, and hence we
evaluate under Λ.

The syntax of λ
s/r,Std
2 and λ

s/r,ML
2 extends that of λ

s/r
let with the new con-

structs listed in Figure 6. We annotate bound variables with types, for instance,
λx : α. e. We eliminate let expressions, since they can be macro-defined: for
instance, the expression let f = λx.x in (ff)0 in λ

s/r
let is represented9 as

8 The reduction � in λlet is the reduction � restricted to the expressions in λlet.
9 We assume that 0 is a constant of type int.
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α, β, γ, δ ::= · · · | ∀t.α ::= · · · | ∀t.α type

v ::= · · · | Λt.e ::= · · · | Λt.v value

e ::= · · · | e{α} ::= · · · | Λt.e | e{α} expression

λ
s/r,Std
2 (standard) λ

s/r,ML
2 (ML-like)

Fig. 6. Syntax of λ
s/r,Std
2 and λ

s/r,ML
2

Γ �p e : τ

Γ �p Λt.e : ∀t.τ
tabs, t 	∈ FTV(Γ )

Γ ; α � e : ∀t.τ ; β

Γ ; α � e{σ} : τ [σ/t]; β
tapp

Fig. 7. Type inference rules for new constructs

(λf : ∀t.(t → t). f{int → int}(f{int})0)(Λt.λx : t. x). Monomorphic and
polymorphic types are merged, since the type quantifier ∀ may occur at any
place in types. The definitions for values and expressions reflect the difference
between the two calculi.

The type inference rules for new constructs are common to λ
s/r,Std
2 and

λ
s/r,ML
2 , and are given in Figure 7. As can be seen by the rule (tabs), the

body e in Λt.e is restricted to a pure expression. For λ
s/r,ML
2 , this restriction is

necessary10 to ensure the type soundness due to a similar reason as Harper and
Lillibridge [12] who proposed to put a kind of value restriction when abstract-
ing types. Unfortunately, their calculus under the value restriction is not very
interesting, since the standard and ML-like strategies completely agree on the
restricted calculus. We relax the restriction so that e in Λt.e may be an arbitrary
pure expression, which makes the two strategies differ on some expressions.

Operational semantics is defined in Figure 8 with a new reduction rule:

(Λt.e){α} � e[α/t]

where e[α/t] denotes the capture-avoiding substitution for types. For λ
s/r,ML
2 ,

the subexpression e in the reduction rule is restricted to a value.
Polymorphism in λ

s/r,Std
2 is a generalization of Leroy’s “polymorphism by

name” [15]: consider the expression let f = 〈e〉 in (ff)0 for an expression e
of type t → t and a constant 0 of type int. It is represented by (λf : ∀t.(t →
t).(f{int → int})(f{int})0)(Λt.〈e〉) in λ

s/r,Std
2 , and it is easy to see that the

evaluation of e is postponed until a type is applied to Λt.〈e〉.
Polymorphism in λ

s/r,ML
2 is a generalization of that for ML. Taking the same

example, the outermost β-redex is computed only after 〈e〉 is computed and
returns a value. Then, the variable f is substituted for the value of Λt.〈e〉, and
the body f{int → int})(f{int})0 is computed.

We can show type soundness for λ
s/r,Std
2 and λ

s/r,ML
2 .

10 For λ
s/r,Std
2 , the restriction is not necessary, and we could have defined a more liberal

type system. In the present paper, however, we choose a uniform, simpler syntax.
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E ::= · · · | E{α} ::= · · · | E{α} | Λt.E e-context

F ::= · · · | F{α} ::= · · · | F{α} pure e-context

R ::= · · · | (Λt.e){α} ::= · · · | (Λt.v){α} redex

λ
s/r,Std
2 λ

s/r,ML
2

Fig. 8. Evaluation Contexts and Redexes

(∀t.τ )∗ = ∀t.∀s.((τ∗ → s) → s) for a fresh type variable s

[[Λt.e]]α,∀t.τ,α = λκ : ((∀t.τ )∗ → α).κ(Λt.Λs.[[e]]s,τ,s)

[[e{σ}]]α,τ [σ/t],β = λκ : ((τ [σ/t])∗ → α∗).[[e]]α,∀t.τ,β(λu : (∀t.τ )∗.u{σ∗}{α∗}κ)

Fig. 9. CPS translation for λ
s/r,Std
2

(∀t.τ )∗ = ∀t.τ∗

[[Λt.e]]α,∀t.τ,α = λκ : ((∀t.τ∗) → α).κ(Λt.[[e]]τ,τ,τ(λm : τ∗.m))

[[e{σ}]]α,τ [σ/t],β = λκ : ((τ [σ/t])∗ → α∗). [[e]]α,∀t.τ,β(λu : ∀t.τ∗.κ(u{σ∗}))

Fig. 10. CPS translation for λ
s/r,ML
2

Theorem 7 (Type Soundness). Subject reduction property and progress prop-
erty hold for λ

s/r,Std
2 and λ

s/r,ML
2 .

We define a CPS transformation for λ
s/r,Std
2 and λ

s/r,ML
2 in Figures 9 and 10.

The target calculus of the translation is System F augmented with basic types,
constants, fix and conditionals. Equality of the target calculus is the least con-
gruence relation which includes call-by-value βη-equaltiy, β-equaltiy for types
((Λt.e){α} = e[α/t]), and equality for fix and conditionals. Since the target
calculus is explicitly typed, the CPS translation for expressions is annotated by
types as [[e]]α,τ,β, which is well-defined when Γ ; α � e : τ ; β is derivable for some
Γ . It is interesting to see how the difference of evaluation strategies affect the
difference of CPS translations in Figures 9 and 10.

Note that the CPS translation for λ
s/r,ML
2 is a natural extension of that for

λ
s/r
let : for instance, [[let f = 〈e〉 in (ff)0]] in λ

s/r
let is equal (up to the call-by-value

βη-equality) to [[(λf : ∀t.(t → t).(f{int → int})(f{int})0)(Λt.〈e〉)]] in λ
s/r,Std
2 .

We can show that the CPS transformations for the two calculi preserve types
and equality. Let T be λ

s/r,Std
2 or λ

s/r,ML
2 .

Theorem 8 (Preservation of Types and Equality)

1. If Γ ; α � e : τ ; β is derivable in T , then Γ ∗ � [[e]]α,τ,β : (τ∗ → α∗) → β∗ is
derivable in the target calculus.
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2. If Γ �p e : τ is derivable in T , then Γ ∗ � [[e]]s,τ,s : (τ∗ → s) → s is derivable
for any type variable s in the target calculus.

3. If Γ ; α � e : τ ; β is derivable in T , and e �∗ e′, then [[e]]α,τ,β = [[e′]]α,τ,β

under the equality of the target calculus.

6 Conclusion

We have introduced predicative and impredicative polymorphic typed calculi
for shift and reset, and investigated their properties such as type soundness
and relationship to CPS translations. We have extended Danvy and Filinski’s
monomorphic type system for shift and reset to polymorphic one, and have
shown that a number of pleasant properties hold for the polymorphic calculi.
We have shown that our calculi have a natural representation for the “purity”
of expressions, and that the purity restriction suffices for the type systems to be
sound, thus generalizing value restriction used in Standard ML and OCaml.

In the literature, a number of authors have tackled the unsoundness problem
of polymorphism and effects [19,15,20,12]. We have proposed a simple solution
based on the notion of “purity”, which is, in the presence of the reset opera-
tor, less restrictive than the notion of “syntactic values” in ML. We have also
investigated two evaluation strategies for impredicative calculi, each of which
generalizes ML’s and Leroy’s solutions for the unsoundness problem.

Several authors have studied polymorphic calculi with control operators for
delimited continuations. Introducing polymorphism into a calculus with shift and
reset has been implicit by Danvy who gave many programming examples (see,
for instance, [4]). In fact, his interesting examples encouraged us to formulate the
calculi in the present paper. Filinski [8] implemented shift and reset in SML/NJ,
thus enabling one to write polymorphic functions with shift and reset. However,
the expressivity of his system is limited since the answer type is fixed once and
for all. The same goes for the calculus with cupto by Gunter et al. [10]. Kiselyov
et al. [14] have implemented shift and reset in OCaml, and their examples made
use of let-polymorphism. However, their paper did not give formal accounts for
polymorphism. As far as we know, the present paper is the first to provide a
systematic study on the interaction of polymorphism and control operators for
delimited continuations.

Although we believe that our calculus serves as a good foundation for study-
ing polymorphic delimited continuations calculi, this is only the first step; we
need deeper understanding and better theories. The first author of the present
paper has studied logical relations based on Danvy and Filinski’s monomorphic
type system [1], but it is not apparent if his result extends to the polymorphic
case. Hasegawa [13] studied parametricity principle for the second order, call-
by-name λμ-calculus (similar to System F + call/cc), and obtained the notion
of “focal parametricity”. Although he works in call-by-name, we hope to find
some connection between our work and his results in the future. A recent work
by Mogelberg and Simpson [16] treats a similar notion in call-by-value.
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Abstract. We study adjunct-elimination results for Context Logic ap-
plied to trees, following previous results by Lozes for Separation Logic
and Ambient Logic. In fact, it is not possible to prove such elimination re-
sults for the original single-holed formulation of Context Logic. Instead,
we prove our results for multi-holed Context Logic.

1 Introduction

Separation Logic [1,2,3] and Ambient Logic [4] are related theories for reason-
ing, respectively, about local heap update and static trees. Inspired by this work,
Calcagno, Gardner and Zarfaty invented Context Logic [5] for reasoning about
structured resource, extending the general theory of Bunched Logic [6] for rea-
soning about unstructured resource. In particular, we use Context Logic applied
to trees to reason about tree update, following the local reasoning style of Sep-
aration Logic; such reasoning is not possible using Ambient Logic [7].

These logics extend the standard propositional connectives with a struc-
tural (separating) composition for reasoning about disjoint subdata and the
corresponding structural adjoint(s) for expressing properties such as weakest
pre-conditions and safety conditions. For Separation Logic and Ambient Logic,
Lozes [8] and then Dawar, Gardner and Ghelli [9] showed that the structural ad-
joints provide no additional expressive power on closed formulae. This result is
interesting, as the adjunct connectives introduce quantification over potentially
infinite sets whereas the structural composition only requires quantification over
finite substructures. Following this work, Calcagno, Gardner and Zarfaty proved
adjunct elimination for Context Logic applied to sequences, and showed the cor-
respondence with the ∗-free regular languages [10,7]. We expected an analogous
result for Context Logic applied to trees, but instead found a counter-example
(first reported in Dinsdale-Young’s Masters thesis [11]). Instead, we prove an
adjunct-elimination result for multi-holed Context Logic applied to trees.

The original Context Logic was introduced to establish local Hoare reasoning
about tree update. For this application, it was enough to work with single-
holed contexts, although we always understood that there were other forms of
contexts requiring study. Our counter-example to the adjunct-elimination result
for single-holed Context Logic motivates our exploration of these other context
structures. In our original presentation, the data formula K(P ) expresses that

Z. Shao (Ed.): APLAS 2007, LNCS 4807, pp. 255–270, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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the given tree is the result of applying a single-holed context satisfying context
formula K to a tree satisfying data formula P . The adjunct context formula
P �Q expresses that, whenever a tree satisfying property P is put in the context
hole, then the resulting tree satisfies Q. Consider the single-holed context formula
0�(True(u[0])) expressing that, when the empty tree 0 is put in the context hole,
then somewhere there is a subtree of the form u[0] with top node labelled u and
empty subtree. This formula cannot be expressed without the separating adjoint
connective ‘�’. For example, consider contexts of the form vn[u[ ]], denoting a
vertical line of n nodes labelled v, followed by one node labelled u and then the
context hole. These contexts all satisfy the formula 0 � (True(u[0])), whereas
the contexts vn[ ] do not. There is no adjoint-free context formula that can
distinguish between these sets of contexts because, in our original presentation of
Context Logic, trees can be split arbitrarily into contexts and trees, but contexts
cannot be split. Our counter-example shows that such splitting is necessary for
adjunct elimination to hold.

Context Logic can be extended with context composition, for analysing the
splitting of contexts, and its adjoints. However, we currently do not know if
adjunct elimination holds for this extension. We do know that current tech-
niques for proving such results cannot be immediately adapted. Instead, we
prove adjunct elimination for multi-holed Context Logic with context composi-
tion. Our proof, adapting the technique for proving adjunct elimination using
model-checking games [9], naturally requires the extension to multi-holed con-
texts. To illustrate this, consider the tree t = c1(t1) which denotes the application
of context c1 to tree t1. An application move in a game will split t into c2(t2),
leading to a case analysis relating c1 and t1 with c2 and t2 involving multi-holed
contexts. For example, when t2 is a subtree of c1, this case is simply expressed
using a two-holed context d( , ) with d(t2, ) = c1 and d( , t1) = c2. Using
multi-holed Context Logic, we are thus able to provide an adjunct-elimination
result which conforms with the analogous results for Separation Logic and Am-
bient Logic. In addition, we believe multi-holed Context Logic presented here
will play an important role in our future development of Context Logic since,
although analysing multi-holed contexts was not necessary for our preliminary
work on tree update, they do seem to be fundamental for other applications such
as reasoning about concurrent tree update.

2 Multi-holed Context Logic for Trees

We work with finite, ordered, unranked trees (strictly speaking, forests) and
contexts, with nodes labelled from a node alphabet Σ ranged over by u, v, w.
Our contexts are simply trees with some of the leaves — the context holes —
uniquely labelled from a hole alphabet X , ranged over by x, y, z. We view trees
as contexts without context holes.

Definition 1 (Multi-holed Tree Contexts). We define the set of multi-holed
tree contexts, CΣ,X , ranged over by c, d, by the grammar

c ::= ε
∣
∣ u[c]

∣
∣ c1 | c2

∣
∣ x
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with the restriction that each hole label, x ∈ X, occurs at most once in the
context c, and subject to the | operator being associative and having identity
ε. We denote the set of hole labels that occur in c by fn(c). We use u as an
abbreviation of u[ε].

Definition 2 (Context Application). We define context application (or con-
text composition) as a set of partial functions identified with the hole labels,
apx : CΣ,X × CΣ,X ⇀ CΣ,X .

apx(c1, c2) =
{

c1[c2/x] if x ∈ fn(c1) and fn(c1) ∩ fn(c2) ⊆ {x}
undefined otherwise

We abbreviate apx(c1, c2) by c1 ©x c2.

This definition of multi-holed context, also studied in [12], seems to be the most
appropriate for our reasoning style, since it allows contexts to be separated easily.
An alternative formulation is to order the holes, rather than uniquely name them,
but this approach does not sit so naturally with separating contexts.

Example 1. The context c1 = u[u[v] | u[u | v]] | v is a tree with no hole labels. It
may be expressed as the application of a single-holed context to another tree,
e.g. c1 = u[x | u[u | v]] | v ©x u[v]. It may also be expressed as a two-holed
context applied to two trees, e.g. c1 = (u[x | u[u | y]] | v ©y v) ©x u[v]. Recall that
the context holes are labelled uniquely by x and y, with the first application
u[x | u[u | y]] | v ©y v declaring that the argument v should be placed in the hole
labelled y. Note that u[x |u[u |x]] | v does not fit our definition of a context since
the hole label x occurs more than once.

Lemma 1. If y = x or y /∈ fn(c1), then c1 ©x (c2 ©y c3) = (c1 ©x c2) ©y c3,
where defined.

Lemma 2. If y �= x, x, y ∈ fn(c1), y /∈ fn(c2), x /∈ fn(c3), then

(c1 ©x c2) ©y c3 = (c1 ©y c3) ©x c2.

We define multi-holed Context Logic for trees, denoted CLm
Tree . For those who

are familiar with Separation Logic and Ambient Logic, this follows the familiar
pattern of extending the propositional connectives of classical logic with struc-
tural connectives for analysing the structure of multi-holed contexts, and specific
connectives for analysing the particular data structure under consideration (in
this case, trees).

Definition 3 (Formulae of CLm
Tree). Let Θ be an alphabet of hole variables

ranged over by α, β, γ. Multi-holed Context Logic formulae, K1, K2, . . . , are de-
fined by the grammar:

K ::= 0
∣
∣ u[K]

∣
∣ K1 | K2

α
∣
∣ K1 ◦α K2

∣
∣ K1 ◦−α K2

∣
∣ K1 −◦α K2

∣
∣ ∃α. K

False
∣
∣ K1 ⇒ K2.
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We use the Boolean connectives ‘False’ and ‘⇒’. The specific connectives ‘0’,
‘u[]’ and ‘|’ express basic structural properties of our tree contexts: a tree con-
text is empty, has top node labelled u, or is the concatenation of two contexts
respectively. The structural connectives ‘α’, ‘◦α’, ‘◦−α’ and ‘−◦α’ describe fun-
damental properties of multi-holed contexts. The connective ‘α’ expresses that
a context is a hole whose label is the value of the variable α. The ‘◦α’ specifies
that a context is a composition of two contexts where the hole being filled is
the value of α. The ‘◦−α’ and ‘−◦α’ are the adjoints of composition: K1 ◦−α K2
expresses that, whenever a context satisfying K1 is α-composed on the left with
the given context, the result satisfies K2; while K1 −◦α K2 expresses that, when-
ever a context satisfying K1 is α-composed on the right with the given context,
the result satisfies K2. In addition, we have existential quantification over hole
labels, which allows us to specify context composition without specific reference
to the hole name.

Definition 4 (Satisfaction relation of CLm
Tree). An environment is a finite

partial function σ : Θ ⇀ X which assigns hole labels to variables. We denote
the empty environment by ∅, and the extension of σ with a new domain element
α with value y by σ[α �→ y]. The satisfaction relation for CLm

Tree is given with
respect to an environment as follows, where x = σα:

c, σ |= 0 ⇐⇒ c = ε

c, σ |= u[K] ⇐⇒ ∃c′. c = u[c′] ∧ c′, σ |= K

c, σ |= K1 | K2 ⇐⇒ ∃c1, c2. c = c1 | c2 ∧ c1, σ |= K1 ∧ c2, σ |= K2

c, σ |= α ⇐⇒ c = x

c, σ |= K1 ◦α K2 ⇐⇒ ∃c1, c2. c = c1 ©x c2 ∧ c1, σ |= K1 ∧ c2, σ |= K2

c, σ |= K1 ◦−α K2 ⇐⇒ ∀c1, c2. c2 = c1 ©x c ∧ c1, σ |= K1 =⇒ c2, σ |= K2

c, σ |= K1 −◦α K2 ⇐⇒ ∀c1, c2. c2 = c ©x c1 ∧ c1, σ |= K1 =⇒ c2, σ |= K2

c, σ |= ∃α. K ⇐⇒ ∃y. c, σ[α �→ y] |= K

c, σ /|= False
c, σ |= K1 ⇒ K2 ⇐⇒ c, σ |= K1 =⇒ c, σ |= K2.

We use two conventions for convenience. Firstly, we adopt Barendregt’s conven-
tion and assume that bound variable names differ from free variable names, and
furthermore differ from elements of the domain of any environment under con-
sideration; if that is not the case, the bound variables may and are assumed to
be renamed. Secondly, we only ever consider satisfaction of a formula when all
of its free variables are assigned values by the environment. We also make use of
standard derived connectives, where appropriate: True, ¬, ∧, ∨, ∀. We assume the
following binding order among the connectives: ¬, |, ◦α, ∧, ∨, {◦−α, −◦α}, ⇒, ∃, ∀,
with no precedence between ◦−α and −◦α.

Example 2. We present a few example formulae

1. The formula u[0] expresses that a tree consists of a single node labelled u.
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Table 1. Ranks of Selected Formulae

Formula Rank

u[0] | (u[0] | u[0]) ∨ ¬0 (4, 0, {u})
∃α. (¬u[v[0] | True]) ◦α β (6, 0, {u, v})

u[v[α] −◦α (w[0] ◦−β v[u[w[0]]])] (5, 2, {u, v, w})

2. The formula ∃α. (True ◦α u[0]) expresses that a context contains tree u[0].
3. The formula (True ◦αα) expresses that the value of α must be in the context.
4. The formula ∃α. (True ◦α α) ∧ (0 −◦α (∃β.True ◦β u[0])) expresses that the

empty tree may be placed into some context hole such that the resulting tree
has some leaf node labelled u.

As in the original Context Logic, we can derive the adjoints of the specific for-
mulae: the adjoint of u[−] is ∀α. (u[α]◦−α −); that of −|K is ∀α. ((α |K)◦−α −);
and that of K | − is ∀α. ((K | α) ◦−α −).

3 Games

We define Ehrenfeucht-Fräıssé style games for CLm
Tree . The games are useful

for our results because they are sound and complete with respect to the logic:
two contexts can be distinguished by a logical formula if and only if Spoiler
has a winning strategy for a corresponding game. Our presentation is similar
to that of [9]. However, we use a more relaxed definition of rank, which simply
distinguishes between the adjunct and non-adjunct moves. The proofs of the
lemmata in this section will appear in the full version of this paper.

We first define the rank of a logical formula, a concept which is also used to
parametrise games. Some examples are given in Table 1.

Definition 5 (Rank). The rank of a formula is a tuple r = (n, s, L) where:

– n is the greatest nesting depth of the non-adjunct, non-Boolean connectives,
i.e. 0, u[K], K1 | K2, α, K1 ◦α K2, ∃α.K;

– s is the greatest nesting depth of the adjunct, non-Boolean connectives, i.e.
K1 ◦−α K2, K1 −◦α K2; and

– L is the subset of Σ consisting of the node labels that occur in the formula.

Lemma 3. For each rank r and finite set of variables V ⊂ Θ, there are finitely
many non-equivalent formulae of rank r whose free variables are in V.

Lemma 4. Let T be a set of context-environment pairs such that, for any T -
discriminated pair1 ((c, σ), (c′, σ′)) there exists a formula K(c,σ),(c′,σ′) of rank
r and free variables in finite set V such that c, σ |= K(c,σ),(c′,σ′) and c′, σ′ /|=
K(c,σ),(c′,σ′). Then T can be defined by a rank-r formula K with free variables
in V.
1 A T -discriminated pair is a pair (a, b) with a ∈ T and b /∈ T , or a /∈ T and b ∈ T .
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We now define the Ehrenfeucht-Fräıssé-style games that we shall use in our main
result. A game state is a tuple, ((c, σ), (c′, σ′), r), where c and c′ are contexts, σ
and σ′ are environments with coincident domains, and r = (n, s, L) is a rank.
The game is played between two players, Spoiler and Duplicator. At each step,
Spoiler selects a move to play, and the two players make choices according to
the rules for that move. After a move is played out, either Spoiler will have won
the game or the game will continue with a new state that has a reduced rank
(either n or s will be reduced by one, depending on the move). If the rank reaches
(0, 0, L), Duplicator wins.

Each move in the game ((c, σ), (c′, σ′), (n, s, L)) begins by Spoiler selecting one
of the pairs (c, σ) or (c′, σ′). We shall call Spoiler’s selection (d, ρ) and the other
(d′, ρ′). Spoiler may only play a particular move when the rank allows it. A move
is also prohibited when Spoiler cannot make the choice stipulated by the move.
The moves are defined as follows:

Moves playable when n > 0 (the non-adjunct moves):
EMP move. Spoiler’s choice is such that d = ε and d′ �= ε. Spoiler wins.
VAR move. Spoiler chooses α ∈ Θ with d = ρα and d′ �= ρ′α. Spoiler wins.
LAB move. Spoiler chooses some u ∈ L and d1 ∈ C such that d = u[d1]. If
d′ = u[d′1] for some d′1 ∈ C, the game continues with ((d1, ρ), (d′1, ρ′), (n−1, s, L)).
Otherwise, Spoiler wins.
PAR move. Spoiler chooses some d1, d2 ∈ C such that d = d1 | d2. Duplicator
chooses some d′1, d′2 ∈ C such that d′ = d′1 | d′2. Spoiler decides whether the game
continues with ((d1, ρ), (d′1, ρ

′), (n − 1, s, L)) or ((d2, ρ), (d′2, ρ
′), (n − 1, s, L)).

CMP move. Spoiler chooses x = ρα for some α, and d1, d2 ∈ C such that d =
d1 ©x d2. Duplicator then chooses d′1, d

′
2 ∈ C such that d′ = d′1 ©́x d′2 for x́ = ρ′α.

Spoiler decides whether the game will continue with ((d1, ρ), (d′1, ρ
′), (n−1, s, L))

or ((d2, ρ), (d′2, ρ′), (n − 1, s, L)).
EXS move. Let α ∈ Θ be some new hole variable (i.e. σα, and equivalently σ′α,
are undefined). Spoiler chooses some x ∈ X . Duplicator chooses an answering
x́ ∈ X . The game then continues with ((d, ρ[α �→ x]), (d′, ρ′[α �→ x́]), (n−1, s, L)).

Moves playable when s > 0 (the adjunct moves):
LEF move. Spoiler chooses x = ρα for some α, and d1, d2 ∈ C such that d2 =
d1 ©x d. Duplicator then chooses d′1, d

′
2 ∈ C such that d′2 = d′1 ©́x d′ for x́ = ρ′α.

Spoiler decides whether the game will continue with ((d1, ρ), (d′1, ρ
′), (n, s−1, L))

or ((d2, ρ), (d′2, ρ′), (n, s − 1, L)).
RIG move. Spoiler chooses x = ρα for some α, and d1, d2 ∈ C such that d2 =
d ©x d1. Duplicator then chooses d′1, d

′
2 ∈ C such that d′2 = d′ ©́x d′1 for x́ =

ρ′α. If Duplicator cannot make such a choice, Spoiler wins. Otherwise, Spoiler
decides whether the game will continue with ((d1, ρ), (d′1, ρ

′), (n, s − 1, L)) or
((d2, ρ), (d′2, ρ

′), (n, s − 1, L)).
Of more interest than the outcome of an individual run of a game is the ques-

tion of which player has a winning strategy for that game: Spoiler or Duplicator
is capable of ensuring his or her victory regardless of how the other plays. If
Spoiler has a winning strategy, we say ((c, σ), (c′, σ′), r) ∈ SW . Otherwise, we
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say ((c, σ), (c′, σ′), r) ∈ DW . The following useful properties are direct conse-
quences of the definitions.

Proposition 1 (Downward Closure). If ((c, σ), (c′, σ′), (n, s, L)) ∈ DW then
((c, σ), (c′, σ′), (n′, s′, L′)) ∈ DW for any n′ ≤ n, s′ ≤ s and L′ ⊆ L.

Proposition 2 (Downward Closure for Environments). If ((c, σ[α �→ x]),
(c′, σ′[α �→ x́]), r) ∈ DW then ((c, σ), (c′, σ′), r) ∈ DW .

At each stage, Spoiler is trying to show that the two contexts are different,
while Duplicator is trying to show that they are similar enough that Spoiler
cannot identify a difference. The game moves correspond closely with the (non-
Boolean) connectives of the logic. For instance, the RIG move corresponds to
−◦α connective: it speaks of applying the given context to a new one and then
reasoning about the result or the new context. If Spoiler wins on playing that
move, it means that the two (current) trees are differentiated by the formula
True −◦α False — one tree has a α-labelled hole (so the formula is not satisfied)
while the other does not (so the formula is satisfied trivially).

The reason for this correspondence is that formulae, of rank r, which distin-
guish between two contexts, will correspond to winning strategies for Spoiler for
the game of rank r on those two contexts. This is formalised in the soundness
and completeness results which we state.

Lemma 5 (Game Soundness). For c, c′ ∈ C and domain-coincident environ-
ments σ, σ′, if there is a formula K of rank r such that c, σ |= K and c′, σ′ /|= K,
then Spoiler has a winning strategy for the game ((c, σ), (c′, σ′), r).

Lemma 6 (Game Completeness). If Spoiler has a winning strategy for the
game ((c, σ), (c′, σ′), r) then there exists a formula, K, of rank at most r such
that c, σ |= K and c′, σ′ /|= K.

The following two lemmata are useful for checking structural properties. The
first establishes a relationship between the hole labels in two contexts, which
provides a convenient way of checking that composition is well defined. The
second establishes a structural similarity through games. Both are proven by
showing how Spoiler would have a winning strategy for the game in a certain
number of moves (hence the bounds on n) if the desired property did not hold.

Lemma 7. If ((c, σ), (c′, σ′), (n, s, L)) ∈ DW with n ≥ 2, then, for x = σα,
x́ = σ′α,

x ∈ fn(c) ⇐⇒ x́ ∈ fn(c′)

Lemma 8. Suppose that ((c, σ), (c′, σ′), (n, s, L)) ∈ DW with n ≥ 2. Then if
c = c̄ | x for x = σα, c̄ ∈ C then c′ = c̄′ | x́ for x́ = σ′α and some c̄′ ∈ C.
Similarly, if c = x | c̄ then c′ = x́ | c̄′.

The next lemma essentially gives two sufficient conditions on Duplicator’s re-
sponse to the EXS move in order for it to give a winning strategy for her. The
key part is that if Spoiler introduces a fresh hole label, Duplicator may respond
by introducing any fresh hole label. The restriction on n is used to establish
freshness for the second of the cases.
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Lemma 9 (Interchangablity of Fresh Labels). If ((c, σ), (c′, σ′), (n, s, L)) ∈
DW with n ≥ 3, then ((c, σ[α �→ x]), (c′, σ′[α �→ x́]), (n−1, s, L)) ∈ DW if either
x = σβ and x́ = σ′β, or x /∈ fn(c) ∪ range(σ) and x́ /∈ fn(c′) ∪ range(σ′).

4 Adjunct Elimination

We now have the background required to prove adjunct elimination for CLm
Tree .

Proposition 3 is the key, most complicated result. It states that, with no adjunct
moves, a winning strategy for the composition of contexts follows from winning
strategies for its components. A consequence is that if Duplicator has a winning
strategy with adjunct moves, then she has a winning strategy without adjunct
moves, since adjunct moves simply perform context composition. The final the-
orem then translates this move elimination result into an adjunct elimination
result for the formulae of the logic.

Proposition 3 (One-step move elimination). For all ranks of the form r =
(n, 0, L), for all c1, c

′
1, c2, c

′
2 ∈ C, for all domain-coincident environments σ, σ′,

if

((c1, σ), (c′1, σ
′), (3n, 0, L)) ∈ DW (1)

((c2, σ), (c′2, σ
′), (3n, 0, L)) ∈ DW (2)

then for all α ∈ dom(σ) with x = σα, x́ = σ′α: if c = c1 ©x c2 and c′ = c′1 ©́x c′2
are defined then

((c, σ), (c′, σ′), r) ∈ DW . (3)

Proof. The proof is by induction on n and by cases on Spoiler’s choice of move
in the game of (3). The base case, n = 0, is trivial, since Spoiler can never win a
game of such a rank. We assume as the inductive hypothesis that the proposition
holds for lesser values of n. Assume without loss of generality that Spoiler selects
(c, σ) for his move.

Throughout the proof, we consider strategies that Spoiler might adopt in the
games of (1) and (2). Knowing that Duplicator has a winning strategy in these
games, we are able to establish properties, usually concerning the structure of
c′1 and c′2, based on her strategy, and, often using the inductive hypothesis, use
these to construct a winning response for Duplicator to Spoiler’s move on (3).

EMP move. In order for Spoiler to be able to play this move, it must be the
case that c = ε and c′ �= ε. Thus c1 = x and c2 = ε. Hence c′1 = x́ and c′2 = ε,
so c′ = ε. Therefore, Spoiler cannot play this move after all.

LAB move. Suppose that Spoiler plays this move picking u ∈ L and d ∈ C
with c = u[d]. Then there are three cases of the possible structure of c1 and c2:
1. c1 = u[d1] and d = d1 ©x c2; 2. c1 = u[d] | x and c2 = ε; 3. c1 = x | u[d] and
c2 = ε.

In the first of these cases, Spoiler could play the LAB move on the game of
(1), with label u and context d1. Hence, by (1), c′1 = u[d′1] with

((d1, σ), (d′1, σ
′), (3n − 1, 0, L)) ∈ DW . (4)
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By downward closure and the inductive hypothesis, noting that d′1 ©́x c′2 is
defined, since fn(d′1) = fn(c′1) and c′1 ©́x c′2 is defined, it follows that

((d1 ©x c2, σ), (d′1 ©́x c′2, σ
′), (n − 1, 0, L)) ∈ DW . (5)

By structural considerations, c′ = u[d′] where d′ = d′1 ©́x c′2. Thus Duplicator has
a winning strategy when Spoiler plays this way.

In the second of the cases, c′2 = ε by (2). Further, Spoiler could play the PAR
move on (1) so we have c′1 = d′1 | d′2 with

((u[d], σ), (d′1, σ
′), (3n − 1, 0, L)) ∈ DW (6)

((x, σ), (d′2, σ
′), (3n − 1, 0, L)) ∈ DW . (7)

Since 3n − 1 ≥ 1, by (7) we know d′2 = x́. Spoiler could play the LAB move on
the former, using u as the label, so that we must have d′1 = u[d′] with

((d, σ), (d′, σ′), (3n − 2, 0, L)) ∈ DW . (8)

We now have c′ = (u[d′] | x́) ©́x ε = u[d′]. Hence, Duplicator can respond and the
game continues as ((d, σ), (d′, σ′), (n−1, 0, L)) and, by downward closure on (8),
Duplicator has a winning strategy. The third case is essentially the same as this.

In each of the three cases, Duplicator has a winning strategy, so she has a
winning strategy if Spoiler plays the LAB move.

PAR move. In this move, Spoiler splits c = d1 | d2 in one of three ways:

1. Spoiler splits in c1 to the left of the x. That is, c1 = d1 | d3, d2 = d3 ©x c2.
2. Spoiler splits in c1 to the right of the x. This case is essentially the same as

the first, so we shall not consider it.
3. Spoiler splits in c2. In order for this case to be applicable, the x must occur

at the top level of c1, so c1 = d̄3 | x | d̄4, d1 = d̄3 | d5 and d2 = d6 | d̄4 with

c1 ©x c2 = d1 | d2 = (d3 ©x d5) | (d4 ©x d6)
d3 = d̄3 | x d4 = x | d̄4

c1 = d3 ©x d4 = (d̄3 | x) ©x (x | d̄4) c2 = d5 | d6.

In the first case, c1 ©x c2 = (d1 | d3) ©x c2 = d1 | (d3 ©x c2). As Spoiler could
play the PAR move in the game in (1), we know that c′1 = d′1 | d′3 such that

((d1, σ), (d′1, σ
′), (3n − 1, 0, L)) ∈ DW (9)

((d3, σ), (d′3, σ
′), (3n − 1, 0, L)) ∈ DW . (10)

Note that fn(d′3) ⊆ fn(c′1) and x́ ∈ fn(d′3) by Lemma 7 (since x ∈ fn(d3)),
so d′2 = d′3 ©́x c′2 is defined. By downward closure on (10) and (2) and by the
inductive hypothesis,

((d3 ©x c2, σ), (d′3 ©́x c′2, σ
′), (n − 1, 0, L)) ∈ DW . (11)
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Observe that c′ = c′1 ©́x c′2 = (d′1 | d′3) ©́x c′2 = d′1 | (d′3 ©́x c′2) = d′1 | d′2. Thus
responding with d′1 and d′2 gives Duplicator a winning strategy in this case, by
downward closure on (9) and by (11).

In the third case, Spoiler could play the CMP move on the game in (1), so
c′1 = d′3 ©́x d′4 with

((d3, σ), (d′3, σ
′), (3n − 1, 0, L)) ∈ DW (12)

((d4, σ), (d′4, σ
′), (3n − 1, 0, L)) ∈ DW . (13)

Also, Spoiler could play the PAR move on the game in (2), so c′2 = d′5 | d′6 with

((d5, σ), (d′5, σ
′), (3n − 1, 0, L)) ∈ DW (14)

((d6, σ), (d′6, σ
′), (3n − 1, 0, L)) ∈ DW . (15)

Since c′1 = d′3 ©́x d′4 and c′2 = d′5 | d′6, it follows that that x́ ∈ fn(d′3) ⊆ fn(c′1),
x́ ∈ fn(d′4) ⊆ fn(c′1), fn(d′5) ⊆ fn(c′2) and fn(d′6) ⊆ fn(c′2). Hence d′1 = d′3 ©́x
d′5 and d′2 = d′4 ©́x d′6 are well defined. By downward closure and the inductive
hypothesis on (12) and (14), and on (13) and (15), we get

((d3 ©x d5, σ), (d′3 ©́x d′5, σ
′), (n − 1, 0, L)) ∈ DW (16)

((d4 ©x d6, σ), (d′4 ©́x d′6, σ
′), (n − 1, 0, L)) ∈ DW . (17)

It remains to show that c′ = d′1 | d′2. For this to be the case, it is sufficient that
d′3 = d̄′3 | x́ and d′4 = x́ | d̄′4, which both hold by applying Lemma 8 to (12) and
(13). Thus, by structural considerations, c′ = c′1 ©́x c′2 = (d′3 ©́x d′4) ©́x (d′5 |d′6) =
((d̄′3 | x́) ©́x (x́ | d̄′4)) ©́x (d′5 | d′6) = d̄′3 | d′5 | d′6 | d̄′4 = (d′3 ©́x d′5) | (d′4 ©́x d′6) = d′1 | d′2.
Hence, by (16) and (17), Duplicator has a winning strategy if she responds by
splitting c′ as d′1 | d′2.

Thus, Duplicator has a winning strategy whenever Spoiler plays the PAR move.

CMP move. In this move, Spoiler chooses y = σβ (let ý = σ′β), and splits
c1 ©x c2 as d1 ©y d2. Note that Spoiler cannot play the CMP move as the final
move of a winning strategy, so we may therefore assume that n ≥ 2. (If n = 1,
Duplicator would have a winning strategy by splitting c′ = ý ©́y c′, for instance.)

There are four cases for how Spoiler can make the splitting c = d1 ©y d2. We
shall consider each in turn.

Case 1: Spoiler splits inside c2, as

c1 ©x c2 = c1 ©x (d3 ©y d2) = (c1 ©x d3) ©y d2 = d1 ©y d2

c2 = d3 ©y d2 d1 = c1 ©x d3.

Spoiler would be able to play the CMP move on the game in (2), so Duplicator
must be able to split c′2 as d′3 ©́y d′2 such that

((d3, σ), (d′3, σ
′), (3n − 1, 0, L)) ∈ DW (18)

((d2, σ), (d′2, σ
′), (3n − 1, 0, L)) ∈ DW . (19)
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Note that fn(d′3) ⊆ fn(c′2)∪{ý}. Also, by Lemma 7, ý /∈ fn(c′1) since y /∈ fn(c1).
Hence d′1 = c′1 ©́x d′3 is well defined. By downward closure on (1) and (18) and
by the inductive hypothesis,

((c1 ©x d3, σ), (c′2 ©́x d′3, σ
′), (n − 1, 0, L)) ∈ DW . (20)

By Lemma 1, since ý /∈ fn(c′1), c′1 ©́x c′2 = c′1 ©́x (d′3 ©́y d′2) = (c′1 ©́x d′3) ©́y
d′2 = d′1 ©́y d′2. Hence, by (20) and by downward closure on (19), Duplicator has
a winning strategy if she splits c′ as d′1 ©́y d′2.

Case 2: Spoiler splits outside c2, including all of c2 itself:

c1 ©x c2 = (d1 ©y d3) ©x c2 = d1 ©y (d3 ©x c2) = d1 ©y d2

c1 = d1 ©y d3 d2 = d3 ©x c2.

Spoiler would be able to play the CMP move on the game in (1), so Duplicator
must be able to split c′1 as d′1 ©́y d′3 such that

((d1, σ), (d′1, σ
′), (3n − 1, 0, L)) ∈ DW (21)

((d3, σ), (d′3, σ
′), (3n − 1, 0, L)) ∈ DW . (22)

Note that fn(d′3) ⊆ fn(c′1) and that, by Lemma 7, x́ ∈ fn(d′3) since x ∈ fn(d3).
Thus d′2 = d′3 ©́x c′2 is well defined. By downward closure on (22) and (1) and by
the inductive hypothesis,

((d3 ©x c2, σ), (d′3 ©́x c′2, σ
′), (n − 1, 0, L)) ∈ DW . (23)

By Lemma 1, since x́ /∈ fn(d′1) (since x́ ∈ fn(d′3) and c′1 = d′1 ©́y d′3), c′1 ©́x c′2 =
(d′1 ©́y d′3) ©́x c′2 = d′1 ©́y (d′3 ©́x c′2) = d′1 ©́y d′2. Hence, by downward closure on
(21) and by (23), Duplicator has a winning strategy if she splits c′ as d′1 ©́y d′2.

Case 3: Spoiler splits part of c1 and part of c2:

c1 = d3 ©x d4 c2 = d5 ©y d6 d1 = d3 ©x d5 d2 = d4 ©x d6

with either: d4 = d̄4 | x and d5 = y | d̄5; or d4 = x | d̄4 and d5 = d̄5 | y. In the
former, for instance, we have

c1 ©x c2 = (d3 ©x d4) ©x (d5 ©y d6) = (d3 ©x (d̄4 | x)) ©x ((y | d̄5) ©y d6)
= d3 ©x (d̄4 | d6 | d̄5) = (d3 ©x (y | d̄5)) ©y ((d̄4 | x) ©x d6)
= (d3 ©x d5) ©y (d4 ©x d6) = d1 ©y d2.

Spoiler could play the CMP move on (1), so c′1 = d′3 ©́x d′4 such that

((d3, σ), (d′3, σ
′), (3n − 1, 0, L)) ∈ DW (24)

((d4, σ), (d′4, σ
′), (3n − 1, 0, L)) ∈ DW . (25)

Similarly, from (2), we have that c′2 = d′5 ©́y d′6 such that

((d5, σ), (d′5, σ
′), (3n − 1, 0, L)) ∈ DW (26)

((d6, σ), (d′6, σ
′), (3n − 1, 0, L)) ∈ DW . (27)
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Note that x́ ∈ fn(d′3) ⊆ fn(c′1) and fn(d′5) ⊆ fn(c′2) ∪ {ý}. Furthermore, by
Lemma 7, ý /∈ fn(d′3), since y /∈ fn(d3). Thus d′1 = d′3 ©́x d′5 is well defined.
Similarly, x́ ∈ fn(d′4) ⊆ fn(c′1) and fn(d′6) ⊆ fn(c′2), so d′2 = d′4 ©́x d′6 is well
defined. Hence, by downward closure on (24), (26), (25) and (27), and by the
inductive hypothesis, we have

((d3 ©x d5, σ), (d′3 ©́x d′5, σ
′), (n − 1, 0, L)) ∈ DW (28)

((d4 ©x d6, σ), (d′4 ©́x d′6, σ
′), (n − 1, 0, L)) ∈ DW . (29)

It remains to show that c′1 ©́x c′2 = d′1 ©́y d′2. By Lemma 1, c′1 ©́x c′2 = (d′3 ©́x
d′4) ©́x (d′5 ©́y d′6) = d′3 ©́x (d′4 ©́x (d′5 ©́y d′6)). Now suppose that d4 = d̄4 | x and
d5 = y | d̄5. By Lemma 8, we must have that d′4 = d̄′4 | x́ and d′5 = ý | d̄′5. Thus,
d′4 ©́x (d′5 ©́y d′6) = d̄′4 | d′6 | d̄′5 = d′5 ©́y (d′4 ©́x d′6). In the alternative case (where
d4 = x | d̄4 and d5 = d̄5 | y) the analogous result can be deduced. Hence, and
by Lemma 1 (recalling that ý /∈ fn(d′3)), c′1 ©́x c′2 = d′3 ©́x (d′5 ©́y (d′4 ©́x d′6)) =
(d′3 ©́x d′5) ©́y (d′4 ©́x d′6) = d′1 ©́y d′2, as required. We can see that Duplicator
could respond to Spoiler’s move by splitting c′ as d′1 ©́y d′2 and that, by (28) and
(29), this gives her a winning strategy.

Case 4 : Spoiler splits part of c1 disjoint from c2. There are two subcases on
Spoiler’s choice of y that we shall consider separately: (a) y �= x and (b) y = x.

(a) y �= x:

c1 ©x c2 = (d3 ©y d2) ©x c2 = (d3 ©x c2) ©y d2 = d1 ©y d2

c1 = d3 ©y d2 d1 = d3 ©x c2

Spoiler would be able to play the CMP move on the game in (1), so we know
that c′1 = d′3 ©́y d′2 for some d′3, d

′
2 such that

((d3, σ), (d′3, σ
′), (3n − 1, 0, L)) ∈ DW (30)

((d2, σ), (d′2, σ
′), (3n − 1, 0, L)) ∈ DW . (31)

Note that fn(d′3) ⊆ fn(c′1)∪{ý}. Also, by Lemma 7, x́ ∈ fn(d′3) and ý /∈ fn(c′2).
Thus d′1 = d′3 ©́x c′2 is well defined. By downward closure on (30) and (2), and
by the inductive hypothesis,

((d3 ©x c2, σ), (d′3 ©́x c′2, σ
′), (n − 1, 0, L)) ∈ DW . (32)

By Lemma 2, since x́ ∈ fn(d′3) and ý /∈ fn(c′2), (d′3 ©́y d′2) ©́x c′2 = (d′3 ©́x c′2) ©́y
d′2. Hence, by (32) and downward closure on (31), we know that Duplicator has
a winning strategy by splitting c′ as d′1 ©́y d′2.

(b) y = x: For some z /∈ fn(c1) ∪ fn(c2) ∪ range(σ),

c = ((d3 ©x d2) ©z x) ©x c2 = (d3 ©x d2) ©z c2 = (d3 ©z c2) ©x d2 = d1 ©x d2

c1 = c̄1 ©z x c̄1 = d3 ©x d2 d1 = d3 ©z c2.

By Lemma 9, for some ź /∈ fn(c′1) ∪ fn(c′2) ∪ range(σ′),

((c1, σ[γ �→ z]), (c′1, σ
′[γ �→ ź]), (3n − 1, 0, L)) ∈ DW (33)

((c2, σ[γ �→ z]), (c′2, σ
′[γ �→ ź]), (3n − 1, 0, L)) ∈ DW . (34)
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Spoiler could play the CMP move on the game in (33), splitting c1 as c̄1 ©z x, so
c′1 = c̄′1 ©́z ĉ′1 such that

((c̄1, σ[γ �→ z]), (c̄′1, σ
′[γ �→ ź]), (3n − 2, 0, L)) ∈ DW (35)

((x, σ[γ �→ z]), (ĉ′1, σ
′[γ �→ ź]), (3n − 2, 0, L)) ∈ DW . (36)

Since 3n − 2 ≥ 1, (36) implies that ĉ′1 = x́. Spoiler could then play the CMP
move on the game in (35), splitting c̄1 as d3 ©x d2, so c̄′1 = d′3 ©́x d′2 such that

((d3, σ[γ �→ z]), (d′3, σ
′[γ �→ ź]), (3n − 3, 0, L)) ∈ DW (37)

((d2, σ[γ �→ z]), (d′2, σ
′[γ �→ ź]), (3n − 3, 0, L)) ∈ DW . (38)

By construction and by Lemma 7 (recalling that n ≥ 2), {x́, ź} ⊆ fn(d′3) ⊆
(fn(c′) \ fn(c′2)) ∪ {x́, ź}. Further, by Lemma 7 and by definition, neither x́ nor
ź occurs in c′2. Hence d′1 = d′3 ©́z c′2 is well defined. Now we may apply the
inductive hypothesis, using (37) and downward closure on (34), to obtain

((d3 ©z c2, σ[γ �→ z]), (d′3 ©́z c′2, σ[γ �→ ź]), (n − 1, 0, L)) ∈ DW . (39)

By (environment) downward closure on (39) and (38), we have

((d1, σ), (d′1, σ
′), (n − 1, 0, L)) ∈ DW (40)

((d2, σ), (d′2, σ
′), (n − 1, 0, L)) ∈ DW . (41)

Note that, by construction and by Lemma 7, x́, ź /∈ fn(d′2) and x́ /∈ fn(c′2).
Thus, by structural considerations and Lemma 2, c′ = ((d′3 ©́x d′2) ©́z x́) ©́x c′2 =
(d′3 ©́x d′2) ©́z c′2 = (d′3 ©́z c′2) ©́x d′2 = d′1 ©́x d′2. Hence Duplicator could respond
by splitting c′ as d′1 ©́x d′2 and by (40) and (41) that gives her a winning strategy.

We have considered all of the possible cases for how Spoiler could play CMP
move, and shown that Duplicator has a winning response in each. Therefore,
Duplicator has a winning strategy if Spoiler plays the CMP move.

EXS move. In playing this move, Spoiler chooses to instantiate β as y, say.
If n = 1, any choice gives Duplicator a winning strategy, so assume n ≥ 2.
We consider four mutually exclusive cases for Spoiler’s choice: 1. y ∈ range(σ);
2. y ∈ fn(c1) but y /∈ range(σ); 3. y ∈ fn(c2) but y /∈ range(σ); and 4. y is
fresh (y /∈ fn(c1) ∪ fn(c2) ∪ range(σ)).

In case 1, y = σα for some α, and Duplicator can respond with ý = σ′α. By
the first case of Lemma 9, we know

((c1, σ[β �→ y]), (c′1, σ
′[β �→ ý]), (3n − 1, 0, L)) ∈ DW (42)

((c2, σ[β �→ y]), (c′2, σ
′[β �→ ý]), (3n − 1, 0, L)) ∈ DW (43)

and so, by downward closure and the inductive hypothesis,

((c, σ[β �→ y]), (c′, σ′[β �→ ý]), (n − 1, 0, L)) ∈ DW . (44)

Hence choosing ý gives Duplicator a winning strategy in this case.
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In case 2, note that Spoiler could play the EXS move on the game in (1). Let
ý be Duplicator’s response for her winning strategy:

((c1, σ[β �→ y]), (c′1, σ
′[β �→ ý]), (3n − 1, 0, L)) ∈ DW . (45)

Since y /∈ range(σ) and 3n − 2 ≥ 2, ý /∈ range(σ′).2 Also, since y ∈ fn(c1)
and 3n − 2 ≥ 2, ý ∈ fn(c′1) by Lemma 7. Thus, y /∈ fn(c2) ∪ range(σ) and
ý /∈ fn(c′2) ∪ range(σ′), and hence, by the second case of Lemma 9,

((c2, σ[β �→ y]), (c′2, σ
′[β �→ ý]), (3n − 1, 0, L)) ∈ DW . (46)

So by downward closure and the inductive hypothesis we have

((c, σ[β �→ y]), (c, σ′[β �→ ý]), (n − 1, 0, L)) ∈ DW . (47)

Hence choosing ý gives Duplicator a winning strategy in this case.
Case 3 is essentially the same as case 2, except that Duplicator’s choice, ý

is derived from her winning response for the game in (2). Case 4 admits the
same proof as case 2 (or indeed case 3). Having examined each case, we see that
Duplicator has a winning response to Spoiler playing the EXS move.

Since we have now examined each possible move Spoiler could make in the
game of (3) and concluded that Duplicator has a winning strategy in each case,
we have shown that (3) holds. ��

Corollary 1 (Multi-step Move Elimination). For all ranks r = (n, s, L),
for all c, c′ ∈ C and for all domain-coincident environments σ, σ′, if

((c, σ), (c′, σ′), (3s(n + 1), 0, L)) ∈ DW (48)

then

((c, σ), (c′, σ′), (n, s, L)) ∈ DW . (49)

Proof (Sketch3). The proof is by induction on the number of adjunct moves, s.
We suppose that Spoiler is trying to find a winning strategy for the game in (49)
and see that the moves he makes in that game can be replicated on the game
in (48) until he first plays one of the adjunct moves. When he plays his first
adjunct move, he introduces a new context to either apply around one of the
contexts in the current state, or to apply the current context to.

We find a response for Duplicator by renaming the holes of Spoiler’s choice
so that the application is defined for her side of the game and so that she has
a winning strategy if Spoiler chooses to continue with these newly introduced
contexts. Proposition 3 shows that Duplicator has a winning strategy for the com-
posed pair with an adjunct-free rank. Now, we can use the inductive hypothesis
to deduce that Duplicator has a winning strategy for the game with s−1 adjunct
moves, as required. ��
2 To see this, suppose that Spoiler plays the CMP move and splits c1 = y ©y c1 (having

played the EXS move as described). Duplicator could not have a winning strategy
since there is some γ with ý = σ′γ but y �= σγ.

3 The full proof will appear in the full version of this paper.
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These game results are now translated to results in the logic in the following
theorem. The proof is not difficult (it depends on Lemma 4), and will appear in
the full version of this paper.

Theorem 1 (Adjunct Elimination). If r = (n, s, L) and r′ = (3s(n + 1), 0,
L) then, for any formula of rank r, there exists an equivalent formula of rank r′.

5 Conclusions

We have introduced multi-holed Context Logic for trees (CLm
Tree) and proved

adjunct elimination. Our initial motivation was simply to understand if Lozes’
results for Separation Logic and Ambient Logic extended to the original formu-
lation of Context Logic. When we observed that this was not the case, this work
turned from being a routine adaptation of previous results into a fundamental
investigation of a natural version of Context Logic in which the adjoints could
be eliminated.

Many open problems remain. We studied multi-holed Context Logic initially
because we were unable to prove adjunct elimination for single-holed Context
Logic with composition. We believe the result also holds for the single-holed
case, but have not been able to prove it with current techniques. A further
question, which would imply this result, is whether, in the absence of adjoints,
multi-holed and and single-holed Context Logic with composition have equally
expressive satisfaction relations on closed formulae for analysing trees (contexts
without holes). This result appears to be difficult to prove.

Such results about expressivity on closed formulae form an important part
of our investigation into the true nature of Context Logic for trees, not only
because they provide a test on what is a natural formulation of Context Logic
but also because they allow us to link our analysis of structured data (in this case
trees) with traditional results about regular languages. For example, Heuter [12]
has shown that a regular expression language, similar to multi-holed Context
logic applied to ranked trees and without structural adjoints, is as expressive as
First-order Logic (FOL) on ranked trees. Recently, Bojańczyk [13] has proved
that a language equivalent to single-holed Context Logic for unranked trees, with
composition but no adjoints, corresponds to FOL on forests. These results make
use of the rich theory of formal languages, such as automata theory, which we
hope to apply to CLm

Tree to obtain a complete understanding of its place in the
study of forest-regular languages.

An intriguing question (for which we thank one of the anonymous referees) is
to what extent the adjoints permit properties of trees to be expressed succinctly.
The results in this paper give an upper bound: given a formula with adjoints, a
corresponding adjunct-free formula has maximum nesting depth of non-Boolean
connectives that is exponential in the number of adjoint connectives of the orig-
inal formula. The total number of connectives might still be large, although by
Lemma 3 we know it is bounded. By refining our methods and studying exam-
ples, we expect to find closer bounds. It is not clear whether this will lead to
tight bounds on how much more succinct formulae with adjoints can be.
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Finally, we should mention Calcagno, Gardner and Zarfaty’s recent work on
parametric expressivity [7], which compares logics on open formulae containing
propositional variables. Despite our expressivity results on closed formulae in
this paper, stating that the adjoints can be eliminated, we intuitively know that
adjunct connectives are important for expressing weakest preconditions for local
Hoare reasoning using Separation Logic and Context Logic, and for expressing
security properties in Ambient Logic. This intuition is formally captured in [7]
where it is shown that the adjoints cannot be eliminated on open formulae.
For our style of logical reasoning, both types of expressivity result seem to be
important: the expressivity on open formulae captures our intuition that the
structural connectives are important for modular reasoning; and the expressivity
on closed formulae allows us to compare our reasoning about structured data
with the literature on regular languages.
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Abstract. This paper shows the equivalence for provability between
two infinitary systems with the ω-rule. One system is the positive one-
sided fragment of Peano arithmetic without Exchange rules. The other
system is two-sided Heyting Arithmetic plus the law of Excluded Middle
for Σ0

1 -formulas, and it includes Exchange. Thus, the logic underlying
positive Arithmetic without Exchange, a substructural logic, is shown to
be a logic intermediate between Intuitionism and Classical Logic, hence
a subclassical logic. As a corollary, the authors derive the equivalence for
positive formulas among provability in those two systems and validity
in two apparently unrelated semantics: Limit Computable Mathematics,
and Game Semantics with 1-backtracking.

1 Introduction

Formal systems based on substructural logics have been intensively studied and
many interesting results have been achieved. However, the interplay between
classical logic without Exchange rules and arithmetic has not been fully studied
yet. Let PA+

inf−Exch be the one-sided Peano Arithmetic with the ω-rule, without
implication and without right-Exchange. PA+

inf − Exch is an arithmetical system
whose underlying logic is a substructural logic. PA+

inf − Exch is interesting of its
own right, because it has a nice effective interpretation in term of games (§2).
What we already know about PA+

inf − Exch is that it has a sound and complete
interpretation in term of Tarski games with 1-backtracking [4].

Let EM1 be the law of excluded middle for Σ0
1 -formulas. The main result of this

paper is the equivalence of provability between PA+
inf−Exch and HAinf+EM1. This

latter is Heyting arithmetic HAinf extended with EM1. Note that HAinf includes
left-Exchange rule, which is part of intuitionistic logic. Thus, the logic underly-
ing PA+

inf − Exch is a subclassical logic in which, because of the equivalence with
HAinf + EM1, all usual intuitionistic rules are conditionally derivable, including,
for instance, the commutativity rule for disjunction. Derivability of the commuta-
tivity rule is a bit surprising, because in PA+

inf −Exch we dropped right-Exchange,
the only Exchange rule we can have in a one-sided sequent calculus.
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We now discuss the motivations for our paper. The first motivation is rooted
in the study of the computational content of proofs. This content was discovered
in logic by the Realizability interpretation [11], and first translated into com-
puter science by Curry-Howard isomorphism in [10]. This result showed that a
proof in intuitionistic logic has a recursive function as its computational con-
tent. Later this relationship was extended to classical logic by Gödel’s double
negation interpretation, and it was shown that a proof in classical logic contains
a program in lambda-calculus with continuation [7].

It is not simple, however, to characterize the computational content for all
proofs of classical arithmetic. The papers [12,1,3] obtained, instead, nice charac-
terizations for proofs which use only weak classical principles like EM1. One of
our aims is to study of the computational content of classical proofs including
EM1 as only classical principle. Therefore we are interested in finding a sequent
calculus exactly formalizing the set of proofs of HAinf + EM1. This paper solves
this problem by showing that PA+

inf − Exch is equivalent to HAinf + EM1. The
interest of PA+

inf − Exch is that we can interpret the constructive content of its
proofs through a game interpretation (§2) which simplifies Game Semantics of
Coquand for Classical Arithmetic [6].

Another motivation for our paper comes from the study of Limit Computable
Mathematics (from now on, LCM) by Hayashi and Nakata ([8], §6). LCM is
a Realizability model with Δ0

2-partial functions as realizers. It is defined in the
same way as Kleene’s Realizability model with partial recursive functions, except
that LCM has Δ0

2-partial functions as realizers, while Kleene’s model has partial
recursive functions as realizers. LCM gives a model of the notion of incremental
learning [9]. Our goal is to describe the logical principles underlying LCM, in
order to better understand the notion of learning in the limit. This is no easy
task, because we know that LCM validates not only EM1, but also the 2-Markov
principle, i.e. the subclassical principle ∀x.¬¬P (x) → P (x), for any Σ0

2 -predicate
P . This principle was proved stronger than EM1 in [1]. Another puzzling fact is
that LCM validates a principle in contradiction with classical arithmetic, such
as Δ0

2-choice. This latter principle says that if ∀x.∃y.Q(x, y), then ∀x.Q(x, f(x))
for some integer f coding some Δ0

2-map. Classical arithmetic, instead, proves
that there a true statement ∀x.∃y.Q(x, y) such that ∀x.Q(x, f(x)) does not hold
for any integer coding f of some Δ0

2-map.
Our idea is to restrict the study of LCM to positive (i.e., implication-free)

formulas, as a preliminary step. Positive formulas are already an expressive frag-
ment for LCM. Indeed, for any Σ0

1 -formulas A, B, if A⊥(x) is the de Morgan’s
dual of A(x), then EM1 implies (A → B) ↔ (A⊥(x) ∨ B). Therefore in LCM
we can express the implication for Σ0

1 -formulas using only positive formulas.
We could expect that LCM validates more positive formulas than EM1, because
LCM includes 2-Markov and Δ0

2-choice, two principles which are underivable
from EM1 in the language with implication. However, this is not the case. A
corollary of our main result is that positive formulas valid in LCM are exactly
the positive formulas derivable in HAinf + EM1. This is the first logical charac-
terization known for a non-trivial subset of LCM.
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The last motivation for our paper comes from Game Theory. Several papers
have intensively studied relationship between game semantics and logical systems
[6,5]. [5] discussed a sound and complete game semantics for HAinf. Another
corollary of our main result is the equivalence between the set of positive formulas
valid in game semantic with 1-backtracking, and the set of positive formulas
provable in HAinf + EM1.

To prove the direction of our main result from PA+
inf−Exch to HAinf+EM1, we

will use an idea of flag formulas (§4). A flag formula Si is a Π0
1 formula assigned

to each formula Ai in a sequent A1, . . . , An in PA+
inf − Exch. Si means that the

sequent A1, . . . , An is derivable in PA+
inf − Exch by using only sequents of length

equal to or greater than i.
To achieve the other direction, from HAinf +EM1 to PA+

inf −Exch, we first will
give a proof of validity of HAinf + EM1 in LCM. Then we remark that validity
of positive formulas in LCM is equivalent to validity in game semantics with
1-backtracking [2]. The latter is equivalent to provability in PA+

inf −Exch [4]. We
conclude the direction from HAinf + EM1 to PA+

inf − Exch.
This is the plan of the paper. §2 defines the positive fragment PA+

inf − Exch
of Peano arithmetic without right-Exchange rules, sketches an interpretation of
the constructive content of proofs of PA+

inf − Exch using games, and includes
an example of a proof in PA+

inf − Exch. §3 gives an informal interpretation of
PA+

inf − Exch. §4 gives Heyting arithmetic HAinf with ω-rules, and the law EM1
of excluded middle for Σ0

1 formulas. §5 proves the direction from PA+
inf − Exch

to HAinf + EM1. The other direction is proved in §6. §7 shows the results we
claimed about LCM and 1-backtracking games.

2 PA+
inf

− Exch, the Positive Fragment of Peano
Arithmetic Without Exchange

We define the positive fragment PA+
inf − Exch of Peano arithmetic PA with the

ω-rule. This system is obtained from PA by
(1) replacing the induction principles by the use of the infinitary ω-rule and
recursive proof-trees,
(2) prohibiting implication and negation in formulas,
(3) removing the right-Exchange rules.

Definition 2.1 (The language of PA+
inf − Exch)

This language is a first-order language generated from the following symbols.
We have variables x, y, z, . . ..
Constants are numerals 0, 1, 2, . . ., denoted by n, m, i, j, . . ..
Function symbols are denoted by f, g, . . .. We assume that there is a func-

tion symbol for each primitive recursive function, and that all function symbols
denote recursive functions.

Terms are denoted by s, t, . . ..
Predicate symbols are denoted by P, Q, . . .. We assume that there is a predi-

cate symbol for each primitive recursive predicate, and that all predicate symbols
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denote recursive predicates. For a predicate symbol P , we use P⊥ to denote the
predicate symbol which means the negation of P .

Atomic formulas are denoted by a, b, . . .. They are called atoms for short.
Atomic formulas include true and false, which means the truth and the falsity
respectively.

Formulas are defined by A, B, C, . . . ::= a|A ∧ B|A ∨ B|∀xA|∃xA.
A sentence is a closed formula. A sequent is a sequence of sentences and is

denoted by Γ, Δ, Π, . . .. Note that we respect order of sentences in a sequent.

Substitution A[t/x] is obtained from A by replacing every free occurrence of x
by t. The formulas of PA+

inf − Exch do not have implication nor negation. The
negation of a formula is represented in PA+

inf − Exch by de Morgan’s dual of the
formula, which is equivalent to negation of the formula in the standard model.
We will say that the formulas in a first-order language without implication nor
negation is positive. ω is the set of numerals.

Definition 2.2 (Inference rules of PA+
inf − Exch). Let a be any atom true

in the standard model, and t be any closed term. Let A, A1, A2, ∃x.B, ∀x.B be
any closed formulas.

Δ, a
(Ax)

where a is a true closed atom.
Δ

Δ, A
(Weak)

Δ, A1 Δ, A2

Δ, A1 ∧ A2
(∧)

Δ, B[n/x] for all n ∈ ω

Δ, ∀x.B
(∀)

Δ, A1 ∨ A2, A1

Δ, A1 ∨ A2
(∨1)

Δ, A1 ∨ A2, A2

Δ, A1 ∨ A2
(∨2)

Δ, ∃x.B, B[t/x]
Δ, ∃x.B

(∃t)

The rule (Ax) says that the sequent Δ, a is provable if a is a true closed atom.
The rule (∧) says that the sequent Δ, A1 ∧ A2 is provable if the sequents Δ, A1
and Δ, A2 are provable. The rule (∀) says that the sequent Δ, ∀x.B is provable
if the sequent Δ, B[n/x] is provable for all n ∈ ω. The rule (∨) says that that
the sequent Δ, A1 ∨ A2 is provable if the sequent Δ, A1 ∨ A2, Ai is provable
for some i. The rule (∃) says that that the sequent Δ, ∃x.B is provable if the
sequent Δ, ∃x.B, B[t/x] is provable for some t. There is another way of proving
any sequent Γ, A, by the Weakening rule, from a proof of Γ .

All predicate symbols and function symbols denote recursive predicates and
recursive functions in the standard model, and therefore the truth value of an
atom in the standard model is computable. Rules are syntax-directed: if we know
the name of the rule and the conclusion Γ of the rule, we can compute the list
Γ1, Γ2, . . . of assumptions of the rule. A proof in this system is any well-founded
recursive tree built according to inference rules. Since we consider only recursive
proof-trees, the rule (∀) requires that we can derive Δ, ∀xA from a recursive
function f such that f(n) is the code of a proof of A[n/x]. We use 	·
 to denote
a standard coding function so that 	e
 denotes a code of a syntactical object e.
A proof is defined as its integer code in this system. Formally, a proof is defined
inductively as follows:
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(1) (	Ax
, 	Γ, a
) is a proof if a is a true atom.
(2) (	L
, 	Γ 
, 	Γ1
) is a proof if there exists an instance of the inference rule

L = (∨1), (∨2), (∃t), (W ) such that Γ is its conclusion, and Γ1 is its assumption.
(3) (	(∧)
, 	Γ 
, 	Γ1
, 	Γ2
) is a proof if there is an instance of the rule (∧)

such that Γ is its conclusion, and Γ1 and Γ2 are its assumptions.
(4) (	(∀)
, 	Γ 
, f) is a proof if f is a code for a recursive function and there is

an instance of the rule (∀) such that Γ is its conclusion and f(n) gives the proof
of its n-th assumption.

2.1 An Effective Game Theoretical Interpretation of PA+
inf

− Exch

We sketch an effective game theoretical interpretation of PA+
inf−Exch, taken from

[4], which can be used to give a constructive content to proofs of PA+
inf−Exch. We

use Tarski games with 1-backtracking. A formula B is interpreted as a game,
which is a debate between two players, Eloise, claiming that B is true, and
Abelard, claiming that B is false.

When B is A1 ∨ A2 or ∃x.A, then Eloise moves, choosing some immediate
subformula Ai or A[t/x] of B. The intuition is that Eloise argue in favor of the
truth of B by arguing in favor of the truth of some Ai, or some A[t/x]. When B
is A1 ∧ A2 or ∀x.A, then Abelard moves, choosing some immediate subformula
Ai or A[n/x] of B. The intuition is that Abelard argue in favor of the falsity of
B by arguing in favor of the falsity of some Ai, or some A[n/x]. When B is some
atom a, if a is true then Eloise wins, and if a is false then Abelard wins.

Eloise has a special move not available for Abelard: she can retract a move
she did from some formula C, and all the moves she did after it, and then she
can move again from C. Retracted moves cannot be recovered. Retraction is
called 1-backtracking in [4]. Abelard wins if the play, because of infinitely many
retractions by Eloise, continues forever.

A proof of B in PA+
inf −Exch can be interpreted as a winning strategy for Eloise

in the 1-backtracking game for B, as follows. A sequent in the proof of B can be
interpreted as the list of all the moves of the play that Eloise has not retracted.
The rule (Weak) is the act of retracting one move, and the upper sequent is the
position of the play produced by this retraction. We can have many consecutive
retractions of one move each. The rule (∨i) corresponds to Eloise’s move from
A1 ∨ A2 to Ai. The rule (∧) corresponds to the two possible moves A1 and A2 by
Abelard from A1 ∧ A2. Eloise considers both possibilities, in order to be ready to
reply in both cases. The interpretation for the rules (∃t) and (∀) is similar. The
rule (Ax) corresponds to the end of the play with Eloise’s victory.

The strategy outlined is a winning strategy for Eloise, because each play in
which Eloise follows this strategy corresponds to some branch in the proof-tree
ending in an axiom, and therefore is a finite play won by Eloise.

2.2 A Proof of EM1 in PA+
inf

− Exch

Suppose P is a predicate symbol. Let A(x) = ∃yP (x, y) and A⊥(x)=∀yP⊥(x, y).
The following is a proof in PA+

inf − Exch. It proves Excluded Middle EM1 for a
Σ0

1 -formula.
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.... πm

A(n) ∨ A⊥(n), P⊥(n, m) for all m

A(n) ∨ A⊥(n), A⊥(n)
∀

A(n) ∨ A⊥(n)
∨2

for all n

∀x(A(x) ∨ A⊥(x))
∀

If P (n, m) is false, then P⊥(n, m) is true and the proof πm is an axiom. If
P (n, m) is true, the proof πm is:

A(n) ∨ A⊥(n), A(n), P (n, m)
Ax

A(n) ∨ A⊥(n), A(n)
∃m

A(n) ∨ A⊥(n)
∨1

A(n) ∨ A⊥(n), P⊥(n, m)
Weak

2.3 A True Sentence Not Provable in PA+
inf

− Exch

PA+
inf − Exch does not have right-Exchange rules, and for this reason it cannot

prove all classically true sentences. Suppose P is a predicate symbol. Let B(z) =
∀x.∃y.P (x, y, z) and B⊥(z) = ∃x.∀y.P⊥(x, y, z). We call the set of formulas
∀z.B(z) ∨ B⊥(z) the scheme EM2, Excluded Middle for Σ0

2 formulas. EM2 is a
larger fragment of the Excluded Middle axiom than EM1 [1]. If we had right-
Exchange rules, the following would be a proof of ∀z.B(z) ∨ B⊥(z) where the
use of the right-Exchange rule is marked with Exch:

.... πm

∃y.P (n, y, l), B(l) ∨ B⊥(l), B⊥(l), P⊥(n, m, l) (∀m ∈ ω)

∃y.P (n, y, l), B(l) ∨ B⊥(l), B⊥(l), ∀y.P⊥(n, y, l)
∀

∃y.P (n, y, l), B(l) ∨ B⊥(l), B⊥(l)
∃n

∃y.P (n, y, l), B(l) ∨ B⊥(l)
∨2

B(l) ∨ B⊥(l), ∃y.P (n, y, l)
Exch

(∀n ∈ ω)

B(l) ∨ B⊥(l), B(l)
∀

B(l) ∨ B⊥(l)
∨1

(∀l ∈ ω)

∀z.B(z) ∨ B⊥(z)
∀

where πm is an axiom if P (n, m, l) is false, and is

∃y.P (n, y, l), P (n, m, l) Ax

∃y.P (n, y, l) ∃m

∃y.P (n, y, l), B(l) ∨ B⊥(l)
Weak

∃y.P (n, y, l), B(l) ∨ B⊥(l), B⊥(l)
Weak

∃y.P (n, y, l), B(l) ∨ B⊥(l), B⊥(l), P⊥(n, m, l)
Weak
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if P (n, m, l) is true. Indeed, this formula cannot be proved in PA+
inf−Exch because

of lack of right-Exchange rules. This underivability result is proved by combining
the clause 3 in Lemma 10 in [2] and Theorem 1 in [4]. This shows that some
classical principle does not hold in this system. On the other hand, the previous
example shows EM1 is still provable in this system. Therefore PA+

inf − Exch is
strictly stronger than HAinf, and strictly weaker than PAinf. In §7 we will prove
more, namely that the set of theorem of PA+

inf−Exch is exactly the set of positive
theorems of HAinf + EM1.

2.4 Uniformly Admissible Rules of PA+
inf

− Exch

In this subsection we define what is a uniformly admissible rule.

Definition 2.3 (Uniformly Provable and Uniformly Admissible)

1. A sequent schema Γ with metavariables is defined to be uniformly provable
in PA+

inf −Exch if there is a recursive function such that the following holds.
For any sequent Γ ′ that is an instance of Γ , the function computes the code
of a proof of the sequent Γ ′ in PA+

inf −Exch from the code of the sequent Γ ′.
2. An inference rule schema R with metavariables is defined to be uniformly

admissible if there is a recursive function such that the following holds. For
any rule R′ that is an instance of R, the function computes the code of a
proof of the conclusion of R′ in PA+

inf −Exch from the code of the conclusion
of R′ and the codes of proofs for the premises of R′.

If a rule schema R is uniformly admissible, the set of formulas provable in PA+
inf−

Exch is the same as the set of formulas provable in PA+
inf − Exch plus R.

Some structural rules are restricted in PA+
inf − Exch, but the contraction rule

can be proved to be uniformly admissible.

Proposition 2.4. Define B > A by A∧B > A, A∧B > B, and ∀xA > A[n/x].
Define the relation >∗ as the reflexive transitive closure of the relation >.

(1) If B >∗ A holds, then the rule
Γ, B

Γ, A
is uniformly admissible.

(2) If B >∗ A holds, then the rule
Γ1, B, A, Γ2

Γ1, A, Γ2
is uniformly admissible.

(3) The contraction rule
Γ1, A, A, Γ2

Γ1, A, Γ2
is uniformly admissible.

3 Sketching an Interpretation of PA+
inf

− Exch in
HAinf + EM1

Let π be a proof of Γ = A1, . . . , An in PA+
inf − Exch. In this section we sketch

an interpretation of π by a statement which implies Γ . In §5, starting from this
interpretation we will define a formal embedding of PA+

inf −Exch in HAinf +EM1.
This section is only intended to motivate §5, and is purely informal, with no
proofs included.
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We sketch now our interpretation of π. For each i ∈ ω we introduce a flag
formula Si. Si means that all sequents decorating the nodes of π have at least
i formulas. Therefore Si ∧ ¬Si+1 means that the minimum length of a sequent
in π is i. S1 is true, because each sequent of π is the conclusion of some rule
of PA+

inf − Exch, and therefore it includes at least one formula. Each Si implies
Sj for all j < i, because if all sequents in π have at least i formulas, then all
sequents in π have at least j formulas. For all i > n, each Si is false, because
the conclusion Γ of π has less than i formulas. By combining the two remarks
and by classical logic, we deduce that for some 1 ≤ i ≤ n we have Si ∧ ¬Si+1.
Such an i is unique because Si implies Si−1, . . . , S1. We say that π succeeds
in proving Ai if Si ∧ ¬Si+1 holds. If i = n, then we know that Sn+1 is false,
therefore π succeeds in proving An if Sn holds. We interpret each proof π of Γ
by the following statement: for all 1 ≤ i ≤ n, if π succeeds in proving Ai, then
Ai holds. Since Si ∧ ¬Si+1 holds for some i, if this interpretation holds, then
we deduce Ai for some i, that is, Γ holds. We claim that for all proofs π, this
interpretation of π is true. We informally explain why.

Let π′ be the tree obtained by taking each sequent Δ decorating π, and
removing the first n − 1 formulas from Δ. We remove all formulas from Δ if Δ
has less than n formulas. If Sn is true, then by induction on π we can prove that
π′ is a proof of An. If Sn is false, then by induction on π we can prove that π
includes some subproof π1 of A1, . . . , An−1. We skip the proofs of these results,
because they are not essential for our discussion, and because they are implicitly
included in the proofs of §5.

If Sn holds, then π′ proves An. If ¬Sn holds, and if Sn−1 holds, then we can
remove the first n−2 formulas from each sequent decorating π1, obtaining some
proof π′

1 of An−1. If ¬Sn−1 holds, then we can prove that π1 includes some
subproof π′

1 of An−2. If we continue in this way, since S1 holds, eventually we
find the unique 1 ≤ i ≤ n such that Si ∧ ¬Si+1, and together some π′

i which is
a proof of Ai. This implies that the interpretation of π is true.

Our interpretation of PA+
inf − Exch requires only the classical axioms Si ∨¬Si

and ¬Si → S⊥
i . In §5, we will be able to formalize Si by means of Π0

1 statements,
and we will formalize the interpretation using only Excluded Middle for Σ0

1
statements.

This interpretation is not fully effective, because to know whether π succeeds
in proving An requires to know whether Sn is true, and that if Sn is false, then
we have to provide some subproofs whose conclusion has < n formulas. That is,
this interpretation requires the classical principles Sn ∨ ¬Sn and ¬Si → S⊥

i . We
can check that Sn is a Π0

1 -statement, and therefore the classical principle we
need to define this interpretation is EM1. In §5, we will develop this idea into a
formal interpretation of PA+

inf − Exch into HAinf + EM1.

4 The System HAinf + EM1

We define the system HAinf, which we will use to characterize PA+
inf − Exch. We

do not remove Left-exchange, the intuitionistic version of Exchange rule, from
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HAinf. HAinf is Heyting arithmetic HA except that it is based on infinitary logic
and recursive proof-trees, the inference rules (∀R) and (∃L) are replaced by ω-
rules with countably many assumptions, and it does not have induction rules.
In fact, the induction principles are derivable. The language is the same as that
of PA+

inf − Exch except that the formulas have implication.

Definition 4.1 (The language of HAinf)
The language is a first-order language. Variables, constants, function symbols,
predicate symbols, and atomic formulas are defined as those of PA+

inf −Exch. Let
〈·, ·〉 be a function symbol for a primitive recursive surjective paring.

Formulas are defined by: A, B, C, R, S, . . . ::= a|A ∧B|A∨B|A→B|∀xA|∃xA.
¬A is an abbreviation of A→false. A closed formula is called a sentence. Γ, Δ,

and Π denote a sequence A1, . . . , An of sentences. A sequent is A1, . . . , An�B
or A1, . . . , An� where n ≥ 0 and A1, . . . , An, B are sentences.

ω denotes the set of numerals. A formula A is called a Π0
1 formula if A is

∀xP (x) for some predicate symbol P .

Definition 4.2 (The inference rules of HAinf). In the rules (Ax R) and (Ax
L), true and false refer to the truth value in the standard model. Δ is empty or
a formula. t is a closed term.

(Ax L) Γ1, a, Γ2�Δ if a is a false closed atom

(Ax R) Γ�a if a is a true closed atom

Γ�A1 Γ�A2

Γ�A1 ∧ A2
(∧R)

Γ, A1�Δ

Γ, A1 ∧ A2�Δ
(∧L1)

Γ, A2�Δ

Γ, A1 ∧ A2�Δ
(∧L2)

Γ�A1

Γ�A1 ∨ A2
(∨R1)

Γ�A2

Γ�A1 ∨ A2
(∨R2)

Γ, A1�Δ Γ, A2�Δ

Γ, A1 ∨ A2�Δ
(∨L)

Γ, A�B

Γ�A→B
(→R)

Γ�A Γ, B�Δ

Γ, A→B�Δ
(→L)

Γ�A[m/x] (for all m ∈ ω)
Γ�∀xA

(∀R)
Γ, A[t/x]�Δ

Γ, ∀xA�Δ
(∀L)

Γ�A[t/x]
Γ�∃xA

(∃R)
Γ, A[m/x]�Δ (for all m ∈ ω)

Γ, ∃xA�Δ
(∃L)

Γ�
Γ�A

(WR) Γ�Δ
Γ, A�Δ

(WL)
Γ, A, A�Δ

Γ, A�Δ
(ContrL)

Γ1, B, A, Γ2�Δ

Γ1, A, B, Γ2�Δ
(ExchL)

Γ�A Π, A�Δ

Γ, Π�Δ
(Cut)

A proof in this system is defined as a well-founded recursive tree in a similar
way to PA+

inf −Exch. Since all proofs are recursive trees, the rules (∀R) and (∃L)
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require the existence of some recursive function f such that f(m) is the code of
a proof of Γ�A[m/x] and Γ, A[m/x]�Δ respectively. “Uniformly provable” and
“uniformly admissible” are defined in the same way as Definition 2.3.

The law EM1 of excluded middle for Σ0
1 formulas is defined as the axiom

schema � ∀x(∃yP (x, y) ∨ ¬∃yP (x, y)) for any predicate symbol P . EM1 is a
weaker version of the law of excluded middle. The proofs of HAinf + EM1 are
defined as the proofs of HAinf, except that an axiom of HAinf + EM1 can also
be an instance of EM1. HAinf + EM1 strictly includes HAinf and is strictly in-
cluded in PAinf. Note that EM1 proves A ∨ ¬A for any Π0

1 sentence A, since
both ¬∃yP⊥(x, y)→∀yP (x, y) and ∃yP⊥(x, y)→¬∀yP (x, y) hold in intuitionis-
tic logic.

We list below several basic properties for HAinf+EM1. A[n1, . . . , nk/x1, . . . , xk]
is a simultaneous substitution and is defined by the formula obtained from A by
replacing every free occurrence of x1, . . . , xk by n1, . . . , nk simultaneously. We use
vector notation to denote a sequence so that �x denotes a sequence x1, . . . , xn.

Proposition 4.3. (Basic properties of HAinf +EM1) (1) The identity rule A�A
is uniformly provable.

(2) ∀�xA�∀�yB is uniformly provable if A and B are atoms and A[�m/�x]→B
[�n/�y] is true for all �m,�n.

(3) ∀�xA, ∀�yB�∀�zC is uniformly provable if A, B and C are atoms and A[�m/�x]
→B[�n/�y]→C[�l/�z] is true for all �m,�n,�l.

(4) ∀�x(∃�yA ∨ ¬∃�yA) is uniformly provable for any quantifier-free formula A.

The next lemma includes the classical principles we will use in §5 in order to
interpret HAinf + EM1 into PA+

inf − Exch.

Lemma 4.4. (1) For Π0
1 sentences S and R, HAinf + EM1 uniformly proves

¬(S ∧ R)�¬S ∨ ¬R.
(2)For a predicate symbol P , HAinf+EM1 uniformly proves ¬∀xP (x)�∃x¬P (x).

Proof. (1) ¬S, R, ¬(S ∧ R)�¬S trivially holds by the identity rule, so by (∨R1)
we have ¬S, R, ¬(S ∧ R)�¬S ∨ ¬R. Similarly by the identity rule and (∨R2) we
have ¬R, ¬(S∧R)�¬S∨¬R. S, R, ¬(S∧R)� trivially holds, so by (WR) we have
S, R, ¬(S ∧R)�¬S ∨¬R. Hence by (∨L) we have S ∨¬S, R, ¬(S ∧R)�¬S ∨¬R,
which derives R, ¬(S ∧ R)�¬S ∨ ¬R by the cut rule with �S ∨ ¬S by EM1.
Therefore by (∨L) we have R ∨¬R, ¬(S ∧R)�¬S ∨¬R, which derives the claim
by the cut rule with �R ∨ ¬R by EM1.

(2) First we consider cases according to ∃x¬P (x).
Case 1. ∃x¬P (x), ¬∀xP (x)�∃x¬P (x) trivially holds by the identity rule.
Case 2. We will show ¬∃x¬P (x), ¬∀xP (x)�∃x¬P (x).
¬∃x¬P (x)�P (m) holds when P (m) is true by the axiom. ¬∃x¬P (x)� holds

also when P (m) is false, since the axiom gives �¬P (m), which derives �∃x¬P (x)
by (∃R) and ¬∃x¬P (x)� by (→L). Hence we have ¬∃x¬P (x)�P (m) for each m
by (WR). By (∀R) we have ¬∃x¬P (x)�∀xP (x), which derives ¬∃x¬P (x), ¬∀x
P (x)� by (→L). By (WR), we have ¬∃x¬P (x), ¬∀xP (x)�∃x¬P (x).

Hence by (∨L) we have ∃x¬P (x)∨¬∃x¬P (x), ¬∀xP (x)�∃x¬P (x). By the cut
rule with �∃x¬P (x) ∨ ¬∃x¬P (x) by EM1, we have the claim.�
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5 From PA+
inf

− Exch to HAinf + EM1

This section will show that if a positive sentence is provable in PA+
inf −Exch then

it is provable in HAinf + EM1.
To prove it, we use the idea of flag formulas again. We recall that a flag

formula Si is a Π0
1 formula assigned to a proof π of conclusion A1, . . . , An in

PA+
inf − Exch. Si means that the sequent is derived in π without any sequent of

length less than i. If i > n, then Si is trivially false, because the conclusion Γ of
π has less than i formulas. We will now prove what we informally claimed in §4,
which states that for all 1 ≤ i ≤ n, if π ”succeeds in proving Ai”, that is, if we
assume Si ∧ ¬Si+1, then Ai follows. The proof is in HAinf + EM1.

Theorem 5.1. There exists a recursive function φ such that if π is a proof in
PA+

inf − Exch of the sequent A1, ..., An (n ≥ 1), then φ(π) computes the codes
of Π0

1 formulas S1, . . . , Sn and the codes of proofs of
(1) �S1,
(2) Si, ¬Si+1�Ai (1 ≤ i < n),
(3) Sn�An.

Proof. The recursive function φ is defined by simultaneous induction on the
proof, using Kleene fixed point Theorem. All cases will be considered according
to the last rule.

We will define Si for i = 1, . . . , n and for the conclusion of each rule by using
the flag formulas Sm

i for the m-th assumption of the rule. For the rules (∨1), (∨2),
and (∃), Si is defined by Si = S1

i . For the rule (∧), Si is defined by Si = ∀xPi(x)
where S1

i is ∀xP 1
i (x) and S2

i is ∀xP 2
i (x) for some predicate symbols P 1

i and P 2
i ,

and Pi is a predicate symbol such that Pi(〈n, m〉) ↔ P 1
i (n) ∧ P 2

i (m) is true for
all n, m. Then Si�S1

i and Si�S2
i are uniformly provable by Proposition 4.3 (2).

S1
i ∧ S2

i �Si is also uniformly provable since S1
i , S2

i �Si is uniformly provable by
Proposition 4.3 (3).

For the rule (∀), Si is defined by Si = ∀xPi(x) as follows. Sm
i is ∀xPm

i (x) with
some predicate symbol Pm

i for each m. We suppose every recursive function and
predicate is provided with a Π0

1 formula that defines it. Pm
i is recursive in m, so

we have a predicate symbol Qi such that ∀zQi(m, n, z) ↔ Pm
i (n) is true. Then

we have a predicate symbol Pi such that Pi(〈〈n, m〉, l〉) ↔ Qi(n, m, l) is true for
all n, m, l. We define Si as ∀xPi(x). Then Si�Sm

i is uniformly provable for each
m by Proposition 4.3 (2).

Case (Ax). We define Si = true. The claims (1), (2), and (3) trivially hold.
Case (Weak). Let Δ = A1, . . . , An−1. We define Si = S1

i (1 ≤ i < n) and
Sn = false. The claims (1), (2), and (3) trivially hold from induction hypothesis.

In the other cases, the claim (1) trivially holds. So we will show only the
claims (2) and (3).

Case (∧). Let Δ be B1, . . . , Bn−1.
(2) We will show Si, ¬Si+1�Bi. We have Si, ¬S1

i+1�Bi by induction hypothesis
S1

i , ¬S1
i+1�Bi and the cut rule with Si�S1

i . Similarly we have Si, ¬S2
i+1�Bi by

replacing 1 by 2. By the rule (∨L), we have Si, ¬S1
i+1 ∨ ¬S2

i+1�Bi. By Lemma
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4.4 (1), we uniformly prove ¬(S1
i+1 ∧S2

i+1)�¬S1
i+1 ∨¬S2

i+1. By the cut rule with
this and ¬Si+1�¬(S1

i+1 ∧ S2
i+1), we have the claim.

(3) We will show Sn�A1 ∧ A2. We have S1
n�A1 and S2

n�A2 by induction
hypothesis. Hence we have Sn�A1 and Sn�A2 by the cut rule with Sn�S1

n and
Sn�S2

n. By (∧R), we have the claim.
Case (∨1). Let Δ be B1, . . . , Bn−1.
(2) The claim is the same as the induction hypothesis since Si was defined as

S1
i .
(3) We will show Sn�A1 ∨ A2.
We have Sn, S1

n+1�A1 ∨ A2 from induction hypothesis S1
n+1�A1, (WL), and

(∨1). We have Sn, ¬S1
n+1�A1∨A2 from induction hypothesis S1

n, ¬S1
n+1�A1∨A2

and S1
n = Sn. By the rule (∨L), we have Sn, S1

n+1 ∨ ¬S1
n+1�A1 ∨ A2. By the cut

rule with �S1
n+1 ∨ ¬S1

n+1 by EM1, we have the claim.
Case (∀). Let Δ be B1, . . . , Bn−1.
(2) We will show Si, ¬Si+1�Bi. Induction hypothesis gives Sm

i , ¬Sm
i+1�Bi for

each m. Hence we have Si, ¬Sm
i+1�Bi for each m by the cut rule with Si�Sm

i .
We have ¬∀xzPi+1(〈〈m, x〉, z〉)�¬Sm

i+1 since Sm
i+1�∀xzPi+1(〈〈m, x〉, z〉) holds by

Proposition 4.3 (2). By the cut rule with these two, we have Si, ¬∀xzPi+1(〈〈m, x〉,
z〉)�Bi for all m. By (∃L), we have (a) Si, ∃y¬∀xzPi+1(〈〈y, x〉, z〉)�Bi.

Intuitionistic logic proves (b) ∃yxz¬Pi+1(〈〈y, x〉, z〉)� ∃y¬∀xzPi+1(〈〈y, x〉, z〉).
We have (c) ∃x¬Pi+1(x)�∃yxz¬Pi+1(〈〈y, x〉, z〉) by the rules (∃L) and (∃R), and
¬Pi+1(w)�¬Pi+1(〈〈m, n〉, l〉) for all w and some m, n, l, which is derived from
the axiom Pi+1(〈〈m, n〉, l〉)�Pi+1(w) where w = 〈〈m, n〉, l〉. We also have (d)
¬∀xPi+1(x)�∃x¬Pi+1(x) by Lemma 4.4 (2).

By the cut rule with (a) to (d), we have the claim.
(3) We will show Sn�∀xA. Induction hypothesis gives Sm

n �A[m/x] for each
m. Hence we have Sn�A[m/x] for each m by the cut rule with Sn�Sm

n . By (∀R),
we have the claim.

Case (∃). Let Δ be B1, . . . , Bn−1.
(2) The claim is the same as the induction hypothesis since Si was defined as

S1
i .
(3) We will show Sn�∃xA. Induction hypothesis gives S1

n, ¬S1
n+1�∃xA and

S1
n+1�A[t/x], which derives S1

n, S1
n+1�∃xA by (∃R) and (WL). Hence we have

Sn, ¬S1
n+1 ∨ S1

n+1�∃xA by (∨L) and Sn = S1
n. By using the cut rule with

�¬S1
n+1 ∨ S1

n+1 by EM1, we have the claim.�

Theorem 5.2. If PA+
inf − Exch proves the sequent A, then HAinf + EM1 proves

�A.

Proof. By Theorem 5.1 with n = 1, there exists the Π0
1 formula S1 such that

HAinf + EM1 proves �S1 and S1�A. By the cut rule, we have the claim.�

6 From HAinf + EM1 to PA+
inf

− Exch

This section will show that if a positive sentence is provable in HAinf + EM1,
then it is proved in PA+

inf − Exch. To prove this, we will use Limit Computable
Mathematics and 1-backtracking Tarski games.



Positive Arithmetic Without Exchange Is a Subclassical Logic 283

Limit computable mathematics, called LCM, is a realizability model [8]. It is
defined in the same way as Kleene’s realizability model except that LCM has Δ0

2-
partial functions as realizers, and on the other hand Kleene’s model has partial
recursive functions as realizers. The set LCM of sentences is defined as the set of
sentences which are realizable with realizers in the set of Δ0

2-partial functions.
We briefly introduce the theory of LCM. Fix any recursive enumeration of the

set Δ0
2 of partial recursive maps in an oracle for the Halting Problem. {n}′(m)

denotes the result of the application of the n-th map to m ∈ N . {n}′(m) may
be undefined since {n}′(·) is a partial map. Let 〈·, ·〉 be a primitive recursive
pairing function, and π1, π2 be the inverse maps such that πi(〈n1, n2〉) = ni for
all n1, n2 ∈ N .

Definition 6.1 (Realizability Relation of LCM). For any arithmetical for-
mula A and any fresh variable e, we define a formula e r A in a language extended
with {·}′(·). We read e r A as “e realizes A.” This is defined by induction on A.

1. e r a ≡ e = 0 ∧ a if a is an atom,
2. e r A ∧ B ≡ (π1(e) r A) ∧ (π2(e) r B),
3. e r A ∨ B ≡ (π1(e) = 0 ∧ (π2(e) r A)) ∨ (π1(e) = 1 ∧ (π2(e) r B)),
4. e r A→B ≡ ∀x.((x r A)→({e}′(x) r B)),
5. e r ∀x.A ≡ ∀x.({e}′(x) r A),
6. e r ∃x.A ≡ π2(e) r A[π1(e)/x].

We interpret the equality s = t of two expressions s and t including {·}′(·)
by “s and t are both undefined, or both defined and equal.” In this way we
assign a truth value to each formula n r A, for any closed A and any constant
n ∈ N . LCM is the set of closed arithmetical formulas A such that ∃e.(e r A)
is true in the standard model. The difference with the standard realizability
interpretation is that we consider an enumeration of Δ0

2 partial maps, instead
of partial recursive maps. The name of Limit Computable Mathematics comes
from the fact that each map in Δ0

2 is the recursive limit of recursive maps.
First we show the next proposition stating that the system HAinf + EM1 is

valid in LCM.
Γ→Δ (n ≥ 0) is defined as B1→ . . .→Bn→A when Γ is B1, . . . , Bn and Δ

is A, and is defined as B1→ . . . →Bn→false when Γ is B1, . . . , Bn and Δ is
empty.

Proposition 6.2 (Validity of HAinf +EM1 in LCM). There exists a recur-
sive function f such that from the code of a proof of Γ�Δ in HAinf + EM1, f
computes a number e such that e r Γ→Δ is true.

Proof. The claim is proved by induction on the proof of Γ � Δ in HAinf +
EM1.�

The clause 4 of Corollary 1 in [2] showed the next theorem.

Theorem 6.3 ([2]). For an implication-free sentence A, A is valid in LCM if
and only if A has a recursive winning strategy in the Tarski game for A with
1-backtracking.

Theorem 11 in [4] showed the next theorem.
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Theorem 6.4 ([4]). For an implication-free sentence A, A has a recursive win-
ning strategy in the Tarski game for A with 1-backtracking if and only if the
sequent A is provable in PA+

inf − Exch.

Proposition 6.5. For an implication-free sentence A, if HAinf + EM1 proves
�A, then PA+

inf − Exch proves the sequent A.

Proof. Suppose �A is provable in HAinf + EM1. By Proposition 6.2, A is valid
in LCM. By Theorem 6.3, A has a recursive winning strategy in the Tarski
game for A with 1-backtracking. By Theorem 6.4, the sequent A is provable in
PA+

inf − Exch.�

7 Equivalence of PA+
inf

− Exch and HAinf + EM1

Combining Theorem 5.2 and Proposition 6.5, we have our main result.

Theorem 7.1 (Equivalence of PA+
inf − Exch and HAinf + EM1). For an

implication-free sentence A, HAinf + EM1 proves �A if and only if PA+
inf − Exch

proves the sequent A.

We will now discuss a corollary of our main result for related topics.
Our main result gives us a characterization of the set of implication-free sen-

tences in LCM.
As we explained in Section 2, a 1-backtracking game is a game where one

player can retract some past move and all the moves after it, but he cannot
recover a retracted move [2]. Our main result also gives us a characterization of
1-backtracking Tarski games.

Theorem 7.2. The following four properties are equivalent for an implication-
free sentence A:

(1) A is provable in PA+
inf − Exch,

(2) A is provable in HAinf + EM1,
(3) A is in LCM,
(4) A has a recursive winning strategy in the 1-backtracking Tarski game for A.

Proof. The direction from (1) to (2) is proved by Theorem 5.2. The direction
from (2) to (3) is prove by Proposition 6.2. The equivalence between (3) and
(4) is proved by Theorem 6.3. The equivalence between (4) and (1) is proved by
Theorem 6.4.�
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Abstract. We introduce the concept of guarded saturated sets, satu-
rated sets of strongly normalizing terms closed under folding of corecur-
sive functions. Using this tool, we can model equi-inductive and equi-
coinductive types with terminating recursion and corecursion principles.
Two type systems are presented: Mendler (co)iteration and sized types.
As an application we show that we can directly represent the mixed in-
ductive/coinductive type of stream processors with associated recursive
operations.

1 Introduction

Symbolic evaluation, aka evaluation of terms with free variables, is used, amongst
others, for optimization through partial evaluation in compilers and for checking
term equivalence in languages based on dependent types—such as the theorem
provers Agda, Coq, Epigram, and LEGO, founded on intensional type theory. In
these applications, symbolic evaluation is required to terminate. My long term
research goal is to develop expressive type systems that guarantee termination,
and these type system shall include inductive and coinductive types.

Most research on inductive types has focused on the iso-style, i. e., there are
explicit operations in : F (μF ) → μF and out : μF → F (μF ) for wrapping
and unwrapping inductive types. In contrast, equi-inductive types come with
the type equation μF = F (μF ), so wrapping and unwrapping is silent on the
term level. Recently [4], I have put forth a type system for strongly normalizing
terms with equi-(co)inductive types, but it behaves badly for so-called mixed
inductive/coinductive types.

However, mixed inductive/coinductive types are important in the context of
intensional type theory. Ghani, Hancock, and Pattinson [10] show how the type
νX. μY. (B×X)+(A → Y ) of stream processors is inhabited by codes of functions
from streams over A to streams over B. They define eating, a function which
takes a stream processor and an input stream and produces an output stream;
eating executes the code of a stream processor. Swierstra [17] demonstrated
how a small modification of stream processors could be used to model I/O in a
dependently typed programming language.
� Research partially supported by the EU coordination action TYPES (510996).
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In this article, I present a concept which paves the way to a satisfactory
treatment of mixed equi-(co)inductive types: guarded type expressions. The term
guardedness has been used as a criterion whether corecursive programs denote
well-defined functions. A corecursive call is guarded if it appears under a con-
structor of the coinductive type. In the same sense, a type expression is guarded
if it is headed by a proper type constructor, like function space, cartesian prod-
uct, disjoint sum, or a primitive type. Using the guardedness criterion, we can
avoid coinductive types which contain no weak head values, and the remaining
coinductive types have the pleasant property that they already contain a core-
cursive value if they contain its unfolding. This property gives rise to the new
concept of guarded saturated set, on which we base our normalization proof.

Related Work. There is a rich body of work on type systems for termination of
recursion, starting with Mendler [12], with contributions by Amadio and Coupet-
Grimal [6], a group around Giménez and Barthe [7,8], and Blanqui and Riba
[9]. All of these works are concerned with iso-(co)inductive types. Parigot [13]
introduces equi-inductive and coinductive types in second-order functional arith-
metic, an extension of System F. [15] provides Mendler iteration and coiteration
schemes for these types and proves that all well-typed terms are hereditarily
solvable, if the involved types satisfy a certain strictness condition. We require
a condition only on coinductive types. Hughes, Pareto, and Sabry [11] present
sized types in the equi-style, yet they consider only finitely branching data types
and explicitly exclude a type of stream processors. In my previous attempt at
equi-(co)inductive types [4] I constructed a semantics based on biorthogonals,
which are due to Girard and have been successfully applied at interpreting lan-
guages based on classical logic (see, e. g., Parigot [14]). However, I had to consider
a recursive function applied to a corecursive value blocked, preventing the use
of mixed inductive/coinductive types. In this article, this flaw is overcome by a
semantics based on saturated sets.

Overview. In Sec. 2, we will see a λ-calculus with recursion and corecursion and
a saturated-set semantics of strongly normalizing terms. On this semantics, we
base first a type system with Mendler (co)iteration (Sec. 3), and then a more
flexible one with sized types (Sec. 4).

2 Untyped Language and Semantics

As an idealized purely functional programming language, we consider the λ-
calculus with pairs and projections, injections and case analysis, and recursion
and corecursion. In this section, we define semantical types as sets of strongly
normalizing terms and prove formation, introduction and elimination rules for
these semantical types. Especially interesting will be the principles for termi-
nating recursion and corecursion which will be derived from the construction of
inductive and coinductive types by ordinal iteration.

In all expressions throughout this article a dot “.” denotes an opening paren-
thesis closing as far to the right as syntactically meaningful. [M/x]N denotes



288 A. Abel

the capture avoiding substitution of M for x in N . Let x range over a count-
ably infinite set Var of variables. We define our language as the lambda calculus
equipped with constants c. The values v are λ-abstractions, pairs, injections,
and not fully applied constants (including recursive functions and corecursive
values).

c ::= () | pair | fst | snd | inl | inr | case
| fixμ | fixν

n (n ∈ N) constants
r, s, t ::= c | x | λxt | r s terms

v, w ::= c | λxt | pair r | pair r s | inl r | inr r
| fixμ s | fixν

ns t (|t| ≤ n) (weak-head) values

e−( ) ::= s | fst | snd | case s t non-recursive evaluation frames
e( ) ::= e−( ) | fixμ s evaluation frames
E( ) ::= | E(e( )) evaluation contexts.

We distinguish between possibly recursive e( ) and non-recursive e−( ) eval-
uation frames. An evaluation context is E( ) is a stack of evaluation frames.
Corecursive functions are only unfolded in a non-recursive evaluation frame

Reduction. Computation is modeled as small-step reduction relation. These are
the axioms of β-contraction e(v) � t.

(λxt) s � [s/x]t
fixμ s v � s (fixμ s) v
e−(fixν

n s t1..n) � e−(s (fixν
n s) t1..n)

fst (pair r s) � r
snd (pair r s) � s
case (inl r) s t � s r
case (inr r) s t � t r

One-step reduction −→ is the closure of � under all term constructors, multi-
step reduction −→+ its transitive closure and −→∗ its reflexive-transitive closure.
Weak head reduction is defined by E(t) −→w E(t′) ⇐⇒ t � t′.

By only unfolding corecursive values in non-recursive evaluation frames, we
avoid critical pairs. This does not lead to stuck terms, since in such a case the
recursive function constituting the frame can be unfolded instead. In previous
work [4], we considered a corecursive value in a recursive frame as stuck, lead-
ing to an unsatisfactory treatment of mixed induction/coinduction. The present
work overcomes this flaw.

Strong normalization and saturated sets. A term t is strongly normalizing (s.n.),
written t ∈ SN, if all reduction sequences starting with t are finite. Note that
subterms and reducts of s.n. terms are also s.n. Terms E(x) ∈ SN are called s.n.
and neutral and their collection is denoted by SNe.

A set of terms A is a semantical type, written A ∈ SATu, if

1. SNe ⊆ A ⊆ SN,
2. each term in A weak-head reduces either to a value or a neutral term,
3. A is closed under weak head expansion that does not introduce diverging

terms.
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The first condition ensures that each semantical type contains all variables, such
that we can construct an open s.n. term model of our calculus. The second
condition is used to justify recursive functions fixμ s, which reduce under call-
by-(weak-head)-value (see Lemma 3). The third condition ensures that a redex
like (λxt) s inhabits a semantical type if its reduct (here [s/x]t) does so. This is
needed, for instance, to establish that λxt is in the semantical function space,
and similarly for pair r s, case distinctions and recursive functions.

The third condition can be made precise by defining safe weak head reduction,
�, by the following rules:

(λxt) s � [s/x]t if s ∈ SN
fixμ s v � s (fixμ s) v
e−(fixν

n s t1..n) �e−(s (fixν
n s) t1..n)

E(t) � E(t′) if t � t′

fst (pair r s) � r if s ∈ SN
snd (pair r s) � s if r ∈ SN
case (inl r) s t � s r if t ∈ SN
case (inr r) s t � t r if s ∈ SN

We define � as the reflexive-transitive closure of the above rules. Now if t � t′ ∈
SN, then t ∈ SN. For a reduction relation R, let RA := {t | t R t′ ∈ A} and
AR := {t′ | A � t R t′}. Condition 3 of semantical types can then be written as
�A ⊆ A.

The greatest semantical type is called S, it contains all s.n. terms except those
whose weak-head reduction gets stuck, like fst (λxx). The least semantical type
is N := �SNe, and it is closed under s.n. evaluation contexts: if r ∈ N and
E(x) ∈ SNe then E(r) ∈ N .

Guarded semantical types. A semantical type A is guarded, written A ∈ SATg, if
s (fixν

n s) t1..n ∈ A implies fixν
n s t1..n ∈ A. Let � ⊇ � be the reflexive-transitive

closure of safe weak head reduction plus the axiom

fixν
n s t1..n � s (fixν

n s) t1..n.

Note that r � r′ implies e−(r) � e−(r′).
A semantical type A is guarded iff �A ⊆ A. The premier example of a non-

guarded type is N . Note that S is closed under �-expansion, since fixν
n s t1..n is

a strongly normalizing value if s, t1..n ∈ SN. Thus, S is guarded.

Constructions on semantical types. The following constructions produce guarded
semantical types, even for unguarded A, B ∈ SATu.

A → B := {r | r s ∈ B for all s ∈ A}
A × B := {r | fst r ∈ A and snd r ∈ B}
A + B := �(inl(A) ∪ inl(B) ∪ SNe)
1 := �({()} ∪ SNe)

Note that SATg and SATu are closed under arbitrary intersections and unions.
The last property is the advantage of saturated-sets semantics, it does not always
hold for candidates of reducibility or biorthogonals, and even when it holds the
proof is non-trivial [16].
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If F is a monotone operator on sets of terms, and α an ordinal, we define the
term sets μαF and ναF by iteration on α as follows.

μ0 F := N
μα+1 F := F(μαF)
μλ F :=

⋃
α<λ μαF

ν0 F := S
να+1 F := F(ναF)
νλ F :=

⋂
α<λ ναF

Herein, λ denotes limit ordinals > 0. Let ∞ denote the ordinal at which, for
any F , iteration from below reaches the least fixed-point μ∞F = F(μ∞F), and
iteration from above reaches the greatest fixed-point ν∞F = F(ν∞F). Since
term sets are countable, ∞ is at most the first uncountable ordinal.

Now if F(A) is guarded for any A ∈ SATu, then μαF will be guarded for
α ≥ 1. If F(A) is guarded for any guarded A, then ναF is guarded for all α.

Lemma 1 (Semantical formation). The following implications, written as
rules, hold:

A, B ∈ SATu

A � B ∈ SATg
� ∈ {→, ×, +}

1 ∈ SATg N ∈ SATu S ∈ SATg

F ∈ SATu → SATb

μ∞F ∈ SATb
b ∈ {u, g} F ∈ SATg → SATb

ν∞F ∈ SATb
b ∈ {u, g}

Proof. We show the first implication, A → B ∈ SATg. It is sufficient to assume
{x} ⊆ A ⊆ SN and B ∈ SATu. Let r ∈ A → B. First, r x ∈ B ⊆ SN by
assumption, hence r ∈ SN. Second, we know that r x weak-head reduces to
either a neutral term or a value. Hence, either r weak-head reduces to a neutral
term, or to a λ-abstraction, which is a value. Third, let r′ � r. Then for any
s ∈ A we have r′ s � r s which, since B ∈ SATu, implies r′ s ∈ B. This entails
r′ ∈ A.

Lemma 2 (Semantical typing). The following implications hold:

[s/x]t ∈ B for all s ∈ A
λxt ∈ A → B

r ∈ A → B s ∈ A
r s ∈ B

r ∈ A s ∈ B
pair r s ∈ A × B

r ∈ A × B
fst r ∈ A

r ∈ A × B
snd r ∈ B () ∈ 1

t ∈ A
inl t ∈ A + B

t ∈ B
inr t ∈ A + B

r ∈ A + B s ∈ A → C t ∈ B → C
case r s t ∈ C

Proof. The rules for λ, pair, and case are proven by closure of saturated sets under
safe weak head expansion. (The remaining rules hold already by definition.) We
show the last implication. Assume r ∈ A+B, then r � r′ where r′ is either neutral
or a left or right injection. We observe that case r s t � case r′ s t and distinguish
the three cases: In the first case case r′ s t ∈ SNe, hence, case r s t ∈ N ⊆ C. In
the second case, r′ = inl r′′ with r′′ ∈ A, thus, case r s t � s r′′ ∈ C. The third
case is analogous to the second.
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The following semantical typing for recursion is the foundation of type-based
termination à la Mendler [12], Amadio et al. [6] and Barthe et al. [7]. In a
typical application of the following lemma, I(α) will be some inductive type
μαF ; then I(0) = N .

Lemma 3 (Recursion). For all ordinals α ≤ ∞ let I(α), C(α) ∈ SATu with
I(0) ⊆ N . Set A(α) := I(α) → C(α) and stipulate continuity:

⋂
α<λ A(α) ⊆

A(λ) for all limit ordinals λ > 0. Then the following implication holds for all
β ≤ ∞:

s ∈
⋂

α<∞ A(α) → A(α + 1)
fixμ s ∈ A(β)

.

Proof. By transfinite induction on β. The limit case is handled by the continuity
condition on A. For the other cases, assume r ∈ I(β) and show fixμ s r ∈ C(β).
If r ∈ N then fixμ s r ∈ N ⊆ C(β); since I(0) ⊆ N , this handles the case β = 0.
Otherwise r � v and β = α + 1 for some α. It is sufficient to show that the
weak head reduct s (fixμ s) v of fixμ s r is in C(α + 1), but this follows from the
induction hypothesis fixμs ∈ A(α) by the assumption s ∈ A(α) → A(α + 1).

The proof for β = 0 needs N to be closed under evaluation contexts, fixμs in
our case. If N was also guarded, then fixν

0λ x ∈ N and fixμ(λff)(fixν
0λ x) ∈ N ,

a diverging term. Thus, the least type needs to be classified as unguarded.

Remark 1 (Continuity). Let Natα = μα(X → 1 + X ) be the semantical type
corresponding to the set of natural numbers < α. The function A(α) = (Natω →
Natα) → 1 violates the continuity condition: one can implement a test p(f) in our
calculus that halts whenever it has found numbers n, m with f(n) = f(m). The
test will halt for bounded functions f ∈ Natω → Natα for α < ω, but diverges
on, for example, any strictly monotone unbounded function f ∈ Natω → Natω.
This justifies the necessity of the continuity condition for the soundness of our
semantics [2].

The following lemma dualizes Lemma 3; it is tailored for guarded C(α) = ναF .
To prove it, we have introduced the concept of guardedness in the first place.

Lemma 4 (Corecursion). For α ≤ ∞ let B1(α), . . . , Bn(α) ∈ SATu and C(α)∈
SATg such that S ⊆ C(0). Set A(α) := B1(α) → · · · → Bn(α) → C(α) and
stipulate

⋂
α<λ A(α) ⊆ A(λ) for limits λ. Then for all β ≤ ∞,

s ∈
⋂

α<∞ A(α) → A(α + 1)
fixν

n s ∈ A(β)
.

Proof. By transfinite induction on β, limits again handled by continuity of A.
Assume ti ∈ Bi(β) for i = 1..n and show r := fixν

n s t1..n ∈ C(β). In case β = 0
it is sufficient to show r ∈ S, but this holds since r is a value and its direct
subterms are all s.n. In case β = α+1, observe that r � s (fixν

n s) t1..n ∈ C(α+1)
by induction hypothesis fixν

n s ∈ A(α) and assumption s ∈ A(α) → A(α + 1).
Since C(α + 1) is guarded, we are done.

We have identified semantically sound principles for recursion and corecursion.
In the next sections, we implement two type systems on this basis.
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3 A Basic Type System: Mendler (Co)Iteration

In this section, we consider a type system for iteration over equi-inductive
types and coiteration over equi-coinductive types in the style of Mendler [12].
Mendler-iteration, like conventional iteration coming from initial algebra seman-
tics, is usually formulated for iso-inductive types, with an explicit constructor
in : F (μF ) → μF . Our developments in the last section paved the way for
equi-style formulations.

Types are given by the following grammar

� ::= → | × | +
A, B, C ::= X | 1 | A � B | ∀XA | μXA | νXA.

The type constructors ∀, μ, and ν bind variable X in A. The type μXX is an
empty, unguarded type; we especially need to avoid unguarded coinductive types
like νY μXX . To this end, we present a kinding judgement with two base kinds:
∗g, guarded types, and ∗u, unguarded types.

Let θ be a map from type variables to semantical types. We define the seman-
tics [[A]]θ of type A by recursion on A as follows:

[[X ]]θ = θ(X)
[[A � B]]θ = [[A]]θ � [[B]]θ
[[1]]θ = 1

[[∀XA]]θ =
⋂

X∈SATu
[[A]]θ[X �→X ]

[[μXA]]θ = μ∞(X ∈ SATu → [[A]]θ[X �→X ])
[[νXA]]θ = ν∞(X ∈ SATg → [[A]]θ[X �→X ])

Kinding. Let Δ be a finite map from type variables to base kinds. We write
Δ, X : κ for the updated map Δ′ with Δ′(X) = κ and Δ′(Y ) = Δ(Y ) in case
Y �= X . In the update operation, we presuppose X �∈ dom(Δ). The judgment
Δ � A : κ is inductively given by the following rules (where b ∈ {u, g}).

Δ � X : Δ(X) Δ � 1 : ∗g

Δ � A : ∗g

Δ � A : ∗u

Δ � A : ∗u Δ � B : ∗u

Δ � A � B : ∗g

Δ, X :∗u � A : ∗b

Δ � ∀XA : ∗b

Δ, X :∗u � A : ∗b

Δ � μXA : ∗b
pos

Δ, X :∗g � A : ∗g

Δ � νXA : ∗g
pos

In the formation rules for (co)inductive types we require (pos) that X appears
only positively in A (otherwise, the denoted fixed-points might not exist).

The soundness of kinding is immediate. Let θ ∈ [[Δ]] iff Δ(X) = ∗b implies
θ(X) ∈ SATb for all X .

Theorem 1 (Soundness of kinding). If Δ � A : ∗b and θ ∈ [[Δ]] then [[A]]θ ∈
SATb.

Type equality. Let Δ � A = A′ be the least congruence over the two axioms

Δ � μXA : ∗u

Δ � μXA = [μXA/X ]A
Δ � νXA : ∗g

Δ � νXA = [νXA/X ]A
.
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Lemma 5 (Soundness of type substitution and equality)

1. [[[B/X ]A]]θ = [[A]]θ[X �→[[B]]θ ].
2. If Δ � A = A′ and θ ∈ [[Δ]] then [[A]]θ = [[A′]]θ.

Typing. Let Γ be a finite map from type variables to kinds and term variables
to types, with additional update operation Γ, x :A. Each Γ can be viewed as a
Δ, by ignoring the term variable bindings. The typing judgement Γ � t : A is
inductively given by the following rules:

Γ � Γ (x) : ∗u

Γ � x : Γ (x)
Γ, x :A � t : B

Γ � λxt : A → B

Γ � r : A → B Γ � s : A

Γ � r s : B

Γ, X :∗u � t : A

Γ � t : ∀XA

Γ � t : ∀XA Γ � B : ∗u

Γ � t : [B/X ]A
Γ � t : A Γ � A = B

Γ � t : B

Γ � c : Σ(c)
Γ � μXA : ∗u Γ � C : ∗u

Γ � fixμ : (∀X. (X → C) → A → C) → μXA → C

Γ � νXA : ∗g Γ � Bi : ∗u for i = 1..n

Γ � fixν
n : (∀X. (B1..n → X) → B1..n → A) → B1..n → νXA

Herein, the signature Σ assigns the following types to constants c:

pair : ∀A∀B. A → B → A × B
fst : ∀A∀B. A × B → A
snd : ∀A∀B. A × B → B
() : 1

inl : ∀A∀B. A → A + B
inr : ∀A∀B. B → A + B
case : ∀A∀B∀C. A + B →

(A → C) → (B → C) → C

Example 1. If we drop the guardedness condition in the corecursion rule, then
the diverging term fixμ(λff) (fixν

0λ x) can be typed. First observe that fixμλff :
μXX → C for any C. In the context x : μXX we have λ x : ∀Y. Y → μXX ,
hence, fixν

0λ x : νY μXX . With νY μXX = μXX we get the typing x :μXX �
fixμ(λff) (fixν

0λ x) : C. This demonstrates that guardedness is vital for the
termination of open expressions when mixing recursion and corecursion. Non-
emptiness is not necessary, however; an analogous term constructed with the
empty, but guarded type νY. 1 → μXX is not diverging.

Let θ now be a finite map from type variables to semantical types and from
term variables to terms. We write θ ∈ [[Γ ]] if additionally to the condition on
type variables θ(x) ∈ [[Γ (x)]]θ for all term variables x ∈ dom(Γ ). Let tθ denote
the simultaneous (capture-avoiding) substitution of all x ∈ FV(t) by θ(x).

Theorem 2 (Soundness of typing). If Γ � t : A and θ ∈ [[Γ ]] then tθ ∈ [[A]]θ.

Proof. By induction on the typing derivation, using the result of the last section.
In case of fixμ, assume s ∈

⋂
X∈SATu

[[(X → C) → A → C]]θ[X �→X ] and show
fixμ s ∈ [[μXA → C]]θ. Lemma 3 (recursion) is applicable with types I(α) =
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μα(X → [[A]]θ[X �→X ]) and C(α) = [[C]]θ. Since r ∈ I(λ) =
⋃

α<λ I(α) implies
r ∈ I(α) for some α < λ and C does not depend on its ordinal argument, the
continuity condition is trivially satisfied for A(α) = I(α) → C(α). For all α, the
typing s ∈ A(α) → A(α + 1) requested by the lemma is an instance of the given
typing with X = I(α), since [[A]]θ[X �→I(α)] = I(α + 1).

In case of fixν , Lemma 4 is applicable, analogously to the case of fixμ. The
kinding ensures that C(α) := να(X → [[A]]θ[X �→X ]) is guarded for all α ≤ ∞. The
continuity condition is again trivially satisfied.

Corollary 1 (Strong normalization and consistency). Each typable term
is strongly normalizing. Each closed well-typed term weak-head reduces to a value.
No closed term inhabits ∀XX.

Proof. By soundness of typing, letting θ(X) = N for all type variables X and
θ(x) = x for all term variables x. Consistency, the last statement, follows since
there are no closed terms in N .

Example: Stream Eating with Mendler (Co)Iteration

We first allow ourselves some syntactic sugar: we write (r, s) for pair r s and use
matching abstraction λ(x, y).t as a shorthand for λz. [fst z/x][snd z/y]t. ML-style
pattern matching match t with pi → ti for patterns pi composed from variables,
(), pair, inl, and inr, can also be defined easily [5, Sec. 2.4].

To provide some help for type-checking (by the reader and by the machine),
we sometimes will use Church-style syntax and allow type-annotations t : A in
the example programs:

Γ � t : A

Γ � (t : A) : A

Γ, x :A � t : B

Γ � λx :A. t : A → B

Γ, X :∗u � t : A

Γ � ΛXt : ∀XA

Γ � t : ∀XA Γ � B : ∗b

Γ � t[B] : [B/X ]A

Streams Stream A := νX. A × X can be constructed by pair : ∀A.A →
Stream A → Stream A and destructed by fst : ∀A. Stream A → A and snd :
∀A. Stream A → Stream A. In Haskell, stream processors are defined as a data
type and the code of the mapping function is generally recursive.

data SP a b where
get :: (a -> SP a b) -> SP a b
put :: b -> SP a b -> SP a b

map :: (a -> b) -> SP a b
map f = get (\ a -> put (f a) (map f))

In our system, we define the type of codes for stream processing functions [10]
as a interleaved coinductive-inductive type.

SP AB := νXμY.B × X + (A → Y )
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The equi-style enables a direct representation of the constructors:

put := inl : ∀A∀B. B × SP AB → SP AB
get := inr : ∀A∀B. (A → SP AB) → SP AB

The code of the stream-mapping function can be defined by Mendler coiteration
as follows:

map : ∀A∀B. (A → B) → SP AB
map := ΛAΛBλf :A → B.

fixν
0 ΛXλmap : X. inr (λa :A. inl (f a, map) : μY. B × X + (A → Y ))

Stream eating executes the code of a stream processor, consuming an input
stream and producing an output stream. In Haskell it is again defined by general
recursion:

eat :: SP a b -> [a] -> [b]
eat (get f) (a:as) = eat (f a) as
eat (put b t) as = b : eat t as

We define eating by an outer Mendler coiteration on the output stream and an
inner Mendler iteration on the stream processor.

eat : SP AB → StreamA → StreamB
eat := fixν

2 ΛXλeatν :SP AB → Stream A → X
fixμ ΛY λeatμ :Y → StreamA → B × X

λt :B × SP AB + (A → Y ). λ(a, as). match t with
put (b, t′) → (b, eatν t′ (a, as)) : B × X
get f → eatμ (f a : Y ) as

Some interesting functions, like composition of stream processors, are not (co)ite-
rative, hence cannot be defined directly in the present type systems. Therefore,
we introduce a more expressive system of sized types in the next section.

4 A Fancy Type System: Sized Types

Sized types allow a greater flexibility in defining recursive and corecursive func-
tions by mapping the semantics more directly into the syntax of types. In the
following, we describe an extension of the type system Fω that makes the fol-
lowing features of semantics available in syntax:

1. Ordinals a and approximations μaF and νaF of inductive and coinductive
types. The syntax of ordinals will be restricted to variables, successor and
∞. There is no need to provide notation for limit ordinals.

2. Distinction between guarded (∗g) and unguarded types (∗u). This feature is
new in comparison to previous works [2,8,9].

3. Monotonicity information (polarity) of type constructors. For instance, the
function space constructor is antitone in its first argument and monotone in
its second argument, thus, it receives kind ∗u

−→ ∗u
+→ ∗g. Using polarities,

the positivity test for (co)inductive types scales to higher-orders [1].
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Kinds classify type constructors. Besides ∗g and ∗u we introduce a kind ordu

of ordinals and a subkind ordg ≤ ordu of non-zero ordinals. Function kinds are
annotated with a polarity p.

p, q ::= ◦ mixed-variant (no monotonicity information)
| + covariant (monotone)
| − contravariant (antitone)
| � constant (both mono- and antitone)

κ ::= ∗u | ∗g | ordu | ordg base kind
| κ

p→ κ′ function kind

Subkinding κ ≤ κ′ is defined inductively by the following rules:

∗g ≤ ∗u ordg ≤ ordu

κ′
1 ≤ κ1 p′ ≤ p κ2 ≤ κ′

2

κ1
p→ κ2 ≤ κ′

1
p′
→ κ′

2

Herein, the order on polarities is the reflexive-transitive closure of the axioms
◦ ≤ p and p ≤ �. If one composes a function in κ1

p→ κ2 with a function in
κ2

q→ κ3 one obtains a function in κ1
pq→ κ3. For the associative and commutative

polarity composition pq we have the laws �p = �, ◦p = ◦ (for p �= �), +p = p,
and −− = +. Inverse application p−1q of a polarity p to a polarity q is defined
as the solution of

∀q, q′. p−1q ≤ q′ ⇐⇒ q ≤ pq′.

Type constructors F are type-level λ-terms over constants C:

C ::= → | × | + | 1 | ∀κ | μ | ν | 0 | s | ∞
A, B, F, G ::= C | X | λXF | F G

We use →, ×, + infix and write ∀X :κ.A for ∀κλXA. If κ is ∗u, it can be dropped.
We write the ordinal argument a to μ and ν superscript, e.g., μaF .

Let Δ denote a finite map from type (constructor) variables X to pairs pκ
of a polarity p and a kind κ. Inverse application p−1Δ of a polarity p to Δ is
defined by Δ(X) = qκ =⇒ (p−1Δ)(X) = (p−1q)κ. The following kinding rules
[1] and kind assignments to constants handle polarities properly:

C : κ

Δ � C : κ

Δ(X) = pκ p ≤ +
Δ � X : κ

Δ, X :pκ � F : κ′

Δ � λXF : κ
p→ κ′

Δ � F : κ
p→ κ′ p−1Δ � G : κ

Δ � F G : κ′
Δ � F : κ κ ≤ κ′

Δ � F : κ′

0 : ordu

s : ordu
+→ ordg

∞ : ordg

→ : ∗u
−→ ∗u

+→ ∗g

× : ∗u
+→ ∗u

+→ ∗g

+ : ∗u
+→ ∗u

+→ ∗g

1 : ∗g

∀κ : (κ ◦→ ∗b)
+→ ∗b

μ : ordb
+→ (∗u

+→ ∗b)
+→ ∗b

ν : ordu
−→ (∗g

+→ ∗g)
+→ ∗g
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These kindings express, for instance, that successor ordinals s a and the closure
ordinal ∞ are “guarded” (i.e., non-zero), each of the proper constructions →, ×,
+, and 1 produces guarded types, a universal type ∀κλXA is guarded if its body
A is. Interesting is the kinding of inductive types: μaF is guarded if a is non-zero
and F X is guarded even for unguarded X . For example, μ0F and μaλXX are
always unguarded, μs aλX. 1 + X is always guarded. Finally, coinductive types
νaF are always guarded, but they are only well-kinded if F maps guarded types
to guarded types. Hence, the type ν∞λXX , which contains only the inhabitant
fixν

0λxx, is allowed, but νaλX.μ∞λY Y is prohibited, and so is νaλX. μ0F .

Type equality and subtyping. The judgement Δ � F = F ′ : κ is the least
congruence over the following axioms [1], including a subsumption rule:

Δ, X :pκ � F : κ′ p−1Δ � G : κ

Δ � (λXF )G = [G/X ]F : κ′
Δ � F : pκ → κ′

Δ � λX. F X = F : pκ → κ′ X �∈ FV(F )

Δ � F : �κ → κ′ Δ � G : κ Δ � G′ : κ

Δ � F G = F G′ : κ′

Δ � s ∞ = ∞ : ordg

Δ � a : ordu b ∈ {u, g}
Δ � μsa = λF. F (μa F ) : (∗u

+→ ∗b)
+→ ∗b

Δ � a : ordu

Δ � νsa = λF. F (νa F ) : (∗g
+→ ∗g)

+→ ∗g

Subtyping Δ � F ≤ F ′ : κ is induced by axioms expressing relations between
ordinals and equipped with congruence rules that respect polarities.

Δ � a : ordu

Δ � 0 ≤ a : ordu

Δ � a : ordb

Δ � a ≤ s a : ordb

Δ � a : ordb

Δ � a ≤ ∞ : ordb

Δ � F ≤ F ′ : κ
p→ κ′ p−1Δ � G : κ

Δ � F G ≤ F ′ G : κ′

Δ � F : κ
+→ κ′ Δ � G ≤ G′ : κ

Δ � F G ≤ F G′ : κ′
Δ � F : κ

−→ κ′ Δ � G′ ≤ G : κ

Δ � F G ≤ F G′ : κ′

Additionally, we have a congruence rule for λ-abstraction and rules for reflexivity,
transitivity, antisymmetry, and subsumption. Typically, we will use subtyping
to derive μaF ≤ μs aF ≤ μ∞F and ν∞F ≤ νs aF ≤ νaF .

Kind interpretation. Kinds are interpreted as expected: [[∗u]] = SATu, [[∗g]] =
SATg, [[ordu]] = {α | 0 ≤ α ≤ ∞}, [[ordg]] = {α | 0 < α ≤ ∞}, and [[κ

p→ κ′]] is
the space of p-variant operators from [[κ]] to [[κ′]]. For base kinds κ0 let A �κ0 A′

hold iff A ⊆ A′. For higher kinds, let F �
κ

p→κ′ F ′ iff F(G) �κ′ F ′(G) for all
G ∈ [[κ]]. With these definitions, we can set

[[κ
p→ κ′]] = {F ∈ [[κ]] → [[κ′]] | F(G) � F(G′) for all G �p G′ ∈ [[κ]]}.
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Herein, �+ denotes �, �− denotes �, �◦ denotes equality, and G �
 G′ always
holds.

Lemma 6 (Soundness of subkinding). If κ ≤ κ′ then [[κ]] ⊆ [[κ′]].

Type interpretation. We interpret the type constants C as follows:

[[0]] = 0
[[s]](∞) = ∞
[[s]](α < ∞) = α + 1
[[∞]] = ∞

[[∀κ]](F) =
⋂

G∈[[κ]] F(G)
[[C]] = C for C ∈ {→, ×, +, 1, μ, ν}

This interpretation can be lifted to an interpretation [[F ]]θ of well-kinded con-
structors F . We let θ � θ′ ∈ [[Δ]] if θ(X) �p θ′(X) ∈ [[κ]] for all (X : pκ) ∈ Δ.

Theorem 3 (Soundness of kinding, equality, and subtyping). Let θ �
θ′ ∈ [[Δ]].

1. If Δ � F : κ then [[F ]]θ � [[F ]]θ′ ∈ [[κ]].
2. If Δ � F = F ′ : κ then [[F ]]θ � [[F ′]]θ′ ∈ [[κ]].
3. If Δ � F ≤ F ′ : κ then [[F ]]θ � [[F ′]]θ′ ∈ [[κ]].

Typing. The rules for λ-abstraction, application, basic constants c remain in
place. The type conversion rule is replaced by a subsumption rule, and the gen-
eralization and instantiation rules for universal types are now higher-kinded.

Γ � Γ (x) : ∗u

Γ � x : Γ (x)

Γ � t : A Γ � A ≤ B : ∗u

Γ � t : B

Γ, X :κ � t : F X

Γ � t : ∀κF
X �∈ FV(F )

Γ � t : ∀κF Γ � G : κ

Γ � t : F G

Γ � F : ∗u
+→ ∗u Γ � G : ordu

◦→ ∗u Γ � a : ordu

Γ � fixμ : (∀ı :ordu. (μıF → G ı) → μs ıF → G(s ı)) → μaF → G a
admμ

Γ � F : ∗g
+→ ∗g Γ � Gi : ordu

◦→ ∗g for i = 1..n Γ � a : ordu

Γ � fixν
n : (∀ı :ordu. (G1..n ı → νıF ) → G1..n (s ı) → νs ıF ) → G1..n a → νaF

admν

In the recursion rule, the side condition admμ needs to ensure that the type
λı. μıF → Gı is continuous in the sense of Lemma 3. Systematic criteria have
been developed based on a saturated-set semantics in the context of iso-(co)in-
ductive types [2], and these criteria are directly applicable for the equi-setting
described in this article. Due to space restrictions, we only give a sound approx-
imation here: There must be an n ≥ 0, Γ � Fi : ∗u

+→ ∗u for i = 1..n and
Γ � B : ordu

+→ ∗u such that Γ � Gı = μıF1 → · · · → μıFn → B ı : ∗u.
For the criterion admν we give the following sound approximation: For each

j = 1..n, either Γ � Gj : ordu
−→ ∗u, or there exists Γ � Fj : ∗u

+→ ∗u such that
Γ � Gj ı = μıFj : ∗u.
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Theorem 4 (Soundness of typing). If Γ � t : A and θ ∈ [[Γ ]] then tθ ∈ [[A]]θ.

Proof. By induction on the typing derivation. The connection of the typing rules
for recursion and corecursion to lemmata 3 and 4 is now immediate.

Corollary 2 (Strong normalization and consistency). Each typable term
is strongly normalizing. Each closed well-typed term weak-head reduces to a value.
No closed term inhabits ∀XX.

Example: Composition of Stream Processors

The sized type system encompasses a number of recursion schemes: primitive re-
cursion, Mendler (co)recursion, course-of-value recursion, and indirect recursion
(where the recursive arguments are obtained via another function, like the filter-
ing function in case of quicksort). In the following, we implement composition
comp of stream processors such that eat (comp t1 t2) = eat t2 ◦ eat t1. There are
two possible implementations for the case that t1 wants to read an element and
t2 wants to output one. We give the latter priority and arrive at the following
Haskell code:

comp :: SP a b -> SP b c -> SP a c
comp t1 (put c t2) = put c (comp t1 t2)
comp (put b t1) (get f2) = comp t1 (f2 b)
comp (get f1) t2 = get (\ a -> comp (f1 a) t2)

We express SP through sized types and define two useful approximations of this
type.

SP AB := ν∞λX. μ∞λY. B × X + (A → Y )

SPı AB := νıλX. μ∞λY. B × X + (A → Y )
SPs ı AB = B × SPı AB + (A → SPs ı AB)
put : B × SPı AB → SPs ı AB
get : (A → SPs ı AB) → SPs ı AB

SPj AB := μjλY. B × SP AB + (A → Y )
SPs j AB = B × SP AB + (A → SPj AB)
get : (A → SPj AB) → SPs j AB
put : B × SP∞ AB → SPs j AB

We will use the derived types of the constructors put and get below. Note the
asymmetry between SPı and SPj, which shows in the last type of put.

In our analysis, comp t1 t2 is defined by corecursion into SPAC using a lexico-
graphic recursion on (t2, t1). It is conveniently coded with a generalized recursor
fixμ

n, which recurses on the n + 1st argument and is definable from fixμ [3].

comp
: SP AB → SP B C → SP AC
:= fixν

2Λı. λcompν :SP AB → SP B C → SPı AC.
fixμ

1Λj. λcompμ
1 :SP AB → SPj B C → SPs ıAC.

fixμ
0Λk. λcompμ

2 :SPk AB → SPs j B C → SPs ıAC.
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λt1 :SPs k A B. λt2 :SPs j B C. match t2 with
put (c, t′2 : SP B C) → put (c, compν t1 t′2) : SPs ı AC
get (f2 : B → SPj B C) → match t1 with

put (b, t′1 : SP AB) → compμ
1 t′1 (f2 b) : SPs ı AC

get (f1 : A → SPk AB) → get (λa. compμ
2 (f1 a) t2) : SPs ı AC

In the corecursive call to compν , the first argument is casted from SPs k AB
to SP∞ AB using subtyping of inductive types. Such a cast is not available in
Mendler iteration, but could be simulated with Mendler recursion. Hence, comp
is a mixed coiterative/recursive/recursive function.

5 Conclusions

We have presented a construction of saturated sets for equi-inductive and coin-
ductive types and derived two type systems which guarantee termination of
recursion and corecursion under lazy unfolding. In contrast to candidates of re-
ducibility or biorthogonals, saturated sets are closed under unions, hence, the
continuity criteria for sized iso-(co)inductive types developed in previous work
[2] are directly transferable to the equi-setting.

We have given two type systems for terminating (co)recursion in the presence
of equi-(co)inductive types and showed by some examples that they handle mixed
inductive/coinductive types properly. The system of sized types is ready for
extension to higher-kinded (co)inductive types.

Although the operational semantics of corecursive values in the equi-setting
suggests a semantics using biorthogonals, we have succeeded to apply a modifi-
cation of the saturated sets approach. This substantiated the conjecture Colin
Riba made to me, namely, biorthogonals are only required to justify languages
inspired by classical logic.
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Static and Dynamic Analysis: Better Together
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Static analysis and dynamic analysis have dual properties. Static analysis has
high coverage, but is imprecise, and produces false alarms. Dynamic analysis
has low coverage, but has high precision. We present lessons learned from three
different projects, where we have combined the complementary strengths of static
and dynamic analysis to solve interesting problems:

1. The yogi project [2], which combines static abstraction-refinement and di-
rected testing to validate if software components obey safety properties spec-
ified as state machines.

2. The netra project [3], which combines static access control configuration
analysis and runtime checking to find information flow violations.

3. The clarity programming language [1], where a static analysis together
with the clarity compiler and runtime helps guarantee properties that
involve reasoning about asynchrony.
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Abstract. We rationally reconstruct the core of the Coccinelle system,
used for automating and documenting collateral evolutions in Linux de-
vice drivers. A denotational semantics of the system’s underlying seman-
tic patch language (SmPL) is developed, and extended to include vari-
ables. The semantics is in essence a higher-order functional program and
so executable; but is inefficient and limited to straight-line source pro-
grams. A richer and more efficient SmPL version is defined, implemented
by compiling to the temporal logic CTL-V (CTL with existentially quan-
tified variables ranging over source code parameters and program points;
defined using the staging concept from partial evaluation). The compila-
tion is formally proven correct and a model check algorithm is outlined.

1 Introduction

A tedious, vital and frequently occurring software engineering job is to carry out
systematic updates to Device Driver code, often referred to as software evolu-
tion. Many necessary changes are due to collateral evolutions: updates to a given
driver that must be made as a consequence of current and substantial changes to
library modules that the driver depends on. A change in the API of an external
library procedure used by the given driver is a typical example; other common
examples include changes in function signatures and data structures used by the
driver. Finding all the places where collateral evolutions are needed and then
performing the actual update even in a single driver is a non-trivial problem.
Changes to accommodate a single library update may involve searching thou-
sands of files and performing hundreds of code changes. This problem needs an
automated solution, as it is too frequent and important to be left to inexpe-
rienced programmers with traditional text editing and update documentation.
See [2, 3, 5, 6, 7, 8].

The Coccinelle approach has demonstrated considerable pragmatic value. Coc-
cinelle is an executable program transformer that has shown its utility, with sat-
isfactory efficiency and expressivity, for large real application problems including
� Supported by the Coccinelle project under the Danish Research Council for Tech-

nology and Production Sciences.
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device driver code updates [17]. It develops and applies “Semantic Patch” nota-
tion, a concept that abstracts and generalises the practically well-established and
frequently used “patches” well-known to the Linux kernel community. Semantic
patches are described in the semantic patch language SmPL, a domain specific
language inspired by the patch notation. In comparison with the usual Linux
patches, SmPL is much more versatile and more firmly based in programming
language semantics.

Coccinelle has several major components, including ways of recognising soft-
ware patterns frequently occurring in source code (written in C or Java); means
for efficiently performing the needed pattern recognition using a variant of the
temporal logic CTL; and ways to transform the recognised code. See [17,20] for
more details and a wide range of applications.

Analysis: updating source code. The problem is to make consistent changes
to a collection of source programs. An example is to change the way a central
function or procedure is called, e.g., to add an extra argument to its parameter
list. This requires changing both the function or procedure declaration, and all
calls to it.

To avoid struggling from the outset with semantic details of programming
languages such as C or Java we take a top-down approach to the problem of
updating source programs. Transformation semantics is developed in a language-
independent way, carefully side-stepping problems due to inessential but trou-
blesome idiosyncrasies sometimes found in real languages. This approach is able
to cope with real-world languages including C and Java [17, 20].

Linguistic tool: a transformation language, called SmPL in the Coccinelle sys-
tem. A SmPL transformation consists of source language patterns, identifying
the source language constructions to be changed; and insertions and deletions,
marking the changes to be made.

System tool: a transformation engine. This has two inputs: the source program
to be transformed, and the transformation. It produces as output an updated
source program. The developments of this paper are based on the following
assumptions supported by current practice:

1. We assume that the transformation only describes the part of the source pro-
gram to be changed, as most of the source program will remain unchanged.

2. Source program insertions or deletions are mainly order-preserving, so major
textual rearrangements are not needed.

3. There is a need for tokens with large value ranges, too large to be listed
explicitly. A typical example is an identifier, for instance a variable name, a
procedure name, or a constant.

It is essential that Coccinelle be automatic (run without human interaction)
and exhaustive (find all possible places to apply a transformation). Further,
the result of transformation should be predictable. Hence Coccinelle must also
have a minimally surprising semantics, e.g., one free from unexpected pattern
matches. As a corollary, Coccinelle must also detect inconsistent transformation
specifications that perform different transformations, if read in different ways.
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Contribution of the paper. This “theory-practice border” paper formalises
an essential part of SmPL, thus providing a theoretical basis for what has already
proven to be a pragmatic success. It is intended to clarify just what it is that
semantic patches do (at least a subset of them), and to aid understanding some
of the implementational and design challenges that are being met within the
Coccinelle project.

Our main contribution is to rationally reconstruct the core of Coccinelle’s se-
mantic patch language SmPL, concisely and understandably clarifying a number
of points in the core semantics. Our semantics compactly and explicitly describes
a practical system, and has been implemented as a functional program.

Coccinelle has shown the utility of the temporal logic CTL [10] as an interme-
diate language to implement SmPL. (As with compiler intermediate languages,
users need not know of or be aware of CTL.) In this paper we build a theoretical
bridge, proving formally that the natural pattern-matching way to read SmPL
patterns is equivalent to its CTL implementation.

Expressivity and efficiency of the SmPL patterns of [17] are quite satisfactory
in practice. The notation is useful for working software engineers, as it does
not require knowing temporal logic such as CTL formulas; or concepts from
regular expressions, semantics, finite automata theory, or Prolog. Further, SmPL
patterns are much more local than patterns in [11,12,13,14], with less emphasis
on computational futures and pasts.

Related work. Directly related work on software updating includes [4, 11, 12,
13,14,16,17,18] by university groups at Nantes (Muller, Padioleau, . . . ), Copen-
hagen (Lawall, Hansen, Jones, . . . ); Oxford (De Moor, Lacey,. . . ); and Stony
Brook (Liu, Stoller,. . . ). Papers [4, 16] apply regular expressions to program
transformation. Paper [17] is a practice-oriented description of Coccinelle’s se-
mantic patches; and [11,12,13,14] apply CTL to program transformation. Com-
pared with [11, 13, 15, 19], the focus of Coccinelle is not compiler optimisation,
but software updating. Coccinelle is intentionally not semantics-preserving, in
contrast to compiler or program transformer works such as [11,14,15]. The rea-
son: Coccinelle may be used to change program functionality, or to fix or to
detect bugs.

Papers [11, 13] use notation C ⇒ C′ if φ where C is a pattern, C′ is a re-
placement for C, and the enabling condition for applying the rewrite is given by
a formula φ expressed in the temporal logic CTL-FV. Here φ may refer to the
computational past or future, relative to the occurrence of C.

For reasons of efficiency and usability by a broad software engineering com-
munity, Coccinelle does not require familiarity with the sometimes rather subtle
nuances of temporal logic. Instead, Coccinelle uses patterns with variables and
the “...” operator (explained later) to localise transformation sites.

In our experience, enabling conditions for program transformation seem more
naturally expressed using Coccinelle patterns than by using general CTL for-
mulas φ. In principle SmPL may be less expressive than CTL, e.g., it’s not
clear how to express conditions for some classical compiler optimisations such as
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constant propagation or live variables. However, if desired, such effects can easily
be achieved by using Coccinelle’s general scripting framework, discussed in [20].

The Stratego transformation system [1] is less semantics- based than [11,14,15]
but more powerful as a rewriting engine, allowing separation of the rewrite rules
from strategies for their application.

Structure of the paper. The data of a program transformer is a source pro-
gram. A Core-SmPL transformation maps a source program into a target pro-
gram. Its semantics is first written in the style of denotational semantics or
functional programming. For simplicity, a source programs is initially just a
linear sequence of abstract syntax trees, each attributes such as syntactic type,
lexical infomation (e.g., a procedure name or constant value), or application of
a value operator (e.g., +, - or assignment).

A more general and realistic source program is a control flow graph or CFG: a
finite directed graph with program control points as nodes, and whose branching
expresses control flow transfers: control divergence, convergence, and loops.

The initial Core-SmPL semantics is extended to such source programs in a
perhaps unexpected way: the temporal logic CTL is used as an intermediate
language, invisible to the user. This use of CTL is formally proven equivalent to
the denotational semantics for programs with linear structure.

A semantic extension is to add pattern (meta-)variables to Core-SmPL, sig-
nificantly extending its expressivity. The full paper [9] has more details, proofs,
and a model checking algorithm for the extended CTL-V.

2 Core-SmPL: A Core Language for Semantic Patches

In this section we introduce Core-SmPL, a rational reconstruction of the core of
SmPL, and show how it can be used to search for code patterns and to transform
programs. In the terminology of the Coccinelle project such specifications are
called semantic patches which is also the name we adopt in the following.

Syntax of source and target programs. We begin with a “linear source program”
as a working abstraction of “source program”. Later, it will be extended to
include not just linear sequencing, but an arbitrary control flow graph or CFG
with tests, divergence, convergence and loops.

Definition 1. A ground term is a tree structure built from operators. A linear
source program is a sequence of ground terms. Syntax is straightforward:

S ::= G1G2 · · ·Gn A program is a sequence of ground terms
G ::= op(G1, . . . , Gk) k = arity(op) : Op.’s with right numbers of arguments.

A ground term is a variable-free tree structure built by operators from leaves.
Technically a leaf is a 0-ary operator, and may be: a programming language con-
stant; a name, e.g., a program variable or a function name; or a keyword without
arguments. Nonleaf operators have positive arities, i.e., 1 or more arguments. Ex-
ample nonleaf operators include +, -, := (assignment) or if. For compactness
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in presentation and examples, we write sequences (inputs to and outputs from
our program transformer) without separators, and in infix notation.

A table that summarises the operators and arities used in the examples:1

Operator a b c d e f { } distance rate time step + * :=
Arity 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2

Symbols from a fixed alphabet such as a, b, c, . . . , step above are a special case:
operators with arity 0. A program with only 0- ary operators is a string over a
finite alphabet, as studied for decades in formal language and automata theory.

In real programming languages such as C or Java, the terms are subclassified
into syntactic categories such as expression, command, or function declaration;
but such distinctions will not be needed in this paper. (Such a classification
would be called a grammar in compiler terminology, or a signature in algebra.)

Definition 2. A general source program, or CFG, is a binary relation → on a
finite set of control states (i.e., program points), each labelled by a ground term.

The concrete syntax used for semantic patches in the Cocinelle system is similar
to but extends the notation used by the patch program to specify a program
transformation. This patch notation is the de facto standard for communicating
proposed changes and updates among the Linux Kernel developers.

P ::= ε Pattern that matches the empty sequence of terms
| EP A match for E followed by a match for P

E ::= T Pattern that matches a term T
| (P1

′|′ P2) Match P1 or P2

| ... Match a sequence of zero, one, or more arbitrary terms
| −T Delete one T : match it, but do not copy it to the output
| +T Insert T in the output sequence (no matching occurs)

T ::= x A term is like a ground term, but may contain variables
| op(T1, . . . , Tk) k = arity(op): Must have the right numbers of arguments.

x ::= variable A pattern variable

Fig. 1. Syntax of Core-SmPL semantic patches

The pattern “...” matches any sequence of terms. This common pattern may
be familiar from the patch notation used in the output of the diff utility. The
variables appearing in a term T not to be confused with source or target program
variables; they are pattern variables used for matching, essentially the variables
or parameters used in [13, 11, 4, 16].

1 Braces {, } delimit groups of (well-nested!) commands or statements.
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Some Core-SmPL semantics examples. T [[P ]](in) is the set of target programs
that can be obtained by applying pattern P to transform source program in. In
general, T [[P ]](in) = {out1, out2, . . . , outn} means that pattern P can transform
source program in into any one target program in the set {out1, out2, . . . , outn}.

Examples with only 0-ary operators and no pattern variables. A special case
of a source or target program is a string of symbols (i.e., 0-ary operators)
over a finite alphabet A. The first example recognises strings over an alpha-
bet A ⊇ {a, b}. The pattern ...abab... matches strings that contain abab as
a substring. Viewed as a string transformer, pattern ...abab... computes the
identity transformation on strings that contain abab as a substring. It yields the
empty set if applied to strings of other forms.

The pattern ...a-ba-b+e+f... also matches source program strings contain-
ing abab, but the target string is constructed by deleting the two matched b’s
from the source, and inserting symbols e,f just after the matched part abab.

Examples: T [[Pattern]] (Source- program) = set of transformed programs.

1. T [[...abab...]] (abcd) = ∅
2. T [[...abab...]] (cababababd) = {cababababd}
3. T [[...a-ba-b+e+f...]] (cababd) = {caaefd}
4. T [[...a-ba-b+e+f...]] (cababgababd) = {caaefgaaefd}
5. T [[...a-ba-b+e+f...]] (cababababd) = {caaefababd, cabaaefabd,

cababaaefd}

Discussion. For software updating it is important that all matches are detected
(e.g., if a function’s calling mode is to be changed it is vital that all calls be
changed to the new format). Example 1 does not match, so the semantics yields
the empty set on input abcd. Example 2 has three matches in all, but no trans-
formation occurs due to the absence of + or -. Thus the output is a singleton set,
containing only the input sequence. Example 3 removes two b’s and adds ef. In
Example 4 two patterns abab are discovered; for each, two b’s are removed, and
ef is added. In examples 3 and 4 all matches are found and the transformation
results are well-defined since unique.

Example 5 is problematic as three patterns abab are discovered, two of them
overlapping. As a result there are in all three possible transformed programs. The
Coccinelle system only transforms in case n = 1 in output {out1, out2, . . . , outn},
i.e., the effect of the transformation must be uniquely defined.

Examples with pattern variables and k-ary operators. Pattern variables are used
to “remember” bits and pieces of the source program and, as it later will be seen,
to match positions in the input program. Pattern variables are needed to express
realistic source language patterns that contain possibly unbounded data such as
function names, parameter names or constants. The Core-SmPL semantic patch
notation allows (meta-) variables whose values come from such ranges, and allow
testing the source program for equality of such values.
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The source language term distance := rate * time can be matched with
pattern x := y * z by an environment that binds pattern variables x, y, z to
corresponding bits of the source program, e.g.

env = [x �→ distance, y �→ rate, z �→ time]

T [[x := y*z]](distance := rate * time) = {distance := rate*time}
T [[x := x+y]](distance := distance + step) = {distance := distance + step}
T [[x := x*y]](distance := rate * time) = ∅

(the empty set, since distance �= rate)

3 Core-SmPL: Executable Transformation Semantics
(without pattern variables)

We formalise the meaning of semantic patches by a directly executable semantics
for Core-SmPL. This resembles a matcher for regular expressions over strings
of terms, extended with tree transformation and variable bindings. We first de-
velop the semantics for a simplified source language where there are no pattern
variables, and a program is simply a string of ground terms, e.g., symbols. We
will later generalise to allow variables in patterns, and programs with control
transfers such as conditionals and loops.

The Core-SmPL semantic patch semantics is built by adding a transformation
component to a string matcher written in continuation-passing style. Its input
is a finite term string in from the set GroundTerm∗, the set of finite strings
of ground terms. Its output is the set of all outputs corresponding to in: a set
out ⊆ GroundTerm∗. The set out is empty if in does not match the pattern.

In the domain definitions of Figure 2 c is a continuation and a pattern meaning
is an input-output transformation defined using continuation transformers.

in ∈ In = GroundTerm∗ out ∈ Out = 2GroundTerm∗

c ∈ Cont = In → Out
T [[ ]] : P → Cont
P[[ ]] : P → Cont → Cont
E [[ ]] : E → Cont → Cont

Fig. 2. Semantic value domains

Figure 3 contains evaluation rules in a continuation- passing style denotational
semantics. This formulation enables a natural and straightforward formalisation
of searches for all possible matches for a given pattern. In addition, such a
formulation lends itself to implementation in a functional language and indeed
we have made such a prototype implementation.

Nonterminal P stands for “pattern” and G stands for any ground term. To
avoid ambiguity we use ML-like notations to write inputs to and outputs from
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our program transformer: the empty sequence is represented as [], and G :: in
represents the result of putting ground term G at the start of input string in .

– I starts the transformation, with an initial continuation c0 that will copy any
input that may remain.

– II and III resemble a regular expression matcher, expressed using continua-
tion semantics (it’s easy to add a rule for P ∗ in a way similar to “...”).

– III checks to see that the first ground term in the input sequence is G. If
so, continuation c is applied to the remaining input, and G is added to each
output term sequence. If not, no output is produced.

– IV. Deletion works just as E [[G]] c in in group II, except that term G is
not added to the output sequence. Insertion: term G is added to the output
sequence. (No matching is done.)

I :
T [[P ]] = P[[P ]] c0 where c0 in = {in}

II : Sequences of things
P[[ε]] c in = (c in)
P[[ E P ]] c = E [[E]] (P[[P ]] c)

III : Single things
E [[G]] c [] = ∅
E [[G]] c (G′ :: in) = if G = G′ then {G :: out | out ∈ (c in)} else ∅

E [[ P1 | P2 ]] c in = (P[[P1]] c in) ∪ (P[[P2]] c in)

E [[...]] c in = (c in) ∪ {G :: out | G :: in ′ = in and out ∈ (E [[...]] c in ′)}

IV : Deletion, insertion
E [[−G]] c [] = {}
E [[−G]] c (G :: in) = if G = G′ then (c in) else ∅
E [[+G]] c in = {G :: out | out ∈ (c in)}

Fig. 3. Semantic evaluation rules

4 A Practically Better Approach: Compiling SmPL to
CTL

The semantics above explains the meanings of SmPL patterns, and can be ex-
ecuted. However Figure 3 applies only to abstract syntax trees, as is usual in
denotational semantics. In effect, it makes the unrealistic assumption that a
source program is one long ground term sequence.

It also suffers efficiency problems: matching as above is essentially “top-down”,
repeatedly checking the same goals in slightly different contexts due to non-
linear uses of argument c. Pattern expression matching can be complex and
time-consuming, especially if universal path quantification is used (see [4, 16]).
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Because of these and other problems, Coccinelle instead uses instead a two-
step approach: SmPL patterns are translated into the temporal logic CTL. This
happens “under the hood”: users need not know anything about CTL, model
checking, etc. We will argue the equivalence of the denotational semantics with
the more indirect CTL-based version after a quick review of CTL.

CTL is defined in terms of transition systems: directed graphs able naturally
to express program control flow graphs (CFGs) with flow divergence, conver-
gence and loops. Compiling into CTL thereby also allows a smooth extension to
program control flow graphs, an extension done less systematically in [4, 16].

An immediate advantage is performance: model checkers are known to be
fast, with a well-developed theory and practice. Since model checking is done
bottom-up, repeated computation is avoided. A further advantage is that the
interaction between universal and existential quantification over paths is well-
defined in temporal logic, e.g., it does not in principle require extra work to
generalise to patterns with alternating path quantifiers.

A final advantage is flexibility: the same CTL language can be used as an
intermediate language with different translation schemes. This makes it easier
to adapt the Coccinelle approach to applications other than updating and trans-
formation, e.g., bug finding [20].

In the remainder of this paper we mainly focus in using CTL model checking
to search for program patterns rather than program transformation. This is
motivated by the way Coccinelle works: first model checking is used to find all the
relevant program points and then the transformations are performed afterwards.
This has proven to be a simple way to avoid ambiguous transformations. It
also has the practical advantage that it is significantly simpler to formulate
the correctness statements without the transformation component. Extension of
CTL (e.g., with transformation operators ‘+’ and ‘−’ giving judgements of the
form M, s |= φ → M′) will be described in a subsequent publication.

Compiling SmPL into CTL. We now translate SmPL into CTL instead of exe-
cuting. To save space we do not repeat the standard semantics of CTL but refer
instead to [10]. We will prove that the Core-SmPL semantics of Section 3 is a
symbolic composition of this transformation semantics with the CTL semantics.
For now we use classical CTL without variables, so the T appearing below is an
atomic proposition in AP : a ground term as in Definition 2. We show later how
to allow variables in CTL terms, an idea also used in [13, 11]. To simplify the
correctness formulation, we do not here account for transformation by + or -.

Compilation is defined in Figure 4 using functions Tctl : P → CTL, Pctl[[ ]] :
P → K → CTL and Ectl[[ ]] : E → K → CTL (note that the CTL and K
are also used as types in the figure). Data structure k ∈ K is related to the
continuation functions of the executable semantics of Section 3. For pragmatic
reasons, the K data structure distinguishes between two kinds of continuations,
denoted tail and after, representing respectively continuations that are final
and continuations that need further work. We defer detailed explanation to [9].
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k : K = tail | after CTL

Tctl[[P ]] = Pctl[[P ]] tail

Pctl[[ε]] tail = true
Pctl[[ε]] (after φ) = φ

Pctl[[E P ]]k = Ectl[[E]](after(Pctl[[P ]]k))

Ectl[[G]] tail = G ground term G regarded as atomic prop.
Ectl[[G]] (after φ) = G ∧ AXφ

Ectl[[P1 | P2]]k = (Pctl[[P1]]k) ∨ (Pctl[[P2]]k)

Ectl[[...]] tail = AF exit end of the input (exit is in Definition 3)
Ectl[[...]] (after φ) = AF φ all future states must satisfy φ

Fig. 4. Translation from SmPL into CTL

Correctness of the compilation to CTL. We now argue the translation correct by
relating the executable semantics of Section 3 to CTL satisfaction of a translated
term. As we only consider patterns P without + or −, the net semantic effect of
T [[P ]] in is to transform input in into either {in} or ∅. To state correctness we
first define a link between input sequences and transition systems.

Definition 3. Let in = G1G2 . . . Gn be a linear source program: a sequence of
ground terms. The corresponding transition system (Figure 5) is denoted în. This
has states 1, 2, . . . , n, n+1 with labels L(1) = {G1}, . . . , L(n) = {Gn}, L(n+1) =
{exit} and transitions {1 → 2, . . . , n → n + 1, n + 1 → n + 1}.

cin = �������	1 �� �������	2 �� . . . �� �������	n �� �������	n + 1

��

G1 G2 · · · Gn exit

Fig. 5. Model for a linear string as source program

Theorem 1. For any linear source program in and pattern P without +, − or
variables, we have T [[P ]] in = {in} if and only if în , 1 |= Tctl[[P ]].

A definition aids stating a sufficiently strong induction hypothesis:

Definition 4. Relation c ≈ k holds if k = tail and ∀in (c(in) = {in}), or if
k = after φ and ∀in ( c(in) = {in} if and only if în, 1 |= φ ).
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We prove this by structural induction on P . The desired result follows by struc-
tural induction on P, E, using the definitions of P , Pctl, E , Ectl and the following.
See the full paper [9] for detailed proof.

Theorem 2. If c ≈ k it holds that ∀P. ( P [[P ]] c ≈ after(Pctl[[P ]] k) ) and
∀E. ( E [[E]] c ≈ after(Ectl[[E]] k) ).

Relating regular expressions and CTL. A natural question: can the translation
be extended to allow an arbitrary regular expression in place of P? Alas, there
seems to be no natural way to translate a general regular pattern P ∗ into CTL.

5 Semantics of Core-SmPL with Pattern Variables

We now enrich Core-SmPL, extending the language of patterns to include pattern
variables (essentially the parameters of [16, 4] or meta-variables of [11, 12, 14]).
An environment parameter holds the values bound to pattern variables.

In = GroundTerm∗ Out = 2GroundTerm∗

c : Cont = Env → In → Out (c is a continuation)
T [[ ]] : P → In → Out P[[ ]] : P → Cont → Cont E [[ ]] : E → Cont → Cont

Fig. 6. Semantic value domains for Core-SmPL with variables

The input to a Core-SmPL semantic patch is still a finite sequence in =
G1G2 . . .Gn ∈ GroundTerm∗ of ground terms Gi ∈ GroundTerm, and the
matcher output is a set of such sequences: a set out ⊆ GroundTerm∗, empty if in
does not match the pattern. Pattern semantics has to be extended, though, to in-
clude bindings of pattern variables. Operations on environments: env(T ) denotes
the result of replacing every pattern variable x in T by env(x). env(T ) is defined
only if every env(x) is defined. Updating the environment env with env ′ is de-
noted by env [env ′], i.e., env [env ′](x) = env ′(x) if x ∈ dom(env ′) and env [env ′] =
env(x) otherwise. (Note that dom(env[env ′]) = dom(env) ∪ dom(env ′).)

Further (as in Prolog), MGU (T1, T2) denotes the most general unifier of T1, T2.
Notation: MGU (T1, T2) equals “some env” where env is the most general unifier
env if it exists, else MGU (T1, T2) equals “fail”. For SmPL, T1 may contain
pattern variables, but T2 will always be a ground term. Here GroundTerm∗ and
Term∗ mean any finite sequence of ground terms and terms respectively.

– I starts, with empty variable environment env0 and initial continuation c0.
– II is just as before except for the extra environment parameter.
– III yields the empty output set on empty input. Otherwise, the first input

ground term G is matched against pattern T (after applying the current
environment to instantiate its pattern variables). If matching succeeds with
env ′, new bindings found in env ′ are added to the current environment env .
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An example: pattern x:=x+y is successfully matched against program input
di := di + st to give new environment bindings [x �→ di, y �→ st]:

E [[x:=x+y]] c [] (di := di+ st)::in =
{(di := di + st)::out | out ∈ c[x �→ di, y �→ st]}

– IV. Deletion and insertion are as for Core-SmPL, except the environment is
applied to term T as in II.

An implementation. These rules have been implemented in a functional program-
ming language, and gave the expected outputs on all this paper’s examples. See
the full paper [9] for details.

I : T [[P ]] = P[[P ]] c0 env0 where dom(env0) = ∅ and
c0 env in = {in}

II : Sequences of things
P[[ε]] c env in = c(in)
P[[ E P ]] c = E [[E]] (P[[P ]] c)

III : Single things
E [[T ]] c env [] = {}
E [[T ]] c env (G :: in) = case MGU (env T, G) of

fail : {}
some env ′ : {G :: out | out ∈ (c env [env ′] in)}

E [[ P1 | P2 ]] c env in = (P[[P1]] c env in) ∪ (P[[P2]] c env in)

E [[...]] c env in = (c in) ∪
{G :: out | G :: in ′ = in and out ∈ (E [[...]] c env in ′)}

IV : Deletion, insertion
E [[−T ]] c env [] = {}
E [[−T ]] c env (G :: in) = case MGU (env T, G) of

fail : {}
some env ′ : c env [env ′] in

E [[+T ]] c env in = {(env T ) :: out | out ∈ (c env in)}

Fig. 7. Semantic evaluation rules with variables

6 Semantics of CTL-V with Pattern Variables

The Coccinelle implementation translates SmPL patterns with variables into
CTL-V: a CTL extension with quantified variables ranging over fragments from
the source program’s CFG. The correctness argument of Section 4 was expressed
in terms of classical, variable-free, CTL, so some changes are necessary to express
correctness of the more general SmPL with pattern variables.

CTL-V = Staged CTL with quantifiers, a variant intended to be especially
suitable for program manipulation. One extension over classical CTL is (as in
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Definition 2) to allow atomic propositions ap to have full tree-structured terms
as values. The idea is to extend traditional models by allowing a state to be
decorated with pieces of source program information, e.g., possibly unbounded
data such as function names, parameter names or constants.

These are referred to using pattern variables so only a term’s top-level syn-
tactic structure need be expressed: a CTL-V atomic proposition may be an
arbitrary term, with or without variables. This generalises an approach seen
in [13, 12, 11]. (Variables used in a similar way are called parameters in [4, 16].)
We generalise a bit to allow explicit quantification, with existential quantifiers
appearing anywhere in a formula.

CTL-V syntax and its satisfaction relation. For brevity we just show how CTL-V
pattern recognition works, and omit details of how the language and algorithms
are extended to carry out program transformation. The development is intended
only to clarify the CTL-V semantics, and does not at all account for efficiency
issues (e.g., as done in the Coccinelle system).

Definition 5. Let x range over Var, a set of variables2. A CTL-V formula is
anything generated by the following context-free grammar, where ap ∈ AP may
be a term containing variables:

φ ::= ap | ¬φ | φ ∧ φ | φ ∨ φ | AXφ | AFφ | A(φUφ) | EXφ | ∃xφ

By Definition 2 the CFG of a source program P is a binary relation → on states,
each labelled by a single ground term G. A pattern-variable value will typically
be a fragment of the source program P to be analysed. The set of all possible
values is thus the set of all subterms of P , and so a finite set. We will henceforth
denote this set by Val = {v1, . . . , vm}.

Before starting with CTL-V-satisfaction and model checking, we need pre-
cisely to define the working of substitutions that bind pattern variables. A sub-
stitution binds the free variables of a CTL-V-formula φ to values in Val . A term
atomic proposition T is true iff T can be unified with G.

Definition 6. The set of free variables fv(φ) of CTL-V formula φ is defined as
expected. A formula φ is closed if fv(φ) = ∅. A substitution is a partial function
θ : FinSet(Var) → Val mapping a finite set of CTL-variables to values.

Definition 7. The satisfaction relation M, s |=θ φ for CTL-V is defined induc-
tively in Figure 8. (M is elided for brevity.)

Staging. The “silver bullets” of this approach: pattern (meta-)variables, quan-
tification, and the use of two stages. The term “staging” comes from partial
evaluation and refers to the binding times, i.e., the times at which various things
are specified or computed. A key point is that source program-dependent values
such as identifiers, although unbounded if one consider arbitrary programs, have
a bounded finite value range for any one source program. Hence V al is a
finite value set for the program about to be transformed.
2 These are names of pattern variables, not program variables.
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s |=θ T iff some θ = MGU (T, v) where L(s) = {v}
s |=θ ¬φ iff not s |=θ φ
s |=θ φ1 ∧ φ2 iff s |=θ φ1 and s |=θ φ2

s |=θ φ1 ∨ φ2 iff s |=θ φ1 or s |=θ φ2

s |=θ AXφ iff ∀σ ∈ P(s) . σ[1] |=θ φ
s |=θ EXφ iff ∃σ ∈ P(s) . σ[1] |=θ φ
s |=θ A(φ1Uφ2) iff ∀σ ∈ P(s) . ∃j ≥ 0 .

[∀k . 0 ≤ k < j ⇒ σ[k] |=θ φ1] ∧ σ[j] |=θ φ2

s |=θ AFφ iff ∀σ ∈ P(s) . ∃j ≥ 0 . σ[j] |=θ φ
s |=θ ∃xφ iff s |=θ[x�→v1] φ or . . . or s |=θ[x�→vm]

Fig. 8. CTL-V satisfaction relation

Mapping CTL-V to CTL. Recall that Val = {v1, . . . , vm} and consider the
following mapping from CTL-V to CTL:

[[T ]]θ = θ(T ) [[φ ∧ φ′]]θ = [[φ]]θ ∧ [[φ′]]θ [[¬φ]]θ = ¬([[φ]]θ)
[[∃xφ]]θ = [[φ]]θ[x �→ v1] ∨ . . . ∨ [[φ]]θ[x �→ vm]

The following theorems establish the correctness of the above mapping and de-
cidability of CTL-V model checking respectively:

Theorem 3. For any M, s and θ that closes φ: M, s |= [[φ]]θ iff M, s |=θ φ.

Theorem 4. It is decidable, given Kripke model M = (S, →, L), state s ∈ S,
substitution θ and CTL-V formula φ, whether M, s |=θ φ.

In [9] we show a model check algorithm for CTL-V that works because of staging
and the corollary finiteness of Val. It sidesteps some tricky algorithmic problems
involved in an efficient way to implement ¬φ, ∃φ, as was necessary in [13, 16]
(and is also done in Coccinelle).

7 Relation to the Coccinelle System

We have made a rational reconstruction of the core of the Coccinelle system. We
now briefly review how the real Coccinelle system differs from, and extends, our
reconstruction. The most important difference: this paper does not cover the full
semantic patch language (SmPL) implemented by Coccinelle.

Other differences are mainly concerned with implementation and issues relat-
ing to the underlying models, such as nesting of program structures and matching
balanced braces. These particular issues are handled by adding a special atomic
proposition, called Paren(x). The Paren(x) proposition is true at some state if
the variable x equals the current nesting level of program braces. This makes it
possible to constrain searches to specific function definition bodies or program
block structures, e.g., to skip over the “then” branch of a conditional.
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Efficiency issues. The Coccinelle system implements a number of optimisations
in order to obtain acceptable execution times. These include use of constructive
negation for a more efficient implementation of ∃ than in Definition 7; reducing
the scope of quantifiers; and a number of low-level implementation techniques.
Constructive negation directly encodes “negative information” about variable
bindings, i.e., recording that a given variable must not be bound to a certain
value. Reducing the scope of quantifiers has the effect of reducing the size and
number of environments that have to be propagated by the algorithm.

In practise these optimisations have had a profound effect on execution times.

Transformation after model checking. In order to perform program transforma-
tions based on successful matches obtained by model checking, the Coccinelle
system adds so-called witness trees to the CTL-V semantics. These record the
variable bindings (substitutions) that led to successful matches. To do trans-
formation some such structure is needed, to record variable bindings that are
removed from a substitution when a quantified variable is bound to a value.

8 Conclusion

The Coccinelle system is a well-established program transformer currently being
used by practitioners to automate and document collateral evolutions in Linux
device drivers. We presented a compact, precise and self-contained semantics of
Core-SmPL, in essence a rational reconstruction of the heart of the system. This
gives it a solid foundation, one that motivates the structure of the Coccinelle
framework, and justifies it theoretically.

Technically: we defined the semantics using continuation-passing style denota-
tional semantics; made a prototype implementation in Haskell; translated SmPL
to a novel implementation language (the temporal logic CTL); and formally
proved the translation faithful to the denotational semantics. Partial evaluation’s
“staging” concept was used to define CTL-V, a CTL extension with existentially
quantified variables that range over program points and source code parameters.
This led to a more complex but practically more expressive and useful version
of Core-SmPL. In the full paper [9] a model checking algorithm for CTL-V is
outlined and exemplified on a string matching problem.

These results show a pleasing relation between theory and practice, and give
descriptions of a complex working practical system. The descriptions are compact
and (we hope) comprehensible to outsiders without previous experience with
Coccinelle. Ideally, the insights gained here will be of benefit and perhaps even
a guide to others with similar goals.

Acknowledgements. The authors wish to thank all the people involved with the
Coccinelle project: Gilles Muller, Yoann Padioleau, Jesper Andersen, Henrik
Stuart and, especially, Julia L. Lawall.
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Abstract. Global value numbering (GVN) is an important static anal-
ysis technique both for optimizing compilers and program verification
tools. Existing complete GVN algorithms discovering all Herbrand equiv-
alences are all inefficient. One reason of this is the intrinsic exponential
complexity of the problem, but in practice, since the exponential case is
quite rare, the more important reason is the huge data structures anno-
tated to every program point and slow abstract evaluations on them site
by site. In this paper, we present an SSA-based algorithm for complete
GVN, which uses just one global graph to represent all equivalences at
different program points and performs fast abstract evaluations on it.
This can be achieved because in SSA form, interferences among equiva-
lence relations at different program points can be entirely resolved with
dominance information. We implement the new algorithm in GCC. The
average proportion of execution time of the new algorithm in the total
compilation time is only 0.36%. To the best of our knowledge, this is the
first practical complete GVN algorithm.

1 Introduction

Global value numbering (GVN) is an important static analysis technique. It de-
tects equivalences of program expressions, which have a variety of applications.
Optimizing compilers use this information to detect and eliminate semantic re-
dundant computations [2,14,16,11,15], and useless branches. Program verifica-
tion tools use it to verify program assertions. Translation validation tools use it
to check the validation of program transformations [10], such as the correctness
of an optimizer, by discovering equivalences of different programs.

Since checking general equivalence of program expressions is an undecidable
problem even when all conditionals are treated as non-deterministic [12], most
GVN algorithms treat both all conditionals as non-deterministic and all opera-
tors as uninterpreted. The equivalence relation with these restrictions is called
Herbrand equivalence [13]. The GVN algorithms that can discover all Herbrand
equivalences are referred to as complete GVN algorithms.

Unfortunately, existing efficient GVN algorithms used in practice are all in-
complete. The simple hash-based GVN algorithm fails to detect many kinds of
equivalences in the presence of loops and joins. Alpern, Wegman and Zadeck’s
(AWZ) partition refinement algorithm [1] is based on the static single assignment
(SSA) form [4,5]. It treats phi nodes as uninterpreted operators, so equivalences
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among phi nodes and ordinary expressions can’t be discovered. Rüthing, Knoop
and Steffen (RKS) improved on AWZ algorithm by incorporating several rewrit-
ing rules to remedy this problem [13]. However, their algorithm remains incom-
plete both for acyclic and cyclic programs [8]. Gargi proposed a set of balanced
algorithms that are efficient, but also incomplete [6].

Recently, Gulwani and Necula proposed a randomized polynomial GVN algo-
rithm [7] based on the idea of random interpretation, which involves performing
abstract interpretation using randomized data structures and algorithms. This
algorithm is complete and efficient. However, unlike other GVN algorithms, there
is a small probability that this algorithm deduces false equivalences, i.e. it’s not
sound. False equivalences are acceptable for program verification tools as long as
their appearance probability can be made small enough. However, for compilers
this is strictly disallowed.

The obstacle of applying powerful sound and complete GVN algorithms [9,15,8]
in practice is their unacceptable low efficiency. Theoretically, all complete GVN al-
gorithms have exponential complexity in the size of the program [8]. To this prob-
lem, Gulwani and Necula have proposed a polynomial algorithm that computes
all Herbrand equivalences among terms with limited sizes [8]. In practice, choos-
ing the size limitation to the program size is sufficient. Moreover, the exponential
case is quite rare in practical programs. Thus, the exponential complexity prob-
lem is not really crucial now. The more important reason of the low efficiency of
complete GVN algorithms is the huge data structures annotated to every program
point and slow abstract evaluations on them site by site [13].

To this problem, we propose a new SSA-based complete GVN algorithm,
which uses just one global graph to represent all equivalences at different pro-
gram points and performs fast abstract evaluations on it. Previous complete
GVN algorithms all perform abstract interpretation [3] on ordinary programs.
Transforming these algorithms to those working on programs in SSA form is
trivial (only need to add abstract interpretation function for phi nodes that can
be regarded as copy statements copying values from their operands correspond-
ing to incoming edges to their target). However, we observe that in SSA form,
since each variable has only one definition site and its available scope is pro-
gram points dominated by its definition site, interferences among equivalence
relations at different program points can be entirely resolved with dominance
information. Therefore, performing abstract evaluations on just one global value
number graph is possible. Moreover, using global equivalence representation also
greatly speeds up abstract evaluations, since equivalence relation changes caused
by each statement only needs to be applied to the global graph once rather than
being transferred to all affected local graphs one by one. The difficulty of this
achievement is choosing the abstract evaluation order. Naively performing ab-
stract evaluations in an arbitrary order with the global value number graph may
cause information inconsistency problem and loss of precision. However, we find
that performing abstract evaluations through all edges of a spanning tree of the
control flow graph and all other edges separately can conquer this problem.
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In the rest of this paper, Section 2 defines the program representation and
some relevant notations used in this paper. Section 3 reviews the traditional
complete GVN algorithm working on programs not in SSA form. Section 4 ex-
tends the basic algorithm to the SSA-based version, and shows how a global
value number graph is used to represent all local equivalences. Then, the abstract
evaluation order problem is discussed, and the order used by our algorithm is
shown to be correct. Section 5 gives implementation details of our algorithm and
shows how to restrict it to be polynomial based on the approach proposed in [8].
Section 6 gives experimental results, and Section 7 concludes the paper.

2 Program Representation

We use notations V , O and F to denote program variable set, operator set, and
nonfunctional operation set respectively. For notation simplicity, we also regards
constants as variables belonging in V . For example,

V = {x1, x2, 21, −9, . . .} O = {+, −, . . .} F = {load, store, call, branch, . . .}

The function arity : (V ∪ O ∪ F ) → ω is defined as follows:

arity(x) =
{

0 x ∈ V
operands number of x x ∈ O ∪ F

We assume statements have been decomposed into such a simple form:

x0 = f(x1, x2, . . . , xarity(f)), where f ∈ O ∪ F , xi ∈ V.

If f ∈ F , we say that statement/expression is a relevant statement/expression,
whose result relies not only on its operands but its position relative to other
relevant statements, and it may also cause side effects. For concept unification,
we regard parameters and constants as results of hidden relevant statements just
after program entry. For a variable x, def(x) denotes x’s definition statement. For
a statement s, lhs(s) and rhs(s) denote the left and right hand side expressions of
s respectively. For an expression e, V ars(e) denotes the set of variables appearing
in e.

A program P is represented by a directed flow graph P =(NP , EP , entry, exit).
The node set NP consists of statements, join nodes that merge more than one
control flow, and entry and exit nodes of P . The edge set EP represents non-
deterministic control flows. For a node n of a directed multigraph, we use succ(n)
to denote the successor sequence of n and succ(n)[i] the i-th successor. Corre-
spondingly, pred(n) and pred(n)[i] are for the predecessor sequence and the i-th
predecessor of n.

3 Traditional Complete Global Value Numbering

In this section, we review the three components of the traditional complete GVN
algorithm as an abstract interpretation problem.
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3.1 Abstract Semantic Domain

The abstract semantic domain of the GVN problem is the lattice of equivalence
relations of expressions. An equivalence relation of expressions can be compactly
represented by an annotated directed acyclic graph (DAG), which is called Struc-
tured Partition DAG (SPDAG) in [15] and Strong Equivalence DAG (SED) in
[8]. In this paper, we use a similar data structure called Value Number DAG
(VNDAG) to represent equivalences. A VNDAG is a labeled directed acyclic
graph D = (ND, ED, LD, MD) satisfying:

1. (ND, ED) is a directed acyclic graph with node set ND and edge set ED.
2. LD : ND → V ∪ O ∪ {⊥, �} is a labeling function satisfying ∀ν ∈ ND.

arity(LD(ν)) = |succ(ν)|.
3. ∀ν1, ν2 ∈ ND. (LD(ν1) = LD(ν2) = l ∧ ∀ i ∈ [1, arity(l)]. succ(ν1)[i] =

succ(ν2)[i]) → ν1 = ν2.
4. MD : V → ND is a function mapping each variable to a node of the DAG.

Every node of a VNDAG represents a value number. A node is labeled by either
a variable x ∈ V , indicating that it’s a leaf node, or an operator o ∈ O, indicating
that it has arity(o) successors, or the special symbols ⊥ or �. In a VNDAG,
there is at most one node with a given label and a given sequence of successors.

For any VNDAG D, every value number ν ∈ ND represents a variable set

AD(ν) = {x ∈ V | MD(x) = ν}

and an expression set

TD(ν) =

⎧
⎪⎪⎨

⎪⎪⎩

AD(ν) LD(ν) ∈ V
AD(ν) ∪ {o(t1, . . . , tn) | ti ∈ TD(succ(ν)[i])} LD(ν) = o ∈ O
∅ LD(ν) = ⊥
{t | V ars(t) ⊆ AD(ν)} LD(ν) = �

Note that TD(ν⊥) is ∅ and TD(ν�) contains all expressions whose variables have
the value number ν�.

We use the notation D |= t1 = t2 to denote that the VNDAG D implies that
expressions t1 and t2 are equivalent. Then, the equivalence of any two expressions
represented by VNDAG D is deduced as follows (here x ∈ V , o ∈ O, and t, ti
and t′i denote any expressions):

D |= x = t iff {x, t} ⊆ TD(MD(x))
D |= o(t1, . . . , tn) = o(t′1, . . . , t

′
n) iff D |= t1 = t′1 ∧ . . . ∧ D |= tn = t′n

The abstract semantic domain is in fact the lattice D of all VNDAGs including
two special VNDAGs D⊥ denoting the empty relation, and D� denoting the
universal relation.

For a VNDAG D and a variable x, the function newvn(D, x) adds a new node
labeled by x to D and returns it. For a non-relevant expression t, the following
function returns a value number ν such that t ∈ TD(ν).

vn(D, t) =
{

MD(t) t ≡ x ∈ V
find(D, o, vn(D, t1), . . . , vn(D, tn)) t ≡ o(t1, . . . , tn)
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where, find returns an existing node with corresponding label and successors,
or a newly created one (which is also added to D) if such a node is not found. In
practice, the VNDAG and find can be implemented with a hash table. Simplifi-
cations and normalizations, such as constant folding and expression reassociation
can be integrated into find so that more equivalences can be detected.

3.2 Abstract Interpretation Function

Each node in NP of a program P is interpreted by the abstract interpretation
function θ : NP × D → D defined as follows:

θ(n, D) =

⎧
⎨

⎩

let D′ = D in D′[MD′ [newvn(D′, x)/x]/MD′ ] n ≡ x = f(. . .)
let D′ = D in D′[MD′ [vn(D′, t)/x]/MD′ ] n ≡ x = t
let D′ = D in D′ otherwise

The informal meaning of θ is that: copy D to D′ first; then 1) for a relevant
statement, add a new node labeled by its left hand side variable to D′ and set
its value number to the new node, and return the updated D′; 2) for a non-
relevant statement, get the node of its right hand side expression and set its left
hand side variable’s value number to that node, and return the updated D′; 3)
for other nodes (join nodes and entry and exit), return the unchanged D′.

3.3 Abstract Evaluation

For a program P , each edge e ∈ EP is associated with a VNDAG denoted as
vndag(e). We use dest(e) to denote the destination node of e. For a program
node n ∈ NP , we use succe(n) to denote the set of edges whose source node is
n, and prede(n) the set of edges whose destination node is n. D1 � D2 returns a
VNDAG that represents equivalences represented by both D1 and D2 (refer to
[8] for the implementation of �). D1 � D2 iff the equivalence relation represented
by D1 is a strict subset of that represented by D2. Then, the abstract evaluation
algorithm for the complete GVN is given in Figure 1.

foreach e ∈ EP do vndag(e) := D�1

worklist := succe(entry)2

while worklist �= ∅ do3

Take e from worklist4

foreach e′ ∈ succe(dest(e)) do5

D := vndag(e′) � θ(dest(e), vndag(e))6

if D � vndag(e′) then7

vndag(e′) := D8

worklist := worklist ∪ {e′}9

Fig. 1. Traditional complete GVN algorithm
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4 SSA-Based Complete Global Value Numbering

4.1 The Trivial SSA-Based Algorithm

In SSA form, every variable has exactly one definition site, and all statements
using it as an operand must be dominated by its definition site. This property is
achieved by inserting phi nodes at appropriate join nodes and renaming variables
for operands and targets of statements and phi nodes [4,5]. The only new notion
of the SSA form is the phi node. Thus, to transform the traditional complete
GVN to the SSA-based version, we only need to replace join nodes with phi
nodes in the program’s representation, and define the abstract interpretation
function for phi nodes as follows:

θ(x0 = φ(x1, . . . , xn), D, i) = let D′ = D in D′[MD′ [MD′(xi)/x0]/MD′ ]

where, the new parameter i is the number of the incoming edge through which
the abstract evaluation reaches that phi node. For other nodes, parameter i is
ignored. During the abstract evaluation, phi nodes at the same join node are
evaluated in parallel, since just evaluating parts of them doesn’t make sense.

4.2 Use One VNDAG to Represent All Equivalences

With the property of the SSA form, we extend the expression set represented by
each VNDAG node by adding a program edge parameter and further extend the
equivalence deducing rules so that just one VNDAG can represent all equivalence
relations at different program edges. We use the notation dom to denote the
dominance relation between program nodes or edges. For a program P , each
edge e ∈ EP , the expression set

TD(e, ν) = {t ∈ TD(ν) | ∀x ∈ V ars(t).def(x) dom e}

contains all expressions represented by ν and available at e. We use the notation
D |=e t1 = t2 to denote that the VNDAG D implies that expressions t1 and t2 are
equivalent at e. Then, the equivalence of any two expressions at e represented
by D is deduced as follows (here x ∈ V , o ∈ O, and t, ti and t′i denote any
expressions):

D |=e x = t iff {x, t} ⊆ TD(e, MD(x))
D |=e o(t1, . . . , tn) = o(t′1, . . . , t

′
n) iff D |=e t1 = t′1 ∧ . . . ∧ D |=e tn = t′n

Figure 2 shows a program and the VNDAG representing all Herbrand equiv-
alences in it. For example, we have the following term sets:

TD(5) = {a1}
TD(2) = {c0}
TD(7) = {x1, z0} ∪ {a1 + c0}
TD(L2, 7) = {x1, z0, a1 + c0}

Then, we can deduce that D |=L2 x1 = z0, D |=L2 x1 + c0 = (a1 + c0) + c0, etc.
(RKS-algorithm fails to detect the equivalence of x1 and z0 at L2.) Note that,
the only VNDAG represents all Herbrand equivalences at all program edges.
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input: a0, b0, c0

x0 = a0 + c0

a1 = φ(b0, b1)

b1 = φ(a0, a1)

x1 = φ(y0, y1)

y1 = φ(x0, x1)

z0 = a1 + c0

+4 +7 +8

c0
2b1

6a1
5b0

1

a1 : 5 z0 : 7

a0 : 0

b0 : 1

x0 : 3 x1 : 7

b1 : 6

y0 : 4 y1 : 8

(a) Original program (b) SSA form of the program

(c) VNDAG of the program

a0
0

+3

input: a, b, c

x = a + c

y = b + c

z = a + c

y0 = b0 + c0

L1

L2

c0 : 2

(d) Value number of each variable (MD)

t = a; a = b; b = t

t = x; x = y; y = t

Fig. 2. A program and the VNDAG representing all Herbrand equivalences in it. In
(c), the superscript of variable and operator is a unique number representing that node
in this figure.

4.3 Abstract Evaluation with One Global VNDAG

The hard part is performing abstract evaluations with just one global VNDAG.
The naive idea is using the global VNDAG to replace all local VNDAGs ap-
pearing in the original abstract evaluation algorithm. Unfortunately, it doesn’t
always work correctly when joins and loops exist. This is because performing
abstract evaluations in an arbitrary order can’t ensure that equivalence rela-
tions represented by the global VNDAG involved in an operation are always
consistent. For example, if the abstract evaluation process reaches a phi node
x0 = φ(x1, x2) through its left incoming edge without touching its right incom-
ing edge, then x1 may have been set to a new equivalence class but x2 is still in
the old one. Thus, the meet operation after this node doesn’t make sense and
generates wrong results.

To solve this problem, we adopt a particular evaluation order since the eval-
uation order can be arbitrary [9]. The edges of a program P are divided into
two subsets: the spanning tree (whose root node is entry) edges EtP and others
EP −EtP . Now, we use two global VNDAGs D and D1. D is initialized to D� at
the beginning and D1 backups the original D before each evaluation iteration. In
the i-th evaluation iteration, the (i−1)-th (by referring to D1) equivalence rela-
tions of edges in EP −EtP and the i-th (by referring to D) equivalence relations
of edges in EtP are processed in a top-down order of the spanning tree, and the
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results are saved in D. The iteration continues until D reaches the fixed point.
Figure 3 gives the formal algorithm. Though two global VNDAGs are used here,
one is enough if the algorithm is subtly designed. The next section shows how
we achieve this.

D := D�1

repeat2

D1 := D3

foreach e ∈ EtP in a top-down order do4

n := dest(e)5

let i satisfy that prede(n)[i] = e6

D := θ(n, D1, 1) � . . . � θ(n, D1, |prede(n)|) � θ(n, D, i)7

until D = D18

Fig. 3. SSA-based complete GVN algorithm with global VNDAG

We show the correctness of this algorithm by building the correspondence
between it and the algorithm shown in Figure 4, which is obviously a sound and
complete GVN algorithm since compared with the trivial SSA-based algorithm,
only the abstract evaluation order is changed (first for non-tree edges and then
for tree edges in a top-down order).

foreach e ∈ EP do vndag(e) := D�1

repeat2

foreach e ∈ EP − EtP do3

foreach e′ = succc(dest(e))[i] do4

vndag(e′) := vndag(e′) � θ(n, vndag(e), i)5

foreach e ∈ EtP in a top-down order do6

foreach e′ = succc(dest(e))[i] do7

vndag(e′) := vndag(e′) � θ(n, vndag(e), i)8

until no vndag(e) changed in this iteration9

Fig. 4. SSA-based complete GVN algorithm with local VNDAGs

To connect a global VNDAG with a set of local VNDAGs, we introduce the
function η : D × EP → D. For any global VNDAG D ∈ D, program edge e ∈ EP

and any expressions t1 and t2, η(D, e) is defined to be a local VNDAG D′ ∈ D

satisfying that D′ |= t1 = t2 iff D |=e t1 = t2, i.e. D′ is the local VNDAG at
e representing the same equivalence relation as D at e. Let R(D) denote the
equivalence relation represented by D, Na(e) denote the set of variables not
available at e, and for a variable set X , Pairs(X) = {〈t1, t2〉 | V ars(t1) ∩ X �=
∅ ∨ V ars(t2) ∩ X �= ∅}. Then, R(η(D, e)) = R(D) − Pairs(Na(e)). About η, θ
and �, the following two lemmas hold:

Lemma 1. For any D1, D2 ∈ D, e ∈ EP , η(D1 � D2, e) = η(D1, e) � η(D2, e).
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Proof. We only need to show that the equivalence relations represented by
VNDAGs of the two sides are equivalent. R(η(D1 � D2, e)) = R(D1 � D2) −
Pairs(Na(e)) = R(D1) ∩ R(D2) − Pairs(Na(e)) = (R(D1) − Pairs(Na(e))) ∩
(R(D2) − Pairs(Na(e))) = R(η(D1, e)) ∩ R(η(D2, e)) = R(η(D1, e) � η(D2, e)).
Thus, the proposition holds. ��

Lemma 2. For any e ∈ EP , let n = dest(e), e′ ∈ succe(n), then η(θ(n, D, i), e′)
= η(θ(n, η(D, e), i), e′).

Proof. Let θR denote the abstract interpretation function on equivalence rela-
tions. We omit the first parameter n of θ and θR for simplicity in this proof since
they are all the same. R(η(θ(η(D, e), i), e′)) = R(θ(η(D, e), i))−Pairs(Na(e′)) =
θR(n, R(D)−Pairs(Na(e)), i)−Pairs(Na(e′)) =a θR(n, R(D), i)−Pairs(Na(e)
− {lhs(n)}) − Pairs(Na(e′)) =b θR(n, R(D), i) − Pairs(Na(e′)) = R(η(θ(D, i),
e′)). In the equation, =a is because θR only removes and adds equivalence pairs
belonging in Pairs({lhs(n)}) from and to the input relation. =b is because
Pairs(Na(e) − {lhs(n)}) ⊆ Pairs(Na(e′)). ��

In the new algorithm, each step of interpretation and meet operations on the
global VNDAG corresponds to a set of operations on a set of local VNDAGs.
The following lemma builds the connection between the new algorithm working
on the global VNDAG and that working on local VNDAGs.

Lemma 3. At line 7 of Figure 3, for any e′ ∈ succe(n) and ej = prede(n)[j],
let k = |prede(n)|, then η(D, e′) = θ(n, η(D1, e1), 1) � . . . � θ(n, η(D1, ek), k) �
θ(n, η(D, e), i)

Proof. We omit the first parameter n of θ for simplicity in this proof since they
are all the same.

R(η(D, e′)) = R(η(θ(D1, 1) � . . . � θ(D1, k) � θ(D, i), e′))
= R(η(θ(η(D1, e1), 1), e′) � . . . � η(θ(η(D1, ek), k), e′) � η(θ(η(D, e), i), e′))
=R(θ(η(D1, e1), 1)) ∩ . . . ∩ R(θ(η(D1, ek), k)) ∩R(θ(η(D, e), i))−Pairs(Na(e′))
=a R(θ(η(D1, e1), 1)) ∩ . . . ∩ R(θ(η(D1, ek), k)) ∩ R(θ(η(D, e), i))
= R(θ(η(D1, e1), 1) � . . . � θ(η(D1, ek), k) � θ(η(D, e), i))

=a is because that if a variable is available at all predecessors of e′, then it must
also be available at e′. ��

The correctness of the new algorithm follows from the following theorem.

Theorem 1. Let vndagj(e) denote the local VNDAG of the program edge e
before the j-th iteration of the algorithm in Figure 4. At the beginning of each
j-th iteration of algorithms in Figure 4 and Figure 3, for any program edge e,
η(D, e) = vndagj(e).

Proof. When j = 1, the proposition holds obviously. Assume that the proposi-
tion holds for j ≤ m (m ≥ 1). When j = m + 1, in the m-th iteration, after
each meet operation in line 7 of Figure 3, due to Lemma 3 and that any changes
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on D by this meet operation don’t affect the equivalence relations represented
by D at successor edges of processed tree edges (since removed and added pairs
are not available there due to the top-down spanning tree order), by induc-
tion on the spanning tree, we can prove that for any e′ ∈ succe(n), η(D, e′) =
θ(n, η(D1, e1), 1)�. . .�θ(n, η(D1, ek), k)�θ(n, η(D, e), i) = θ(n, vndagm(e1), 1)�
. . . � θ(n, vndagm(ek), k) � θ(n, vndagm+1(e), i) = vndagm+1(e′). After all tree
edges are processed, for any e ∈ EP , η(D, e) = vndagm+1(e). ��

5 Implementation of the New Algorithm

Using the global VNDAG to represent all equivalences not only greatly reduces
the data structure size used by the algorithm, but also can greatly speed up
the abstract evaluation process. Since all evaluation results are stored in the
same VNDAG, only those (rather than all) program nodes that will affect the
VNDAG need to be evaluated. Thus, in practice, evaluations are performed along
those define-use (DU) chains through spanning tree edges starting from initial
program nodes affecting the global VNDAG. The algorithm shown in Figure 5
builds such a kind of DU chains. The variable set uses(x) stores all variables
whose definition site is a non-relevant statement referring to x or a phi node
referring to x through a spanning tree edge. At the same time, the algorithm
also computes the affected basic block set affected(x) for each variable x, which
stores blocks containing at least one phi node referring to x. If the value number
of x is changed, phi nodes of blocks in affected(x) must be evaluated.

BuildDUChains()1

begin2

foreach non-relevant statement x = t do3

foreach y ∈ V ars(t) do4

uses(y) := uses(y) ∪ {x}5

foreach phi node x = φ(x1, . . . , xn) do6

let b be the containing block of the phi node7

foreach i ∈ [1, n] do8

affected(xi) := affected(xi) ∪ {b}9

if (pred(b)[i], b) is a spanning tree edge then10

uses(xi) := uses(xi) ∪ {x}11

end12

Fig. 5. The algorithm for building define-use chains (uses)

Notice that in the algorithm in Figure 3, the only use of VNDAG D1 is
computing D at line 7 and testing if D is changed. These two tasks can be
achieved without explicitly copying D to D1. We only need to save changes into
a variable-value-number pair set newupdates. The sub-expression θ(n, D1, 1) �
. . . � θ(n, D1, |prede(n)|) at line 7 for all n = dest(e), e ∈ EtP ∧ bb(n) ∈ changed
are computed by the algorithm shown in Figure 6, and the results are saved in
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DetectNewUpdates()1

begin2

clear newupdates3

foreach b ∈ changed do4

if sorted(b) = false then5

sort phi nodes in b in a topological order of their value numbers in6

the VNDAG
sorted(b) := true7

foreach phi node x := φ(x1, . . . , xn) in b do8

ν := Intersect(x, MD(x1), . . ., MD(xn))9

if ν �= MD(x) then10

newupdates := newupdates ∪ {〈x, ν〉}11

clear memorize12

end13

Fig. 6. The algorithm for detecting new updates

newupdates as update pairs. It calls Intersect 1 shown in Figure 7 to compute
value numbers of phi nodes of each affected blocks (in changed), and uses the
map memorize : Nn

D → ND to build the equivalence relation among them. If
and only if the returned value number differs from the original one, the result of
the intersection is less than the original equivalence relation, and the new update
pair is added to newupdates. Phi nodes with leaf value numbers must be pro-
cessed before others so that these value numbers can be correctly labeled with
a unique variable rather than returned as the ⊥ that denotes the equivalence
class containing no available variables. This is achieved by sorting phi nodes in
a topological order2 of their value number nodes in the VNDAG, when their
containing blocks are first touched.

The rest part of the expression at line 7 of Figure 3 (�θ(n, D, i)) is imple-
mented by the algorithm shown in Figure 8. The procedure SetCounter shown
in Figure 9 counts the number of dependent variables cnt(x) along spanning
tree edges for each affected variable x. The meet operation is reflected by the
condition at line 6, i.e. only if the previous VNDAG deduces that the left hand
side variable is equivalent to the right hand side expression, the update should
be done for that variable. Then, UpdateVN updates value numbers for variables
whose cnt is set in a topological order of their dependence DAG, and adds af-
fected blocks into changed, where new update detection should be performed. To
strictly correspond to the algorithm in Figure 3, an additional meet and update
process along spanning tree edges should be performed, but it can be omitted
since the subsequent process of the main procedure subsumes it.

The main procedure of the new algorithm is shown in Figure 10. It initial-
izes newupdates with pairs of targets of relevant statements and unique value

1 We omit the first parameter of newvn, vn and find since all of them work on the
only global VNDAG D.

2 If we attach an increasing sequence number to each value number when they are
created, we can use the ascending order of their sequence numbers.
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Intersect(x, ν1, . . ., νn)1

begin2

if ν1 = . . . = νn then return ν13

ν := memorize(ν1, . . . , νn)4

if ν �= nil then return ν5

if ∀i ∈ [1, n].νi = o(μi1, . . . , μim) then6

foreach j ∈ [1, m] do7

ξj := Intersect(nil, μ1j , . . ., μnj)8

if ∃j ∈ [1, m].ξj = ⊥ then ν := ⊥9

else ν := find(o, ξ1, . . . , ξm)10

else ν := ⊥11

if ν = ⊥ and x �= nil then ν := newvn(x)12

memorize(ν1, . . . , νn) := ν13

return ν14

end15

Fig. 7. The algorithm for intersecting value numbers

UpdateVN()1

begin2

// Count dependence numbers of affected variables
foreach 〈x, ν〉 ∈ newupdates do SetCounter(x)3

// Update MD for variables in newupdates
foreach 〈x, ν〉 ∈ newupdates do4

cnt(x) := 05

MD(x) := ν6

wl := wl ∪ {x}7

// Update MD for other affected variables
while wl �= ∅ do8

take v from wl9

changed := changed ∪ affected(v)10

foreach x ∈ uses(v) do11

if x is a result of a phi node then12

if cnt(x) = 1 then13

cnt(x) := 014

MD(x) := MD(v)15

wl := wl ∪ {x}16

else17

cnt(x) := cnt(x) − 118

if cnt(x) = 0 then19

MD(x) := vn(rhs(def(x)))20

wl := wl ∪ {x}21

end22

Fig. 8. The algorithm for updating value numbers
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SetCounter(v)1

begin2

cnt(v) := cnt(v) + 13

// Visit v’s successors at the first time
if cnt(v) = 1 then4

foreach x ∈ uses(v) do5

if x is not a result of phi node or MD(x) = MD(v) then6

SetCounter(x)7

end8

Fig. 9. The algorithm for setting counters of variables

GVN()1

begin2

BuildDUChains()3

foreach x ∈ V do MD(x) := �4

foreach x ∈ V and x is a result of f ∈ F do5

newupdates := newupdates ∪ {〈x, newvn(x)〉}6

while newupdates �= ∅ do7

UpdateVN()8

DetectNewUpdates()9

end10

Fig. 10. The efficient complete GVN algorithm

numbers of them. Then, it updates value numbers of affected variables and de-
tects new updates iteratively until a fixed point is reached.

Figure 11 shows the process of applying our algorithm on the program in
Figure 2. The initial newupdates comprises pairs of three parameters and leaf
value numbers of them. After updating value numbers along DU chains, two
new value numbers, +3 and +4 are created and MD is updated. By applying
Intersect on phi nodes in the loop body block, all of their value numbers are
changed, so four new update pairs are added to newupdates. Since newupdates
is not empty, another iteration runs and the result of the second value number
updating is shown in (d). Now, applying Intersect on these phi nodes again,
we get the same value numbers of them as the last time. Thus, newupdates is
empty and the algorithm terminates. The resulting VNDAG of the algorithm
deduces complete Herbrand equivalences of that program.

The approach used in [8] that restricts the exponential complete GVN to a
polynomial GVN that detects equivalences among expressions with limited sizes
can be directly adopted in our algorithm. We can set a counter to limit the
VNDAG size before calling Intersect in DetectNewUpdates. In Intersect,
the counter is decreased by one whenever expressions are decomposed into sub-
expressions (before line 7 of Figure 7). When the counter is decreased to zero, it
simply set the value number variable ν to ⊥. Refer to [8] for more details about
this approach and its complexity analysis.
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{〈a0, a0
0〉, 〈b0, b0

1〉, 〈c0, c0
2〉}

(a) The newupdates before the first iteration

+4

c0
2b0

1

a0 : 0

c0 : 2

y0 : 4
+3

a1 : 1

b1 : 0

y1 : 3

z0 : 4

x1 : 4

b0 : 1

a0
0

(c) The newupdates before the second iteration

{〈a1, a1
5〉, 〈b1, b1

6〉, 〈x1, a1
2 +7 c0

2〉, 〈y1, b1
6 +8 c0

2〉}

a0 : 0 y0 : 4 y1 : 8
+4 +7 +8

c0
2b1

6a1
5b0

1

a1 : 5 z0 : 7b0 : 1

c0 : 2

x0 : 3 x1 : 7

b1 : 6

a0
0

+3

(d) The VNDAG and MD after the second iteration

x0 : 3

(b) The VNDAG and MD after the first iteration

Fig. 11. Applying our algorithm on the program in Figure 2

6 Experimental Results

We have implemented the new algorithm without VNDAG size restrictions and a
semantic code motion algorithm using its result in GCC-4.2.0 as a standard pass.
To show the efficiency of the new algorithm, we measured elapsed user times of
it and the total compilation, as well as ratios between them, in compiling SPEC
CPU2000 on a machine with a 800MHz Pentium-M and 512MB memory. Times
are measured by GCC’s own timing facility exported in timevar.h. The results
are shown in Table 1, which indicate that the new GVN algorithm is extremely

Table 1. Times (in sec.) spent in GVN and total compilation, as well as ratios between
them in compiling SPEC CPU2000

CINT2000 gzip vpr gcc mcf crafty parser gap vortex bzip2 twolf

CGVN 0.03 0.07 0.61 0.00 0.09 0.14 0.22 0.17 0.01 0.16

Total 6.88 19.23 213.60 2.94 30.83 24.01 75.83 61.79 5.23 35.93

Ratio (%) 0.44 0.36 0.29 0.00 0.29 0.58 0.29 0.28 0.19 0.45

CFP2000 wupwise swim mgrid applu mesa art equake facerec ammp lucas fma3d sixtrack apsi

CGVN 0.00 0.00 0.03 0.04 0.30 0.02 0.01 0.04 0.07 0.04 0.70 0.54 0.12

Total 3.09 0.71 2.08 7.58 70.58 2.13 3.08 8.78 17.68 6.00 223.23 111.15 18.50

Ratio (%) 0.00 0.00 1.44 0.53 0.43 0.94 0.32 0.46 0.40 0.67 0.31 0.49 0.65

Overall GVN: 3.41 Total: 950.86 Ratio: 0.36%
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fast, and efficient enough to be applied in practice. Notice that this is achieved
without VNDAG size restriction, which suggests that the exponential complexity
problem almost does not exist in practice.

7 Conclusions and Future Works

There are two reasons causing existing complete GVN algorithms inefficient.
The first one, the intrinsic exponential complexity problem has been discussed
in previous works, but in practice, it is not the important reason (attested by our
experiments). This paper conquers the more important and practical reason, the
huge data structures and slow abstract evaluations of previous complete algo-
rithms. Based on the SSA form, the new algorithm uses just one global VNDAG
to represent all equivalences at different program points and performs fast ab-
stract evaluations on it. The experimental results show that the new algorithm
is efficient enough to be applied in practice. To the best of our knowledge, this
is the first practical complete GVN algorithm.

In the future, one interesting direction is to generalize this SSA-based ap-
proach to apply on other program analysis problems. Another direction is to
improve the precision of the basic complete GVN algorithm by considering op-
erator properties, conditionals, memory access instructions and inter-procedural
problems.
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Abstract. We present a formal framework for syntax directed proba-
bilistic program analysis. Our focus is on probabilistic pointer analysis.
We show how to obtain probabilistic points-to matrices and their rela-
tional counterparts in a systematic way via Probabilistic Abstract In-
terpretation (PAI). The analysis is based on a non-standard semantics
for a simple imperative language which corresponds to a Discrete-Time
Markov Chain (DTMC). The generator of this DTMC is constructed
by composing (via tensor product) the probabilistic control flow of the
program and the data updates of the different variables at individual
program points. The dimensionality of the concrete semantics is in gen-
eral prohibitively large but abstraction (via PAI) allows for a drastic
(exponential) reduction of size.

1 Introduction

We investigate a theoretical framework for the systematic construction of a syn-
tax directed probabilistic program analysis. We will illustrate our approach based
on a simple imperative language, While, and its probabilistic extension pWhile.
Our focus is on the systematic derivation of a probabilistic pointer analysis within
a static memory model, i.e. we do not have dynamically created objects (on a
heap). These restrictions are mainly for presentational reasons and we are confi-
dent that our basic ideas also apply to other programming paradigms, e.g. object
oriented, dynamic objects on a heap, etc.

Our aim is to introduce a static analysis, which could provide an alternative
to experimental approaches like profiling. As the analysis is probabilistic we were
lead to consider a probabilistic language from the start. However, this language
subsumes the usual deterministic While and our approach thus applies as well
to deterministic as to probabilistic programs. It is important to note that even
for deterministic programs the analysis gives in general probabilistic results.

The main novel contributions of this study concern the following aspects. (i)
We present for the first time a syntax directed construction of the generator of
a Markov chain representing the concrete semantics of a pWhile program with
static pointers. This exploits a tensor product representation which has been
studied previously in areas like performance analysis. (ii) Although the concrete
semantics is well-defined and based on highly sparse matrices, the use of the ten-
sor product still leads to an exponential increase in its size, i.e. the dimension of
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the generator matrices. In order to overcome this problem we apply Probabilistic
Abstract Interpretation (PAI) – presented first in [1] (see also [2]) – to construct
an abstract semantics, i.e. a static program analysis. The fact that PAI is com-
patible with the tensor product operation allows us to introduce a compositional
construction not only of the concrete but also of the abstract semantics with a
drastically reduced size. (iii) This leads to a systematic and formal analysis of
(dynamic) branching probabilities – usually obtained experimentally via profil-
ing or based on various heuristics (see e.g. [3,4] and references therein) – on the
basis of abstracted test operators. (iv) Within our framework, we are also able
to construct so-called points-to matrices which are commonly employed in prob-
abilistic pointer analysis. Furthermore, we will discuss the alternative concept of
a points-to tensor which provides more precise relational information.

A possible application area of this type of program/pointer analysis could
be speculative optimisation which recently is gaining importance – not least in
modern multi-core environments. The idea here is (i) to execute code “specula-
tively” based on some guess; (ii) then to test at a later stage whether the guess
was correct; (iii) if it was correct the computation continues, otherwise some re-
pair code is executed. This guarantees that the computation is always correctly
performed. The only issue concerns the (average) costs of “repairs”. If the guess
is correct sufficiently often, the execution of the repair code for the cases where it
is wrong is amortised. Thus, in the speculative approach the compiler can take
advantage of statistical (rather than only definite) information when choosing
whether to perform an optimisation. The analysis we present would allow for a
better exploitation of the ‘maybe’ case than with classical conservative compiler
optimisation, replacing a possibilistic analysis by a probabilistic one.

2 Probabilistic While

We extend the probabilistic While language in [5,6] with pointer expressions.
In order to keep our treatment simple we allow only for pointers to (existing)
variables, i.e. we will not deal with dynamically created objects on a heap.

A program P is made up from a possibly empty list of variable declarations D
followed by a statement S. Formally, P ::= D; S | S with D ::= d; D | d. A
declaration d fixes the types of the program’s variables. Variables can be either
basic Boolean or integer variables or pointers of any order r = 0, 1, . . ., i.e.:

d ::= x : t t ::= int | bool | ∗r t

(where we identify ∗0t with t).
The syntax of statements is as follows:

S ::= skip | stop | p ← e | S1; S2 | choose p1 : S1 or p2 : S2

| if b then S1 else S2 end if | while b do S end while

In the choose statement we allow only for constant probabilities pi and assume
w.l.o.g. that they are normalised, i.e. add up to 1. A pointer expression is a
variable prefixed with r dereferencing ∗’s:
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p ::= ∗rx with x ∈ Var.

We allow for higher order pointers, i.e. for pointers to pointers to . . . . Expressions
e are of different types, namely arithmetic expressions a, Boolean expressions b
and locality expressions (or addresses) l. Formally: e ::= a | b | l. Arithmetic
expressions are of the form a ::= n | p | a1 � a2 with n ∈ Z, p a pointer to an
integer, and ‘�’ representing one of the usual arithmetic operations ‘+’, ‘−’, or
‘×’. Boolean expressions are defined by b ::= true | false | p | ¬b | b1 ∨
b2 | b1 ∧ b2 | a1 <> a2, where p is a pointer to a Boolean variable. The symbol
‘<>’ denotes one of the standard comparison operators for arithmetic expressions,
i.e. <, ≤, =, 	=, ≥, >. Addresses or locality expressions are: l ::= nil | &p | p.

The semantics of pWhile with pointers follows essentially the standard one
for While as presented, e.g., in [7]. The only two differences concern (i) the
probabilistic choice and (ii) the pointer expressions used in assignments. The
operational semantics is given as usual via a transition system on configurations
〈S, σ〉, i.e. pairs of statements and states. To allow for probabilistic choices we
label these transitions with probabilities. Except for the choose construct these
probabilities will always be 1 as all other statements in pWhile are deterministic.

A state σ ∈ State describes how variables in Var are associated to values
in Value = Z + B + L (with ‘+’ denoting the disjoint union). The value of a
variable can be either an integer or a Boolean constant or the address/reference
to a(nother) variable, i.e. State = Var → Z + B + L.

In the assignments we allow for general pointer expressions (not just basic
variables) on the left as well as the right hand side. In order to give a semantics to
assignments we therefore need to identify the actual variable a pointer expression
on the left hand side of an assignment is referring to. This is achieved via the
function [[.]] from Pointer × State into Var, where Pointer = {∗rx | x ∈
Var, r = 0, 1, . . .} denotes the set of all pointer expressions, defined as follows:

[[x]]σ = x [[∗rx]]σ = [[∗r−1y]]σ if σ(x) = &y.

In other words, if we want to find out what variable a pointer expression refers
to we either could have the case that p = x – in which case the reference is
immediately to this variable – or p = ∗rx – in which case we have to dereference
the pointer to determine the variable y it points to in the current state σ (via
σ(x)). If further dereferencing is needed we continue until we end up with a
basic variable. The variable we finally reach this way might still be a pointer,
i.e. contain a location rather than a constant, but we only dereference as often
as required, i.e. r times. We also do not check whether further dereferencing is
possible, i.e. whether x had been declared a pointer variable of a higher order
than r – we assume that either a simple type system rejects malformed programs
at compile time, or that the run-time environment raises an exception if there
is a violation.

The expressions a, b, and l (on the right hand side of assignments or as tests in
if and while statements) evaluate to values of type Z, B and L in the usual way.
The only extension to the standard semantics is caused again when pointers p are
part of the expressions. In order to treat this case correctly, we need to determine
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first the actual variable a pointer refers to and then obtain the value this variable
contains in the current state σ. Again, we do not cover here any type checking,
i.e. whether the variable contains ultimately a value of the correct type. If we
denote by Expr the set of all expressions e then the evaluation function E(.).
is a function from Expr × State into Z + B + L. The semantics of arithmetic
and Boolean expressions is standard. A new kind of expressions return locations
in L, either the constant nil or the address contained in a variable a pointer p
refers to, or the address of a variable which a pointer refers to. For these new
expressions we define E(.). as follows:

E(nil)σ = nil E(p)σ = σ([[p]]σ) E(&p)σ = &([[p]]σ).

Based on the functions [[.]]. and E(.). the semantics of an assignment is given by

〈p ← e, σ〉−→1〈stop, σ[[[p]]σ �→ E(e)σ]〉.

The state σ stays unchanged except for the variable the pointer p is referring
to (we obtain this information via [[.]].). The value of this variable is changed
so that it now contains the value represented by the expression e. The rest of
the SOS semantics of pWhile is quite standard and we will omit here a formal
presentation.

3 Linear Operator Semantics

In order to study the semantic properties of a pWhile program we will in-
vestigate the stochastic process which corresponds to the program’s executions.
More precisely, we will construct the generator of a Discrete Time Markov Chain
(DTMC) which represents the operational semantics of the program in question.

3.1 Probabilistic Control Flow

We base our construction on a probabilistic version of the control flow [7] or
abstract syntax [8] of pWhile programs. The flow F(P ) of a program P is based
on a labelled version of P . Labelled programs follow the syntax:

S ::= [skip]� | [stop]� | [p ← e]� | S1; S2 | [choose]� p1 : S1 or p2 : S2

| if [b]� then S1 else S2 end if | while [b]� do S end while.

The flow F is a set of triples 〈�i, pij , �j〉 which record the fact that control passes
with probability pij from block Bi to block Bj , where a block is of the form
Bi = [. . .]�i . We assume label consistency, i.e. the labels on blocks are unique.
We denote by B(P ) the set of all blocks and by L(P ) the set of all labels in a
program P . Except for the choose statement the probability pij is always equal
to 1. For the if statement we indicate the control step into the then branch by
underlining the target label; the same is the case for while statements.
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3.2 Concrete Semantics

The generator matrix of the DTMC which we will construct for any given
pWhile program defines a linear operator – thus we refer to it as a Linear
Operator Semantics (LOS) – on a vector space based on the labelled blocks and
classical states of the program in question. In all generality, the (real) vector
space V(S, R) = V(S) over a set S is defined as the formal linear combinations
of elements in S which we can also see as tuples of real numbers xs indexed by
elements in S, i.e. V(X) = {〈xs, s〉s∈S | xs ∈ R} = {(xs)s∈S}, with the usual
(point-wise) algebraic operations, i.e. scalar multiplication and vector addition.

The probabilistic state of the computation is described via a probability mea-
sure over the space of (classical) states Var → Z + B + L.

In order to keep the mathematical treatment as simple as possible we will
exploit the fact that Var and thus L is finite for any given program. We fur-
thermore restrict the actual range of integer variables to a finite sub-set Z of Z.
Although such a finite restriction is somewhat unsatisfactory from a purely the-
oretical point of view, it appears to be justified in the context of static program
analysis (one could argue that any “real world” program has to be executed on
a computer with certain memory limitations). As a result, we can restrict our
consideration to probability distributions on State rather than referring to the
more general notion of probability measures. While in discrete, i.e. finite, prob-
ability spaces every measure can be defined via a distribution, the same does
not hold any more for infinite state spaces, even for countable ones; it is, for
example, impossible to define on the set of rationals in the interval [0, 1] a kind
of “uniform distribution” which would correspond to the Lebesgue measure.

State Space. As we consider only finitely many variables, v = |Var|, we can
represent the space of all possible states Var → Z + B + L as the Cartesian
product (Z + B + L)v, i.e. for every variable xi ∈ Var we specify its associated
value in (a separate copy of) Z + B + L.

As the declarations of variables fix their types, in effect their possible range,
we can exploit this information by presenting the (classical) state in a slightly
more effective way: State = Value1 × Value2 . . . × Valuev with Valuei = Z,
or B or L. We can go even a step further and exploit the fact that pointers have
to refer to variables which represent pointers of a level lower than themselves,
i.e. a simple first level pointer must refer to a simple variable, a second level
pointer must refer to a first level pointer, etc.; only nil can be used on all levels.
Let us denote by LZ0 the set of integer variables (plus nil), by LB0 the set of
Boolean variables (plus nil), and by LZl and LBl the pointer variables which
refer to variables in LZl−1 and LBl−1 (plus nil) respectively. Obviously, we have
L =

⋃
l LZl ∪

⋃
l LBl.

As the declarations fix the level of a pointer (and its ultimate target type)
we can represent the state in a slightly simpler way as State = Value1 ×
. . . × Valuev with Valuei = Z, B, LZl or LBl with l ≥ 1. We will use the
following conventions for the representation of states and state vectors. Given v
variables, we will enumerate them according to their pointer level, i.e. first the
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basic variables, then the r1 simple pointers, then the r2 pointers to pointers, etc.
We denote by r = r1 + r2 + . . . the number of all pointer variables. The last
component of the state vector corresponds to the label �.

The distributions which describe the probabilistic state of the execution of a
program correspond to (normalised and positive) vectors in V(State). In terms
of vector spaces, the above representation of the classical states can be expressed
by means of the tensor product construction. We can construct the tensor product
of two finite dimensional matrices (or vectors, seen as 1 × n or n × 1 matrices)
via the so-called Kronecker product: Given an n×m matrix A and a k× l matrix
B then A⊗B is the nk ×ml matrix with entries (A⊗B)(i1−1)·k+i2,(j1−1)·l+j2 =
(A)i1,j1 ·(B)i2,j2 . The representation of a state as a tuple in the Cartesian product
of the sets of values for each variable can be re-formulated in our vector space
setting by using the isomorphism V(State) = V(Value1 × . . . × Valuev) =
V(Value1) ⊗ . . . ⊗ V(Valuev).

Filtering. In order to construct the concrete semantics we need to identify those
states which satisfy certain conditions, e.g. all those states where a variable
has a value larger than 5 or where a pointer refers to a particular variable.
This is achieved by “filtering” states which fulfill some conditions via projection
operators, which are concretely represented by diagonal matrices.

Consider a variable x together with the set of its possible values Value =
{v1, v2, . . .}, and the vector space V(Value). The probabilistic state of the vari-
able x can be described by a distribution over its possible values, i.e. a vector
in V(Value). For example, if we know that x holds the value v1 or v3 with
probabilities 1

3 and 2
3 respectively (and no other values) then this situation is

represented by the vector (1
3 , 0, 2

3 , 0, . . .). As we represent distributions by row
vectors x the application of a linear map corresponds to a post-multiplication
by the corresponding matrix T, i.e. T(x) = x · T.

We might need to apply a transformation T to the probabilistic state of
the variable xi only when a certain condition is fulfilled. We can express such
a condition by a predicate q on Valuei. Defining a diagonal matrix P with
(P)ii = 1 if q(vi) holds and 0 otherwise, allows us to “filter out” only those
states which fulfill the condition q, i.e. P · T applies T only to those states.

Operators. The Linear Operator Semantics of pWhile is built using a number
of basic operators which can be represented by the (sparse) square matrices:
(E(m, n))ij = 1 if m = i ∧ n = j and 0 otherwise, and (I)ij = 1 if i = j and
0 otherwise. The matrix units E(m, n) contains only one non-zero entry, and
I is the identity operator. Using these basic building blocks we can define a
number of “filters” P as depicted in Table 1. The operator P(c) has only one
non-zero entry: the diagonal element Pcc = 1, i.e. P(c) = E(c, c). This operator
extracts the probability corresponding to the c-th coordinate of a vector, i.e. for
x = (xi)i the multiplication with P(c) results in a vector x′ = x ·P(c) with only
one non-zero coordinate, namely x′

c = xc.
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Table 1. Test and Update Operators for pWhile

(P(c))ij =

�
1 if i = c = j
0 otherwise.

(U(c))ij =

�
1 if j = c
0 otherwise.

P(σ) =

v�
i=1

P(σ(xi)) U(xk ← c) =

k−1�
i=1

I ⊗ U(c) ⊗
v�

i=k+1

I

P(e = c) =
�

E(e)σ=c

P(σ) U(xk ← e) =
�

c

P(e = c)U(xk ← c)

U(∗rxk ← e) =
�
xi

P(xk = &xi)U(∗r−1xi ← e)

The operator P(σ) performs a similar test for a vector representing the prob-
abilistic state of the computation. It filters the probability that the computation
is in a classical state σ. This is achieved by checking whether each variable xi

has the value specified by σ namely σ(xi). Finally, the operator P(e = c) filters
those states where the values of the variables xi are such that the evaluation of
the expression e results in c. The number of (diagonal) non-zero entries of this
operator is exactly the number of states σ for which E(e)σ = c.

The update operators (see Table 1) implement state changes. From an ini-
tial probabilistic state σ, i.e. a distribution over classical states, we get a new
probabilistic state σ′ via σ · U.

The simple operator U(c) implements the deterministic update of a variable
xi: Whatever the value(s) of xi are, after applying U(c) to the state vector
describing xi we get a point distribution expressing the fact that the value of xi

is now certainly c. The operator U(xk ← c) puts U(c) into the context of other
variables: Most factors in the tensor product are identities, i.e. most variables
keep their previous values, only xk is deterministically updated to its new value
c using the previously defined U(c) operator. The operator U(xk ← e) updates
a variable not to a constant but to the value of an expression e. This update is
realised using the filter operator P(e = c): For all possible values c of e we select
those states where e evaluates to c and then update xk to this c. Finally, the
update operator U(∗rxk ← e) is used for assignments where we have a pointer
on the left hand side. In this case we select those states where xk points to
another variable xi and then update xi accordingly. This unfolding of references
continues recursively until we end up with a basic variable where we can use the
previous update operator U(xi ← e).

Semantics. The Linear Operator Semantics of a pWhile program P is defined
as the operator T = T(P ) on V(State×B(P )). This can be seen as a collecting
semantics for the program P as it is defined by

T(P ) =
∑

〈i,pij ,j〉∈F(P )

pij · T(�i, �j).
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Table 2. Linear Operator Semantics for pWhile

T(�1, �2) = I ⊗ E�1,�2 for [skip]�1

T(�1, �2) = U(p ← e) ⊗ E�1,�2 for [p ← e]�1

T(�, �t) = P(b = true) ⊗ E�,�t for [b]�

T(�, �f ) = P(b = false) ⊗ E�,�f
for [b]�

T(�, �k) = I ⊗ E�,�k
for [choose]�

T(�, �) = I ⊗ E�,� for [stop]�

The meaning of T(P ) is to collect for every triple in the probabilistic flow F(P )
of P its effects, weighted according to the probability associated to this triple.
The operators T(�i, �j) which implement the local state updates and control
transfers from �i to �j are presented in Table 2.

Each local operator T(�i, �j) is of the form N⊗E(�i, �j) where the first factor
N represents a state update or, in the case of tests, a filter operator while the
second factor realises the transfer of control from label �i to label �j . For the
skip and stop no changes to the state happen, we only transfer control (deter-
ministically) to the next statement or loop on the current (terminal) statement
using matrix units E. Also in the case of a choose there is no change to the
state but only a transfer of control, however the probabilities pij will in general
be different from 1, unlike skip. With assignments we have both a state up-
date, implemented using U(p ← e), and a control flow step. For tests b we use
the filter operator P(b = true) to select those states which pass the test, and
P(b = false) to select those states which fail it, in order to determine which
label the control will pass to.

Note that P(b = true) + P(b = false) = I, i.e. at any test b every state will
cause exactly one (unambiguous) control transfer. We allow in pWhile only for
constant probabilities pi in the choose construct, which sum up to 1 and as with
classical While we have no “blocked” configurations (even the terminal stop
statements ‘loop’). It is therefore not necessary to re-normalise dynamically the
probabilities and it follows easily that:

Proposition 1. The operator T(P ) is stochastic for any pWhile program P ,
i.e. the sum of all elements in each row add up to one.

Thus, T is indeed the generator of a DTMC. Furthermore, by the construction
of T it also follows immediately that the SOS and LOS semantics are equivalent
in the following sense.

Proposition 2. For any pWhile program P and any classical state σ ∈ State,
we have:

〈S, σ〉 −→p 〈S′, σ′〉 iff (T(P ))〈σ,�〉,〈σ′,�′〉 = p,

where � and �′ label the first block in the statement S and S′, respectively.
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4 Pointer Analysis

In principle, it is possible to construct the concrete linear operator semantics for
any pWhile program with bounded value ranges for its variables and to analyse
this way its properties. However, this remains – as in the classical case – only
a hypothetical possibility. Even when using sparse matrix representations it is
practically impossible to explicitly compute the semantics of all but very small
toy examples. This is not least due to the unavoidable involvement of the tensor
product which leads to an exponential growth in the dimension of the operator
T. Besides this, there might also be the desire to consider a semantics of a
program with unbounded values for variables, in which case we are completely
unable to explicitly construct the infinite dimensional operator T. In order to
analyse (probabilistic) properties of a program we therefore need to consider an
abstract version of T.

4.1 Probabilistic Abstract Interpretation

The general approach for constructing simplified versions of a concrete (collect-
ing) semantics via Abstract Interpretation, which was introduced by Cousot &
Cousot 30 years ago [9], is unfortunately based on order-theoretic and not on
linear structures. One can define on a given vector space a number of orderings
(lexicographic, etc.) as an additional structure. We could then use this order
to compute over- or under-approximations using classical Abstract Interpreta-
tion. Though such approximations will always be safe, they might also be quite
unrealistic, addressing a worst case scenario rather than the average case [2]. Fur-
thermore, there is no canonical order on a vector space (e.g. the lexicographic
order depends on the base). In order to provide probabilistic estimates we have
previously introduced, cf. [1,10], a quantitative version of the Cousot & Cousot
framework, which we have called Probabilistic Abstract Interpretation (PAI).

The PAI approach is based, as in the classical case, on a concrete and abstract
domain C and D – except that C and D are now vector spaces (or in general
Hilbert spaces) instead of lattices. We assume that the pair of abstraction and
concretisation functions α : C → D and γ : D → C are again structure preserving,
i.e. in our setting they are (bounded) linear maps represented by matrices A
and G. Finally, we replace the notion of a Galois connection by the notion of a
Moore-Penrose pseudo-inverse.

Definition 1. Let C and D be two finite dimensional vector spaces (or in gen-
eral, Hilbert spaces) and A : C → D a (bounded) linear map between them. The
(bounded) linear map A† = G : D → C is the Moore-Penrose pseudo-inverse of
A iff A ◦ G = PA and G ◦ A = PG, where PA and PG denote orthogonal
projections (i.e. P∗

A = PA = P2
A and P∗

G = PG = P2
G where .∗ denotes the

linear adjoint [11, Ch 10]) onto the ranges of A and G.

This allows us to construct the closest (i.e. least square) approximation T# :
D → D of T : C → C as T# = G · T · A = A† · T · A = α ◦ T ◦ γ. As our
concrete semantics is constructed using tensor products it is important that the
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Moore-Penrose pseudo-inverse of a tensor product can easily be computed as
follows [12, 2.1,Ex 3]: (A1 ⊗ A2 ⊗ . . . ⊗ An)† = A†

1 ⊗ A†
2 ⊗ . . . ⊗ A†

n.

Example 1 (Parity). Let us consider as abstract and concrete domains C =
V({−n, . . . , n}) and D = V({even, odd}). The abstraction operator Ap and its
concretisation operator Gp = A†

p corresponding to a parity analysis are repre-
sented by the following n × 2 and 2 × n matrices (assuming w.l.o.g. that n is
even):

AT
p =

(
1 0 1 0 . . . 1
0 1 0 1 . . . 0

)
A†

p =
( 1

n+1 0 1
n+1 0 . . . 1

n+1
0 1

n 0 1
n . . . 0

)
,

where .T denotes the matrix transpose (AT )ij = (A)ji. The concretisation op-
erator A†

p represents uniform distributions over the n + 1 even numbers in the
range −n, . . . , n (as the first row) and the n odd numbers in the same range (in
the second row).

Example 2 (Sign). With C = V({−n, . . . , 0, . . . , n}) and D = V({−, 0, +}) we
can represent the usual sign abstraction by the following matrices:

AT
s =

⎛

⎝
1 . . . 1 0 0 . . . 0
0 . . . 0 1 0 . . . 0
0 . . . 0 0 1 . . . 1

⎞

⎠ A†
s =

⎛

⎝
1
n . . . 1

n 0 0 . . . 0
0 . . . 0 1 0 . . . 0
0 . . . 0 0 1

n . . . 1
n

⎞

⎠

Example 3 (Forget). We can also abstract all details of the concrete semantics.
Although this is in general a rather unusual abstraction it is quite useful in the
context of a tensor product state and/or abstraction. Let the concrete domain be
the vector space over any range, i.e. C = V({n, . . . , 0, . . . , m}), and the abstract
domain a one dimensional space D = V({�}). Then the forgetful abstraction and
concretisation can be defined by:

AT
f =

(
1 1 1 . . . 1

)
A†

f =
( 1

m−n+1
1

m−n+1
1

m−n+1 . . . 1
m−n+1

)

For any matrix M operating on C = V({n, . . . , 0, . . . , m}) the abstraction A†
f ·M·

Af gives a one dimensional matrix, i.e. a single scalar μ. For stochastic matrices,
such as our T generating the DTMC representing the concrete semantics we
have: μ = 1. If we consider a tensor product M⊗N, then the abstraction Af ⊗I
extracts (essentially) N, i.e. (Af ⊗ I)† · (M ⊗ N) · (Af ⊗ I) = μN.

4.2 Abstract Semantics

The abstract semantics T# is constructed exactly like the concrete one, except
that we will use abstract tests and update operators. This is possible as ab-
stractions and concretisations distribute over sums and tensor products. More
precisely, we can construct T# for a program P as:

T#(P ) =
∑

〈i,pij ,j〉∈F(P )

pij · T#(�i, �j),
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where the transfer operator along a computational step from label �i to �j can be
abstracted “locally”. Abstracting each variable separately and using the concrete
control flow we get the operator A = (

⊗v
i=1 Ai) ⊗ I = A1 ⊗ A2 ⊗ . . . ⊗ Av ⊗ I.

Then the abstract transfer operator T#(�i, �j) can be defined as T#(�i, �j) =
(A†

1Ni1A1)⊗(A†
2Ni2A2)⊗. . .⊗(A†

vNivAv)⊗E(�i, �j). This operator implements
the (abstract) effect to each of the variables in the individual statement at �i

and combines it with the concrete control flow.
It is of course also possible to abstract the control flow, or to use abstractions

which abstract several variables at the same time, e.g. specifying the abstract
state via the difference of two variables.

Example 4. Consider the following short program:
if [(x > 0)]1 then [z ← &x]2 else [z ← &y]3 end if; [stop]4

The LOS operator of this program can be straightforwardly constructed as

T(P ) = P(x > 0) ⊗ E(1, 2) + P(x ≤ 0) ⊗ E(1, 3) +
+ U(z ← &x) ⊗ E(2, 4) + U(z ← &y) ⊗ E(3, 4) + I ⊗ E(4, 4).

Here we can see nicely the powerful reduction in size due to PAI. Assuming
that x and y take, for example, values in the range −100, . . . , +100 then the
concrete semantics requires a 201 × 201 × 2 × 4 = 323208 dimensional space (as
z can point to two variables and there are four program points). The concrete
operator T(P ) has about 1011 entries (although most of them are zero). If we
abstract the concrete value of x and y using the sign or parity operators the op-
erator T#(P ) – constructed exactly in the same way as T(P ) but using smaller,
abstract value spaces, requires only a matrix of dimension 3 × 3 × 2 × 4 = 72 or
2× 2× 2× 4 = 32, respectively. We can even go one step further and completely
forget about the value of y, in which case we need simply a 24 × 24 or 16 × 16
matrix respectively to describe T#(P ).

The dramatic reduction in size, i.e. dimensions, achieved via PAI and illustrated
by the last example lets us hope that our approach could ultimately lead to
scalable analyses, despite the fact that the concrete semantics is so large as to
make its construction infeasible. However, further work in the form of practical
implementations and experiments is needed in order to decide whether this is
indeed the case.

The LOS represents the SOS via the generator of a DTMC. It describes the
stepwise evolution of the (probabilistic) state of a computation and does not
provide a fixed-point semantics. Therefore, neither in the concrete nor in the ab-
stract case can we guarantee that limn→∞(T(P ))n or limn→∞(T(P )#)n always
exists. The analysis of a program P based on the abstract operator T(P )# is
considerably simpler than by considering the concrete one but still not entirely
trivial. Various properties of T(P )# can be extracted by iterative methods (e.g.
computing limn→∞(T(P )#)n or some averages). As usual in numerical compu-
tation, these methods will converge only for n → ∞ and any result obtained
after only a finite number of steps will only be an approximation. However, one
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can study stopping criteria which guarantee a certain quality of this approxi-
mation. The development or adaptation of iterative methods and formulation
of appropriate stopping criteria might be seen as the numerical analog to the
widening and narrowing techniques of the classical setting.

4.3 Abstract Branching Probabilities

The abstract, like the concrete, semantics is based on two types of basic opera-
tors, namely abstract update operators U# and abstract test operators P#. As
abstract tests introduce probabilistic choices which reflect the probabilities that
a test is passed, the abstract semantics will always be probabilistic even if the
considered program is deterministic.

Example 5. Obviously, the critical element in Example 4 for computing the prob-
abilities of z pointing to x or y is given by the chances that the test x > 0 in label
1 succeeds or fails. These chances depend on the initial (distribution of possible)
values of x. In the concrete semantics we can, for example, assume that x can
take initially any value between −N and +N with the same probability, i.e.
we could start with the uniform distribution d0 = ( 1

2N+1 , 1
2N+1 , . . . , 1

2N+1 ) for
x – or any other distribution. The probability of z pointing to x or y is then:
P (z = &x) =

∑
i(d0 ·P(x > 0))i = N+1

2N+1 and P (z = &y) =
∑

i(d0 ·P(x ≤ 0))i =
N

2N+1 . In other words, if we increase the range, i.e. for N → ∞, the chances of
z pointing to x or y are about 50 : 50.

Even in this simple case, the involved matrices, i.e. P(x > 0), can become
rather large and one might therefore try to estimate the probabilities using PAI.
Again the critical element is the abstract test P#(x > 0) = A† ·P(x > 0) ·A.The
abstract test operator P#(x ≤ 0) can be computed in the same way or via the
fact P#(x ≤ 0) = I−P#(x > 0). For different ranges of x in {−N, . . . , N} we can
construct the abstract test operators for the parity abstraction, i.e. A = Ap in
Example 1, and the sign abstraction, i.e. A = As in Example 2. Using the octave
system [13] we get for P#

s = A†
s · P(x > 0) · As and P#

p = A†
p · P(x > 0) · Ap:

P#
s =

⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠ ,

⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠ and

⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠ for N = 1, 2 and 10,

P#
p =

(
0.00 0.00
0.00 0.50

)
,

(
0.50 0.00
0.00 0.33

)
and

(
0.50 0.00
0.00 0.45

)
for N = 1, 2 and 10

These abstract test operators encode important information about the ac-
curacy of the PAI estimates. Firstly, we observe that the sign abstraction As

provides us with stable and correct estimates. As we would expect, we see that
the abstract values ‘−’ and 0 never pass the test, while ‘+’ always does, inde-
pendently of N . Secondly, we see that the parity analysis is rather pointless, for
large N the test is passed with a 50% chance for even as well as odd – this
expresses just the fact that parity has nothing to do with the sign of a variable. A
bit more interesting are the values for N = 1 and N = 2. If we only consider the
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concrete values −1, 0, 1 for x then only even numbers (0 in this set) always fail
the test (thus we have a zero entry in the upper left entry) and that it succeeds
for the odd numbers, −1 and 1, with an even chance; if we consider a larger
concrete range, i.e. for N > 1, then the chances tend to become 50 : 50 but due
to 0 failing the test, there is a slightly lower chance for even numbers to succeed
compared with odd numbers.

As we can see from the example, the abstract test operators P# contain infor-
mation about the probabilities that test succeed for abstract values. This means
that the abstract semantics contains estimates of dynamic branching probabili-
ties, i.e. depending on the (abstract) state of the computation the probabilities
to follow, for example, the then or else branch will change. One could utilise
this information to distinguish between the branching probabilities in different
phase of executions; during the initialisation phase of a program the branching
probabilities could be completely different from later stages.

However, we can also obtain more conventional, i.e. static, branching prob-
abilities for the whole execution of a program. In order to do this we have to
provide an initial distribution over abstract values. Using the abstract semantics
T#, we can then compute distributions over abstract values for any program
point which in particular provide estimates of the abstract state reaching any
test. This amounts to performing a probabilistic forward analysis of the pro-
gram. Based on the probability estimates for abstract values at a test we can
then compute estimates for the branching probabilities in the same way as in
the classical case.

With respect to a higher order analysis – such as a pointer analysis – we there-
fore propose a two-phase analysis: During the first phase the abstract semantics
T# is used to provide estimates of the probability distributions over abstract
values (and thus for the branching probabilities) for every program point; phase
two then constructs the actual analysis, e.g. a probabilistic points-to matrix, for
every program point. One could interpret phase one also as a kind of program
transformation which replaces tests by probabilistic choices.

Example 6. For the program in Example 4 the corresponding probabilistic pro-
gram we have to consider after performing a parity analysis in phase one is:

[choose]1 (p
 : [z ← &x]2) or (p⊥ : [z ← &y]3); [stop]4

where p
 and p⊥ (which both depend on N) are the branching probabilities
obtained in phase one.

4.4 Probabilistic Points-to Matrix vs. State

The (probabilistic) state in the concrete semantics contains a complete descrip-
tion of the values of all variables as well as the current statement. We can extract
information about where pointers (variables) point-to at a certain label by for-
getting the value of the basic variables. The same is, of course, also possible with
the abstract state. This is achieved via the abstraction Ar = A⊗(v−r)

f ⊗ I⊗r ⊗ I,
where Af is the “forgetful” abstraction in Example 3 while v and r denote the
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number of all variables and of all pointer variables, respectively. If we are inter-
ested in the pointer structure at a certain program point we can also use the
following abstraction:

Ar(�) = A⊗(v−r)
f ⊗ I⊗r ⊗ Af (�),

where Af (�) is represented by a column vector (i.e. a n×1 matrix) with a single
non-zero entry (Af (�))1,� = 1.

Note that Af (�)† = Af (�)T and that Af (�) · Af (�)† = P(�) while Af (�)† ·
Af (�) = (1), i.e. the 1 × 1 (identity) matrix.

Given an initial distribution d0 or d#
0 , which represent the initial concrete or

abstract values of all variables (and the initial label of the program in question),
we can compute the computational state after n computational steps simply by
iterating the concrete or abstract semantics T and T#, i.e. dn = d0·Tn and d#

n =
d#

0 ·T#n. Based on these distributions dn or d#
n we can compute also statistical

properties of a program, by averaging over a number of iterations, or the final
situation, by considering the limit n → ∞.

The typical result of a probabilistic pointer analysis, e.g. [4], is a so-called
points-to matrix which records for every program point the probability that
a pointer variable refers to a particular (other) variable. Using our systematic
approach to pointer analysis we can construct such a points-to matrix, concretely
or abstractly. However, we can also show that the points-to matrix contains – to
a certain extent even in the concrete case – only partial information about the
pointer structure of a program.

Example 7. Consider the following simple example program:
if [(z0 mod 2 = 0)]1 then [x ← &z1]2; [y ← &z2]3

else [x ← &z2]4; [y ← &z1]5 end if; [stop]6

Any reasonable analysis of this program – assuming a uniform distribution
over all possible values of z0 – will result in the following probabilistic points-
to matrix at label 6, i.e. at the end of the program (we write the two rows
corresponding to x and y as a direct sum):

(0, 0, 0,
1
2
,
1
2
) ⊕ (0, 0, 0,

1
2
,
1
2
).

This probabilistic points-to matrix states that x and y point with probability
1
2 to z1 and z2, but in fact there is a relational dependency between where
x and y point to. This is detected if we construct the points-to state via d0 ·
(limn→∞ T#n)·Ar(6) = d0 ·limn→∞(A†

pTAp)n ·Ar(6). For our example program
we get the following points-to tensor:

1
2

· (0, 0, 0, 1, 0) ⊗ (0, 0, 0, 0, 1) +
1
2

· (0, 0, 0, 0, 1) ⊗ (0, 0, 0, 1, 0)

which expresses exactly the fact that (i) there is a 50% chance that x points to
z1 and y points to z2, and that (ii) there is also a 50% chance that x and y point
to z2 and z1, respectively.

For every pointer variable xi we can compute the corresponding row in the
points-to matrix using instead of Ar(6) the abstraction
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Ar(�, xi) = A⊗(i−1)
f ⊗ I ⊗ A⊗(v−i+1)

f ⊗ Af (�).

However, this way we get less information than with the points-to tensor above.
By a simple dimension argument it’s easy to see that, for instance, in our example
the points-to matrix has 2 × 5 = 10 entries while the points-to state is given by
a 5 × 5 = 25 dimensional vector.

In fact, it is sufficient to consider the points-to matrix to describe the common
state (i.e. distribution) of two pointer variables (seen as random variables) if
and only if they are (probabilistically) independent, cf e.g. [14, Sect 20]. If two
random (pointer) variables are not independent but somehow correlated, then
we need a points-to tensor to describe the situation precisely. In the classical
framework this corresponds exactly to the distinction between independent and
relational analysis. We can combine in our framework both approaches. However
– as always – it will depend on the concrete application how much precision (pro-
vided by the points-to tensor) one is willing to trade in for lower computational
complexity (the points-to matrix allows for).

5 Conclusions and Further Work

We presented a compositional semantics of a simple imperative programming
language with a probabilistic choice construct. The executions of a program in
this language correspond to a discrete time Markov chain. Important for the
syntax directed construction of the generator matrix of this DTMC is the tensor
product representation of the probabilistic state. Using a small number of basic
filter and update operators we were also able to provide the semantics of pointers
(to static variables). Probabilistic Abstract Interpretation, a quantitative gen-
eralisation of the classical Cousot & Cousot approach, provided the framework
for constructing a “simplified” abstract semantics. Linearity, distributivity and
the tensor product enabled us to construct this abstract semantics in the same
syntax directed way as the for concrete semantics. Our approach allows for a
systematic development and study of various probabilistic pointer analyses. We
could, for example, argue that the traditional points-to matrix is not sufficient
for providing relational information about the pointer structure of a program.

We used static techniques for estimating execution frequencies. A more com-
mon approach is the use of profiles which are derived by running the program
on a selection of sample inputs. Our static estimation does not require this sepa-
rate compilation and is not dependent on the choice of the representative inputs
which is a crucial and often very difficult part of the profiling process. Several
authors have argued about the advantages of static estimators or program-based
branch prediction as opposed to the time-consuming profiling process as a base
for program optimisation [15,16,17]. However, since estimates derived from run-
time profile information are generally regarded as the most accurate source of
information, it is necessary to measure the utility of an estimate provided by
static techniques by comparing them with the actual measurements in order to
assess their accuracy. We plan to further develop this point in future work; in
particular, we plan to exploit the metric intrinsic in the PAI framework for the
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purpose of measuring the precision of our analyses and to use the mathematical
theory of testing and its well-known results (cf. [18]) in order to provide the
outcomes of our analyses with a statistical interpretation.

Further work will address various extensions of the current approach: (i) an
extension to unbounded value ranges (this will require the reformulation of our
framework based on more advanced mathematical structures like measures and
Banach/Hilbert spaces), (ii) the introduction of dynamical pointer structures
using a heap and a memory allocation function, and (iii) a practical implemen-
tation, e.g. by investigating some forms of probabilistic widening, of our analysis
in order to establish whether it scales, i.e. if it can also be applied to “real world”
programs, and provides enough useful information for speculative optimisation.
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Abstract. We propose a theory of up-to techniques for proofs by coin-
duction, in the setting of complete lattices. This theory improves over
existing results by providing a way to compose arbitrarily complex tech-
niques with standard techniques, expressed using a very simple and mod-
ular semi-commutation property.

Complete lattices are enriched with monoid operations, so that we
can recover standard results about labelled transitions systems and their
associated behavioural equivalences at an abstract, “point-free” level.

Our theory gives for free a powerful method for validating up-to tech-
niques. We use it to revisit up to contexts techniques, which are known
to be difficult in the weak case: we show that it is sufficient to check
basic conditions about each operator of the language, and then rely on
an iteration technique to deduce general results for all contexts.

Introduction

Coinductive definitions are frequently used in order to define operational or con-
textual equivalences, in settings ranging from process algebra [11] to functional
programming [9,10,17].

This approach relies on Knaster-Tarski’s fixpoint theorem [20]: “in a complete
lattice, any order-preserving function has a greatest fixpoint, which is the least
upper bound of the set of its post-fixpoints”. Hence, by defining an object x as the
greatest fixpoint of an order-preserving function, we have a powerful technique
to show that some object y is dominated by x: prove that y is dominated by some
post-fixpoint. However, in some cases, the least post-fixpoint dominating y can
be a “large” object: when reasoning about bisimilarity on a labelled transition
system (LTS), the smallest bisimulation relating two processes has to contain all
their reducts. Hence, checking that this relation is actually a bisimulation often
turns out to be tedious. The aim of up-to techniques, as defined in [11,15], is to
alleviate this task by defining functions f over relations such that any bisimu-
lation “up to f” is contained in a bisimulation and hence in bisimilarity. These
techniques have been widely used [10,19,5,12,17], and turn out to be essential in
some cases.

In this paper, we generalise the theory of [15] to the abstract setting of com-
plete lattices [3]. This allows us to ignore the technicalities of LTSs and binary
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relations, and to obtain a homogeneous theory where we only manipulate ob-
jects and order-preserving functions (called maps). The key notion is that of
compatible maps, i.e., maps satisfying a very simple semi-commutation property.
These maps, which correspond to up-to techniques, generalise the “respectful”
functions of [15]. They enjoy the same nice compositional properties: we can
construct sophisticated techniques from simpler ones. On the other hand, there
are cases where compatible maps are not sufficient: we prove in [12] the cor-
rectness of a distributed abstract machine, where mechanisms introduced by an
optimisation cannot be taken into account by standard techniques relying on
compatible maps (e.g., up to expansion [1,18]); we have to resort to recent, and
more sophisticated techniques [14] relying on termination hypotheses.

The powerful techniques of [14] cannot be expressed by means of compatible
maps, which makes it difficult to combine them with other techniques: we have to
establish again correctness of each combination. Our first contribution addresses
this problem: we give a simple condition ensuring that the composition of an
arbitrarily complex correct technique and a compatible map remains correct.
While this result is not especially difficult, it greatly enhances both [15], where
only compatible maps are considered, and [14], where the lack of compositionality
renders the results quite ad-hoc, and their proofs unnecessarily complicated.
We illustrate the benefits of this new approach in Sect. 4, by establishing an
uncluttered generalisation of one of the main results from [14], and showing how
to easily enrich the corresponding up-to technique with standard techniques.

We then refine our framework, by adding monoidal operations to complete
lattices, together with a symmetry operator. In doing so, we obtain an abstract,
point-free presentation of binary relations, which is well-suited to proofs by di-
agram chasing arguments. In this setting, an LTS is a collection ( α→)α∈L of
objects, indexed by some labels, and strong similarity is the largest object x
such that the semi-commutation diagram (S) below is satisfied:

(S) ·
α

��

x
� α��
x ·

(Sf ) ·
α

��

x
� α��

f(x) ·

There is an implicit universal quantification on all labels α, so that this diagram
should be read (S) : ∀α ∈ L,

α← · x � x · α← (where (·) is the law of the monoid,
� is the partial order of the complete lattice, and α← denotes the converse of
relation α→). The second diagram, (Sf ), illustrates the use of a map f as an
up-to technique: “x satisfies (S) up to f”. Intuitively, if x � f(x), it will be
easier to check (Sf ) than (S); the correctness of f should then ensure that x is
dominated by some object satisfying (S).

By defining two other notions of diagrams, and using symmetry arguments,
we show how to recover in a uniform way the standard behavioural preorders
and equivalences (strong and weak bisimilarity, expansion [1]), together with
their associated up-to techniques. Notably, we can reduce the analysis of up-to
techniques for those two-sided games to the study of their one-sided constituents.
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Another advantage of working in this point-free setting is that it encompasses
various cases, where objects are not necessarily simple binary relations. This
includes typed bisimulations [19,7], where processes are related at a given type
and/or in a given typing environment; and environment bisimulations [17], where
environments are used to keep track of the observer’s knowledge. Therefore,
we obtain standard up-to techniques for these complicated settings, and more
importantly, this gives a clear theory to guarantee correctness of up-to techniques
that can be specific to these settings.

We then observe that maps over a complete lattice are an instance of complete
lattice equipped with monoidal operations satisfying our requirements. We show
that compatible maps, which are defined via a semi-commutation property, can
be seen as the post-fixpoints of a functor (a map over maps). Therefore, our
theory provides us for free with up-to techniques for compatible maps. We il-
lustrate the use of such “second-order” techniques by considering up to context
techniques; which are well-known for CCS or the π-calculus [19], and quite hard
for functional languages [9,10,17]. Even in the simple case of CCS, (polyadic)
contexts have a complex behaviour which renders them difficult to analyse. We
show how to use an “up to iteration” technique in order to reduce the analysis
of arbitrary contexts to that of the constructions of the language only. While we
consider here the case of CCS, the resulting methodology is quite generic, and
should be applicable to various other calculi (notably the π-calculus).

Outline. The abstract theory is developed in Sect. 1; we apply it to LTSs and
behavioural preorders in Sect. 2. Section 3 is devoted to up to context techniques
for CCS; we show in Sect. 4 how to combine a complex technique with compatible
maps. We conclude with directions for future work in Sect. 5.

1 Maps and Fixpoints in Complete Lattices

1.1 Preliminary Definitions

We assume a complete lattice, that is, a tuple 〈X, �,
∨

〉, where � is a partial
order over a set X (a reflexive, transitive and anti-symmetric relation), such
that any subset Y of X has a least upper bound (lub for short) that we denote
by

∨
Y . A function f : X → X is order-preserving if ∀x, y ∈ X x � y ⇒

f(x) � f(y); it is continuous if ∀Y ⊆ X , Y �= ∅ ⇒ f(
∨

Y ) =
∨

f(Y ). We
extend � and

∨
pointwise to functions: f � g if ∀x ∈ X, f(x) � g(x), and∨

F : x →
∨

{f(x) | f ∈ F} for any family F of functions. In the sequel, we
only consider order-preserving functions, which we shall simply call maps. For
any element y and maps f, g, we define the following maps: idX : x → x ;
ŷ : x → y ; f ◦ g : x → f(g(x)) and fω �

∨
{fn | n ∈ N}, where f0 � idX and

fn+1 � f ◦ fn. We say that a map f is extensive if idX � f .
We fix in the sequel a map s.
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Definition 1.1. An s-simulation is an element x such that x � s(x). We denote
by Xs the set of all s-simulations, s-similarity (νs) is the lub of this set:

Xs � {x ∈ X | x � s(x)} , νs �
∨

Xs .

Theorem 1.2 (Knaster-Tarski [20]). νs is the greatest fixpoint of s: νs =
s(νs).

1.2 Up-To Techniques for Proofs by Coinduction

The previous definition gives the powerful coinduction proof method: in order
to prove that y � νs, it suffices to find some y′ such that y � y′ � s(y′). The
idea of up-to techniques is to replace s with a map s′, such that:

– s � s′ so that there are more s′-simulations than s-simulations; and
– νs′ � νs so that the proof method remains correct.

At first, we restrict ourselves to maps of the form s ◦ f and focus on the map f .

Definition 1.3. A map f is s-correct if ν (s ◦ f) � νs .
A map f is s-correct via f ′ if f ′ is an extensive map and f ′(Xs◦f ) ⊆ Xs .
A map f is s-compatible if f ◦ s � s ◦ f .

Proposition 1.4. (i) Any s-compatible map f is s-correct via fω.
(ii) Any map is s-correct iff it is s-correct via some map.

Intuitively, a map is correct via f ′ if its correctness can be proved using f ′ as
a “witness function” – these witnesses will be required to establish Prop. 1.10
and Thm. 1.12 below. For example, in the case of an s-compatible map f , if
x � s(f(x)) then fω(x), which is an s-simulation, is the witness.
Remark 1.5. For any s-compatible map f , f(νs) � νs. Hence s-compatible
maps necessarily correspond to closure properties satisfied by νs. This is not a
sufficient condition: there are maps satisfying f(νs) � νs that are not s-correct.

Proposition 1.6. The family of s-compatible maps is stable under composition
and lubs. It contains the identity, and constant maps x̂ with x ∈ Xs.

These nice compositional properties are the main motivation behind compat-
ible maps. They do not hold for correct maps (more generally, the map t =∨

{t | νt � νs} does not necessarily satisfy νt � νs). On the other hand, cor-
rect maps allow more expressiveness: we can use any mathematical argument in
order to prove the correctness of a map; we will for example use well-founded
inductions in Sect. 4.

At this point, we have generalised to a rather abstract level the theory de-
veloped in [15] (this claim is justified by Sect. 1.4). Thm 1.7, which is our first
improvement against [15], allows one to compose correct and compatible maps:

Theorem 1.7. Let f be an s-compatible map, and g an s-correct map via g′.
If f is g-compatible, then (g ◦ f) is s-correct via (g′ ◦ fω).

As will be illustrated in Sect. 4, this important result allows one to focus on the
heart of a complex technique, so that its proof remains tractable; and then to
improve this technique with more standard techniques.
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1.3 Conjunctions, Symmetry, and Internal Monoid

We now add some structure to complete lattices: conjunctions, which are already
supported, symmetry, and monoidal laws.

Conjunctions. A complete lattice has both lubs and greatest lower bounds (glb):
for any Y ⊆ X ,

∧
Y �

∨
{x ∈ X | ∀y ∈ Y, x � y}. We extend this definition

pointwise to maps. We fix in the sequel a set S of maps and focus on proof tech-
niques for

∧
S. As will be illustrated in Sect. 2.2, this kind of maps corresponds

to coinductive definitions based on a conjunction of several properties.

Lemma 1.8. We have X�
S =

⋂
{Xs | s ∈ S} and ν

∧
S �

∧
{νs | s ∈ S} .

In general, ν
∧

S �=
∧

{νs | s ∈ S}; for example, in process algebras, 2-simulation
and bisimulation do not coincide. Therefore, to obtain results about ν

∧
S, it is

not sufficient to study the fixpoints (νs)s∈S separately.

Proposition 1.9. Any map that is s-compatible for all s in S is
∧

S-compatible.

Prop. 1.9 deals with compatible maps, and requires that the same map is used
for all the components of S. We can relax these restrictions by working with
correct maps, provided that they agree on a common witness:

Proposition 1.10. Let (fs)s∈S be a family of maps indexed by S and let f ′ be
an extensive map; let Sf � {s ◦ fs | s ∈ S}.

If fs is s-correct via f ′ for all s of S, then ν
∧

Sf � ν
∧

S.

Although Prop. 1.10 does not define a
∧

S-correct map, it actually defines an
up-to technique for

∧
S: a priori,

∧
S �

∧
Sf , so that

∧
Sf -simulations are easier

to construct than
∧

S-simulations.

Symmetry. Let · be an order-preserving involution (∀x, x = x). For any map
f , we define f � · ◦ f ◦ · : x → f(x), and

←→
f � f ∧ f . We call x the converse

of x and we say that an element x (resp. a map f) is symmetric if x = x (resp.
f = f). These definitions yield nice algebraic properties (the key point being
that we have x � y ⇔ x � y) and we can relate up-to techniques for s and s :

Proposition 1.11. We have Xs = Xs, νs = νs and for any maps f, f ′,

(i) f is s-correct (via f ′) if and only if f is s-correct (via f ′),
(ii) f is s-compatible if and only if f is s-compatible.

We can finally combine these properties with Prop. 1.10 and reduce the problem
of finding up-to techniques for ←→s to that of finding up-to techniques for s. We
illustrate this in Sect. 2.2, by deriving up-to techniques for weak bisimulation
from techniques for weak simulation.

Theorem 1.12. For any s-correct map f via a symmetric map, ν
←−→
s ◦ f � ν←→s .

Corollary 1.13. Let f be an s-correct map via a symmetric map.
If x is symmetric, and x � s(f(x)), then x � ν←→s .
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Internal monoid. Suppose that the complete lattice 〈X, �,
∨

〉 is actually a
monoidal complete lattice, i.e., that X is equipped with an associative product
(·) with neutral element e, such that:

∀x, y, x′, y′ ∈ X, x � x′ ∧ y � y′ ⇒ x · y � x′ · y′ .

The iteration (resp. strict iteration) of an element x is defined by x� �
∨

n∈N
xn

(resp. x+ �
∨

n>0 xn), where x0 � e and xn+1 � x · xn. Iterations and product
are extended pointwise to maps: f ·̂ g : x → f(x) · g(x), and f� : x → f(x)�.

Definition 1.14. An element x is reflexive if e � x; it is transitive if x · x � x.
We say that s preserves the monoid 〈X, ·, e〉 if e is an s-simulation and

∀x, y ∈ X, s(x) · s(y) � s(x · y) .

Proposition 1.15. If s preserves the monoid, then:

(i) the product of two s-simulations is an s-simulation;
(ii) s-similarity (νs) is reflexive and transitive;
(iii) for any s-compatible maps f, g, f ·̂ g and f� are s-compatible.

1.4 Progressions

While maps and pre-fixpoints are the adequate tool in order to build the previous
theory of up-to techniques, it is more convenient in practise to use the following
notion of progression, which can systematically be turned into a map. This no-
tion facilitates the definition of maps corresponding to the various behavioural
preorders we will consider in Sect. 2; moreover, it leads to the important results
given in Sect. 1.5 about up-to techniques for compatible maps.

Definition 1.16. A progression is a binary relation � ⊆ X × X , such that:

∀x, x′, y′, y ∈ X, x � x′ ∧ x′ � y′ ∧ y′ � y ⇒ x � y ,

∀Y ⊆ X, ∀z ∈ X, (∀y ∈ Y, y � z) ⇒
∨

Y � z .

We associate to such relation the map s� : x →
∨

{y ∈ X | y � x} .

Relations � in [15], and � in [19] are particular instances of progressions.
The main advantages of progressions are the following characterisations of the
previous notions:

Proposition 1.17. For any progression �, we have:

(i) ∀x, y ∈ X, x � s�(y) ⇔ x � y, and in particular, x ∈ Xs� iff x � x;
(ii) a map f is s�-compatible iff ∀x, y ∈ X, x � y ⇒ f(x) � f(y) .
(iii) s� preserves the monoid iff e � e and

∀x, y, x′, y′ ∈ X, x � x′ ∧ y � y′ ⇒ x · y � x′ · y′ .

Another practical consequence of (i) is that ∀x, x � s�(f(x)) iff x � f(x) .
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1.5 Up-To Techniques for Compatible Maps

Denoting by X〈X〉 the set of (order-preserving)maps over X ,
〈
X〈X〉, �,

∨
, ◦, idX

〉

forms a monoidal complete lattice. Therefore, we can apply the previous theory
in order to capture certain properties of maps. In particular, that of being s-
compatible: for any map s, define the following relation over maps:

f
s� f ′ if f ◦ s � s ◦ f ′ .

Since s is order-preserving, s� is a progression relation, whose simulations are
exactly the s-compatible maps. Moreover, when s comes from a progression
(s = s�), we have f

s�� f ′ iff ∀x, y ∈ X, x � y ⇒ f(x) � f ′(y) .

Lemma 1.18. For any map s, s� preserves the monoid
〈
X〈X〉, ◦, idX

〉
.

Theorem 1.19. Let f, g be two maps.

(i) If the product (·) preserves s and f
s� f�, then f� is s-compatible.

(ii) If f
s� fω and f is continuous, then fω is s-compatible.

(iii) If f
s� g◦fω, where g is s-compatible, extensive and idempotent (g◦g = g),

and f is g-compatible, then g ◦ fω is s-compatible.

Proof. Call functor any (order-preserving) map ϕ over maps; we say that a
functor is respectful when it is compatible w.r.t. s�. Recall that ĝ is the constant
functor to g, and that (◦̂) is the pointwise extension of (◦) to functors.

(i) By Lemma 1.18 and Prop. 1.15, ϕ = îd�
X ◦̂ idX〈X〉 : f → f� is respectful,

being the product of two respectful functors:
– the constant functor to id�

X , this map being s-compatible by Prop. 1.15;
– and the identity functor idX〈X〉 , which is always respectful.

Therefore, f is “s-compatible up to the respectful functor ϕ”, so that ϕω(f)
is s-compatible, by Prop. 1.4. We finally check that ϕω(f) = f�.

(ii) By Lemma 1.18 and Prop. 1.15, the functor ω � id�
X〈X〉 : f → fω is respect-

ful (iteration (�) is done w.r.t (◦)). By Prop. 1.4, ωω(f) is s-compatible,
and we check that ωω(f) = fω, f being continuous.

(iii) Using similar arguments, ϕ = ĝ ◦̂ ω : f → g ◦ fω is respectful, and ϕω(f)
is s-compatible. We finally check that ϕω(f) = g ◦ fω. �

The first point generalises [19, Lemma 2.3.16]; we illustrate the use of (ii) and
(iii) in Sect. 3. In (iii), the main hypotheses are the progression property and
s-compatibility of g: other hypotheses are only used in order to simplify compu-
tations, so that the actual s-compatible map we obtain is g ◦ fω.

2 Bisimilarity in Monoidal Lattices with Symmetry

We assume a continuous monoidal complete lattice with symmetry, that is, a
monoidal complete lattice 〈X, �,

∨
, ·, e〉, whose product distributes over arbi-

trary lubs: (∀Y, Z � X,
∨

Y ·
∨

Z =
∨

{y · z | y ∈ Y, z ∈ Z}), equipped with a
map · such that ∀x, x = x and ∀x, y, x · y = y · x .
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s : x �s y if x � y and ∀α ∈ L,
α← · x � y · α← ;

e : x �e y if x � y and ∀α ∈ L,
α← · x � y · �α← ;

w : x �w y if x � y and ∀α ∈ L,
α← · x � y · �α⇐ ;

wt : x �wt y if x � y,
τ← · x � y · �τ⇐ , and ∀a ∈ Lv,

a← · x � y� · �a⇐ .

Fig. 1. Maps and progressions for left-to-right simulation-like games

Although we denote by x, y . . . the elements of X , they should really be
thought of as “abstract relations” so that we shall call them relations in the
sequel (we employ letters R, S for “set-theoretic relations” of Sect. 3 and 4).

We let α range over the elements of a fixed set L of labels, and we assume a
labelled transition system (LTS), that is, a collection ( α→)α∈L of relations indexed
by L. Intuitively, α→ represents the set of transitions along label α. Among the
elements of L, we distinguish the silent action, denoted by τ ; we let a range
over the elements of Lv � L \ {τ}, called visible labels. For α ∈ L we define the
following weak transition relations :

�α→ �
{

τ→ ∨ e if α = τ ,
α→ otherwise ;

α⇒ � τ→
�

· α→ · τ→
�

; �α⇒ � τ→
�

· �α→ · τ→
�

.

Notice the following properties: �τ⇒ = τ→�
, τ⇒ = τ→+

, �a⇒ = a⇒. The converses of
such relations will be denoted by the corresponding reversed arrows.

2.1 One-Sided Behavioural Preorders

In order to define behavioural preorders, we construct four maps in Fig. 1, based
on four different progressions. Their meaning can be recovered by considering
the simulations they define: s yields strong simulation games, where actions are
exactly matched (diagram (S) in the introduction); e yields games corresponding
to the left-to-right part of an expansion [1,18] game, where it is allowed not to
move on silent challenges; and w yields weak simulations games, where one can
answer “modulo silent transitions”. The map (wt) is a variant of w, which allows
one to answer up to transitivity on visible challenges. We have s � e � w � wt,
so that Xs ⊆ Xe ⊆ Xw ⊆ Xwt , and νs ⊆ νe ⊆ νw ⊆ νwt.

The following proposition collects standard up-to techniques that can be used
with these maps. Maps s and e preserve the monoid, so that they enjoy the
properties stated in Prop. 1.15: the corresponding greatest fixpoints are reflexive
and transitive, and they support the powerful “up to transitivity” technique (i).
This is not the case for w: if it was preserving the monoid, the “weak up to weak”
technique would be correct, which is not true [18]. We can however show directly
that w-simulations are closed under composition (·), and that they support “up
to expansion” on the left, and “up to weak” on the right (ii). Map wt is actually
an up-to technique for w: the similarities associated to those maps coincide (iii).
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Intuitively, transitivity can be allowed on visible actions, since these are played
in a one-to-one correspondence.

Proposition 2.1. (i) The reflexive transitive map id�
X is s- and e-compatible.

(ii) For any xe ∈ Xe and xw ∈ Xw, the map y → xe · y · xw is w-compatible;
this map is wt-compatible whenever xe and xw are reflexive.

(iii) For any wt-simulation x, x� is a w-simulation; νwt = νw.

2.2 Handling Two-Sided Games

To study “reversed games” we just use the converses of the previous maps; for
example, the map w defines the same games as w, from right to left: x is a
w-simulation iff x �w x. Using the results of Sect. 1.3 we can then combine
left-to-right maps with right-to-left maps and obtain standard two-sided games:

∼ � ν←→s � � ν(e ∧ w) ≈ � ν←→w

Strong bisimilarity (∼) and weak-bisimilarity (≈) are symmetric, reflexive and
transitive; expansion [1,18] (�) is reflexive and transitive; we have ∼ � � � ≈ .

Before transferring our techniques from one-sided to two-sided games, we
introduce the notion of closure, that we use as an abstraction in order to cope
with the up-to context techniques we shall define in Sect. 3.

Definition 2.2. A closure is a continuous, extensive and symmetric map C,
such that ∀x, y ∈ X, C(x · y) � C(x) · C(y) .

Theorem 2.3. Let C be a closure.

(i) If C is s-compatible, x → (C(x) ∨ ∼)� is ←→s -compatible
(ii) If C is w-compatible, x → � · C(x) · � is ←→w -compatible.
(iii) If C is w-compatible, x → � · C(x) · ≈ is w-correct via a symmetric map.
(iv) ν←→wt = ≈ .

Intuitively, we may think of C(R) as being the closure of R under some set of
contexts. (i) states that up-to transitivity and contexts is allowed for strong
bisimilarity. This corresponds to the left diagram below: if x is symmetric and
satisfies this diagram, then x is contained in ∼. The standard up to expansion
and contexts for weak bisimulation is stated in (ii) and slightly improved in (iii);
notice that we need for that to use the notion of correct map: this map is not
←→w -compatible. Technique (iii) appears on the second diagram below. Finally,
(iv) allows us to work up to transitivity on visible actions; which is depicted on
the last two diagrams below ((iii) holds for wt, provided C is wt-compatible,
this hypothesis is however problematic, as explained in Sect. 3). We omitted
proof techniques for expansion, which can naturally be recovered from up-to
techniques for w and e using Prop. 1.10.

·
α

��

x

� α
��

(C(x) ∨ ∼)� ·

·
α

��

x

� �α
��

� · C(x) · ≈·

·
τ

��

x

� �τ
��

� · C(x) · ≈·

·
a

��

x

� a
��

(C(x) ∨ ≈)� ·
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α ∈ L a ∈ Lv

τ = τ a = a

p ::= 0 | α.p | p|p | (νa)p | !p

p
α→ p′

p | q
α→ p′ | q

q
α→ q′

p | q
α→ p | q′

p
a→ p′ q

a→ q′

p | q
τ→ p′ | q′

α.p
α→ p

p
α→ p′

(νa)p
α→ (νa)p′ α �= a, a

!p | p
α→ p′

!p
α→ p′

Fig. 2. Calculus of Communicating Systems (CCS)

3 Congruence and Up to Context Techniques in CCS

We now look at “up to context” techniques, which provide an example of appli-
cation of the results from Sect. 1.5. We need for that to instantiate the previous
framework: contexts do not make sense in a point-free setting. We study the
case of (sum-free) CCS [11], whose syntax and semantics are recalled in Fig. 2.
The sum operator could easily be added; it is omitted here for lack of space.
Moreover, we chose replication (!) rather than recursive definitions in order to
get an algebra which is closer the π-calculus.

We denote by P the set of processes, and we let R, S range over the set R of
binary relations over P . We write p R q when 〈p, q〉 belongs to R. We denote by I
the reflexive relation: {〈p, p〉 | p ∈ P}. The composition of R and S is the relation
R · S � {〈p, r〉 | ∃q, p R q and q S r}; the converse of R is R � {〈p, q〉 | q R p}.
We finally equip relations with set-theoretic inclusion (⊆) and union (

⋃
), so that

〈R, ⊆,
⋃

, ·, I, ·〉 forms a monoidal complete lattice with symmetry.
For any natural number n, a context with arity n is a function c : Pn → P ,

whose application to a n-uple of processes p1, . . . , pn is denoted by c[p1, . . . , pn].
We associate to such context the following map (which is actually a closure):

�c� : R → {〈c[p1, . . . , pn], c[q1, . . . , qn]〉 | ∀i ≤ n, pi R qi}

This notation is extended to sets C of contexts, by letting �C� �
⋃

c∈C �c� .

Definition 3.1. We define the following initial contexts:

0 : p → 0 | : p, q → p|q α. : p → α.p (νa) : p → (νa)p ! : p → !p

We gather these in the set Ci � {idP ,0, |, !}∪{α. | α ∈ L}∪{(νa) | a ∈ Lv}, and
we call closure under CCS contexts the map Cccs � �Ci�ω .

Initial vs. Monadic Contexts. Cccs(R) is actually the closure of R under arbitrary
polyadic CCS contexts: we can show that p Cccs(R) q iff p and q can be obtained
by replacing some occurrences of 0 in a process with processes related by R. A
different approach is adopted in [19]: the family Cm of monadic CCS contexts
is defined; it consists in arbitrary CCS contexts, where the argument is used at
most once. The map Cccs can then be recovered by transitive closure: we have
Cccs ⊆ �Cm��. It has to be noticed that polyadic contexts cannot be avoided
when we study the correctness of such maps: the monadic replication context (!)



Complete Lattices and Up-To Techniques 361

“evolves” by reduction into a polyadic context. In order to be able to consider
only monadic contexts, a lemma corresponding to Thm 1.19(i) is used in [19], so
that the proof in the strong case – reformulated into our setting – amounts to
proving �Cm� s� �Cm��, i.e., ∀c ∈ Cm, �c� s� �Cm��, which is done by structural
induction on context c (recall that f

s� f ′ iff R �s S entail f(R) �s f ′(S)).
This approach does not scale to the weak case however, where up to transitivity
is not correct, so that Thm 1.19(i) cannot no longer be used. Therefore, [19]
suggests to work with polyadic contexts from the beginning, which is tedious
and happens to require more attention than expected, as will be shown below.

Focusing on initial contexts makes it possible to reach Cccs by iteration (Thm
1.19(ii)) rather than transitive closure, so that the extension to the weak case
is not problematic. Moreover, initial contexts are much simpler than monadic
contexts: the argument is almost at the top of the term, so that it is really
easy to figure out the transitions of c[p1, . . . , pn]. We give a detailed proof of the
following theorem to illustrate the benefits of this approach.

Theorem 3.2. The closure Cccs is s-compatible.

Proof. By Thm.1.19(ii), it suffices to show �Ci�
s� Cccs, i.e., ∀c ∈ Ci, �c� s� Cccs.

We study each context of Ci separately, and we show

�idP� = idR
s� idR �0� s� �0� �α.� s� idR

�(νa)� s� �(νa)� �|� s� �|� �!� s� �|�ω ◦ (�!� ∪ idR)

(all maps used on the right of the above progression are contained in Cccs). Let
R, S such that R �s S, in each case, we suppose u �c�(R) v and u

α→ u′, and
we have to find some v′ such that v

α→ v′ and u′ �c′�(S) v′.

idR, �0�: straightforward.
�α.�: u = α′.p α→ u′, v = α′.q with p R q. Necessarily, α = α′ and u′ = p.

We hence have v = α.q
α→ q, with p idR(S) q, (recall that R �s S

entails R ⊆ S).
�(νa)�: u = (νa)p α→ u′, v = (νa)q with p R q. Inferences rules impose

u′ = (νa)p′ where p
α→ p′ and α �= a, a. Since p R q, we obtain q′ such

that q
α→ q′ and p′ S q′, and we check that v

α→ v′ = (νa)q′, with
u′ �(νa)�(S) v′.

�|�: u = p1|p2
α→ u′, v = q1|q2 with p1 R q1 and p2 R q2. According to the

inference rules in the case of a parallel composition, there are three
cases:

• u′ = p′1|p2 with p1
α→ p′1. Since R �s S, q1

α→ q′1 with p′1 S q′1. We check
that v

α→ v′ = q′1|q2 and u′ �|�(S) v′ (again we use R �s S ⇒ R ⊆ S).
• u′ = p1|p′2 with p2

α→ p′2, which is identical to the previous case.
• u′ = p′1|p′2 with p1

a→ p′1, p2
a→ p′2, and α = τ . We have q1

a→ q′1 q2
a→ q′2

with p′1 S q′1 and p′2 S q′2; so that v
τ→ v′ = q′1|q′2 and u′ �|�(S) v′.

�!�: this case is handled in the proof of Thm 3.3 below, so that we omit it
here. �
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R =
��

a, (νb)(b.a|b)
�
, 〈b.a, b〉 ,

�
(νb)(b|b),0

�
, 〈(νb)0,0〉

�

c : p �→ (νb)(p|b)

b.a
b

�����
��

R b
b

����
��

�

a R c[b.a] Cccs(R) c[b] R 0

Fig. 3. Closure Cccs is not wt-correct

Contrarily to what is announced in [19, Lem. 2.4.52], Cccs is not w-compatible:
consider for example R = {〈τ.a, a〉} ∪ I; although R �e R, Cccs(R) �e Cccs(R)
does not hold: the challenge !τ.a|a τ← !τ.a �!�(R) !a cannot be answered in Cccs(R)
since !a cannot move; we first have to rewrite !a into !a|a. This is possible up to
∼ : unfolding of replications is contained in strong similarity. [19] should thus be
corrected by working modulo unfolding of replications, the corresponding proof
would be really tedious however. In our setting, it suffices to use Thm. 1.19(iii):
we work “up to iteration and a compatible map”.

Theorem 3.3. R → ∼ · Cccs(R) · ∼ is an e- and w-compatible closure.

Proof (w-compatibility). Take g : r → ∼ · R · ∼ ; g is w-compatible, extensive
and idempotent; moreover, Cccs being s-compatible, Cccs(∼) ⊆ ∼, and Cccs is g-
compatible. Hence, by Thm.1.19(iii), it suffices to show ∀c ∈ Ci, �c� w� g ◦ Cccs.

Like previously, �0� w� �0�, �|� w� �|�, �α.� w� idR, and �(νa)� w� �(νa)�; we
detail the case of the replication, for which we need the map g. Consider R, S
such that R �w S, we have to show �!�(R) �w ∼ · Cccs(S) · ∼ . Suppose that
p R q and !p α→ p′; there are two cases:

– p′ = !p|pk|p0|pk′
with p

α→ p0 (pk denotes the parallel composition of k copies
of p). Since R

w� S, we deduce q
�α⇒ q0 with p0 S q0. There are two cases:

• q
α⇒ q0, and we check that !q α⇒ q′ = !q|qk|q0|qk′

, where p′ Cccs(S) q′.
• q = q0 (and α = τ), in that case, !q cannot move, this is where we have

reason modulo ∼ : !q ∼ q′ = !q|qk+1+k′
, and p′ Cccs(S) q′ ∼ !q.

– p′ = !p|pk|p0|pk′ |p1|pk′′
with p

a→ p0 and p
a→ p1 (α = τ). Since R

w� S,
we deduce q

a⇒ q0 and q
a⇒ q1 with p0 S q0 and p1 S q1. We check that

!q τ⇒ q′ = !q|qk|q0|qk′ |q1|qk′′
, where p′ Cccs(S) q′. �

A Negative Result. Rather surprisingly, Cccs is not wt-correct: a counterex-
ample [16] is depicted on Fig. 3, where R is not contained in wt-similarity while
R is a (wt ◦ Cccs)-simulation. The point is that �|� wt� Cccs does not hold: since
parallel composition is able to “transform” two visible actions into a silent ac-
tion, up to transitivity is brought from visible challenges – where it is allowed
by wt, to silent challenges – where it is not

This shows that maps inducing the same fixpoint (recall that νw = νwt) may
define different sets of compatible or correct maps. At a pragmatic level, this
reveals the existence of a trade-off between the ability to use up to context and
up to transitivity. More importantly, it shows that from the point of view of up-to
techniques, weak bisimilarity is different from “strong bisimilarity on the weak
LTS ( �α⇒)”: the relation R from Fig. 3 also satisfies ∀α,

�α⇐ · R ⊆ Cccs(R)� · �α⇐ .
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4 Going Beyond Expansion: Termination Hypotheses

In recent work [14], we proved that we can use up to transitivity and go be-
yond expansion – even on silent challenges – provided that some termination
hypotheses are satisfied. In this section, we generalise the most important of
these techniques (that has actually been used in [12]), and show how to inte-
grate it with previously defined techniques. We say that a relation � terminates
if there exists no infinite sequence (pi)i∈N such that ∀i ∈ N, pi � pi+1 .

Theorem 4.1. Let R, S be two relations; suppose that S+ · τ⇒ terminates.

If S ⊆ R and

{
τ← · R ⊆ S� · R · �τ⇐
∀a ∈ Lv,

a← · R ⊆ R� · a⇐
then R� is a w-simulation.

The proof is given in appendix; intuitively, this theorem allows reasoning up to
transitivity, provided that the pairs used in transitivity position in silent chal-
lenges (those collected in relation S) satisfy a termination property. Restricted
to the case R = S ∪ I, this corresponds to [14, Thm. 3.13]. This generalisation,
which may seem useless, makes the result much more tractable in practise: the
termination requirement refers only to the part of R that is actually used in silent
challenges, to rewrite the left-hand-side process. Therefore, we can enlarge R ac-
cording to our need, without having to bother with the termination of S+ · τ⇒ .
Notably, and unlike in [14], S� is not required to be a w-simulation by itself.
Also remark that the termination requirement does not entail the termination
of S or τ→, which makes it realistic in practise. An application, where this kind
of requirement comes from the termination of τ→ and the fact that S does not
interfere with the termination argument is described in [12].

In order to integrate this technique into our setting, we have to define a map
that enforces the termination hypothesis. We achieve this by using an external
relation that will satisfy the termination hypothesis: let � be a transitive relation
and define t	 : R → (R ∩ �)� · R.

Corollary 4.2. If � · τ⇒ terminates, then t	 is w- and wt-correct via id�
R.

It, then suffices to establish the following (elementary) properties, so that we
can combine this correct map with standard compatible maps, using Thm. 1.7.

Lemma 4.3. Let C be a closure such that C(�) ⊆ � , let S be a reflexive relation.
The maps C, R → S and R → R · S are t	-compatible.

Theorem 4.4. Let C be a w-compatible closure such that C(�) ⊆ � . If � · τ⇒
terminates, R → ((C(R)∪ ≈) ∩�)� · C(R) · ≈ is w-correct via a symmetric map.

This theorem also holds for wt; it is however unclear whether there are interesting
wt-compatible closures, as explained in Sect. 3. We conclude by considering
elaboration (�) [2], which is another coinductively defined preorder contained in
≈ . We have shown in [13] that this preorder can be used as an up-to technique
for ≈ , when τ→ terminates. Using our theory, we can combine this result with
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up to context: if τ→ terminates, so does � · τ⇒ [13, Lemma 2.5]; we can moreover
show that elaboration is a congruence w.r.t CCS contexts, so that � naturally
satisfies the requirements of Thm. 4.4.

Corollary 4.5. In finite (replication free) CCS, map R → � · Cccs(R) · ≈ is
w-correct via a symmetric map.

5 Related and Future Work

Termination in the point-free setting. We would like to investigate whether
the presentation of the techniques exploiting termination arguments and well-
founded induction (Sect. 4) can be lifted to the point-free setting of Sect. 2.
Results from [4], in the setting of relation algebras, are really encouraging: ter-
minating relations can be characterised at a point-free level, and this property
can be related to corresponding well-founded induction principles. Notably, New-
man’s Lemma, whose proof uses the same ingredients as our proof of Lemma A.1
(e.g., diagram chasing and well-founded induction), can be proved at the corre-
sponding abstraction level. Relation algebras are slightly more restrictive than
our setting however: they require a completely distributive complete lattice (e.g.,
that arbitrary lubs distribute over arbitrary glbs) and a “modular identity law”.

Termination and contexts. In order to use Théorème. 4.4 with a closure (C), we
have to check that relation �, which ensures the termination requirement (� · τ⇒),
is closed under C (C(�) ⊆ �). This hypothesis is automatically satisfied by elab-
oration, which is a pre-congruence; however, we would like to investigate more
generally how to obtain such pre-congruences satisfying the termination require-
ment. This is a common question in rewriting theory; we plan to study whether
tools from this domain (rewrite orders, dependency pairs, interpretations) can be
adapted to our case, where the termination property is about the composition of
the relation with silent transitions, rather than about the relation itself.

Congruence properties. In the case of sum-free CCS, which we studied in Sect. 3,
bisimilarities are congruences w.r.t all contexts. Such situations are not so com-
mon in concurrency theory, where we often have to close bisimilarity under some
contexts, in order to obtain a congruence [19,6]. Our setting seems well-suited
to analyse such situations at a rather abstract level: given a closure C, repre-
senting the congruence property to be satisfied, we can define its adjoint as the
map C◦ : x →

∨
{y | C(y) � x}. We have C◦ ◦ C = C, C ◦ C◦ = C◦, so that

C(x) � y iff x � C◦(y); therefore, C◦ maps any element x to the largest congru-
ence dominated by x. For example, C◦(ν←→w ) is the largest congruence contained
in weak bisimilarity. Another standard approach consists in closing the relation
under contexts, after each step of the bisimulation games; in doing so, we obtain
barbed congruence [8,6], which is both a congruence, and a bisimulation. We
can capture this approach by considering ν

(←→w ∧ C◦). We would like to study
whether up-to techniques can be developed in order to reduce the number of
contexts to be considered in such cases, and to have a better understanding of
the interactions between “game maps” like w and “congruent maps” like C◦.
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A Proof of Theorem 4.1

We give the proof of Thm 4.1; this requires a technical lemma expressing the
commutation property on which the technique relies.

Lemma A.1. Let R, S, → and ↪→ be four relations. If S ⊆ R, and S+ · →+

terminates, then
{

← · R ⊆ S� · R · ←� (H)
←↩ · R ⊆ R� · ←↩ · ←� (H′)

entail ←↩ · ←� · R� ⊆ R� · ←↩ · ←� .

Proof. We actually prove ←↩ · ←� · R ⊆ R� · ←↩ · ←�, which leads to the desired
result by a simple induction. We proceed by well-founded induction over 〈P , N〉,
equipped with the lexicographic product of τ⇒ · S+ and the standard ordering
of natural numbers, which are two well-founded relations (the termination of
τ⇒ · S+ is equivalent to that of S+ · τ⇒). We use the predicate ϕ(u, n):

“for any p, p′0, q, u →� p →n · ↪→ p′0 and p R q entail p′0 R� · ←↩ · ←� q.”

– if n = 0, then ϕ(u, n) holds by using the commutation hypothesis (H’);
– otherwise, take p0 such that p → p0 →n−1 · ↪→ p′0, and apply the first

commutation hypothesis (H) to p0 ←↩ · ← p R q: there exist k > 0 and
p1, . . . , pk such that q →� · ↪→ pk, pk−1 R pk and ∀i ∈ [1; k − 1], pi−1 S pi.
We now define by an internal induction a sequence (p′i)0<i≤k such that we
have ∀i ∈ [1; k], pi−1 R� p′i ←↩ · ←� pi.

• if i = 1, we apply the external induction hypothesis: ϕ(u, n − 1), to
p′0 ←↩ · ←n−1 p0 R p1 (recall that S ⊆ R): there exists p′1 such that
p′0 R� p′1 and p1 →� · ↪→ p′1.

• otherwise, i > 1, we suppose that the sequence is constructed until i−1,
and we remark that u →+ · S+ pi−1, so that we can obtain p′i by
applying the external induction hypothesis, ϕ(pi−1, mi−1), to p′i−1 ←↩
· ←mi−1 pi−1 R pi (mi−1 is the number of steps between pi−1 and p′i−1).

We can conclude: we have p′0 R� p′k ←↩ · ←� q.
This case of the proof is summed up below in a diagrammatic way:

u
��� p

��

R

(H)

q

���
p0

n−1��

S
ϕ(u, n − 1)

p1

m1��

S
ϕ(p1, m1)

p2

m2��
...

. . . S pk−1

mk−1��

R
ϕ(pk−1, mk−1)

pk

���� �

��

� �

��

� �

��

� �

��

� �

��
p′
0 R� p′

1 R� p′
2

. . . R� p′
k−1 R� p′

k

�

Proof of Theorem 4.1. We first apply Lemma A.1 with → = τ→ and ↪→ = I, so
that we obtain �τ⇐ · R� ⊆ R� · �τ⇐ .

This leads to �τ⇐ · a← · R ⊆ R� · �a⇐ , so that we can apply Lemma A.1 again,
with → = τ→ and ↪→ = a→ · �τ⇒, to obtain �a⇐ · R� ⊆ R� · �a⇐ . �
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Abstract. A notion of open bisimulation is formulated for the spi cal-
culus, an extension of the π-calculus with cryptographic primitives. In
this formulation, open bisimulation is indexed by pairs of symbolic traces,
which represent the history of interactions between the environment with
the pairs of processes being checked for bisimilarity. The use of symbolic
traces allows for a symbolic treatment of bound input in bisimulation
checking which avoids quantification over input values. Open bisimilar-
ity is shown to be sound with respect to testing equivalence, and futher,
it is shown to be an equivalence relation on processes and a congruence
on finite processes.

1 Introduction

The spi-calculus [2] is an extension of the π-calculus [9] with crytographic prim-
itives. This extension allows one to model cryptographic protocols and, via a
notion of observational equivalence called testing equivalence, one can express
security properties that a protocol satisfies. Testing equivalence is usually de-
fined by quantifying the environment with which the processes interact: roughly,
to show that two processes are testing equivalent, one shows that the two pro-
cesses exhibit the same traces under arbitrary observers. As in the π-calculus,
bisimulation techniques have been defined to check the observational equivalence
of processes that avoids quantification over all possible observers. Unlike the π-
calculus, in order to capture security notions such as secrecy, bisimulation in
the spi-calculus needs to take into account the states of the environment (e.g.,
public networks) in its interaction with the processes being checked for equiv-
alence. This gives rise to a more refined notion of equivalence of actions in the
definition of bisimulation. In the π-calculus, to check whether two processes are
bisimilar, one checks that an action by one process is matched by an equivalent
action by the other process, and their continuations possess the same property.
The differences between bisimulations for the π- and the spi-calculus lie in the
interpretation of “equivalent actions”. Consider the processes P = (νx)ā〈{b}x〉.0
and Q = (νx)ā〈{c}x〉.0. P is a process that can output on channel a a message
b, encrypted with a fresh key x, and terminates, while Q outputs a message c en-
crypted with x on the same channel. In the standard definitions of bisimulation
for the π-calculus, e.g., late or early bisimulation [9], these two processes are not

Z. Shao (Ed.): APLAS 2007, LNCS 4807, pp. 367–382, 2007.
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bisimilar since they perform (syntactically) distinct actions. In the spi-calculus,
when one is concerned only with whether an intruder (in its interaction with P
and Q) can discover the message being encrypted, the two actions by P and Q
are essentially equivalent; the intruder does not have access to the key x, hence
cannot access the underlying messages.

Motivated by the above observation, different notions of bisimulation have been
proposed, among others framed bisimulation [1], environment-sensitive bisimula-
tion [4], hedged bisimulation [6], etc. (see [6] for a review on these bisimulations).
All these notions of bisimulation share a similarity in that they are all indexed
by some sort of structure representing the “knowledge” of the environment. This
structure is called differently from one definition to another. We shall use the
rather generic term observer theory, or theory for short, to refer to the knowledge
structure used in this paper, which is just a finite set of pairs of messages. A theory
represents the pairs of messages that are obtained through the interaction between
the environment (observer) and the pairs of processes in the bisimulation set. The
pairs of messages in the theory represent equivalent messages, from the point of
view of the observer. This observer theory is then used as a theory in a deductive
system for deducing messages (or actions) equivalence. Under this theory, equiv-
alent messages need not be syntactically equivalent.

A main difficulty in bisimulation checking for spi-processes is in dealing with
the input actions of the processes, where one needs to check that the processes
are bisimilar for all equivalent pairs of input messages. One way of dealing with
the infinite quantification is through a symbolic technique where one delays the
instantiations of input values until they are needed. This technique has been
applied to hedged bisimulation by Borgström et al.[5]. Their work on symbolic
bisimulation for the spi-calculus is, however, mainly concerned with obtaining
a sound approximation of hedged bisimulation, and less with studying meta-
level properties of the symbolic bisimulation as an equivalence relation. Open
bisimulation [10], on the other hand, makes use of the symbolic handling of input
values, while at the same time maintains interesting meta-level properties, such
as being a congruence relation on processes. Open bisimulation has so far been
studied for the π-calculus and its extension to the spi-calculus has not been fully
understood. There is a recent attempt at formulating an open-style bisimulation
for the spi-calculus [8], which is shown to be sound with respect to hedged
bisimulation. However, no congruence results have been obtained for this notion
of open bisimulation. We propose a different formulation of open bisimulation,
which is inspired by hedged bisimulation. A collection of up-to techniques are
defined, and shown to be sound. These up-to techniques can be used to finitely
check the bisimilarity of processes in some cases and, more importantly, they are
used to show that open bisimilarity is a congruence on finite spi-processes. The
latter allows for compositional reasoning about open bisimilarity.

A crucial part in theories of environment-sensitive bisimulation is that of
the consistency of the observer theory. A consistent theory guarantees that the
induced equality on messages satisfies the usual axioms of equality, most impor-
tantly, transitivity. A difficulty in formulating open bisimulation is in finding a
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good symbolic representation of observer theories. One needs to make sure that
the symbolic observer theories in the bisimulation set can be properly instan-
tiated to consistent theories. The symbolic representation of observer theories
used in this paper is based on Boreale’s symbolic traces [3]. A symbolic trace is
a compact representation of a set of traces of a process, where the input values
are represented by parameters (which are essentially names). Associated with a
symbolic trace is a notion of consistency, i.e., it should be possible to instantiate
the symbolic trace to a set of concrete traces. The definition of open bisimulation
in Section 4 is indexed by pairs of symbolic traces, called bi-traces. A symbolic
trace is essentially a list, and the position of a particular name in the list con-
straints its possible instantiations. In this sense, its position in the list enforces
an implicit scoping of the name. Bi-traces are essentially observer theories with
added structures. The notion of consistency of bi-traces is therefore based on
the notion of consistency for observer theories, with the added constraint on
the possible instantiations of names in the bi-traces. The latter gives rise to the
notion of respectful substitutions, much like the same notion that appears in the
definition of open bisimulation for the π-calculus.

A good definition of open bisimulation for the spi-calculus should naturally
address the issue of name distinction. As in the definition of open bisimulation for
the π-calculus, the fresh names extruded by a bound output action of a process
should be considered distinct from all other pre-existing names. We employ a
syntactic device to encode this distinction implicitly. We extend the language
of processes with a countably infinite set of rigid names. Rigid names are not
subject to instantiations and therefore cannot be identified by substitutions.
Note that it is possible to formulate open bisimulation without the use of rigid
names, at a price of an added complexity. The role of rigid names will be clear
when we discuss open bisimulation in Section 4.

Outline of the paper. Section 2 reviews some notations and the operational se-
mantics for the spi-calculus. Section 3 presents the notion of observer theories
along with its properties. Section 4 defines the bi-trace structure and open bisi-
mulation, and states its soundness with respect to testing equivalence. Section 5
defines several up-to techniques for open bisimulation. The main purpose of these
techniques is to show that open bisimilarity is closed under parallel composition
and respectful substitutions, from which the soundness of open bisimulation and
its congruence results follow. Section 6 shows that open bisimilarity is an equiva-
lence relation on processes and also a congruence relation on finite spi-processes
without rigid names. Section 7 concludes the paper and outlines some directions
for future work. The detailed proofs are omitted but they can be found in the
extended version of the paper [11].

2 The Spi Calculus

In this section we review the syntax and the operational semantics for the spi-
calculus, following its original presentation as in [2]. We consider a more re-
stricted language, i.e., the one with only the pairing and encryption operators.
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We assume that the reader has some familiarity with the spi-calculus, so the
meaning of various constructs of the calculus will not be explained in detail.

We assume a denumerable set of names, denoted with N . We use m, n, x, y,
and z to range over names. In order to simplify the presentation of open bisi-
mulation, we introduce another infinite set of names which we call rigid names,
denoted with RN , which are assumed to be of a distinct syntactic category from
names. Rigid names are a purely syntactic device to simplify presentation. It can
be thought of as names which are created when restricted names in processes
are extruded in their transitions. Rigid names embody a notion of distinction,
as in open bisimulation for the π-calculus [10], in the sense that they cannot be
instantiated, thus cannot be identified with other rigid names. Rigid names are
ranged over by bold lower-case letters, e.g., as in a, b, c, etc.

Messages in the spi calculus are given by the following grammar:

M, N ::= x | a | 〈M, N〉 | {M}N

where 〈M, N〉 denotes a pair consisting of messages M and N , and {M}N de-
notes the message M encrypted with the key N . The set of processes is defined
by the grammar:

P, Q, R ::= 0 | M̄〈N〉.P | M(x).P | P |Q | (νx)P | !P
| [M = N ]P | let 〈x, y〉 = M in P | case L of {x}N in P

The names x and y in the restriction, the ‘let’ and the ‘case’ constructs are
binding occurences. We assume the usual α-equivalence on process expressions.
Given a syntactic expression E, e.g., a process, a set of process, pairs, etc., we
write fn(E) to denote the set of free names in E. Likewise, rn(E) denote the set
of rigid names in E. We call a process P pure if there are no occurrences of rigid
names in P.

A substitution is a mapping from names to messages. Substitutions are ranged
over by θ, σ and ρ. The domain of substitutions is defined as dom(θ) = {x |
θ(x) �= x}. We consider only substitutions with finite domains. The substitu-
tion with empty domain is denoted by ε. We often enumerate the mappings of a
substitution on its finite domain, using the notation [M1/x1, · · · , Mn/xn]. Substi-
tutions are generalised straightforwardly to mappings between terms (processes,
messages, etc.), with the usual proviso that the free names in the substitutions
do not become bound as a result of the applications of the substitutions. Appli-
cations of substitutions to terms (processes or messages) are written in postfix
notation, e.g., as in Mθ. Composition of two substitutions θ and σ, written
(θ ◦ σ), is defined as follows: M(θ ◦ σ) = (Mθ)σ. Given a substitution θ and a
finite set of names V , we denote with θ�V the substitution which coincides with
θ on the set V , and is the identity map everywhere else.

We use the operational semantics of the spi calculus as it is given in [1],
with one small modification: we allow communication channels to be arbitrary
messages, instead of just names. We do this in order to get a simpler formulation
of open bisimulation in Section 4, since we do not need to keep track of certain
constraints related to channel names.
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M(x).P
M−→ (x)P M̄〈N〉.P M−→ 〈N〉P

P > Q Q
α−→ A

P
α−→ A

P
α−→ A

P | Q
α−→ A | Q

P
M−→ F Q

M−→ C

P | Q
τ−→ F@C

Q
N−→ C P

N−→ F

P | Q
τ−→ C@F

Q
α−→ A

P | Q
α−→ P | A

P
α−→ A m �∈ fn(α)

(νm)P
α−→ (νm)A

Fig. 1. The operational semantics of the spi calculus

The one-step transition relations are not relating processes with processes,
rather processes with agents. The latter is presented using the notion of abstrac-
tion and concretion of processes. Abstractions are expressions of the form (x)P
where P is a process and the construct (x) binds free occurences of x in P , and
concretions are expressions of the form (ν	x)〈M〉P where M is a message and P
is a process. Agents are ranged over by A, B and C. As with processes, we call
an agent A pure if rn(A) = ∅.

To simplify the presentation of the operational semantics, we define composi-
tions between processes and agents as follows. In the definition below we assume
that x �∈ {	y, z} ∪ fn(R) and {	y} ∩ fn(R) = ∅.

(νx)(z)P Δ= (z)(νx)P, R | (x)P Δ= (x)(R | P ),
(νx)(ν	y)〈M〉Q Δ= (νx, 	y)〈M〉Q, if x ∈ fn(M)

(νx)(ν	y)〈M〉Q Δ= (ν	y)〈M〉(νx)Q, if x �∈ fn(M)
R | (ν	y)〈M〉Q Δ= (ν	y)〈M〉(R | Q)

The dual composition A | R is defined symmetrically.
Given an abstraction F = (x)P and a concretion (ν	y)〈M〉Q, where {	y} ∩

fn(P ) = ∅, the interactions of F and C are defined as follows.

F@C
Δ= (ν	y)(P [M/x] | Q) C@F

Δ= (ν	y)(Q | P [M/x])

We define a reduction relation > on processes as follows:

!P > P | !P let 〈x, y〉 = 〈M, N〉 in P > P [M/x][N/y]
[M = M ]P > P case {M}N of {x}N in P > P [M/x]

The operational semantics of the spi calculus is given in Figure 1. The action
α can be either the silent action τ , a term M , or a co-term M , where M is a
term. We note that as far as the operational semantics is concerned, there is
no distinction between a name and a rigid name; both can be used as channel
names and as messages.

Testing equivalence. In order to define testing equivalence, we first define the
notion of a barb. A barb is an input or an output channel on which a process
can communicate. We assume that barbs contain no rigid names. We denote the

reflexive-transitive closure of the silent transition τ−→ with
τ

−→∗ .
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Definition 1. Two pure processes P and Q are said to be testing equivalent,
written P ∼ Q, when for every pure process R and every barb β, if

P | R
τ

−→∗ P ′ β−→ A

for some P ′ and A, then Q | R
τ

−→∗ Q′ β−→ B for some Q′ and B, and vice
versa.

Notice that testing equivalence is defined for pure processes only, therefore our
definition of testing equivalence coincides with that in [2].

3 Observer Theory

An observer theory is just a finite set of pairs of messages. These pairs of messages
denote the pairs of indistinguishable messages from the observer point of view.
We adopt the convention that all names are entities known to the observer. Rigid
names, on the other hand, may or may not be known to the observer, depending
on whether they are present in the observer theory.

Associated with an observer theory are certain proof systems representing the
deductive capability of the observer. These proof systems allow for derivation of
new knowledge from existing ones. Observer theories are ranged over by Γ and
Δ. We often refer to observer theory simply as theory. Given a theory Γ , we write
π1(Γ ) to denote the set {M | ∃N.(M, N) ∈ Γ}, and likewise, π2(Γ ) to denote
the set {N | ∃M.(M, N) ∈ Γ}. The observer can encrypt and decrypt messages
it has in order to either analyze or syntesize messages to deduce the equality of
messages. This deductive capability is presented as a proof system in Figure 2.
This proof system is a straightforward adaptation of the standard proof systems
for message analysis and synthesis, usually presented in a natural-deduction
style, e.g., as found in [3], to sequent calculus. We find sequent calculus a more
natural setting to prove various properties of observer theories. The sequent
Γ − M ↔ N means that the messages M and N are indistinguishable in
the theory Γ . We shall often write Γ � M ↔ N to mean that the sequent
Γ − M ↔ N is derivable using the rules in Figure 2. Notice that in the proof
system in Figure 2, two names are indistinguishable if they are syntactically
equal. This reflects the fact that names are entities known to the observer.

It is useful to consider the set of messages that can be constructed by an
observer in its interaction with a particular process. This synthesis of messages
follows the inference rules given in Figure 3. The symbol Σ denotes a finite set of
messages. We overload the symbols − and � to denote, respectively, sequents and
derivability relation of messages given a set of messages. The rules for message
synthesis are just a projection of the rules for message equivalence.

A nice feature of the sequent calculus formulation is that in any derivation of
a judgment, every judgment in the derivation contains only subterms occuring
in the judgment at the root of the derivation tree. This gives us immediately a
bound on the depth of the derivation tree, hence the decidability of the proof
systems.



A Trace Based Bisimulation for the Spi Calculus: An Extended Abstract 373

x ∈ N
Γ − x ↔ x

var
Γ, (M, N) − M ↔ N

id
Γ − M ↔ M ′ Γ − N ↔ N ′

Γ − 〈M, N〉 ↔ 〈M ′, N ′〉
pr

Γ, (〈M1, N1〉, 〈M2, N2〉), (M1, M2), (N1, N2) � M ↔ N

Γ, (〈M1, N1〉, 〈M2, N2〉) − M ↔ N
pl

Γ − M ↔ M ′ Γ − N ↔ N ′

Γ − {M}N ↔ {M ′}N′
er

Γ ′ − N1 ↔ N2 Γ ′, (M1, M2), (N1, N2) − M ↔ N

Γ, ({M1}N1 , {M2}N2) − M ↔ N
el

Fig. 2. Proof system for deriving message equivalence. In the rule el, Γ ′ is the set
Γ ∪ {({M1}N1 , {M2}N2)}.

x ∈ N
Σ − x

var
Σ, M − M

id
Σ − M Σ − N

Σ − 〈M, N〉
pr Σ − M Σ − N

Σ − {M}N

er

Σ, 〈M, N〉, M, N − R

Σ, 〈M, N〉 − R
pl

Σ, {M}N − N Σ, {M}N , M, N − R

Σ, {M}N − R
el

Fig. 3. Proof system for message synthesis

Proposition 2. Given any Γ , Σ, M and N , it is decidable whether the judg-
ments Γ � M ↔ N and Σ � M hold.

Consistency of observer theory. Recall that the motivation behind the notion of
message equivalence ↔ is for it to replace syntactic equality in the definition of
bisimulation. Since the relation ↔ is parameterised upon an observer theory, we
shall investigate under what conditions an observer theory gives rise to a well-
behaved relation ↔ . In the literature of bisimulation for the spi calculus, this
notion is usually referred to as the consistency property of observer theories. We
define an abstract notion of theory consistency, based on the entailment relation
� defined previously. We later show that this abstract notion of consistency is
equivalent to a more concrete one which is finitely checkable.

Definition 3. A theory Γ is consistent if for every M and N , if Γ � M ↔ N
then the following hold:

1. M and N are of the same type of expressions, i.e., M is a pair (an encrypted
message, a (rigid) name) if and only if N is.

2. If M = {M1}M2 and N = {N1}N2 then π1(Γ ) � M2 implies Γ � M2 ↔ N2
and π2(Γ ) � N2 implies Γ � M2 ↔ N2.

3. For any R, Γ � M ↔ R implies R = N and Γ � R ↔ N implies R = M.

The first condition in Definition 3 states that the equality relation ↔ respects
types, i.e., it is not possible that an operation (pairing, encryption) on M suc-
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ceeds while the same operation on N fails. The second condition states that both
projections of the theory contain “equal” amount of knowledge, e.g., it is not
possible that one message decrypts while the other fails to. The third condition
states the unicity of ↔ .

Characterisation of consistent theories. The notion of consistency as defined
in Definition 3 is not obvious to check since it involves quantification over all
equivalent pairs of messages. We show that a theory can be reduced to a certain
normal form for which there exist finitely checkable properties that entail con-
sistency of the original theory. For this purpose, we define a rewrite relation on
theories.

Definition 4. The rewrite relation −→ on observer theories is defined as fol-
lows:

Γ, (〈M, N〉, 〈M ′, N ′〉) −→ Γ, (M, M ′), (N, N ′)
Γ, ({M}N , {M ′}N ′) −→ Γ, (M, M ′), (N, N ′)

if Γ, ({M}N , {M ′}N ′) � N ↔ N ′.

A theory Γ is irreducible if Γ cannot be rewritten to any other theory. Γ is an
irreducible form of another theory Γ ′ if Γ is irreducible and Γ ′ −→∗ Γ .

The rewrite relation on theories defined above can be shown to be terminating
and confluent, hence every theory Γ has a unique irreducible form, which we
denote here with Γ ⇓ . Moreover, the reduction can be shown to preserve con-
sistency. Therefore to check the consistency of a theory, it is enough to check its
irreducible form.

Proposition 5. A theory Γ is consistent if and only if Γ ⇓ satisfies the following
conditions: if (M, N) ∈ Γ ⇓ then

(a) M and N are of the same type of expressions,
(b) if M = {M1}M2 and N = {N1}N2 then π1(Γ ⇓) �� M2 and π2(Γ ⇓) �� N2.
(c) for any (U, V ) ∈ Γ ⇓, U = M if and only if V = N .

Closure under substitutions. The entailment relation � is in general not closed
under arbitrary substitutions, the reason being the inclusion of the var-rule.
Using this rule, we can prove, for instance, ∅ � x ↔ x. Now if we substitute a
for x, where a is some rigid name, we do not have ∅ � a ↔ a, since the var-rule
does not apply to rigid names.

We shall often work with substitution pairs in the following sections. Appli-
cation of a substitution pair 	θ = (θ1, θ2) to a pair of terms (M, N) is defined
to be (Mθ1, Nθ2). This extends straightforwardly to application of substitution
pairs to sets or lists of pairs. The following lemma gives a class of substitutions
under which the entailment relation is preserved.

Lemma 6. Let Γ � M ↔ N and let 	θ = (θ1, θ2) be a substitution pair such that
for all x ∈ fn(Γ, M, N) it holds that Γ	θ � θ1(x) ↔ θ2(x). Then Γ	θ � Mθ1 ↔
Nθ2.
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4 Open Bisimulation

Open bisimulation for the spi-calculus to be presented in this section is similar to
other environment-sensitive bisimulations, in the sense that it is also indexed by
some structure representing the knowledge of the environment. A candidate for
representing this knowledge is the observer theory presented earlier. However,
since the crucial feature of open bisimulation is the symbolic representation of
input values, extra structures need to be added to observer theories to capture
dependencies between various symbolic input values at different stages of bisi-
mulation checking. The notion of symbolic traces as defined in [3] conveniently
captures this sort of dependency. Open bisimulation is indexed by pairs of a
variant of symbolic traces, called bi-traces. The important properties we need to
establish regarding bi-traces are that they can be soundly interpreted as observer
theories, and they behave well with respect to substitutions of input values.

In the following, we use the notation [x1, . . . , xn] to denote a list whose ele-
ments are x1, . . . , xn. The empty list is denoted by [ ]. Concatenation of a list
l1 with another list l2 is denoted with l1.l2, if l2 is appended to the end of l1.
If l2 is a singleton list, say [x], then we write l1.x instead of l1.[x], likewise x.l1
instead of [x].l1.

Definition 7. An I/O pair is a pair of messages marked with i (indicating in-
put) or o (indicating output), i.e., it is of the form (M, N)i or (M, N)o. A
bi-trace is a list of I/O message pairs, ranged over by h. We denote with π1(h)
the list obtained from h by taking the first components of the pairs in h. The list
π2(h) is defined analogously. Bi-traces are subject to the following restriction: if
h = h1.(M, N)o.h2 then fn(M, N) ⊆ fn(h1). If h is [(M1, N1)l1 , . . . , (Mk, Nk)lk ]
then the inverse of h, written h−1, is the list [(N1, M1)l1 , . . . , (Nk, Mk)lk ]. We
write {h} to denote the set {(M, N) | (M, N)i ∈ h or (M, N)o ∈ h}.

The underlying idea in the bi-trace representation is that names are symbolic
values. This explains the requirement that the free names of an output pair in a
bi-trace must appear before the output pair. In other words, input values (i.e.,
names) are created only at input pairs.

Given a bi-trace h, the underlying set {h} is obviously an observer theory,
hence bi-traces are essentially theories with added structures. As in symbolic
traces [3], bi-traces consistency needs to take into account the fact that their in-
stantiations correspond to concrete traces. Consistency conditions for bi-traces
are more complicated since we need extra conditions ensuring the consistency
of the underlying observer theory. We first define a notion of respectful substi-
tutions for bi-traces, which is later used to define the notion of consistency for
bi-traces. In the following we shall write h � M ↔ N , instead of a more type-
correct version {h} � M ↔ N , when we consider an equivalent pair of messages
under the theory obtained from a bi-trace h. Application of a substitution pair
(θ1, θ2) to a bi-trace is defined element-wise in a straightforward way.

Definition 8. A substitution pair 	θ = (θ1, θ2) respects a bi-trace h if whenever
h = h1.(M, N)i.h2, then for every x ∈ fn(M, N) it holds that h1	θ � xθ1 ↔ xθ2.
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Definition 9. We define the notion of consistent bi-traces inductively on the
length of bi-traces as follows:

1. The empty bi-trace is consistent.
2. If h is a consistent bi-trace then h.(M, N)i is also a consistent bi-trace,

provided that h � M ↔ N .
3. If h is a consistent bi-trace, then h′ = h.(M, N)o is a consistent bi-trace,

provided that for every h-respectful substitution pair 	θ, if h	θ is a consistent
bi-trace then {h′	θ} is a consistent theory.

The requirement that every input pair be deducible from its predecessors in the
bi-trace captures the dependency of the names of the input pair on their preced-
ing input/output pairs. At this point, it is instructive to examine the case where
the elements of bi-traces are pairs of names or rigid names. Consider for example
the bi-trace (x, x)i.(a,a)o.(y, y)i.(b,b)o. There is a respectful substitution that
identifies x and y, or y with a, but there are no respectful substitutions that
identify x with a, y with b nor a with b. Thus this bi-trace captures a restricted
notion of distinction [10]. Rigid names encode an implicit distinction: no two
rigid names can be identified by substitutions, whereas the position of names
encode their respective scopes.

Note that in item (3) in Definition 9, we quantify over all respectful substitu-
tions. This is unfortunate from the viewpoint of bisimulation checking but it is
unavoidable if we want the notion of consistency to be closed under respectful
substitutions. Consider the bi-trace:

(a,a)o.(b,b)o.(x, x)i.({x}k, {a}k)o.({b}k, {x}k)o.

If we drop the quantification on respectful substitutions, then this trace would
be considered consistent. Under the respectful substitution pair ([b/x], [b/x]),
however, the above bi-trace becomes

(a,a)o.(b,b)o.(b,b)i.({b}k, {a}k)o.({b}k, {b}k)o

which gives rise to an inconsistent theory.

Definition 10. A traced process pair is a triple (h, P, Q) where h is a bi-trace,
P and Q are processes such that fn(P, Q) ⊆ fn(h). Let R be a set of traced
process pairs. We write h � P R Q to denote the fact that (h, P, Q) ∈ R. R is
consistent if for every h � P R Q, h is consistent. The inverse of R, written
R−1, is the set {(h−1, Q, P ) | (h, P, Q) ∈ R}. R is symmetric if R = R−1.

Definition 11. A bi-trace h is called a universal bi-trace if h consists only of
input-pairs of names, i.e., it is of the form (x1, x1)i. · · · .(xn, xn)i, where each xi

is a name.

Definition 12. Open bisimulation. A set of traced process pairs R is a strong
open bisimulation if R is consistent and symmetric, and if h � P R Q then for
all substitution pair 	θ = (θ1, θ2) that respects h, the following hold:
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1. If Pθ1
τ−→ P ′ then there exists Q′ such that Qθ2

τ−→ Q′ and h	θ � P ′ R Q′.
2. If Pθ1

M−→ (x)P ′, where x �∈ fn(h	θ), and π1(h	θ) � M then there exists Q′

such that Qθ2
N−→ (x)Q′ and h	θ.(M, N)i.(x, x)i � P ′ R Q′.

3. If Pθ1
M̄−→ (ν	x)〈M ′〉P ′, and π1(h	θ) � M then there exist N , N ′ and Q′ such

that Qθ2
N̄−→ (ν	y)〈N ′〉Q′, and

h	θ.(M, N)i.(M ′[	c/	x], N ′[	d/	y])o � P ′[	c/	x] R Q′[	d/	y],

where {	c, 	d} ∩ rn(h	θ, Pθ1, Qθ2) = ∅.

We denote with ≈o the union of all open bisimulations. We say that P and Q
are strong open h-bisimilar, written P ∼h

o Q, if (h, P, Q) ∈ ≈o . They are said
to be strong open bisimilar, written P ∼o Q, if rn(P, Q) = ∅ and P ∼h

o Q for a
universal bi-trace h.

Notice that in the bound output case, the restricted names in the concretions
are replaced by fresh rigid names. Notice also that strong open bisimilarity ∼o is
defined on pure processes, i.e., those processes without free occurrences of rigid
names. We now show that open bisimilarity is sound with respect to testing
equivalence. Its proof follows straightforwardly from the fact that open bisimi-
larity is closed under parallel composition (see Section 5 and Section 6).

Theorem 13. Soundness. If P ∼o Q then P ∼ Q.

5 Up-To Techniques

We define several up-to techniques for open bisimulation. The main purpose of
these techniques is to prove congruence results for open bisimilarity, in particular,
closure under parallel composition, and to prove soundness of open bisimilarity
with respect to testing equivalence. Up-to techniques are also useful in checking
bisimulation since in certain cases it allows one to finitely demonstrate bisimi-
larity of processes. The proof techniques used in this section derive mainly from
the work of Boreale et al. [4]. We first need to introduce several notions, parallel
to those in [4], and adapting their up-to techniques to open bisimulation.

Open bisimilarity for the spi-calculus is not closed under parallel composition
with arbitrary processes, since these extra processes might introduce inconsis-
tency into the observer theory or may reveal other knowledge that causes the
composed processes to behave differently. Therefore, in defining closure under
parallel composition, we need to make sure that the processes we are composing
with do not reveal or add any extra information for the observer. This is done
by restricting the composition to processes obtained by instantiating pure pro-
cesses with the current knowledge of the observer. This is defined via a notion
of equivalent substitutions.

Definition 14. Let h be a consistent bi-trace. Given two substitutions θ1 and
θ2, we say that θ1 is h-equivalent to θ2, written θ1 ↔h θ2, if dom(θ1) = dom(θ2)
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and for every x ∈ dom(θ1), we have h � xθ1 ↔ xθ2 and fn(xθ1, xθ2) ⊆ fn(h). A
substitution σ extends θ, written θ � σ, if σ(x) = θ(x) for every x ∈ dom(θ).

The next lemma is crucial to the soundness of up-to parallel composition. It
shows that one-step transitions for pure processes are invariant under equivalent
substitutions.

Lemma 15. Let h be a consistent bi-trace, let σ1 and σ2 be substitutions such
that σ1 ↔h σ2, and let R be a process such that fn(R) ⊆ dom(σ1) and rn(R) = ∅.
If Rσ1

M−→ R′ then there exist σ1 � σ′
1, σ2 � σ′

2, U and Q such that σ′
1 ↔h σ′

2,

fn(U, Q) ⊆ dom(σ′
1), rn(U, Q) = ∅, M = Uσ′

1, R′ = Qσ′
1 and Rσ2

Uσ′
2−→ Qσ′

2.

We need a few relations on bi-traces to describe the up-to techniques.

Definition 16. The relations <i, <o and <f on bi-traces are defined as follows.
Given two bi-traces h and h′:

– weakening: h <w h′ holds if h = h1.h2 and h′ = h1.(M, N)∗.h2, where
∗ ∈ {i, o} and fn(M, N) ⊆ fn(h1),

– contraction: h <c h′ holds if h = h1.(M, N)∗.h2 and h′ = h1.h2, where
∗ ∈ {i, o}, and h1 � M ↔ N, and

– flex-rigid: h <f h′ holds if h = h1.(c, c)o.h2[c/x], h′ = h1.(x, x)i.h2, x �∈
fn(h1) and c �∈ rn(h1.h2).

The reflexive-transitive closures of <w, <c and <f are denoted, respectively, by
�w, �c and �f . If h �f h′ then h = h′θ for a unique substitution θ with
dom(θ) ⊆ fn(h′). We denote this substitution with θh,h′ .

Reading from right-to-left, the above relations read as follows: The relation <w

removes an arbitrary pair from the bi-trace (hence possibly reducing the knowl-
edge of the observer). The relation <c adds a redundant pair, i.e., one which is
deducible from the current knowledge, hence adding no extra knowledge. The
relation <f replaces a variable input pair with a fresh output pair of rigid names.
It does not increase the knowledge of the observer, since the added pair is fresh
value, but it does limit the possible respectful substitutions, since the fresh out-
put pair cannot be substituted (they are rigid names). Thus, going from right
to left in the relations, the knowledge of the observer does not increase.

In the following, the notation ≡ denotes the structural equivalence on pro-
cesses as defined in [2].

Definition 17. Given a set of consistent traced process pairs R, define Rt, for
t ∈ {≡, w, c, s, i, f, r, p}, as the least relations containing R which satisfy the
following rules:

1. up to structural equivalence:
P ≡ P ′, Q ≡ Q′ and h � P ′ R Q′

h � P R≡ Q
≡

2. up to weakening:
h � P R Q, h′ �w h and h′ is consistent

h′ � P Rw Q
w
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3. up to contraction:
h � P R Q, h′ �c h and h′ is consistent

h′ � P Rc Q
c

4. up to substitutions:
h � P R Q and 	θ = (θ1, θ2) respects h

h	θ � Pθ1 Rs Qθ2

s

5. up to injective renaming of rigid names:

h � P R Q, ρ1 and ρ2 are injective renaming on rigid names
h(ρ1, ρ2) � Pρ1 Ri Qρ2

i

6. up to flex-rigid reversal of names:
h � P R Q, h′ �f h

h′ � Pθh′,h Rf Qθh′,h
f

7. up to restriction:
h � P [	c/	x] R Q[	d/	y], {	c} ∩ rn(π1(h), P ) = ∅,

{	d} ∩ rn(π2(h), Q) = ∅, {	x, 	y} ∩ fn(h) = ∅
h � (ν	x)P Rr (ν	y)Q

r

8. up to parallel composition:

h � P R Q, h′ is consistent, h′ �c h, σ1 ↔h′ σ2,
fn(R) ⊆ dom(σ1), rn(R) = ∅, A ≡ (P | Rσ1) and B ≡ (Q | Rσ2).

h′ � A Rp B
p

Strong open bisimulation up to structural equivalence is defined similarly to
Definition 12, except that we replace the relation R in items (1), (2) and (3)
in Definition 12 with R≡. Strong open bisimulation up to weakening, contrac-
tion, substitutions, injective renaming, flex-rigid reversal, restrictions and par-
allel composition are defined analogously.

In those rules that concern weakening, contraction and flex-rigid reversal of
names, the observer knowledge in the premise is always equal or greater than its
knowledge in the conclusion. In other words, if the observer cannot distinguish
two processes using its current knowledge, it cannot do so either in a reduced
knowledge. In the rule for parallel composition, we allow only processes that
can introduce no extra information to the observer. Notice that in the rule, for
technical reason, we need to contract the bi-trace h to allow Rσi to contain new
names not already in h.

Proposition 18. Let R be an open bisimulation up to structural equivalence
(respectively, weakening, contraction, etc.). Then R ⊆ R≡ ⊆ ≈o (respectively,
R ⊆ Rt ⊆ ≈o, for t ∈ {w, c, s, i, f, r, p}).

Example 19. This example demonstrates the use of the up-to techniques in prov-
ing bisimilarity. This example is adapted from a similar one in [5]. Let P and Q
be the following processes:

P = a(x).(νk)ā〈{x}k〉.(νm)ā〈{m}{a}k
〉.m̄〈a〉.0

Q = a(x).(νk)ā〈{x}k〉.(νm)ā〈{m}{a}k
〉.[x = a]m̄〈a〉.0
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Let R be the least set such that:

(a,a)o � P R Q, (a,a)o.(x, x)i � P1 R Q1,
(a,a)o.(x, x)i.({x}k, {x}k)o � P2 R Q2,
(a,a)o.(x, x)i.({x}k, {x}k)o.({m}{a}k, {m}{a}k)

o � P3 R Q3,
(a,a)o.(a,a)i.({a}k, {a}k)o.({m}{a}k, {m}{a}k)o.(m,m)i.(a, a)o � 0 R 0,

where

P1 = (νk)ā〈{x}k〉.(νm)ā〈{m}{a}k
〉.m̄〈a〉.0,

Q1 = (νk)ā〈{x}k〉.(νm)ā〈{m}{a}k
〉.[x = a]m̄〈a〉.0,

P2 = (νm)ā〈{m}{a}k〉.m̄〈a〉.0, Q2 = (νm)ā〈{m}{a}k〉.[x = a]m̄〈a〉.0,
P3 = m̄〈a〉.0, Q3 = [x = a]m̄〈a〉.0.

Let R′ be the symmetric closure of R. Then it is easy to see that R′ is an
open bisimulation up-to contraction and substitutions. For instance, consider
the traced process pair h � m̄〈a〉.0 R′ [x = a]m̄〈a〉.0
where h = (a,a)o.(x, x)i.({x}k, {x}k)o.({m}{a}k, {m}{a}k)o. Let 	θ = (θ1, θ2) be
an h-respectful substitution. Since x is the only name in h, we have

h	θ = (a,a)o.(s, t)i.({s}k, {t}k)o.({m}{a}k, {m}{a}k)o,

where s = xθ1 and t = xθ2. We have to check that every detectable action
from m̄〈a〉.0 can be matched by [t = a]m̄〈a〉.0. If t �= a, then s �= a (by the
consistency of h	θ), therefore, π1(h	θ) �� m, i.e., the action m is not detected by
the environment, so this case is trivial. If t = a, then s = a and h	θ � m ↔ m,
so both P3θ1 and Q3θ2 can make a transition on channel m. Their continuation
is the traced process pair

(a,a)o.(a,a)i.({a}k, {a}k)o.({m}{a}k, {m}{a}k)o.(m,m)i.(a, a)o � 0 R′ 0

which is in the set R′, hence also in R′
cs (up-to contraction and substitution on

R′). Therefore by Proposition 18, (a, a)o � P ≈o Q. ��

6 Congruence Results for Open Bisimilarity

In this section we show that the relation ∼o on pure processes is an equality rela-
tion (reflexive, symmetric, transitive) and is closed under arbitrary pure process
contexts without replication. To show reflexivity, we define a bisimulation set
indexed by reflexive bi-traces. Reflexive bi-traces are consistent bi-traces such
that its first and second projections are the same list.

Lemma 20. The following set is an open bisimulation:

{(h, P, P ) | (h, P, P ) is a traced process pair, h is consistent and reflexive}.

To show transitivity, we first need to define composition of bi-traces.
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Definition 21. Composition of bi-traces. Two bi-traces can be composed if they
have the same length and match element wise. More precisely, given two bi-traces

h1 = [(R1, T1)p1 , · · · , (Rm, Tm)pm ]

h2 = [(U1, V1)q1 , · · · , (Un, Vn)qn ]

we say h1 is left-composable to h2 (equivalently, h2 is right-composable to h1)
if and only if m = n and Tk = Uk and pk = qk for every k ∈ {1, . . . , n}. Their
composition, written h1 ◦ h2, is [(R1, V1)p1 , · · · , (Rm, Vm)pm ]

The important properties of composition are that it preserves consistency and
that it behaves well with respect to respectful substitutions. The latter is made
precise in the following lemma.

Lemma 22. Separating substitution. Let h1 and h2 be consistent and compos-
able bi-traces such that h1 ◦ h2 is also consistent. Let (θ1, θ2) be a substitution
pair that respects h1 ◦ h2. Then there exists a substitution ρ such that (θ1, ρ)
respects h1 and (ρ, θ2) respects h2.

Given two sets of traced process pairs R1 and R2, their composition, written
R1 ◦ R2, is the set

{(h1 ◦h2, P, R) | h1 � P R Q, h2 � Q R2 R and h1 is left-composable with h2}.

Lemma 23. If R1 and R2 are open bisimulations then R1 ◦ R2 is also an open
bisimulation.

Theorem 24. The relation ∼o is an equivalence relation on pure processes.

Proof. It follows straightforwardly from Lemma 20, Lemma 23 and Definition 12.

We now proceed to showing that it is also a congruence, for finite pure processes.
This follows almost directly from Proposition 18.

Theorem 25. The relation ∼o is a congruence on finite pure processes.

7 Conclusion and Future Work

We have shown a formulation of open bisimulation for the spi-calculus. In this
formulation, bisimulation is indexed by pairs of symbolic traces that concisely
encode the history of the interaction between the environment with the processes
being checked for bisimilarity. We show that open bisimilarity is a congruence
for finite pure processes and is sound with respect to testing equivalence. For
the latter, we note that with some minor modifications, we can also show sound-
ness of open bisimilarity with respect to barbed congruence. Our formulation
is directly inspired by hedged bisimulation [6]. In fact, open bisimilarity can
be shown to be sound with respect to hedged bisimulation. Comparison with
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hedged bisimulation and other formulations of bisimulation for the spi-calculus
is left for future work.

It would be interesting to see how the congruence results extend to the case
with replications or recursions. This will probably require a more general defini-
tion of the rule for up-to parallel composition. The definition of open bisimula-
tion and the consistency of bi-traces make use of quantification over respectful
substitutions. We will investigate whether there is a finite characterisation of
consistent bi-traces. One possibility is to use a symbolic transition system, i.e., a
transition system parameterised upon certain logical constraints, the solution of
which should correspond to respectful substitutions. Some preliminary study in
this direction is done in [7] for a variant of open bisimulation based on hedged bi-
simulation. Since the bi-trace structure we use is a variant of symbolic traces, we
will also investigate whether the techniques used for symbolic traces analysis [3]
can be adapted to our setting.

Acknowledgment. The author thanks the anonymous referees for their comments
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digiusto@cs.unibo.it

3 BRICS, University of Aarhus, Denmark
mn@brics.dk
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Abstract. A remarkable result in [4] shows that in spite of its being less expre-
ssive than CCS w.r.t. weak bisimilarity, CCS! (a CCS variant where infinite be-
havior is specified by using replication rather than recursion) is Turing powerful.
This is done by encoding Random Access Machines (RAM) in CCS!. The enco-
ding is said to be non-faithful because it may move from a state which can lead
to termination into a divergent one which do not correspond to any configuration
of the encoded RAM. I.e., the encoding is not termination preserving.

In this paper we study the existence of faithful encodings into CCS! of mod-
els of computability strictly less expressive than Turing Machines. Namely, gra-
mmars of Types 1 (Context Sensitive Languages), 2 (Context Free Languages)
and 3 (Regular Languages) in the Chomsky Hierarchy. We provide faithful en-
codings of Type 3 grammars. We show that it is impossible to provide a faithful
encoding of Type 2 grammars and that termination-preserving CCS! processes
can generate languages which are not Type 2. We finally show that the languages
generated by termination-preserving CCS! processes are Type 1 .

1 Introduction

The study of concurrency is often conducted with the aid of process calculi. A common
feature of these calculi is that they treat processes much like the λ-calculus treats com-
putable functions. They provide a language in which the structure of terms represents
the structure of processes together with a reduction relation to represent computational
steps. Undoubtedly Milner’s CCS [9], a calculus for the modeling and analysis of syn-
chronous communication, remains a standard representative of such calculi.

Infinite behaviour is ubiquitous in concurrent systems. Hence, it ought to be repre-
sented by process terms. In the context of CCS we can find at least two representa-
tions of them: Recursive definitions and Replication. Recursive process definitions take
the form A(y1, . . . , yn) each assumed to have a unique, possibly recursive, parametric

� The work of Jesús Aranda has been supported by COLCIENCIAS (Instituto Colombiano para
el Desarrollo de la Ciencia y la Tecnologı́a “Francisco José de Caldas”) and INRIA Futurs.
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process definition A(x1, . . . , xn) def= P . The intuition is that A(y1, . . . , yn) behaves as
P with each yi replacing xi. Replication takes the form !P and it means P | P | · · · ;
an unbounded number of copies of the process P in parallel. An interesting result is
that in the π-calculus, itself a generalization of CCS, parametric recursive definitions
can be encoded using replication up to weak bisimilarity. This is rather surprising since
the syntax of !P and its description are so simple. In fact, in [3] it is stated that in CCS
recursive expressions are more expressive than replication. More precisely, it is shown
that it is impossible to provide a weak-bisimulation preserving encoding from CCS with
recursion, into the CCS variant in which infinite behaviour is specified only with repli-
cation. From now on we shall use CCS to denote CCS with recursion and CCS! to the
CCS variant with replication.

Now, a remarkable expressiveness result in [4] states that, in spite of its being less ex-
pressive than CCS in the sense mentioned above, CCS! is Turing powerful. This is done
by encoding (Deterministic) Random Access Machines (RAM) in CCS!. Nevertheless,
the encoding is not faithful (or deterministic) in the sense that, unlike the encoding of
RAMs in CCS, it may introduce computations which do not correspond to the expected
behaviour of the modeled machine. Such computations are forced to be infinite and
thus regarded as non-halting computations which are therefore ignored. Only the finite
computations correspond to those of the encoded RAM.

A crucial observation from [4] is that to be able to force wrong computation to be
infinite, the CCS! encoding of a given RAM can, during evolution, move from a state
which may terminate (i.e. weakly terminating state) into one that cannot terminate (i.e.,
strongly non-terminating state). In other words, the encoding does not preserve (weak)
termination during evolution. It is worth pointing that since RAMs are deterministic
machines, their faithful encoding in CCS given in [3] does preserve weak termina-
tion during evolution. A legitimate question is therefore: What can be encoded with
termination-preserving CCS! processes?

This work. We shall investigate the expressiveness of CCS! processes which indeed
preserve (weak) termination during evolution. This way we disallow the technique used
in [4] to unfaithfully encode RAMs.

A sequence of actions s (over a finite set of actions) performed by a process P spec-
ifies a sequence of interactions with P ’s environment. For example, s = an.b̄n can be
used to specify that if P is input n a’s by environment then P can output n b’s to the
environment. We therefore find it natural to study the expressiveness of processes w.r.t.
sequences (or patterns) of interactions (languages) they can describe. In particular we
shall study the expressiveness of CCS! w.r.t. the existence of termination-preserving
encodings of grammars of Types 1 (Context Sensitive grammars), 2 (Context Free gra-
mmars) and 3 (Regular grammars) in the Chomsky Hierarchy whose expressiveness
corresponds to (non-deterministic) Linear-bounded, Pushdown and Finite-State Au-
tomata, respectively. As elaborated later in the related work, similar characterizations
are stated in the Caucal hierarchy of transition systems for other process algebras [2].

It worth noticing that by using the non termination-preserving encoding of RAM’s in
[3] we can encode Type 0 grammars (which correspond to Turing Machines) in CCS!.

Now, in principle the mere fact that a computation model fails to generate some
particular language may not give us a definite answer about its computation power. For
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a trivial example, consider a model similar to Turing Machines except that the machines
always print the symbol a on the first cell of the output tape. The model is essentially
Turing powerful but fails to generate b. Nevertheless, our restriction to termination-
preserving processes is a natural one, much like restricting non-deterministic models to
deterministic ones, meant to rule out unfaithful encodings of the kind used in [4]. As
matter of fact, Type 0 grammars can be encoded by using the termination-preserving
encoding of RAMs in CCS [3].

Contributions. For simplicity let us use CCS−ω
! to denote the set of CCS! processes

which preserve weak termination during evolution as described above. We first provide
a language preserving encoding of Regular grammars into CCS−ω

! . We also prove that
CCS−ω

! processes can generate languages which cannot be generated by any Regular
grammar. Our main contribution is to show that it is impossible to provide language
preserving encodings from Context-Free grammars into CCS−ω

! . Conversely, we also
show that CCS−ω

! can generate languages which cannot be generated by any Context-
free grammar. We conclude our classification by stating that all languages generated by
CCS−ω

! processes are context sensitive. The results are summarized in Fig. 1.

CSL
CCS−ω

!

REG
CFL

Fig. 1. Termination-Preserving CCS! Processes (CCS−ω
! ) in the Chomsky Hierarchy

Outline of the paper. This paper is organized as follows. Section 2 introduces the
CCS calculi under consideration. We then discuss in Section 3 how unfaithful encodings
are used in [4] to provide an encoding of RAM’s. We prove the above-mentioned results
in Section 4. Finally, some concluding remarks are given in Section 5.

2 Preliminaries

In what follows we shall briefly recall the CCS constructs and its semantics as well as
the CCS! calculus.

2.1 The Calculi

Finite CCS. In CCS, processes can perform actions or synchronize on them. These
actions can be either offering port names for communication, or the so-called silent
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action τ. We presuppose a countable set N of port names, ranged over by a, b, x, y . . .
and their primed versions. We then introduce a set of co-names N = {a | a ∈ N}
disjoint from N . The set of labels, ranged over by l and l′, is L = N ∪ N . The set of
actions Act , ranged over by α and β, extends L with a new symbol τ. Actions a and a
are thought of as complementary, so we decree that a = a. We also decree that τ = τ .

The processes specifying finite behaviour are given by:

P, Q . . . := 0 | α.P | (νa)P | P | Q (1)

Intuitively 0 represents the process that does nothing. The process α.P performs an
action α then behaves as P . The restriction (νa)P behaves as P except that it can offer
neither a nor ā to its environment. The names a and ā in P are said to be bound in
(νa)P . The bound names of P , bn(P ), are those with a bound occurrence in P , and the
free names of P , fn(P ), are those with a not bound occurrence in P . The set of names
of P , n(P ), is then given by fn(P ) ∪ bn(P ). Finally, P | Q represents parallelism;
either P or Q may perform an action, or they can also synchronize when performing
complementary actions.

Notation 1. We shall write the summation P + Q as an abbreviation of the process
(ν u)(u | u.P | u.Q). We also use (νa1 . . . an)P as a short hand for (νa1) . . . (νan)P .
We often omit the “0” in α.0.

The above description is made precise by the operational semantics in Table 1. A tran-
sition P

α−→ Q says that P can perform α and evolve into Q. In the literature there

Table 1. An operational semantics for finite processes

ACT
α.P

α−→ P
RES

P
α−→ P ′

(ν a)P
α−→ (ν a)P ′

if α �∈ {a, a}

PAR1
P

α−→ P ′

P | Q
α−→ P ′ | Q

PAR2
Q

α−→ Q′

P | Q
α−→ P | Q′

COM
P

l−→ P ′ Q
l−→ Q′

P | Q
τ−→ P ′ | Q′

are at least two alternatives to extend the above syntax to express infinite behaviour. We
describe them next.

2.2 Parametric Definitions: CCS and CCSp

A typical way of specifying infinite behaviour is by using parametric definitions [10].
In this case we extend the syntax of finite processes (Equation 1) as follows:

P, Q, . . . := . . . | A(y1, . . . , yn) (2)

Here A(y1, . . . , yn) is an identifier (also call, or invocation) of arity n. We assume that

every such an identifier has a unique, possibly recursive, definition A(x1, . . . , xn) def=
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PA where the xi’s are pairwise distinct, and the intuition is that A(y1, . . . , yn) behaves
as its body PA with each yi replacing the formal parameter xi. For each A(x1, . . . , xn)
def= PA, we require fn(PA) ⊆ {x1, . . . , xn}.

Following [5], we should use CCSp to denote the calculus with parametric definitions
with the above syntactic restrictions.

Remark 1. As shown in [5], however, CCSp is equivalent w.r.t. strong bisimilarity to
the standard CCS. We shall then take the liberty of using the terms CCS and CCSp to
denote the calculus with parametric definitions as done in [10].

The rules for CCSp are those in Table 1 plus the rule:

CALL
PA[y1, . . . , yn/x1, . . . , xn] α−→ P ′

A(y1, . . . , yn) α−→ P ′
if A(x1, . . . , xn) def= PA (3)

As usual P [y1 . . . yn/x1 . . . xn] results from replacing every free occurrence of xi with
yi renaming bound names in P wherever needed to avoid capture.

2.3 Replication: CCS!

One simple way of expressing infinite is by using replication. Although, mostly found
in calculus for mobility such as the π-calculus and mobile ambients, it is also studied
in the context of CCS in [3,5].

For replication the syntax of finite processes (Equation 1) is extended as follows:

P, Q, . . . := . . . | !P (4)

Intuitively the process !P behaves as P | P | . . . | P | !P ; unboundedly many
P ’s in parallel. We call CCS! the calculus that results from the above syntax The ope-
rational rules for CCS! are those in Table 1 plus the following rule:

REP
P | !P α−→ P ′

!P α−→ P ′ (5)

3 The Role of Strong Non-termination

In this section we shall single out the fundamental non-deterministic strategy for the
Turing-expressiveness of CCS!. First we need a little notation.

Notation 2. Define
s=⇒, with s = α1. . . . αn ∈ L∗, as

( τ−→)∗ α1−→ ( τ−→)∗ . . . ( τ−→)∗ αn−→ ( τ−→)∗.

For the empty sequence s = ε,
s=⇒ is defined as ( τ−→)∗.
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We shall say that a process generates a sequence of non-silent actions s if it can perform
the actions of s in a finite maximal sequence of transitions. More precisely:

Definition 1 (Sequence and language generation). The process P generates a se-
quence s ∈ L∗ if and only if there exists Q such that P

s=⇒ Q and Q � α−→ for any
α ∈ Act . Define the language of (or generated by) a process P , L(P ), as the set of all
sequences P generates.

The above definition basically states that a sequence is generated when no reduction
rule can be applied. It is inspired by language generation of the model of computations
we are comparing our processes with. Namely, formal grammars where a sequence is
generated when no rewriting rule can be applied.

As we shall see below (strong) non-termination plays a fundamental role in the ex-
pressiveness of CCS!. We borrow the following terminology from rewriting systems:

Definition 2 (Termination). We say that a process P is (weakly) terminating (or that
it can terminate) if and only if there exists a sequence s such that P generates s. We say
that P is (strongly) non-terminating, or that it cannot terminate if and only if P cannot
generate any sequence.

The authors in [4] show the Turing-expressiveness of CCS!, by providing a CCS! en-
coding [[·]] of Random Access Machines (RAMs) a well-known Turing powerful deter-
ministic model [11]. The encoding is said to be unfaithful (or non-deterministic) in the
following sense: Given M , during evolution [[M ]] may make a transition, by performing
a τ action, from a weakly terminating state (process) into a state which do not corre-
spond to any configuration of M . Nevertheless such states are strongly non-terminating
processes. Therefore, they may be thought of as being configurations which cannot lead
to a halting configuration. Consequently, the encoding [[M ]] does not preserve (weak)
termination during evolution.

Remark 2. The work [4] considers also guarded-summation for CCS!. The results about
the encodability of RAM’s our work builds on can straightforwardly be adapted to our
guarded-summation free CCS! fragment.

Now rather than giving the full encoding of RAMs in CCS!, let us use a much simpler
example which uses the same technique in [4]. Below we encode a typical context
sensitive language in CCS!.

Example 1. Consider the following processes

P = (ν k1, k2, k3, ub, uc)( k1 | k2 | Qa | Qb | Qc)
Qa = !k1.a.(k1 | k3 | ub | uc)
Qb = k1.!k3.k2.ub.b.k2

Qc = k2.(!uc.c | ub.DIV )

where DIV =!τ . It can be verified that L(P ) = {anbncn}. Intuitively, in the process
P above, Qa performs (a sequence of actions) an for an arbitrary number n (and also
produces n ub’s). Then Qb performs bm for an arbitrary number m ≤ n and each time
it produces b it consumes a ub. Finally, Qc performs cn and diverges if m < n by
checking if there are ub’s that were not consumed. 	
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The Power of Non-Termination. Let us underline the role of strong non-termination
in Example 1. Consider a run

P
anbm

=⇒ . . .

Observe that the name ub is used in Qc to test if m < n, by checking whether some ub

were left after generating bm. If m < n, the non-terminating process DIV is triggered
and the extended run takes the form

P
anbmcn

=⇒ τ−→ τ−→ . . .

Hence the sequence anbmcn arising from this run (with m < n) is therefore not in-
cluded in L(P ).

The tau move. It is crucial to observe that there is a τ transition arising from the
moment in which k2 chooses to synchronize with Qc to start performing the c actions.
One can verify that if m < n then the process just before that τ transition is weakly
terminating while the one just after is strongly non-terminating. 	


Formally the class of termination-preserving processes is defined as follows.

Definition 3 (Termination Preservation). A process P is said to be (weakly) termina-
tion-preserving if and only if whenever P

s=⇒ Q
τ−→ R:

– if Q is weakly terminating then R is weakly terminating.

We use CCS−ω
! to denotes the set of CCS! processes which are termination-preserving.

One may wonder why only τ actions are not allowed in Definition 3 when moving from
a weakly terminating state into a strongly non-terminating one. The next proposition
answers to this.

Proposition 1. For every P, P ′, α �= τ if P
α−→ P ′ and P is weakly terminating then

P ′ must be weakly terminating.

Proof (Outline). As a mean of contradiction let P ′ be a strongly non-terminating proc-
ess such that P

α−→ P ′ where α �= τ . Let γ be an arbitrary maximal sequence of
transitions from P. Since P

α−→ P ′, the action α will be performed in γ as a visible
action or in a synchronization with its complementary action ᾱ. In the synchronization
case, one can verify that there exists another maximal sequence γ′ identical to γ except
that in γ′, α and ᾱ appear as visible actions instead of their corresponding synchro-

nization. Therefore, there exists a sequence P
t1=⇒ Q

α−→ R
t2=⇒� (Fig. 2). From

P
t1=⇒ Q

α−→ R and P
α−→ P ′, we can show that P

α−→ P ′ t1=⇒ R
t2=⇒� (Fig. 3)

thus contradicting the assumption that P ′ is a strongly non-terminating process. 	

We conclude this section with a proposition which relates preservation of termination
and the language of a process.

Proposition 2. Suppose that P is terminating-preserving and that L(P ) �= ∅. For every
Q, if P

s=⇒ Q then ∃s′ such that s.s′ ∈ L(P ).

Proof. Let Q an arbitrary process such that P
s=⇒ Q. Since L(P ) �= ∅ then P is

weakly terminating. From Definition 3 and Proposition 1 it follows that Q is weakly

terminating. Hence there exists a sequence s′ such that P
s=⇒ Q

s′
=⇒ R � and thus

from Definition 1 we have s.s′ ∈ L(P ) as wanted. 	
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Fig. 2. Alternative evolutions of P involving α

Fig. 3. Confluence from P to R

4 CCS! and Chomsky Hierarchy

In this section we study the expressiveness of termination-preserving CCS! processes in
the Chomsky hierarchy. Recall that, in a strictly decreasing expressive order, Types 0,
1, 2 and 3 in the Chomsky hierarchy correspond, respectively, to unrestricted-grammars
(Turing Machines), Context Sensitive Grammars (Non-Deterministic Linear Bounded
Automata), Context Free Grammars (Non-Deterministic PushDown Automata), and
Regular Grammars (Finite State Automata).

We assume that the reader is familiar with the notions and notations of formal gra-
mmars. A grammar is a quadruple G = (Σ, N, S, P ) where Σ are the terminal symbols,
N the non-terminals, S the initial symbol, P the set of production rules. The language of
(or generated by) a formal grammar G, denoted as L(G), is defined as all those strings
in Σ∗ that can be generated by starting with the start symbol S and then applying the
production rules in P until no more non-terminal symbols are present.

4.1 Encoding Regular Languages

Regular Languages (REG) are those generated by grammars whose production rules
can only be of the form A → a or A → a.B. They can be alternatively characterized as
those recognized by regular expressions which are given by the following syntax:

e = ∅ | ε | a | e1 + e2 | e1.e2 | e∗

where a is a terminal symbol.
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Definition 4. Given a regular expression e, we define �e� as the CCS! process (ν m)
(�e�m | m) where �e�m, with m �∈ fn([[e]]), is inductively defined as follows:

�∅�m = DIV
�ε�m = m
�a�m = a.m

�e1 + e2�m =

⎧
⎪⎨

⎪⎩

�e1�m if L(e2) = ∅
�e2�m if L(e1) = ∅
�e1�m + �e2�m otherwise

�e1.e2�m = (ν m1)(�e1�m1 | m1.�e2�m) with m1 �∈ fn(e1)

�e∗�m =

{
m if L(e) = ∅
(ν m′)(m′ | !m′.�e�m′ | m′.m) with m′ �∈ fn(e) otherwise

where DIV =!τ.

Remark 3. The conditionals on language emptiness in Definition 4 are needed to make
sure that the encoding of regular expressions always produce termination-preserving
processes. To see this consider the case a+∅. Notice that while [[a]] = a and [[∅]] = DIV
are termination-preserving, a + DIV is not. Hence [[e1 + e2]] cannot be defined as
[[e1]]+ [[e2]]. Since the emptiness problem is decidable for regular expressions, it is clear
that given e, [[e]] can be effectively constructed.

The following proposition, which can be proven by using induction on the structure of
regular expressions, states the correctness of the encoding.

Proposition 3. Let [[e]] as in Definition 4. We have L(e) = L([[e]]) and furthermore [[e]]
is termination-preserving.

From the standard encoding from Type 3 grammars to regular expressions and the above
proposition we obtain the following result.

Theorem 3. For every Type 3 grammar G, we can construct a termination-preserving
CCS! process PG such that L(G) = L(PG).

The converse of the theorem above does not hold; Type 3 grammars are strictly less
expressive.

Theorem 4. There exists a termination-preserving CCS! process P such that L(P ) is
not Type 3.

The above statement can be shown by providing a process which generates the typical
anbn context-free language. Namely, let us take

P = (ν k, u)(k | !(k.a.(k | u)) | k.!(u.b)).

One can verify that P is termination-preserving and that L(P ) = anbn.
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4.2 Impossibility Result: Context Free Languages

Context-Free Languages (CFL) are those generated by Type 2 grammars: grammars
where every production is of the form A → γ where A is a non-terminal symbol and γ
is a string consisting of terminals and/or non-terminals.

We have already seen that termination-preserving CCS! process can encode a typical
CFL language such as anbn. Nevertheless, we shall show that they cannot in general
encode Type 2 grammars.

The nesting of restriction processes plays a key role in the following results CCS!.

Definition 5. The maximal number of nesting of restrictions |P |ν can be inductively
given as follows:

|(ν x)P |ν = 1 + |P |ν |P | Q|ν = max(|P |ν , |Q|ν)
|α.P |ν = |!P |ν = |P |ν |0|ν = 0

A very distinctive property of CCS! is that the maximal nesting of restrictions is invari-
ant during evolution.

Proposition 4. Let P and Q be CCS! processes. If P
s=⇒ Q then |P |ν = |Q|ν .

Remark 4. In CCS because of the unfolding of recursive definitions the nesting of
restrictions can increase unboundedly during evolution1. E.g., consider A(a) where

A(x) def= (ν y)(x.ȳ.R | y.A(x)) (see Section 2.2) which has the following sequence
of transitions A(a) aaa...=⇒ (νy)(R | (νy)(R | (νy)(R | . . .))) 	


Another distinctive property of CCS! is that if a CCS! process can perform a given
action β, it can always do it by performing a number of actions bounded by a value that
depends only on the size of the process. In fact, as stated below, for a significant class
of processes, the bound can be given solely in terms of the maximal number of nesting
of restrictions.

Now, the above statement may seem incorrect since as mentioned earlier CCS! is
Turing expressive. One may think that β above could represent a termination signal
in a TM encoding, then it would seem that its presence in a computation cannot be
determined by something bounded by the syntax of the encoding. Nevertheless, recall
that the Turing encoding in [4] may wrongly signal β (i.e., even when the encoded
machine does not terminate) but it will diverge afterwards.

The following section is devoted to some lemmas needed for proving our impossi-
bility results for CCS! processes.

Trios-Processes
For technical reasons we shall work with a family of CCS! processes, namely trios-
processes. These processes can only have prefixes of the form α.β.γ . The notion of
trios was introduced for the π-calculus in [14] . We shall adapt trios and use them as a
technical tool for our purposes.

1 Also in the π-calculus [15], an extension of CCS! where names are communicated, the nesting
of restrictions can increase during evolution due to its name-extrusion capability.
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We shall say that a CCS! process T is a trios-process iff all prefixes in T are trios;
i.e., they all have the form α.β.γ and satisfy the following: If α �= τ then α is a name
bound in T , and similarly if γ �= τ then γ is a co-name bound in T . For instance
(νl)(τ.τ.l | l.a.τ) is a trios-process. We will view a trio l.β.l as linkable node with
incoming link l from another trio, outgoing link l to another trio, and contents β.

Interestingly, the family of trios-processes can capture the behaviour of arbitrary
CCS! processes via the following encoding:

Definition 6. Given a CCS! process P , [[P ]] is the trios-process (ν l)(τ.τ.l | �P �l)
where �P �l, with l �∈ n(P ), is inductively defined as follows:

�0�l = 0
�α.P �l = (ν l′)(l.α.l′ | [[P ]]l′ ) where l′ �∈ n(P )
�P | Q�l = (ν l′, l′′)(l.l′.l′′ | [[P ]]l′ | [[P ]]l′′ ) where l′, l′′ �∈ n(P ) ∪ n(Q)
�!P �l = (ν l′)(!l.l′.l | ![[P ]]l′ ) where l′ �∈ n(P )
�(ν x)P �l = (ν x)[[P ]]l

Notice that the trios-process [[α.P ]]l encodes a process α.P much like a linked list. In-
tuitively, the trio l.α.l′ has an outgoing link l to its continuation [[P ]]′l and incoming link
l from some previous trio. The other cases can be explained analogously. Clearly the
encoding introduces additional actions but they are all silent—i.e., they are synchroni-
zations on the bound names l, l′ and l′′.

Unfortunately the above encoding is not invariant w.r.t. language equivalence be-
cause the replicated trio in �!P �l introduces divergence. E.g, L((νx)!x) = {ε} but
L([[(νx)!x]]) = ∅. It has, however, a pleasant invariant property: weak bisimilarity.

Definition 7 (Weak Bisimilarity). A (weak) simulation is a binary relation R satisfy-
ing the following: (P, Q) ∈ R implies that:

– if P
s=⇒ P ′ where s ∈ L∗ then ∃Q′ : Q

s=⇒ Q′ ∧ (P ′, Q′) ∈ R.

The relation R is a bisimulation iff both R and its converse R−1 are -simulations.
We say that P and Q are (weak) bisimilar, written P ≈ Q iff (P, Q) ∈ R for some
bisimulation R.

Proposition 5. For every CCS! process P , P ≈ [[P ]] where [[P ]] is the trios-process
constructed from P as in Definition 6.

Another property of trios is that if a trios-process T can perform an action α, i.e., T
s.α=⇒,

then T
s′.α=⇒ where s′ is a sequence of actions whose length bound can be given solely

in terms of |T |ν .

Proposition 6. Let T be a trios-process such that T
s·β
=⇒. There exists a sequence s′,

whose length is bounded by a value depending only on |T |ν , such that T
s′·β
=⇒ .

We conclude this technical section by outlining briefly the main aspects of the proof
of the above proposition. Roughly speaking, our approach is to consider a minimal

sequence of visible actions t = β1. . . . βm performed by T leading to β (i.e., P
t=⇒
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and βm = β) and analyze the causal dependencies among the (occurrences of) the
actions in this t. Intuitively, βj depends on βi if T , while performing t, could not had
performed βj without performing βi first. For example in

T = (νl)(νl′)(νl′′)(τ.a.l | τ.b.l′ | l.l′.l′′ | l′′.c.τ)

β = c, t = abc, we see that c depends on a and b, but b does not depend on a since T
could had performed b before a.

We then consider the unique directed acyclic graph Gt arising from the transitive
reduction2 of the partial ordered induced by the dependencies in t. Because t is minimal,
β is the only sink of Gt.

We write βi �t βj (βj depends directly on βi) iff Gt has an arc from βi to βj .
The crucial observation from our restrictions over trios is that if βi �t βj then (the
trios corresponding to the occurrences of) βi and βj must occur in the scope of a res-
triction process Rij in T (or in some evolution of T while generating t). Take e.g,
T = τ.a.τ | (ν l)(τ.b.l | l.c.τ) with t = a.b.c and b � c. Notice that the trios corres-
ponding to the actions b and c appear within the scope of the restriction in T

To give an upper bound on the number of nodes of Gt (i.e., the length of t), we give
an upper bound on its length and maximal in-degree. Take a path βi1�tβi2 . . . �tβiu

of size u in Gt. With the help of the above observation, we consider sequences of res-
triction processes Ri1i2Ri2i3 . . . Riu−1iu such that for every k < u the actions βik

and
βik+1 (i.e., the trios where they occur) must be under the scope of Rikik+1 . Note that any
two different restriction processes with a common trio under their scope (e.g. Ri1i2 and
Ri2i3 ) must be nested, i.e., one must be under the scope of the other. This induces tree-
like nesting among the elements of the sequence of restrictions. E.g., for the restrictions
corresponding to βi1�tβi2�tβi3�tβi4 we could have a tree-like situation with Ri1i2

and Ri3i4 being under the scope of Ri2i3 and thus inducing a nesting of at least two.
We show that for a sequence of restriction processes, the number m of nesting of them
satisfies u ≤ 2m. Since the nesting of restrictions remains invariant during evolution
(Proposition 4) then u ≤ 2|T |ν . Similarly, we give an upper bound 2|T |ν on the indegree
of each node βj of Gt (by considering sequences Ri1j , . . . , Rimj such that βik

� βj ,
i.e having common trio corresponding to βj under their scope). We then conclude that

the number of nodes in Gt is bounded by 2|T |ν×2|T |ν
.

Main Impossibility Result
We can now prove our main impossibility result.

Theorem 5. There exists a Type 2 grammar G such that for every termination-preser-
ving CCS! process P , L(G) �= L(P ).

Proof. It suffices to show that no process in CCS−ω
! can generate the CFL anbnc. Sup-

pose, as a mean of contradiction, that P is a CCS−ω
! process such that L(P ) = anbnc.

Pick a sequence ρ = P
an

=⇒ Q
bnc=⇒ T � for a sufficiently large n. From Proposition

5 we know that for some R, [[P ]] an

=⇒ R
bnc=⇒ and R ≈ Q . Notice that R may not

2 The transitive reduction of a binary relation r on X is the smallest relation r′ on X such that
the transitive closure of r′ is the same as the transitive closure of r.
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be a trios-process as it could contain prefixes of the form β.γ and γ. However, such
prefixes into τ.β.γ and τ.τ.γ, we obtain a trios-process R′ such that R ≈ R′ and

|R|ν = |R′|ν . We then have R′ bnc=⇒ and, by Proposition 6, R′ s′·c=⇒ for some s′ whose

length is bounded by a constant k that depends only on |R′|ν . Therefore, R
s′·c=⇒ and

since R ≈ Q, Q
s′·c=⇒ D for some D. With the help of Proposition 4 and from Definition

6 it is easy to see that |R′|ν = |R|ν = |[[P ]]|ν ≤ 1 + |P | + |P |ν where |P | is the size of
P . Consequently the length of s′ must be independent of n, and hence for any s′′ ∈ L∗,

ans′cs′′ �∈ L(P ). Nevertheless P
an

=⇒ Q
s′·c=⇒ D and therefore from Proposition 2

there must be at least one string w = ans′cw′ ∈ L(P ); a contradiction. 	


It turns out that the converse of Theorem 5 also holds: Termination-preserving CCS!
processes can generate non CFL’s. Take

P = (ν k, u)(k | !k.a.(k | u)) | k.!u.(b | c))

One can verify that P is termination-preserving. Furthermore, L(P ) ∩ a∗b∗c∗ =
anbncn, hence L(P ) is not a CFL since CFL’s are closed under intersection with regular
languages. Therefore:

Theorem 6. There exists a termination-preserving CCS! process P such that L(P ) is
not a CFL.

Now, notice that if we allow the use of CCS! processes which are not termination-
preserving, we can generate anbnc straightforwardly by using a process similar to that
of Example 1.

Example 2. Consider the process P below:

P = (ν k1, k2, k3, ub)( k1 | k2 | Qa | Qb | Qc)
Qa = !k1.a.(k1 | k3 | ub)
Qb = k1.!k3.k2.ub.b.k2

Qc = k2.(c | ub.DIV )

where DIV =!τ. One can verify that L(P ) = {anbnc}. 	


Termination-Preserving CCS. Type 0 grammars can be encoded by using the
termination-preserving encoding of RAMs in CCS given in [3]. However, the fact that
preservation of termination is not as restrictive for CCS as it is for CCS! can also be
illustrated by giving a simple termination-preserving encoding of Context-Free gra-
mmars.

Theorem 7. For every type 2 grammar G, there exists a termination-preserving CCS
process PG, such that L(PG) = L(G).

Proof Outline. For simplicity we restrict ourselves to Type 2 grammars in Chomsky
normal form. All production rules are of the form A → B.C or A → a. We can
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encode the productions rules of the form A → B.C as the recursive definition A(d) def=
(ν d′)(B(d′) | d′.C(d)) and the terminal production A → a as the definition A(d) def=
a.d. Rules with the same head can be dealt with using the summation P + Q. One
can verify that, given a Type 2 grammar G, the suggested encoding generates the same
language as G.

Notice, however, that there can be a grammar G with a non-empty language exhibit-
ing derivations which do not lead to a sequence of terminal (e.g., A → B.C, A → a,
B → b, C → D.C,D → d). The suggested encoding does not give us a termination-
preserving process. However one can show that there exists another grammar G′, with
L(G) = L(G′) whose derivations can always lead to a final sequence of terminals . The
suggested encoding applied to G′ instead, give us a termination-preserving process. 	


4.3 Inside Context Sensitive Languages (CSL)

Context-Sensitive Languages (CSL) are those generated by Type 1 grammars. We shall
state that every language generated by a termination-preserving CCS! process is context
sensitive.

The next proposition reveals a key property of any given termination-preserving
CCS! process P which can be informally described as follows. Suppose that P ge-
nerates a sequence s of size n. By using a technique similar to the proof of Theorem 5
and Proposition 6, we can prove that there must be a trace of P that generates s with a
total number of τ actions bounded by kn where k is a constant associated to the size of
P . More precisely,

Proposition 7. Let P be a termination-preserving CCS! process. There exists a con-
stant k such that for every s = α1 . . . αn ∈ L(P ) then there must be a sequence

P ( τ−→)m0 α1−→ ( τ−→)m1 . . . ( τ−→)mn−1 αn−→ ( τ−→)mn �

with Σn
i=0mi ≤ kn.

Now recall that context-sensitive grammars are equivalent to linear bounded non-
deterministic Turing machines. That is a non-deterministic Turing machine with a tape
with only kn cells, where n is the size of the input and k is a constant associated with
the machine. Given P , we can define a non-deterministic machine which simulates the
runs of P using the semantics of CCS! and which uses as many cells as the total num-
ber of performed actions, silent or visible, multiplied by a constant associated to P .
Therefore, with the help of Proposition 7, we obtain the following result.

Theorem 8. If P is a termination-preserving CCS! process then L(P ) is a context-
sensitive language.

Notice that from the above theorem and Theorem 5 it follows that the languages gener-
ated by termination-preserving CCS! processes form a proper subset of context sensitive
languages.
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5 Related and Future Work

The closest related work is that in [3,4] already discussed in the introduction. Further-
more in [3] the authors also provide a discrimination result between CCS! and CCS by
showing that the divergence problem (i.e., given P , whether P has an infinite sequence
of τ moves) is decidable for the former calculus but not for the latter.

In [5] the authors study replication and recursion in CCS focusing on the role of
name scoping. In particular they show that CCS! is equivalent to CCS with recursion
with static scoping. The standard CCS in [9] is shown to have dynamic scoping. A
survey on the expressiveness of replication vs recursion is given in [13] where several
decidability results about variants of π, CCS and Ambient calculi can be found. None
of these works study replication with respect to computability models less expressive
than Turing Machines.

In [12] the authors showed a separation result between replication and recursion in
the context of temporal concurrent constraint programming (tccp) calculi. They show
that the calculus with replication is no more expressive than finite-state automata while
that with recursion is Turing Powerful. The semantics of tccp is rather different from
that of CCS. In particular, unlike in CCS, processes interact via the shared-memory
communication model and communication is asynchronous.

In the context of calculi for security protocols, the work in [6] uses a process cal-
culus to analyze the class of ping-pong protocols introduced by Dolev and Yao. The
authors show that all nontrivial properties, in particular reachability, become undecid-
able for a very simple recursive variant of the calculus.The authors then show that the
variant with replication renders reachability decidable. The calculi considered are also
different from CCS. For example no restriction is considered and communication is
asynchronous.

There is extensive work in process algebras and rewriting transition systems pro-
viding expressiveness hierarchies similar to that of Chomsky as well as results closely
related to those of formal grammars. For example work involving characterization of
regular expression w.r.t. bisimilarity include [7,8] and more recently [1]. An excellent
description is provided in [2]. These works do not deal with replication nor the restric-
tion operator which are fundamental to our study.

As for future work, it would be interesting to investigate the decidability of the ques-
tion whether a given CCS! process P preserves termination. A somewhat complemen-
tary study to the one carried in this paper would be to investigate what extension to CCS!
is needed for providing faithful encoding of RAMs. Clearly the extension with recur-
sion is sufficient but there may be simpler process constructions from process algebra
which also do the job.

Acknowledgments. We would like to thank Maurizio Gabbrielli and Catuscia Palami-
dessi for their suggestions on previous versions of this paper.
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Abstract. This paper provides a call-by-name and a call-by-value calcu-
lus, both of which have a Curry-Howard correspondence to the minimal
normal logic K. The calculi are extensions of the λμ-calculi, and their se-
mantics are given by CPS transformations into a calculus corresponding
to the intuitionistic fragment of K. The duality between call-by-name
and call-by-value with modalities is investigated in our calculi.

1 Introduction

Modal logics have a long history since logics with strict implications, and are
now widely accepted both theoretically and practically. Especially, studies of
modal logics by Kripke semantics [18] are quite active and a large number of
results exist, for example, [7] is a textbook about such studies. Since Kripke
semantics concern only provability, equality on proofs is less studied on modal
logics compared with traditional logics.

It is well-known that the intuitionistic propositional logic exactly corresponds
to the simply typed λ-calculus: formulae as types and proofs as terms. Such a cor-
respondence is called a Curry-Howard correspondence after Howard’s work [15].
A Curry-Howard correspondence enables us to study equality on proofs com-
putationally. Though the correspondence can be extended to higher-order and
predicate logics as shown in [3], we investigate only propositional logics in this
paper. The aim of this study is to give a proper calculus that have a Curry-
Howard correspondence to the modal logic K. Through a Curry-Howard corre-
spondence, any type system can be regarded as a logic by forgetting terms. In
this sense, modal logics are contributing to practical studies for programming
languages, e.g., staged computations [8] and information flow analysis [23]. Since
K is known as a minimal modal logic, this paper focuses on K rather than S4.

Before defining a calculus for K, we consider the intuitionistic fragment of K,
which is called IK in this paper. In Section 2, the calculus for IK is defined as
a refinement of Bellin et al.’s calculus [4] rather than Martini and Masini’s[22].
Our calculus is sound and complete for the categorical semantics given in [4].
The study [19] about simply typed λ-calculus and cartesian closed categories is a
typical study of categorical semantics. Categorical semantics of modal logics are
studied by Bierman and de Paiva, and Bellin et al. in [6] and [4]. Their semantics
are based on studies about semantics of linear logics (e.g., [29] and [5]) since the
exponential of the linear logic [12] is a kind of S4 modality.

Z. Shao (Ed.): APLAS 2007, LNCS 4807, pp. 399–414, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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A Curry-Howard correspondence between the classical propositional logic and
the λ-calculus with continuations was provided in [13] by Griffin. Parigot has
proposed the λμ-calculus as a calculus for the classical logic in [26]. Now, kinds
of λμ-calculi exist and some of them are defined by CPS transformations. A
CPS transformation was originally introduced in [11], and the relation between
call-by-value and CPS semantics was first studied by Plotkin in [27]. De Groote
defines a CPS transformation on a call-by-name λμ-calculus in [9], but in this
paper, we adopt Selinger’s CPS transformation [30], which is an extension of
Hofmann and Streicher’s [14]. In Section 3, we provide a call-by-name λμ-calculus
with a box modality, which has a Curry-Howard correspondence to K, by the
CPS semantics into the calculus for IK defined in Section 2. A call-by-value
λμ-calculus is provided in [25] by Ong and Stewart. We define a call-by-value
calculus for K also as an extension of Selinger’s call-by-value λμ-calculus [30]
via the CPS transformation in Section 4.

The duality between call-by-name and call-by-value is an important property
of the classical logic. The duality on a programming language with first-class
continuations was first formalized by Filinski in [10]. It has been formalized on
the λμ-calculi in [30] by Selinger, and reformulated as sequent calculi in [34]
by Wadler. In [16], the duality is developed with recursion by the author. In
Section 5, we study such duality on the classical modal logic K.

In addition, we investigate the logic S4 with the CPS semantics. It is shown
in Section 6 that a diamond modality is a monad in call-by-name S4.

Notations

We introduce notations specific to this paper.

– The symbol “≡” denotes the α-equivalence.
– We may omit superscripted and subscripted types if they are trivial.
– A notation “

−→
M” is used for a sequence of meta-variables “M1, . . . , Mn”.

Hence, an expression “
−→
M,

−→
N” stands for the concatenation of

−→
M and

−→
N .

– For a unary operator Φ(−), we write “Φ(
−→
M)” for “Φ(M1), . . . , Φ(Mn)”.

– We write “
−→
N (θ−→x . M)” for “N1(θx1. · · · Nn(θxn. M) · · ·)” and “[−→a ](θ−→x . M)”

for “[a1](θx1. · · · [an](θxn. M) · · ·)”, where θ is λ or μ.
– We write “¬τ” for “τ → ⊥”.

2 Calculus for Intuitionistic Normal Modal Logic

In this section, we study the intuitionistic modal logic IK. Intuitionism of a
diamond modality is not trivial, for example, [33] gives an account of it, but this
section focuses on the box fragment of IK. We call also this fragment itself IK
in this paper. A diamond modality is investigated in a classical logic after the
next section.

It is well-known that the λ-calculus with conjunctions and disjunctions ex-
actly corresponds to the intuitionistic propositional logic. Therefore, we extend
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Table 1. Typing rules of λ�-calculus

Γ � ατ : τ Γ, x : τ, Γ ′ � x : τ

Γ � 〈 〉 : � Γ � [ ]τ : ⊥ → τ

Γ, x : σ � M : τ

Γ � λxσ. M : σ → τ
Γ � M : σ → τ Γ � N : σ

Γ � MN : τ

Γ � M1 : τ1 Γ � M2 : τ2

Γ � 〈M1, M2〉 : τ1 ∧ τ2

Γ � M : τ1 ∧ τ2

Γ � πjM : τj

Γ, x1 : σ1 � M1 : τ Γ, x2 : σ2 � M2 : τ

Γ � [λxσ1
1 . M1, λxσ2

2 . M2] : σ1 ∨ σ2 → τ

Γ � M : τj

Γ � ιjM : τ1 ∨ τ2

x1 : σ1, . . . , xn : σn � M : τ Γ � N1 : �σ1 · · · Γ � Nn : �σn

Γ � box 〈xσ1
1 , . . . , xσn

n 〉 be 〈N1, . . . , Nn〉 in M : �τ

the λ-calculus with a box construct. Our calculus, called the λ�-calculus, is a
refinement of Bellin et al.’s calculus given in [4]. The difference from Bellin et
al.’s is discussed in [17].

Definition 1. The λ�-calculus is defined as follows. Types τ and terms M are
defined by

τ ::= p | τ → τ | � | τ ∧ τ | ⊥ | τ ∨ τ | �τ

M ::= ατ | x | λxτ.M | MM | 〈 〉 | 〈M, M〉 | π1M | π2M

| [ ]τ | [λxτ. M, λxτ. M ] | ι1M | ι2M

| box 〈xτ, . . . , xτ〉 be 〈M, . . . , M〉 in M

where p, c, and x range over type constants, constants, and variables, respec-
tively. A variable xi occurring freely in M is bound in the term box 〈x1, . . . , xn〉be
〈N1, . . . , Nn〉 in M . The typing rules are given in Table 1. The equality is defined
by the axioms given in Table 2. In the table, an equation M = N means that
two derivable judgments Γ 
 M : τ and Γ 
 N : τ are equal for any Γ and τ .
A theory including the equality of the λ�-calculus is called a λ�-theory.

Note that all free variables of M are covered by −→x when the term box 〈−→x 〉 be
〈−→N 〉 in M is typable. It means that each box encloses a proof.

Since the λ�-calculus has essentially the same syntax as the calculus defined
in [4], we can show that our calculus corresponds to the intuitionistic modal
logic.

Let IK be an intuitionistic Hilbert system with the axiom �(σ → τ) → �σ →
�τ and the box inference rule. The λ�-calculus can be regarded as a natural
deduction by forgetting terms. It is shown as follows that our logic is equivalent
to IK with respect to provability. The box inference rule of IK is simulated by


 M : τ

 box 〈 〉 be 〈 〉 in M : �τ
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Table 2. Axioms of λ�-calculus

(λx.M)N = M{N/x}
λx.Mx = M if x 
∈ FV(M)

〈 〉 = M

πj〈M1, M2〉 = Mj

〈π1M, π2M〉 = M

[ ] = M

[λx1. M1, λx2. M2](ιjN) = (λxj . Mj)N

[λx1. M(ι1x1), λx2. M(ι2x2)] = M if x1, x2 
∈ FV(M)

box 〈x〉 be 〈M〉 in x = M

box 〈−→w , x, −→z 〉 be 〈−→Q, box 〈−→y 〉 be 〈−→L 〉 in N,
−→
P 〉 in M

= box 〈−→w , −→y , −→z 〉 be 〈−→Q,
−→
L ,

−→
P 〉 in M{N/x} if |−→w | = |−→Q |

and the distributivity is realized by the judgment


 λf ′. λx′. box 〈f, x〉 be 〈f ′, x′〉 in fx : �(σ → τ) → �σ → �τ

in our logic. Conversely, IK simulates our typing rule as

σ1, . . . , σn 
 τ


 σ1 → · · · → σn → τ


 �(σ1 → · · · → σn → τ)
Γ 
 �(σ1 → · · · → σn → τ)

Γ 
 �σ1 → �(σ2 → · · · → σn → τ) Γ 
 �σ1

Γ 
 �(σ2 → · · · → σn → τ)
...

Γ 
 �(σn → τ)
Γ 
 �σn → �τ Γ 
 �σn

Γ 
 �τ .

We can also show more directly that our logic corresponds to the sequent calculus
formulation of IK proposed in [35].

According to the above encoding, it is not trivial whether an exchange rule
commutes with a box operation. Therefore, we distinguish such symmetricity
from other axioms although it is common to consider proofs up to exchanges.

Definition 2. In a λ�-theory, � is symmetric if the equation

box 〈−→w , x, y, −→z 〉 be 〈−→Q, N, L,
−→
P 〉 in M

= box 〈−→w , y, x, −→z 〉 be 〈−→Q, L, N,
−→
P 〉 in M if |−→w | = |−→Q |

is satisfied.
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Our axiomatization is justified logically via the Curry-Howard correspon-
dence: the equation

box 〈x〉 be 〈M〉 in x = M

says that a trivial boxed proof can be removed, and the equation

box 〈−→w , x, −→z 〉 be 〈−→Q, box 〈−→y 〉 be 〈−→L 〉 in N,
−→
P 〉 in M

= box 〈−→w , −→y , −→z 〉 be 〈−→Q,
−→
L ,

−→
P 〉 in M{N/x}

says that adjacent boxes can be combined into one box. In addition, Abe charac-
terizes the λ�-calculus by a standard translation into the intuitionistic predicate
logic in [1]. Computational meaning of the λ�-calculus is shown as follows.

We consider categorical models of IK along the line of [4]. Because Kripke
semantics cover provability but not proofs themselves, they are not suitable
for our aim. Since our calculus is an extension of the simply typed λ-calculus,
a model of the λ�-calculus should be a cartesian closed category with finite
coproducts. ([19] provides a deep analysis of the λ-calculus and cartesian closed
categories.) In addition, the λ�-calculus requires a modality. Roughly speaking,
the modality behaves like a functor and is characterized by the axiom �σ ∧
�τ →�(σ ∧ τ), which is an adjoint of �(σ → τ)→ �σ →�τ . Assuming that this
axiom is parametric, the modality is just a monoidal endofunctor with respect
to cartesian products. (Fundamental properties of monoidal categories are found
in [20].) Hence, a model of IK is naturally considered a cartesian closed category
with a lax monoidal endofunctor with respect to cartesian products.

An interpretation is given in the usual manner: a type is interpreted as an
object and a judgment is interpreted as a morphism. Let a bicartesian closed
category C have a monoidal endofunctor � with a natural transformation mA,B :
�A × �B → �(A × B) and m� : � → ��. We write m∗ as a composite of mA,B’s
or m�. An interpretation [[−]] of the λ�-calculus into C is defined inductively by
[[�σ]] = �[[σ]] and

[[Γ 
 box 〈−→x 〉 be 〈−→N 〉 in M : �τ ]]

= [[Γ ]]
〈g1,...,gn〉 ���[[σ1]] × · · · × �[[σn]]

m∗
���([[σ1]] × · · · × [[σn]])

�f ���[[τ ]]
where gi = [[Γ 
 Ni : �σi]] and f = [[x1 : σ1, . . . , xn : σn 
 M : τ ]].

Theorem 3. The λ�-calculus is sound and complete for the class of bicartesian
closed categories with monoidal endofunctors.
The λ�-calculus with symmetric � is sound and complete for the class of bi-
cartesian closed categories with symmetric monoidal endofunctors.

Proof. The soundness is shown by induction as usual. The former box axiom
holds because a functor preserves identities. The latter box axiom holds because
of the naturality of m .

The completeness is shown by construction of the term model. The functor
conditions are derived from the former box axiom and a special case of the latter
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axiom. A natural transformation is given by λx.(box 〈y1, y2〉 be 〈π1x, π2x〉 in
〈y1, y2〉) and its properties follow from the latter box axiom. ��
In fact, the term model in the above proof is an initial model, so we can get a
result about internal languages in addition. Because of the space limitation, we
omit a discussion about the category of λ�-theories along the line of [19]. The
notion of equivalence on categories with monoidal endofunctors follows [21].

Definition 4. The internal language of a bicartesian closed category C with a
monoidal endofunctor is a λ�-theory whose type constants consist of objects
of C and whose constants consist of morphisms of C such that the canonical
interpretation is sound and complete.

Proposition 5. A bicartesian closed category with a monoidal endofunctor is
equivalent to the term model of its internal language.

One might expect a monoidal endofunctor to be strong, i.e., to preserve products,
but it can be reminded of the intuitionistic modal logic IS4. A model of the box
fragment of IS4 is a cartesian closed category with a monoidal comonad as
mentioned by Bierman and de Paiva in [6]. Here, a monoidal comonad is a lax
monoidal functor but not a strong monoidal functor in general. If the modality of
IK is required to be strong monoidal, a model of IS4 cannot be a model of IK.
Therefore, we do not require the modality to be strong monoidal. Nevertheless
it is possible to consider a strong monoidal functor in our calculus.

Definition 6. In a λ�-theory, � is strong if the equations

box 〈−→w , x, −→z 〉 be 〈−→Q, N,
−→
P 〉 in M

= box 〈−→w , −→z 〉 be 〈−→Q,
−→
P 〉 in M if |−→w | = |−→Q |

box 〈−→w , x, y, −→z 〉 be 〈−→Q, N, N,
−→
P 〉 in M

= box 〈−→w , x, −→z 〉 be 〈−→Q, N,
−→
P 〉 in M{x/y} if |−→w | = |−→Q |

are satisfied.

The soundness and completeness of the λ�-calculus with strong � are proved in
the same way as Theorem 3.

Theorem 7. The λ�-calculus with strong (resp. strong symmetric) � is sound
and complete for the class of bicartesian closed categories with strong (resp.
strong symmetric) monoidal functors.

It is also possible to define the linear version of the λ�-calculus if we restrict
occurrence of every free variable to only once. Because in fact the proof of The-
orem 3 does not depend on properties of cartesian products, also the linear
calculus enjoys the theorem: the linear λ�-calculus is sound and complete for
the class of monoidal closed categories with monoidal endofunctors.

Remark 8. This paper is overall motivated by equality on proofs and does not ad-
dress reductions, but the author proposes a reduction system for the implication
fragment of the λ�-calculus in [17]. The strong normalizability, the confluency,
and the subformula property of the calculus has been proved in [17].
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Table 3. Typing rules of λμ�-calculus

Γ � ατ : τ | Δ Γ, x : τ, Γ ′ � x : τ | Δ Γ � 〈 〉 : � | Δ

Γ, x : σ � M : τ | Δ

Γ � λxσ. M : σ → τ | Δ

Γ � M : σ → τ | Δ Γ � N : σ | Δ

Γ � MN : τ | Δ

Γ � M1 : τ1 | Δ Γ � M2 : τ2 | Δ

Γ � 〈M1, M2〉 : τ1 ∧ τ2 | Δ

Γ � M : τ1 ∧ τ2 | Δ

Γ � πjM : τj | Δ

Γ � M : ⊥ | a : τ, Δ

Γ � μaτ. M : τ | Δ

Γ � M : τ | Δ, a : τ, Δ′

Γ � [a]M : ⊥ | Δ, a : τ, Δ′

Γ � M : ⊥ | a1 : τ1, a2 : τ2, Δ

Γ � μ(aτ1
1 , aτ2

2 ). M : τ1 ∨ τ2 | Δ

Γ � M : τ1 ∨ τ2 | Δ, a1 : τ1, a2 : τ2, Δ
′

Γ � [a1, a2]M : ⊥ | Δ, a1 : τ1, a2 : τ2, Δ
′

x1 : σ1, . . . , xn : σn � M : τ | Γ � N1 : �σ1 | Δ · · · Γ � Nn : �σn | Δ

Γ � box 〈xσ1
1 , . . . , xσn

n 〉 be 〈N1, . . . , Nn〉 in M : �τ | Δ

3 Call-by-Name Calculus for Normal Modal Logic

We have defined a calculus for the intuitionistic modal logic in the previous
section. This section provides a calculus corresponding to the classical normal
modal logic K. Our calculus is defined as an extension of Selinger’s version [30]
of the λμ-calculus, which has a Curry-Howard correspondence to the classical
logic. The semantics of the calculus is given by a CPS transformation to the
λ�-calculus.

For abbreviation, we may write λ〈x1, x2〉. M for λy. (λx1. λx2. M)(π1y)(π2y)
and [M1, M2] for [λy1. M1y1, λy2. M2y2] in the λ�-calculus.

Definition 9. The call-by-name λμ�-calculus is defined as follows. Types τ and
terms M are defined by

τ ::= p | τ → τ | � | τ ∧ τ | ⊥ | τ ∨ τ | �τ

M ::= ατ | x | λxτ.M | MM | 〈 〉 | 〈M, M〉 | π1M | π2M

| μaτ. M | [a]M | μ(aτ, aτ). M | [a, a]M
| box 〈xτ, . . . , xτ〉 be 〈M, . . . , M〉 in M

where p, c, x, and a range over type constants, constants, variables, and control
variables, respectively. The typing rules are given in Table 3. The equality is
defined by the transformation [[−]]n to the λ�-calculus with a type constant R
given in Table 4. We write M =n N for [[M ]]n = [[N ]]n when M and N have the
same type.

A typing derivation of x1 :σ1, . . . , xn :σn 
 M : τ | a1 :τ1, . . . , am :τm in the λμ�-
calculus is regarded as a natural deduction style derivation of σ1, . . . , σn, ¬τ1, . . . ,
¬τm 
 τ . By the same reason as in the intuitionistic case, it can be seen that
the λμ�-calculus corresponds to the classical modal logic K with respect to
provability.
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Table 4. CBN CPS transformation

p◦ ≡ p (�τ )◦ ≡ �(τ◦→ R) → R

(¬σ)◦ ≡ σ◦→ R (σ → τ )◦ ≡ (σ◦→ R) ∧ τ◦ if τ 
≡ ⊥
�◦ ≡ ⊥ (τ1 ∧ τ2)

◦ ≡ τ1
◦∨ τ2

◦

⊥◦ ≡ � (τ1 ∨ τ2)
◦ ≡ τ1

◦∧ τ2
◦

[[α]]n ≡ α

[[x]]n ≡ x

[[λx. M ]]n ≡ λx. [[M ]]n〈 〉 if M : ⊥
≡ λ〈x, k〉. [[M ]]nk o.w.

[[MN ]]n ≡ λk. [[M ]]n[[N ]]n if MN : ⊥
≡ λk. [[M ]]n〈[[N ]]n, k〉 o.w.

[[〈 〉]]n ≡ [ ]

[[〈M1, M2〉]]n ≡ [[[M1]]n, [[M2]]n]

[[πjM ]]n ≡ λk. [[M ]]n(ιjk)

[[μa. M ]]n ≡ λa. [[M ]]n〈 〉
[[[a]M ]]n ≡ λk. [[M ]]na

[[μ(a1, a2). M ]]n ≡ λ〈a1, a2〉. [[M ]]n〈 〉
[[[a1, a2]M ]]n ≡ λk. [[M ]]n〈a1, a2〉

[[box 〈−→x 〉 be 〈−→N 〉 in M ]]n ≡ λk. [[
−→
N ]]n(λ

−→
x′ . k(box 〈−→x 〉 be 〈

−→
x′ 〉 in [[M ]]n))

x1 : σ1, . . . , xn : σn � M : τ | a1 : τ1, . . . , am : τm

x1 : σ1
◦→ R , . . . , xn : σn

◦ → R , a1 : τ1
◦, . . . , am : τm

◦ � [[M ]]n : τ◦→ R

Unlike the intuitionistic case, call-by-name classical disjunctions are not co-
products. (Our formulation of disjunctions is based on Selinger’s [30], but it is
possible to define the calculus along the line of [28].) Instead of case functions
and injections, we use the syntax sugar

[λxσ1
1 . M1, λxσ2

2 . M2]
≡ λxσ1∨σ2. μbτ. [b]((λxσ1

1 . M1)(μaσ1
1 . [b]((λxσ2

2 . M2)(μaσ2
2 . [a1, a2]x))))

ιjM ≡ μ(aτ1
1 , aτ2

2 ). [aj ]M where a1, a2 ∈ FV(M).

These abbreviations are applied to also the call-by-value λμ�-calculus given in
the next section.

Remark 10. In the definition of the CPS transformation, the cases of abstrac-
tions and applications depend on the types, but such dependency is not essen-
tial for the semantics. It is just a technical requirement for the syntactic duality
shown in Section 5.

The equality is defined by the CPS transformation, so it is not trivial which kind
of equation holds. We show some equations which hold in the λμ�-calculus but
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do not hold in the ordinary λμ-calculus. (Of course, equations that hold in the
ordinary λμ-calculus hold in the λμ�-calculus.)

Proposition 11. The following equations hold in the call-by-name λμ�-
calculus.

box 〈x〉 be 〈M〉 in x =n M

box 〈−→w , x, −→z 〉 be 〈−→Q, box 〈−→y 〉 be 〈−→L 〉 in N,
−→
P 〉 in M

=n box 〈−→w , −→y , −→z 〉 be 〈−→Q,
−→
L ,

−→
P 〉 in M{N/x} if |−→w | = |−→Q |

box 〈−→x 〉 be 〈μa. N,
−→
P 〉 in M

=n μb.N{[b](box 〈−→x 〉 be 〈−,
−→
P 〉 in M)/[a]−}

where {C/[a]−} means the substitution of C{M} for [a]M , C{μa. [a, b]M} for
[a, b]M , and C{μa. [b, a]M} for [b, a]M .

Proof. Straightforwardly. Note that [[M{N/x}]]n ≡ [[M ]]n{[[N ]]n/x} holds. ��

The fact, that the λμ�-calculus satisfies box axioms of the λ�-calculus, means
that the modality in the λμ�-calculus is a monoidal functor.

Remark 12. � is neither symmetric nor strong in the λμ�-calculus even if � is
symmetric and strong in the target of the CPS transformation.

Though the λμ�-calculus does not have a diamond modality primitively, we can
define a construct for a diamond modality. Let �τ be ¬�¬τ . Define syntax sugar
by

dia 〈−→a 〉 be 〈−→N 〉 in M

≡ λk.
−→
N (λ

−→
x′ . k(box 〈−→x 〉 be 〈

−→
x′ 〉 in μb. −→x (μ−→a . [b]M)))

for terms M and
−→
N such that 
 M : ¬τ | a1 : σ1, . . . , an : σn and Γ 
 Nj :

¬�σj | Δ hold. Then the judgment

Γ 
 dia 〈aσ1
1 , . . . , aσn

n 〉 be 〈N1, . . . , Nn〉 in M : ¬�τ | Δ

is derivable. This dia 〈−→a 〉 be 〈−→N 〉 in M is a dual form of box 〈−→x 〉 be 〈−→N 〉 in M
in the sense of Section 5. A formula �(τ1 ∨ τ2) → �τ1 ∨ �τ2, which means
distributivity of � to ∨, is inherited by the term

λx. μ(a′
1, a

′
2). (dia 〈a1, a2〉 be 〈[a′

1], [a
′
2]〉 in [[a1], [a2]])x

where we write just [a] for λx. [a]x. It is remarkable that the family of these terms
is not a natural transformation. One can find more properties of � through the
duality.
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In a similar way, we can consider another modality �′τ ≡ ¬¬�¬¬τ and

box′ 〈−→x 〉 be 〈−→N 〉 in M

≡ dia 〈−→a 〉 be 〈−→N 〉 in λk. [−→a ](λ−→x . kM)

=n λh.
−→
N (λ

−→
y′ . h(box 〈−→y 〉 be 〈

−→
y′ 〉 in −→y (λ−→x . M)))

for terms M and
−→
N such that x1 : σ1, . . . , xn : σn 
 M : τ | and Γ 
 Nj :

�′σj | Δ hold. Because ¬¬τ is not isomorphic to τ in general in the classical
logic, �′τ is not isomorphic to �τ in the λμ�-calculus. However, �′ acts like �;
the following is a formal description of this fact.

Theorem 13. Define the transformation − on the λμ�-calculus by �τ ≡ �′τ

and box 〈−→x 〉 be 〈−→N 〉 in M ≡ box′ 〈−→x 〉 be 〈−→N 〉 in M . For λμ�-terms M and N ,
M =n N holds if and only if M =N N holds.

Proof. Consider the transformation on the λ�-calculus that sends [[M ]]n to [[M ]]n,
i.e., � to (�((− → R) → R) → R) → R . The claim of the theorem is nothing less
than this transformation preserves and reflects the equality. One can show the
left-to-right implication by checking all the axioms. The right-to-left implication
holds because the functor (− → R) → R is injective in the λ�-calculus. ��

4 Call-by-Value Calculus for Normal Modal Logic

In this section, we provide a call-by-value calculus which is dual to the call-by-
name λμ�-calculus. A formal statement of the duality is given in the next section.
The call-by-value calculus is an extension of Selinger’s call-by-value version [30]
of the λμ-calculus, and hence an extension of the λc-calculus [24].

Definition 14. The call-by-value λμ�-calculus has the same syntax as the call-
by-name λμ�-calculus. The equality of the call-by-value λμ�-calculus is defined
by the transformation [[−]]v given in Table 5. We write M =v N for [[M ]]v = [[N ]]v
when M and N have the same type.

Since the call-by-value λμ�-calculus has the same syntax as the call-by-name,
it is trivial that the call-by-value calculus Curry-Howard corresponds to K.

For an axiomatization of the call-by-value calculus, we need to define the set
of values. Values V and evaluation contexts E are defined by

V ::= ατ | x | λxτ. M | 〈 〉 | 〈V, V 〉 | π1V | π2V

| [λxτ.M, λxτ. M ] | [λxτ. V , λxτ. V ]V | ι1V | ι2V

| box 〈xτ, . . . , xτ〉 be 〈V, . . . , V 〉 in M

E ::= − | EM | V E | 〈E, M〉 | 〈V, E〉 | π1E | π2E | [a]E | [a, a]E
| box 〈xτ, . . . , xτ〉 be 〈V, . . . , V, E, M, . . . , M〉 in M
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Table 5. CBV CPS transformation

p• ≡ p (�τ )• ≡ (�((τ•→ R) → R) → R) → R

(¬σ)• ≡ σ•→ R (σ → τ )• ≡ (σ•∧ (τ•→ R)) → R if τ 
≡ ⊥
�• ≡ � (τ1 ∧ τ2)

• ≡ τ1
•∧ τ2

•

⊥• ≡ ⊥ (τ1 ∨ τ2)
• ≡ τ1

•∨ τ2
•

[[α]]v ≡ λk. kα

[[x]]v ≡ λk. kx

[[λx. M ]]v ≡ λk. k(λx. [[M ]]v[ ]) if M : ⊥
≡ λk. k(λ〈x, h〉. [[M ]]vh) o.w.

[[MN ]]v ≡ λk. [[M ]]v[[N ]]v if MN : ⊥
≡ λk. [[M ]]v(λy. [[N ]]v(λz. y〈z, k〉)) o.w.

[[〈 〉]]v ≡ 〈 〉
[[〈M1, M2〉]]v ≡ λk. [[M1]]v(λy1. [[M2]]v(λy2. k〈y1, y2〉))

[[πjM ]]v ≡ λk. [[M ]]v(λy. k(πjy))

[[μa. M ]]v ≡ λa. [[M ]]v[ ]

[[[a]M ]]v ≡ λk. [[M ]]va

[[μ(a1, a2). M ]]v ≡ λk. [[M ]]v{λy1. k(ι1y1), λy2. k(ι2y2)/a1, a2}[ ]
[[[a1, a2]M ]]v ≡ λk. [[M ]]v[a1, a2]

[[box 〈−→x 〉 be 〈−→N 〉 in M ]]v ≡

λk. [[
−→
N ]]v(λ

−→g . k(λh. −→g (λ
−→
f ′ . h(box 〈−→f 〉 be 〈

−→
f ′〉 in λl.

−→
f (λ−→x . [[M ]]vl)))))

x1 : σ1, . . . , xn : σn � M : τ | a1 : τ1, . . . , am : τm

x1 : σ1
•, . . . , xn : σn

•, a1 : τ1
•→ R , . . . , am : τm

•→ R � [[M ]]v : (τ•→ R) → R

and we use also W as a meta-variable for values. In addition, we use the syntax
sugar

letx be N in M ≡ (λx. M)N

let−→x be
−→
N in M ≡ letx1 be N1 in · · ·letxn be Nn in M

as usual. Syntax sugar about disjunctions is used in the definition of values,
but it is possible to introduce [M1, M2] and ιjM as primitive syntax instead of
μ(a1, a2). M and [a1, a2]M in the call-by-value calculus as noted in [31].

In our definition, there is a value that has a redex exterior to abstractions, but
it is not serious because we are not focusing on reductions. Our notion of values
is based on semantical effect-freeness: a value is interpreted to a form λk. kV .
There is room for improvement if we consider not an equality but a reduction
system or other semantics.
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Proposition 15. The following equations hold in the call-by-value λμ�-calculus.

E{M} =v letx beM in E{x} if x ∈ FV(E)
box 〈x〉 be 〈M〉 in x =v M

box 〈−→z , x〉 be 〈−→P , box 〈−→y 〉 be 〈−→L 〉 in N〉 in M

=v box 〈−→z , −→y 〉 be 〈−→P ,
−→
L 〉 in letx beN in M

box 〈−→w , x, −→z 〉 be 〈−→W, box 〈−→y 〉 be 〈−→N 〉 in V,
−→
P 〉 in M

=v box 〈−→w , −→y , −→z 〉 be 〈−→W,
−→
N,

−→
P 〉 in M{V/x} if |−→w | = |−→W |

where V and Wj are values.

Proof. First we show the following fact by induction: for any value V , there is
a term V ′ such that [[V ]]v = λk. kV ′. This fact enables us to show [[E{M}]]v =
λk. [[M ]]v(λx. [[E{x}]]vk) by induction. Also the last equation is derived from the
fact. Other equations are proved straightforwardly. ��

Commutativity between μ abstractions and boxed applications is derived from
the first equation:

box 〈−→x 〉 be 〈−→W, μa. N,
−→
P 〉 in M

=v let y be μa. N in box 〈−→x 〉 be 〈−→W, y,
−→
P 〉 in M

=v μb. N{[b](let y be − in box 〈−→x 〉 be 〈−→W, y,
−→
P 〉 in M)/[a]−}

=v μb. N{[b](box 〈−→x 〉 be 〈−→W, −,
−→
P 〉 in M)/[a]−}

where the last two lines hold by the ordinary call-by-value equality. Unlike the
call-by-name case, Proposition 15 means that � in the call-by-value calculus is
monoidal only on values.

We define the diamond structure �τ and dia 〈−→a 〉be 〈−→N 〉 in M in the call-by-
value λμ�-calculus as just the same syntax sugar as in the call-by-name. Such
syntax is used for the duality in the next section.

Remark 16. For the duality, we adopt a complex transformation as semantics:
[[−]]v is defined in order that

(�τ)• ≡ (�((τ•→ R) → R) → R) → R

holds. If we ignore the duality, we can reduce the transformation such that

(�τ)• ≡ �((τ•→ R) → R)

holds. It can be proved that this simpler translation gives the same equality as
the original one.
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Table 6. Transformation from CBV to CBN

p� ≡ p ¬σ� ≡ ¬σ�
σ → τ�≡ ¬(σ� ∨ ¬τ�) if τ 
≡ ⊥

�� ≡ ⊥ τ1 ∧ τ2� ≡ τ1� ∨ τ2�
⊥� ≡ � τ1 ∨ τ2� ≡ τ1� ∧ τ2�

�τ� ≡ �τ�

box 〈−→x 〉 be 〈−→N 〉 in M� ≡ dia 〈−→x 〉 be 〈−→N �〉 in M�

x1 : σ1, . . . , xn : σn � M : τ | a1 : τ1, . . . , am : τm

a1 : τ1�, . . . , am : τm� � M� : ¬τ� | x1 : σ1�, . . . , xn : σn�

Table 7. Transformation from CBN to CBV

�p� ≡ p �¬σ� ≡ ¬�σ�
�σ → τ�≡ ¬�σ� ∧ �τ� if τ 
≡ ⊥

��� ≡ ⊥ �τ1 ∧ τ2� ≡ �τ1� ∨ �τ2�
�⊥� ≡ � �τ1 ∨ τ2� ≡ �τ1� ∧ �τ2�

��τ� ≡ ��τ�

�dia 〈−→x 〉 be 〈−→N 〉 in M� ≡ λk. �−→N �(λ
−→
x′ . k(box 〈−→x 〉 be 〈

−→
x′〉 in μa. �M�(λy. [a]y)))

a1 : τ1, . . . , am : τm � M : σ | x1 : σ1, . . . , xn : σn

x1 : �σ1�, . . . , xn : �σn� � �M� : ¬�σ� | a1 : �τ1�, . . . , am : �τm�

5 Duality Between Call-by-Name and Call-by-Value

It is known that there exists a duality between call-by-name and call-by-value in
languages with control operators, e.g., [10] and [30]. In this section, we observe
such duality on the λμ�-calculus. Since our calculi are extensions of Selinger’s
λμ-calculi, we show the duality along the line of [30].

For readability of the duality, we use meta-variables a and x for variables and
control variables of the call-by-name λμ�-calculus, respectively.

Table 6 gives the transformation from the call-by-value to the call-by-name
λμ�-calculus. Other cases than the box case are omitted in the table because
they are essentially the same as Selinger’s [30]. It is shown that the call-by-value
CPS transformation coincides with the call-by-name one via this transformation.

Theorem 17. For any type τ and any term M of the call-by-value λμ�-calcu-
lus, τ• ≡ �τ�◦ and [[M ]]v = [[�M�]]n hold.

Proof. By induction. ��
On the other hand, a transformation from the call-by-name to the call-by-value
can not be defined totally. We just define the transformation from the � fragment
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of the call-by-name λμ�-calculus to the call-by-value λμ�-calculus by Table 7.
Since the type of [[M ]]n does not match the type of [[�M�]]v, the dual of the
previous theorem is the following.

Theorem 18. For any type τ and any term M of the � fragment of the call-
by-name λμ�-calculus, τ◦ ≡ �τ�• and [[M ]]n = λx. [[�M�]]v(λk. kx) hold.

Proof. By induction. ��

It follows from Theorem 17 and 18 that the call-by-value λμ�-calculus and the
� fragment of the call-by-name λμ�-calculus are in bijective correspondence in
some sense. Moreover,

�box′ 〈−→a 〉 be 〈−→N 〉 in M� =v dia 〈−→a 〉 be 〈�−→N �〉 in �M�

holds. Hence, there exists a bijective correspondence between the �′ fragment
of the call-by-name λμ�-calculus and the � fragment of the call-by-value λμ�-
calculus. By Theorem 13 in Section 3, we can conclude that the call-by-name
λμ�-calculus and the � fragment of the call-by-value λμ�-calculus are in bijec-
tive correspondence.

6 Extensions

We add type-indexed families of constants {εσ : �σ → σ} and {δσ : �σ → ��σ}
with the axioms

ε(box 〈−→x 〉 be 〈−→N 〉 in M) = M{ε
−→
N/−→x }

δ(box 〈−→x 〉 be 〈−→N 〉 in M) = box 〈−→y 〉 be 〈δ−→N 〉 in box 〈−→x 〉 be 〈−→y 〉 in M

δ(δM) = box 〈x〉 be 〈δM〉 in δx

ε(δM) = box 〈x〉 be 〈δM〉 in εx = M

to the λ�-calculus. A model of this calculus is a bicartesian closed category with
a monoidal comonad, that is, a model of the box fragment of IS4. Also to the
λμ�-calculus, we add families {εσ : �σ → σ} and {δσ : �σ → ��σ}. Then, it
is obvious that this calculus corresponds to S4 with respect to provability. The
semantics are given by

[[ε]]n ≡ λ〈x, k〉. x(λy. εyk)
[[δ]]n ≡ λ〈x, k〉. x(λy. k(box 〈z〉 be 〈δy〉 in λh. hz))
[[ε]]v ≡ λk. k(λ〈x, h〉. x(λy. εyh))
[[δ]]v ≡ λk. k(λ〈x, h〉. h(λl. x(λy. l(box 〈z〉 be 〈δy〉 in λm. m(λn. nz))))).

Unfortunately, � is not a comonad in the call-by-name calculus because

ε(box 〈x〉 be 〈N〉 in M) =n M{εN/x}
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in general. On the other hand, in the call-by-value calculus, the equations

ε(box 〈x〉 be 〈N〉 in M) =v letx be εN in M

δ(box 〈x〉 be 〈N〉 in M) =v box 〈y〉 be 〈δN〉 in box 〈x〉 be 〈y〉 in M

δ(δM) =v box 〈x〉 be 〈δM〉 in δx

ε(δM) =v box 〈x〉 be 〈δM〉 in εx =v M

hold, and hence � is a comonad (but not a monoidal comonad). Through the
duality, one can conclude that � is a monad in the call-by-name calculus.

In [6], Bierman and de Paiva propose a monad as a model of � in IS4. Our
semantics matches their observation. An S4 extension of the dual calculus [34]
along the line of dual context calculi (e.g., [2]) is provided in [32] by Shan. Since
the λμ-calculus has a bijective correspondence to the dual calculus, the λμ�-
calulus remains to be formalized in the dual calculus and to be compared with
Shan’s calculus.
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Abstract. We extend Wadler’s work that showed duality between call-by-value
and call-by-name by giving mutual translations between the λμ-calculus and
the dual calculus. We extend the λμ-calculus and the dual calculus through two
stages. We first add a fixed-point operator and an iteration operator to the call-by-
name and call-by-value systems respectively. Secondly, we add recursive types,
�, and ⊥ types to these systems. The extended duality between call-by-name
with recursion and call-by-value with iteration has been suggested by Kaku-
tani. He followed Selinger’s category-theoretic approach. We completely follow
Wadler’s syntactic approach. We give mutual translations between our extended
λμ-calculus and dual calculus by extending Wadler’s translations, and also show
that our translations form an equational correspondence, which was defined by
Sabry and Felleisen. By composing our translations with duality on the dual cal-
culus, we obtain a duality on our extended λμ-calculus. Wadler’s duality on the
λμ-calculus was an involution, and our duality on our extended λμ-calculus is
also an involution.

1 Introduction

In the last twenty years, a line of work, including that of Filinski [3], Griffin [5],
Parigot [9], Ong and Stewart [8], Barbanera and Berardi [1], Selinger [13], Curien and
Herbelin [2], and Wadler [14,15] extended the Curry-Howard isomorphism to classi-
cal logic, and concluded that call-by-value is dual to call-by-name in the sense of de
Morgan duality.

Selinger showed a duality between call-by-value and call-by-name by a category
theoretical approach, and gave a duality transformation for Parigot’s λμ-calculus. Kaku-
tani [7] investigated the duality between call-by-name recursion and call-by-value it-
eration by the same approach as Selinger, and extended Selinger’s duality by giving
translations between the call-by-name λμ-calculus with a fixed-point operator and the
call-by-value one with an iteration operator.

Wadler [15] pointed out that Selinger’s duality is not involutive, i.e., it needed two
distinct translations from call-by-name into call-by-value and from call-by-value into
call-by-name. Moreover, the compositions of these maps do not preserve types up to
identity, but only up to isomorphism. The similar problem can be found in Kakutani’s
duality, too.

Wadler also showed a duality between call-by-value and call-by-name, but it was
involutive. A key point of his approach was that he replaced implication A ⊃ B by

Z. Shao (Ed.): APLAS 2007, LNCS 4807, pp. 415–430, 2007.
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¬A ∨ B under call-by-name, or ¬(A&¬B) under call-by-value. Since there is a clean
and involutive duality on conjunction, disjunction, and negation, Wadler finally gave an
involutive version of duality between the call-by-name and call-by-value λμ-calculi.

Wadler’s approach is as follows. Firstly, he introduced the dual calculus that corre-
sponds to Gentzen’s classical sequent calculus. The dual calculus has an explicit and
involutive duality. The translation (−)◦ captures this duality, and translates from call-
by-name into call-by-value and vice-versa. Secondly, he gave translations (−)∗ and (−)∗
between the λμ-calculus and the dual calculus, and showed that these translations form
an equational correspondence (defined by Sabry and Felleisen [12]) with respect to
call-by-value (and also call-by-name) equations. Finally, by composing (−)∗, (−)∗, and
(−)◦, he derived a duality transformation (−)◦ from the λμ-calculus to itself, which takes
a call-by-value equation to a call-by-name one and vice-versa.

CBN λμ

(−)∗
��
CBN dual

(−)∗
��

(−)◦
��
CBV dual

(−)◦
��

(−)∗
��
CBV λμ

(−)∗
��

We take the same approach as Wadler. We extend the λμ and dual calculi, and show
that Wadler’s result can be expanded into our extended systems. The extension is per-
formed by the following two steps. (i) We extend the λμ-calculi with a call-by-name
fixed-point operator and a call-by-value iteration operator. The call-by-name dual cal-
culus is extended with a fixed-point operator, and the call-by-value one is extended
with a co-fixed-point operator, which is dual to the fixed-point operator. (ii) We further
extend these systems with recursive types, unit, and counit types.

Our first contribution in this paper is that we refine Kakutani’s duality into an invo-
lutive one. Kakutani introduced fixed-point and iteration operators as constants. Since
these operators act on functions, his formulation requires implication. We give a slightly,
but not essentially, different formulation without implications. By this modification,
Wadler’s duality can be naturally expanded into our extended systems.

Our second contribution is that we extend Wadler’s duality with recursive types, unit
type, and counit type. The existence of these types enables us to encode several impor-
tant data types, such as types of natural numbers, booleans, lists, streams. In section 6,
we demonstrate that natural numbers and booleans are dually encoded in our call-by-
name and call-by-value systems. Our duality exchanges the unit type with the counit
type, and recursive types are self-dual. This duality yields a duality of natural numbers
and booleans. Let (k)v and (k)n be encoded natural numbers of k in the call-by-value
and call-by-name codings respectively, then our duality translates (k)v into (k)n and
vice-versa. Furthermore, this duality of natural numbers induces a duality of programs
on natural numbers (Theorem 5): a call-by-name program on natural numbers is dual to
a call-by-value program that returns the same values as the original one.

The paper is organized as follows. In section 2 we briefly review Wadler’s previous
work [15]. In section 3 we extend the call-by-value λμ and dual calculi by adding an
iteration and a co-fixed-point operators respectively, and also extend the call-by-name
calculi by adding fixed-point operators. We show that Wadler’s equational correspon-
dence can be expanded into these extended systems (Theorem 2). In section 4 we further
add unit, counit, and recursive types to the λμ and dual calculi, extend the translations
between the λμ and dual calculi, and show that they form an equational correspondence
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A, B� X | A&B | A ∨ B | ¬A | A ⊃ B (Types)

M,N,O� x | 〈M, N〉 | fstM | sndN | μ(α, β).S | μα.S | λx.S | λx.M | OM (Terms)

S ,T � [α]M | [α, β]M | OM (Statements)

V,W � x | 〈V,W〉 | fstV | sndW | μ(α, β).[α]V | μ(α, β).[β]W | λx.S | λx.M (Values)

E � {−} | 〈E, N〉 | 〈V, E〉 | fst E | snd E | EM | VE (Evaluation contexts)

D� [α]E | [α, β]E | EM | VE (Statement contexts)

Fig. 1. The syntax of the λμ-calculus

(Theorem 3). In section 5 we obtain our extended duality from the results of the previ-
ous section. In section 6 we discuss some applications of our results. Using unit, counit,
and recursive types, we encode natural numbers and booleans in our calculi, and yield a
duality of natural numbers and booleans from our extended duality. Finally, we obtain
a duality of programs on natural numbers (Theorem 5).

2 Preliminaries

2.1 The λμ-calculus

The λμ-calculus was first introduced by Parigot [9] as an extension of the λ-calculus
with the notion of continuations. In this subsection, we define the syntax of the λμ-
calculus. We consider the two variants of this calculus, call-by-value and call-by-name.
Our version of the λμ-calculus is based on Wadler’s [15].

The λμ-calculus consists of types and expressions. Let X, Y, Z, . . . range over type
variables, A, B, . . . range over types, x, y, z, . . . range over variables, and α, β, γ, . . . range
over covariables. An expression of the λμ-calculus is either a term (denoted by O,M,N)
or a statement (denoted by S , T ). For the call-by-value system, we define values (de-
noted by V , W), evaluation contexts (denoted by E), and statement contexts (denoted
by D). The syntax of the λμ-calculus is summarized in Figure 1.

A typing judgment of the λμ-calculus takes either the form Γ ⇀ Δ | M : A or the
form Γ | S |⇀ Δ, where Γ denotes a λ-context, i.e., x1 : A1, . . . , xn : An and Δ denotes
a μ-context, i.e., α1 : B1, . . . , αm : Bm. The typing rules of the λμ-calculus are given in
Wadler’s paper [15].

The call-by-value equalities (denoted by =v) and the call-by-name equalities (de-
noted by =n) of the λμ-calculus are defined from the axioms listed in Figure 2 and 3
respectively. Note that expressions like [N/x] and [β/α] are usual substitutions for free
variable x and covariable α respectively, but an expression like [D{−}/[α]{−}], called
a mixed substitution, acts all free name α and recursively replaces [α]M, [α, β]M and
[β, α]M by D{M}, D{μα.[α, β]M} and D{μα.[β, α]M} respectively. The more formal
definition of the mixed substitution is given in [13] and [15].

Wadler showed that implication can be defined in terms of the other connectives.

Proposition 1 (Wadler(2005)). Under call-by-value, implication can be defined as
follows:
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(β&1) fst〈V,W〉 =v V
(β&2) snd〈V,W〉 =v W
(β∨) [α′, β′]μ(α, β).S =v S [α′/α, β′/β]
(β¬) (λx.S )V =v S [V/x]
(β ⊃) (λx.M)V =v M[V/x]
(βμ) [α′]μα.S =v S [α′/α]
(η&) V : A&B =v 〈fstV, sndV〉
(η∨) M : A ∨ B =v μ(α, β).[α, β]M (α, β: fresh)
(η¬) V : ¬A =v λx.V x (x: fresh)
(η ⊃) V : A ⊃ B =v λx.V x (x: fresh)
(ημ) M =v μα.[α]M (α: fresh)
(name) D{M} =v (λx.D{x})M (x: fresh)
(comp) D{(λx.N)M} =v (λx.D{N})M
(ς) D{μα.S } =v S [D{−}/[α]{−}]

Fig. 2. The equality axioms of the call-by-value λμ-calculus

(β&1) fst〈M,N〉 =n M
(β&2) snd〈M,N〉 =n N
(β∨) [α′, β′]μ(α, β).S =n S [α′/α, β′/β]
(β¬) (λx.S )N =n S [N/x]
(β ⊃) (λx.M)N =n M[N/x]
(βμ) [α′]μα.S =n S [α′/α]
(η&) M : A&B =n 〈fstM, sndM〉
(η∨) M : A ∨ B =n μ(α, β).[α, β]M (α, β: fresh)
(η¬) M : ¬A =n λx.Mx (x: fresh)
(η ⊃) M : A ⊃ B =n λx.Mx (x: fresh)
(ημ) M =n μα.[α]M (α: fresh)
(ς&1) fst(μα.S ) =n μβ.S [[β]fst{−}/[α]{−}]]
(ς&2) snd(μα.S ) =n μβ.S [[β]snd{−}/[α]{−}]
(ς∨) [β, γ]μα.S =n S [[β, γ]{−}/[α]{−}]
(ς¬) (μα.S )M =n S [{−}M/[α]{−}]
(ς ⊃) (μα.S )M =n μβ.S [[β]{−}M/[α]{−}]

Fig. 3. The equality axioms of the call-by-name λμ-calculus

A ⊃ B ≡ ¬(A&¬B) λx.N ≡ λz.(λx.(snd z)N)(fst z) OM ≡ μβ.O〈M, λy.[β]y〉

By this definition, (β ⊃), (η ⊃) and the other equations for functions are validated, and
a function abstraction is a value.

Proposition 2 (Wadler(2005)). Under call-by-name, implication can be defined as
follows:

A ⊃ B ≡ ¬A ∨ B λx.N ≡ μ(γ, β).[γ]λx.[β]N OM ≡ μβ.(μγ.[γ, β]O)M

By this definition, (β ⊃), (η ⊃) and (ς ⊃) are validated.
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A, B � X | A&B | A ∨ B | ¬A | A ⊃ B (Types)

M,N � x | 〈M,N〉 | 〈M〉inl | 〈N〉inr | [K]not | λx.M | (S ).α (Terms)

K, L � α | [K, L] | fst[K] | snd[L] | not〈M〉 | M@K | x.(S ) (Coterms)

S ,T � M • K (Statements)

V,W � x | 〈V,W〉 | 〈V〉inl | 〈W〉inr | [K]not | λx.M (Values)

| (V • fst[α]).α | (W • snd[β]).β
P,Q � α | [P,Q] | fst[P] | snd[Q] | not〈M〉 | M@P (Covalues)

| x.(〈x〉inl • P) | y.(〈y〉inr • Q)

E � {−} | 〈E, N〉 | 〈V, E〉 | 〈E〉inl | 〈E〉inr (Evaluation contexts)

F � {−} | [L, F] | [F, P] | fst[F] | snd[F] (Coevaluation contexts)

Fig. 4. The syntax of the dual calculus

2.2 The Dual Calculus

The dual calculus (DC) is a term calculus, which corresponds to the classical sequent
calculus. Wadler first gave it as a reduction system in [14], and later introduced as an
equation system in [15]. In this paper, we consider the equation system in his latter paper.
DC consists of types and expressions. Types, variables, and covariables of DC are

the same as those of the λμ-calculus. An expression is either a term (denoted by M, N),
a coterm (denoted by K, L), or a statement (denoted by S , T ). We also need notions
of values (denoted by V , W) and evaluation contexts (denoted by E) for the call-by-
value calculus, and notions of covalues (denoted by P, Q) and co-evaluation contexts
(denoted by F) for the call-by-name calculus. They are summarized in Figure 4.

A typing judgment of DC takes either the form Γ→Δ | M : A, the form K : A | Γ→Δ
or the form Γ | S |→Δ, where Γ denotes a context, i.e., x1 : A1, . . . , xn : An and Δ denotes
a cocontext, i.e., α1 : B1, . . . , αm : Bm. The typing rules of the dual calculus are given
in Wadler’s paper [15].

The call-by-value equalities (denoted by =v) and the call-by-name equalities (de-
noted by =n) of DC are defined from the axioms listed in Figure 5 and 6 respectively.

As before, implication of DC can be defined in terms of the other connectives.

Proposition 3 (Wadler(2005)). Under call-by-value, implication can be defined as
follows:

A ⊃ B ≡ ¬(A&¬B)
λx.N ≡ [z.(z • fst[x.(z • snd[not〈N〉])])]not M@K ≡ not〈〈M, [K]not〉〉

By this definition, (β ⊃), (η ⊃) and the other equations for functions are validated, and
a function abstraction is a value.

Proposition 4 (Wadler(2005)). Under call-by-name, implication can be defined as
follows:

A ⊃ B ≡ ¬A ∨ B
λx.N ≡ (〈[x.(〈N〉inr • γ)]not〉inl • γ).γ M@K ≡ [not〈M〉,K]
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(β&1) 〈V,W〉 • fst[K] =v V • K
(β&2) 〈V,W〉 • snd[L] =v W • L
(β∨1) 〈V〉inl • [K, L] =v V • K
(β∨2) 〈W〉inr • [K, L] =v W • L
(β¬) [K]not • not〈M〉 =v M • K
(β ⊃) λx.N • (M@K) =v M • x.(N • K)
(βR) (S ).α • K =v S [K/α]
(βL) V • x.(S ) =v S [V/x]
(η&) V : A&B =v 〈(V • fst[α]).α, (V • snd[β]).β〉 (α, β: fresh)
(η∨) K : A ∨ B =v [x.(〈x〉inl • K), y.(〈y〉inr • K)] (x, y: fresh)
(η¬) V : ¬A =v [x.(V • not〈x〉)]not (x: fresh)
(η ⊃) V : A ⊃ B =v λx.((V • (x@β)).β)) (x: fresh)
(ηR) M =v (M • α).α (α: fresh)
(ηL) K =v x.(x • K) (x: fresh)
(name) E{M} • K =v M • x.(E{x} • K) (x: fresh)

Fig. 5. The equality axioms of the call-by-value dual calculus

By this definition, (β ⊃), (η ⊃), and the other equations for functions are validated, and
a function application is a covalue.

Wadler introduced the translation (−)∗ from λμ into DC , and its inverse translation
(−)∗. The formal definitions of his translations are given in Figure 7 and 8. He showed
that these translations preserve typing relations, and form an equational correspondence
with respect to the call-by-value (resp. call-by-name) equations. The original notion of
equational correspondence was given by Sabry and Felleisen [12]. We apply this notion
on the several extended systems of λμ and DC .

Definition 1 (equational correspondence). Let λμ+ and DC+ be extended systems of
λμ and DC respectively, and let =+ and =+ be equations of λμ+ and DC+ defined on
them. Suppose a translation (−)� from λμ+ into DC+ is an extension of (−)∗, and a
translation (−)� from DC+ into λμ+ is an extension of (−)∗. We say that the pair of
translations ((−)�, (−)�) forms an equational correspondence with respect to (=+,=+)
if the following four conditions hold.
(Soundness):

M =+ N implies M� =+ N� , and S =+ T implies S � =+ T�

for any terms M and N, and statements S and T of λμ+.
(Completeness):

M =+ N implies M� =+ N� ,
K =+ L implies K�{O} =+ L�{O}, and
S =+ T implies S � =+ T� ,

for any terms M, coterms K, and statements S of DC+, and any term O of λμ+.
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(β&1) 〈M,N〉 • fst[P] =n M • P
(β&2) 〈M,N〉 • snd[Q] =n N • Q
(β∨1) 〈M〉inl • [P,Q] =n M • P
(β∨2) 〈Q〉inr • [P,Q] =n N • Q
(β¬) [K]not • not〈M〉 =n M • K
(β ⊃) λx.N • (M@K) =n M • x.(N • K)
(βR) (S ).α • P =n S [P/α]
(βL) M • x.(S ) =n S [M/x]
(η&) M : A&B =n 〈(M • fst[α]).α, (M • snd[β]).β〉 (α, β: fresh)
(η∨) P : A ∨ B =n [x.(〈x〉inl • P), y.(〈y〉inr • P)] (x, y: fresh)
(η¬) P : ¬A =n not〈([α]not • P).α〉 (α: fresh)
(η ⊃) M : A ⊃ B =n λx.((M • (x@β)).β)) (x: fresh)
(ηR) M =n (M • α).α (α: fresh)
(ηL) K =n x.(x • K) (x: fresh)
(name) M • F{K} =n (M • F{α}).α • K (α: fresh)

Fig. 6. The equality axioms of the call-by-name dual calculus

(x)∗ ≡ x (〈M,N〉)∗ ≡ 〈M∗, N∗〉
(fstO)∗ ≡ (O∗ • fst[α]).α (sndO)∗ ≡ (O∗ • snd[β]).β
(μ(α, β).S )∗ ≡ (〈(〈(S )∗.β〉inr • γ).α〉inl • γ).γ ([α, β]M)∗ ≡ M∗ • [α, β]
(λx.S )∗ ≡ [x.(S )∗]not (OM)∗ ≡ O∗ • not〈M∗〉
(μα.S )∗ ≡ (S ∗).α ([α]M)∗ ≡ M∗ • α
(λx.M)∗ ≡ λx.M∗ (OM)∗ ≡ (O∗ • (M∗@β)).β

Fig. 7. The translation (−)∗ from the λμ-calculus into DC

(Reloading property (1)):

(M�)� =+ M and (S �)� =+ S

for any term M and statement S of λμ+.
(Reloading property (2)):

(M�)� =+ M, (K�{O})� =+ O� • K, and (S �)� =+ S

for any term M, coterm K, and statement S of DC+, and any term O of λμ+.

Theorem 1 (Wadler (2005)). (1) ((−)∗, (−)∗) forms equational correspondence with
respect to the call-by-value equations (=v,=

v).
(2) ((−)∗, (−)∗) forms equational correspondence with respect to the call-by-name equa-
tions (=n,=

n).

3 Extension with Fixed-Point and Iteration

3.1 The λμ-calculus with Fixed-Point and Iteration Operators

In this subsection, we extend the call-by-name λμ-calculus by adding a fixed-point op-
erator (called λμ+fixn ), and extend the call-by-value one by adding an iteration operator
(called λμ+loopv ).
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(x)∗ ≡ x (α)∗{O} ≡ [α]O
(〈M,N〉)∗ ≡ 〈M∗,N∗〉 ([K, L])∗{O} ≡ L∗{ μβ.K∗{μα.[α, β]O} }
(〈M〉inl)∗ ≡ μ(α, β).[α]M∗ (fst[K])∗{O} ≡ K∗{fstO}
(〈N〉inr)∗ ≡ μ(α, β).[β]N∗ (snd[L])∗{O} ≡ L∗{sndO}
([K]not)∗ ≡ λx.K∗{x} (not〈M〉)∗{O} ≡ OM∗
(λx.M)∗ ≡ λx.M∗ (M@K)∗{O} ≡ K∗{OM∗}
((S ).α)∗ ≡ μα.S ∗ (x.S )∗{O} ≡ (λx.S ∗)O

(M • K)∗ ≡ K∗{M∗}
Fig. 8. The translation (−)∗ from DC into the λμ-calculus

The syntax of the λμ+fixn -calculus is defined by adding fix x.M to the terms of
the λμ-calculus. fix is a fixed point operator, which binds x in M. The syntax of the
λμ+loopv -calculus is defined by adding loop x.M to the terms of the λμ-calculus. loop
is a iteration operator, which binds x in M.

The additional typing rules and the equality axioms are as follows:

Γ, x : A⇀ Δ | M : A
Γ ⇀ Δ | fix x.M : A

(fix)
Γ, x : A⇀ Δ | M : A
Γ ⇀ Δ | loop x.M : ¬A

(loop)

and

(fix) fix x.M =n (λx.M)fix x.M
(loop) loop x.M =v λx.((loop x.M)M)

Our formulation of fixed-point and iteration operators is slightly, but not essentially,
different from Kakutani’s one [7]. He introduced them as constants, and so needed
implication. On the other hand, our formulation does not need implication. Since duality
in this paper is not defined for implication (see section 5), our formulation of fixed-point
and iteration operators is more suitable for seeing duality between them.

3.2 The Dual Calculus with Fixed-Point and Co-fixed-Point Operators

We extend the call-by-name dual calculus by adding a fixed-point operator, obtaining
thus DC+fixn , and extend the call-by-value calculus by adding a co-fixed-point operator,
obtaining thus DC+cofixv . The co-fixed-point operator is the dual one of the fixed-point
operator.

We define the syntax of DC+fixn by adding fix x.〈M〉 to the terms of DC , and the
syntax of DC+cofixv by adding cofixα.[K] to the coterms of DC . The additional typing
rules and the equality axioms are as follows:

Γ, x : A→ Δ | M : A
Γ→ Δ | fix x.〈M〉 : A

(fix)
K : A | Γ→ Δ, α : A
cofixα.[K] : A | Γ→ Δ (cofix)

and

(fix) (fix x.〈M〉) • P =n (fix x.〈M〉) • x.(M • P) (P : covalue)
(cofix) V • (cofixα.[K]) =v (V • K).α • (cofixα.[K]) (V : value)
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Intuitively, fix x.〈M〉 is a fixed-point of λx.M in the call-by-name dual calculus. In
fact, fix x.〈M〉 is equal to M[fix x.〈M〉/x] under the call-by-name equation:

fix x.〈M〉 =n ((fix x.〈M〉) • α).α =n ((fix x.〈M〉) • x.(M • α)).α

=n (M[fix x.〈M〉/x] • α).α =n M[fix x.〈M〉/x]

Dually, cofixα.[K] is equal to K[cofixα.[K]/α] under the call-by-value equation.

3.3 Translations

In this subsection, we extend Wadler’s translations (−)∗ and (−)∗ between λμ and DC. We
first consider the languages λμ+fix+loop with both fix and loop and DC+fix+cofix with
both fix and cofix . Then we give translations (−)∗1 and (−)∗1 between λμ+fix+loop

and DC+fix+cofix as extensions of (−)∗ and (−)∗ respectively. (−)∗1 is defined as follows:

(fix x.M)∗1 ≡ fix x.〈M∗1 〉 ,
(loop x.M)∗1 ≡ [ cofixα.[x.(M∗1 • α)]

]
not .

The other clauses are similar to the definition of (−)∗. On the other hand, (−)∗1 is defined
as follows:

(fix x.〈M〉)∗1 ≡ fix x.M∗1
(cofixα.[K])∗1{O} ≡

(
loop x.(μα.K∗1 {x})

)
O

The other clauses are similar to the definition of (−)∗.
Note that the images of λμ+fixn and λμ+loopv by (−)∗1 are DC+fixn and DC+cofixv respec-

tively. Similarly, the images of DC+fixn and DC+cofixv by (−)∗1 are λμ+fixn and λμ+loopv

respectively.
The extended translations also preserve typing relations.

Proposition 5. (1) (−)∗1 preserves typing relations, that is,

Γ ⇀ Δ | M : A implies Γ→ Δ | M∗1 : A,
Γ | S |⇀ Δ implies Γ | S ∗1 |→ Δ

for any terms M and statement S of λμ+fix+loop .
(2) (−)∗1 preserves typing relations, that is,

Γ→ Δ | M : A implies Γ ⇀ Δ | M∗1 : A,
K : A | Γ→ Δ and Γ ⇀ Δ | O : A implies Γ | K∗1 {O} |⇀ Δ.

Γ | S |→ Δ implies Γ | S ∗1 |⇀ Δ
for any term M, coterm K, and statement S of DC+fix+cofix , and term O of λμ+fix+loop .

The main result of this section is the following theorem.

Theorem 2. (i) ((−)∗1 , (−)∗1 ) forms an equational correspondence with respect to the
call-by-value equations.
(ii) ((−)∗1 , (−)∗1 ) forms an equational correspondence with respect to the call-by-name
equations.
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Proof. Soundness of (i) and (ii) can be shown by the inductions on =v and =n respec-
tively. We show the case of (loop)-rule:

(loop x.M)∗1 ≡ [ cofix α.[x.(M∗1 • α)]
]
not =v

(ηL)

[
z.(z • cofixα.[x.(M∗1 • α)])

]
not

=v
(cofix)

[
z.((z • x.(M∗1 • α)).α • cofixα.[x.(M∗1 • α)])

]
not

=v
(βR)

[
z.(z • x.(M∗1 • cofixα.[x.(M∗1 • α)]))

]
not

=v
(ηL)

[
x.(M∗1 • cofixα.[x.(M∗1 • α)])

]
not

=v
(β¬)

[
x.
( [
cofixα.[(M∗1 • α)]

]
not • not〈M∗1 〉 ) ]not

≡ [ x.( (loop x.M)∗1 • not〈M∗1 〉 ) ]not
≡ ( λx.(loop x.M)M

)∗1

Completeness of (i) and (ii) can be shown by the inductions on =v and =n respectively.
We show the case of (cofix)-rule:

(V • (cofixα.[K]))∗1 ≡ (cofix α.[K])∗1 {V∗1} ≡ (loop x.(μα.K∗1 {x}))V∗1
=

(loop)
v
(
λx.
(
(loop x.(μα.K∗1 {x}))μα.K∗1{x}

))
V∗1

=v
(
loop x.(μα.K∗1{x})

)
μα.K∗1 {V∗1 } ≡ (cofixα.[K])∗1

{
μα.K∗1 {V∗1 }

}

≡ ((V • K).α • (cofixα.[K]))∗1

Reloading property (1) of (i) and (ii) can be shown by the inductions on M and S
respectively. We show the case of (loop x.M):

((loop x.M)∗1 )∗1 ≡
[
cofixα.[x.(M∗1 • α)]

]
not∗1 ≡ λz.(cofixα.[x.(M∗1 • α)])∗1 {z}

≡ λz.(loop y.(μα.(x.(M∗1 • α))∗1 {y})
)
z ≡ λz.(loop y.(μα.(λx.[α](M∗1 )∗1 )y)

)
z

I.H.
=v λz.

(
loop y.(μα.(λx.[α]M)y)

)
z =(β¬)

v λz.
(
loop x.(μα.[α]M)

)
z

=
(ημ)
v λz.(loop x.M)z =(loop)

v λz.(λx.(loop x.M)M)z =(β¬)
v λz.(loop z.M)M

≡ loop x.M

Reloading property (2) of (i) and (ii) can be shown by the inductions on M and S
respectively. We show the case of (cofixα.[K]):

((cofixα.[K])∗1 {O})∗1 ≡
(
(loop x.(μα.K∗1 {x}))O

)∗1 ≡ (loop x.(μα.K∗1 {x}))∗1 • not〈O∗1 〉
≡ [ cofix β.[x.( (K∗1 {x})∗1 .α • β )]

]
not • not〈O∗1 〉

=v
(β¬) O∗1 • cofix β.[x.( (K∗1 {x})∗1 .α • β )]

I.H.
=v O∗1 • cofix β.[x.((x • K).α • β) )]

=v
(βR) O∗1 • cofixα.[x.(x • K) )] =v

(ηL) O∗1 • cofixα.[K]

4 Extension with Recursive Types, and �, ⊥ Types

In this section, we further extend Wadler’s results by adding �, ⊥, and recursive types
(recX.A) to the λμ-calculi and the dual calculi. Intuitively,� type means the unit type,
and ⊥ type means the counit type. By this extension, we can define many important
data types, such as boolean, natural numbers, lists, and streams. For example, under the
call-by-value system, boolean type can be defined by � ∨ �, and natural numbers type
can be defined by rec X.(�∨ X).
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4.1 The λμ-calculus with Recursive Types, and �, ⊥ Types

In this subsection, we extend the λμ+loopv and λμ+fixn -calculi by adding �, ⊥, and re-
cursive types. The extended systems are called λμ+loop+{�,⊥}+recv and λμ+fix+{�,⊥}+recn .
We also consider the general syntax (without equations) λμ+fix+loop+{�,⊥}+rec with
both of fix and loop . The syntax of λμ+fix+loop+{�,⊥}+rec (resp. λμ+loop+{�,⊥}+recv ,
λμ+fix+{�,⊥}+recn ) is defined by adding

A, B� . . . | � | ⊥ | rec X.A

M,N,O� . . . | ∗ | fold(M) | unfold(M)

S , T � . . . | [⊥]M

to the types, terms, and statements of λμ+fix+loop (resp. λμ+loopv , λμ+fixn ). We also
extend the definition of values and evaluation contexts of the call-by-value calculus by
adding

V,W � . . . | ∗ | fold(V) ,

E � . . . | fold(E) | unfold(E) .

The additional typing rules are

Γ ⇀ Δ | ∗ : � (�)
Γ ⇀ Δ | M : A[recX.A/X]
Γ ⇀ Δ | fold(M) : rec X.A

(fold)

Γ ⇀ Δ | M : ⊥
Γ | [⊥]M |⇀ Δ (⊥)

Γ ⇀ Δ | M : rec X.A

Γ ⇀ Δ | unfold(M) : A[recX.A/X]
(unfold)

,

the additional equality axioms for call-by-name are

(�) M =n ∗ (M : �)
(⊥) [α]M =n [⊥]M (M : ⊥)
(βrec) unfold(fold(M)) =n M
(ςrec) unfold(μα.S ) =n μβ.S [[β]unfold(−)/[α]{−}] ,

and the additional equality axioms for call-by-value are

(�) V =v ∗ (V : �)
(⊥) [α]M =v [⊥]M (M : ⊥)
(βrec) unfold(fold(V)) =v V .

4.2 The Dual Calculus with Recursive Types, and �, ⊥ Types

In this subsection, we extend DC+cofixv and DC+fixn by adding�, ⊥, and recursive types.
The extended systems are called DC+cofix+{�,⊥}+recv and DC+fix+{�,⊥}+recn . For the dual
calculus, we consider the general syntax (without equations) DC+fix+cofix+{�,⊥}+rec
with both of fix and cofix .

The syntax of DC+fix+cofix+{�,⊥}+rec (resp. DC+cofix+{�,⊥}+recv , DC+fix+{�,⊥}+recn ) is
defined by adding
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A,B� . . . | � | ⊥ | rec X.A
M, N�. . . | ∗ | 〈M〉in K, L�. . . | � | in[K]
V , W�. . . | ∗ | 〈V〉in P, Q�. . . | � | in[P]

to the types, terms, coterms, values, and covalues of DC+fix+cofix (resp. DC+cofixv ,
DC+fixn ). The additional typing rules and the equality axioms are as follows:

Γ→ Δ | ∗ : � (�)
� : ⊥ | Γ→ Δ (⊥)

Γ→ Δ | M : A[recX.A/X]
Γ→ Δ | 〈M〉in : rec X.A

(recR)
K : A[recX.A/X] | Γ→ Δ
in[K] : recX.A | Γ→ Δ (rec L)

and

DC+fix+{�,⊥}+recn DC+cofix+{�,⊥}+recv

(�) M =n ∗ V =v ∗ (M,V : �)
(⊥) P =n � K =v � (P,K : ⊥)
(βrec) 〈M〉in • in[P] =n M • P 〈V〉in • in[K] =v V • K
(name) M • in[K] =n (M • in[α]).α • K 〈M〉in • K =v M • x.(〈x〉in • K)

4.3 Translations

We give the translation (−)∗2 from λμ+fix+loop+{�,⊥}+rec into DC+fix+cofix+{�,⊥}+rec by
extending (−)∗1 :

(∗)∗2 ≡ ∗ ([⊥]M)∗2 ≡ M∗2 • �
(fold(M))∗2 ≡ 〈M∗2 〉in (unfold(M))∗2 ≡ (M∗2 • in[α]).α

for any term M of λμ+fix+loop+{�,⊥}+rec . The other clauses are similar to the translation
(−)∗1 . We also consider the extended inverse translation (−)∗2 , which is the inverse of
(−)∗2 from DC+fix+cofix+{�,⊥}+rec into λμ+fix+loop+{�,⊥}+rec . This inverse translation is
defined by extending the translation (−)∗1 :

(∗)∗2 ≡ ∗ (�)∗2{O} ≡ [⊥]O
(〈M〉in)∗2 ≡ fold(M∗2 ) (in[K])∗2{O} ≡ K∗2 {unfold(O)}

for any term M and coterm K of DC+fix+cofix+{�,⊥}+rec , and term O
of λμ+fix+loop+{�,⊥}+rec . The other clauses are similar to the translation (−)∗1 .

The extended translations also preserve typing relations, and form an equational cor-
respondence.

Theorem 3. (i) ((−)∗2 , (−)∗2) forms an equational correspondence with respect to the
call-by-value equations.
(ii) ((−)∗2 , (−)∗2) forms an equational correspondence with respect to the call-by-name
equations.

Proof. Soundness, completeness, and the reloading properties can be shown by the
straightforward inductions. Note that (name)-rule is needed when we show the reload-
ing property (2):

((in[K])∗2 {O})∗2 ≡ (K∗2 { unfold(O) })∗2
I.H.
=n (unfold(O))∗2 • K

≡ (O∗2 • in[α]).α • K =n
(name) O∗2 • in[K]
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(X)◦ ≡ X (¬A)◦ ≡ ¬A◦ (A&B)◦ ≡ B◦ ∨ A◦ (A ∨ B)◦ ≡ B◦&A◦

(�)◦ ≡ ⊥ (⊥)◦ ≡ � (rec X.A)◦ ≡ rec X.A◦

(x)◦ ≡ x (α)◦ ≡ α (M • K)◦ ≡ K◦ • M◦

(〈M,N〉)◦ ≡ [N◦,M◦] (〈M〉inl)◦ ≡ snd[M◦] (〈N〉inr)◦ ≡ fst[N◦] ([K]not)◦ ≡ not〈K◦〉
([K, L])◦ ≡ 〈L◦,K◦〉 (fst[K])◦ ≡ 〈K◦〉inr (snd[L])◦ ≡ 〈L◦〉inl (not〈M〉)◦ ≡ [M◦]not

(∗)◦ ≡ � ((S ).α)◦ ≡ α.(S ◦) (fix x.〈M〉)◦ ≡ cofix x.[M◦] (〈M〉in)◦ ≡ in[M◦]
(�)◦ ≡ ∗ (x.(S ))◦ ≡ (S ◦).x (cofix α.[K])◦ ≡ fixα.〈K◦〉 (in[K])◦ ≡ 〈K◦〉in

Fig. 9. Extended duality of the dual calculus

5 Duality

We discuss the duality of the dual calculus and the λμ-calculus, and show that Wadler’s
duality can be expanded into our extended systems. From this section, we translate away
any occurrences of implications by using Wadler’s results (proposition 1, 2, 3, and 4),
since duality is not defined for implication. We suppose that {x, y, z . . .} and {α, β, γ . . .}
are two disjoint sets of meta-variables, and one is the set of variables and the other is
the set of covariables.

5.1 Duality of the Extended Dual Calculus

The essential feature of DC is its duality: variables are dual to covariables, terms are
dual to coterms, values are dual to covalues, and statements are self-dual. Wadler gave
the duality translation (−)◦ from DC into itself, which captures this duality. Our ex-
tended versions of DC are designed to preserve this duality. Indeed, we can extend the
duality translation (−)◦ from DC+fix+cofix+{�,⊥}+rec into itself as displayed in Figure 9.
This extended duality translation also satisfies the similar properties to the original one.

Proposition 6 (Duality of the extended dual calculus). (1) (−)◦ preserves typing re-
lation of DC+fix+cofix+{�,⊥}+rec .
(2) (−)◦ is an involution up to identity, that is,

(A◦)◦ ≡ A, (M◦)◦ ≡ M, (K◦)◦ ≡ K, (S ◦)◦ ≡ S

for any type A, term M, coterm K, statement S of DC+fix+cofix+{�,⊥}+rec .
(3) (−)◦ takes the call-by-value equalities in DC+cofix+{�,⊥}+recv into the call-by-name
equalities in DC+fix+{�,⊥}+recn , and vice versa:

M =v N iff M◦ =n N◦, K =v L iff K◦ =n L◦, S =v T iff S ◦ =n T ◦

5.2 Duality of the Extended λμ-calculus

By composing our translations in this paper, we obtain the extended duality translation
between λμ+loop+{�,⊥}+recv and λμ+fix+{�,⊥}+recn .

Definition 2. The duality translation (−)◦ from λμ+fix+loop+{�,⊥}+rec into itself is
defined as follows:
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(X)◦ ≡ X
(�)◦ ≡ ⊥ (⊥)◦ ≡ �

(A&B)◦ ≡ B◦ ∨ A◦ (A ∨ B)◦ ≡ B◦&A◦
(¬A)◦ ≡ ¬A◦ (rec X.A)◦ ≡ rec X.A◦

(x)◦{O} ≡ [x]O (〈M,N〉)◦{O} ≡ N◦{μβ.M◦{μα.[β, α]O} }
(fstM)◦{O} ≡ (λx.M◦{μ(α, β).[β]x})O (snd N)◦{O} ≡ (λy.N◦{μ(α, β).[α]y})O

(λx.S )◦{O} ≡ O(μx.S ◦) (OM)◦ ≡ O◦{λx.M◦{x}}
(μα.S )◦{O} ≡ (λα.S ◦)O ([α]M)◦ ≡ M◦{α}

(μ(α, β).S )◦{O} ≡ (λz.(λα.(λβ.S ◦)(fst z))(snd z))O ([α, β]M)◦ ≡ M◦{〈β, α〉}
(fix x.M)◦{O} ≡ loop z.((μx.M◦{z})O) (loop x.M)◦{O} ≡ O(fixα.(μx.M◦{α}))

(∗)◦{O} ≡ [⊥]O ([⊥]M)◦ ≡ M◦{∗}
(fold(M))◦{O} ≡ M◦{unfold(O)} (unfold(M))◦{O} ≡ M◦{fold(O)}

Fig. 10. Extended duality of the λμ-calculus

A◦ ≡ A◦, M◦{O} ≡ ((M∗2 )◦)∗2 {O}, S ◦ ≡ ((S ∗2)◦)∗2

for any type A, terms M and O, and statement S of λμ+fix+loop+{�,⊥}+rec .

This extended duality translation (−)◦ is given in Figure 10, and it has similar properties
to Wadler’s original one.

Theorem 4 (Duality of the extended λμ-calculus). (1) (−)◦ preserves typing relation
of λμ+fix+loop+{�,⊥}+rec .
(2) (−)◦ is an involution up to equalities, that is,

(M◦{O})◦ =v O◦{M}, μα.(M◦{α})◦ =v M, (S ◦)◦ =v S in λμ+loop+{�,⊥}+recv ,

for any term M and statement S of λμ+loop+{�,⊥}+recv , and term O of λμ+fix+{�,⊥}+recn ,

(M◦{O})◦ =n O◦{M}, μα.(M◦{α})◦ =n M, (S ◦)◦ =n S in λμ+fix+{�,⊥}+recn

for any term Mand statement S of λμ+fix+{�,⊥}+recn , and term O of λμ+loop+{�,⊥}+recv .
(3) (−)◦ takes the call-by-value equalities in λμ+loop+{�,⊥}+recv into the call-by-name
equalities in λμ+fix+{�,⊥}+recn , and vice versa:

M =v N iff M◦{O} =n N◦{O}, S =v T iff S ◦ =n T◦

for any term M and statement S of λμ+loop+{�,⊥}+recv , and term O of λμ+fix+{�,⊥}+recn ,

M =n N iff M◦{O} =v N◦{O}, S =n T iff S ◦ =v T◦

for any term M and statement S of λμ+fix+{�,⊥}+recn , and term O of λμ+loop+{�,⊥}+recv .

6 Applications

Since our extended λμ-calculi have unit, counit, and recursive types, some important
data types can be represented in our calculi. For example, under call-by-value, boolean
and natural number types can be coded in this way.
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boolv ≡ � ∨ �, truev ≡ μ(α, β).[α]∗, falsev ≡ μ(α, β).[β]∗,
natv ≡ rec X.(� ∨ X), (0)v ≡ fold(μ(α, β).[α]∗), (k + 1)v ≡ fold(μ(α, β).[β](k)v),

Succv(M) ≡ fold(μ(α, β).[β]M), Predv(M) ≡ μβ.[α, β]unfold(M)

for any natural number k. We can easily see that Succv((k)v) =v (k+ 1)v and Predv((k+
1)v) =v (k)v for any natural number k. However, this coding does not work under call-
by-name, since we have (0)v =n (1)v from ∗ =n μα.[β](0)v (where α : �, β : natv),
and truev =n falsev from ∗ =n μα.[β]∗ (where α, β : �). Kakutani [7] gave another
coding in his call-by-name λμ-calculus. We interpret his call-by-name coding for our
call-by-name system as follows.

booln ≡ ¬(⊥&⊥), truen ≡ λx.[⊥]snd x, falsen ≡ λy.[⊥]fst y
natn ≡ ¬rec X.(X&⊥), (k)n ≡ λx.[⊥]snd((unfold fst)k(unfold(x))),

Succn(M) ≡ λz.M fst(unfold(z)), Predn(M) ≡ λz.M fold(〈 z, snd(unfold(z)) 〉)

where (unfoldfst)k(M) is defined by (unfoldfst)0(M) ≡ M and
(unfoldfst)k+1(M) ≡ (unfoldfst)k(unfold(fstM)). The call-by-name and call-
by-value codings are converted to each other by our duality translation. Let O be a term
of λμ+loop+{�,⊥}+recv , O′ be a term of λμ+fix+{�,⊥}+recn , and k be a natural number, then

¬(boolv)◦ ≡ booln, ¬(natv)◦ ≡ natn,
(truen)◦{O} =v O truev, (truev)◦{O′} =n truen O′,

(falsen)◦{O} =v O falsev, (falsev)◦{O′} =n falsen O′,
((k)n)◦{O} =v O (k)v, ((k)v)◦{O′} =n (k)n O′.

If we have a program P : A ⊃ B, its dual program P◦ : B◦ ⊃ A◦ is defined by
λα.μx.(Px)◦{α}, and (P◦)◦ is equal to P up to the call-by-value (and also call-by-name)
equality. Moreover, we can convert a program P : natv ⊃ natv and Q : natn ⊃ natn

to P† : natn ⊃ natn and Q� : natv ⊃ natv by defining P† ≡ λx.λy.x(P◦y) and
Q� ≡ λx.μα.((Q◦λy.[α]y)x) respectively. These converted programs have essentially the
same behavior as the original ones.

Theorem 5. (1) (P†)� =v P, and (Q�)† =n Q,
(2) P(k)v =v (l)v iff P†(k)n =n (l)n, and Q(k)n =n (l)n iff Q�(k)v =v (l)v

for any terms P : natv ⊃ natv, Q : natn ⊃ natn, and natural numbers k and l.

7 Conclusion

Selinger [13] showed the duality between the call-by-name λμ-calculus and the call-
by-value one, and Kakutani [7] extended Selinger’s duality by adding a fixed-point
operator and an iteration operator to the call-by-name and call-by-value λμ-calculus,
respectively. Wadler pointed out that Selinger’s (and also Kakutani’s) duality is not in-
volutive, and gave an involutive duality on the λμ-calculus by defining implication in
terms of the other connectives rather than by taking it primitive one. We showed that
Wadler’s duality can be extended to the duality between the call-by-name λμ-calculus
with a fixed-point operator and recursive types, and the call-by-value one with an iter-
ation operator and recursive types. Our duality is also involutive, and shows a cleaner
relationship between the fix-point operator and the iteration operator.
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The existence of recursive types, unit, and counit types enables us to encode impor-
tant data types. In the last section, we demonstrated that natural numbers and booleans
are dually encoded in our call-by-name and call-by-value systems. Moreover, the dual-
ity of natural numbers yields a duality of programs on natural numbers, as claimed in
our final theorem.

We hope that the duality and the results in this paper will have useful applications to
practical programming languages.
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Bläser, Luc 71
Braßel, Bernd 122

Cai, Guoyong 105
Calcagno, Cristiano 255
Carette, Jacques 222
Cheng, Xu 319
Chitil, Olaf 38
Cook, Byron 19

Danos, Vincent 139
Di Giusto, Cinzia 383
Di Pierro, Alessandra 335
Dinsdale-Young, Thomas 255

Emir, Burak 54

Feret, Jérôme 139
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