
Snap-Stabilizing Prefix Tree for Peer-to-Peer
Systems�

Eddy Caron1, Frédéric Desprez1, Franck Petit2, and Cédric Tedeschi1

1 LIP Laboratory
UMR CNRS-ENS Lyon-UCB Lyon-INRIA 5668
46 Allée d’Italie, 69364 Lyon Cedex 07, France

2 LaRIA Laboratory
CNRS-University of Picardie

5, rue du Moulin Neuf, 80000 Amiens, France

Abstract. Resource Discovery is a crucial issue in the deployment of
computational grids over large scale peer-to-peer platforms. Because they
efficiently allow range queries, Tries (a.k.a., Prefix Trees) appear to be
among promising ways in the design of distributed data structures in-
dexing resources. Self-stabilization is an efficient approach in the design
of reliable solutions for dynamic systems. A snap-stabilizing algorithm
guarantees that it always behaves according to its specification. In other
words, a snap-stabilizing algorithm is also a self-stabilizing algorithm
which stabilizes in 0 steps.

In this paper, we provide the first snap-stabilizing protocol for trie
construction. We design particular tries called Proper Greatest Common
Prefix (PGCP) Tree. The proposed algorithm arranges the n label
values stored in the tree, in average, in O(h + h′) rounds, where h
and h′ are the initial and final heights of the tree, respectively. In the
worst case, the algorithm requires an O(n) extra space on each node,
O(n) rounds and O(n2) actions. However, simulations show that, using
relevant data sets, this worst case is far from being reached and con-
firm the average complexities, making this algorithm efficient in practice.

Keywords: Peer-to-peer systems, Fault-tolerance, Self-stabilization,
Snap-stabilization, Grid computing.

1 Introduction

These last few years have seen the development of large scale grids connect-
ing distributed resources (computation resources, storage facilities, computation
libraries, etc.) in a seamless way. This is now an efficient alternative to super-
computers for solving large problems such as high energy physics, bioinformatics
or simulation. However, existing middleware systems always require a minimal
stable centralized infrastructure and are not usable over dynamic large scale dis-
tributed platforms. To cope with the characteristics of these future platforms,
� This work was developed with financial support from the ANR (Agence Nationale

de la Recherche) through the LEGO project referenced ANR-05-CIGC-11.

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 82–96, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Snap-Stabilizing Prefix Tree for Peer-to-Peer Systems 83

it has been widely suggested to use peer-to-peer technologies inside middle-
ware [22]. Early distributed hash tables (DHT), designed for very large scale
platforms, e.g., to share files over the Internet, have several major drawbacks.
Among them, there is the fact that they only support exact match queries. An
important amount of work has recently been undertaken to allow more complex
querying over peer-to-peer systems. A promising way to achieve this is the use of
tries (a.k.a., prefix trees). Trie-based approaches outperform other ones by effi-
ciently supporting range queries and easily extending to multi-criteria searches.

Unfortunately, although fault tolerance is a mandatory feature of systems
aiming at being deployed at large scale (to avoid data loss and allow a correct
routing of messages through the network), tries only offer a poor robustness in
dynamic environment. The crash of one or several nodes leads to the loss of
stored objects and to the split of the trie into several subtries. These subtries
may then not reconnect correctly, making the trie invalid and thus unable to
process queries. Among recent trie-based approaches, the fault-tolerance is ei-
ther ignored, or handled by preventive mechanisms, intensively using replication
which can be very costly in terms of computing and storage resources. Afterward,
the purpose is to compute the right trade-off between the replication cost and
the robustness of the system. Nevertheless, replication does not formally ensure
the recovery of the system after arbitrary failures. From this point on, it remains
only to use a strategy based on the best-effort approach. This is why we believe
that such systems could take advantage of using self-stabilization techniques in
order to satisfy the fault tolerance requirements.

The concept of self-stabilization [16] is a general technique to design a system
tolerating arbitrary transient faults. A self-stabilizing system, regardless of the ini-
tial states of the processors and initial messages in the links, is guaranteed to con-
verge to the intended behavior in finite time. Thus, a self-stabilizing system does
not need to be reinitialized and is able to recover from transient failures by itself.

In this paper, we propose a snap-stabilizing distributed algorithm to build a
Proper Greatest Proper Common Prefix (GPCP) Tree starting from any labeled
rooted tree. A snap-stabilizing [13] algorithm ensures that the system always
maintains the desirable behavior and is obviously optimal in stabilization time.
The property of snap-stabilization is achieved within the well-known Dijkstra’s
theoritical model [15] where in each computation step, each node can atomically
read variables (or, registers) owned by its neighboring nodes.

The proposed algorithm arranges the n label values (each node holds a sin-
gle label) stored in the tree, in average, in O(h + h′) rounds, where h and h′

are the initial (before reconstruction) and final (after reconstruction) height of
the tree, respectively. In the worst case, the algorithm requires an O(n) extra
space on a given node, O(n) rounds and O(n2) operations. However, simulations
show that, using relevant data sets, the worst case is far from being reached
and confirm the average complexity. It also shows the practical efficiency of the
proposed algorithm and the benefit of snap-stabilization in the design of efficient
algorithms for unreliable, dynamic environments where the best-effort seems to
be a valuable strategy.

84 E. Caron et al.

In Section 2, we summarize recent peer-to-peer technologies used for resource
discovery and their fault-tolerance mechanisms, followed by similar works un-
dertaken in the field of self-stabilization. In Section 3, we describe the abstract
model in which our algorithm is designed, and present what it means for a dis-
tributed algorithm to be snap-stabilizing. We also specify the PGCP Tree and
related distributed data structures. In Section 4, the snap-stabilizing scheme
protocol is presented, and its correctness proof and complexities discussed. Sim-
ulation process are explained and results given in Section 5. Finally, we conclude
by summarizing the contribution of the paper and a brief description of next
steps in this work.

2 Related Work

First peer-to-peer algorithms aiming at retrieving objects were based on the
flooding of the network, overloading the network while providing non-exhaustive
responses. Addressing both the scalability and the exhaustiveness issues, the
distributed hash tables [25,26,29], logical hops required to route and the local
state grow logarithmically with the number of nodes participating in the system.
Unfortunately, DHTs present several major drawbacks. Among them, the rigidity
of the requesting mechanism, only allowing exact match queries, hinders its use
over distributed computational platforms that require more complex meanings
of search.

A large amount of work tackles the opportunity to allow more flexibility in
the retrieval process over structured peer-to-peer networks. Peer-to-peer sys-
tems users have been given the opportunity to plug different technologies on
DHTs, such as the ability to retrieve resources described by semi-structured lan-
guages [5], to manage data thanks to traditional database operations [30], or
to support multi-attribute range queries [1,23,27,28]. Among this last series of
work supporting multi-attribute range queries, a new kind of overlay, based on
tries, has emerged. Trie-structured approaches outperform others in the sense
that logarithmic (or constant if we assume an upper bound on the depth of the
trie) latency is achieved by parallelizing the resolution of the query in the several
branches of the trie.

Prefix Hash Tree (PHT) [24] dynamically builds a trie of the given key-space
as an upper layer and maps it over any DHT-like network. Obviously, the ar-
chitecture of PHT results in the multiplication of the complexities of the trie
and of the underlying DHT. The problem of fault tolerance is then delegated
to the DHT layer. Skip Graphs, introduced in [3], are also similar to a trie,
but rely on skip lists, allowing the use of their probabilistic fault tolerance.
Nevertheless, a repair mechanism of the particular skip graph structure is pro-
vided. Nodewiz [6], another trie-structured overlay does not address the fault-
tolerance problem by assuming the nodes reliable. Finally, P-Grid [14] tolerance
is based on probabilistic replication. Initially designed for the purpose of ser-
vice discovery over dynamic computational grids and aimed at solving some
drawbacks of these previous approaches, we recently developed a novel architec-
ture, based on a logical greatest common prefix tree [11]. This structure, more

Snap-Stabilizing Prefix Tree for Peer-to-Peer Systems 85

formally described in the following, is dynamically built as objects, e.g., com-
putational services, are declared by some servers. The fault tolerance is also
addressed by replication of nodes and links of the tree. Another advantage of
the technology presented in [11] is its ability to greedily take into account the
heterogeneity of the underlying physical network to make a more efficient tree
overlay.

To summarize, the fault-tolerance issue is mostly either ignored, delegated
or replication-based. In [10], we provided a first alternative to the replication
approach. The idea was to let the trie crash and to a posteriori reconnect and
reorder the nodes. However, this protocol assumed the validity of subtries being
reordered, thus limiting the field of initial configurations being handled and
repaired. In the following sections, we present a new protocol able to repair any
labeled rooted tree to make a valid greatest common prefix tree and thus to offer
a general systematic mechanism to maintain distributed tries.

In the self-stabilizing area, some investigations take interest in maintaining
distributed data structures. The solutions in [19,20,21] focus on binary heap
and 2-3 trees. Several approaches have also been considered for a distributed
spanning tree maintenance e.g., [2,4,12,17,18]. In [18], a new model for dis-
tributed algorithms designed for large scale systems is introducted. In [7], the
authors presented the first snap-stabilizing distributed solution for the Binary
Search Tree (BST) problem. Their solution requires O(n) rounds to build the
BST, which is proved to be asymptotically optimal for this problem in the same
paper.

3 Preliminaries

In this section, we first present the distributed system model used in the design
of our algorithm. Then, we recall the concept of snap-stabilization and specify
the distributed data structures considered.

3.1 Distributed System

The distributed algorithm presented in this paper is intended for practical peer-
to-peer (P2P) networks. A P2P network consists of a set of asynchronous physical
nodes with distinct IDs, communicating by message passing. Any physical node
P1 can communicate with any physical node P2, provided P1 knows the ID of P2
(ignoring physical routing details). Each physical node maintains one or more
logical nodes of the distributed logical tree. Our algorithm is run inside all these
logical nodes. Note that the tree topology is susceptible to changes during its
reconstruction. Each logical node of the tree has to be considered mapped on
a physical node of the underlying network. However, the mapping process falls
beyond the scope of this paper.

In order to simplify the design, proofs, and complexity analysis of our algo-
rithm, we use the theoretical formal state model introduced in [15]. We apply
this model on logical nodes (or simply, nodes) only. The message exchanges are

86 E. Caron et al.

modeled by the ability of a node to read the variables of some other nodes, hence-
forth referred to as its neighbors. A node can only write to its own variables.
Each action is of the following form: < label >:: < guard > → < statement >.
The guard of an action in the program of p is a boolean expression involving the
variables of p and its neighbors. The statement of an action of p updates one
or more variables of p. An action can be executed only if its guard evaluates to
true. We assume that the actions are atomically executed, meaning the evalua-
tion of a guard and the execution of the corresponding statement of an action,
if executed, are done in one atomic step.

The state of a node is defined by the values of its variables. The state of a
system is a product of the states of all nodes. In the sequel, we refer to the
state of a node and the system as a state and a configuration, respectively. Let
a relation denoted by �→, on C (the set of all possible configurations of the
system). A computation of a protocol P is a maximal sequence of configurations
e = (γ0, γ1, ..., γi, γi+1, ...), such that for i ≥ 0, γi �→ γi+1 (a single computation
step) if γi+1 exists, or γi is a terminal configuration.

A processor p is said to be enabled in γ (γ ∈ C) if there exists at least an
action A such that the guard of A is true in γ. We consider that any enabled
node p is neutralized in the computation step γi �→ γi+1 if p is enabled in γi

and not enabled in γi+1, but does not execute any action between these two
configurations (the neutralization of a node represents the following situation:
At least one neighbor of p changes its state between γi and γi+1, and this change
effectively made the guard of all actions of p false.) We assume an unfair and
distributed daemon. The unfairness means that even if a processor p is continu-
ously enabled, then p may never be chosen by the daemon unless p is the only
enabled node. The distributed daemon implies that during a computation step,
if one or more nodes are enabled, then the daemon chooses at least one (possibly
more) of these enabled nodes to execute an action.

In order to compute the time complexity, we use the definition of round. This
definition captures the execution rate of the slowest node in any computation.
The set of all possible computations of P is denoted as E . The set of possible
computations of P starting with a given configuration α ∈ C is denoted as Eα.
Given a computation e (e ∈ E), the first round of e (let us call it e′) is the
minimal prefix of e containing the execution of one action of the protocol or the
neutralization of every enabled node from the first configuration. Let e′′ be the
suffix of e, i.e., e = e′e′′. Then second round of e is the first round of e′′, and
so on.

3.2 Snap-Stabilization

Let X be a set. x � P means that an element x ∈ X satisfies the predicate P
defined on the set X .

Definition 1 (Snap-stabilization). The protocol P is snap-stabilizing for the
specification SPP on E if and only if the following condition holds: ∀α ∈ C :
∀e ∈ Eα :: e � SPP .

Snap-Stabilizing Prefix Tree for Peer-to-Peer Systems 87

3.3 Proper Greatest Common Prefix Tree

Let an ordered alphabet A be a finite set of letters. Denote ≺ an order on A. A
non empty word w over A is a finite sequence of letters a1, . . . , ai, . . . , al, l > 0.
The concatenation of two words u and v, denoted u ◦ v or simply uv, is equal
to the word a1, . . . , ai, . . . , ak, b1, . . . , bj , . . . , bl such that u = a1, . . . , ai, . . . , ak

and v = b1, . . . , bj, . . . , bl. Let ε be the empty word such that for every word w,
wε = εw = w. The length of a word w, denoted by |w|, is equal to the number
of letters of w—|ε| = 0.

A word u is a prefix (respectively, proper prefix) of a word v if there ex-
ists a word w such that v = uw (resp., v = uw and u
= v). The Great-
est Common Prefix (resp., Proper Greatest Common Prefix) of a collection
of words w1, w2, . . . , wi, . . . (i ≥ 2), denoted GCP (w1, w2, . . . , wi, . . .) (resp.
PGCP (w1, w2, . . . , wi, . . .)), is the longest prefix u shared by all of them (resp.,
such that ∀i ≥ 1, u
= wi).

Definition 2 (PGCP Tree). A Proper Greatest Common Prefix Tree is a
labeled rooted tree such that each node label is the Proper Greatest Common
Prefix of every pair of its children labels.

In the design of our protocol, we also needs the relaxed form of PGCP Tree
defined as follows:

Definition 3 (PrefixHeap). A PrefixHeap is a labeled rooted tree such that
each node label is the Proper Greatest Common Prefix of all its children labels.

4 Snap-Stabilizing PGCP Tree

In this section, we present the snap-stabilizing PGCP tree maintenance. We
provide a detailed explanation of how the algorithm works from initialization
until the labels are arranged in the tree such that it becomes a PGCP tree.
Next, the proof of snap-stabilization and complexity issues are given.

4.1 The Algorithm

The code of our solution is shown in Algorithms 1 and 2. We assume that initially,
there exists a labeled rooted tree spanning the network. Every node p maintains
a finite set of children Cp = {c1, . . . , ck}, which contains the addresses of its
children in the tree. Each node p is able to know the address of its father using
the macro fp. The uniqueness of the father is ensured by the use of the function
MinID(S) which returns the minimal values in the set S1. So, each node p can
locally determine if it is either (1) the single root of the spanning tree (fp is
unspecified), (2) an internal node (fp is specified and Cp
= ∅), or (3) a leaf
node (cp = ∅). In the sequel, we denote the set of nodes in the tree rooted at p

1 In a real P2P network, the relationship child/father is easily preserved by exchanging
messages between a child node and its father.

88 E. Caron et al.

as Tp (hereafter, also called the tree Tp) and the height of the tree rooted at p
as h(Tp).

Each node p holds a label lp and a state Sp in {I, B, H}2—stand for Idle,
Broadcast, and Heapify, respectively. The algorithm uses two basic functions to
create and delete nodes from the tree. The NEWNODE(lbl, st, chldn) function
creates a new node labeled by lbl, whose initial state is st and with a set of
children initialized with chldn. Once the new node created by this function is
integrated to a set of children, the fp macro will ensure its father to be correctly
set. Finally, the same fp macro will set the father variable of nodes in chldn.
The DESTROY(p) function is called to stop the process of a given node, (its
reference should have been previously deleted from any other node).

Algorithm 1. Snap-Stabilizing PGCP Tree — Variables, Macros, and Actions
Variables: lp, the label of p

Cp ={c1, . . . , ck}
Sp ={I, B} if p is the root, {I, H} if p is a leaf node, {I, B, H} otherwise (p is an internal node)

Macros: fp ≡ MinID({q : p ∈ Cq})
SameLabelp(L) ≡ {c ∈ Cp| (lc = L)}
SameGCPp(L) ≡ {c1, c2, . . . , ck ∈ Cp| GCP (c1, c2, . . . , ck) = L}
SamePGCPp(L) ≡ SameGCPp(L) \ {c ∈ SameGCPp(L)| lc = L}

Actions:
{For the root node}

InitBroadcast :: Sp = I ∧ (∀c ∈ Cp| Sc = I) −→ Sp := B;
InitRepair :: Sp = B ∧ (∀c ∈ Cp| Sc = H) −→ HEAPIFY();REPAIR(); Sp := I;

{For the internal nodes}
F orwardBroadcast :: Sp = I ∧ Sfp

= B ∧ (∀c ∈ Cp| Sc = I) −→ Sp := B;

BackwardHeap :: Sp = B ∧ Sfp
= B ∧ (∀c ∈ Cp| Sc = H) −→ HEAPIFY(); Sp := H;

F orwardRepair :: Sp = H ∧ Sfp
= I ∧ (∀c ∈ Cp| Sc ∈ {H, I}) −→ REPAIR(); Sp := I;

ErrorCorrection :: Sp = B ∧ Sfp
∈ {H, I} −→ Sp := I;

{For the leaf nodes}
InitHeap :: Sp = I ∧ Sfp

= B −→ Sp := H

EndRepair :: Sp = H ∧ Sfp
= I −→ Sp := I;

The basic idea of the algorithm is derived from the fast version of the snap-
stabilizing PIF in [8] and runs in three phases: The root initiates the first phase,
called the Broadcast phase, by executing Action InitBroadcast. All the internal
nodes in the tree participate in this phase by forwarding the broadcast message
to their descendants — Action ForwardBoradcast. Once the broadcast phase
reaches the leaves, they initiates the second phase of our scheme, called the
heapify phase, by executing Action InitHeap.

During the heapify phase, a PrefixHeap is built — refer to Definition 3. We
also ensure in this phase that for every node p, p is a single node in Tp with a
value equal to lp. The heapify phase is computed using Procedure HEAPIFY (),
executed by all the internal — Actions BackwardHeap. The heapify phase even-
tually reaches the root which also executes Procedure HEAPIFY () and initi-
ates the third and last phase of our scheme, called the Repair phase — Action
InitRepair. The aim of this phase is to correct the two following problems that
can occur in the PrefixHeap. First, even if no node in Tp has the same label

2 To ease the reading of the algorithm, we assume that Sp ∈ {I, B} (respectively,
{I, H}) if p is the root (resp., p is a leaf). We could easily avoid this assumption
by adding the following guarded action for the root (resp.leaf) node: Sp = H (resp.
Sp = B) −→ Sp := I . Note that this correction could occur only once.

Snap-Stabilizing Prefix Tree for Peer-to-Peer Systems 89

Algorithm 2. Snap-Stabilizing PGCP Tree — Procedures

1.01Procedure HEAPIFY()
1.02 Cp := Cp ∪ {NEWNODE (lp, H, {})}
1.03 lp := GCP({lc| c ∈ Cp})
1.04 for all c ∈ Cp| lc = lp do
1.05 Cp := Cp ∪ Cc \ {c}
1.06 DESTROY(c)
1.07 done

2.01Procedure REPAIR()
2.02 while ∃(c1, c2) ∈ Cp| lc1 = lc2 do
2.03 Cp := Cp ∪ {NEWNODE(lc1 , H, Cs| s∈SameLabel(lc1))}
2.04 for all c ∈ SameLabelp(lc1) do
2.05 DESTROY(c)
2.06 done
2.07 done
2.08 while ∃c ∈ Cp| SamePGCPp(lc) 	= ∅ do
2.09 Cp := Cp ∪ {NEWNODE(lc, H, Cc ∪ SamePGCPp(lc)}
2.10 Cp := Cp \ SamePGCPp(lc)
2.11 DESTROY(c)
2.12 done
2.13 while ∃(c1, c2) ∈ Cp| |GCP (lc1 , lc2)| > |lp| do
2.14 Cp := Cp ∪ {NEWNODE(GCP(lc1 , lc2), H, SameGCPp(GCP (lc1 , lc2))}
2.15 Cp := Cp \ SameGCPp(GCP (lc1 , lc2))
2.16 done

as p, the same label may exist in different branches of the tree; Second, if each
node is the greatest common prefix of its children labels, it is not necessarily the
greatest common prefix of any pairs of its children labels.

The repair phase works similarly as in the Broadcast phase. The root and the
internal nodes execute Procedure REPAIR() starting from the root toward the
leaves — Actions InitRepair and ForwardRepair. During this phase, for each
node p, four cases can happen:

1. Several children of p have the same label. Then, all the children with the
same label are merged into a single child — Lines 2.02 to 2.07;

2. The labels of some children of p are prefixed with the label of some of its
brothers. In that case, the addresses of the prefixed children are moved into
the corresponding brother — Lines 2.08 to 2.12;

3. The labels of some children of p are prefixed with a label which does not
exist among their brothers and which are longer than the label of p. Then,
for each set of children with the same prefix, p builds a new node with the
corresponding prefix label and the corresponding subset of nodes as children
— Lines 2.13 to 2.16.

4. If none of the previous three cases appear, nothing is done.

Finally, Phase REPAIR() ends at leaf nodes by executing Action EndRepair.
This indicates the end of the PGCP tree construction. Note that since we are
considering self-stabilizing systems, the internal nodes need to correct abnormal
situations due to the unpredictable initial configuration. The unique abnormal
situation which could avoid the normal progress of the three phases of our scheme
is the following: An internal node p is in State B (done with its broadcast
phase) but its father fp is in State H or I, indicating that it is done executing
its Heapify phase or it is Idle, respectively. In that case, p executes Action
ErrorCorrection, in the worst case, pushing down Tp the abnormal broadcast

90 E. Caron et al.

phase until reaching the leaf nodes of Tp. This guarantees the liveness of the
protocol despite unpredictable initial configurations of the system.

4.2 Correctness Proof

In this section we show that the algorithm described in Subsection 4.1 is a snap-
stabilizing PGCP tree algorithm. The complexities are also discussed.

Remark 1. To prove that an algorithm provides a snap-stabilizing PGCP tree
algorithm, we need to show that the algorithm satisfies the following two prop-
erties: (1) starting from any configuration, the root eventually executes an ini-
tialization action; (2) Any execution, starting from this action, builds a PGCP
tree.

Let us first consider the algorithm by ignoring the two procedures HEAPIFY ()
and REPAIR(). In that case, the algorithm is very similar to the snap-stabilizing
PIF in [8]. The only difference between both algorithms consists in the third
phase. In Algorithm 1, the third phase is initiated by the root only, after the
heapify phase terminated only, whereas in [8], the third phase can be initiated
by any node once itself and its father are done with the second phase. That
means that with the solution in [8], both the second and the third phase can
run concurrently. That would be the case with Algorithm 1 if the guard of
Action ForwardRepair has been as follows: Sp = H ∧ Sfp ∈ {H, I} ∧ (∀c ∈
Cp| Sc ∈ {H, I})

However, it follows from the proofs in [8] that the behavior imposed by our
solution is a particular behavior of the snap-stabilizing PIF algorithm. This
behavior happens when all the nodes are slow to execute the action corresponding
to the third phase. Since the algorithm in [8] works with an unfair daemon, the
algorithm ensures that, eventually, the root initiates the third phase, leading
the system to behave as Algorithm 1. Therefore, ignoring the effects of the two
procedures HEAPIFY () and REPAIR() on the tree topology, the proof of
snap-stabilization in [8] is also valid with our algorithm.

Considering the two procedures HEAPIFY () and REPAIR() again, since in
every p, the set Cp is finite, it directly follows from the code of the two procedures
in Algorithm 2 that that in every p, the set Cp is finite: every execution of
Procedures HEAPIFY () or REPAIR() is finite.

It follows from the above discussion :

Lemma 1. Starting from any configuration, the root node can execute Action
InitBroadcost in a finite time even if the daemon is unfair.

As a corollary of Lemma 1, the first condition of Remark 1 holds. Also, this show
that every PGCP tree computation initiated by the root eventually terminates.
It remains to show that the second condition of Remark 1 also holds for any
node p.

Lemma 2. After the execution of Procedure HEAPIFY by a node p, Tp is a
PrefixHeap.

Snap-Stabilizing Prefix Tree for Peer-to-Peer Systems 91

Proof. We prove this by induction on h(Tp). Since Procedure HEAPIFY() can-
not be executed by a leaf node, we consider h(Tp) ≥ 1.

1. Let h(Tp) be equal to 1. So, all the children of p are leaves. Executing
Lines 1.02 to 1.03, p is as a new child, itself a leaf node, labeled with lp,
while lp contains the greatest common prefix of all its children. After the
execution of Lines 1.04 to 1.07, p contains no child c such that lc = lp. Thus,
lp is a PGCP of all its children labels.

2. Assume that the lemma statement is true for any p such that h(Tp) ≤ k
where k ≥ 1. We will now show that the statement is also true for any p
such that h(Tp) = k +1. By assumption, the lemma statement is true for all
the children of p, i.e., ∀c ∈ Cp, lc is a proper prefix of any label in Tc, and lc
is the PGCP of all nodes in Cc. So, after executing Procedure HEAPIFY(),
following the same reasoning as in Case 1, lp is a PGCP of all its children,
and since themselves are the root of a PrefixHeap, for every c ∈ Cp, lp is
also a proper prefix of any label in Tc. Hence, the lemma statement is also
true for p.

Corollary 1. After the system executed a complete Heapify phase, the whole
tree is a PrefixHeap.

Lemma 3. After the execution of Procedure REPAIR() by a node p such that
h(Tp) ≥ 1, then for every pair (c1, c2) ∈ Cp, lp = PGCP (c1, c2).

Proof. Given p such that h(Tp) ≥ 1 and that lp is a proper prefix of any lc for
c ∈ Cp (what we know by Lemma 2), if the tree following conditions are true
for every pair (c1, c2) ∈ Cp, the statement ∀(c1, c2) ∈ Cp, lp = PGCP (c1, c2) is
true:

1. lc1
= lc2 ;
2. lc1 (resp. lc2) is not a prefix of lc2 (resp. lc1);
3. |GCP (lc1 , lc2)| = |lp|.

Clearly, after the execution of Lines 2.02 to 2.07, Lines 2.08 to 2.12, and
Lines 2.13 to 2.16, Conditions 1, 2, and 3 holds, respectively.

By induction of Lemma 3 on every node of the path from the root to each
leaf node, we can claim:

Corollary 2. After the system executed a complete Repair phase, the whole tree
is a PGCP tree.

Proof. By induction of Lemma 3 on every node of the path from the root to
each leaf node.

From corollaries 1 and 2, and the fact that after the root executed Action
InitBroadcast, the three phases Broadcast, Heapify, and Repair proceed one
after another [8], we can claim the following result:

Theorem 1. Running under any daemon, Algorithm 1 and Algorithm 2 provide
a snap-stabilizing Proper Greatest Common Prefix Tree construction.

92 E. Caron et al.

4.3 Complexity

Theorem 2. The average time for the PGCP tree construction is O(h + h′)
rounds. In the worst case, the construction requires O(n) space complexity, O(n)
rounds and O(n2) operations, where n is the number of nodes of the tree.

Proof. By similarity with the PIF, we can easily establish that the broadcast
phase has reached all leaf nodes in O(h) rounds, where h is the height of the tree
when the InitBroadcast action is performed. We also easily see that the heapify
phase reaches the root in O(h). During the repair phase, the number of rounds
required to reach all leaf nodes of the repaired tree (and thus end the cycle) is
clearly O(h′), where h′ is the height of this repaired tree (each round increment
the depth by 0 or 1). The first part of the theorem is established.

When the repair phase is initiated, more precisely after the execution of the
HEAPIFY macro and before the execution of the REPAIR macro on the root,
it may happen that the tree becomes a star graph, each node being a child of
the root (obviously except the root itself). This case is clearly the worst case,
not only in terms of extra space required (n − 1 = O(n)) but also in terms of
number of operations since the complexity of the REPAIR macro depends on
the number of the root’s children, i.e., also n − 1. More precisely, the REPAIR
macro is a combination of three operations: merging nodes, lines 2.02 to 2.06,
moving nodes under other ones, lines 2.08 to 2.12 or creating a new subtree, lines
2.13 to 2.16. Among the set of possible combinations, the one that leads to the
weakest parallelism is the move of n − 2 children of the root under a given node
s, since, in the next round, s will be the only one process to work, i.e., process
these n − 2 nodes. If this worst case repeats (and the final topology is a chain),
the complexity is of the following shape:

a × (n − 1) + a × (n − 2) + . . . + a = O(n2)

where a is a constant. Even if the worst case is not really attractive, we use
simulations in the next section to see what we can expect in real life in terms of
latency and extra space.

5 Simulation Results

To better capture the expected behavior of the snap-stabilizing PGCP tree,
we simulated the algorithm using relevant data sets which reflect the use of
computational platforms. The simulator is written in Python and contains the
three following main parts:

1. It creates the tree with a set of labels of basic computational services com-
monly used in computation grids such as the names of routines of linear
algebra libraries, the names of operating systems, the processors used in to-
day’s clusters and the nodes’ addresses. The number of keys is up to 5200,
creating trees up to 6228 nodes (the final tree size is the number of labels
inserted plus the number of labels created to reflect the prefix patterns). For

Snap-Stabilizing Prefix Tree for Peer-to-Peer Systems 93

instance, inserting two labels DTRSM and DTRMM results in a tree whose root
(common father of DTRSM and DTRMM) is labeled by DTR.

2. It destroys the tree by moving subtrees, randomly. This is achieved by mod-
ifying the father of a randomly picked node and moving it from the set of
children of its father to the set of children of a randomly chosen node. This
operation is repeated up to n/2 nodes (meaning that, in average, approxi-
mately n/2 nodes are connected to a wrong father).

3. It launches the algorithms by testing for each node if the state of the node
and those of its neighbors satisfy the guard of some action in the algorithm,
in which case the statement of the action is executed. This step is repeated
until the tree is in a stable configuration, i.e., a configuration where all nodes
are in state I again.

 0

 50

 100

 150

 200

 0 1000 2000 3000 4000 5000 6000

N
um

be
r

of
 r

ou
nd

s
re

qu
ire

d
to

 s
ta

bi
liz

e

Number of nodes in the tree

Number of rounds [average on 40 runs]
a x log(n)

(a) Number of Rounds.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

M
ax

im
um

 d
eg

re
e

of
 th

e
no

de

Nodes

(b) Highest Degrees.

Fig. 1. Simulation of the snap-stabilizing PGCP tree

We have first collected results on the latency of the algorithm. Figure 1-
(a) gives the average number of rounds required to have a stable configuration,
starting from 40 different bad configurations. The tree size ranges between 2 and
6228. We observe that the number of rounds required by the algorithm has a
logarithmic behavior (and not linear as previously suggested by the worst case).
It clearly scales according to the height of the tree, thus confirming the average
complexity of the algorithm and its good scalability.

We have also collected results on the extra space required on each node.
Since the tree topology undergoes changes during the reconstruction, degrees
of nodes also dynamically change as nodes are created, destroyed, merged or
moved. Figure 1-(b) shows the highest degree of nodes, i.e., the real extra space
required on each node, including nodes created and/or destroyed during the
reconstruction. The final tree size is 6228; the total number of nodes, including
temporary nodes, is 9120. The experiment shows that the highest of maximum
degree of all nodes is 2540, and most of maximum degrees are very low (less
than 50). This can be partly explained by the fact that the deepest a node is,
the smaller is its degree. In other terms, during a breadth-first traversal of the
tree, the topology quickly enlarges close to the root and then its breadth remains

94 E. Caron et al.

relatively stable until reaching the leaf nodes. More generally, this simulation
shows that the worst case is far to be reached and that only few nodes will
require an large extra space.

6 Conclusion

This paper presents the first snap-stabilizing greatest common prefix tree and
a general self-stabilization algorithm for distributed tries. It provides an alter-
native to tree-structured peer-to-peer networks suffering from the high cost of
replication mechanisms and a first step of an innovating way to reach the fault
tolerance requirements over large distributed systems. Our algorithm is optimal
in terms of stabilization time since we prove it to be snap-stabilizing. It requires
in average a number of rounds proportional to the height of the tree, thus provid-
ing a good scalability. This result has been confirmed by simulation experiments
based on relevant data sets. On the theoretical side, our future work will consist
to improve the worst case complexities in terms of extra space requirements and
total latency. Also, note that our model assumes that the processes can commu-
nicate with each other. In the state model, this is modeled as if every process
can read the variables of all the processes of the network. However, once im-
plemented in the message-passing model, the protocol requires communications
between processes involved in the tree only. So, on the experimental side of our
future works, we plan to implement this algorithm in the message-passing with
a model based on that introduced in [18]. On this other hand, we also plan to
implement our algorithm inside a prototype of a peer-to-peer indexing system
we are currently developing, based on the JXTA toolbox. First experiments have
been conducted on the Grid’5000 platform [9].

References

1. Andrzejak, A., Xu, Z.: Scalable, Efficient Range Queries for Grid Information Ser-
vices. In: Peer-to-Peer Computing, pp. 33–40 (2002)

2. Arora, A., Gouda, M.G.: Distributed Reset. IEEE Transactions on Computers 43,
1026–1038 (1994)

3. Aspnes, J., Shah, G.: Skip Graphs. In: Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 384–393 (January 2003)

4. Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: Time Op-
timal Self-stabilizing Synchronization. In: STOC 1993. Proceedings of the 25th
Annual ACM Symposium on Theory of Computing, pp. 652–661. ACM Press,
New York (1993)

5. Balazinska, M., Balakrishnan, H., Karger, D.: INS/Twine: A Scalable Peer-to-Peer
Architecture for Intentional Resource Discovery. In: International Conference on
Pervasive Computing 2002 (2002)

6. Basu, S., Banerjee, S., Sharma, P., Lee, S.: NodeWiz: Peer-to-Peer Resource Discov-
ery for Grids. In: GP2PC. 5th International Workshop on Global and Peer-to-Peer
Computing (May 2005)

Snap-Stabilizing Prefix Tree for Peer-to-Peer Systems 95

7. Bein, D., Datta, A.K, Villain, V.: Snap-Stabilizing Optimal Binary Search Tree.
In: Tixeuil, S., Herman, T. (eds.) SSS 2005. LNCS, vol. 3764, pp. 1–17. Springer,
Heidelberg (2005)

8. Bui, A., Datta, A., Petit, F., Villain, V.: State-optimal snap-stabilizing pif in tree
networks. In: IEEE (ed.) Proceedings of the 4th International Workshop on Self-
Stabilizing Systems, pp. 78–85. IEEE Computer Society Press, Los Alamitos (1999)

9. Cappello, F., et al.: Grid’5000: a Large Scale, Reconfigurable, Controlable and
Monitorable Grid Platform. In: Gschwind, T., Aßmann, U., Nierstrasz, O. (eds.)
SC 2005. LNCS, vol. 3628, pp. 99–106. Springer, Heidelberg (2005)

10. Caron, E., Desprez, F., Fourdrignier, C., Petit, F., Tedeschi, C.: A Repair Mecha-
nism for Tree-structured Peer-to-peer Systems. In: Robert, Y., Parashar, M., Badri-
nath, R., Prasanna, V.K. (eds.) HiPC 2006. LNCS, vol. 4297, Springer, Heidelberg
(2006)

11. Caron, E., Desprez, F., Tedeschi, C.: A Dynamic Prefix Tree for the Service Dis-
covery Within Large Scale Grids. In: Montresor, A., Wierzbicki, A., Shahmehri, N.
(eds.) P2P2006. The Sixth IEEE International Conference on Peer-to-Peer Com-
puting, Cambridge, September 6-8 2006, pp. 106–113. IEEE Computer Society
Press, Los Alamitos (2006)

12. Chen, N.S., Yu, H.P., Huang, S.T.: A Self-stabilizing Algorithm for Constructing
Spanning Trees. Information Processing Letters 39, 147–151 (1991)

13. Cournier, A., Datta, A.K., Petit, F., Villain, V.: Enabling Snap-Stabilization. In:
ICDCS 2003. Proceedings of the 23rd International Conference on Distributed
Computing Systems, p. 12. IEEE Computer Society Press, Washington (2003)

14. Datta, A., Hauswirth, M., John, R., Schmidt, R., Aberer, K.: Range Queries in
Trie-Structured Overlays. In: The Fifth IEEE International Conference on Peer-
to-Peer Computing (2005)

15. Dijkstra, E.W.: Self-stabilizing Systems in Spite of Distributed Control. Commun.
ACM 17(11), 643–644 (1974)

16. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
17. Dolev, S., Israeli, A., Moran, S.: Self-stabilization of Dynamic Systems Assuming

only Read/Write Atomicity. Distributed Computing 7, 3–16 (1993)
18. Herault, T., Lemarinier, P., Peres, O., Pilard, L., Beauquier, J.: A model for large

scale self-stabilization. In: I E E E Sc. (ed.) IPDPS 2007. 21th International Par-
allel and Distributed Processing Symposium, IEEE Computer Society Press, Los
Alamitos (2007)

19. Herman, T., Pirwani, I.: A Composite Stabilizing Data Structure. In: Datta, A.K.,
Herman, T. (eds.) WSS 2001. LNCS, vol. 2194, pp. 182–197. Springer, Heidelberg
(2001)

20. Herman, T., Masuzawa, T.: A Stabilizing Search Tree with Availability Properties.
In: IEEE (ed.) ISADS 2001. Proceedings of the 5th International Symposium on
Autonomous Decentralized Systems, pp. 398–405 (2001)

21. Herman, T., Masuzawa, T.: Available Stabilzing Heaps. Information Processing
Letters 77, 115–121 (2001)

22. Iamnitchi, A., Foster, I.: On Death, Taxes, and the Convergence of Peer-to-Peer
and Grid Computing. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS,
vol. 2735, pp. 118–128. Springer, Heidelberg (2003)

23. Oppenheimer, D., Albrecht, J., Patterson, D., Vahdat, A.: Distributed Re-
source Discovery on PlanetLab with SWORD. In: WORLDS. Proceedings of the
ACM/USENIX Workshop on Real, Large Distributed Systems (December 2004)

96 E. Caron et al.

24. Ramabhadran, S., Ratnasamy, S., Hellerstein, J.M., Shenker, S.: Prefix Hash Tree
An indexing Data Structure over Distributed Hash Tables. In: Proceedings of the
23rd ACM Symposium on Principles of Distributed Computing, St. John’s, New-
foundland, Canada (July 2004)

25. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A Scalable Content-
Adressable Network. In: ACM SIGCOMM, ACM Press, New York (2001)

26. Rowstron, A., Druschel, P.: Pastry: Scalable, Distributed Object Location and
Routing for Large-Scale Peer-To-Peer Systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

27. Schmidt, C., Parashar, M.: Enabling Flexible Queries with Guarantees in P2P
Systems. IEEE Internet Computing 8(3), 19–26 (2004)

28. Shu, Y., Ooi, B.C., Tan, K., Zhou, A.: Supporting Multi-Dimensional Range
Queries in Peer-to-Peer Systems. In: Peer-to-Peer Computing, pp. 173–180 (2005)

29. Stoica, I., Morris, R., Karger, D., Kaashoek, M., Balakrishnan, H.: Chord: A Scal-
able Peer-to-Peer Lookup service for Internet Applications. In: ACM SIGCOMM,
pp. 149–160. ACM Press, New York (2001)

30. Triantafillou, P., Pitoura, T.: Towards a Unifying Framework for Complex
Query Processing over Structured Peer-to-Peer Data Networks. In: Aberer, K.,
Koubarakis, M., Kalogeraki, V. (eds.) DBISP2P 2003. LNCS, vol. 2944, pp. 169–
183. Springer, Heidelberg (2004)

	Snap-Stabilizing Prefix Tree for Peer-to-Peer Systems
	Introduction
	Related Work
	Preliminaries
	Distributed System
	Snap-Stabilization
	Proper Greatest Common Prefix Tree

	Snap-Stabilizing PGCP Tree
	The Algorithm
	Correctness Proof
	Complexity

	Simulation Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

