

Lecture Notes in Computer Science 4838
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Toshimitsu Masuzawa Sébastien Tixeuil (Eds.)

Stabilization,
Safety, and Security
of Distributed Systems

9th International Symposium, SSS 2007
Paris, France, November 14-16, 2007
Proceedings

13

Volume Editors

Toshimitsu Masuzawa
Osaka University
Graduate School of Information Science and Technology
1-3 Machikaneyama, Toyonaka, Osaka 5608531, Japan
E-mail: masuzawa@ist.osaka-u.ac.jp

Sébastien Tixeuil
Université Pierre et Marie Curie - Paris 6
LIP6 - CNRS 7606
104 avenue du Président Kennedy, 75016 Paris, France
E-mail: Sebastien.Tixeuil@lip6.fr

Library of Congress Control Number: 2007938253

CR Subject Classification (1998): C.2.4, C.3, F.1, F.2.2, K.6

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-76626-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-76626-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12184118 06/3180 5 4 3 2 1 0

Preface

This volume contains the 27 regular papers and the abstracts of three invited
keynotes that were presented at the Ninth International Symposium on Stabi-
lization, Safety, and Security of Distributed Systems (SSS) held November 14–16,
2007 in Paris, France.

SSS, the International Symposium on Stabilization, Safety, and Security of
Distributed Systems, is a prestigious international forum for researchers and
practitioners in design and development of fault-tolerant distributed systems
with self-* properties, such as self-stabilizing, self-configuring, self-organizing,
self-managing, self-repairing, self-healing, self-optimizing, self-adaptive, and
self-protecting properties. It started as the Workshop on Self-Stabilizing Systems
(WSS), which was first held at Austin in 1989. From the second WSS in Las Vegas
in 1995, the forum was held biennially, at Santa Barbara (1997), Austin (1999),
Lisbon (2001), San Francisco (2003), and Barcelona (2005). With the growth
of the research field of self-stabilization, the title of the forum changed to the
Symposium on Self-Stabilizing Systems (SSS) in 2003. Since 2005, SSS was run
annually to encourage the rapid and sustained growth of the field, and the 2006
edition was held in Dallas. In 2006, following the demand for self-stabilization in
various areas of distributed computing including peer-to-peer networks, wireless
sensor networks, mobile ad hoc networks, and robotic networks, the scope of the
symposium was extended to cover all safety and security-related aspects of self-*
systems. The title of the symposium changed to the International Symposium
on Stabilization, Safety, and Security of Distributed Systems (SSS).

This year, we received 64 submissions from 22 countries. Each submission was
carefully reviewed by four to six Program Committee members with the help of
external reviewers, and the ProgramCommittee selected the 27 papers. It is worth-
while noticing that the overall quality of submissions was excellent and there are
many papers that we had to reject because of organization constraints yet
deserved to be published. The three invited keynotes dealt with hot topics ab-
sorbing the interest of attendees: “The Power of Cryptographic Attacks: Is Your
Network Really Secure Against Side Channels Attacks and Malicious Faults?” by
Jean-JacquesQuisquater, “Role-Based Self-Configuration of Sensor Networks” by
Kay Römer, and “Robots and Molecules” by Masafumi Yamashita. Following the
recent tradition of SSS, Anurag Dasgupta, Sukumar Ghosh, and Xin Xiao received
the Best Paper Award for their paper, “Probabilistic Fault-Containment.”

On behalf of the Program Committee, we would like to thank all authors of
submitted papers for their support. We also thank the members of the Steer-
ing Committee for their invaluable advice. We wish to express our apprecia-
tion to the Program Committee members and additional external reviewers for
their tremendous effort and excellent reviews. We gratefully acknowledge the
Organizing Committee members for their generous contribution to the success

VI Preface

of the symposium. Paper submission, selection, and generation in the proceed-
ings was greatly eased by the use of the EasyChair conference system (http://
www.easychair.org). We wish to thank the EasyChair creators and maintainers
for their commitment to the scientific community.

“We gratefully acknowledge the financial support from Microsoft Corpo-
ration, the Laboratoire de Recherche en Informatique (LRI), the Laboratoire
d’Informatique de Paris 6 (LIP6), and the Présidence de l’Université Paris Sud
XI ”.

November 2007 Toshimitsu Masuzawa
Sébastien Tixeuil

Conference Organization

Steering Committee

Anish Arora, Ohio State Univ., USA
Ajoy K. Datta, Univ. of Nevada, Las Vegas, USA
Shlomi Dolev, Ben-Gurion Univ. of the Negev, Israel
Sukumar Ghosh (Chair), Univ. of Iowa, USA
Mohamed G. Gouda, Univ. of Texas at Austin, USA
Ted Herman, Univ. of Iowa, USA
Shing-Tsaan Huang, National Central Univ., Taiwan
Vincent Villain, Univ. de Picardie, France

Program Chairs

Toshimitsu Masuzawa, Osaka Univ., Japan
Sébastien Tixeuil, Univ. Pierre et Marie Curie - Paris 6, France

Program Committee

Tadashi Araragi, NTT Co., Japan
Anish Arora, Ohio State Univ., USA
James Aspnes, Yale Univ., USA
Doina Bein, Univ. of Texas at Dallas, USA
Jorge A. Cobb, Univ. of Texas at Dallas, USA
Frederic Cuppens, ENST Bretagne, France
Ajoy K. Datta, Univ. of Nevada, Las Vegas, USA
Hervé Debar, Orange Labs, France
Sylvie Delaët, Univ. Paris-Sud, France
Danny Dolev, Hebrew Univ. of Jerusalem, Israel
Shlomi Dolev, Ben-Gurion Univ., Israel
Eric Filiol, INRIA, France
Paola Flocchini, Univ. of Ottawa, Canada
Felix Freiling, Univ. of Mannheim, Germany
Toru Fujiwara, Osaka Univ., Japan
Sukumar Ghosh, Univ. of Iowa, USA
Dieter Gollmann, Hamburg Univ. of Technology, Germany
Maria Gradinariu, Univ. Pierre et Marie Curie - Paris 6, France
Isabelle Guérin-Lassous, ENS Lyon, France
Rachid Guerraoui, EPFL, Switzerland
Phuong Ha, Univ. Tromsø, Norway
Ted Herman, Univ. of Iowa, USA

VIII Organization

Jaap-Henk Hoepman, TNO / Radboud Univ. Nijmegen, The Netherlands
Chin-Tser Huang, Univ. of South Carolina at Columbia, USA
Shing-Tsaan Huang, National Central Univ., Taiwan
Michiko Inoue, Nara Institute of Science and Technology, Japan
Hirotsugu Kakugawa, Osaka Univ., Japan
Mehmet H. Karaata, Kuwait Univ., Kuwait
Yoshiaki Katayama, Nagoya Institute of Technology, Japan
Boris Koldehofe, Univ. of Stuttgart, Germany
Sandeep S. Kulkarni, Michigan State Univ., USA
Shay Kutten, Technion, Israel
Toshimitsu Masuzawa (Program Chair), Osaka Univ., Japan
Ludovic Mé, Supelec Rennes, France
Miodrag Mihaljevic, Serbian Academy of Sciences and Arts, Belgrade /

RCIS-AIST, Japan
Mikhail Nesterenko, Kent State Univ., USA
Marina Papatriantafilou, Chalmers Univ., Sweden
Andrzej Pelc, Univ. du Quebec en Outaouais, Canada
Franck Petit, LaRIA, Univ. de Picardie, France
Scott Pike, Texas A&M Univ., USA
Sergio Rajsbaum, Univ. Nacional Autonoma de Mexico, Mexico
Matthieu Roy, LAAS-CNRS, France
Kouichi Sakurai, Kyushu Univ., Japan
Pierre Sens, Univ. Pierre et Marie Curie - Paris 6, France
Neeraj Suri, TU Darmstadt, Germany
Sébastien Tixeuil (Program Chair), Univ. Pierre et Marie Curie - Paris 6, France
Eric Totel, Supelec Rennes, France
Tatsuhiro Tsuchiya, Osaka Univ., Japan
Masafumi Yamashita, Kyushu Univ., Japan

Organizing Committee

Luciana Arantes, Univ. Pierre et Marie Curie - Paris 6, France
Sylvie Delaët (Organizing Chair), Univ. Paris-Sud, France
Stéphane Devismes, Univ. Paris-Sud, France
Maria Gradinariu, Univ. Pierre et Marie Curie - Paris 6, France
Pierre Sens, Univ. Pierre et Marie Curie - Paris 6, France
Sébastien Tixeuil, Univ. Pierre et Marie Curie - Paris 6, France
Véronique Varenne, Univ. Pierre et Marie Curie - Paris 6, France

Additional Reviewers

Fabien Autrel
J. Alfonso Briones
Joffroy Beauquier

Zinaida Benenson
Bruhadeshwar Bezawada
Christophe Bidan

Organization IX

Erik-Olver Blaß
Christian Boulinier
Rainer Böhme
Hui Cao
Eddy Caron
Julien Clement
Nora Cuppens
Stéphane Devismes
Yoann Dieudonne
Dinil M. Divakaran
Hen Fitoussi
Zhang Fu
Kazuhide Fukushima
Joaquin Garcia-Alfaro
Leszek Gasieniec
Giorgos Georgiadis
Anders Gidenstam
Seth Gilbert
Andreas Grau
Sammy Haddad
Rachid Hadid
Yoshiaki Hori
Michel Hurfin
Yasunori Ishihara
Taisuke Izumi
David P. Jacobs
Mark Jelasity
Hyung Chan Kim
Gerald Georg Koch

Dariusz Kowalski
Rastislav Kralovic
Ioannis Krontiris
Vinod Kulkathumani
Ouiddad Labbani-Igbida
Limor Lahiani
William Leal
Francois Lesueur
Benjamin Morin
Vinayak Naik
Boaz Patt-Shamir
David Peleg
Lucia Draque Penso
Giuseppe Prencipe
Rami Puzis
Marisuz Rokicki
Elad M. Schiller
Mukundan Sridharan
Messika Stephane
Kenichi Takahashi
Cedric Tedeschi
Julien Thomas
Frederic Tronel
Nir Tzachar
Remi Vannier
Koichi Wada
Yi Xian
Reuve Yagel
Hongwei Zhang

Table of Contents

The Power of Cryptographic Attacks: Is Your Network Really
Secure Against Side Channels Attacks and Malicious Faults?
(Invited Keynote) . 1

Jean-Jacques Quisquater

Role-Based Self-configuration of Sensor Networks (Invited Keynote) 2
Kay Römer

Robots and Molecules (Invited Keynote) . 3
Masafumi Yamashita

Relating Stabilizing Timing Assumptions to Stabilizing Failure
Detectors Regarding Solvability and Efficiency . 4

Martin Biely, Martin Hutle, Lucia Draque Penso, and Josef Widder

Distributed Synthesis of Fault-Tolerant Programs in the High Atomicity
Model . 21

Borzoo Bonakdarpour, Sandeep S. Kulkarni, and Fuad Abujarad

Decentralized Detector Generation in Cooperative Intrusion Detection
Systems . 37

Rainer Bye, Katja Luther, Seyit Ahmet Çamtepe, Tansu Alpcan,
Şahin Albayrak, and Bülent Yener

Stabilizing Flocking Via Leader Election in Robot Networks 52
Davide Canepa and Maria Gradinariu Potop-Butucaru

Stabilization in Dynamic Systems with Varying Equilibrium 67
Hui Cao and Anish Arora

Snap-Stabilizing Prefix Tree for Peer-to-Peer Systems 82
Eddy Caron, Frédéric Desprez, Franck Petit, and Cédric Tedeschi

Decentralized, Connectivity-Preserving, and Cost-Effective Structured
Overlay Maintenance . 97

Yu Chen and Wei Chen

On the Performance of Dijkstra’s Third Self-stabilizing Algorithm for
Mutual Exclusion . 114

Viacheslav Chernoy, Mordechai Shalom, and Shmuel Zaks

Stability of the Multiple-Access Channel Under Maximum Broadcast
Loads . 124

Bogdan S. Chlebus, Dariusz R. Kowalski, and Mariusz A. Rokicki

XII Table of Contents

Stabilization of Flood Sequencing Protocols in Sensor Networks 139
Young-ri Choi and Mohamed G. Gouda

Stabilization of Loop-Free Redundant Routing . 154
Jorge A. Cobb

Secure Failure Detection in TrustedPals . 173
Roberto Cortiñas, Felix C. Freiling, Marjan Ghajar-Azadanlou,
Alberto Lafuente, Mikel Larrea, Lucia Draque Penso, and
Iratxe Soraluze

Probabilistic Fault-Containment . 189
Anurag Dasgupta, Sukumar Ghosh, and Xin Xiao

Self∗ Minimum Connected Covers of Query Regions in Sensor
Networks . 204

Ajoy K. Datta, Maria Gradinariu Potop-Butucaru,
Rajesh Patel, and Ai Yamazaki

Robust Stabilizing Leader Election . 219
Carole Delporte-Gallet, Stéphane Devismes, and Hugues Fauconnier

Byzantine Self-stabilizing Pulse in a Bounded-Delay Model 234
Danny Dolev and Ezra N. Hoch

Magnifying Computing Gaps Establishing Encrypted
Communication over Unidirectional Channels (Extended Abstract) 253

Shlomi Dolev, Ephraim Korach, and Galit Uzan

Stabilizing Trust and Reputation for Self-Stabilizing Efficient
Hosts in Spite of Byzantine Guests (Extended Abstract) 266

Shlomi Dolev and Reuven Yagel

r-Semi-Groups: A Generic Approach for Designing Stabilizing Silent
Tasks . 281

Bertrand Ducourthial

Global Predicate Detection in Distributed Systems with Small Faults . . . 296
Felix C. Freiling and Arshad Jhumka

The Truth System: Can a System of Lying Processes Stabilize? 311
Mohamed G. Gouda and Yan Li

Temporal Partition in Sensor Networks . 325
Ted Herman, Sriram Pemmaraju, Laurence Pilard, and
Morten Mjelde

Secure and Self-stabilizing Clock Synchronization in Sensor
Networks . 340

Jaap-Henk Hoepman, Andreas Larsson, Elad M. Schiller, and
Philippas Tsigas

Table of Contents XIII

On the Probabilistic Omission Adversary . 357
Taisuke Izumi and Koichi Wada

Upper Bounds for Stabilization in Acyclic Preference-Based Systems . . . 372
Fabien Mathieu

A Self-stabilizing Weighted Matching Algorithm . 383
Fredrik Manne and Morten Mjelde

Self-stabilization and Virtual Node Layer Emulations 394
Tina Nolte and Nancy Lynch

Author Index . 409

The Power of Cryptographic Attacks:

Is Your Network Really Secure Against Side
Channels Attacks and Malicious Faults?

Jean-Jacques Quisquater

UCL Crypto Group, Microelectronics Laboratory
Université Catholique de Louvain, Belgium

quisquater@dice.ucl.ac.be

Abstract. When speaking about attacks against networks and comput-
ers, people mainly think today about viruses, worms, Trojans, keyloggers,
denial of services, etc.

In the last ten years a lot of new attacks were found against servers
and smart cards. First are side-channels attacks: those are by using ”es-
oteric” channels to obtain protected, secure and private informations.
Esoteric here means very often channels related to the communication
channel (time of interaction), processors (power, electromagnetic radi-
ations, caches, branching, etc.). Second are the malicious faults related
to secret key cryptography. The interaction of cryptographic algorithms
with malicious faults must be carefully known and understood: one error
sometimes means a totally broken system.

We will survey the field with a focus on distributed systems and net-
works.

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Role-Based Self-configuration of

Sensor Networks

Kay Römer

Institute for Pervasive Computing
ETH Zurich, Switzerland
roemer@inf.ethz.ch

Abstract. Wireless sensor networks consist of so-called sensor nodes –
small untethered computing devices equipped with sensors, a wireless
radio, a processor, and autonomous power supply. Large and dense net-
works of these devices can be deployed unobtrusively in the physical
environment in order to monitor a wide variety of real-world phenomena
with unprecedented quality and scale while only marginally disturbing
the observed physical processes.

Many sensor network applications require some form of self-
configuration, where sensor nodes take on specific functions in the net-
work. Configuration of a sensor network is particularly challenging, as
the anticipated large number of sensor nodes participating in a network
typically precludes manual configuration of individual nodes. Addition-
ally, pre-deployment configuration is often infeasible because some con-
figuration parameters such as node location and network neighborhood
are typically unknown prior to deployment. Also, node parameters may
change over time, necessitating dynamic re-configuration.

In this talk we present a framework for the development of self-
configuring sensor networks known as generic role assignment. The key
idea is to consider self-configuration as the problem of assigning a role to
each sensor node such that certain global constraints are satisfied. Both
the set of available roles and the constraints can be specified by the devel-
oper using a declarative specification language. These specifications are
compiled and executed in the sensor network, where a distributed role
assignment algorithm finds an assignment of roles to sensor nodes that
is compliant with the specification. Assigned roles are updated to reflect
changes in the sensor network resulting, for example, from addition or
removal of nodes. The role assignment algorithms are efficient regarding
the communication overhead and robust with respect to message loss.

Using this framework, a variety of different self-configuration problems
can be implemented. Example problems include coverage (assign roles
ACTIVE and SLEEP, such that few active nodes cover the area of interest
with their sensors while the remaining nodes can be turned into a power-
saving sleep mode) or clustering (assign roles SLAVE, GATEWAY, and HEAD
such that each slave has a cluster head neighbor where cluster heads are
interconnected by gateway nodes to form a connected backbone). These
and other problems can be specified with few lines of code using the
declarative specification language, which effectively shields the developer
from low-level implementation details.

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, p. 2, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Robots and Molecules

Masafumi Yamashita

Kyushu University, Fukuoka 819-0395 Japan
mak@csce.kyushu-u.ac.jp

Abstract. We survey some of the recent theoretical works about au-
tonomous mobile robot systems and then discuss the possibility of ex-
tending robot models to analyze molecular computing systems. There are
two types of robot systems appearing in the Distributed Computing liter-
ature. One is a self-reconfigurable system, which consists of a number of
identical robotic modules that can connect to, disconnect from, and relo-
cate relatively to adjacent modules. A behaviour of a self-reconfigurable
system looks like the life game and we are interested in desigining an
algorithm (local map) that makes the whole system behave in a con-
sistent way. The other model is an autonomous mobile robot system,
which consists of mobile robots with eye sensors as communication de-
vices. The formation problem of a given geometrical pattern has been
discussed extensively. Although those two systems have some common
features and common goals, they were proposed independently and have
been investigated separetely.

After surveying some of works on those robot systems, we introduce
some works in molecular computing. We explain some of the examples
in which those robot systems appear naturally. We then argue some
problems that arise from the molecular computing applications. A key
coincidence between the robot models and the molecular computing is
that they are systems composed of anonymous modules.

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, p. 3, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Relating Stabilizing Timing Assumptions to

Stabilizing Failure Detectors Regarding
Solvability and Efficiency

Martin Biely1,�, Martin Hutle2, Lucia Draque Penso3, and Josef Widder1,4,��

1 Technische Universität Wien, Austria
biely@ecs.tuwien.ac.at

2 École Polytechnique Fédérale de Lausanne, Switzerland
martin.hutle@epfl.ch

3 University of Mannheim
lucia@rumms.uni-mannheim.de
4 École Polytechnique, France
widder@lix.polytechnique.fr

Abstract. We investigate computational models with stabilizing prop-
erties. Such models include e.g. the partially synchronous model [Dwork
et al. 1988], where after some unknown global stabilization time the sys-
tem complies to bounds on computing speeds and message delays, or the
asynchronous model augmented with unreliable failure detectors [Chan-
dra et al. 1996], where after some unknown global stabilization time
failure detectors stop making mistakes.

Using algorithm transformations (a notion we introduce in this paper)
we show that many (families of such) models are equivalent regarding
solvability. We also analyze the efficiency of such transformations regard-
ing not only the number of steps in a model M1 necessary to emulate a
step in a model M2, but also the stabilization shift, which bounds the
number of steps in M2 required to provide properties of M2 after the
stabilization of M1.

1 Introduction

We consider distributed message passing systems that are subject to crash fail-
ures. Due to the well-known impossibility result for deterministic consensus in
asynchronous systems [1], a lot of research was done about adding assumptions
to the asynchronous model in order to allow solving the problem. These include
assumptions on the timing behavior of processes and communication links [2,3]
as well as assumptions on the capability of processes to retrieve information on
failures of others [4].

Failure detectors encapsulate timing assumptions in a modular way. The previous
sentence is stated in many research papers and sometimes even the required
� Supported by the Austrian BM:vit FIT-IT project TRAFT (proj. no. 812205).

�� Partially supported by the Austrian FWF project Theta (proj. no. P17757).

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 4–20, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Relating Stabilizing Timing Assumptions to Stabilizing Failure Detectors 5

amount of synchrony to solve a problem is expressed via the weakest failure
detector necessary (e.g. [5]). Interestingly, Charron-Bost et al. [6] have shown
that in general, failure detectors do not encapsulate timing assumptions properly.
For perpetual kind failure detectors as the perfect failure detector P it was shown
that the synchronous system has “a higher degree of synchrony” than expressed
by the axiomatic properties of P . Being optimistic, one could only hope that
(weaker) failure detectors that are just eventually reliable are equivalent to the
timing models sufficient for implementing them. This is the first issue we address.

Another line of research considers “asymmetric” models in which timing as-
sumptions need not hold at all links and all correct processes— as in [2,3,7] —
but only for a subset of components in a system. This stems from the following
question in [8]: Is there a model that allows implementing the eventually strong
failure detector �S (which can be reduced to the eventual leader oracle Ω), but
does not allow to implement �P (i.e., the eventually perfect failure detector,
whose output stabilizes to complete information on remote process crashes)?
Indeed, it was shown in [9] that such models exist. Since [9], much interest
[10,11,12,13] arose in weakening the synchrony assumption of models (or adding
as little as possible to the asynchronous model) in order to be able to implement
Ω. Regarding solvability, if such models are stronger than the asynchronous one,
then these models would allow to solve all problems that can be solved with Ω
but would not allow to solve problems where Ω is too weak. The second issue
addressed in this paper is thus whether the different spatial distributions of tim-
ing assumptions proposed make a difference in the set of problems which they
allow to solve.

To tackle these challenges, we consider two main types of models: abstract
computational models and system models . On one hand, abstract computational
models , such as round-based models and failure detector based models, do not
consider the timing behavior of distributed systems. For instance, round-based
models restrict the sets of messages which have to be received in the round they
were sent, while failure detector based models introduce axiomatic properties
to guarantee access to information about failures. On the other hand, system
models , such as the partially synchronous and eventually synchronous models,
have explicit assumption on processing speeds and message delays. However,
note that a property which is shared by all models we consider is that they are
stabilizing, i.e., they restrict the communication in a distributed computation
only from some unknown stabilization time on.

Finally, we introduce the notion of algorithm transformations , which we use
to compare different models from both a solvability and an efficiency viewpoint.

1.1 Contribution

Expressiveness of Models. In this paper we show that the result of [6] is in
fact limited to perpetual type failure detectors. To this end we introduce a
new parametrized failure detector family, of which both �P and �S are special
cases. Additionally, we define new parametrized (with respect to the number and
distribution of eventually timely links and processes) partially and eventually

6 M. Biely et al.

synchronous model families. In terms of solvability, we show equivalence when
instantiating both families with the same parameter k. As a corollary we show
that the asynchronous system with �P allows to solve the same problems as the
classic partially synchronous model in [3], as well as that the asynchronous model
augmented with Ω is equivalent to several source models, i.e., models where just
the links from at least one process (the source) are timely.

Method. We introduce the notion of algorithm transformations for partially syn-
chronous systems and for asynchronous systems augmented with failure detec-
tors. While transformations (or their close relatives simulations [14]) are well
understood in the context of synchronous as well as asynchronous systems, they
have to the best of our knowledge never been studied before for partially syn-
chronous systems.

In the case of synchronous systems, the simplifying assumption is made that
no additional local computation and no number of messages that has to be sent
for a simulation may lead to a violation of the lock-step round structure. It
follows that layering of algorithms as proposed in [14] can be done very easily.

In contrast, for asynchronous systems no time bounds can be violated anyhow.
Consequently, the coupling of the algorithm with the underlying simulation can
be done so loosely that between any two steps of the algorithm an arbitrary
number of simulation steps can be taken. Thus, asynchronous simulations can
be very nicely modeled e.g. via I/O automata [15].

For partially synchronous systems, transformations are not straight forward.
Based on primitives of lower models, primitives of higher models must be im-
plemented in a more strongly coupled way than in asynchronous systems, while
it has to be ensured1 that the required timing properties are achieved. For that
purpose, we define algorithm transformations, which we discuss in Section 2.6.

Cost. We also discuss the cost of these algorithm transformations, by examining
two diverse measures. The first considers the required number of steps in one
model in order to implement one step in the other one. To this end we introduce
the notion of B-bounded transformations which means that any step of the higher
model can be implemented by at most B steps of the lower model.

The second parameter considers how many steps are required to stabilize the
implemented steps after the system has stabilized. For this we use the notion of
D-bounded shift , which means that after the system stabilizes, the implemented
steps stabilize at most after D steps. Further we introduce the notion of efficiency
preserving: A transformation is efficiency preserving, if it is B-bounded, has D-
bounded shift, and B and D are known in advance. We show between which
pairs of models efficiency-preserving transformations exist.

2 System Models

In this paper we consider multiple models of distributed computations, which
vary in their abstraction. For example, failure detector based models are at a
1 In sharp contrast to the synchronous case, where timing is assumed to hold .

Relating Stabilizing Timing Assumptions to Stabilizing Failure Detectors 7

higher level of abstraction than partially synchronous systems as they abstract
away the timing behavior of systems [4], while round-based models can be seen
as being situated at an even higher level as they abstract away how the round
structure is enforced— which can be done based on either timing assumptions
[16] or on failure detector properties [4]. Whether these abstractions have the
“cost” of losing relevant properties of the “lower level” model is the central
question of this paper.

We first turn to the common definitions, and then describe the specifics of
each model separately.

2.1 Common Definitions

A system is composed by a set Π of n distributed processes p1, . . . pn inter-
connected by a point-to-point message system. Each process has its own local
memory, and executes its own automaton. In every execution all processes stick
to their specified automaton, except for f which prematurely halt. We call such
processes crashed. Process that do not crash are correct as they take an infinite
number of steps in infinite executions. All system models we consider assume an
upper bound t ≥ f on the number of crashes in every execution.

A system model defines the behavior of the environment of the automatons
with respect to a set of operations that bind together the automatons by allowing
them to interact with each other by manipulating or querying their environment
(e.g., the message system). In this paper, these operations are send and receive
operations used to exchange messages from an alphabet M. To simplify presen-
tation, messages are assumed to be unique.

We define a partial run as an (infinite) sequence of global states Ci. A global
state Ci is composed of the local states of the n automata corresponding to n
processes and the message system (i.e., the messages in transit). We say that
a process takes a step, when its local state and possibly also the state of the
message system changes. A run is a partial run starting in an initial configuration.

A run is said to be admissible in a system model if the run sticks to the
relations between the operations that are defined in the system model. As an
example, all models in this paper define the message system to be composed of
reliable channels. Without going into the particular definitions of the send and
receive operations, we can describe the abstract notion of reliable channels by
the following three properties2:

Reliability. Every message sent to a correct process is eventually delivered.
Integrity. A message is delivered only if it was actually sent.
No Duplication. No message is received more than once.

Below (in Subsections 2.2, 2.3, 2.4, and 2.5) we will complement these defi-
nitions with additional assumptions. Since we are interested in the spatial dis-
tribution of synchrony in this paper, these assumptions will only hold for some

2 Note that we did not choose the buffer representation as in [3] but used equivalent
separate properties instead to characterize reliable channels.

8 M. Biely et al.

parts of the system. In fact, we will define families of synchrony models, which
only differ in the size of these subsets. Note that (in contrast to [17]) the subset
for which the synchrony holds is not known. Just the smallest size of this subset
is known.

2.2 The Failure Detector Model

In an asynchronous system model with a failure detector, a process p that exe-
cutes a well-formed algorithm may execute during every computational step the
following operations in the given order :

a-receivep(): Delivers a message m, 〈m, q〉 ∈ M × Π , sent from q to p.
a-queryp(): Queries the failure detector of p.
a-sendp(m, q): Sends a message m to process q.

Not all of these operations (but at least one) have to be performed in each
step. Algorithms for the asynchronous model do not have access to global time.

A failure detector is of class Gk, if it outputs a set of processes, k is a (possibly
constant) function of the failure pattern, and the failure detector fulfills:

k-Eventual Trust. In every execution, there exists a set Π ′ consisting of at
least k of correct processes, such that there exists a time τ from which on the
failure detector output of all correct processes is a set of correct processes
and a superset of Π ′.

The minimal instant τ is called stabilization time. Although this failure detec-
tor might seem artificial at first sight, it turns out to unify most of the classical
stabilizing failure detectors in literature:

– The eventual strong failure detector �S [4] guarantees that eventually at
least one correct process is not suspected by any correct process. Therefore
its output is the converse of the output of G1. That is, the processes that
are not suspected by �S are those that are trusted by G1 at each process,
and the (at least) one process which is not suspected by any process’ �S is
the (at least) one process that is in the intersection of the failure detector
outputs of all correct processes.

– The eventual perfect failure detector �P is the converse of Gn−f .
– Finally, the eventual leader election oracle Ω [7] chooses eventually exactly

one leader at all correct processes. This corresponds to a (stronger) variant
of G1, where the output always has only one element.

In the following, we will denote the family of asynchronous systems augmented
with Gk for some k by Async+G.

2.3 The Partially Synchronous Model

This section’s model is a variant of the generalized partially synchronous model
given in [4]. Based on the steps in a run, we define a discrete global timebase with

Relating Stabilizing Timing Assumptions to Stabilizing Failure Detectors 9

instants τ ∈ IN, which is inaccessible to processes. At every instant of this time,
every process may execute at most one step and at least one process executes a
step. A process p that runs a well-formed algorithm executes at most one step
at every discrete time τ and uses one of the following operations in every step:

par-sendp(m, q): Sends a message m to q.
par-receivep(): Delivers a set S, s.t. ∅ ⊆ S ⊆ M × Π of message-sender pairs.

Definition 1. We say that Δ holds between p and q at time τ provided that, if
a message m is sent to p by q at time τ and p performs par-receiveq() at time
τ ′ ≥ τ + Δ, m is delivered to p by time τ ′.

Definition 2. We say that Φ holds for p at time τ , when in the set of Φ + 1
consecutive time instants starting with τ process p takes at least one step.

In contrast to [3], Δ only holds for all outgoing links of k processes, which are
called sources. We thus assume that in every execution there is a set of processes
Π ′ of cardinality at least k such that:

k-Partial Sources. Eventually some unknown Δ holds for all outgoing links
of processes in Π ′.

k-Partially Synchronous Processes. Eventually some unknown Φ holds for
each process in Π ′.

The minimal time from which on the two properties hold for Π ′ is called
stabilization time. (In contrast to [3], this stabilization time is not global, as it
only holds for a subset of the system.)

We denote the system model where all executions fulfill Reliability, Integrity,
No Duplication, k-Partial Sources , and k-Partially Synchronous Processes, as
ParSynck. If we do not fix k, we denote this family of models as ParSync.

Remark. Often a variant of partial synchrony is considered where message loss
before the global stabilization time may occur. Here we consider only the case
with reliable links, for the following reason: In [18] it is shown that fair lossy
links can be transformed into reliable ones, if n > 2t, and that it is impossible
to transform eventually reliable links into reliable links if n ≤ 2t. So in the
former case, which is also the relevant one for consensus, our results regarding
solvability hold as well, whereas for the latter case, the opposite of our result is
trivially true: It is not possible to build an asynchronous system with reliable
links plus a failure detector in a partially synchronous system with message loss
before the stabilization time.

Note that Dwork et al. [3] define another variant for partially synchronous
communication, where Δ holds always, but is unknown. Since we have reliable
channels, this is equivalent to our definition.

2.4 The Eventually Synchronous Model

The eventually synchronous model is a variant of partial synchrony, where the
bounds on the communication delay and relative speeds are known, but hold
only eventually. This is one of the two models in [3].

10 M. Biely et al.

This model is very similar to the model of partial synchrony, for sake of brevity
we do not go into much detail and only state the operations and properties of
the model:

ev-sendp(m, q): Sends a message m to q.
ev-receivep(): Delivers a set S, s.t. ∅ ⊆ S ⊆ M × Π of message-sender pairs.

As in the partially synchronous case, we consider a set of processes Π ′ of
cardinality at least k, and we assume the following two properties:

k-Eventual Sources. A known Δ eventually holds for all outgoing links of the
processes in Π ′.

k-Eventually Synchronous Processes. A known Φ eventually holds for each
process in Π ′.

We denote the system model where all executions fulfill Reliability, Integrity,
No Duplication, k-Eventual Sources and k-Eventually Synchronous Processes , as
�Synck. If we do not fix k, we denote this family of models as �Sync.

Observe that ParSynck is — by definition — not stronger than �Synck, that
is, for any k, every execution in �Synck is also an execution in ParSynck.

In order to distinguish the Δ for ParSync and for �Sync, we will use Δ?
for the former, and Δ� for the latter. When no ambiguity arises we will however
only use Δ.

2.5 The Round Model

In our round-based system, processes proceed in rounds r = 0, 1, 2, For a
well-formed algorithm, in every round r, a process p executes exactly one step
comprising a send operation followed by exactly one step comprising a receive
operation, where the operations are defined as:

rd-sendp(r, S): Sends a set S ⊆ M × Π of messages. For every process q, S
contains at most one message mq.

rd-receivep(r): Delivers a set S ⊆ M × Π × IN of messages to p, where a tuple
〈m, q, r′〉 denotes a message m sent by q to p in round r′ ≤ r.

Further, we define the property:

k-Eventual Round Sources. There is a set Π ′ of k correct processes, and a
round r, such that every message that is sent by some p ∈ Π ′ in some round
r′ ≥ r is received in round r′ by all correct processes.

We denote the system model where all executions fulfill Reliability, Integrity,
No Duplication and k-Eventual Round Sources, as Roundk. The family of all
these models is denoted Round.

In our definition of rd-receive above we do not allow the reception of messages
from future rounds. This implies that for each round r the rd-receive(r) oper-
ations form a consistent cut. By [19, Theorem 2.4] this is equivalent to these
operations taking place in lockstep. Note also, that our model is communica-
tion open, and thus contrasts the communication closed round models used for
example in [20,21].

Relating Stabilizing Timing Assumptions to Stabilizing Failure Detectors 11

2.6 Algorithm Transformations

In order to relate our models, we use algorithm transformations. An algorithm
transformation TA⇀B generates from any algorithm A that is correct (with
respect to some problem specification) in some system SA an algorithm B that
is correct (with respect to the same specification) in some other model B by
implementing the operations in SA by operations in SB . For the correctness
of such transformations, it has to be shown that B is well-formed as well, and
that the implemented operations are those defined in SA. Moreover it has to
be shown that the assumptions on the operations of SA that A is based on,
hold for their implementations (given by the transformation) in SB. This is
captured by the notion of a trace: The trace of the SA operations is the sequence
of implementations of SA operations (in SB) the algorithm calls when being
executed via the transformation TA⇀B in SB .

Obviously, problem statements only make sense here if they can be stated
independently of the model. Consequently, defining e.g. termination as “the con-
sensus algorithm terminates after x rounds” is not model independent as there
is no formal notion of “a round” e.g. in partially synchronous system models.
Therefore the notion of a round in such models depends on the algorithms which
implement them. Hence, such properties should be regarded as belonging to the
algorithm and not to the problem and will be dealt with in the discussions on
efficiency of transformations below. In the literature on models with stabilizing
properties, algorithms which decide (or terminate) within an a priori bounded
number of steps after stabilization time are termed efficient . Therefore we are
interested in the possibility of transforming efficient algorithms into efficient
algorithms.

An algorithm transformation is B-bounded , iff any step of the higher model
can be implemented by at most B operations of the lower model.

Another measure for the efficiency of a transformation is how it behaves with
respect to the stabilization in the two models involved. To motivate this measure,
consider some implementation of e.g. the eventual perfect failure detector based
on some partially synchronous system which has some global stabilization time
τ . Since the timing before τ is arbitrary, the processes that some process p
suspects may be arbitrary at τ as well. It may take some time until the set of
suspected processes at p is consistent. Until then, the asynchronous algorithm
using the failure detector may query the failure detector a couple of times — say
x times — before the failure detector becomes consistent. Informally, x may be
used as measure for the transformation of stabilizing properties.

More formally, since we are considering models with stabilizing properties
there is usually a step s from which on SB guarantees some properties. This
step s is part of some step S in SA. For a valid transformation, there must
also be a step S′ from which on the stabilizing properties of the implemented
model are guaranteed to hold. When S
= S′ the transformation is stabilization
shifting. Moreover, we say that a transformation has D-bounded shift , when the
transformation guarantees that S′ does not occur more than D steps after S.

12 M. Biely et al.

Definition 3. A transformation is efficiency preserving, if there are two a priori
known values B and D such that the transformation is B-bounded and it has D-
bounded shift.

Note that this definition implies that parameters unknown in advance, e.g., Δ?
and Φ? in the ParSync models, cannot occur in the expressions given for B,
while the size of the system, n, can.

3 Equivalence of Solvability

3.1 Possibility of ������G⇀��	
���

As there are no assumptions on the relative processor speeds and the time it
takes for the network to transmit a message, all we need to show is that there is
a set of processes that eventually meets the requirements of k-Eventual Trust.3

Lemma 1. In any ParSync run of an arbitrary algorithm A for an Async+Gk

system in conjunction with the transformation of Algorithm 1, the property k-
Eventual Trust holds for the trace of the Async+G operations.

All messages that are received via par-receive are stored into bufferp and then
appended to undeliveredp, from where a-receive takes them while filtering out the
additional ⊥ messages, therefore our reliable channel assumptions follow from
their counterparts of the ParSync-steps, and we obtain that:

Lemma 2. The transformation of Algorithm 1 preserves Reliability, Integrity
and No Duplication.

Note that the ever increasing thresholdp affects the detection time of the failure
detector and has no impact on whether the transformation is bounded. However,
for the Async+G-algorithm stabilization only occurs after thresholdp is greater
than Δ? + (n + 1)Φ? (cf. Section 4.2). As Δ? and Φ? are unknown there is no a
priori known bound for the stabilization shift.

Corollary 1. Algorithm 1 transforms any algorithm A for Async+Gx to an
algorithm for ParSyncx, and this transformation is not efficiency preserving.

3.2 Possibility of ��	
���⇀�
���

Since the properties of �Synck imply the properties of ParSynck, for this
transformation it suffices to replace par-send with ev-send, and par-receive with
ev-receive, respectively. Also note that there is no stabilization shift either (since
abiding to known bounds implies abiding to unknown ones). We thus have:

Corollary 2. There exists a 1-bounded transformation for a ParSync algo-
rithm to a �Sync algorithm, without stabilization shift.

3 Due to space limitations, all proofs are omitted. They are included in the full version
of the paper [22].

Relating Stabilizing Timing Assumptions to Stabilizing Failure Detectors 13

Algorithm 1. Transforming Async+G algorithms to ParSync algorithms
1: variables
2: ∀q ∈ Π : sendp[q], initially ⊥
3: trustedp ⊆ Π, initially ∅
4: bufferp, undeliveredp FIFO queue with elements inM×Π, initially empty
5: counterp, thresholdp ∈ IN, initially 0 and 1, resp.
6: end variables

7: operation a-sendp(m, q)
8: sendp[q]← m
9: update()

10: end operation

11: operation a-receivep()
12: update()
13: if undeliveredp does not contain non-⊥ messages then
14: return ⊥
15: else
16: return first 〈m, q〉 from undeliveredp where m = ⊥
17: [removing all pairs up to and including 〈m, q〉]
18: end if
19: end operation

20: operation a-queryp()
21: update()
22: return trustedp

23: end operation

24: procedure update()
25: for all q ∈ Π do
26: par-send(sendp[q], q)
27: sendp[q]← ⊥
28: end for
29: append all 〈m, q〉 ∈ par-receivep() to bufferp

30: incr(counterp)
31: if counterp = thresholdp then
32: counterp ← 0
33: trustedp ← {q : 〈∗, q〉 ∈ bufferp}
34: append bufferp to undeliveredp

35: bufferp ← ∅
36: incr(thresholdp)
37: end if
38: end procedure

3.3 Possibility of �
���⇀����

The next transformation we consider is one that transforms any algorithm for
�Sync to an algorithm for the Round model. While each �Synck model can be
instantiated with any values for Δ� and Φ�, we implement a particular instance,
i.e., �Synck with Δ� = 0 and Φ� = 1. The basic idea of the transformation is
to execute one round of the Round model in each �Sync step.

Lemma 3. In any Round run of an arbitrary algorithm A for an �Sync sys-
tem in conjunction with Algorithm 2, the properties k-Eventual Sources and
k-Eventually Synchronous Processes with Φ = 1 and Δ = 0 hold for the trace of
�Sync operations.

Lemma 4. Algorithm 2 has no stabilization shift.

Lemma 5. Algorithm 2 preserves Reliability, Integrity and No Duplication.

14 M. Biely et al.

Algorithm 2. Transforming �Sync algorithms to Round algorithms
1: variables
2: r ∈ IN, initially 0
3: bufferp ⊆ IN×M×Π, initially ε
4: end variables

5: operation ev-sendp(m, q)
6: rd-sendp(r, {〈m, q〉})
7: bufferp ← bufferp ∪ rd-receivep(r)
8: r ← r + 1
9: end operation

10: operation ev-receivep()
11: rd-sendp(r, ∅)
12: bufferp ← bufferp ∪ rd-receivep(r)
13: r ← r + 1
14: del← {〈m, q〉 | 〈m, q, ∗〉 ∈ bufferp}
15: bufferp ← ∅
16: return del
17: end operation

It can be easily seen that we have:

ev-send �→
{

rd-send
rd-receive ev-receive �→

{
rd-send
rd-receive

yielding that this transformation is 2-bounded , since only one of the two op-
erations is possible in each step of our delay-bounded models. Moreover, from
Lemmas 3, 4 and 5 it is obvious that:

Corollary 3. Algorithm 2 transforms any algorithm A for �Syncx to an al-
gorithm for Roundx, and this transformation is 2-bounded and does not shift
stabilization.

3.4 Possibility of ����⇀������G

With this section’s transformation, we close the circle of transformations thereby
establishing that the same problems are solvable in all four model families.

For implementing a round structure on top of our failure detector we simply
wait in each round until we have received messages for the current round from
all trusted processes.

Lemma 6. In any Async+G run of an arbitrary algorithm A for a Round
system in conjunction with the transformation of Algorithm 3, the property k-
Eventual Round Sources holds for the trace of the Round steps.

Lemma 7. Algorithm 3 preserves Reliability, Integrity and No Duplication.

Again, this lemma follows directly from the transformation and from the fact
that the properties are provided by Round (cf. for example lines 14 and 19 for
Integrity and No Duplication, resp.). Transforming Round to Async+G with
Algorithm 3, we have:

Relating Stabilizing Timing Assumptions to Stabilizing Failure Detectors 15

Algorithm 3. Transforming Round algorithms to Async+G algorithms
1: variables
2: undeliveredp ⊆ IN×M×Π, initially empty
3: end variables

4: operation rd-sendp(S, r)
5: for all 〈m, q〉 ∈ S do
6: a-sendp(〈r, m〉, q)
7: end for
8: for all q /∈ {q′|〈m′, q′〉 ∈ S} do
9: a-sendp(〈r,⊥〉, q)

10: end for
11: end operation

12: operation rd-receivep(r)
13: repeat
14: undeliveredp ← undeliveredp ∪ {a-receivep()}
15: trustedp ← a-queryp()
16: Q← {q | 〈r, ∗, q〉 ∈ undeliveredp}
17: until Q ⊇ trustedp

18: del← {〈r′, m, q〉 ∈ undeliveredp | r′ ≤ r ∧m = ⊥}
19: undeliveredp ← undeliveredp \ del
20: return del
21: end operation

rd-send �→

⎧⎪⎨
⎪⎩

a-send(∗, 1)
...
a-send(∗, n)

rd-receive �→

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a-receive
a-query
a-receive
a-query
...

yielding that this transformation is unbounded . (Although the a-send are not
necessarily executed in the given order.) Therefore we conclude this subsection
with observing that:

Corollary 4. Algorithm 3 transforms any algorithm A for Roundk to an algo-
rithm for Async+Gk, and this transformation is not efficiency preserving.

4 Efficiency of Transformations

In the previous section we showed that from a solvability point of view, all four
models are equivalent. The chain of transformations of a ParSync algorithm
to a �Sync algorithm to a Round algorithm can be done with bounded trans-
formation, i.e., the transformation is efficiency preserving. That means, e.g., if
there is already an efficient algorithm for the ParSync model, the transformed
algorithm is also efficient in the �Sync and the Round model. On the other
hand, in this section we show that there is no transformation that maintains
this efficiency for (1) the other transformations in the previous section and (2)
for the transformations going backwards in the efficient chain. Note, however,
that this does not imply the non-existence of efficient algorithms for these mod-
els, but just that these cannot be obtained by a (general) transformation from
an efficient algorithm of the other model.

16 M. Biely et al.

4.1 Lower Bounds

The aim of this section is to show that which transformations cannot be effi-
ciency preserving. The (trivial) idea behind the proof that no transformation
ParSync⇀Async+G can be efficiency preservingis that no message with an
unbounded delay can be received in a bounded number of steps.

Theorem 1. There exists no efficiency-preserving transformation that trans-
forms any algorithm A for ParSynck to an algorithm for Async+Gk.

We can also show that no transformation in the opposite direction can be effi-
ciency preserving. The main idea is that no reliable suspicion of faulty processes
can be made within known time in a system with unknown delays.

Theorem 2. There exists no efficiency-preserving transformation that trans-
forms any algorithm A for Async+Gk to an algorithm for ParSynck .

While the transformation of ParSync algorithms to ones for the �Sync model is
rather simple (recall that by definition every �Sync execution is also a ParSync
execution) there is no efficiency-preserving transformation for the opposite di-
rection. The reason for this is, informally speaking, that fixed bounds (Δ� and
Φ�) have to be ensured in a system where there are only unknown bounds (Δ?
and Φ?).

Theorem 3. There exists no efficiency-preserving transformation that trans-
forms any algorithm A for �Synck to an algorithm for ParSynck.

Our next lower bound follows from Theorem 1 and Corollary 2: If there was an
efficiency-preserving transformation �Sync⇀Async+G these two results would
be contradictory.

Theorem 4. There exists no efficiency-preserving transformation that trans-
forms any algorithm A for �Sync to an algorithm for Async+G.

To prove that the transformations considered above are necessarily not efficiency
preserving it was sufficient to examine only stabilization shift. Conversely, our
proof there is no efficiency-preserving transformation Round⇀�Sync is based
on showing that no transformation can be B-bounded and, at the same time,
cause only D-bounded shift.

Theorem 5. There exists no efficiency-preserving transformation that trans-
forms any algorithm A for Roundk to an algorithm for �Synck.

4.2 Upper Bound on ������G⇀�
���

We use a modified version of Algorithm 1, with the following changes: thresholdp

is initialized to Δ� + (n + 1)Φ� and the last line is omitted. This incorporates
that we know Δ� and Φ� in advance, and thus we do not have to estimate it.

Relating Stabilizing Timing Assumptions to Stabilizing Failure Detectors 17

It is clear that the proof of Algorithm 1 analogously applies here and thus this
transformation is correct. It is also easy to see that it is also (n + 1)-bounded:

a-send, a-receive, a-query �→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ev-send(∗, 1)
...
ev-send(∗, n)
ev-receive

To determine the bound on the stabilization shift, note that since every source
s will send a message to p in every Async+G operation (taking at most (n +
1)Φ �Sync steps) and messages are delivered within Δ� �Sync steps, p will
always receive a message from s before updating trustedp, thus never suspecting
s anymore. Therefore the maximal shift is bounded by Δ� + (n + 1)Φ� �Sync
steps, and consequently:

Theorem 6. There exists an efficiency-preserving transformation that trans-
forms any algorithm A for Async+Gk to an algorithm for �Synck .

5 Discussion

Solvability. Figure 1 presents a graphical overview of our results. It can easily be
seen that the directed subgraph consisting of solid arrows is strongly connected.

Async+G

n + 1|Δ + (n + 1)Φ
(4.2)

��

��

nep
(3.1) (4.1)

��

�Sync

nep
(4.1)

��

nep
(4.1)

��

2|1
(3.3)

�� Round

nep
(4.1)

��

nep
(3.4)

��

ParSync

1|1
(3.2)

		
nep
(4.1)

Fig. 1. Relations of models with pointers to sections of this paper; an arrow from
model M1 to model M2 indicates that a result on algorithm transformations from
model M1 to model M2 can be found in this paper. Solid lines indicate upper bounds,
dotted lines indicate lower bounds. B|D means that a transformation exists which is
B-bounded and has D-bounded shift. We use nep to mark non-efficiency-preserving
transformations.

18 M. Biely et al.

This subgraph presents the transformation algorithms we have provided in this
paper. Thus, all model families presented are equivalent regarding solvability.

Relation to the results of [6]. Setting k = n − f in our models, Roundn−f is
in fact the classic basic round model by Dwork et al. [3] and the asynchronous
model with Gn−f is the asynchronous model augmented with the eventually
perfect failure detector [4]. We use k = n − f in order to intuitively discuss why
these stabilizing models are equivalent from a solvability viewpoint while their
perpetual counterparts are not.

The main observation in the relation to [6] is concerned with the term “even-
tually” in the model definition: In the asynchronous model augmented with �P ,
two things happen in every execution: (1) eventually, the failure detector be-
comes accurate, and (2) eventually, the last process crashes and all its messages
are received.

The model considered in [6] (asynchrony with P), however shares only (2)
while the failure detector taken into account satisfies perpetual strong accuracy.
It was shown in [6] that given (2), even perpetual strong accuracy— and thus
P — is too weak to implement a model where every round is communication
closed and reliable, as is required by the synchronous model of computation: If
a process p crashes, P does not provide information on the fact whether there
are still messages sent by p in transit (cf. [23]).

For showing our equivalence result in the special case of n − f , one has to
show that communication closed rounds are ensured eventually. We observe that
(1) and (2) are sufficient to achieve this. After (1) and (2) hold, all processes
are correct, they will never be suspected and thus all their messages are received
in the round they were sent. Thus we achieve communication closed rounds
eventually which is equivalent to eventual lock-step and thus eventual synchrony.

Timing Assumptions. Our results show the equivalence of diverse models with
stabilizing properties in which the properties that are guaranteed to hold have
the same spatial distribution. Informally, for the models we present, it is equiv-
alent if a source is defined via timing bounds, restrictions on the rounds its
messages are received, or whether the “source” has just the property that it
is not suspected by any process. Consequently, we conjecture that similar re-
sults hold for other timing assumptions as the FAR model [24] or models where
the function in which timing delays eventually increase is known given that the
spatial distribution of timing properties is the same as in our paper.

Number of Timely Links. An interesting consequence of our results concerns
models where only t links of the sources are eventually timely [10]. In models
stronger than the asynchronous one where at least one such source exists, Ω and
thus �S can be implemented. As �S is equivalent to G1, our results reveal that
one can transform any algorithm which works in ParSync1 (one source with
n timely links) to an algorithm which works in a partially synchronous systems
with a source with t < n timely links. Consequently, although the number of
timely links was reduced in the model assumptions, the set of solvable problems
remained the same.

Relating Stabilizing Timing Assumptions to Stabilizing Failure Detectors 19

Efficiency. An algorithm solving some problem in a stabilizing model is efficient,
if it decides (i.e., terminates) after a bounded number of steps after stabiliza-
tion. Consider some efficient algorithm A working in model M . If there exists an
efficiency-preserving transformation from M into some model M ′, this implicates
that there exists an efficient algorithm in M ′ as well (the resulting algorithm
when A is transformed). The converse, however, is not necessarily true. The
dotted lines with a nep label in Figure 1 show that no efficiency-preserving trans-
formations exist. Consequently, by means of transformations (which are general
in that they have to transform all algorithms) nothing can be said about the
existence of an efficient solution in the absence of an efficiency-preserving trans-
formation from M to M ′. As an example, consider Roundn−f and �Syncn−f

for which efficient consensus algorithms were given in [25] and [26], respectively.
Despite this fact, our results show that there cannot be a (general) efficiency-
preserving transformation from Round to �Sync algorithms.

References

1. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM 32, 374–382 (1985)

2. Dolev, D., Dwork, C., Stockmeyer, L.: On the minimal synchronism needed for
distributed consensus. Journal of the ACM 34, 77–97 (1987)

3. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. Journal of the ACM 35, 288–323 (1988)

4. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43, 225–267 (1996)

5. Greve, F., Tixeuil, S.: Knowledge connectivity vs. synchrony requirements for fault-
tolerant agreement in unknown networks. In: DSN 2007. Dependable Systems and
Networks, pp. 82–91 (2007)

6. Charron-Bost, B., Guerraoui, R., Schiper, A.: Synchronous system and perfect fail-
ure detector: solveability and efficiency issues. In: Proceedings of the International
Conference on Dependable System and Networks, IEEE Computer Society Press,
Los Alamitos (2000)

7. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. Journal of the ACM 43, 685–722 (1996)

8. Keidar, I., Rajsbaum, S.: Open questions on consensus performance in well-behaved
runs. In: Schiper, A., Shvartsman, A.A., Weatherspoon, H., Zhao, B.Y. (eds.) Fu-
ture Directions in Distributed Computing. LNCS, vol. 2584, pp. 35–39. Springer,
Heidelberg (2003)

9. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On implementing
Omega with weak reliability and synchrony assumptions. In: Proceeding of the
22nd Annual ACM Symposium on Principles of Distributed Computing, ACM
Press, New York (2003)

10. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Communication-
efficient leader election and consensus with limited link synchrony. In: Proceedings
of the twenty-third annual ACM symposium on Principles of distributed comput-
ing, pp. 328–337. ACM Press, New York (2004)

11. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Stable leader elec-
tion. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 108–122. Springer,
Heidelberg (2001)

20 M. Biely et al.

12. Malkhi, D., Oprea, F., Zhou, L.: Ω meets paxos: Leader election and stability
without eventual timely links. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724,
pp. 199–213. Springer, Heidelberg (2005)

13. Hutle, M., Malkhi, D., Schmid, U., Zhou, L.: Brief announcement: Chasing the
weakest system model for implementing Ω and consensus. In: Datta, A.K., Grad-
inariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 576–577. Springer, Heidelberg
(2006)

14. Attiya, H., Welch, J.: Distributed Computing, 2nd edn. John Wiley & Sons, Chich-
ester (2004)

15. Lynch, N.: Distributed Algorithms. Morgan Kaufman Publishers, San Francisco
(1996)

16. Hutle, M., Schiper, A.: Communication predicates: A high-level abstraction for
coping with transient and dynamic faults. In: DSN 2007. Dependable Systems and
Networks, pp. 92–101 (2007)

17. Biely, M., Widder, J.: Optimal message-driven implementation of Omega with mute
processes. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp.
110–121. Springer, Heidelberg (2006)

18. Basu, A., Charron-Bost, B., Toueg, S.: Simulating reliable links with unreliable
links in the presence of process crashes. In: Babaoğlu, Ö., Marzullo, K. (eds.)
WDAG 1996. LNCS, vol. 1151, pp. 105–122. Springer, Heidelberg (1996)

19. Mattern, F.: On the relativistic structure of logical time in distributed systems
(1992)

20. Santoro, N., Widmayer, P.: Time is not a healer. In: Cori, R., Monien, B. (eds.)
STACS 1989. LNCS, vol. 349, pp. 304–313. Springer, Heidelberg (1989)

21. Charron-Bost, B., Schiper, A.: The heard-of model: Unifying all benign failures.
Technical Report LSR-REPORT-2006-004, EPFL (2006)

22. Biely, M., Hutle, M., Penso, L.D., Widder, J.: Relating stabilizing timing assump-
tions to stabilizing failure detectors regarding solvability and efficiency. Technical
Report 54/2007, Technische Universität Wien, Institut für Technische Informatik,
Treitlstrasse 3, 2nd floor, 1040 Wien, E.U. (August 2007)

23. Gärtner, F.C., Pleisch, S.: Failure detection sequencers: Necessary and sufficient
information about failures to solve predicate detection. In: Malkhi, D. (ed.) DISC
2002. LNCS, vol. 2508, pp. 280–294. Springer, Heidelberg (2002)

24. Fetzer, C., Schmid, U., Süßkraut, M.: On the possibility of consensus in asyn-
chronous systems with finite average response times. In: ICDCS 2005. Proceedings
of the 25th International Conference on Distributed Computing Systems, pp. 271–
280. IEEE Computer Society Press, Los Alamitos (2005)

25. Dutta, P., Guerraoui, R., Keidar, I.: The overhead of consensus failure recovery.
Distributed Computing 19, 373–386 (2007)

26. Dutta, P., Guerraoui, R., Lamport, L.: How fast can eventual synchrony lead to
consensus? In: Proceedings of the 2005 International Conference on Dependable
Systems and Networks, pp. 22–27 (2005)

Distributed Synthesis of Fault-Tolerant

Programs in the High Atomicity Model�

Borzoo Bonakdarpour, Sandeep S. Kulkarni, and Fuad Abujarad

Department of Computer Science and Engineering,
Michigan State University,

East Lansing, MI 48824, USA
{borzoo, sandeep, abujarad}@cse.msu.edu

http://www.cse.msu.edu/

Abstract. In this paper, we concentrate on distributed algorithms for
automated synthesis of fault-tolerant programs in the high atomicity
model, where all processes can read and write all program variables in
one atomic step. Although there has recently been an increasing inter-
est in using parallel and distributed techniques in the model checking
community, these technique have not been investigated in program syn-
thesis. Developing such techniques is crucial as a means to cope with the
state explosion problem in the context of program synthesis and trans-
formation as well. We propose two distributed multithreaded algorithms
for adding two levels of fault-tolerance, namely failsafe and masking, to
existing fault-intolerant programs whose state space is distributed over
a network or cluster of workstations.

Keywords: Program transformation, Program synthesis, Distributed al-
gorithms, Fault-tolerance, Parallel synthesis.

1 Introduction

Automated program synthesis is the problem of designing an algorithmic method
to find a program that satisfies a set of required behaviors. Such automated
method is desirable, as it ensures that the synthesized program is correct-by-
construction. Similar to verification algorithms, synthesis algorithms often suffer
from two factors of time and space complexity. In order to overcome the time
complexity problem, several approaches have been proposed in the literature
to incrementally add properties to existing programs [1, 2, 3, 4, 5, 6, 7]. These
approaches (called local redesign) make it possible to start from an existing
program and, hence, reusing the previous efforts made for synthesizing them
effectively. As opposed to local redesign, the traditional synthesis algorithms
(called comprehensive redesign) [8,9] start from specification. Hence, for adding a
newly identified property, one should synthesize a new program by starting from
the conjunction of the new property and the existing properties from scratch.
� This work was partially sponsored by NSF CAREER CCR-0092724 and ONR Grant

N00014-01-1-0744.

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 21–36, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.cse.msu.edu/

22 B. Bonakdarpour, S.S. Kulkarni, and F. Abujarad

In order to overcome the space explosion problem, recently, an increasing
interest in parallel and distributed techniques has emerged in the model checking
community (e.g., [10, 11, 12, 13, 14]). Such techniques parallelize enumerative or
symbolic state space of a given model over a network or cluster of workstations
and run a distributed verification algorithm over the parallelized state space. On
the other hand, the space explosion problem remains unaddressed in the context
of automated program synthesis.

With this motivation, in this paper, we concentrate on the problem of design-
ing distributed algorithms for automated program synthesis. More specifically,
we parallelize two synthesis algorithms (from [7]) for adding two levels of fault-
tolerance, namely failsafe and masking, to existing fault-intolerant programs.
Intuitively, in the presence of faults, a failsafe fault-tolerant program satisfies
only its safety specification, but a masking fault-tolerant program satisfies both
its safety and liveness specifications. We assume that programs are in the high
atomicity model, where all processes can read and write all program variables
in one atomic step. We note that the aforementioned synthesis algorithms solely
add fault-tolerance to a fault-intolerant program in the sense that they add no
new behaviors to the input program in the absence of faults.

Similar to distributed model checking techniques, developing distributed syn-
thesis algorithms consists of two phases: (1) parallelizing the state space over
a network of workstations, and (2) designing a distributed algorithm that runs
on each partition of the state space. In this paper, we only focus on the second
phase. In particular, we assume that parallelization of state space is already done
using one of the known enumerative techniques in the literature. Precisely, we
use the state space parallelization technique proposed by Garavel, Mateescu, and
Smarandache [10] with some modifications tailored for the purpose of synthesis
rather than model checking. Although there exist more efficient ways for parallel
construction of state space (e.g., using abstract interpretation), we cannot triv-
ially apply them as a means for synthesizing programs. This is due to the fact that
in synthesis (unlike model checking), we usually require full information about
the program being synthesized, as we need to manipulate a program by removing
or adding computations. Thus, we conservatively choose to develop distributed
algorithms that run over the detailed parallelized enumerative state space.

Since the essence of the proposed algorithm in [7] for synthesizing failsafe
fault-tolerant programs is calculating fixpoint of formulas, in this paper, we pro-
pose a distributed multithreaded algorithm for calculating smallest and largest
fixpoints. Furthermore, since a masking fault-tolerant program recovers to its
normal behavior after the occurrence of faults, we also propose a distributed
algorithm for synthesizing recovery paths.

Contributions of the paper. The main results of this paper are as follows.
We propose (i) a distributed multithreaded synthesis algorithm for adding fail-
safe fault-tolerance, and (ii) a distributed multithreaded synthesis algorithm for
adding masking fault-tolerance to existing fault-intolerant programs. These al-
gorithms involve designing distributed techniques for fixpoint calculations and
adding recovery computations to a program. To the best of our knowledge,

Distributed Synthesis of Fault-Tolerant Programs 23

this paper is the first work that addresses challenges and proposes solutions for
designing distributed algorithms in the context of program synthesis and trans-
formation. We believe that this study paves the way for further research on
designing distributed synthesis algorithms.

Organization of the paper. In Section 2, we present the preliminary concepts.
In Section 3, we formally state the problem of addition of fault-tolerance to
existing fault-intolerant programs. Then, we present our distributed synthesis
algorithms for adding failsafe and masking fault-tolerance in Section 4. Finally,
we make the concluding remarks and discuss future work in Section 5.

2 Preliminaries

In this section, we present formal definitions of programs, specifications, faults,
and fault-tolerance. We specify programs in terms of their state space and their
transitions. The definition of specifications is adapted from Alpern and Schnei-
der [15]. The definition of faults and fault-tolerance is adapted from Arora and
Gouda [16].

2.1 Programs and Specifications

A program p is specified by a tuple 〈Sp, δp〉, where Sp is the finite state space of
p and δp is a finite set of transitions (i.e., a subset of Sp × Sp). A sequence of
states, σ = 〈s0, s1, ...〉, is a computation of p where si ∈ Sp for all i ∈ Z≥0 iff the
following two conditions are satisfied: (1) if σ is infinite then ∀j > 0 : (sj−1, sj)∈
δp, and (2) if σ is finite and terminates in state sn then there does not exist state
s such that (sn, s)∈ δp, and the condition ∀j | 0 < j ≤ n : (sj−1, sj)∈ δp holds.
A computation prefix of p is a finite sequence of states 〈s0, s1, ..., sk〉, where k is
a positive integer and ∀j | 0 < j ≤ k : (sj−1, sj)∈ δp. Note that when it is clear
from the context, we use p and δp interchangeably.

A state predicate of p is any subset of Sp. A state predicate S is closed in
program p iff ∀(s0, s1) ∈ p : (s0 ∈ S ⇒ s1 ∈ S). The projection of program p
on a state predicate S (denoted p | S) consists of transitions {(s0, s1) | (s0, s1) ∈
p ∧ s0, s1 ∈ S}, i.e., transitions of p that start in S and end in S.

A specification Σ is a set of infinite sequences of states. Given a program p,
a state predicate S, and a specification Σ, we say that p satisfies Σ from S
(denoted p |=S Σ) iff (1) S is closed in p, and (2) every computation of p that
starts in a state where S is true is in Σ. If p |=S Σ and S 	={}, we say that S is
an invariant of p for Σ.

We say that a finite computation α maintains Σ iff there exists a computation
suffix β such that αβ is in Σ. We say that program p maintains (does not violate)
Σ from S iff (1) S is closed in p, and (2) every computation prefix α of p that
starts in a state in S maintains Σ. Note that the definition of maintains focuses
on finite sequences of states, whereas the definition of satisfies characterizes
infinite sequences of states.

24 B. Bonakdarpour, S.S. Kulkarni, and F. Abujarad

Notation. Whenever the specification is clear from the context, we will omit it;
thus, “S is an invariant of p” abbreviates “S is an invariant of p for Σ”.

In this paper, we only consider suffix-closed and fusion-closed specifications.
Suffix closure of a set means that if a state sequence σ is in that set then so
are all the suffixes of σ. Fusion closure of a set means that if state sequences
〈α, s, γ〉 and 〈β, s, δ〉 are in that set then so are the state sequences 〈α, s, δ〉 and
〈β, s, γ〉, where α and β are finite prefixes of state sequences, γ and δ are suffixes
of state sequences, and s is a program state. Intuitively, fusion closure of the
specification means that an implementation of the specification must execute its
next transition only based on its current state, i.e., the history of a computation
does not affect the next move of the program.

Furthermore, following Alpern and Schneider [15], we let the specification be
a conjunction of a safety specification and a liveness specification. For a suffix-
closed and fusion-closed specification, the safety specification can be represented
as a set Σbt of bad transitions [17] that must not occur in program computations
(i.e., the safety specification is a subset of Sp ×Sp). Now, let Σ be a specification.
Throughout the paper, we let Σbt be the specification whose computations, say
σ = 〈s0, s1, · · · 〉, is in Σ and for all i ≥ 0, (si, si+1) 	∈ Σbt, i.e., the specification
in which safety is never violated. In our algorithms, we do not explicitly specify
the liveness specification; the transformed fault-tolerant program satisfies the
liveness specification iff the input fault-intolerant program satisfies the liveness
specification.

2.2 Faults and Fault-Tolerance

The faults that a program p is subject to are systematically represented by
a set f of transitions, i.e., a subset of Sp × Sp where Sp is the state space
of p. A sequence of states 〈s0, s1, ...〉 is a computation of p in the presence of
f iff (1) ∀j > 0 : ((sj−1, sj) ∈ δp ∪ f), (2) if the sequence is finite and
terminates in sl then there exists no program transition originating at sl, and
(3) ∃n ≥ 0 : (∀j > n : (sj−1, sj)∈δp). We note that the last condition (bounded
fault model) is only necessary for masking fault-tolerance (defined below) where
recovery to the invariant is required. This constraint is not necessary for failsafe
fault-tolerance.

We use p[]f to denote the transitions obtained by taking the union of the
transitions in p and the transitions in f . We say that a state predicate T is
an f -span (read as fault-span) of p from S iff the following two conditions are
satisfied: (1) S ⊆ T , and (2) T is closed in p[]f . Observe that for all computations
of p that start at states where S is true, T is a boundary in the state space of
p up to which (but not beyond which) the state of p may be perturbed by the
occurrence of the transitions in f .

We now describe what we mean by levels of fault-tolerance. We identify the
fault-tolerance level of a program based on its behavior in the presence of faults.
We say that p is failsafe f -tolerant to Σbt from S iff (i) p |=S Σbt, and (ii) there
exists a state predicate T such that T is an f -span of p from S and p[]f maintains
Σbt from T . We say that p is masking f -tolerant to Σbt from S iff (i) p |=S Σbt,

Distributed Synthesis of Fault-Tolerant Programs 25

and (ii) there exists a state predicate T such that (1) T is an f -span of p from
S, (2) p[]f maintains Σbt from T , and (3) every computation of p[]f that starts
from a state in T has a state in S.

3 Problem Statement

In this section, we reiterate the problem statement from [7]. However, it is im-
portant to note that in this paper, we solve the same problem in a distributed
fashion. Given are a program p with invariant S, a set of faults f , and safety
specification Σbt such that p |=S Σbt. Our goal is to find a program p′ with
invariant S′ such that p′ is f -tolerant to Σbt from S′.

Our synthesis methods obtain p′ from p by adding fault-tolerance alone to
p, i.e., p does not introduce new behaviors to p when no faults have occurred.
Observe that if S′ (respectively, p′ | S′) contains states (respectively, transitions)
that are not in S (respectively, p′ | S) then, in the absence of faults, p′ may
include computations that start outside S (respectively, p′ | S). Since we require
that p′ |=S′ Σbt, it would imply that p′ is using a new way to satisfy Σbt in the
absence of faults. Therefore, we require that S′ ⊆ S and (p′ | S′) ⊆ (p | S′).
Thus, the synthesis problem is as follows (we instantiate this problem for failsafe
and masking f -tolerance in the obvious way):

Problem Statement 3.1. Given p, S, f , and Σbt such that p |=S Σbt. Identify
p′ and S′ such that:

(C1) S
′ ⊆ S,

(C2) (p′ | S′) ⊆ (p | S′), and
(C3) p′ is f -tolerant to Σbt from S′. �

4 Distributed Automated Addition of Fault-Tolerance

In this section, we present our distributed algorithms for adding fault-tolerance
to existing fault-intolerant programs. Similar to distributed model checking tech-
niques, developing distributed synthesis algorithms consists of two phases: (1)
parallelizing the state space over a network of workstations, and (2) designing a
distributed algorithm that runs on each portion of the state space. In this paper,
we only focus on the second phase. In particular, we assume that parallelization
of state space is already done using the construction technique due to Garavel,
Mateescu, and Smarandache [10]. However, we make some modifications tailored
for the purpose of synthesis rather than model checking.

4.1 Parallel Construction of State Space

In order to represent a program p with state space Sp and invariant S on N
machines (numbered from 0 to N−1), we use the notion of partitioned programs.
More specifically, the state space Sp is partitioned to S0

p · · · SN−1
p , where Sp =

∪N−1
i=0 Si

p and Si
p∩Sj

p = {} for all 0 ≤ i 	= j < N (i.e., the state space is partitioned

26 B. Bonakdarpour, S.S. Kulkarni, and F. Abujarad

into N classes, one class per machine). Likewise, state predicates are partitioned
in the same fashion. For instance, machine i contains Si and T i partitions of the
invariant S and the fault-span T . From now on, we call S the global invariant
and each Si the local invariant with respect to machine i. The same concept
applies to any other state predicate such as the fault-span T , i.e., T is the global
fault-span and T i is the local fault-span with respect to machine i.

The set p of transitions is partitioned to p0 · · · pN−1, where p = ∪N−1
i=0 pi, and

(s0, s1) ∈ pi iff (s0 ∈ Si
p ∨s1 ∈ Si

p) for all 0 ≤ i < N (i.e., if the source and target
of a transition belong to different machines, the transition is stored in both the
source and target machines). We call such transitions cross transitions. Likewise,
f and Σbt are partitioned in the same fashion. From now on, we call p the global
set of program transitions and each pi the local set of program transitions with
respect to machine i. The same concept applies to any other set of transitions
such as the set of faults f and the set of bad transitions Σbt.

Remark 4.1. We choose to store cross transitions in both source and target
machines due to two reasons: (1) as we shall see in Subsections 4.2 and 4.3, such
duplication decreases the number of potential broadcast messages considerably,
and (2) it allows us to efficiently do both forward and backward reachability
analysis at the same time. In fact, this deviation from distributed model checking
techniques is due to the nature synthesis as compared to verification.

Assumption 4.2. In our synthesis algorithms, we assume that the input fault-
intolerant program is already partitioned over a network using a reasonable static
partition function h : Sp → [0, N − 1] using the above parallelization method. In
other words, machine i contains a state s iff h(s) = i. We also assume that all
the synthesis processes over the network have a replica of h.

Revised problem statement. With this setting, we revise the Problem State-
ment 3.1 as follows. Given are a partition function h, a partitioned program
p0 · · · pN−1 with state space S0

p · · ·SN−1
p , local invariants S0 · · · SN−1, a parti-

tioned class of faults f0 · · · fN−1, and safety specification Σ0
bt · · · ΣN−1

bt such that
p |=S Σbt. Our goal is to design distributed algorithms that synthesize a program
p′ with invariant S′ such that p′ is failsafe/masking f -tolerant to Σbt from S′.

4.2 Distributed Addition of Failsafe Fault-Tolerance

In order to synthesize a failsafe fault-tolerant program, we transform p into p′

such that transitions of Σbt occur in no computation prefixes of p′. Towards this
end, we parallelize the proposed centralized algorithm in [7] for adding failsafe
fault-tolerance.

Algorithm sketch. The essence of adding failsafe fault-tolerance consists of
two parts: (1) a smallest fixpoint calculation for identifying the set of states
from where safety may be violated, and (2) a largest fixpoint calculation for
computing the invariant of the failsafe program. Our algorithm consists of a set
of distributed processes each running on one machine across the network. Each
process consists of two threads, namely, Distributed Add failsafe (cf. Figure 1)

Distributed Synthesis of Fault-Tolerant Programs 27

thread Distributed Add failsafe(pi, fi, Σi
bt : set of transitions,

Si
p, Si : state predicate, N : int, h: partition function, bLeaderi: Boolean)

{
cbSnti, cbRcvdi := 0; nsi := {}; (1)
msi := {s0 | ∃s1 ∈ Si

p : (s0, s1) ∈ fi ∧ (s0, s1) ∈ Σi
bt}; (2)

msi := FindLocalUnsafeStates(Si
p, msi, fi); (3)

→ BlkReceive (Trm dtct); cbSnti, cbRcvdi := 0; (4)
mti := {(s0, s1) | s1 ∈ (msi ∪ nsi) ∨ (s0, s1) ∈ Σi

bt}; (5)
Si := Si −msi; pi := pi −mti; (6)
S′i, p′i := RemoveLocalDeadlocks(Si, pi); (7)

→ BlkReceive (Trm dtct); (8)
if (S′i �= {}) then return p′ := ∪N−1

i=0 p′i, S′ := ∪N−1
i=0 S′i; (9)

elseif (bLeaderi) then Send((i + 1) mod N , Empt inv(0)); (10)
}
procedure FindLocalUnsafeStates(Si

p, msi: state predicate, fi: set of transitions)
// Returns the set of states from where safety may be violated by faults alone
{

while (∃s0, s1 : (s1 ∈ msi ∧ (s0, s1) ∈ fi)) (11)
if h(s0) = i then msi := msi ∪ {s0}; (12)
else Send(h(s0), New ms(s0, s1)); cbSnti := cbSnti + 1; (13)

return msi; (14)
}
procedure RemoveLocalDeadlocks(Si : state predicate, pi : set of transitions)
// Returns the largest subset of Si s.t. computations of p within that subset are infinite
{

while (∃s1 ∈ Si : (∀s2 | (∃s0 | (s0, s2) ∈ pi) : (s1, s2) �∈pi)) (15)
Si := Si − {s1}; (16)
pi := EnsureClosure(pi, Si, s1); (17)

return Si, pi (18)
}
procedure EnsureClosure(pi: set of transitions, Si: state predicate, s1: state)
{

while (∃s0 : ((s0, s1) ∈ pi ∧ h(s0) �= i)) (19)
Send(h(s0), New ds(s0, s1)); cbSnti := cbSnti + 1; (20)
pi := pi − {(s0, s1)}; (21)

return pi − {(s0, s1) | s0∈Si} (22)
}

Fig. 1. Distributed algorithm for adding failsafe fault-tolerance

and MessageHandler (cf. Figure 2). Briefly, the thread Distributed Add failsafe is
in charge of initiating local fixpoint calculations and managing synchronization
points of the algorithm. The thread MessageHandler is responsible for handling
messages sent by other synthesis processes across the network and invoking ap-
propriate procedures. The thread Distributed Add failsafe consists of three main
parts, namely, Lines 1-4 which is a smallest fixpoint computation, Lines 5-8
which is a largest fixpoint computation, and Lines 9-10 where we check the
emptiness of the synthesized program (to declare failure or success). It also in-
vokes three procedures, namely, FindLocalUnsafeStates, RemoveLocalDeadlocks,
and EnsureClosure.

Assumption 4.3. Throughout the paper, we assume that procedure invocations
are atomic.

We now describe our algorithm in detail. First, the thread Distributed Add failsafe
finds the set msi of states from where a single fault transition violates the safety

28 B. Bonakdarpour, S.S. Kulkarni, and F. Abujarad

thread MessageHandler()
{

msg := Receive();
case msg is

New msj(s0, s1): msi := msi ∪ {s0}; nsi := nsi ∪ {s1}; cbRcvdi := cbRcvdi + 1; (1)
msi := FindLocalUnsafeStates(Si

p, msi, fi); (2)
New dsj(s0, s1): pi := pi − {(s0, s1)}; cbRcvdi := cbRcvdi + 1; (3)

S′i, p′i := RemoveLocalDeadlocks(Si, pi); (4)
Empt invj(k): if (¬bLeader ∧ Si = {}) then

Send((i + 1) mod N , Empt inv(k + 1)); return {}; (5)
elseif (¬bLeader ∧ Si �= {}) then

Send((i + 1) mod N, Empt inv(k)); (6)
return p′i, S′i; (7)

if (bLeader ∧ (k = N − 1)) then
declare no failsafe program p′ exists; (8)
exit; (9)

else return p′ := ∪N−1
i=0 p′i, S′ := ∪N−1

i=0 S′i; (10)
Report rcvj(k): if (¬bLeaderi) then

Send((i + 1) mod N , Report rcv(k + cbRcvdi)); (11)
else nbTotal := k; (12)

Send((i + 1) mod N , Report snd(cbSnt)i); (13)
Report sndj(k): if (¬bLeaderi) then

Send((i + 1) mod N , Report snd(k + cbSnti)); (14)
elseif (nbTotal = k) then

Send([(i + 1) mod N..(i + N − 1) mod N], Trm dtct); (15)
New fs(s0): T i

1 := T i
1 − {s0}; cbRcvdi := cbRcvdi + 1; (16)

T i
1 :=ConstructLocalFaultSpan(T i

1, T i
2 − T i

1 , fi); (17)
Search pathj(X): ri := {}; cbRcvdi := cbRcvdi + 1; (18)

For each s0 ∈ X :
if (∃s1 : (Rank(s1) �=∞)) ∧ (s0, s1) �∈ mti) then

ri := ri ∪ {(s0, s1, Rank(s1) + 1)}; (19)
Send(j, New path(ri)); cbSnti := cbSnti + 1; (20)

New pathj(ri): qi := {}; cbRcvdi := cbRcvdi + 1; (21)
For each (s0, s1, a) s.t. ((s0, s1, a) ∈ ri ∧ s0 ∈ (T i

2 − T i
1):

if (s0, s1) �∈ pi then
pi := pi ∪ (s0, s1); qi := qi ∪ (s0, s1); (22)
Rank(s0) := a; (23)
T i
1 , T i

2 := T i
1 ∪ {s0}, T i

2 − {s0}; (24)
pi
1, T i

1 := ConstructLocalRecoveryPaths(Si
1, T i

2 , pi
1, mti);(25)

Send(j, Confirm trns(qi)); cbSnti := cbSnti + 1; (26)
Confirm trnsj(qi): pi := pi ∪ qi; cbRcvdi := cbRcvdi + 1; (27)

Send(j, Commit); cbSnti := cbSnti + 1; (28)
Commitj : cbRcvdi := cbRcvdi + 1; (29)

Wait to receive Commit message from all providers; (30)
Send(i + 1 mod N , Token); cbSnti := cbSnti + 1; (31)

Tokenj : cbRcvdi := cbRcvdi + 1; (32)
Send([(i + 1) mod N..(i + N − 1) mod N],

Search path(T i
2 − T i

1)); cbSnti := cbSnti + 1; (33)
}

Fig. 2. The message handler thread

(Line 2). Next, we invoke the procedure FindLocalUnsafeStates where we find the
set of states from where faults alone may violate the safety (Line 3). We find
this set by calculating the smallest fixpoint of backward reachable states, given
the initial set msi (Lines 11-12). In this calculation, if we find a fault transition,
say (s0, s1), where s1 ∈ msi, but s0 resides in a machine other than i (i.e.,
h(s0) 	= i), we send a New ms message to process h(s0) indicating that s0 is a
state from where faults alone may violate the safety specification (Line 13).

Distributed Synthesis of Fault-Tolerant Programs 29

Notation: At the receiver’s side, we denote messages by msgj(params), where
msg is the name of message, j is the sender process, and params is a list of
parameters sent along with the message. All messages (except Trm dtct) are
handled in the thread MessageHandler. At the sender’s side, we omit the sender’s
subscript.

The receiver of a New ms message (cf. Lines 1-2 in Figure 2) adds s0 to its local
msi (Line 1) and invokes the procedure FindLocalUnsafeStates (Line 2) so that by
taking s0 into account, new states from where faults alone may violate the safety
specification are explored. The set nsi consists of states that are in msj . Notice
that every time a process sends (respectively, receives) such messages, it incre-
ments the variable cbSnt i (respectively, cbRcvd i). We shall use these variables
for termination detection as a means to synchronize processes at certain points.

The next phase of the algorithm is removing the states of global ms from
the global invariant. To this end, we need to have a synchronization mechanism
to ensure that calculation of msi is completed for all i ∈ [0..N − 1]. In par-
ticular, we use the termination detection technique proposed by Mattern [18].
More specifically, in Line 4, the thread Distributed Add failsafe waits to receive a
Trm dtct message indicating that all processes are finished by calculating their
local msi and all communication channels are empty. The arrows (→) in Figure
1 mark the synchronization barriers. We will describe the termination detection
technique later in this subsection.

After calculating the global set ms, we remove this set from the invariant
to ensure that no computation of p′ that starts from a state in S′ violates the
safety specification. We also remove the transitions of the set mti from pi, where
mti consists of transitions whose target states are in msi or directly violate the
safety specification (Line 6). Notice that this removal may create deadlock states
(i.e., states from where there exist no outgoing transitions). Thus, the thread
Distributed Add failsafe invokes the procedure RemoveLocalDeadlocks (Line 7) to
remove deadlock states which is in turn calculating the largest fixpoint of back-
ward reachable states, given the initial set Si. In other words, it keeps removing
deadlock states until it reaches a fixpoint (Lines 15-16). In this calculation, since
removal of a deadlock state, say s1, may create transitions, say (s0, s1), such
that (s0, s1) violates the closure of invariant, we invoke the procedure Ensure-
Closure (Line 17) to ensure that no such transitions exist in the final synthesized
program. Furthermore, if we encounter a program transition, say (s0, s1), where
s1 is a deadlock state and s0 resides in a machine other than i (i.e., h(s0) 	= i),
then we send a New ds message to process h(s0) indicating that s0 might be a
deadlock state (Line 20). Upon receipt of such a message (cf. Line 3 in Figure 2),
the receiver removes the transition (s0, s1) to maintain consistency of transitions
and then invokes the procedure RemoveLocalDeadlocks (cf. Line 4 in Figure 2)
to remove possible new deadlock states due to removal of (s0, s1). Similar to the
calculation of ms, our algorithm ensures completion of calculation of the largest
fixpoint S′ using the same termination detection technique (Line 8 in Figure 1).

At this point, each process has synthesized a local set of program transi-
tions p′i with a local invariant S′i. The union of these portions is the final

30 B. Bonakdarpour, S.S. Kulkarni, and F. Abujarad

synthesized program, i.e., p′ = ∪N−1
i=0 p′i and S′ = ∪N−1

i=0 S′i. However, since in-
variant predicates cannot be empty, if S′ turns out to be equal to the empty set,
the algorithm declares failure. To test the emptiness of S′, a pre-specified leader
process identified by the variable bLeader initiates an emptiness polling of the
global invariant S′ as follows. For this polling (and also termination detection),
we consider a unidirectional virtual ring which connects every machine i to its
successor machine (i + 1) mod N . Note that this virtual ring is independent of
the fully connected topology of the network. Now, if the local invariant of the
leader is equal to the empty set then it sends an Empt inv(0) message to its
first neighbor on the virtual ring (process (i + 1) mod N) indicating that its
own local invariant is equal to the empty set (cf. Line 10 in Figure 1). If the
local invariant of the ((i + 1) mod N)th process is equal to the empty set as
well, it increments the value of k (the integer received along with the message
Empt inv) by one and sends the same message to the next process on the ring
(cf. Line 5 in Figure 2). Otherwise, it does not change the value of k and sends
an Empt inv(k) message to the next process (Line 6). Upon the completion of
one round of sending the Empt inv messages, the leader finally finds out whether
the global invariant S′ is equal to the empty set or not (Lines 8-10). If the global
invariant S′ is indeed equal to the empty set then the leader declares failure
(Line 8). Otherwise, it calculates and returns p′ and S′ (Line 10). Notice that
Lines 9 and 10 in Figures 1 and 2 respectively describes that the output of the
distributed algorithm is indeed a program which is the union of all local sets of
transitions and local invariants.

Termination detection. In order to detect the termination of the fixpoint
calculations, we use a virtual ring-based algorithm inspired by Mattern [18].
According to the general definition, global termination is reached when all lo-
cal computations are complete (i.e., each machine i has calculated a local fix-
point) and all communication channels are empty (i.e., all sent transitions have
been received). The core of the termination detection algorithm is as follows.
Every time the leader process finishes its local fixpoint calculations, it checks
whether global termination has been reached by generating two successive waves
of Report rcv (respectively, Report snd) messages on the virtual ring to collect
the number of messages received (respectively, sent) by all machines. A message
Report rcvj(k) (respectively, Report sndj(k)) received by machine i indicates
that k messages have been received (respectively, sent) by the machines from
the leader up to j = (i − 1) mod N . Each machine i counts the messages it
has received and sent using two integer variables cbRcvd i and cbSnt i, and adds
their values to the numbers carried by Report rcv and Report snd messages
(Lines 11, 13, and 14). Upon receipt of the Report sndj(k) message ending the
second wave, the leader machine checks whether the total number k of messages
sent is equal to the total number nbTotal of messages received (the result of the
Report rcv wave). If this is the case, it informs the other machines that termi-
nation has been reached, by sending a broadcast Trm dtct message. Otherwise,
the leader concludes that termination has not been reached yet and will generate
a new termination detection wave later (Line 15).

Distributed Synthesis of Fault-Tolerant Programs 31

Theorem 4.4. The algorithm Distributed Add failsafe is sound and complete.

Performance of parallelized addition of failsafe. Distributing the synthe-
sis algorithm is aimed at reducing the space complexity and time complexity.
Of these, similar to the goals for distributed model checking, reducing the space
complexity is a higher priority. We expect that our approach would assist in this
case. In particular, if N machines are used to perform synthesis then each of
them is expected to have (1/N)th number of states and at most (2/N)th num-
ber of transitions (because a transition may be stored in up to two machines).
Regarding time complexity, in each phase, a machine performs some local compu-
tation that results a set of queries (e.g., New ms, New ds, etc.) for other machines.
Now, consider the role of the two threads Distributed Add failsafe and Message-
Handler. The thread MessageHandler provides a new list of tasks (received from
other machines) that should be performed by Distributed Add failsafe. Since Dis-
tributed Add failsafe begins with a list of tasks (based on its local states and tran-
sitions) and MessageHandler continues to provide new tasks based on requests
received from others, we expect that the list of tasks that Distributed Add failsafe
needs to perform will typically be nonempty at all times. In other words, com-
munication cost will not be in the critical path for the synthesis. Therefore, we
expect that the distributed synthesis algorithm will be able to provide significant
benefits regarding time complexity as well.

4.3 Distributed Addition of Masking Fault-Tolerance

In order to synthesize a masking program, we should generate a program p′ with
invariant S′ and fault-span T ′, such that p′ never violates its safety specification
and if faults perturb the state of p′ to a state in T ′, it recovers to S′ within a
finite number of recovery steps. Similar to the distributed algorithm for adding
failsafe fault-tolerance, our algorithm for adding masking fault-tolerance consists
of two threads Distributed Add masking (cf. Figure 3) and MessageHandler (cf.
Figure 2).

Our first estimate of a masking program is a failsafe program. Hence, we let
our first estimate Si

1 be the local invariant of its failsafe fault-tolerant program
(cf. Line 2 in Figure 3). Likewise, we estimate the local fault-span to be T i

1
where T i

1 includes all the states in the local state space minus the states from
where safety of p′ may be violated (Line 3). Next, we compute the local set
of transitions pi

1, local fault-span T i
1, and local invariant Si

1 in a loop (Lines
5-15). This loop consists of three main steps for constructing recovery paths,
calculating fault-span, and calculating invariant as follows:

1. In order to compute the local set of transitions pi
1, we construct recovery

paths from each state in the fault-span to a state in the invariant. To this
end, we identify two types of recovery paths: (1) recovery paths consist of
only local program transitions, and (2) recovery paths consist of both local
program transitions as well as cross transitions. We note that since these
transitions originate outside the invariant, they do not violate the second

32 B. Bonakdarpour, S.S. Kulkarni, and F. Abujarad

thread Distributed Add masking(pi, fi, Σi
bt : set of transitions,

Si
p, Si : state predicate, N : int, h: partition function, bLeaderi: Boolean)

{
Compute msi and mti as in Distributed Add failsafe; (1)
Let Si

1 be the local invariant of the failsafe version of p; (2)
T i
1 := Si

p −msi; ∀s ∈ (T i
1 − Si

1) : Rank(s) :=∞; (3)
pi
1 := pi; (4)

repeat
T i
2 , Si

2 := T i
1 , Si

1; cbSnti, cbRcvdi := 0 (5)
pi
1, T i

1 := ConstructLocalRecoveryPaths(Si
1, T i

1 , pi, mti); (6)
→ BlkReceive (Trm dtct); cbSnti, cbRcvdi := 0; (7)

if (bLeader) then
Send([(i + 1) mod N..(i + N − 1) mod N], Search path(T i

2 − T i
1)); (8)

cbSnti := cbSnti + 1; (9)
→ BlkReceive (Trm dtct); cbSnti, cbRcvdi := 0; (10)

T i
1 := ConstructLocalFaultSpan(T i

1, T i
2 − T i

1 , fi); (11)
→ BlkReceive (Trm dtct); cbSnti, cbRcvdi := 0; (12)

Si
1 := RemoveLocalDeadlocks(Si

1 ∩ T i
1 , pi

1); (13)
→ BlkReceive (Trm dtct); (14)

if (Si
1 ={} ∨ T i

1 ={}) then break; (15)
until (T i

1 = T i
2 ∧ Si

1 = Si
2)→ BlkReceive (Trm dtct); (16)

T ′i, S′i := T i
1 , S′i; (17)

if (bLeaderi ∧ (S′i ={})) then
Send((i + 1) mod N , Empt inv(0)); (18)

if (bLeaderi ∧ (T ′i ={})) then
Send((i + 1) mod N , Empt fs(0)); (19)

}
procedure ConstructLocalRecoveryPaths(Si, T i : state predicate, pi, mti: set of transitions)

Xi
1 := Si; j = 0; Xi

2 := {}; (20)
repeat

∀s ∈ (Xi
1 −Xi

2) : Rank(s) := j; (21)
Xi

2 := Xi
1; j := j + 1; (22)

ri := {(s0, s1) | s0 ∈ (T i
1 −Xi

1) ∧ s1 ∈ Xi
1} −mti; (23)

pi := pi | Si ∪ ri; (24)
Xi

1 := Xi
1 ∪ {s0 | ∃s1 : (s0, s1) ∈ ri}; (25)

until (Xi
1 = Xi

2)
return pi, Xi; (26)

}
procedure ConstructLocalFaultSpan(T i

1, T i
2 : state predicate, fi : set of transitions)

// Returns the largest subset of T i
1 that is closed in f

{
while (∃s0, s1 : ((s0 ∈ T i

1) ∧ (s1 ∈ T i
2) ∧ (s0, s1) ∈ fi))

T i
1 := T i

1 − {s0}; (27)
For each s1 ∈ T i

2 :
if (∃s0 : ((s0, s1) ∈ fi ∧ h(s0) �= i))

Send(h(s0), New fs(s0)); cbSnti := cbSnti + 1; (28)
return T i

1 ; (29)
}

Fig. 3. Distributed algorithm for adding masking tolerance

constraint of the problem statement (i.e., in the absence of faults, no new
computation is introduced to fault-tolerant program).

Recovery paths through local transitions. The thread
Distributed Add masking invokes the procedure ConstructLocalRecoveryPaths
(Line 6), which identifies layers of states in the local fault-span correspond-
ing to the number of steps of recovery paths, in a loop (Lines 21-25). In

Distributed Synthesis of Fault-Tolerant Programs 33

the beginning of the loop it assigns a rank to each state which is equal to
the number of recovery steps from that state to a state in the local invari-
ant. In this setting, the rank of states in the local invariant are zero. In the
first iteration of the loop, we identify the set of states from where one-step
recovery to the local invariant is possible while maintaining the safety, i.e.,
X i

1 = {s0 | s0 ∈ (T i
1 − Si

1) ∧ ∃s1 ∈ Si
1 : (s0, s1) 	∈ mti}. Thus, we add

the transitions, say (s0, s1) where s0 ∈ X i
1 and s1 ∈ Si, to the set of local

program transitions. In the second iteration of the loop, we identify the set
of states from where two-step recovery is possible. Indeed, this is equivalent
to identifying the set of states from where one-step recovery is possible from
T i

1 −X i
1 to the set X i

1 ∪Si
1. Continuing thus inductively, we identify layers of

states from where multi-step recovery is possible. Finally, we reach a point
where we identify the set X i

1 of states from where recovery to the local in-
variant using local transitions is possible and the set T i

1 − X i
1 of states from

where such recovery is not possible.

Recovery paths through cross transitions. After constructing local
recovery paths, the leader process initiates a wave of communication among
all processes to identify the set of states from where local recovery is not
possible, but recovery through cross transitions is possible. More specifically,
the leader process sends a Search path message to all other processes (Line 8
in Figure 3). Let us call the process which sends a Search path the requester
process. Upon receipt of this message along with the set X of states from
where local recovery is not possible (Line 18 in Figure 2), each process offers
a recovery cross transition, say (s0, s1), provided (s0, s1) 	∈ mti and there
exists a recovery path from s1 (i.e., Rank(s1) 	= ∞), for each state s0 ∈ X
(Line 19). Let us call such processes the providers. Each provider sends a
New path message carrying the set ri of cross recovery transitions along with
the rank of state s0 to the requester (Line 20). Obviously, if the requester
accepts the provider’s transitions, the rank of s0 will be Rank(s1) + 1.

Upon receipt of this message (Line 21 in Figure 2), the requester adds
the new recovery cross transitions, say (s0, s1), to its set of local program
transitions (Line 22) and sets the rank of source states s0 (Line 23). These
states should be added to the local fault-span (Line 24). Next, it invokes
the procedure ConstructLocalRecoveryPaths to add new possible local recov-
ery transitions by taking the newly added recovery cross transitions into
account (Line 25). Then, it sends a Confirm trns message to the providers
of the cross transitions so that the set of cross transitions of providers and
the requester processes are consistent (Line 26). Obviously, if the requester
receives other offers for a cross transition originated at s0, say (s0, s1) with
rank a, where the current rank of s0 is greater than a, then the requester
can replace its current cross transition with (s0, s1). However, we do not
illustrate such implementation details in the algorithms.

Finally, upon the receipt of a Confirm trns message, the providers add
the set qi of cross transitions (selected by the requester) to their set of
local program transitions as well (Line 27). At this point, providers send a

34 B. Bonakdarpour, S.S. Kulkarni, and F. Abujarad

Commit message to the requester (Line 28) indicating that the changes are
committed. Upon receipt of Commit message from all providers (Lines 29-
30), the requester sends a Token message to the next process on the virtual
ring (Line 31) so that it starts identifying the cross recovery transitions in
the same fashion (Line 33). We continue doing this until no cross transition
is added across the network.

Notice that in both types of recovery paths, we do not introduce cycles to
the fault-span, as we do not add transitions from a state with a lower rank to
a state with higher rank. Hence, after occurrence of faults, recovery within
a finite number of steps is guaranteed. We synchronize the completion of
construction of recovery paths in Line 7.

2. Since there may exist states from where recovery to the invariant is not
possible, we need to recompute the local fault-span by removing the states
from where closure of fault-span is violated through fault transitions. To this
end, we invoke the procedure ConstructFaultspan which is a largest fixpoint
calculation (Line 11 in Figure 3) to calculate the largest fault-span which is
closed in p[]f . Since this removal may cause other states in the local fault-
span of other processes to violate the closure of the global fault-span, we send
a New fs message to such processes to indicate this fact (Line 28). Note that
in order to synchronize the completion of calculation of local fault-spans,
here as well, we need a barrier synchronization (Line 12).

3. Due to the removal of some states in step 2, we recompute the local invariant
by invoking the procedure RemoveLocalDeadlocks. Notice that since Si

1 must
be a subset of T i

1, this invocation is parameterized by Si
1 ∩ T i

1 (Line 13). At
this point, if both Si

1 and T i
1 are nonempty, we jump back to step 1 and we

keep repeating the loop until a fixpoint is reached, i.e., (T i
1 = T i

2 ∧ Si
1 = Si

2).

Upon the termination of the repeat-until loop, recovery without violation of
the safety specification from T ′1 to S′1 is provided. At this point, if there exist
processes i and j such that S′i and T ′j are both nonempty then we have a
solution to the synthesis problem. Thus, similar to addition of failsafe, we run
an emptiness poll among the processes (Lines 18-21). To this end, we send a
Empt fs(0), which is similar to Empt inv, except the message handler tests the
emptiness of the local fault-span rather than local invariant. We skip including
this message in Figure 2.

We note that, in this paper, we have modified the recovery mechanism of
the centralized algorithm in [7]. This is due to the fact that in that algorithm
the authors add all possible transitions, i.e., the set p1|S1 ∪ {(s0, s1) | s0 ∈
T1 − S1 ∧ s1 ∈ T1}, and then remove non-progress cycles. However, since
the size of this set in worst case is in the square order of the size of the state
space, it implies that in worst case, each machine i must store a set whose
size is in the square order of the state space which obviously does not make
sense. Hence, instead of adding all possible transitions and removing cycles, we
construct recovery paths in a more space-efficient way in a stepwise manner using
the notion of layered fault-span (cf. the Procedure ConstructLocalRecoveryPaths).

Theorem 4.5. The algorithm Distributed Add masking is sound. ��

Distributed Synthesis of Fault-Tolerant Programs 35

5 Conclusion and Future Work

In this paper, we focused on the problem of automated addition of fault-tolerance
to existing fault-intolerant programs where the state space of the fault-intolerant
program is distributed over a network or cluster of workstations. We addressed
this problem in the high atomicity model where all processes of the program
are able to read and write all program variables in one atomic step. We pre-
sented two distributed multithreaded algorithms for adding failsafe and masking
fault-tolerance to a given fault-intolerant program. To this end, we parallelized
calculation of smallest and largest fixpoints of a given formula and also addition
of safe recovery paths.

As future work, we plan to implement the algorithms proposed in this pa-
per in our tool FTSyn. This implementation will enable us to synthesize fault-
tolerant programs with large state space. We also plan to study the problem of
designing distributed algorithms for adding fault-tolerance to distributed [6] and
real-time [2] programs. We are currently investigating the possibility of reducing
the number of synchronization points in our algorithms. Such synchronization
barriers decrease the level of parallelism and, hence, efficiency of distributed
algorithms.

References

1. Bonakdarpour, B., Kulkarni, S.S.: Exploiting symbolic techniques in automated
synthesis of distributed programs with large state space. In: ICDCS. IEEE Inter-
national Conference on Distributed Computing Systems, pp. 3–10 (2007)

2. Bonakdarpour, B., Kulkarni, S.S.: Incremental synthesis of fault-tolerant real-time
programs. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp.
122–136. Springer, Heidelberg (2006)

3. Bonakdarpour, B., Kulkarni, S.S.: Automated incremental synthesis of timed au-
tomata. In: Brim, L., Haverkort, B., Leucker, M., van de Pol, J. (eds.) FMICS
2006. LNCS, vol. 4346, pp. 261–276. Springer, Heidelberg (2007)

4. Ebnenasir, A., Kulkarni, S.S., Bonakdarpour, B.: Revising UNITY programs: Pos-
sibilities and limitations. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.)
OPODIS 2005. LNCS, vol. 3974, pp. 275–290. Springer, Heidelberg (2005)

5. Kulkarni, S.S., Ebnenasir, A.: Automated synthesis of multitolerance. In: DSN. In-
ternational Conference on Dependable Systems and Networks, pp. 209–219 (2004)

6. Kulkarni, S.S., Arora, A., Chippada, A.: Polynomial time synthesis of Byzantine
agreement. In: SRDS. Symposium on Reliable Distributed Systems, pp. 130–140
(2001)

7. Kulkarni, S.S., Arora, A.: Automating the addition of fault-tolerance. In: Joseph,
M. (ed.) FTRTFT 2000. LNCS, vol. 1926, pp. 82–93. Springer, Heidelberg (2000)

8. Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize
synchronization skeletons. Science of Computer Programming 2(3), 241–266 (1982)

9. Manna, Z., Wolper, P.: Synthesis of communicating processes from temporal
logic specifications. ACM Transactions on Programming Languages and Systems
(TOPLAS) 6(1), 68–93 (1984)

36 B. Bonakdarpour, S.S. Kulkarni, and F. Abujarad

10. Garavel, H., Mateescu, R., Smarandache, I.: Parallel state space construction for
model-checking. In: Dwyer, M.B. (ed.) Model Checking Software. LNCS, vol. 2057,
pp. 217–234. Springer, Heidelberg (2001)

11. Stern, U., Dill, D.L.: Parallelizing the murϕ verifier. In: Grumberg, O. (ed.) CAV
1997. LNCS, vol. 1254, pp. 256–278. Springer, Heidelberg (1997)

12. Heyman, T., Geist, D., Grumberg, O., Schuster, A.: Achieving scalability in parallel
reachability analysis of very large circuits. In: Emerson, E.A., Sistla, A.P. (eds.)
CAV 2000. LNCS, vol. 1855, pp. 20–35. Springer, Heidelberg (2000)

13. Leucker, M., Somla, R., Weber, M.: Parallel model checking for LTL, CTL*, and Lμ
2 .

In: PDMC. International Workshop on Parallel and Distributed Model Checking
(2003)

14. Chung, M.-Y., Ciardo, G.: A dynamic firing speculation to speedup distributed
symbolic state-space generation. In: IPDPS. International Parallel and Distributed
Processing Symposium (2006)

15. Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Letters 21,
181–185 (1985)

16. Arora, A., Gouda, M.G.: Closure and convergence: A foundation of fault-tolerant
computing. IEEE Transactions on Software Engineering 19(11), 1015–1027 (1993)

17. Kulkarni, S.S.: Component-based design of fault-tolerance. PhD thesis, Ohio State
University (1999)

18. Mattern, F.: Algorithms for distributed termination detection. Journal of Dis-
tributed Computing 2(3), 161–175 (1987)

Decentralized Detector Generation in

Cooperative Intrusion Detection Systems

Rainer Bye1, Katja Luther1, Seyit Ahmet Çamtepe1,
Tansu Alpcan2, Şahin Albayrak1, and Bülent Yener3

1 DAI-Labor, Technische Universität Berlin
2 Deutsche Telekom Laboratories, Berlin

3 Department of Computer Science, Rensselaer Polytechnic Institute, NY

Abstract. We consider Cooperative Intrusion Detection System (CIDS)
which is a distributed AIS-based (Artificial Immune System) IDS where
nodes collaborate over a peer-to-peer overlay network. The AIS uses the
negative selection algorithm for the selection of detectors (e.g., vectors of
features such as CPU utilization, memory usage and network activity).
For better detection performance, selection of all possible detectors for
a node is desirable but it may not be feasible due to storage and compu-
tational overheads. Limiting the number of detectors on the other hand
comes with the danger of missing attacks. We present a scheme for the
controlled and decentralized division of detector sets where each IDS is
assigned to a region of the feature space. We investigate the trade-off be-
tween scalability and robustness of detector sets. We address the problem
of self-organization in CIDS so that each node generates a distinct set of
the detectors to maximize the coverage of the feature space while pairs of
nodes exchange their detector sets to provide a controlled level of redun-
dancy. Our contribution is twofold. First, we use Symmetric Balanced
Incomplete Block Design, Generalized Quadrangles and Ramanujan Ex-
pander Graph based deterministic techniques from combinatorial design
theory and graph theory to decide how many and which detectors are
exchanged between which pair of IDS nodes. Second, we use a classical
epidemic model (SIR model) to show how properties from deterministic
techniques can help us to reduce the attack spread rate.

1 Introduction

In this paper, we introduce self-organizing, self-adaptive and self-healing capabil-
ities to the Cooperative Intrusion Detection System (CIDS) which is a distributed
Artificial Immune System (AIS) based Intrusion Detection System (IDS) where
nodes collaborate over a peer-to-peer overlay network to improve the detection
capability and to decrease the false alarm rate. Hence, CIDS becomes a promis-
ing step towards the realization of Autonomous Security (AS) framework. We
define Autonomous Security as an environment which provides smart and us-
able security mechanisms, distributed monitoring-detection-prevention with self-
* properties and a security simulation/evaluation tool.

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 37–51, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

38 R. Bye et al.

The Artificial Immune System (AIS), like the Biological Immune System, is
based on the distinction between self and non-self. Initially, an n-dimensional
feature space is covered by detectors (i.e., n-dimensional vectors of features such
as CPU utilization, memory usage, . . ., number of tcp connections). During the
training phase, these detectors are presented to feature vectors describing the
self. Matching detectors are eliminated and the remaining are used for the detec-
tion of anomalies. Selecting all possible detectors for an IDS node would certainly
provide best attack detection capability. But, it may not be feasible to store large
amount of detectors and process them while trying to detect attacks in timely
manner. Limiting the number of detectors on the other hand comes with the
danger of missing attacks. Therefore, creating a detector set which covers the
whole feature space may not be feasible, and random selections can create holes
which means some critical regions on the feature space may not be covered. Kim
et al. [1] use evolutionary algorithms and Gonzalez et al. [2] use monte carlo
based approaches to face the coverage problem. In this paper, we assume that
each IDS is assigned to a mutually exclusive region in the feature space due to
approaches in [1] and [2]. Each IDS node can independently generate a detector
set for the region of the feature space it is responsible for. In this scalable and
decentralized approach, at most one IDS can have the proper detector for an
attack and the attack may spread faster than the case where each node stores
the global detector set. Thus, IDS nodes should have overlapping detector sets;
in other words, detectors should be redundantly distributed to IDS nodes.

Goel et al. propose to distribute the detector generation [3] where each IDS
is responsible for a non-overlapping region in the feature space, and it generates
a mutually exclusive subset of the detector space. When an attack is detected,
the corresponding detector set is broadcasted to other vulnerable nodes in the
network. In this approach, processing and memory overhead of the detector gen-
eration is reduced by the expense of increased communication. Moreover, an
attack may spread quickly since only one IDS has the proper detector to detect
the attack, and vulnerable nodes are updated only when this specific IDS is at-
tacked. Thus, Goel et al. [3] consider to create an overlap of detector sets stored
on IDS nodes by using random graph G(N, p)1 approach due to Erdős-Rényi [4]
where each IDS exchanges its detector set with (log N) other IDS nodes.

In this paper, we assume a homogeneous network environment where each
node has similar capabilities and configuration. Nodes have limited resources
so that they can not store and process all possible detectors. Wireless sensor
networks, networks of pico-satellites, smartphones, wireless ad-hoc networks of
mobile devices can be the examples of such networks. We assume that attacks
are equally probable and they are uniformly distributed over the feature space.

1.1 Our Contribution

We investigate the trade-off between scalability and redundancy of detector
sets. Our contribution is twofold. First, we use Symmetric Balanced Incomplete
1 G(N, p) is a graph with N nodes where each pair of nodes have a link in between

with probability p.

Decentralized Detector Generation in CIDS 39

Block Design (SBIBD), Generalized Quadrangles (GQ) and Ramanujan Ex-
pander Graph (REG) techniques from combinatorial design theory and graph
theory to decide how many and which detectors are exchanged between which
pair of IDS nodes. Each IDS node uses the proposed deterministic techniques to
independently decide which nodes to contact with and get their detector sets.

Communication and detector set exchange is done through a peer-to-peer
overlay network. Unlike probabilistic approaches (i.e., G(N, p)), our determinis-
tic approaches provide regular logical graphs for detector set exchange. In the
SBIBD-based approach, every pair of IDS nodes have exactly one detector set in
common. This approach provides the highest level of overlap. In GQ, not every
pair of IDS nodes share a detector set but if two IDS nodes do not share a detec-
tor set, there are other IDS nodes sharing detector set with both. The GQ-based
approach decreases the level of overlap in a controlled way. REG-based deter-
ministic approach is comparable to G(N, p)-based probabilistic approach due to
Goel et al. [3]. REG provides better defense against attack spread since REG
are the best known expanders meaning that any subset of nodes are connected
to a larger subset of nodes for a fixed node degree; equivalently, any subset of
IDS nodes share detectors with the largest possible subset of IDS nodes. This
property of REG help them to provide a better immunity against attacks.

In general, our approaches can be classified as decentralized, self-organizing,
self-adaptive and self-healing. They are decentralized because detector set gener-
ation task is distributed to networked IDS nodes. Next, they are self-organizing
because once assigned to a feature subspace, each IDS node independently gen-
erates its detector set, and independently decides nodes with which to exchange
its detector set to create a controlled level of overlap. Then, they are self-adaptive
because the network size can be increased by inserting new IDS nodes in which
case IDS nodes shall re-organize. Any faulty IDS can be replaced with a new one
and new IDS may independently decide which other nodes to contact to recover
the detector sets. Finally, they are self-healing because when an attack reaches
to an IDS node with a proper detector, the detector is sent to other IDS nodes
to stop the attack spread.

As the second contribution, we enhance the classical epidemic model (SIR
model [5]). We model the spread of both attacks and defenses (detector updates).
We show how properties from deterministic techniques can help us to create a
regular and controlled level overlap between detector sets of individual IDS nodes
to reduce the attack spread rate.

1.2 Organization

Organization of the paper is as follows: in Section 2 we provide background
information on Cooperative IDS, classical epidemic model, Balanced Incom-
plete Block Designs (BIBD), Generalized Quadrangles (GQ) and Ramanujan
Expander Graphs (REG). In Section 3 we introduce our combinatorial design
and expander graph based approaches. In Section 4 we analyze our approaches
by using an epidemic model. Finally, in Section 5 we conclude.

40 R. Bye et al.

2 Background

2.1 Cooperative IDS

Cooperative Intrusion Detection System (CIDS) utilizes the AIS (Artificial Im-
mune System) introduced by Forrest et al. [6,7,8] and a peer-to-peer (P2P)
overlay system [9]. The AIS principle bases on the self/non-self discrimination.
It uses the negative selection algorithm described by Hofmeyr et al. [8] as the
algorithm for the selection of detectors for a given set of feature vectors. A fea-
ture vector is an n-dimensional vector of numerical values. A detector denotes a
point in the feature space, like a feature vector, with the additional information
such as age.

The main idea is to produce detectors randomly and compare them to the
normal patterns obtained during the training. Every detector that matches to
these normal patterns is eliminated, and hence, the remaining detectors recognize
only abnormal patterns. In the case of the Cooperative IDS, the feature vectors
might be composed of network traffic statistics measured at an end device in a
specific time interval. A sample feature vector might be < timestamp, number of
TCP connections, number of TCP packets, number of UDP packets, number of
used ports, number of port scans >. After the learning period, new measurements
are presented to the remaining detectors, and the distances between the feature
vectors and the detectors are computed. If the distance between a detector and a
feature vector crosses a specific threshold, the matching detector is distributed.

The used P2P infrastructure is based on a hybrid decentralized architecture.
The nodes are equal in their abilities but one node acts always as the super
node for the purpose of the initial look-up of other peers containing AIS-systems.
Apart from this, the nodes communicate with all other peers autonomously. The
P2P overlay enables the collaborating nodes to exchange status information or
detectors in the scenario of this paper. A general classification of P2P systems
can be found in [10]. For further details regarding the CIDS, we refer to [9].

2.2 Classical Epidemic Model

Classical epidemic model for the spread of Internet worms [5] considers a group
of homogeneously mixed susceptible (S), infected (I) and removed (R) nodes.
A node is susceptible if it is not infected and if it has no proper protection
for the attack. A node which is attacked by a worm (a.k.a., virus or any ma-
licious code) becomes infected, and immediately starts to spread the infection
to other susceptible nodes. An infected node can be recovered and immunized
when proper protection mechanisms are enabled in which case the node be-
comes removed. Removed nodes can not be infected again. Suppose that at time
ti there are S(ti) susceptible, I(ti) infected and R(ti) removed nodes where
S(ti) + I(ti) + R(ti) = N . Let

s(ti) =
S(ti)
N

, i(ti) =
I(ti)
N

, r(ti) =
R(ti)
N

Decentralized Detector Generation in CIDS 41

(a) (b)

Fig. 1. Classical epidemic model for spread of Internet worms in a group of ho-
mogeneously mixed Susceptible (S), Infected (I) and Removed (R) nodes where
S(ti) + I(ti) + R(ti) = N at time ti. (1) Susceptible nodes get infected at
the rate given by Equation 3 as they are contacted by the infected nodes. (2) Infected
nodes are immunized and they become removed at the rate given by Equation 4. A
removed node can not be infected again.

be the ratio of susceptible, infected and removed nodes respectively. Each contact
in between susceptible and infected nodes will result in an infection. Therefore, in
an interval �t, there will be β I(t) S(t)

N �t contacts resulting in infection where
β is the average number of contacts per infected node. Furthermore, infected
nodes are removed from the system at a rate γ due to recovery or immunization.
The number of removal at time interval �t is γ I(t) �t. That is:

�I(t) = β I(t)
S(t)
N

�t − γ I(t) �t, (1)

di(t)
dt

= β i(t) s(t) − γ i(t), (2)

ds(t)
dt

= −β i(t) s(t), (3)

dr(t)
dt

= γ i(t). (4)

Epidemic can not build up if [di(t)/dt]t0 ≤ 0. That means, β i(t) s(t) − γ i(t) ≤
0 and s(t) ≤ γ/β. The ratio γ/β is called relative removal-rate or threshold
density for susceptible nodes and represented by ρ = γ/β. Figure 1 summarizes
the overall model.

2.3 Balanced Incomplete Block Designs (BIBD)

A BIBD is an arrangement of v distinct objects into b blocks such that: (i)
each object is in exactly r distinct blocks, (ii) each block contains exactly k
distinct objects, (iii) every pair of distinct objects is in exactly λ blocks. The
design is expressed as (v, b, r, k, λ) (a.k.a., (v, k, λ)) where: b · k = v · r and
λ · (v −1) = r · (k −1) . It is called Symmetric BIBD (a.k.a., Symmetric Design
or SBIBD) when b = v and r = k [11] meaning that not only every pair of
objects occurs in λ blocks but also every pair of blocks intersects on λ objects.

42 R. Bye et al.

In this paper, we are interested in the Finite Projective Plane which is a subset
of Symmetric BIBD. Finite Projective Plane consists of points (a finite set P
of points) and lines (a set of subsets of P) of the projective space PG(2, q) of
dimension 2 and order q. For each prime power q where q ≥ 2, there exists
a Finite Projective Plane of order q [12, Theorem 2.10] with following four
properties: (i) every line contains exactly k = q + 1 points, (ii) every point
occurs on exactly r = q + 1 lines, (iii) there are exactly v = q2 + q + 1 points,
and (iv) there are exactly b = q2 + q + 1 lines. Thus, a Finite Projective Plane
of order q is a SBIBD with parameters (q2 + q + 1, q + 1, 1) [11].

We consider two methods to construct SBIBD of the form (q2 + q + 1, q +
1, 1). First method is Difference Set Method where the construction is done by
simple modular addition operations on a cyclic difference set. A cyclic (v, k, λ)
difference set (mod v) is a set B = {b1, b2, . . . , bk} of distinct elements in Zv

such that each one of the (v−1) elements, say b, can be expressed in the form of
difference b = bi − bj (mod v) in λ different ways where bi, bj ∈ B [11, Definition
2.1.1]. SBIBD blocks can be constructed by B, B + 1, B + 2, . . . , B + (v − 1)
(mod v) [11, Theorem 2.1.3] where B + i = {(b1 + i) mod v, . . . , (bk + i) mod v}.
For example, difference set {1, 2, 4} can be used to generate (7, 3, 1) SBIBD
with blocks {1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {5, 6, 1}, {6, 7, 2}, {7, 1, 3} (0 is
replaced with 7). Difference method provides a very efficient construction which
can be used on low-resource devices if a cyclic different set for the target design
is known. In fact, cyclic difference sets for small designs are listed in [11]. But,
generating a cyclic difference set for a large design is not trivial [11, Theorem
2.5.2]. Second method is used for large designs where complete set of (q − 1)
Mutually Orthogonal Latin Squares (MOLS) are used to first construct an affine
plane of order q which is a (q2, q, 1) design. The affine plane of order q is then
converted into a projective plane of order q which is a (q2+q+1, q+1, 1) SBIBD.
Construction can be done in O(v3/2) time as described in [13] and references
there in.

2.4 Finite Generalized Quadrangle (GQ)

A Finite Generalized Quadrangle GQ(s, t) is a point-line incidence relation with
following properties: (i) each point is incident with t + 1 lines (t ≥ 1) and two
distinct points are incident with at most one line, (ii) each line is incident with
s+1 points (s ≥ 1) and two distinct lines are incident with (a.k.a., intersect on)
at most one point, and (iii) if x is a point and L is a line not incident (I) with x,
then there is a unique pair (y, M) ∈ Points × Lines for which x I M I y I L. In
a GQ(s, t), there are v = (s+1)(st+1) points and b = (t+1)(st+1) lines where
each line includes s + 1 points and each point is incident with t + 1 lines. In this
work, we are interested in GQ(q, q) from projective space PG(4, q). Probability
that two lines intersect in GQ(q, q) is given by the Equation 5.

PGQ =
t(s + 1)

(t + 1)(st + 1)
=

q(q + 1)
(q + 1)(q2 + 1)

=
q2 + q

q3 + q2 + q + 1
≈ 1

q
. (5)

Decentralized Detector Generation in CIDS 43

Fig. 2. Expander graphs are regular multi-graphs with expansion coefficient ε. Adja-
cency matrix for a sample Ramanujan Expander Graph (REG) X5,17.

In GQ(s, t) = GQ(q, q), there are v = b = q3 + q2 + q + 1 lines and points.
Each line contains s + 1 = q + 1 points, and each point is incident with t + 1 =
q + 1 lines. Consider GQ(s, t) = GQ(2, 2) for q = 2 as an example. There are
15 points S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} and 15 lines {1, 8, 9}
{1, 12, 13} {1, 4, 5} {3, 12, 15} {2, 8, 10} {2, 12, 14} {2, 4, 6} {5, 11, 14} {3, 4, 7}
{6, 11, 13} {5, 10, 15} {3, 8, 11} {7, 9, 14} {7, 10, 13} and {6, 9, 15} where each
line contains s + 1 = 3 points and each point is incident with t + 1 = 3 lines.
Note that lines {1, 8, 9} and {3, 12, 15} do not intersect but GQ provides three
other lines intersecting with both: {1, 12, 13}, {3, 8, 11} and {6, 9, 15}. GQ(q, q)
can be constructed from projective space PG(4, q) with the canonical equation
Q(X) = x2

0 + x1x2 + x3x4 = 0. Each point is a vector of the form X =<
x0, x1, x2, x3, x4 > in GF (q), and each line contains q+1 bilinear points. GQ(q, q)
can be constructed in O(v2) time as described in [13] and references there in.

2.5 Ramanujan Expander Graphs (REG)

An expander is a regular multi-graph in which any subset of vertices has a large
number of neighbors. It is highly connected, it has small diameter, small degree
and many alternate disjoint paths between vertices. Formally, a graph G = (V, E)
is said to be ε-edge-expander if for every partition of the vertex set V into X and
X = V \X , where |X | ≤ |V |/2, the number of cross edges is e(X, X) ≥ ε|X |. ε is
called expansion coefficient ([14], [15], [16]). Almost all random bipartite graphs
are expanders but it is possible to deterministically construct the best expanders
with maximum possible expansion coefficient ε and with bounded vertex degrees.
Figure 2 illustrates the expansion property.

There is a relation between expansion of a graph and eigenvalues of its ad-
jacency matrix. A graph G(V, E) with n vertices can be represented as an
(n × n) adjacency matrix A(G). The eigenvalues λ0, λ1, . . . , λn−1 of A(G) are
the spectrum of graph G. Spectrum of a k-regular graph has the property that
λ0 = k ≥ λ1 ≥ . . . ≥ λn−1. The relation between spectral gap (i.e., λ0 − λ1) and
expansion coefficient ε is given in Equation 6 where larger spectral gap (λ0 −λ1)
implies higher expansion. Ramanujan Expander Graphs (REG) are asymptot-

44 R. Bye et al.

ically optimal and best known explicit expanders [17] where |λi| ≤ 2
√

k − 1
for (1 ≤ i ≤ n − 1). A REG Xs,t is a k-regular graph with N = t + 1 nodes
for k = s + 1 where s and t are primes congruent to 1 (mod 4). REG can be
constructed in O(st) time as described in [18].

k − λ1

2
≤ ε ≤

√
2k(k − λ1), (6)

3 Distributed Detector Set Generation

We consider the Cooperative Intrusion Detection System (CIDS) where N AIS-
based IDS nodes collaborate over a peer-to-peer overlay network. Each IDS is
assigned to a subspace in the feature space due to approaches in [1] and [2], and
generates a set of detectors. Therefore, IDS nodes have mutually exclusive sets of
detectors as proposed in [3]. Advantage of this approach is that for a fixed capac-
ity of IDS nodes (i.e., χ detectors per nodes), it is possible to have an aggregated
global detector database of Nχ detectors meaning that the feature space coverage
is maximized. However, when an attack starts spreading, only one IDS node will
have the proper detector and this IDS will not be updating others until the attack
reaches itself. Thus, detector sets on IDS nodes should have a level of overlap to
be able to stop an attack spread in its earliest stage possible. In the following
sections, we describe a probabilistic approach [3] and our three novel determin-
istic approaches which enable IDS nodes to create controlled level of detector set
overlap by using techniques from combinatorial design theory and graph theory.

Algorithm 1 summarizes the decentralized detector generation scheme for a
homogeneous network of N AIS-based (Artificial Immune System) IDS enabled
nodes. Initially, each IDS node receives a unique ID (i.e., IDSi) and gets assigned
to a mutually exclusive subspace Si in the feature space. In Algorithm 1 step 1,
each IDSi generates a set of detectors Di of size d for the subspace Si based on
the approaches described in [9]. Next, through steps 2 to 14, each IDSi decides
on a list of node ID Bi for |Bi| = k by using either one of the Random Graph
(RG), Symmetric BIBD (SBIBD), Generalized Quadrangles (GQ) or Ramanujan
Expander Graph (REG) based approaches. IDSi contacts to each node j ∈ Bi to
get the detectors Dj for the subspace Sj through steps 15 to 18. IDSi aggregates
the received detectors ADi = {

⋃
Dj |∀j ∈ Bi} where |ADi| = k · d in step 19.

We assume that there exist a detector for the attack and initially only one
node is infected (i.e., I(t = 0) = 1). Let β be the number of nodes an infected
node can attack and γ be the number of nodes that the detector for the attack is
sent per unit time. Probability P(t) that infected nodes will not attack any node
which has a proper detector at time t is an important metric for spread of attack.
Because, once an IDS with a proper detector is attacked, it will start distributing
the detector at a rate γ as modeled in Section 4. Feature space coverage is another
metric where we want to maximize coverage while minimizing probability P (t).
Communication overhead is our third metric to evaluate our approaches. It is the
number and size of messages exchanged until every node has its target aggregated
detector set.

Decentralized Detector Generation in CIDS 45

Algorithm 1. Decentralized Detector Generation
Require:

N {Total number of IDS enabled nodes},
IDSi {ID of the IDS node running this algorithm},
Si ⊂ Feature Space {Subspace assigned to IDSi},
d {Number of detectors generated from each subspace Si},
Algorithm {SBIBD, GQ, REG or RG}.

1: IDSi generates the detector set Di (|Di| = d) from the subspace Si

2: if Algorithm = Symmetric BIBD then
3: Generate (v, k, λ)-Design where v = N = q2 + q + 1 and k = q + 1
4: IDSi selects the block Bi (|Bi| = k)
5: else if Algorithm = Generalized Quadrangles then
6: Generate GQ(q, q)-Design where N = q3 + q2 + q + 1 and k = q + 1
7: IDSi selects the block Bi (|Bi| = k)
8: else if Algorithm = Ramanujan Expander Graph then
9: Generate X(s, t) expander where N = t + 1 and k = s + 1

10: Bi for IDSi is the neighbor list of ith node in Xs,t

11: else if Algorithm = Random Graph then
12: IDSi selects k = log N IDS nodes
13: Bi for IDSi is the list of selected nodes
14: end if
15: for i = 1 to |Bi| do
16: IDSi contacts IDSj where j ∈ Bi

17: IDSi receives the detector set Dj from IDSj

18: end for
19: Aggregated detector set for IDSi is ADi = {

⋃
Dj |∀j ∈ Bi} where |ADi| = k · d

3.1 Random Graph G(N, p) Based Approach

Mapping: Random graph approach is proposed by Goel et al. [3]. This approach
employs graphs G(N, p) due to Erdős-Rényi [4] where there are N nodes and
each pair of nodes have a link in between with probability p. It is shown that
each node should have log N neighbors for the graph G(N, p) to be connected
[19]. We define following mapping from random graphs to decentralized detector
generation: nodes in graph G(N, p) are mapped to IDS nodes and two nodes
share a common detector set if there is an edge in between in the graph.

Construction: IDSi (for 1 ≤ i ≤ N) randomly selects log N IDS nodes. Se-
lected nodes form the set Bi where it is possible that IDSi selects itself (i.e.,
i ∈ Bi). IDSi contacts each IDSj for j ∈ Bi and requests its detector set Dj .
IDSi ends up with the aggregated detector set ADi = {

⋃
Dj |∀j ∈ Bi}. Overall

process is given through steps 11 to 14 of Algorithm 1. Graph G(N, p) should be
connected to make sure that a detector set Dj appears in at least two IDS nodes.
A new coming node can randomly select log N nodes to receive their detector
sets and log N nodes to send its detector set. A replacement node should only
randomly select log N nodes to receive their detector sets.

46 R. Bye et al.

Analysis: Each detector appears in average of log N nodes because each IDS
node is contacted by average of log N nodes. Probability PRG(t) that infected
nodes will not attack any node which has a proper detector at time t:

PRG(t) =
(

1 − log N

N

)βI(t)

(7)

For a fixed IDS node capacity of χ detectors, each node generates χ
log N detectors

and there are total of Nχ
log N distinct detectors. Each IDS contacts log N nodes

and get contacted by log N nodes at average, communication overhead for each
nodes is 2 logN messages where each message includes χ

log N detectors.

3.2 Ramanujan Expander Graph Based Approach

Problem with the random graph is its lack of regularity. Each node has aver-
age of log N neighbors (a.k.a., a detector appears in average of log N nodes)
meaning also that some nodes may have less (a.k.a., some detectors may ap-
pear on less nodes) while some nodes may have more neighbors (a.k.a., some
detectors may appear on more nodes). For the same node degree as G(N, p),
Ramanujan Expander Graph (REG) based deterministic approach provides best
known expansion which means any subset of IDS nodes share detectors with the
largest possible subset of IDS nodes. This property of REGs help REG-based
approaches to provide better immunity against attacks when compared to RG-
based approaches.

Mapping: A Ramanujan Expander Graph (REG) Xs,t is a regular multi-graph
where there are N = t + 1 nodes and where each node has s + 1 neighbors. We
define following mapping from REGs to decentralized detector generation: nodes
of the Xs,t are mapped to IDS nodes and two nodes share a common detector
set if there is an edge in between in Xs,t.

Construction: Each IDSi deterministically generates the list of its neighbors
Bi. IDSi contacts each IDSj for j ∈ Bi and requests its detector set Dj . IDSi

ends up with the aggregated detector set ADi = {
⋃

Dj|∀j ∈ Bi}. Overall process
is given through steps 8 to 10 of Algorithm 1. An additional node or a replace-
ment node can generate the design and contact with its neighbors to exchange
the detector sets.

Analysis: If we let the REG to have same degree as RG (i.e., s + 1 = log N),
it will have same probability PREG(t) = PRG(t), feature space coverage and
communication overhead. Advantage of the REG is its regularity and expansion
property which provides better immunity against attacks when compared to
RG-based approaches as we discuss in Section 4.

3.3 Combinatorial Design Based Approach

Mapping: We propose two novel approaches, Generalized Quadrangles (GQ)
and Symmetric Balanced Incomplete Block Designs (SBIBD) from combinatorial

Decentralized Detector Generation in CIDS 47

(a) (b)

Fig. 3. Decentralized detector generation. (a) Symmetric BIBD (SBIBD) based ap-
proach. (b) Generalized Quadrangle (GQ) based approach. Each block is assigned to
an IDS node (IDS1 uses block {1,2,4} in (a)) where each object is a distinct IDS
node ID. Each IDS contacts the nodes in its block and collects the detector sets they
generated.

design theory. Both SBIBD and GQ design assign v objects into b blocks (v =
b = q2 + q + 1 in SBIBD and v = b = q3 + q2 + q + 1 in GQ(q, q)) so that
every pair of blocks have exactly one common object in SBIBD, and at most one
common object in GQ design (probability of object share is given in Equation
5). We define following mapping from GQ and SBIBD to decentralized detector
generation: each object is mapped to a distinct IDS node ID and each block is
assigned to an IDS node (IDSi uses the block Bi). Each IDS contacts the nodes
in its block and collects the detector sets they generated. Thus, two IDS have
common detectors if they have the same node ID in their blocks which is true
for every pair of nodes in SBIBD based approach. Overall process is illustrated
in Figure 3.

Construction: After the first step of Algorithm 1, each IDSi generates the
blocks in SBIBD or GQ. Assume that difference set method is used in SBIBD.
Given a cyclic difference set B, node IDSi can construct block Bi by sim-
ply performing O(

√
N) modular addition operations. Larger SBIBD can be

constructed with MOLS in O(N3/2) and GQ designs can be constructed in
O(N2) as described in Section 2. Finally, IDSi contacts each IDSj for j ∈ Bi

and requests its detector set Dj. Aggregated detector set for IDSi becomes
ADi = {

⋃
Dj |∀j ∈ Bi}. Overall process is given through steps 2 to 7 of Algo-

rithm 1. An additional node or a replacement node can generate the design and
contact with its neighbors to exchange the detector sets.

Analysis: In SBIBD-based approach, each detector appears in exactly q + 1
nodes where N = q2 + q + 1. Thus, probability PSBIBD(t) that infected nodes
will not attack any node which has a proper detector at time t:

PSBIBD(t) =
(

1 − q + 1
q2 + q + 1

)βI(t)

≈
(

1 − 1√
N

)βI(t)

(8)

For fixed IDS node capacity, say χ detectors, each node generates χ
q+1 ≈ χ√

N
de-

tectors and there are
√

Nχ distinct detectors. During detector exchange

48 R. Bye et al.

process, each IDS contacts q + 1 ≈
√

N nodes and gets contacted by
√

N nodes.
Communication overhead for each node is 2

√
N messages where each message

includes χ√
N

detectors. In the Generalized Quadrangle (GQ) based approach,
each detector appears in exactly q + 1 nodes where N = q3 + q2 + q + 1. Thus,
probability PGQ(t) is:

PGQ(t) =
(

1 − q + 1
q3 + q2 + q + 1

)βI(t)

≈
(

1 − 1
3
√

N2

)βI(t)

(9)

For fixed IDS node capacity of χ detectors, each node generates χ
q+1 ≈ χ

3√
N

detectors and there are 3
√

N2χ distinct detectors. During detector exchange pro-
cess, each IDS contacts q + 1 ≈ 3

√
N nodes and gets contacted by 3

√
N nodes.

Communication overhead for each node is 2 3
√

N messages where each message
includes χ

3√N
detectors.

4 Analysis and Comparisons

We enhance the classical epidemic model to analyze our decentralized detector
distribution approaches in cooperative intrusion detection systems. We consider
a homogeneous network of susceptible (S), infected (I), active removed (R+) and
passive removed (R−) nodes where each node stores a subset of detectors and
has the CIDS capability. A node is susceptible for a specific attack if it is not
infected and if it does not have the detector for the attack. A susceptible node
which is the target of the attack becomes infected, and it immediately starts to
spread the attack to other susceptible nodes. A node is removed if it has the
detector for the attack. Initially all removed nodes are passive removed nodes.
A node becomes an active removed node and spreads the detector for the attack
under following conditions: (i) when a passive removed node is attacked by an
infected node, (ii) when an infected or susceptible node receives the detector
from an active removed node, and (iii) when a passive node is contacted by an
active removed node.

Suppose that at time ti there are S(ti) susceptible nodes, I(ti) infected nodes,
R+(ti) active removed nodes and R−(ti) passive removed nodes where S(ti) +
I(ti) + R+(ti) + R−(ti) = N and where R+(t0) = 0. Let

s(ti) =
S(ti)
N

, i(ti) =
I(ti)
N

, r+(ti) =
R+(ti)

N
, r−(ti) =

R−(ti)
N

be the ratio of susceptible, infected, active removed and passive removed nodes
respectively. Each contact in between susceptible and infected nodes will result
in an infection. Let β be the average number of contacts per infected node and
γ be the average number of contacts per active removed node, in an interval �t:

1. β I(t) S(t)
N �t susceptible nodes will be infected due to the attacks from

infected nodes {flow (1) in Figure 4},
2. γ R+(t) I(t)

N �t infected nodes will be removed due to the detector updates
from active removed nodes {flow (2) in Figure 4},

Decentralized Detector Generation in CIDS 49

(a) (b)

Fig. 4. Epidemic model for Cooperative Intrusion Detection Systems (CIDS) for group
of homogeneously mixed susceptible (S), infected (I), active removed (R+) and passive
removed (R−) nodes where S(ti) + I(ti) + R+(ti) + R−(ti) = N at time ti.
(1) Susceptible nodes become infected when attacked by infected nodes, (2) infected
nodes become removed nodes when updated by active removed nodes, (3) passive
removed nodes become active removed nodes when attacked by infected nodes, (4)
passive removed nodes become active removed nodes when updated by active removed
nodes, and (5) susceptible nodes become active removed nodes when updated by active
removed nodes.

3. β I(t) R−(t)
N �t passive removed nodes will be active removed due to the

attacks from infected nodes {flow (3) in Figure 4},
4. γ R+(t) R−(t)

N �t passive removed nodes will be active removed due to the
detector updates from active removed nodes {flow (4) in Figure 4},

5. γ R+(t) S(t)
N �t susceptible nodes will be active removed due to the detector

updates from active removed nodes {flow (5) in Figure 4}.

Thus, infection and removal rates can be formulated as follows:

�I(t) = β I(t)
S(t)
N

�t − γ R+(t)
I(t)
N

�t, (10)

di(t)
dt

= β i(t) s(t) − γ r+(t) i(t), (11)

dr+(t)
dt

= β i(t) r−(t) + γ r+(t)
(
s(t) + i(t) + r−(t)

)
. (12)

Epidemic can not build up if [di(t)/dt]ti ≤ 0 when r+(ti) > 0. The ratio γ
β r+(t)

in Equation 13 is relative removal-rate or threshold density for susceptible nodes.

β i(t) s(t) − γ r+(t) i(t) ≤ 0, s(t) ≤ γ

β
r+(t). (13)

In all approaches, SBIBD-based approach provides the largest overlap be-
tween detector sets and minimum probability P (t) (Equations 7, 8 and 9) at the
expense of increased communication overhead and decreased coverage of feature
space. In addition to these, deterministic approaches have two advantages. First,

50 R. Bye et al.

unlike G(N, p), deterministic approaches are based on the regular graphs due to
SBIBD, GQ and REG. That means, each detector is replicated in equal number
of IDS initially. Second, each node can generate the SBIBD, GQ and REG at
very low cost. That means, all nodes know exactly which IDS has which detec-
tors; moreover, they know R−(t0). We can safely assume that, when an attack
reaches to a node in R−(t0) all others in R−(t0) can be informed because such
a broadcast update should have much lower overhead compared to attack and
detector spread. Thus, a node in R+(t) does not need to update the nodes in
R−(t0) preventing the update collisions. Equation 10 then becomes:

�I(t) = β I(t)
S(t)
N

�t − γdet R+(t)
I(t)
N

�t

where γdet = γ N
N−R−(t0) is the improved detector update rate due to the deter-

ministic approaches. Problem can also be formulated as a spread of a detector
on the logical graph due to underlying SBIBD, GQ and REG techniques. It is
shown in [20] and [21] that epidemic spread threshold is related to underlying
logical graph properties (i.e., node degree, diameter, spectral radius and largest
eigenvalue of the adjacency matrix). More specifically, larger degree and spec-
tral radius mean faster spread. SBIBD, GQ and REG provides regular graphs;
in fact, SBIBD provides a complete graph which has the largest spectral radius
(n where N = n2 + n + 1).

5 Conclusions

We address the problem of self-organization and decentralized detector genera-
tion in Cooperative Intrusion Detection Systems (CIDS). We consider a set of
AIS-based IDS nodes each of which is assigned to a distinct subspace of the fea-
ture space. Each IDS node generates a subset of the global detector set so that
the coverage of the future space is maximized. Then, pairs of IDS nodes exchange
detector sets to create controlled level redundancy so that the spread rate of the
attack is limited. More specifically, our contribution is twofold. First, we use
Symmetric Balanced Incomplete Block Design (SBIBD), Generalized Quadran-
gles (GQ) and Ramanujan Expander Graph (REG) techniques from combinato-
rial design theory and graph theory so that each node can independently decide
how many and which detectors to exchange with which IDS nodes. Second, we
applied classical epidemic model on both spread of attack and spread of detector,
and showed that regular structures in deterministic techniques provides better
immunity in a self-organized, self-adaptive and self-healing cooperative intrusion
detection system when compared to probabilistic approaches.

References

1. Kim, J., Bentley, P.: The artificial immune model for network intrusion detection.
In: EUFIT. 7th European Conference on Intelligent Techniques and Soft Comput-
ing (1999)

Decentralized Detector Generation in CIDS 51

2. Gonzalez, F., Dasgupta, D.: Anomaly detection using using real-valued negative
selection. In: Genetic Programming and Evolvable Machines (2003)

3. Goel, S., Bush, S.F.: Kolmogorov complexity estimates for detection of viruses in
biologically inspired security systems: a comparison with traditional approaches.
Complexity 9(2), 54–73 (2003)

4. Erdős, P., Rényi, A.: On random graphs. Publ. Math. Debrecen 6, 290–297 (1959)
5. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Review 42(4), 599–

653 (2000)
6. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself Discrimination in

a Computer. In: Proceedings of the IEEE Symposium on Research in Security and
Privacy, pp. 202–212. IEEE Computer Society Press, Los Alamitos (1994)

7. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A Sense of Self for Unix
Processes. In: Proceedings of the 1996 IEEE Symposium on Security and Privacy,
pp. 120–128. IEEE Computer Society Press, Los Alamitos (1996)

8. Hofmeyr, S., Forrest, S.: Architecture for an Artificial Immune System. Evolution-
ary Computation Journal 8(4), 443–473 (2000)

9. Luther, K., Bye, R., Alpcan, T., Muller, A., Albayrak, S.: A cooperative ais frame-
work for intrusion detection. In: IEEE International Conference on Communica-
tions, IEEE Computer Society Press, Los Alamitos (2007)

10. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distri-
bution technologies. ACM Computing Surveys 36(4), 335–371 (2004)

11. Anderson, I.: Combinatorial designs: construction methods. Ellis Horwood Limited
(1990)

12. Stinson, D.R.: Combinatorial designs: construction and analysis. Springer, Heidel-
berg (2004)

13. Camtepe, S.A., Yener, B.: Combinatorial design of key distribution mechanisms for
wireless sensor networks. IEEE/ACM Transactions on Networking 15(2), 346–358
(2007)

14. Linial, N., Wigderson, A.: Expander graphs and their applications. Lecture Notes,
Hebrew University, Israel (January 2003)

15. Linial, N.: Expanders, eigenvalues and all that. In: NIPS 2004 Talk (2004)
16. Govindaraju, R.: Design of Scalable Expander Interconnection Networks. PhD the-

sis, Rensselaer Polytechnic Institute, Troy, New York 12180, USA (1994)
17. Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8(3),

261–277 (1988)
18. Camtepe, S.A., Yener, B., Yung, M.: Expander graph based key distribution mech-

anisms in wireless sensor networks. In: IEEE International Conference on Commu-
nications, IEEE Computer Society Press, Los Alamitos (2006)

19. Xue, F., Kumar, P.R.: The number of neighbors needed for connectivity of wireless
networks. Wireless Networks 10, 169–181 (2004)

20. Draief, M., Ganesh, A., Massoulié, L.: Thresholds for virus spread on networks. In:
1st International Conference on Performance Evaluation Methodolgies and Tools,
p. 51 (2006)

21. Wang, Y., Chakrabarti, D., Wang, C., Faloutsos, C.: Epidemic spreading in real
networks: An eigenvalue viewpoint. In: 22nd Symposium on Reliable Distributed
Computing (2003)

Stabilizing Flocking Via Leader Election in

Robot Networks

Davide Canepa and Maria Gradinariu Potop-Butucaru

Université Pierre et Marie Curie (Paris 6), LIP6, CNRS, INRIA, France
canepa.davide@tiscali.it, maria.gradinariu@lip6.fr

Abstract. Flocking is the ability of a group of robots to follow a leader
or head whenever it moves in a plane (two dimensional Cartesian space).
In this paper we propose and prove correct an architecture for a self-
organizing and stabilizing flocking system. Contrary to the existing work
on this topic our flocking architecture does not rely on the existence of
a specific leader a priori known to every robot in the network. In our
approach robots are uniform, start in an arbitrary configuration and the
head of the group is elected via algorithmic tools.

Our contribution is threefold. First, we propose novel probabilistic so-
lutions for leader election in asynchronous settings under bounded sched-
ulers. Additionally, we prove the impossibility of deterministic leader
election when robots have no common coordinates and start in an ar-
bitrary configuration. Secondly, we propose a collision free determinis-
tic algorithm for circle formation designed for asynchronous networks.
Thirdly, we propose a deterministic flocking algorithm totally indepen-
dent of the existence of an a priori known leader. The proposed algorithm
also works in asynchronous networks.

1 Introduction

Several applications like large-scale constructions, hazardous waste cleanup,
space missions or exploration of dangerous or contaminated area motivate the
research related to self-organized robot networks (multi-robot systems). The lit-
erature proposed so far a significant amount of research towards the operation of
a single remote robot, however more work is required towards the operation of
networks of autonomous robots. These systems provide interesting solutions to
many real problems: manipulation of large objects, system redundancy, reducing
time complexity for the targeted tasks, however they bring in discussion some
specific difficulties. In particular, these robots should achieve their tasks without
human intervention based only on the information provided by the robots in the
same group. Moreover, they have to explore unknown or quasi unknown envi-
ronments while avoiding collisions among themselves. Additionally, they have to
be able to reorganize whenever one or more robots in the group stop to behave
correctly.

In this paper we propose a self-organized and stabilizing flocking architec-
ture. Flocking is the ability of a group of robots to follow a leader or a flock-
head whenever this one changes its position in plane. Our work is developed in

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 52–66, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Stabilizing Flocking Via Leader Election in Robot Networks 53

Corda model [1,2] one of the two theoretical models proposed so far for robot
networks. The first model proposed in the literature was introduced by Suzuky
and Yamashita [3,4,5]. In this model robots are oblivious and perform a cycles
of elementary actions as follows : observation (the robot observes the environ-
ment), computation (the robot computes its next position based on the informa-
tion collected in the observation phase) and motion (the robot changes its posi-
tion by moving to the coordinates returned by the computation phase). In this
model robots cannot be interrupted during the execution of a cycle. The Corda
model breaks the execution cycle in elementary actions. That is, a robot can
be activated/turned off while executing a cycle. Hence, robots are not anymore
synchronized.

In both Corda and Suzuki-Yamashita model several problems have been stud-
ied under different assumptions on the environment (e.g. schedulers, fault-
tolerance), robots visibility, accuracy of compasses: circle formation, pattern
formation, gathering [6,7,8,9,10,11,12]. The flocking problem although largely
discussed for real robots ([13,14] and [15]) was studied from theoretical point
of view principally by Prencipe [16,17]. The authors propose non-uniform al-
gorithms where robots play two roles: leader or follower. The leader is unique
and all the followers know it. Obviously, when the leader crashes, disappears or
duplicates the flock cannot finish its task. Our approach is different, the leader
is not known a priory but it is elected via algorithmic tools. When the current
leader disappears from the system another leader is elected and the network can
finish its task. In order to be sound our flocking architecture includes as basic
building block a leader election module.

The leader election problem has been studied under a broad class of models.
Recent works propose solutions in the population protocol model, [18,19]. The
same problem has also been studied in the mobile agents model [20]. These mod-
els may seem similar to the robots model however, in these models agents either
have a point to point interaction with simultaneous change of their respective
state or assume a specific topology of the network guesting the agents (e.g. rings)
or make additional assumptions like the existence of whiteboards on the nodes
visited by agents. In the robot networks there is no such assumptions since robots
move in a Cartesian two dimensional space helped only by the information they
can collect at each activation.

In robot networks leader election have been mainly studied in [5]. The authors
propose a solution where robots share the same coordinate system. Further in
[21] is proposed an algorithm for leader election based on Lyndon words which
works if the number of robots is prime and robots are not disposed in a regular
n-gon. The previously cited works focus the Suzuki-Yamashita model. In [22] the
author prove the leader election impossibility in Corda model when the number
of robots is even.

Our contribution. In this paper we propose and prove correct an architecture
for a self-organizing and stabilizing flocking system. Contrary to existing work

54 D. Canepa and M. Gradinariu Potop-Butucaru

on this topic our flocking architecture does not rely on the existence of a specific
leader a priory known to every robot in the network. In our approach robots
are uniform, start in an arbitrary configuration and the head of the group is
elected via algorithmic tools. Our architecture includes three modules: a leader
election module, a preprocessing module and a motion module. The leader elec-
tion module returns to each robot its status : leader or follower. The prepro-
cessing module outputs a moving formation. The motion module provides the
rules that will make the robots in the moving formation to change their po-
sitions whenever the leader moves. Every modification of robots position pre-
serves the moving formation. For each of these modules we propose determin-
istic or probabilistic algorithms (in the case when a deterministic solution is
impossible). Moreover, we prove their correctness in Corda model. The correct-
ness1 of the probabilistic algorithms considered in this paper assumes bounded
schedulers.

2 Model

The notions and the model description presented in this section are borrowed
from [1,11,16]. We consider a system of autonomous mobile robots that work in
the Corda model [1]. Each robot is capable of observing its surrounding, comput-
ing a destination based on what it observed, and moving towards the computed
destination: hence it performs an (endless) cycle of observing, computing, and
moving. Each robot has its own local view of the world. This view includes a
local Cartesian coordinate system having an origin, a unit of length, and the
directions of two coordinate axes (which we will refer to as the x and y axes),
together with their orientations, identified as the positive and negative sides of
the axes.

The robots are modeled as processes with computational capabilities, which
are able to freely move in the plane. They are equipped with sensors that let each
robot observe the positions of the others with respect to their local coordinate
system. Each robot is viewed as a point, and can see all the other robots in the
system.

The robots act totally independently and asynchronously from each other,
and do not rely on any centralized directives, nor on any common notion of
time. Furthermore, they are oblivious, meaning that they do not remember any
previous observation nor computations performed in the previous steps. Note
that this feature gives to the algorithms designed in this model the nice property
of self-stabilization [24]: in fact, every decision taken by a robot cannot depend
on what happened in the system previously, and hence cannot be based on
corrupted data stored in its local memory. The robots are anonymous, meaning
that they are a priory indistinguishable by their appearances, and they do not
have any kind of identifiers that can be used during the computation. Moreover,
there are no explicit direct means of communication; hence the only way they
1 Due to space restrictions, most of the proofs are proposed in the extended version

of this work [23].

Stabilizing Flocking Via Leader Election in Robot Networks 55

have to acquire information from their fellows is by observing their positions.
The robots are uniform, meaning that they execute the same algorithm, which
takes as input the observed positions of the robots, and returns a destination
point towards which the executing robot moves.

Schedulers. A scheduler decides at each configuration the set of robots allowed
to perform their actions. A scheduler is fair if, in an infinite execution, a robot
is activated infinitely often. In this paper we consider the fair version of the
following schedulers:

– k-bounded : between two consecutive activations of a robot, another robot
can be activated at most k times;

– arbitrary: at each configuration an arbitrary subset of robots is activated.

In short, robots move asynchronously, are oblivious, anonymous and uniform.
Additionally, their activation is managed by a scheduler who decides in each
configuration the set of active robots. That is, in this paper we consider the
Corda model refined with the above mentioned fair scheduling strategies (i.e.
k-bounded and arbitrary).

3 Leader Election and Flocking Problems

Leader election creates an asymmetry whatever the initial configuration. Robots
may be in one of the following states: leader or follower and the leader should
be unique in the system.

Definition 1 (Leader Election). A system of robots verifies the leader elec-
tion specification iff the following two properties hold:

– Safety: The system is in a legal configuration where there is an unique robot
in the state leader and all the other robots are in the state follower.

– Liveness: The legal configuration is reached in a finite number of steps.

Leader election is the building block for a large class of problems. In this pa-
per we focus on the flocking problem. Intuitively, a flock is a group of robots
that moves in the plane in order to execute a task while maintaining a specific
formation. The most current definition of the flocking implicitly assumes the
existence of an unique leader of the group that will lead the group during the
task execution. Robots have as input the same pattern representing the flock to
be maintained which is described as a set of coordinates in the plane, relative to
a point representing the leader.

Obviously, in order to achieve flocking robots need to re-organize their forma-
tion whenever the leader changes its position. Therefore the definition of flocking
has to capture the mobility of the flock.

Formally, the flocking problem can be defined as follows:

Definition 2 (Flocking). Let S be a system of robots and let P be the flocking
pattern. S verifies the flocking specification iff the robots satisfy P infinitely often.

56 D. Canepa and M. Gradinariu Potop-Butucaru

4 Architecture of a Flocking System

In the following we define a possible architecture for a flocking system. The
architecture is composed of three modules : the leader election module, the
preprocessing module and the flocking module.

– The leader election module is the base of the architecture. This module
accepts as input a set of robots arbitrarily distributed in the plane and
elects a leader. Results related to the impossibility of leader election and
detailed description of probabilistic solutions for leader election are proposed
in Section 5.

– The preprocessing module prepares the group of robots for the moving for-
mation. All robots but the leader are placed on the smallest enclosing circle.
Then, all robots on the smallest enclosing circle form a circular moving for-
mation using as reference point the leader computed by the leader election
module. One robot in this set will further act as the head of the flock. The
preprocessing module is propose in Section 6.

– The flocking module receives as input a moving formation which initially
has a circular form defined by a reference robot and a head and provides
the necessary rules to move this formation in the plane whenever the head
changes its position. The objective of the flocking module is to ensure the
formation moving while keeping its properties. The algorithms for moving
the formation are proposed in Section 7.

5 Leader Election Module

In this section we prove the impossibility of deterministic leader election. Gener-
ally, the impossibility results can be circumvent by using randomization. In the
following we show that probabilistic leader election is impossible for 2 robots
systems. However, the probabilistic leader election is possible for systems of size
greater than 3.

5.1 Impossibility Results for Leader Election

In this section we prove the deterministic leader election impossible in Suzuki-
Yamashita and Corda models.2

Theorem 1. Deterministic leader election is impossible.

Proof (sketch). Lets consider n robots forming a regular n-gon with the local
x − y coordinates of each robot such that the y positive axis is directed towards
the next robot in clockwise. Assume also the x positive axis is such that the
n-gon has no value of x less than 0. Consider all robots have the same unit
of length. Without restraining the generality we consider in the following an
equilateral triangle. For a deeper comprehension, lets consider Figure 1.
2 Note that in [22] is proved the impossibility of leader election for n even, while in

[21] is shown that leader election can be deterministically solved for n prime and
robots not disposed in a n-gon.

Stabilizing Flocking Via Leader Election in Robot Networks 57

r1

r2

r3

y

x

y

x

y

x

u

Fig. 1. Symmetric Configuration

Each robot can see a robot in (0,0) (itself) and other two robots in (u
2 ,
√

3
2 u)

and in (u, 0). Note that the three robots have the same view.
Assume a configuration such that the leader is the robot in (u,1). In our

example for r1 the leader is r2, for r2 the leader is r3 and for r3 the leader is r1.
Each robot sees a different leader. Therefore, the safety property is violated.

Assume an initial configuration where there is no leader. In order to reach a
legal leader election configuration robots should move. Assume the algorithm ex-
ecuted by each robot makes them move towards a point (x′, y′) of their system of
coordinates and assume the scheduler chooses all robots to move concurrently.
The system reaches a configuration where the n-gon structure is maintained.
Moreover, in the new configuration robots have the same view. So, each deter-
ministic movement from a symmetric configuration leads to a symmetric config-
uration. Hence, the system never converges to a legal configuration.

Lemma 1. There is no probabilistic 2-robots leader election.

5.2 Probabilistic Leader Election

In this section we propose probabilistic solutions for leader election for systems
with three or more robots.

Probabilistic leader election with 3 robots. The algorithm idea is to exploit
the asymmetry of a triangle. We choose as leader candidate the robot with the
smallest angle or the robot different from the other two robots in the case of

58 D. Canepa and M. Gradinariu Potop-Butucaru

an isosceles triangle. The randomization is used only to break the symmetry of
equilateral triangles. For this particular case we use randomization in order to
create an asymmetric triangle on which we apply the method described above.

1) Compute the angle between every two robots.
2) if my angle is the smallest then become Leader.
3) else if my angle is not the smallest but the other two are identical

then become Leader.
4) else if All the angles are identical

then move perpendicular to segment linking the other
two robots in opposite direction with probability 1

3

Algorithm 5.1. Leader election algorithm

Lemma 2. Algorithm 5.1 converges to the leader election specification in finite
number of steps in expectation in the Corda model refined with a k-bounded
scheduler.

Probabilistic leader election with more than 3 robots. In the following
we propose a leader election algorithm for systems with more than three robots.
Intuitively, the leader robot will be the robot whose position is the closest to the
center of the smallest enclosing circle (SEC). Additionally, we would like the
leader to define a second reference together with the center of SEC. Therefore,
the leader should not be placed on the center position. If a robot is initially
positioned in the center of the smallest enclosing circle then a preprocessing
phase is executed. The robot in the center moves to a free position chosen non-
deterministically inside the SEC. The leader election algorithm idea is as follows.
Robots randomly change their positions until only one of them is the closest to
the SEC.

1) Compute the smallest enclosing circle SEC.
2) Compute the distance d myself to the center of SEC.
3) if (d myself < dk ∀ k �= myself , where 1≤k≤n)

then { become leader;
exit; }

4) if (d myself ≤ dk ∀ k �= myself , where 1≤k≤n)
then { move to the center of SEC with probability p = 1

n
of a

distance d myself · p)}

Algorithm 5.2. Leader election in systems of size n > 3

Definition 3 (Leader election legitimate configuration). A legitimate
configuration for Leader Election is a configuration with an unique robot closest
to the center of the smallest enclosing circle.

Stabilizing Flocking Via Leader Election in Robot Networks 59

Lemma 3. Algorithm 5.2 converges to a legitimate configuration for the leader
election problem in a finite number of steps in expectation in the Corda model
refined with a k-bounded scheduler.

6 Preprocessing Module: Setting a Moving Formation

In this section we gradually set the motion pattern used further in the flocking
algorithm. We build on top of the leader election algorithms proposed in Section
5.2.The construction takes two phases. First, all robots but the leader are placed
on the smallest enclosing circle. Then, the robots on the circle will be placed in
their final positions for motion.

6.1 Phase 1: Placement on the Smallest Enclosing Circle

In this section we propose an algorithm for placing robots on the smallest en-
closing circle. This algorithm uses as building block the leader election algorithm
proposed in the previous section. Once this algorithm is stabilized all robots but
the leader are placed on the smallest enclosing circle. Note that the leader does
not change during this phase.

The algorithm works “in waves”. First, the robots closest to the bounds of
the smallest enclosing circle are placed. Then, recursively all the other robots
but the leader are placed. The robots that should occupy a position that is
already occupied by another robot will be placed on a free position between the
robot that occupied their position and the next one on the smallest enclosing
circle. We assume the robots agree on the same direction of the Ox axis given
by the center of SEC and the leader position and the same direction of Oy axis.
Our algorithm is collision free and works in the Corda model with arbitrary fair
scheduler. Note that in [25] the authors propose similar deterministic solutions
for Suzuki-Yamashita model. Interestingly, our algorithm has the same time
complexity as the solution proposed in [25].

The following definitions introduce key functions used by Algorithm 6.1.

Definition 4 (FreeToMove). Let FreeToMove be the set of robots without
robots between themselves and the SEC (including the border) along the radius
passing through them, and that do not belong to the border of SEC.

Definition 5 (Placed). Let Placed be the set of robots belonging to the border
of the SEC.

Definition 6. A legitimate configuration for Algorithm 6.1 is a configuration
where all robots but the leader are Placed.

Note that the algorithm does not change the leader position neither the position
of Placed robots. Moreover, there is no robot between the leader and the SEC.
Otherwise this robot is the closest to the center of the SEC hence the real leader.

The correctness of Algorithm 6.1 comes from the following lemmas.

60 D. Canepa and M. Gradinariu Potop-Butucaru

∀ri compute the value of the radius passing through ri. Let radri be the value
of the angle between my radius (radmyself = 0) and the radius of robot ri, in
clockwise direction
∀ri compute the value of distri , distance of the robot ri to the border of the
smallest enclosing circle (SEC)

Predicates:
Leader(myself) ≡ ∀ri with i �= myself , disti < distmyself

Functions:
OccupiedPosition(radmyself) : returns ri, i �= myself, distri = 0 and radri =
radmyself otherwise ⊥
NextToMove : returns the set of closest robots r to the SEC with distr �= 0

1) if (¬Leader(myself)∧ myself ∈ FreeToMove)
then { move to SEC with distance distmyself}
2) if (¬Leader(myself) ∧ (myself ∈ NextToMove) ∧ (FreeToMove =
∅) ∧ (OccupiedPosition(radmyself) �= ⊥))
then { Move to the middle point of the arc between robot
OccupiedPosition(radmyself) and robot rj belonging to the SEC such
that radj is minimum.}

Algorithm 6.1. Positioning Algorithm executed by robot my self

Lemma 4. If two robots ri and rj belong to the set FreeToMove, then their
final position will be different.

Lemma 5. A robot always moves towards a free position on the SEC.

Lemma 6. Algorithm 6.1 is collisions free (two robots never move towards the
same free position).

Lemma 7. Algorithm 6.1 converges in a finite number of steps, O(n), to a
legitimate configuration.

6.2 Phase 2: Setting the Flocking Configuration

In this section we propose an algorithm that starting from the final configuration
of Algorithm 6.1 reaches a flocking pattern or moving formation having the
singularity property detailed later.

Initially, we place robots in a circular moving formation then in the final
moving formation. The circular moving formation has the following shape: r0
is inside SEC (the one computed by Algorithm 6.1) and all the other robots
are placed on its border. These robots are placed as follows: a robot r1 is in the
position SEC∩[O, r0) and the others, uniformly disposed on the semi-circle that
does not contain r1 and that ends in the points given by the intersection of SEC
with the perpendicular on [O, r0) that passes through O (SEC∩(⊥[O, r0) on O)).
In the following this configuration will be referred as circular moving formation
(see Figure 2 for a seven robots example).

Stabilizing Flocking Via Leader Election in Robot Networks 61

O

p1

r0

p6

p2

p3

p5

p4

Fig. 2. Circular moving formation

In order to construct the circular moving formation we use the concept of
oriented configuration [21]:

Definition 7 (oriented circular configuration). A configuration is called
circular oriented if the following conditions hold:

1. All robots are at distinct positions on the same circle SEC, except only one
of them, called r0, located inside SEC ;

2. r0 is not located at the center of SEC;

Note Algorithm 6.1 verifies point 1 of the above definition and is collisions free
contrary to the solution proposed in [21]. Note also the leader election algorithm
chooses a leader such that it is the closest to the center of SEC without reaching
this center. If the leader is initially in the center, we recall that a preprocessing
is performed in order to take care of this particular case. The leader election
algorithm is executed only after the end of the preprocessing phase.

We now describe Algorithm 6.2. The algorithm makes use of the following
function: FinalPositions(SEC, p1). This function returns, when invoked by a
robot, the set of positions in the circular moving formation with respect to SEC
and the point p1. p1 is the intersection between the segment [O, r0) and the circle
SEC. The order of positions and robots is given clockwise starting with position
p1. Started in an oriented configuration Algorithm 6.2 eventually converges to

62 D. Canepa and M. Gradinariu Potop-Butucaru

a configuration where robots are disposed on SEC following the restrictions
imposed by the FinalPositions function.

Functions:
get number(myself) returns the number of robots between myself and

position p1 (including robot myself) clockwise
get position(myself) returns the position get number(myself)

in FinalPositions(SEC, p1)
FreeToMove(myself) returns true if there are no robots between myself

and get position(myself)

Motion Rule:
if FreeToMove(myself) then

move to get position(myself)

Algorithm 6.2. Setting the moving formation executed by robot myself

The idea of the algorithm is as follows. Robots started in an oriented configu-
ration reach their final positions. If a robot is blocked by some other robot then
it waits until this robot is placed in its final position. In the following we prove
no robot is blocked infinitely.

Lemma 8. In a system with n robots Algorithm 6.2 started in an oriented con-
figuration converges in finite number of steps, O(n), to a configuration where all
robots reach their final positions computed via FinalPositions function.

We formally define the moving formation as follows:

Definition 8 (moving formation). A set of n > 4 robots, r0, . . . rn, is a
moving formation if:

– r1 and r0 define the Oy axis of the system such that: the y coordinate of r0
equals 0 and the positive values are in the r1 direction;

– the axis Ox is perpendicular to Oy in r0 and has positive values at the right
of Oy;

– all the other robots are such that:

1. ∀ ri �= rl and ri �= r0 ⇒ yri < 0
2. ∀ri, rj , xri �= xrj ;
3. ∀ ri, ∃ rj such that xri = −xrj

4. if |xri | > |xrj | then |yri | < |yrj |
5. there exists an unique robot with x = 0 and y < 0

The following theorem states the singularity property of the moving formation
defined above. More precisely, we show that there is only one formation that
satisfies Definition 8 when n > 4. Note that for the case n ≤ 4 the formation
defined by Definition 8 is not unique. In the sequel we consider systems with
more than 4 robots. For the case n ≤ 4 simple adhoc algorithms can be designed
on top of the algorithms proposed in Section 5.2.

Stabilizing Flocking Via Leader Election in Robot Networks 63

Theorem 2. The moving formation defined by Definition 8 is singular when
n > 4.

Corollary 1. Algorithm 6.2 started in an oriented configuration eventually
places n robots in a circular moving formation if FindPositions returns a set
of positions verifying Definition 8.

7 Flocking Module

In this section we propose a flocking algorithm. The flock of robots verifies the
moving formation defined in Definition 8 and follow the head robot (the robot
referred as robot r1) whenever this head changes its position. In the following
the robot r0 of the moving formation will be called reference robot and the robot
r1 leader. The only constraint imposed to the system is: the leader cannot move
quicker than the slowest robot in the set. The algorithm idea is as follows. When
the head of the group moves, it is followed within a distance δ (a parameter of
the algorithm) by the reference robot. Then the closest robots to the reference
move within a distance ε (another parameter of the algorithm) to the reference
and so on till all the robots in the group move. Note the algorithm has three
parameters: the speed of the leader, the distance between the leader and the
reference and the distance ε between the successive rows of robots. The moving
formation can be seen as a virtual tree where levels are linked to each other via
virtual springs (Figure 3).

Input: r0, r1 . . . rn a moving formation

Functions:
TheMostExterior(rmyself) returns true if |xrmyself | ≥ |xri | ∀ri

Y ClosestExterior(rmyself) returns the y coordinate of rext, the robot
such that (|xrext | − |xrmyself |) is minimum and positive

1. if (rmyself == r1): { move ahead at a speed < vmax }, vmax is a
parameter of the algorithm

2. if (rmyself == r0): { follow the leader within a distance δ }

3. if (rmyself �= r0, r1 & TheMostExterior(rmyself)): { move ahead
following y = yrj towards the point (xrj , -ε); }

4. (rmyself �= r0, r1 &¬TheMostExterior(rmyself)): { move ahead following
y = yrj towards the point (xrj , Y ClosestExterior(rmyself) − ε); }

Algorithm 7.1. Flocking executed by robot rmyself

Lemma 9. Algorithm 7.1 preserves the moving formation (Definition 8).

64 D. Canepa and M. Gradinariu Potop-Butucaru

O

Leader

Reference

ε

δ

Fig. 3. Animation for Algorithm 7.1

8 Conclusions and Open Problems

In this paper we proposed an architecture for building a self-organizing and
stabilizing flocking architecture. Contrary to the existing work on this topic our
flocking architecture does not assume the existence of a specific leader a priory
known to the robots in the network. In our approach robots are anonymous and
uniform.

Our architecture includes three modules: a leader election module, a prepro-
cessing module and a motion module. For each of these modules we propose
deterministic or probabilistic algorithms (in the case when deterministic solu-
tions are impossible).

This work can be seen as a preliminary study for the design of a general
fault-tolerant flocking architecture where the group of robots verify a generic
pattern and follow the head whatever its direction. Additionally, we currently
investigate probabilistic algorithms that improve the leader election part of our
architecture. In particular, we are looking for leader election solutions in the
Corda model refined with an arbitrary scheduler. The idea of these algorithms is
to use analogical strategies for election. That is, the robots candidate to a leader
position choose probabilistically a free position on their corresponding radius in
the smallest enclosing circle.

Stabilizing Flocking Via Leader Election in Robot Networks 65

Acknowledgments

The authors would like to thank Xavier Defago for detailed discussions related
to the current work, the suggested open problems and the various hints to solve
these problems as discussed in Section 8. We also would like to thank Sebastien
Tixeuil and anonymous reviewers for all their comments that greatly improved
the presentation of the current work.

References

1. Prencipe, G.: Corda: Distributed coordination of a set of autonomous mobile
robots. In: Proc. ERSADS 2001, pp. 185–190 (2001)

2. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Distributed coordination
of a set of autonomous mobile robots. In: IVS 2000. IEEE Intelligent Vehicles
Symposium, pp. 480–485 (2000)

3. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots—formation and
agreement problems. In: SIROCCO 1996. Proceedings of the 3rd International
Colloquium on Structural Information and Communication Complexity (1996)

4. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM Journal on Computing 28(4), 1347–1363 (1999)

5. Suzuki, I., Yamashita, M.: A theory of distributed anonymous mobile robots forma-
tion and agreement problems. Technical report, Wisconsin Univ. Milwakee, Dep.
of Electrical Engineering and Computer Science, 6 (1994)

6. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
mobile robots with limited visibility. Theoretical Computer Science 337, 147–168
(2005)

7. Souissi, S., Défago, X., Yamashita, M.: Eventually consistent compasses for robust
gathering of asynchronous mobile robots with limited visibility. Research Report
IS-RR-2005-010, JAIST, Ishikawa, Japan (2005)

8. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point
convergence algorithm for mobile robots with limited visibility. IEEE Trans. on
Robotics and Automation 15(5), 818–828 (1999)

9. Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate
sensors and movements. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS,
vol. 3884, pp. 549–560. Springer, Heidelberg (2006)

10. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile
robots. In: SODA 2004. Proc. 15th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 1070–1078 (2004)

11. Défago, X., Gradinariu, M., Messika, S., Parvédy, P.R.: Fault-tolerant and self-
stabilizing mobile robots gathering. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167,
pp. 46–60. Springer, Heidelberg (2006)

12. Kasuya, M., Ito, N., Inuzuka, N., Wada, K.: A pattern formation algorithm for
a set of autonomous distributed robots with agreement on orientation along one
axis. Systems and Computers in Japan 37(10), 89–100 (2006)

13. Qadi, A., Huang, J., Farritor, S.M., Goddard, S.: Localization and follow-the-leader
control of a heterogeneous group of mobile robots. IEEE/ASME Transactions on
Mechatronics 11, 205–215 (2006)

14. Renaud, P., Cervera, E., Martiner, P.: Towards a reliable vision-based mobile robot
formation control. In: IROS. IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 3176–3181 (2004)

66 D. Canepa and M. Gradinariu Potop-Butucaru

15. Lindhe, M.: A flocking and obstacle avoidance algorithm for mobile robots. PhD
thesis, KTH Stockholm (2004)

16. Gervasi, V., Prencipe, G.: Flocking by a set of autonomous mobile robots. Technical
Report TR-01-24, Universitat di Pisa (2001)

17. Gervasi, V., Prencipe, G.: Coordination without communication: the case of the
flocking problem. Discrete Appl. Math. 144(3), 324–344 (2004)

18. Angluin, D., Aspnes, J., Fischer, M., Jiang, H.: Self-stabilizing population pro-
tocols. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005.
LNCS, vol. 3974, pp. 79–90. Springer, Heidelberg (2006)

19. Fischer, M., Jiang, H.: Self-stabilizing leader election in networks of finite-state
anonymous agents. In: Shvartsman, A.A. (ed.) OPODIS 2006. LNCS, vol. 4305,
pp. 395–409. Springer, Heidelberg (2006)

20. Barri, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Electing a leader among anony-
mous mobile agents in anonymous networks with sense-of-direction. Technical Re-
port 1310, Technical Report LRI, Laboratoire de recherche en Informatique, Uni-
versité Paris-Sud, France, (April 2002)

21. Dieudonne, Y., Petit, F.: Circle formation of weak robots and lyndon words. Inf.
Process. Lett. 101(4) (2007)

22. Prencipe, G.: Achievable patterns by an even number of autonomous mobile robots.
Technical Report TR-00-11, Universitat di Pisa (2000)

23. Canepa, D., Gradinariu, M.: Stabilizing flocking via leader election in robot net-
works. Technical Report 6268, INRIA, France (2007)

24. Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)
25. Suissi, S.: Fault resilient cooperation of Autonomous Mobile robots with unreliable

compass sensors. PhD thesis, JAIST, Japon (2007)

Stabilization in Dynamic Systems

with Varying Equilibrium

Hui Cao and Anish Arora

Department of Computer Science and Engineering
The Ohio State University, Columbus, OH 43210

{caohu,anish}@cse.ohio-state.edu

Abstract. System design often explores optimality of performance.
What is optimal is, however, often not predefined or static in most cases,
because it is affected by the context of operation, such as the environment
or external system inputs. In this paper, we formulate the maintenance
of optimality of performance in dynamical systems in terms of the stan-
dard notion of stabilization. For systems with observable external inputs
and computable optimality, stabilization may be achieved by adding a
stabilizing input estimator to the system. But environments and exter-
nal inputs are often unobservable. To overcome this difficulty, we present
two alternative methods, one based on a game-theoretic MinMax strat-
egy that leads to Nash equilibrium, and the other based on a feedback
control mechanism that adds a stabilizing output transformer to the
system. We exemplify these two approaches with a pursuit-evasion ap-
plication and a MAC layer duty cycle adaptation protocol, respectively.

Keywords: Stabilization, MiniMax, Optimality, Equilibrium, Control.

1 Introduction

System design often explores optimality of systems, as measured in terms of some
performance metric(s). However, these optimal states are not predefined or static
in many systems because they are affected—or even decided—by the context
of operation, such as the environment or external system inputs. When oper-
ating context changes, the equilibrium state(s) at which optimal performance
is achieved also change, which requires the system to reestablish equilibrium
continuously. By way of example, fault occurrences, environmental parameter
changes, and new user inputs/traffics can each leave the system in a suboptimal
state, as the optimal system state is often a single equilibrium point or a narrow
region of points. These considerations motivate the importance of designing the
property of stabilization in systems with varying equilibrium.

The standard notion of the stabilization of a system implies that regardless
of the current state of the system, each computation of the system will even-
tually converge to a legal state in a finite number of steps and henceforth the
system will continue to operate as specified. In the context of systems that seek
to maintain optimal performance, their legal states must satisfy the desired opti-
mality. Stabilization of these systems thus implies that when the current state of

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 67–81, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

68 H. Cao and A. Arora

the system becomes suboptimal, for instance as a result of change in operating
context, they will eventually resume optimal performance.

Designing stabilization to ensure optimality is however not an easy task. We
attribute this to two facts: (a) Dynamically varying equilibrium: Equilibrium is
often not determined by system itself, it is also affected by the operating context.
Thus, when operating context changes, equilibrium can also vary. (b) Difficulty
of detecting optimality: To determine optimality, all possible outcomes may need
to be compared. When several equilibria coexist in a system, local detection of
optimality can often leave the system in a local maximum (or minimum). In
addition, optimality detection is sensitive to noise. An output spike introduced
by noise may be falsely regarded as a maximum.

Our goal in this paper is to investigate new system design methodologies that
exploit stabilization techniques to maintain optimality despite changes in the
context of system operation.

1.1 Summary of Our Results

In this paper, we study classes of stabilization problems for systems that achieve
optimality. Based on a general system model, we provide three techniques that
achieve stabilization.

1. For systems with observable external inputs, we add a stabilizing estima-
tor to the system, using which the system infers the external inputs. Since
optimality is determined by external inputs and system, when the system
is controllable, we can achieve optimal performance by incorporating the
estimated values of the external inputs.

2. For systems with unobservable external inputs, we suggest the design of Min-
Max controller strategies. We prove whenever a MinMax strategy leads to
Nash equilibrium, stabilization (to the Nash equilibrium) is achieved. We il-
lustrate this technique via an optimal catch time pursuit-evasion application
where the design of a MinMax strategy for a pursuer guarantees stabilization
irrespective of the evader’s choice (or change) of strategy.

3. When outputs are observable, we suggest the design of a feedback control
module. To eschew the difficulty of optimality detection, we add a stabi-
lizing transformer to the system, using which an optimization problem is
transformed into a fixed point control problem. We illustrate this technique
via an optimal energy-efficiency duty cycle MAC design that uses a feedback
control algorithm to guarantee stabilization.

1.2 Related Work

Reactive systems [1] (also called open systems) are systems whose role is to
maintain an ongoing interaction with their environment, as opposed to calculat-
ing a final value upon termination. The literature on stabilization has considered
reactive systems in a number of ways, of which we recall a few. In [2], an adap-
tive program is defined as a program that changes its behavior based on current
state of environment. Operators that compose adaptive programs are developed

Stabilization in Dynamic Systems with Varying Equilibrium 69

in that work for both sequential and distributed program classes. A formal defi-
nition of stabilization in the presence of changes in operating context and general
classes of faults is given in [3], in terms of closure and convergence. In this paper,
we also use closure and convergence properties to define stabilizing optimality. [4]
focuses on the adaptive stabilization of reactive distributed protocols; it shows
that general reactive systems can be implemented in an adaptive way, i.e., the
recovery time of stabilizing protocols can be proportional to the number of faults.

In [5], both termination and stabilization are investigated in message-passing
systems relative to external input. In [6], stabilization of majority consensus is
presented. [7] focuses on mutual exclusion. Both [5] [6] and [7] provide solu-
tions for specific reactive systems. Control theories such as Lyapunov Theory
are applied in [8],[9] to explore its application in stabilization. Some new classes
of stabilization such as Self-organizing [10][11] and Selfish stabilization [12] are
related with game theory approaches.

Compared with current work, we may identify two distinguishing features
of our study: (a) Optimality: the set of legal states, which the system should
converge upon starting from an arbitrary state, are characterized by one or
more optimal properties of interest. (b) Reactivity: as the external inputs changes
continuously, the corresponding equilibrium states can vary continuously as well.

1.3 System Model

As shown in Figure 1(a), our system model consists of four major components:
external input, system controller, internal subsystem, and faults.

– Controller: The system controller is the component that manages the com-
putation of the system. If protocols or algorithms are added to the system
to achieve stabilization, their execution is controlled by this component.

– Internal subsystem: The internal subsystem accepts commands or data
from controller to change its behavior. However, its outputs may also be
affected by when external inputs change and/or faults occur. The distinc-
tion between internal subsystem and controller is that internal subsystem is
governed by its inherent mechanism. In control theory, internal subsystem
is called “plant”.

– External inputs: Based on their influence on the equilibrium states, we
choose to classify the operating context into two parts: external inputs and
faults. External inputs are defined as that part of the operating context that
can directly impact system equilibrium. If external inputs are known, they
together with controller, uniquely decide the equilibrium of system.

– Faults: In contrast to external inputs, faults affect system equilibrium
arbitrarily or transiently. In this paper, we assume that when faults occur the
net effect is to perturb the system into a potentially arbitrary state. The goal
of stabilization then is to subsequently ensure that continued computation
of the system will converge to a legal (i.e., optimal) state eventually (and
ideally in a timely manner).

70 H. Cao and A. Arora

External
Input FaultsController

Internal
subsystem

Output

External
Input FaultsController

Internal
subsystem

Output

Estimator

(a) (b)

Fig. 1. (a) The system model (b) System stabilization with observable inputs

In summary, our model defines several key components that affect system equi-
librium. Many systems such as control system can be generalized by this model.

Notations. We will use the following notations in the rest of the paper.

i: External inputs I: The set of all possible external inputs
c: Controller value C: The set of all possible controller values
y: Outputs Y : The set of all possible outputs

A steady state means a stable condition that does not change over time or in
which change in one direction is continually balanced by change in another. We
assume that in steady states, external inputs and the controller value determine
the outputs through a system function, f, that is, y = f(i, c).

Definition 1. We say that the system is in an optimal state for a given choice
of external inputs i ∈ I and controller value c iff the system output f(i, c) =
max {f(i, c′)|(c′ ∈ C)}.

Note that we use max to indicate optimization. However, min and other types
optimization can be achieved through a general system function, f.

Definition 2. We say that the system has computable optimality iff there exists
a known function O such that for any choice of external inputs i ∈ I, the system
output f(i, O(i)) = max {f(i, c′)|c′ ∈ C}.

Definition 3. We say that external inputs are observable iff they can be mea-
sured directly or inferred from outputs.

Definition 4. We say that a system has stabilizing optimality iff it satisfies two
conditions. (a) Closure: if the system state is optimal, it will remain optimal,
unless faults occur or external input changes. (b) Convergence: upon starting
from an arbitrary system state, every computation of the system will eventually
converge to an optimal state.

In the following sections, we will illustrate three techniques that focus on external
inputs, controller, and output respectively to achieve stabilizing optimality.

Stabilization in Dynamic Systems with Varying Equilibrium 71

2 Stabilizing Optimality Via a Stabilizing Estimator

If external inputs are observable, an estimator can be added into the system,
see Figure 1(b). This estimator would execute as an independent program and
output a value that estimates the external inputs, by filtering noises in mea-
surements of the input. Examples of estimator include Kalman filters, Wiener
filters, and maximum likelihood estimators (MLE). If system has computable
optimality as Definition 2, the controller can determine the equilibrium through
the known function O, using the estimated value as opposed to the ideal external
inputs. The estimator must however be self-stabilizing, to deal with situations
when the estimators state itself is corrupted by fault occurrence.

Lemma 1. If the added estimator is stabilizing and system has computable op-
timality, the system has stabilizing optimality.

Using this approach, the stabilizing optimality of a system is achieved through
continuous self-stabilizing estimation. (a) Closure: when a system is in equilib-
rium, if it has computable optimality and its estimation is correct, the system
function O will compute the same equilibrium. (b) Convergence: If the system is
in an arbitrary state, continued computation of the estimator would eventually
lead to the external inputs being estimated correctly, and the system function
O will the re-establish the equilibrium.

However, the technique of adding stabilizing estimators is prone to several
vulnerabilities. Firstly, the estimator must closely follow the dynamics of exter-
nal inputs. Inaccurate or severely delayed estimation may produce suboptimal
output. In addition, ensuring that the estimator is stabilizing can be nontrivial
especially if it depends on system history which may also get corrupted. The
implementation of the estimator should also be stabilizing, i.e., implementations
of the estimator may introduce their own internal states. When faults happen,
those internal states may be corrupted, and the estimator must recover from
these as well. Furthermore, calculating the function c∗ = O(i) may not be triv-
ial in all applications. Next, we will provide two techniques that avoid those
shortcomings.

3 Stabilizing Optimality Via MinMax Strategies

In game theory, the payoff for a player depends on the choices made by other
players. We may model the interaction among external inputs, controller, and
faults as players in a game, as shown in Figure 2(a). When external inputs
and faults are unpredictable, the game becomes a non-cooperative one. In non-
cooperative games, simultaneous actions from other players (external inputs and
faults) are unobservable. Therefore, maintaining optimal performance based on
an estimator is infeasible.

To deal with unobservable simultaneous actions from external inputs and
faults, our technique is to design a controller based on MinMax strategy. Min-
Max is a method in decision theory for minimizing the maximum possible loss.

72 H. Cao and A. Arora

It can alternatively be thought of as maximizing the minimum gain (MaxMin).
In our system model, the MinMax strategy for the controller would minimize
the maximum loss introduced by external inputs and faults. This is a conserva-
tive approach, but stabilization can be achieved when MinMax strategies lead
to Nash equilibrium, as explained below. Nash equilibrium is a solution concept
for a game where a player has no gain by changing its own strategy unilat-
erally. Specifically, if no player can benefit by changing its strategy while the
other players keep theirs unchanged, then the current set of strategies and the
corresponding payoffs constitute a Nash equilibrium.

Player B
(External Input)

Player C
(Faults)

Player A
(Controller)

Internal
subsystem

Output

Pursuer

Evader

θ
p

A
1

A

B

B
1

B ’

A’

γ

θ
e

(a) (b)

Fig. 2. (a) System model in terms of game theory (b) Pursuit-evasion game for target
capture

Theorem 1. When a Controller adopts a MinMax strategy, the system has sta-
bilizing optimality iff the MinMax strategy leads to Nash equilibrium.

Proof. We combine the effects of external inputs and faults as one external player
input e, where e ∈ E, E is the set of all possible inputs. The external player
input e and controller value determine outputs through the system function f,
that is, y = f(e, c). Without loss of generality, we assume that the MinMax
strategy of the Controller is maxc∈C {mine∈E f(e, c)}, while the corresponding
strategy of external player is mine∈E {maxc∈C f(e, c)}

1. If the MinMax strategy leads to Nash equilibrium, by the definition of Nash
equilibrium, ∃(e∗, c∗), such that for ∀e ∈ E, c ∈ C, f(e∗, c) ≤ f(e∗, c∗) ≤
f(e, c∗). (a) Closure: when (e, c) = (e∗, c∗), since Controller adopts a MinMax
strategy, it will output c∗. For external players, they have no incentive to
change to other strategies, because f(e∗, c∗) ≤ f(e, c∗). (b) Convergence:
when (e, c) �= (e∗, c∗), since Controller adopts a MinMax strategy, it will
output c∗. For external players, the best option is to get the strategy to
output e∗, because when f(e∗, c∗) ≤ f(e, c∗), mine∈E f(e, c∗) = f(e∗, c∗).
Therefore, the system stabilizes.

2. If the MinMax strategy stabilize to a state with outputs (e′, c′), according to
definition of MinMax strategies, mine∈E f(e, c′)= f(e′, c′) = maxc∈C f(e′, c).
Because of convergence, we have ∀e ∈ E, c ∈ C, f(e′, c) ≤ f(e′, c′) ∧
f(e′, c′) ≤ f(e, c′). Therefore, (e′, c′) is a Nash equilibrium.

Stabilization in Dynamic Systems with Varying Equilibrium 73

MinMax strategy and Nash equilibrium are two different solution concepts in
game theory. MinMax strategy cannot guarantee Nash equilibrium, while Nash
equilibrium is not necessarily derived from MinMax strategy. As far as we know,
Theorem 1 is the first result to link them together via stabilization.

3.1 Case Study: Pursuit-Evasion Game (PEG)

We illustrate the MinMax strategy technique via a target capture game, one ap-
plication based on our 1000+ nodes Exscal project in DARPA-NEST program
[13][14]. In this game, the pursuer (controller) tries to catch the evader (external
input) as soon as possible, while the evader tries to prolong the time taken to
be caught (catch time) Tc, the output of this system. This is a zero-sum game.
Zero-sum describes a situation in which a player’s gain or loss is exactly balanced
by the losses or gains of the other player(s).

Model: We denote the current time as t. The list of state variables in this game
is the following:

– Lp(t) = (xp, yp): pursuer location, Le(t) = (xe, ye): evader location
– Vp: the maximal pursuer speed, Ve: the maximal evader speed

When evader is caught at time tc, the catch time is calculated by: Tc = tc − t.
The payoff for pursuer in this game, Jp, is defined as: Jp = −Tc, while the
payoff for evader in this game, Je, is defined as : Je = Tc. We define the
distance between the pursuer and the evader as: dist(t) = ‖Lp(t) − Le(t)‖ =√

(xp − xe)2 + (yp − ye)2.

MinMax strategies: Every Δt time interval, both the pursuer and the evader
should respectively move to the location based on their own MinMax and MaxMin
strategy. To design a MinMax strategy for the pursuer, we should consider the best
actions of an evader. Figure 3 describes the pursuer strategy (proof details can be
found in [15]). Literally, the pursuer strategy is to move towards to evader with
full speed in the next time interval [t, t + Δt].

Input: (xe, ye) Input: (xp, yp)
Output: (xp(t + Δt), yp(t + Δt)) Output: (xe(t + Δt), ye(t + Δt))
Parameter: Vp, Ve Parameter: Vp, Ve

Internal state: (xp, yp) Internal state: (xe, ye)

xp(t + Δt) = xp +
xe−xp

dist(t) · VpΔt xe(t + Δt) = xe +
xe−xp

dist(t) · VpΔt

yp(t + Δt) = yp +
ye−yp

dist(t) · VpΔt ye(t + Δt) = ye +
ye−yp

dist(t) · VpΔt

(a) Pursuer strategy (b) Evader strategy

Fig. 3. Pursuer strategy and Evader strategy

Stabilization of strategies: The MinMax strategy of pursuer provides robust-
ness against uncertainty of evader strategy:

74 H. Cao and A. Arora

Theorem 2. In PEG, if the pursuer follows the actions described by Figure 3,
the following inequality holds even if the evader changes its strategy.

Tc(t) ≥ Tc(t + Δt) + Δt, Tc(t) =
dist(t)
Vp − Ve

Proof. As shown in Figure 2(b), after time interval Δt, the pursuer will move
to B′. In this case, the best option for evader is to move to A′, because only in
this case does the following equation holds: Tc(t) = Tc(t + Δt) + Δt. Otherwise,
assuming the evader moves to any location A1 other than A′, then by triangle
inequality: BA + AA′ > BA1 ⇒ BA + AA′ > B1A1 + BB1. In other words,
dist(t) > dist(t + Δt) + (Vp − Ve)Δt ⇒ Tc(t) > Tc(t + Δt) + Δt.

Similarly, the following inequality also holds:

Theorem 3. In PEG, if the evader follows the actions described by Figure 3,
the following inequality holds, even if the pursuer changes its strategy.

Tc(t) ≤ Tc(t + Δt) + Δt, Tc(t) =
dist(t)
Vp − Ve

The pursuer strategy and the evader strategy form a Nash equilibrium (as we
will prove next) that is based on MinMax strategy, thus they achieve stabilizing
optimality of the game.

Theorem 4. In PEG, if the pursuer follows the MinMax strategy described by
Figure 3, the system has stabilizing optimality.

Proof. Firstly, we prove that the MinMax strategies of the pursuer and the
evader lead to Nash equilibrium. We denote the possible strategies of pursuer
and evader as (ap, ae), ap ∈ P, ae ∈ E, and the actions in Figure 3 as (a∗p, a∗e)
separately.

From Theorem 2, we have: minae∈E Tc(a∗p, ae) = Tc(t) = Tc(a∗p, a
∗
e). From The-

orem 3, we have: maxap∈P Tc(ap, a
∗
e)= Tc(t)= Tc(a∗p, a∗e). Therefore, Tc(ap, a

∗
e) ≤

Tc(a∗p, a
∗
e) ≤ Tc(ap, a

∗
e). The MinMax strategies of the pursuer and the evader

thus lead to Nash equilibrium. From Theorem 1, Nash equilibrium leads to the
stabilization of system.

Stabilization of implementation of strategies: When the strategy is im-
plemented as a program, which may introduce additional states, to ensure the
stabilization of the system, we must consider the stabilization of the implemen-
tation. In our case study, the state information–location of pursuer and evader
can be corrupted. The optimal pursuer strategy is however based solely on the
latest location information, and is thus independent of history information. If
the state information is corrupted, the pursuer should continue to query for the
latest location and move according to its optimal strategy. After it receives the
correct location information, Nash equilibrium is reestablished. In other words,
it is straightforward to implement this strategy as a program that is stabilizing.

Stabilization in Dynamic Systems with Varying Equilibrium 75

3.2 Discussion

When MinMax strategies do not suffice to derive Nash equilibrium, mixed strate-
gies can be applied. A mixed strategy is to choose randomly between different
strategies based on calculated weighted possibilities. The celebrated Minmax
theorem states that a solution for mixed MinMax strategies for two players al-
ways exists and the solution is always a Nash equilibrium. Therefore, by using
mixed MinMax strategies, we can always obtain stabilizing solutions. We suggest
that MinMax is probably the best available strategy for a wide range of zero-sum
games. MinMax has been applied in many applications to deal with uncertain-
ties. In [16] the MinMax approach to the design of systems that are robust with
respect to modeling uncertainties is studied, and the efficacy of the methods
proposed for a general game is validated for the case of problems of matched
filtering, Wiener filtering, quadratic detection, and output energy filtering. We
also applied MinMax to a much more complex application–asset protection game
in [14].

4 Stabilizing Optimality Via Feedback Control

When external inputs are difficult to estimate or are unobservable, but outputs
are measurable, one approach to designing system optimality is via output feed-
back. There are, however, two major issues with this approach: (a) Difficulty
of determining equilibrium: As we noted before, equilibrium is not predefined
in many cases. It may therefore necessitate the use of optimization procedures.
These procedures may however be of high complexity or be error-prone when
equilibrium varies. (b) Stability of feedback loop: This may be difficult to achieve
owing to delay and uncertainty of feedback loop. Uncertainty is inherent when
the system model is inaccurate or when faults occur.

External
Input Faults

Controller

Internal
subsystem

Output

Transformer

Output

Input Input

O
pt

im
al

ity
 m

ea
su

re
m

en
ts

(a) (b)

Fig. 4. (a) System stabilization via feedback control (b) Transform output into op-
timality measurements

To eschew the difficulty of finding equilibrium, we add a stabilizing Output
Transformer to the feedback loop. An output transformer is a function from
outputs into optimality measurements (OM). It is found in several cases that
the Input-OM relationship is much simpler than Input-Output relationship, as

76 H. Cao and A. Arora

is illustrated in Figure 4(b), which makes the design of stable feedback control
based on OM simpler than that based on outputs.

The design of an output transformer depends on the particular application,
but the following two conditions are sufficient for its use:

1. Monotonicity: The input-OM function is monotonic (increasing or decreas-
ing). This condition deals with the possibility that when output is not opti-
mal for a given input, the output by itself may not suffice to decide whether
whether then input is less than the optimal input or more than the optimal
input. Monotonicity of the Input-OM function provides definite feedback to
the input.

2. Uniqueness: When optimality is obtained, OM is a fixed value or in a value
in a narrow region, and is independent of the external inputs. This property
provides robustness against varying external inputs that affect equilibrium.

Theorem 5. If a stabilizing output transformer satisfies Monotonicity and
Uniqueness, the system has stabilizing optimality.

Proof. Let M be the Input-OM function, and m = M(i) where i is the input and
m is the OM. Let the fixed OM value where optimality is obtained be denoted
by m∗.

Firstly, we assume that M(i) is an increasing function. The simple feedback
control algorithm shown in following stabilizes to the fixed value m∗ (The algo-
rithm stabilizes to a narrow region in presented in Figure 8).

if (m > m∗) i = i − Δi;
else if (m < m∗) i = i + Δi;

The following conditions are satisfied: (a) Closure: When the system satisfies
optimality, m = m∗. In this case, the control algorithm leaves the input i un-
changed, and so the output also stays unchanged. When m = m∗ is obtained,
the system satisfies optimality which, by Uniqueness, is independent of the in-
put. Therefore, optimality is closed. (b) Convergence: when the system state is
not optimal, m �= m∗. The control algorithm keeps changing the input i until
m = m∗ eventually.
In the case that M(i) is a decreasing function, similar control algorithms can be
designed. Thus, the system can be stabilized.

We emphasize that Monotonicity and Uniqueness are not necessary conditions,
so other forms of output transformers may also exist for achieving stabilizing
optimality. There control algorithm would likelybe more complex.

4.1 Case Study: Duty Cycle Adaptation

We illustrate the stabilizing output transformer technique via a protocol for duty
cycle adaptation. Network longevity is a key requirement for battery powered
wireless sensor network. This suggests that node radios must be scheduled to
switch off most of the time, i.e., to achieve as low a duty cycle as is possible

Stabilization in Dynamic Systems with Varying Equilibrium 77

while still accommodating the network traffic. Analytical results [17] indicate
that different traffics require different duty cycles to achieve optimal energy
efficiency. The goal of duty cycle adaptation then is to provide sufficient but
minimum duty cycle for accommodating varying traffic.

Matching the duty cycle of the system to the load is a challenge problem
and achieving its stability is even more difficult. If the duty cycle is lower than
required, higher collision or sender buffer overflow can happen; if the duty cycle is
higher than required, energy is wasted on idle listening. Changing the duty cycle
may change the link reliability and thus the routing structure, which changes
the traffic. However, traffic may affect duty cycle in return. Therefore, oscillation
may happen in this control loop. Stabilizing duty cycle adaptation is a critical
requirement for low duty cycle systems.

For the sake of presentation, let us consider a 6 node wireless sensor network
example to illustrate our design. (More complex network deployment and traffic
pattern can be found in [18].) All of the nodes are within communication range
of each other. All 5 senders transmit with the same rate randomly when receiver
is up.

Receiver
Sender

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Sending Probability(p)

Activity ratio
Energy Efficiency

(a) (b)

Fig. 5. (a) A wireless network with 5 senders and 1 receiver (b)Activity ratio & energy
efficiency as a function of traffic level

Transformer design: The list of state variables in this protocol is the following:

– D(t): Controller value: the receiver duty cycle at time t
– Ii(t) = I(t): External input: traffic from sender i at time t
– Pi(t) = P (t): Input to the internal system: the probability of sender i trans-

mitting when receiver is up at time t
– O(t): output traffic at time t, note that it includes only the goodput.
– C(t): output collisions at time t

The input to the internal system, Pi(t), is: Pi(t) = Ii(t)
D(t) = I(t)

D(t) = P (t).
Therefore, the output traffic is: O(t) = 5·P (t)·(1−P (t))4 ·D(t). Energy efficiency
is defined as the ratio of output traffic and receiver duty cycle: Ee(t) = O(t)

D(t) =
5 · P (t) · (1 − P (t))4. As shown in Figure 5(b), when P (t) increases, energy
efficiency increases before reaching a maximum, and then decreases thereafter.
We define activity ratio as the optimality measurement of this case study.

78 H. Cao and A. Arora

Activity ratio is measured through output, and is defined as ratio of the total
activity versus receiver duty cycle.

A(t) =
O(t) + C(t)

D(t)
= 1 − (1 − P (t))5

Note that activity ratio is equal to the probability of the channel being non-idle.
By using the activity ratio as the optimality measurement [18], we have trans-
formed an optimization problem into a fixed point feedback control problem, as
shown in Figure 5(b).

Basic feedback protocol algorithm: Before we present the algorithm, we
introduce a Proposition firstly [18].

Proposition 1. When activity ratio converges to within a small region [Amin,
Amax], optimal energy efficiency is obtained.

In this section, we focus on providing a feedback control mechanism to ensure
the activity ratio converges to within a small region [Amin, Amax], wherein the
optimal duty cycle is obtained.
Figure 6 presents a simple generic control protocol by using Multiple-Increasing-
Multiple-Decreasing (MIMD). Let:

dr be the receiver duty cycle, Amax be the maximum activity ratio,
Amin be the minimum activity ratio, α be duty cycle increasing rate,
β be duty cycle decreasing rate;

Input: ra, dr(k) Output: dr(k + 1) Parameter: Amin, Amax, α, β
if (ra > Amax) ⇒ dr(k + 1) = dr(k) + dr(k) ∗ α;
else if (ra < Amin) ⇒ dr(k + 1) = dr(k) − dr(k) ∗ β;

Fig. 6. Basic adaptive non-stabilizing duty cycle protocol

Although the invariant for this simple program is ra ∈ [Amin, Amax], the pro-
gram cannot guarantee stabilization, as we show in the next section.
Stabilization of Feedback Control Protocol: Although MIMD achieves bet-
ter convergence and energy efficiency, the method does not converge. Unless α
and β are not chosen carefully, it is possible that the activity ratio ra may
oscillate from below Amin to above Amax, as is shown in Figure 7.

To prevent oscillation, we add stabilization into the basic feedback control
protocol, as shown in Figure 8. The main idea is that when a transition from
ra > Amax to ra < Amin or from ra < Amin to ra > Amax happens, the rate of
receiver duty cycle change decreases. In this protocol, the variable lstate is used
to indicate different states:

Stabilization in Dynamic Systems with Varying Equilibrium 79

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(rounds)

Active ratio
Receiver duty cycle

Fig. 7. Oscillation in the basic adaptive duty cycle algorithm

INC: duty cycle is increasing DEC: duty cycle is decreasing
OV ER: transitioning from < Amin to > Amax NOR: steady state
LOW : transitioning from > Amax to < Amin

Variables δi and δd denote the step size of increasing or decreasing duty cycle.
This protocol provides guarantee of stabilization:

Input: ra, dr(k) else if (ra < Amin)
Output: dr(k + 1) if(lstate = DEC)
Parameter: Amin, Amax, α, β dr(k + 1) = dr(k) − dr(k) ∗ β;
State: lstate, δi, δd δd = dr(k) − dr(k + 1);
if (ra > Amax) if (lstate = OV ER)

if (lstate = INC)‖(lstate = NOR) δd = δd/2;
dr(k + 1) = dr(k) + dr(k) ∗ α; dr(k + 1) = dr(k) − δd;
δi = dr(k + 1) − dr(k); if (lstate = OV ER)

if (lstate = DEC)‖(lstate = OV ER) δd = δd/2;
δd = δd/2; dr(k + 1) = dr(k) − δd;
dr(k + 1) = dr(k) + δd; if (lstate = INC)‖(lstate = LOW)
lstate = OV ER; δi = δi/2;

if (lstate = LOW) dr(k + 1) = dr(k) − dr(k) ∗ δi;
δi = δi/2; lstate = LOW ;
dr(k + 1) = dr(k) + δi; lstate = DEC;

else
lstate = NOR

Fig. 8. The stabilizing optimality protocol for adaptive duty cycle

Theorem 6. When the incoming traffic is steady, the adaptive duty cycle proto-
col described in Figure 8 stabilizes to an activity ratio in [Amin..Amax], by which
optimal efficiency is obtained.

Proof. The invariant for this program is ra ∈ [Amin, Amax], the program is
closed. Next, we will prove its convergence.

80 H. Cao and A. Arora

For a network with η senders, every node transmits with a certain duty cycle
di

s. Note the duty cycle of different senders may be different, so we use a vector
Ds to represent: Ds = [d1

s, d
2
s,, d

η
s]. The relationship between the receiver ac-

tivity ratio ra and the receiver duty cycle dr can be expressed as a function: ra =
f(Ds, dr). When Ds is fixed, function f(Ds, dr) is a decreasing function. In other
words, when receiver duty cycle increases, activity ratio decreases when incom-
ing traffic is fixed. For instance, in the case of random traffic, ra = f(Ds, dr) =
1 − (1 − pi)η, where pi = max {1,

di
s

dr
}. We use Lyapunov theorem to prove con-

vergence. Let the Lyapunov function be: El = min {‖ra − Amin‖, ‖Amax − ra‖}.
When no transition happens, either ‖ra − Amin‖ or ‖Amax − ra‖ is a decreasing
function, guaranteed by the decreasing function ra = f(Ds, dr). When a transi-
tion happens, the protocol guarantees that an infinitely smaller step size of duty
cycle is either added or subtracted. Function El is still a decreasing function.
By the well known Lyapunov theorem, this protocol stabilizes to a static point.
Given the continuity of the function ra = f(Ds, dr), the activity ratio stabilizes
to a point in Amin..Amax.

The algorithm described in Figure 8 is generic, so it can be applied in any system
to achieve stabilization, when a transformer as described in Theorem 5 is added
into system.

5 Conclusion

In this paper, we formulated optimality maintenance in dynamical system in
terms of the standard notion of stabilization. We focused on three techniques
—estimator-based, MinMax controllers that lead to Nash equilibrium, and
transformer-based — for stabilization of dynamical systems. Each of these tech-
niques relates to a different aspect of the system, respectively, its input, its
controller, and its output.

One advantage of the formulation in terms of stabilization is the apprecia-
tion (in Lemma 1, Theorem 1, and Theorem 5) that the components designed
for dynamical systems to maintain optimality should themselves be stabilizing.
Likewise, the concrete implementations of these components should be stabiliz-
ing.

We illustrated the MinMax and transformer based techniques via case stud-
ies. Although these examples do include distributed computing, and indeed the
latter can achieve stabilization in a network by independent local stabilization
of its nodes, it is apparent that several advanced methods studied in the theory
of stabilization for composition of stabilizing components can be exploited to
deepen these techniques. As such, we find that these techniques deserve to be
substantially further studied by the community.

Acknowledgment. This work was supported in part by NSF grants NSF-
NETS/NOSS-0520222 and NSF-HDCCSR-0341703. We thank Vinodkrishnan
Kulathumani as well as the referees for their helpful comments and suggestions.

Stabilization in Dynamic Systems with Varying Equilibrium 81

References

1. Manna, Z., Pnueli, A.: Models for reactivity. Informatica, 609–678 (1993)
2. Gouda, M.G., Herman, T.: Adaptive programming. IEEE Transaction of Software

Engineering 17(9), 911–921 (1991)
3. Arora, A., Gouda, M.: Closure and convergence: A foundation of fault-tolerant

computing. IEEE Transactions on Software Engineering 19(10), 1015–1027 (1993)
4. Kutten, S., Patt-Shamir, B.: Adaptive stabilization of reactive protocols. In: Lo-

daya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 396–407.
Springer, Heidelberg (2004)

5. Arora, A., Nesterenko, M.: Unifying stabilization and termination in message-
passing systems. Distributed Computing 17(3), 279–290 (2005)

6. Burman, J., Kutten, S., Herman, T., Patt-Shamir, B.: Asynchronous and fully
self-Stabilizing time-adaptive majority consensus. In: Anderson, J.H., Prencipe,
G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, Springer, Heidelberg
(2006)

7. Beauquier, J., Genolini, C., Kutten, S.: Optimal reactive k-stabilization: the case
of mutual exclusion. In: PODC. Proceedings of the 18th ACM Symposium on
Principles of Distributed Computing, pp. 209–218 (1999)

8. Theel, O.: Exploitation of Lyapunov Theory for Verifying Self-Stabilizing Algo-
rithms. In: Herlihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, Springer, Heidelberg
(2000)

9. Dhama, A., Oehlerking, J., Theel, O.: Verification of Orbitally Self-stabilizing Dis-
tributed Algorithms using Lyapunov Functions and Poincaré Maps. In: Proceedings
of the 12th International Conference on Parallel and Distributed Systems (2006)

10. Anceaume, E., Défago, X., Gradinariu, M., Roy, M.: Towards a Theory of Self-
organization. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS
2005. LNCS, vol. 3974, Springer, Heidelberg (2006)

11. Dolev, S., Tzachar, N.: Empire of Colonies: Self-stabilizing and Self-organizing Dis-
tributed Algorithms. In: Shvartsman, A.A. (ed.) OPODIS 2006. LNCS, vol. 4305,
Springer, Heidelberg (2006)

12. Dasgupta, A., Ghosh, S., Tixeuil, S.: Selfish stabilization. In: Datta, A.K., Grad-
inariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 231–243. Springer, Heidelberg
(2006)

13. Arora, A., Ramnath, R., Ertin, E., Bapat, S., Naik, V., Cao, H., et al.: ExS-
cal: Elements of an extreme wireless sensor network. In: Proceedings of the 11th
International Conference on Embedded and Real-Time Computing Systems and
Applications (2005)

14. Cao, H., Ertin, E., Kulathumani, V., Sridharan, M., Arora, A.: Differential Games
in Large Scale Sensor Actuator Networks. In: IPSN. Proceedings of the 5th Inter-
national Conference on Information Processing in Sensor Networks (2006)

15. Cao, H., Ertin, E., Arora, A.: MiniMax Equilibrium of Networked Differential
Games, Technical Report OSU-CISRC-4/07 (2007)

16. Verdu, S., Poor, H.: On minimax robustness: A general approach and applications.
IEEE Transactions on Information Theory IT-30, 328–340 (1984)

17. Cao, H., Parker, K.W., Arora, A.: O-MAC: a receiver centric power management
protocol. In: ICNP. Proceedings of the 14th IEEE International Conference on
Network Protocols, IEEE Computer Society Press, Los Alamitos (2006)

18. Cao, H., Arora, A., Parker, K.W., Lai, T.H.: Continuous asynchronous discovery
with efficient synchronous communication for mobile networks, Technical Report
OSU-CISRC-4/07 (2007)

Snap-Stabilizing Prefix Tree for Peer-to-Peer

Systems�

Eddy Caron1, Frédéric Desprez1, Franck Petit2, and Cédric Tedeschi1

1 LIP Laboratory
UMR CNRS-ENS Lyon-UCB Lyon-INRIA 5668
46 Allée d’Italie, 69364 Lyon Cedex 07, France

2 LaRIA Laboratory
CNRS-University of Picardie

5, rue du Moulin Neuf, 80000 Amiens, France

Abstract. Resource Discovery is a crucial issue in the deployment of
computational grids over large scale peer-to-peer platforms. Because they
efficiently allow range queries, Tries (a.k.a., Prefix Trees) appear to be
among promising ways in the design of distributed data structures in-
dexing resources. Self-stabilization is an efficient approach in the design
of reliable solutions for dynamic systems. A snap-stabilizing algorithm
guarantees that it always behaves according to its specification. In other
words, a snap-stabilizing algorithm is also a self-stabilizing algorithm
which stabilizes in 0 steps.

In this paper, we provide the first snap-stabilizing protocol for trie
construction. We design particular tries called Proper Greatest Common
Prefix (PGCP) Tree. The proposed algorithm arranges the n label
values stored in the tree, in average, in O(h + h′) rounds, where h
and h′ are the initial and final heights of the tree, respectively. In the
worst case, the algorithm requires an O(n) extra space on each node,
O(n) rounds and O(n2) actions. However, simulations show that, using
relevant data sets, this worst case is far from being reached and con-
firm the average complexities, making this algorithm efficient in practice.

Keywords: Peer-to-peer systems, Fault-tolerance, Self-stabilization,
Snap-stabilization, Grid computing.

1 Introduction

These last few years have seen the development of large scale grids connect-
ing distributed resources (computation resources, storage facilities, computation
libraries, etc.) in a seamless way. This is now an efficient alternative to super-
computers for solving large problems such as high energy physics, bioinformatics
or simulation. However, existing middleware systems always require a minimal
stable centralized infrastructure and are not usable over dynamic large scale dis-
tributed platforms. To cope with the characteristics of these future platforms,
� This work was developed with financial support from the ANR (Agence Nationale

de la Recherche) through the LEGO project referenced ANR-05-CIGC-11.

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 82–96, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Snap-Stabilizing Prefix Tree for Peer-to-Peer Systems 83

it has been widely suggested to use peer-to-peer technologies inside middle-
ware [22]. Early distributed hash tables (DHT), designed for very large scale
platforms, e.g., to share files over the Internet, have several major drawbacks.
Among them, there is the fact that they only support exact match queries. An
important amount of work has recently been undertaken to allow more complex
querying over peer-to-peer systems. A promising way to achieve this is the use of
tries (a.k.a., prefix trees). Trie-based approaches outperform other ones by effi-
ciently supporting range queries and easily extending to multi-criteria searches.

Unfortunately, although fault tolerance is a mandatory feature of systems
aiming at being deployed at large scale (to avoid data loss and allow a correct
routing of messages through the network), tries only offer a poor robustness in
dynamic environment. The crash of one or several nodes leads to the loss of
stored objects and to the split of the trie into several subtries. These subtries
may then not reconnect correctly, making the trie invalid and thus unable to
process queries. Among recent trie-based approaches, the fault-tolerance is ei-
ther ignored, or handled by preventive mechanisms, intensively using replication
which can be very costly in terms of computing and storage resources. Afterward,
the purpose is to compute the right trade-off between the replication cost and
the robustness of the system. Nevertheless, replication does not formally ensure
the recovery of the system after arbitrary failures. From this point on, it remains
only to use a strategy based on the best-effort approach. This is why we believe
that such systems could take advantage of using self-stabilization techniques in
order to satisfy the fault tolerance requirements.

The concept of self-stabilization [16] is a general technique to design a system
tolerating arbitrary transient faults. A self-stabilizing system, regardless of the ini-
tial states of the processors and initial messages in the links, is guaranteed to con-
verge to the intended behavior in finite time. Thus, a self-stabilizing system does
not need to be reinitialized and is able to recover from transient failures by itself.

In this paper, we propose a snap-stabilizing distributed algorithm to build a
Proper Greatest Proper Common Prefix (GPCP) Tree starting from any labeled
rooted tree. A snap-stabilizing [13] algorithm ensures that the system always
maintains the desirable behavior and is obviously optimal in stabilization time.
The property of snap-stabilization is achieved within the well-known Dijkstra’s
theoritical model [15] where in each computation step, each node can atomically
read variables (or, registers) owned by its neighboring nodes.

The proposed algorithm arranges the n label values (each node holds a sin-
gle label) stored in the tree, in average, in O(h + h′) rounds, where h and h′

are the initial (before reconstruction) and final (after reconstruction) height of
the tree, respectively. In the worst case, the algorithm requires an O(n) extra
space on a given node, O(n) rounds and O(n2) operations. However, simulations
show that, using relevant data sets, the worst case is far from being reached
and confirm the average complexity. It also shows the practical efficiency of the
proposed algorithm and the benefit of snap-stabilization in the design of efficient
algorithms for unreliable, dynamic environments where the best-effort seems to
be a valuable strategy.

84 E. Caron et al.

In Section 2, we summarize recent peer-to-peer technologies used for resource
discovery and their fault-tolerance mechanisms, followed by similar works un-
dertaken in the field of self-stabilization. In Section 3, we describe the abstract
model in which our algorithm is designed, and present what it means for a dis-
tributed algorithm to be snap-stabilizing. We also specify the PGCP Tree and
related distributed data structures. In Section 4, the snap-stabilizing scheme
protocol is presented, and its correctness proof and complexities discussed. Sim-
ulation process are explained and results given in Section 5. Finally, we conclude
by summarizing the contribution of the paper and a brief description of next
steps in this work.

2 Related Work

First peer-to-peer algorithms aiming at retrieving objects were based on the
flooding of the network, overloading the network while providing non-exhaustive
responses. Addressing both the scalability and the exhaustiveness issues, the
distributed hash tables [25,26,29], logical hops required to route and the local
state grow logarithmically with the number of nodes participating in the system.
Unfortunately, DHTs present several major drawbacks. Among them, the rigidity
of the requesting mechanism, only allowing exact match queries, hinders its use
over distributed computational platforms that require more complex meanings
of search.

A large amount of work tackles the opportunity to allow more flexibility in
the retrieval process over structured peer-to-peer networks. Peer-to-peer sys-
tems users have been given the opportunity to plug different technologies on
DHTs, such as the ability to retrieve resources described by semi-structured lan-
guages [5], to manage data thanks to traditional database operations [30], or
to support multi-attribute range queries [1,23,27,28]. Among this last series of
work supporting multi-attribute range queries, a new kind of overlay, based on
tries, has emerged. Trie-structured approaches outperform others in the sense
that logarithmic (or constant if we assume an upper bound on the depth of the
trie) latency is achieved by parallelizing the resolution of the query in the several
branches of the trie.

Prefix Hash Tree (PHT) [24] dynamically builds a trie of the given key-space
as an upper layer and maps it over any DHT-like network. Obviously, the ar-
chitecture of PHT results in the multiplication of the complexities of the trie
and of the underlying DHT. The problem of fault tolerance is then delegated
to the DHT layer. Skip Graphs, introduced in [3], are also similar to a trie,
but rely on skip lists, allowing the use of their probabilistic fault tolerance.
Nevertheless, a repair mechanism of the particular skip graph structure is pro-
vided. Nodewiz [6], another trie-structured overlay does not address the fault-
tolerance problem by assuming the nodes reliable. Finally, P-Grid [14] tolerance
is based on probabilistic replication. Initially designed for the purpose of ser-
vice discovery over dynamic computational grids and aimed at solving some
drawbacks of these previous approaches, we recently developed a novel architec-
ture, based on a logical greatest common prefix tree [11]. This structure, more

Snap-Stabilizing Prefix Tree for Peer-to-Peer Systems 85

formally described in the following, is dynamically built as objects, e.g., com-
putational services, are declared by some servers. The fault tolerance is also
addressed by replication of nodes and links of the tree. Another advantage of
the technology presented in [11] is its ability to greedily take into account the
heterogeneity of the underlying physical network to make a more efficient tree
overlay.

To summarize, the fault-tolerance issue is mostly either ignored, delegated
or replication-based. In [10], we provided a first alternative to the replication
approach. The idea was to let the trie crash and to a posteriori reconnect and
reorder the nodes. However, this protocol assumed the validity of subtries being
reordered, thus limiting the field of initial configurations being handled and
repaired. In the following sections, we present a new protocol able to repair any
labeled rooted tree to make a valid greatest common prefix tree and thus to offer
a general systematic mechanism to maintain distributed tries.

In the self-stabilizing area, some investigations take interest in maintaining
distributed data structures. The solutions in [19,20,21] focus on binary heap
and 2-3 trees. Several approaches have also been considered for a distributed
spanning tree maintenance e.g., [2,4,12,17,18]. In [18], a new model for dis-
tributed algorithms designed for large scale systems is introducted. In [7], the
authors presented the first snap-stabilizing distributed solution for the Binary
Search Tree (BST) problem. Their solution requires O(n) rounds to build the
BST, which is proved to be asymptotically optimal for this problem in the same
paper.

3 Preliminaries

In this section, we first present the distributed system model used in the design
of our algorithm. Then, we recall the concept of snap-stabilization and specify
the distributed data structures considered.

3.1 Distributed System

The distributed algorithm presented in this paper is intended for practical peer-
to-peer (P2P) networks. A P2P network consists of a set of asynchronous physical
nodes with distinct IDs, communicating by message passing. Any physical node
P1 can communicate with any physical node P2, provided P1 knows the ID of P2
(ignoring physical routing details). Each physical node maintains one or more
logical nodes of the distributed logical tree. Our algorithm is run inside all these
logical nodes. Note that the tree topology is susceptible to changes during its
reconstruction. Each logical node of the tree has to be considered mapped on
a physical node of the underlying network. However, the mapping process falls
beyond the scope of this paper.

In order to simplify the design, proofs, and complexity analysis of our algo-
rithm, we use the theoretical formal state model introduced in [15]. We apply
this model on logical nodes (or simply, nodes) only. The message exchanges are

86 E. Caron et al.

modeled by the ability of a node to read the variables of some other nodes, hence-
forth referred to as its neighbors. A node can only write to its own variables.
Each action is of the following form: < label >:: < guard > → < statement >.
The guard of an action in the program of p is a boolean expression involving the
variables of p and its neighbors. The statement of an action of p updates one
or more variables of p. An action can be executed only if its guard evaluates to
true. We assume that the actions are atomically executed, meaning the evalua-
tion of a guard and the execution of the corresponding statement of an action,
if executed, are done in one atomic step.

The state of a node is defined by the values of its variables. The state of a
system is a product of the states of all nodes. In the sequel, we refer to the
state of a node and the system as a state and a configuration, respectively. Let
a relation denoted by �→, on C (the set of all possible configurations of the
system). A computation of a protocol P is a maximal sequence of configurations
e = (γ0, γ1, ..., γi, γi+1, ...), such that for i ≥ 0, γi �→ γi+1 (a single computation
step) if γi+1 exists, or γi is a terminal configuration.

A processor p is said to be enabled in γ (γ ∈ C) if there exists at least an
action A such that the guard of A is true in γ. We consider that any enabled
node p is neutralized in the computation step γi �→ γi+1 if p is enabled in γi

and not enabled in γi+1, but does not execute any action between these two
configurations (the neutralization of a node represents the following situation:
At least one neighbor of p changes its state between γi and γi+1, and this change
effectively made the guard of all actions of p false.) We assume an unfair and
distributed daemon. The unfairness means that even if a processor p is continu-
ously enabled, then p may never be chosen by the daemon unless p is the only
enabled node. The distributed daemon implies that during a computation step,
if one or more nodes are enabled, then the daemon chooses at least one (possibly
more) of these enabled nodes to execute an action.

In order to compute the time complexity, we use the definition of round. This
definition captures the execution rate of the slowest node in any computation.
The set of all possible computations of P is denoted as E . The set of possible
computations of P starting with a given configuration α ∈ C is denoted as Eα.
Given a computation e (e ∈ E), the first round of e (let us call it e′) is the
minimal prefix of e containing the execution of one action of the protocol or the
neutralization of every enabled node from the first configuration. Let e′′ be the
suffix of e, i.e., e = e′e′′. Then second round of e is the first round of e′′, and
so on.

3.2 Snap-Stabilization

Let X be a set. x � P means that an element x ∈ X satisfies the predicate P
defined on the set X .

Definition 1 (Snap-stabilization). The protocol P is snap-stabilizing for the
specification SPP on E if and only if the following condition holds: ∀α ∈ C :
∀e ∈ Eα :: e � SPP .

Snap-Stabilizing Prefix Tree for Peer-to-Peer Systems 87

3.3 Proper Greatest Common Prefix Tree

Let an ordered alphabet A be a finite set of letters. Denote ≺ an order on A. A
non empty word w over A is a finite sequence of letters a1, . . . , ai, . . . , al, l > 0.
The concatenation of two words u and v, denoted u ◦ v or simply uv, is equal
to the word a1, . . . , ai, . . . , ak, b1, . . . , bj , . . . , bl such that u = a1, . . . , ai, . . . , ak

and v = b1, . . . , bj, . . . , bl. Let ε be the empty word such that for every word w,
wε = εw = w. The length of a word w, denoted by |w|, is equal to the number
of letters of w—|ε| = 0.

A word u is a prefix (respectively, proper prefix) of a word v if there ex-
ists a word w such that v = uw (resp., v = uw and u
= v). The Great-
est Common Prefix (resp., Proper Greatest Common Prefix) of a collection
of words w1, w2, . . . , wi, . . . (i ≥ 2), denoted GCP (w1, w2, . . . , wi, . . .) (resp.
PGCP (w1, w2, . . . , wi, . . .)), is the longest prefix u shared by all of them (resp.,
such that ∀i ≥ 1, u
= wi).

Definition 2 (PGCP Tree). A Proper Greatest Common Prefix Tree is a
labeled rooted tree such that each node label is the Proper Greatest Common
Prefix of every pair of its children labels.

In the design of our protocol, we also needs the relaxed form of PGCP Tree
defined as follows:

Definition 3 (PrefixHeap). A PrefixHeap is a labeled rooted tree such that
each node label is the Proper Greatest Common Prefix of all its children labels.

4 Snap-Stabilizing PGCP Tree

In this section, we present the snap-stabilizing PGCP tree maintenance. We
provide a detailed explanation of how the algorithm works from initialization
until the labels are arranged in the tree such that it becomes a PGCP tree.
Next, the proof of snap-stabilization and complexity issues are given.

4.1 The Algorithm

The code of our solution is shown in Algorithms 1 and 2. We assume that initially,
there exists a labeled rooted tree spanning the network. Every node p maintains
a finite set of children Cp = {c1, . . . , ck}, which contains the addresses of its
children in the tree. Each node p is able to know the address of its father using
the macro fp. The uniqueness of the father is ensured by the use of the function
MinID(S) which returns the minimal values in the set S1. So, each node p can
locally determine if it is either (1) the single root of the spanning tree (fp is
unspecified), (2) an internal node (fp is specified and Cp
= ∅), or (3) a leaf
node (cp = ∅). In the sequel, we denote the set of nodes in the tree rooted at p

1 In a real P2P network, the relationship child/father is easily preserved by exchanging
messages between a child node and its father.

88 E. Caron et al.

as Tp (hereafter, also called the tree Tp) and the height of the tree rooted at p
as h(Tp).

Each node p holds a label lp and a state Sp in {I, B, H}2—stand for Idle,
Broadcast, and Heapify, respectively. The algorithm uses two basic functions to
create and delete nodes from the tree. The NEWNODE(lbl, st, chldn) function
creates a new node labeled by lbl, whose initial state is st and with a set of
children initialized with chldn. Once the new node created by this function is
integrated to a set of children, the fp macro will ensure its father to be correctly
set. Finally, the same fp macro will set the father variable of nodes in chldn.
The DESTROY(p) function is called to stop the process of a given node, (its
reference should have been previously deleted from any other node).

Algorithm 1. Snap-Stabilizing PGCP Tree — Variables, Macros, and Actions
Variables: lp, the label of p

Cp ={c1, . . . , ck}
Sp ={I, B} if p is the root, {I, H} if p is a leaf node, {I, B, H} otherwise (p is an internal node)

Macros: fp ≡ MinID({q : p ∈ Cq})
SameLabelp(L) ≡ {c ∈ Cp| (lc = L)}
SameGCPp(L) ≡ {c1, c2, . . . , ck ∈ Cp| GCP (c1, c2, . . . , ck) = L}
SamePGCPp(L) ≡ SameGCPp(L) \ {c ∈ SameGCPp(L)| lc = L}

Actions:
{For the root node}

InitBroadcast :: Sp = I ∧ (∀c ∈ Cp| Sc = I) −→ Sp := B;
InitRepair :: Sp = B ∧ (∀c ∈ Cp| Sc = H) −→ HEAPIFY();REPAIR(); Sp := I;

{For the internal nodes}
F orwardBroadcast :: Sp = I ∧ Sfp

= B ∧ (∀c ∈ Cp| Sc = I) −→ Sp := B;

BackwardHeap :: Sp = B ∧ Sfp
= B ∧ (∀c ∈ Cp| Sc = H) −→ HEAPIFY(); Sp := H;

F orwardRepair :: Sp = H ∧ Sfp
= I ∧ (∀c ∈ Cp| Sc ∈ {H, I}) −→ REPAIR(); Sp := I;

ErrorCorrection :: Sp = B ∧ Sfp
∈ {H, I} −→ Sp := I;

{For the leaf nodes}
InitHeap :: Sp = I ∧ Sfp

= B −→ Sp := H

EndRepair :: Sp = H ∧ Sfp
= I −→ Sp := I;

The basic idea of the algorithm is derived from the fast version of the snap-
stabilizing PIF in [8] and runs in three phases: The root initiates the first phase,
called the Broadcast phase, by executing Action InitBroadcast. All the internal
nodes in the tree participate in this phase by forwarding the broadcast message
to their descendants — Action ForwardBoradcast. Once the broadcast phase
reaches the leaves, they initiates the second phase of our scheme, called the
heapify phase, by executing Action InitHeap.

During the heapify phase, a PrefixHeap is built — refer to Definition 3. We
also ensure in this phase that for every node p, p is a single node in Tp with a
value equal to lp. The heapify phase is computed using Procedure HEAPIFY (),
executed by all the internal — Actions BackwardHeap. The heapify phase even-
tually reaches the root which also executes Procedure HEAPIFY () and initi-
ates the third and last phase of our scheme, called the Repair phase — Action
InitRepair. The aim of this phase is to correct the two following problems that
can occur in the PrefixHeap. First, even if no node in Tp has the same label

2 To ease the reading of the algorithm, we assume that Sp ∈ {I, B} (respectively,
{I, H}) if p is the root (resp., p is a leaf). We could easily avoid this assumption
by adding the following guarded action for the root (resp.leaf) node: Sp = H (resp.
Sp = B) −→ Sp := I . Note that this correction could occur only once.

Snap-Stabilizing Prefix Tree for Peer-to-Peer Systems 89

Algorithm 2. Snap-Stabilizing PGCP Tree — Procedures

1.01Procedure HEAPIFY()
1.02 Cp := Cp ∪ {NEWNODE (lp, H, {})}
1.03 lp := GCP({lc| c ∈ Cp})
1.04 for all c ∈ Cp| lc = lp do
1.05 Cp := Cp ∪ Cc \ {c}
1.06 DESTROY(c)
1.07 done

2.01Procedure REPAIR()
2.02 while ∃(c1, c2) ∈ Cp| lc1 = lc2 do
2.03 Cp := Cp ∪ {NEWNODE(lc1 , H, Cs| s∈SameLabel(lc1))}
2.04 for all c ∈ SameLabelp(lc1) do
2.05 DESTROY(c)
2.06 done
2.07 done
2.08 while ∃c ∈ Cp| SamePGCPp(lc) 	= ∅ do
2.09 Cp := Cp ∪ {NEWNODE(lc, H, Cc ∪ SamePGCPp(lc)}
2.10 Cp := Cp \ SamePGCPp(lc)
2.11 DESTROY(c)
2.12 done
2.13 while ∃(c1, c2) ∈ Cp| |GCP (lc1 , lc2)| > |lp| do
2.14 Cp := Cp ∪ {NEWNODE(GCP(lc1 , lc2), H, SameGCPp(GCP (lc1 , lc2))}
2.15 Cp := Cp \ SameGCPp(GCP (lc1 , lc2))
2.16 done

as p, the same label may exist in different branches of the tree; Second, if each
node is the greatest common prefix of its children labels, it is not necessarily the
greatest common prefix of any pairs of its children labels.

The repair phase works similarly as in the Broadcast phase. The root and the
internal nodes execute Procedure REPAIR() starting from the root toward the
leaves — Actions InitRepair and ForwardRepair. During this phase, for each
node p, four cases can happen:

1. Several children of p have the same label. Then, all the children with the
same label are merged into a single child — Lines 2.02 to 2.07;

2. The labels of some children of p are prefixed with the label of some of its
brothers. In that case, the addresses of the prefixed children are moved into
the corresponding brother — Lines 2.08 to 2.12;

3. The labels of some children of p are prefixed with a label which does not
exist among their brothers and which are longer than the label of p. Then,
for each set of children with the same prefix, p builds a new node with the
corresponding prefix label and the corresponding subset of nodes as children
— Lines 2.13 to 2.16.

4. If none of the previous three cases appear, nothing is done.

Finally, Phase REPAIR() ends at leaf nodes by executing Action EndRepair.
This indicates the end of the PGCP tree construction. Note that since we are
considering self-stabilizing systems, the internal nodes need to correct abnormal
situations due to the unpredictable initial configuration. The unique abnormal
situation which could avoid the normal progress of the three phases of our scheme
is the following: An internal node p is in State B (done with its broadcast
phase) but its father fp is in State H or I, indicating that it is done executing
its Heapify phase or it is Idle, respectively. In that case, p executes Action
ErrorCorrection, in the worst case, pushing down Tp the abnormal broadcast

90 E. Caron et al.

phase until reaching the leaf nodes of Tp. This guarantees the liveness of the
protocol despite unpredictable initial configurations of the system.

4.2 Correctness Proof

In this section we show that the algorithm described in Subsection 4.1 is a snap-
stabilizing PGCP tree algorithm. The complexities are also discussed.

Remark 1. To prove that an algorithm provides a snap-stabilizing PGCP tree
algorithm, we need to show that the algorithm satisfies the following two prop-
erties: (1) starting from any configuration, the root eventually executes an ini-
tialization action; (2) Any execution, starting from this action, builds a PGCP
tree.

Let us first consider the algorithm by ignoring the two procedures HEAPIFY ()
and REPAIR(). In that case, the algorithm is very similar to the snap-stabilizing
PIF in [8]. The only difference between both algorithms consists in the third
phase. In Algorithm 1, the third phase is initiated by the root only, after the
heapify phase terminated only, whereas in [8], the third phase can be initiated
by any node once itself and its father are done with the second phase. That
means that with the solution in [8], both the second and the third phase can
run concurrently. That would be the case with Algorithm 1 if the guard of
Action ForwardRepair has been as follows: Sp = H ∧ Sfp ∈ {H, I} ∧ (∀c ∈
Cp| Sc ∈ {H, I})

However, it follows from the proofs in [8] that the behavior imposed by our
solution is a particular behavior of the snap-stabilizing PIF algorithm. This
behavior happens when all the nodes are slow to execute the action corresponding
to the third phase. Since the algorithm in [8] works with an unfair daemon, the
algorithm ensures that, eventually, the root initiates the third phase, leading
the system to behave as Algorithm 1. Therefore, ignoring the effects of the two
procedures HEAPIFY () and REPAIR() on the tree topology, the proof of
snap-stabilization in [8] is also valid with our algorithm.

Considering the two procedures HEAPIFY () and REPAIR() again, since in
every p, the set Cp is finite, it directly follows from the code of the two procedures
in Algorithm 2 that that in every p, the set Cp is finite: every execution of
Procedures HEAPIFY () or REPAIR() is finite.

It follows from the above discussion :

Lemma 1. Starting from any configuration, the root node can execute Action
InitBroadcost in a finite time even if the daemon is unfair.

As a corollary of Lemma 1, the first condition of Remark 1 holds. Also, this show
that every PGCP tree computation initiated by the root eventually terminates.
It remains to show that the second condition of Remark 1 also holds for any
node p.

Lemma 2. After the execution of Procedure HEAPIFY by a node p, Tp is a
PrefixHeap.

Snap-Stabilizing Prefix Tree for Peer-to-Peer Systems 91

Proof. We prove this by induction on h(Tp). Since Procedure HEAPIFY() can-
not be executed by a leaf node, we consider h(Tp) ≥ 1.

1. Let h(Tp) be equal to 1. So, all the children of p are leaves. Executing
Lines 1.02 to 1.03, p is as a new child, itself a leaf node, labeled with lp,
while lp contains the greatest common prefix of all its children. After the
execution of Lines 1.04 to 1.07, p contains no child c such that lc = lp. Thus,
lp is a PGCP of all its children labels.

2. Assume that the lemma statement is true for any p such that h(Tp) ≤ k
where k ≥ 1. We will now show that the statement is also true for any p
such that h(Tp) = k +1. By assumption, the lemma statement is true for all
the children of p, i.e., ∀c ∈ Cp, lc is a proper prefix of any label in Tc, and lc
is the PGCP of all nodes in Cc. So, after executing Procedure HEAPIFY(),
following the same reasoning as in Case 1, lp is a PGCP of all its children,
and since themselves are the root of a PrefixHeap, for every c ∈ Cp, lp is
also a proper prefix of any label in Tc. Hence, the lemma statement is also
true for p.

Corollary 1. After the system executed a complete Heapify phase, the whole
tree is a PrefixHeap.

Lemma 3. After the execution of Procedure REPAIR() by a node p such that
h(Tp) ≥ 1, then for every pair (c1, c2) ∈ Cp, lp = PGCP (c1, c2).

Proof. Given p such that h(Tp) ≥ 1 and that lp is a proper prefix of any lc for
c ∈ Cp (what we know by Lemma 2), if the tree following conditions are true
for every pair (c1, c2) ∈ Cp, the statement ∀(c1, c2) ∈ Cp, lp = PGCP (c1, c2) is
true:

1. lc1
= lc2 ;
2. lc1 (resp. lc2) is not a prefix of lc2 (resp. lc1);
3. |GCP (lc1 , lc2)| = |lp|.

Clearly, after the execution of Lines 2.02 to 2.07, Lines 2.08 to 2.12, and
Lines 2.13 to 2.16, Conditions 1, 2, and 3 holds, respectively.

By induction of Lemma 3 on every node of the path from the root to each
leaf node, we can claim:

Corollary 2. After the system executed a complete Repair phase, the whole tree
is a PGCP tree.

Proof. By induction of Lemma 3 on every node of the path from the root to
each leaf node.

From corollaries 1 and 2, and the fact that after the root executed Action
InitBroadcast, the three phases Broadcast, Heapify, and Repair proceed one
after another [8], we can claim the following result:

Theorem 1. Running under any daemon, Algorithm 1 and Algorithm 2 provide
a snap-stabilizing Proper Greatest Common Prefix Tree construction.

92 E. Caron et al.

4.3 Complexity

Theorem 2. The average time for the PGCP tree construction is O(h + h′)
rounds. In the worst case, the construction requires O(n) space complexity, O(n)
rounds and O(n2) operations, where n is the number of nodes of the tree.

Proof. By similarity with the PIF, we can easily establish that the broadcast
phase has reached all leaf nodes in O(h) rounds, where h is the height of the tree
when the InitBroadcast action is performed. We also easily see that the heapify
phase reaches the root in O(h). During the repair phase, the number of rounds
required to reach all leaf nodes of the repaired tree (and thus end the cycle) is
clearly O(h′), where h′ is the height of this repaired tree (each round increment
the depth by 0 or 1). The first part of the theorem is established.

When the repair phase is initiated, more precisely after the execution of the
HEAPIFY macro and before the execution of the REPAIR macro on the root,
it may happen that the tree becomes a star graph, each node being a child of
the root (obviously except the root itself). This case is clearly the worst case,
not only in terms of extra space required (n − 1 = O(n)) but also in terms of
number of operations since the complexity of the REPAIR macro depends on
the number of the root’s children, i.e., also n − 1. More precisely, the REPAIR
macro is a combination of three operations: merging nodes, lines 2.02 to 2.06,
moving nodes under other ones, lines 2.08 to 2.12 or creating a new subtree, lines
2.13 to 2.16. Among the set of possible combinations, the one that leads to the
weakest parallelism is the move of n − 2 children of the root under a given node
s, since, in the next round, s will be the only one process to work, i.e., process
these n − 2 nodes. If this worst case repeats (and the final topology is a chain),
the complexity is of the following shape:

a × (n − 1) + a × (n − 2) + . . . + a = O(n2)

where a is a constant. Even if the worst case is not really attractive, we use
simulations in the next section to see what we can expect in real life in terms of
latency and extra space.

5 Simulation Results

To better capture the expected behavior of the snap-stabilizing PGCP tree,
we simulated the algorithm using relevant data sets which reflect the use of
computational platforms. The simulator is written in Python and contains the
three following main parts:

1. It creates the tree with a set of labels of basic computational services com-
monly used in computation grids such as the names of routines of linear
algebra libraries, the names of operating systems, the processors used in to-
day’s clusters and the nodes’ addresses. The number of keys is up to 5200,
creating trees up to 6228 nodes (the final tree size is the number of labels
inserted plus the number of labels created to reflect the prefix patterns). For

Snap-Stabilizing Prefix Tree for Peer-to-Peer Systems 93

instance, inserting two labels DTRSM and DTRMM results in a tree whose root
(common father of DTRSM and DTRMM) is labeled by DTR.

2. It destroys the tree by moving subtrees, randomly. This is achieved by mod-
ifying the father of a randomly picked node and moving it from the set of
children of its father to the set of children of a randomly chosen node. This
operation is repeated up to n/2 nodes (meaning that, in average, approxi-
mately n/2 nodes are connected to a wrong father).

3. It launches the algorithms by testing for each node if the state of the node
and those of its neighbors satisfy the guard of some action in the algorithm,
in which case the statement of the action is executed. This step is repeated
until the tree is in a stable configuration, i.e., a configuration where all nodes
are in state I again.

 0

 50

 100

 150

 200

 0 1000 2000 3000 4000 5000 6000

N
um

be
r

of
 r

ou
nd

s
re

qu
ire

d
to

 s
ta

bi
liz

e

Number of nodes in the tree

Number of rounds [average on 40 runs]
a x log(n)

(a) Number of Rounds.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

M
ax

im
um

 d
eg

re
e

of
 th

e
no

de

Nodes

(b) Highest Degrees.

Fig. 1. Simulation of the snap-stabilizing PGCP tree

We have first collected results on the latency of the algorithm. Figure 1-
(a) gives the average number of rounds required to have a stable configuration,
starting from 40 different bad configurations. The tree size ranges between 2 and
6228. We observe that the number of rounds required by the algorithm has a
logarithmic behavior (and not linear as previously suggested by the worst case).
It clearly scales according to the height of the tree, thus confirming the average
complexity of the algorithm and its good scalability.

We have also collected results on the extra space required on each node.
Since the tree topology undergoes changes during the reconstruction, degrees
of nodes also dynamically change as nodes are created, destroyed, merged or
moved. Figure 1-(b) shows the highest degree of nodes, i.e., the real extra space
required on each node, including nodes created and/or destroyed during the
reconstruction. The final tree size is 6228; the total number of nodes, including
temporary nodes, is 9120. The experiment shows that the highest of maximum
degree of all nodes is 2540, and most of maximum degrees are very low (less
than 50). This can be partly explained by the fact that the deepest a node is,
the smaller is its degree. In other terms, during a breadth-first traversal of the
tree, the topology quickly enlarges close to the root and then its breadth remains

94 E. Caron et al.

relatively stable until reaching the leaf nodes. More generally, this simulation
shows that the worst case is far to be reached and that only few nodes will
require an large extra space.

6 Conclusion

This paper presents the first snap-stabilizing greatest common prefix tree and
a general self-stabilization algorithm for distributed tries. It provides an alter-
native to tree-structured peer-to-peer networks suffering from the high cost of
replication mechanisms and a first step of an innovating way to reach the fault
tolerance requirements over large distributed systems. Our algorithm is optimal
in terms of stabilization time since we prove it to be snap-stabilizing. It requires
in average a number of rounds proportional to the height of the tree, thus provid-
ing a good scalability. This result has been confirmed by simulation experiments
based on relevant data sets. On the theoretical side, our future work will consist
to improve the worst case complexities in terms of extra space requirements and
total latency. Also, note that our model assumes that the processes can commu-
nicate with each other. In the state model, this is modeled as if every process
can read the variables of all the processes of the network. However, once im-
plemented in the message-passing model, the protocol requires communications
between processes involved in the tree only. So, on the experimental side of our
future works, we plan to implement this algorithm in the message-passing with
a model based on that introduced in [18]. On this other hand, we also plan to
implement our algorithm inside a prototype of a peer-to-peer indexing system
we are currently developing, based on the JXTA toolbox. First experiments have
been conducted on the Grid’5000 platform [9].

References

1. Andrzejak, A., Xu, Z.: Scalable, Efficient Range Queries for Grid Information Ser-
vices. In: Peer-to-Peer Computing, pp. 33–40 (2002)

2. Arora, A., Gouda, M.G.: Distributed Reset. IEEE Transactions on Computers 43,
1026–1038 (1994)

3. Aspnes, J., Shah, G.: Skip Graphs. In: Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 384–393 (January 2003)

4. Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: Time Op-
timal Self-stabilizing Synchronization. In: STOC 1993. Proceedings of the 25th
Annual ACM Symposium on Theory of Computing, pp. 652–661. ACM Press,
New York (1993)

5. Balazinska, M., Balakrishnan, H., Karger, D.: INS/Twine: A Scalable Peer-to-Peer
Architecture for Intentional Resource Discovery. In: International Conference on
Pervasive Computing 2002 (2002)

6. Basu, S., Banerjee, S., Sharma, P., Lee, S.: NodeWiz: Peer-to-Peer Resource Discov-
ery for Grids. In: GP2PC. 5th International Workshop on Global and Peer-to-Peer
Computing (May 2005)

Snap-Stabilizing Prefix Tree for Peer-to-Peer Systems 95

7. Bein, D., Datta, A.K, Villain, V.: Snap-Stabilizing Optimal Binary Search Tree.
In: Tixeuil, S., Herman, T. (eds.) SSS 2005. LNCS, vol. 3764, pp. 1–17. Springer,
Heidelberg (2005)

8. Bui, A., Datta, A., Petit, F., Villain, V.: State-optimal snap-stabilizing pif in tree
networks. In: IEEE (ed.) Proceedings of the 4th International Workshop on Self-
Stabilizing Systems, pp. 78–85. IEEE Computer Society Press, Los Alamitos (1999)

9. Cappello, F., et al.: Grid’5000: a Large Scale, Reconfigurable, Controlable and
Monitorable Grid Platform. In: Gschwind, T., Aßmann, U., Nierstrasz, O. (eds.)
SC 2005. LNCS, vol. 3628, pp. 99–106. Springer, Heidelberg (2005)

10. Caron, E., Desprez, F., Fourdrignier, C., Petit, F., Tedeschi, C.: A Repair Mecha-
nism for Tree-structured Peer-to-peer Systems. In: Robert, Y., Parashar, M., Badri-
nath, R., Prasanna, V.K. (eds.) HiPC 2006. LNCS, vol. 4297, Springer, Heidelberg
(2006)

11. Caron, E., Desprez, F., Tedeschi, C.: A Dynamic Prefix Tree for the Service Dis-
covery Within Large Scale Grids. In: Montresor, A., Wierzbicki, A., Shahmehri, N.
(eds.) P2P2006. The Sixth IEEE International Conference on Peer-to-Peer Com-
puting, Cambridge, September 6-8 2006, pp. 106–113. IEEE Computer Society
Press, Los Alamitos (2006)

12. Chen, N.S., Yu, H.P., Huang, S.T.: A Self-stabilizing Algorithm for Constructing
Spanning Trees. Information Processing Letters 39, 147–151 (1991)

13. Cournier, A., Datta, A.K., Petit, F., Villain, V.: Enabling Snap-Stabilization. In:
ICDCS 2003. Proceedings of the 23rd International Conference on Distributed
Computing Systems, p. 12. IEEE Computer Society Press, Washington (2003)

14. Datta, A., Hauswirth, M., John, R., Schmidt, R., Aberer, K.: Range Queries in
Trie-Structured Overlays. In: The Fifth IEEE International Conference on Peer-
to-Peer Computing (2005)

15. Dijkstra, E.W.: Self-stabilizing Systems in Spite of Distributed Control. Commun.
ACM 17(11), 643–644 (1974)

16. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)

17. Dolev, S., Israeli, A., Moran, S.: Self-stabilization of Dynamic Systems Assuming
only Read/Write Atomicity. Distributed Computing 7, 3–16 (1993)

18. Herault, T., Lemarinier, P., Peres, O., Pilard, L., Beauquier, J.: A model for large
scale self-stabilization. In: I E E E Sc. (ed.) IPDPS 2007. 21th International Par-
allel and Distributed Processing Symposium, IEEE Computer Society Press, Los
Alamitos (2007)

19. Herman, T., Pirwani, I.: A Composite Stabilizing Data Structure. In: Datta, A.K.,
Herman, T. (eds.) WSS 2001. LNCS, vol. 2194, pp. 182–197. Springer, Heidelberg
(2001)

20. Herman, T., Masuzawa, T.: A Stabilizing Search Tree with Availability Properties.
In: IEEE (ed.) ISADS 2001. Proceedings of the 5th International Symposium on
Autonomous Decentralized Systems, pp. 398–405 (2001)

21. Herman, T., Masuzawa, T.: Available Stabilzing Heaps. Information Processing
Letters 77, 115–121 (2001)

22. Iamnitchi, A., Foster, I.: On Death, Taxes, and the Convergence of Peer-to-Peer
and Grid Computing. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS,
vol. 2735, pp. 118–128. Springer, Heidelberg (2003)

23. Oppenheimer, D., Albrecht, J., Patterson, D., Vahdat, A.: Distributed Re-
source Discovery on PlanetLab with SWORD. In: WORLDS. Proceedings of the
ACM/USENIX Workshop on Real, Large Distributed Systems (December 2004)

96 E. Caron et al.

24. Ramabhadran, S., Ratnasamy, S., Hellerstein, J.M., Shenker, S.: Prefix Hash Tree
An indexing Data Structure over Distributed Hash Tables. In: Proceedings of the
23rd ACM Symposium on Principles of Distributed Computing, St. John’s, New-
foundland, Canada (July 2004)

25. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A Scalable Content-
Adressable Network. In: ACM SIGCOMM, ACM Press, New York (2001)

26. Rowstron, A., Druschel, P.: Pastry: Scalable, Distributed Object Location and
Routing for Large-Scale Peer-To-Peer Systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

27. Schmidt, C., Parashar, M.: Enabling Flexible Queries with Guarantees in P2P
Systems. IEEE Internet Computing 8(3), 19–26 (2004)

28. Shu, Y., Ooi, B.C., Tan, K., Zhou, A.: Supporting Multi-Dimensional Range
Queries in Peer-to-Peer Systems. In: Peer-to-Peer Computing, pp. 173–180 (2005)

29. Stoica, I., Morris, R., Karger, D., Kaashoek, M., Balakrishnan, H.: Chord: A Scal-
able Peer-to-Peer Lookup service for Internet Applications. In: ACM SIGCOMM,
pp. 149–160. ACM Press, New York (2001)

30. Triantafillou, P., Pitoura, T.: Towards a Unifying Framework for Complex
Query Processing over Structured Peer-to-Peer Data Networks. In: Aberer, K.,
Koubarakis, M., Kalogeraki, V. (eds.) DBISP2P 2003. LNCS, vol. 2944, pp. 169–
183. Springer, Heidelberg (2004)

Decentralized, Connectivity-Preserving, and

Cost-Effective Structured Overlay Maintenance

Yu Chen and Wei Chen

Microsoft Research Asia
{ychen,weic}@microsoft.com

Abstract. In this paper we present a rigorous treatment to structured
overlay maintenance in decentralized peer-to-peer (P2P) systems
subject to various system and network failures. We present a precise
specification that requires the overlay maintenance protocols to be
decentralized, preserve overlay connectivity, always converge to the
desired structure whenever possible, and only maintain a small local
state independent of the size of the system. We then provide a complete
protocol with proof showing that it satisfies the specification. The
protocol solves a number of subtle issues caused by decentralization and
concurrency in the system. Our specification and the protocol overcomes
a number of limitations of existing overlay maintenance protocols, such
as the reliance on a centralized and continuously available bootstrap
system, the assumption of a known system stabilization time, and the
need to maintain large local membership lists.

Keywords: structured overlay maintenance, peer-to-peer, fault toler-
ance.

1 Introduction

Since their introduction, structured overlays have been used as an important
substrate for many peer-to-peer applications. In a structured peer-to-peer over-
lay, each node maintains a partial list of other nodes in the system, and these
partial lists together form an overlay topology that satisfies certain structural
properties (e.g., a ring). Various system events, such as node joins, leaves and
crashes, message delays and network partitions, affect overlay topology. Thus,
an overlay topology should adjust itself appropriately to maintain its structural
properties. Topology maintenance is crucial to the correctness and the perfor-
mance of applications built on top of the overlay.

Most structured overlays are based on a logical key space, and they can be
conceptually divided into two components: leafset tables and finger tables.1 The
leafset table of a node keeps its logical neighbors in a key space, while the finger
table keeps relatively faraway nodes in the key space to enable fast routing along
the overlay topology. The leafset tables are vital for maintaining a correct overlay
topology since finger tables can be constructed efficiently from the correct leafset
1 The term leafset is originally used in Pastry [19] while the term finger is originally

used in Chord [21].

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 97–113, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

98 Y. Chen and W. Chen

tables. Therefore, our study focuses on leafset maintenance. In particular, we
focus on one-dimensional circular key space and the ring-like leafset topology in
this space, similar to many studies such as [19,21].

Leafset maintenance is a continuously running protocol that needs to deal
with various system events. An important criterion for leafset maintenance is
convergence. That is, the leafset topology can always converge back to the de-
sired structure after the underlying system stabilizes (but without knowing about
system stabilization), no matter how adverse the system events were before sys-
tem stabilization.

In this paper, we provide a rigorous treatment to leafset convergence. Our
contributions are mainly twofold. First, we provide a precise specification for
leafset maintenance protocols with cost effectiveness requirements. All properties
of the specification are desired by applications, while together they prohibit
protocols with various limitations appeared in previous work. Second, we provide
a complete protocol that is proven to satisfy our specification.

There are several distinct features in our specification. First, our specification
explicitly emphasizes connectivity preservation: the connectivity of the leafset
topology may only be broken by adverse system events such as node crashes and
network failures, but it should not be broken by the maintenance protocol itself.
Some previous protocols such as Chord [14] and Pastry [19] allow runs in which
the topology is broken due to protocol logic itself. Specifying the Connectivity
Preservation property is not simple. We need to define a system stabilization time
after which no adverse system events occur and require that the maintenance
protocol no longer disconnect any nodes in the system afterwards. We dedicate
a section to show that defining such a system stabilization time is subtle in that
any time earlier will not guarantee connectivity preservation.

Second, we explicitly put requirements on cost effectiveness: the size of the
local state maintained by the protocol in the steady state only depends on the
size of its leafset table, but should not depend on the system’s size. To be cost-
effective, a protocol inevitably needs to remove some extra entries in the leafset
(as in many existing protocols), but such removals may jeopardize the connec-
tivity of the topology. Therefore, handling the apparent conflict between connec-
tivity preservation and cost effectiveness is the key in our protocol design. Some
existing protocols ([11,15]) rely on the maintenance of a large membership list
to preserve connectivity, and thus is not cost-effective.

Third, we explicitly address how to heal topology partition by introducing an
interface function add(contacts). Although the overlay could be more resistant
to topology partition by maintaining more entries in the routing tables [14],
network partitions are still inevitable, especially when failures on major network
links happen. Therefore, we believe partition healing is an indispensable part of
the protocol. The interface add(contacts) and its specification cleanly separates
partition detection from partition healing: A separate mechanism may be used to
detect topology partition, and then to call the add(contacts) interface (only once)
to bridge the partitioned components, while afterwards the maintenance protocol
will automatically converge the topology. Our specification keeps the dependency

Decentralized, Connectivity-Preserving 99

on an external mechanism such as a bootstrap system at the minimum, while
some previous protocols heavily rely on continuously available bootstrap systems
to keep connectivity [7,20].

Moreover, we provide a complete protocol and prove that it satisfies our spec-
ification. As indicated already, the core of the protocol is to handle the conflict
between connectivity preservation and cost effectiveness: The protocol should
remove extra entries in the leafset while preserving the topology’s connectivity.
The protocol addresses a couple of subtle issues: one is how to nullify the effects
of adverse system events without knowing when the system stabilizes, and the
second is to avoid livelocks that may be caused by inopportune invocations of the
add(contacts) interface. The correctness proof is technically involved and long,
because our protocol needs to deal with system asynchrony and various system
failures and events.

The correctness of our protocol is based on the availability of a dynamic
failure detector that eventually can correctly detect failures of neighbors of a
node. One may argue that in peer-to-peer environments, such failure detectors
are unrealistic. We justify our model with the following reasons. First, studying
the convergence behavior of a dynamic protocol under system failures is im-
portant to understand the correctness and the efficiency of the protocol, and
to compare different protocols under the same condition. Such studies natu-
rally assume a model in which system failures eventually stop, for which the
paradigm of self stabilization is a direct example.2 Second, the theoretical as-
sumption that the system stabilizes after a certain time point means in practice
a long enough stable period for the topology to converge. Based on our simula-
tion study [4], we show that with some optimizations the convergence speed of
our protocol is fast (O(log N) where N is the number of nodes in the system),
so system stabilization assumption may not seem so unreasonable in certain set-
tings. Third, failure detection accuracy can be greatly improved if we consider
voluntary leaves, in which a leaving node notifies its neighbors before leaving
the system. Therefore, the failure detection requirement in the model may be
more easily achieved for a sufficiently long time than considering only node
crashes.

To our knowledge, our protocol is the first one that satisfies all the properties
required by the specification with a complete correctness proof. We believe that
our work could compensate many system-level studies on structured overlay
maintenance and provide a more formal approach to study the correctness of
overlay maintenance protocols.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 defines our system model with the failure detector specification. Sec-
tion 4 introduces the complete specification of convergent leafset maintenance
protocols. Section 5 presents the complete leafset maintenance protocol. We con-
clude the paper and discuss future work in Section 6. Our full technical report [4]
contains further results including complete proofs, a sample implementation of

2 In Section 4 we will elaborate the relationship between our specification and self
stabilization.

100 Y. Chen and W. Chen

the failure detector in one partially synchronous model, and optimizations for
fast convergence of the protocol.

2 Related Work

Many existing structured P2P overlay proposals mention that each node should
have a leafset table. However, those such as Pastry [19], CAN [17], and Skip-
Net [10] only provide brief descriptions on what a correct leafset table looks
like and how to fix it when the leafset table becomes incorrect because of system
churns. These proposals assume that there is a correct leafset table on each node
to begin with, then give methods to repair the leafset tables in response to vari-
ous system events. Bamboo DHT [18], the latest Pastry improvements [2,9], and
DKS [8] adopt practical mechanisms to improve overlay maintenance and rout-
ing correctness in a dynamic environment. These mechanisms are system-level
improvements, while there are no proofs or formal studies on protocol guaran-
tees, such as connectivity preservation and convergence.

In [14], Liben-Nowell et al. point out the topology maintenance issues of
the original Chord protocol [21] and propose an “idealize” process to adjust
the immediate successor of each node to improve topology maintenance. This
approach is essentially a method to guarantee convergence, but the maintenance
restricts itself to immediate successor data structure. Although each node stores
a successor list to handle successor failures, the node does not actively maintain
the list. Instead, it uses the successor list of its immediate successor to overwrite
its own one, and thus it could be disconnected from other nodes in its own
list. Therefore, it is only a special case of our protocol, is less robust, and is
difficult to accommodate partition healing, which requires maintaining multiple
links together to bridge partitioned components.

Some recent work uses the approach of self stabilization [5,6] to study over-
lay maintenance. The T-Man [11] and TChord [15] protocols are self-stabilizing,
but they do not consider global membership changes from system churns. They
require to keep an essentially full membership list on each node, so the mainte-
nance cost increases significantly when the system is large or the membership
changes over time. Authors of [7] and [20] also propose self-stabilizing overlay
maintenance protocols. But their protocols and proofs depend on the existence
of a continuously available bootstrap system. In [7], the bootstrap system needs
to handle all join and repair requests, and needs to issue periodic broadcast
messages for self stabilization purpose, while in [20] each node must periodically
initiate look-ups to the bootstrap system. These protocols impose significant
load and availability requirements on the bootstrap system. In contrast, our
protocol only needs an external mechanism such as a bootstrap system when
the topology is partitioned, and it only needs the bootstrap system once after
system stabilization. Therefore, the load and availability requirements on the
bootstrap system are minimized.

The “Linearization” method in [16] describes a self-stabilizing algorithm
to transform any connected graph into a sorted list. Although a bootstrap system

Decentralized, Connectivity-Preserving 101

is not required, the algorithm does not consider node churns and asyn-
chronous/concurrent effects in a distributed message passing environment.

Authors of Ranch [13] provide an overlay maintenance protocol with a formal
proof of correctness. However, they do not consider fault tolerance: all nodes
leaves are “active leave”, in which case all nodes invoke a special leave protocol
before getting offline. We believe silent failures must be considered in a wide area
environment, and dealing with them makes the model, the specification and the
protocol design significantly depart from those studied in [13].

In [1], Angluin et al. proposed a method for fast construction of an overlay
network by a tree-merging process. Their protocol is not a convergent overlay
maintenance protocol, because they assume that overlay construction is executed
when the underlying system is known to have stabilized and they do not consider
the adverse impacts of system conditions before system stabilization.

3 System Model

We consider a distributed peer-to-peer system consisting of nodes (peers) from
the set Σ = {x1, x2, . . .}. Each node has a unique numerical ID drawn from a
one-dimensional circular key space K. We use x to represent both a node x ∈ Σ
and its ID in K. For convenience, we set K = [0, 1), all real numbers between 0
and 1. We define the following distances in key space K: For all x, y ∈ K, (a) the
clockwise distance d+(x, y) is y − x when y ≥ x and 1 + y − x when y < x; (b)
the counter-clockwise distance d−(x, y) = d+(y, x), and (c) the circular distance
d(x, y) = min(d+(x, y), d−(x, y)).

Throughout the paper, we use continuous global time to describe system and
protocol behavior, but individual nodes do not have access to global time. Nodes
have local clocks, which are used to generate increasing timestamps and periodic
events on the nodes. Local clocks are not synchronized with one another. They
provide an interface function getClockValue(), which is only required to return
monotonically increasing time values on a node even if the node has failures
between the calls to the function.

Nodes may join and leave the system or crash at any time. We treat a node
leave and crash as the same type of event; that is, a node disappears from the
system without notifying other nodes in the system, and we refer to such an
event as a failure in the system. We define a membership pattern Π as a function
from time t to a finite and nonempty subset of Σ, such that Π(t) refers to all
of the online nodes at time t. Nodes not in Π(t) are considered offline. For the
purpose of studying overlay convergence, we assume that the set of online nodes
Π(t) eventually stabilizes. That is, there is an unknown time t such that for
all t′ ≥ t, Π(t′) remains the same, which we denote as sset(Π). Let GSTN (N
stands for nodes) be the global stabilization time of the nodes, which is the earliest
time after which Π(t) does not change any more. Henceforth, all specification
properties refer to an arbitrary membership pattern Π .

Nodes communicate with one another by sending and receiving messages
through asynchronous communication channels. We assume that there is a bidi-
rectional channel between any pair of nodes. The channels cannot create or

102 Y. Chen and W. Chen

duplicate messages, but they might delay or drop messages. The channels
are eventually reliable in the following sense: There exists an earliest time
GSTM ≥ GSTN such that for any message m sent by x ∈ sset(Π) to y ∈ sset(Π)
after time GSTM , m is eventually received by y.

To deal with failures in asynchronous environments, we assume the availability
of a failure detector, which is a powerful abstraction that encapsulates all timing
assumptions on message delays, processing speed, and local clock drifts [3]. Un-
like the original model in [3], our failure detector is for dynamic environments,
and we do not assume that the failure detector knows a priori a set of nodes to
monitor. Instead, the failure detector provides an input interface register(S) for
a node to register a set of nodes S ⊂ Σ to be monitored by the failure detec-
tor. A node may invoke register(S) many times with a different set S to change
the set to be monitored. The failure detector also provides an output interface
detected(x) to notify a node that it detects the failure of a node x ∈ Σ.

Informally, the failure detector should eventually detect all failures among all
registered nodes, and should eventually not make any wrong detections on nodes
still online. More rigorously, it satisfies the following properties:

– Strong Completeness: For all x ∈ sset(Π) and all y �∈ sset(Π), if x invokes
register(S) with y ∈ S at some time t, then there is a time t′ > t at which
either the failure detector outputs detected(y) on x or x invokes register(S′)
with y �∈ S′.

– Eventual Strong Accuracy: For all x, y ∈ sset(Π), there is a time t such that
for all t′ ≥ t, the failure detector will not output detected(y) on x at time t′.

Our failure detector differs from the eventually perfect failure detector �P
in the static environment [3] in that our failure detector relies on application
inputs to learn the set of processes to monitor. We denote our failure detector
as �PD (D stands for dynamic). In our protocol �PD is only used for each
node to monitor its neighbors, so it is easier to achieve than �P that requires
monitoring all nodes in the system.

Every node in the system executes protocols by taking steps triggered by
events, which include input events invoked by applications, message receipt
events, periodic events generated by the local clock, and failure detection events
detected(). In each step, a node may change its local state, register with the fail-
ure detector, and send out a finite number of messages. For simplicity we assume
that the time to execute a step is negligible, but a node might fail during the
execution of a step. We also assume that there are only a finite number of steps
taken during any finite time interval, and at each time point, there is at most
one step taken by one node.3

A run of a leafset maintenance protocol is an infinite sequence of steps together
with the increasing time points indicating when the steps occur, such that it
conforms with the above assumptions on membership pattern, message delivery,
and failure detection.
3 Our results also work if each step is not instantaneous or there are multiple con-

current steps at the same time, but it would make our description and proof more
cumbersome to handle these situations.

Decentralized, Connectivity-Preserving 103

4 The Specification for Leafset Maintenance

We now specify the desired properties for a leafset maintenance protocol. Our
specification always refers to an arbitrary execution of the protocol with an
arbitrary membership pattern Π .

First, we define the function leafset(x, set) as follows: We have a fixed constant
L ≥ 1, which informally means that the leafset of a node should have L closest
nodes on each side of it in the circular space. Given a finite subset set ⊆ Σ
and a node x, If |set \ {x}| < 2L, then leafset(x, set) = set \ {x}. Otherwise,
sort set \ {x} as (a) {x+1, x+2, . . .} such that d+(x, x+1) < d+(x, x+2) < . . .,
and (b) {x−1, x−2, . . .} such that d−(x, x−1) < d−(x, x−2) < . . . Then, we have
leafset(x, set) = {x+1, x+2, . . . , x+L} ∪ {x−1, x−2, . . . , x−L}.

In the leafset maintenance protocol, each node x maintains a variable
neighbors, the value of which is a finite subset of Σ. Informally, x.neighbors
should eventually converge onto the correct leafset, meaning x.neighbors =
leafset(x, sset(Π)), in which case the final topology resembles a ring structure.

Each node also has an interface function add(contacts), where contacts is a
finite subset of Σ. This function is used to bridge partitioned components. In
particular, it can be used in the following situations: (a) adding initial contacts
when the system is initially bootstrapped; (b) introducing contact nodes when
a new node joins the system; and (c) introducing nodes in other partitioned
components after the overlay is partitioned (perhaps due to transient network
partitions).

To formalize our requirements, we first need to address the connectivity of the
leafset topology. For any directed graph G, we say that 1) it is strongly connected
if there is a directed path between any pair of nodes in G, 2) it is weakly connected
(or simply connected) if there is an undirected path (when treating edges in
G as undirected) between any pair of nodes in G, and 3) it is disconnected if
it is not weakly connected. The leafset topology at time t is a directed graph
G(t) = 〈Π(t), E(t)〉, where E(t) = {〈x, y〉|x, y ∈ Π(t) ∧ y ∈ x.neighborst}.
For any node x ∈ Π(t), we denote Px(t) as the set of nodes in the connected
subgraph of G(t) that contains x; that is, Px(t) is the set of nodes that have
undirected paths to x.

A key property we require on leafset maintenance is that the protocol should
not break the connectivity of the topology. However, the topology might also
be broken by underlying system behaviors out of protocol control, such as node
failures and message delays. To factor out system-induced topology break-ups,
we only require that the topology is not broken once the underlying system is
stabilized. To do so, we first need to define the stabilization time of the system.

Let GSTD (D stands for detector) be the global stabilization time of the
failure detector �PD, which is the earliest time t ≥ GSTN such that �PD will
not output detected(y) on any x ∈ sset(Π) for any y ∈ sset(Π) after time t.
That is, GSTD is the earliest time after which the failure detector does not
make wrong detections on online nodes any more. After GSTD, both the nodes
and the failure detector stabilize, but nodes might still receive old messages sent
before GSTD that may adversely affect the convergence of the topology. Thus,

104 Y. Chen and W. Chen

we define GSTS (S stands for system) to be the global stabilization time of the
system, which is the earliest time t ≥ max(GSTD,GSTM) such that all messages
sent before GSTD or GSTM have been delivered by time t or are lost. Since there
are only a finite number of messages that could have been sent before GSTD

or GSTM , we know GSTS must be a finite value. Note that these stabilization
times are defined for each run of the leafset maintenance protocol.

Our connectivity preservation property is defined based on GSTS as follows:

– Connectivity Preservation: For any t ≥ GSTS , for any directed path from
x to y in G(t), for any time t′ > t, there is a directed path from x to y in
G(t′).

Connectivity Preservation is a key property to guarantee leafset convergence,
but it is not explicitly addressed or enforced by previous protocols in a purely
peer-to-peer environment. The following theorem shows the necessity of GSTS ,
meaning that no algorithm can guarantee connectivity preservation starting from
a time earlier than GSTS . The proof of the theorem can be found in [4].

Theorem 1. For any convergent leafset maintenance protocol A and any small
real value ε > 0, there exists a run in which Gt is weakly connected for some
t such that GSTS − ε < t < GSTS, but at a later time t′ ≥ GSTS, Gt′ is not
weakly connected.

By the Connectivity Preservation property, we know that the connected com-
ponent Px(t) can only grow after time GSTS . Since Π(t) does not change after
GSTS and is finite, we know that Px(t) eventually stabilizes. The next prop-
erty requires that the leafset of x eventually contains the correct leafset in the
connected component of x:

– Eventual Inclusion: There is a time t such that for all t′ ≥ t and for all
x ∈ sset(Π), leafset(x, x.neighborst′) = leafset(x, Px(t′)).

If the topology becomes connected at some time after GSTS , then Even-
tual Inclusion together with Connectivity Preservation means that eventually
leafset(x, x.neighborst′) = leafset(x, sset(Π)) for all x ∈ sset(Π). The properties
also imply that the weakly connected component Px(t) will become strongly
connected eventually. Note that the Eventual Inclusion property should hold no
matter if there are invocations of add() after GSTS .

If the topology is partitioned, an application (or even a user) should be able
to use the add() interface to heal the partition. This is specified by the following
property:

– Partition Healing: For any x, y ∈ sset(Π), if there is an invocation of add(S)
on x at time t > GSTS with y ∈ S, then there is a time t′ > t such that x
and y are connected in G(t′) (i.e., Px(t′) = Py(t′)).

The Partition Healing property ensures that only one invocation of add() on
one node is necessary to bridge the partition, as long as we use an S that contains
a node from every component in add(S). Afterwards, Eventual Inclusion and

Decentralized, Connectivity-Preserving 105

Connectivity Preservation properties guarantee the autonomous convergence of
the topology without any further help.

The following property requires that eventually the leafset maintenance proto-
col should only maintain the actual leafset entries, provided that the application
eventually stops invoking add().

– Eventual Cleanup: If there is a time t after which no add() is invoked at any
node in the system, then there is a time t′ such that for all time t′′ ≥ t′ and
all x ∈ sset(Π), leafset(x, x.neighborst′′) = x.neighborst′′ .

We call a leafset maintenance protocol convergent if it satisfies Connectivity
Preservation, Eventual Inclusion, Partition Healing, and Eventual Cleanup. If an
external mechanism guarantees to call add() as described in Partition Healing,
then the convergent protocol ensures that the topology is eventually connected
and the leafset of every node is correct, i.e., x.neighbors = leafset(x, sset(Π)).

One informative way to understand the specification is to see how it avoids
a trivial implementation that always splits every node into a singleton, i.e., sets
x.neighbors to ∅ on every node x. This implementation would correctly satisfy
the specification if there were no Partition Healing property. With Partition
Healing, however, after GSTS the protocol is forced to reconnect nodes after
add() invocations, and by Connectivity Preservation, the protocol has to keep
these connections, and then by Eventual Inclusion and Eventual Cleanup, the
protocol has to converge to a correct leafset structure. Thus trivially splitting
nodes is prohibited by the specification.

Besides convergence, the leafset maintenance protocol should also be cost-
effective in terms of the cost to maintain the neighbors set on the nodes. We
look at the maintenance cost when the protocol reaches its steady state: that is,
assuming that there is no more add() invoked at any node, the neighbors set of
each online node has already included the correct leafset entries in its stabilized
connected component and nothing more. The cost effectiveness is characterized
by the following property:

– Cost Effectiveness: If there is a time t after which no add() is invoked at any
node in the system, then in the steady state of the protocol, on each node
the size of the local state and the number of nodes registered to the failure
detector are both O(L).

When counting the size, we assume that each node ID and each clock value
take a constant number of bits to represent. The property specifies that in the
steady state the local state and the number of nodes monitored by the failure
detector on each node is linear to the size of the leafset and is not related to the
system’s size. The requirement of O(L) nodes registered to the failure detector
prevents a protocol from monitoring a large set of nodes in the steady state. The
property also implies that in the steady state each node can only send messages
to O(L) nodes and the size of each message is at most O(L).

Our specification of convergent overlay maintenance protocols is similar to self
stabilization [5,6] in that we require the leafset topology to eventually converge to

106 Y. Chen and W. Chen

the desired structure (each connected component is a ring structure) no matter
what the topology was before the underlying system stabilizes. Our specification
differs from self stabilization in the following aspects: First, we consider an open
system where applications may invoke add() to add new contact nodes at any
time, while self stabilization considers a closed system without any application
interference. Second, unlike in the self stabilization model, we do not assume
that all system states can be arbitrarily corrupted before system stabilization
(e.g., local clock values cannot go backwards).

5 Leafset Maintenance Protocol

Our leafset maintenance protocol consists of five sub-protocols: (a) the add()
protocol to add new contacts supplied by the application (Fig. 1, lines 3–8); (b)
the failure-handling protocol to remove the failed nodes from the leafset upon the
notification of failure detector (Fig. 1, lines 9–10); (c) the invite protocol to invite
closer nodes into leafset (Fig. 2); (d) the replacement protocol to replace faraway
nodes that should not be in the leafset with closer nodes (Fig. 3);4 and (e) the
deloopy protocol to detect and resolve a special incorrect topology called loopy
topology (Fig. 5). The replacement protocol (Fig. 3) is our key contribution, so
we focus our attention on this sub-protocol while briefly explaining other sub-
protocols. Even though each sub-protocol has its own functionality, they have to
work together to provide the desired self-stabilizing and cost-effective features
specified in the previous section.

All of these sub-protocols (except the failure-handling one) use a periodic
ping-pong messaging structure. For ease of understanding, each type of ping-
pong message is sent independently. In actual implementations, one can unify
all periodic ping-pong messages together for efficiency.

5.1 Add New Contacts and Handle Failures

On each node, the protocol maintains a neighbors set as required by the specifi-
cation. The protocol keeps an invariant that a node y is added into x.neighbors
only after x receives a pong message directly from y. This invariant verifies the
liveness of any nodes to be added into the neighbors set and prevents different
unwanted behaviors in different sub-protocols.

In the add() protocol, if the nodes were added directly into the neighbors set
without any verification, the property Eventual Inclusion would not be satisfied
because the application might keep inserting failed nodes via add(). To solve
this problem, the add(contacts) protocol (Fig. 1, lines 3–8) uses a ping-pong
message loop to check the liveness of the nodes being added. In this way, the
add() invoked after GSTN will not add any failed nodes into the neighbors set of
any online nodes, since the failed nodes cannot respond to the ping-contact
messages.
4 Technically, the faraway nodes for a node x are those in x.neighbors \

leafset(x, x.neighbors). Whenever necessary, we use x.var to denote the variable var
on x.

Decentralized, Connectivity-Preserving 107

On node x:

1 Data structure:
2 neighbors: set of nodes intended for leafset entries, initially ∅.
3 add(contacts)
4 foreach y ∈ contacts , send ping-contact to y

5 Upon receipt of ping-contact from y:
6 send pong-contact to y

7 Upon receipt of pong-contact from y:
8 neighbors ← neighbors ∪ {y}; register(neighbors)

9 Upon detected(y):
10 neighbors ← neighbors \ {y}

Fig. 1. Leafset maintenance protocol, Part I: Add new contacts and handle failures

5.2 Invite Closer Nodes

The invite protocol (Fig. 2) uses a variable cand to store candidate nodes to be
invited into the neighbors set. The candidate nodes are discovered by exchanging
local leafset views through the ping-ask-inv and pong-ask-inv messages. Once
a node x discovers some new candidates, it uses the periodic ping-invite and
pong-invite message loop to invite these candidates into x.neighbors. The invi-
tation is successful when the candidate y sends back the pong-invite message
to x and x verifies that y is indeed qualified to be in x’s leafset (lines 27).The
invite protocol is in principle similar to other leafset maintenance protocols (e.g.
[21,18,11,20]), except that we use ping-invite and pong-invite messages to
prevent a phenomenon called ghost entry. A ghost entry is an entry of a failed
node that keeps bouncing among the neighbors sets of two or more online nodes,
as explained below.

In the above example, suppose y is a failed node with ID adjacent to x and z.
We also suppose y is still in z.neighbors. When x sends ping-ask-inv message
to z, z returns y. Without the message loop of ping-invite and pong-invite, x
would add y into x.neighbors directly. After z told x about y, its failure detector
reports y’s failure and y is removed from z.neighbors. Later z contacts x to find
some nodes to be invited, and x returns y. So y is added back to z.neighbors.
Then y could be removed from x.neighbors by a failure detector notification on
x, and added back again by the pong-ask-inv message from z.

This process can repeat forever, making y bouncing back and forth between
x.neighbors and z.neighbors. The ghost entry phenomenon violates the prop-
erty of Eventual Inclusion. It could be eliminated by the ping-invite and
pong-invite message loop. With this message loop, a failed node will not be
added into the neighbors set by the invitation protocol since it cannot send any
pong-invite messages. Therefore, it will not be returned to other nodes as an
invitation candidate, either.

108 Y. Chen and W. Chen

On node x:

11 Data structure:
12 cand: candidate nodes for neighbors, initially ∅.
13 Repeat periodically:
14 foreach y ∈ neighbors, send ping-ask-inv to y

15 Upon receipt of ping-ask-inv from a node y:
16 view ← leafset(y,neighbors); send (pong-ask-inv, view) to y
17 cand ← cand ∪ {y}
18 Upon receipt of (pong-ask-inv, view) from y
19 cand ← cand ∪ view

20 Repeat periodically /* invite closer nodes */
21 foreach y ∈ cand \ neighbors
22 if y ∈ leafset(x, cand ∪ neighbors) then send ping-invite to y
23 cand ← ∅
24 Upon receipt of ping-invite from y:
25 send pong-invite to y

26 Upon receipt of pong-invite from y:
27 if y ∈ leafset(x,neighbors ∪ {y}) \ neighbors then
28 neighbors ← neighbors ∪ {y}; register(neighbors)

Fig. 2. Leafset maintenance protocol, Part II: Invite closer nodes in the key space

5.3 Replace Faraway Nodes

The replacement protocol (Fig. 3) is responsible for removing faraway nodes from
the neighbors sets to keep neighbors sets small. This protocol is our key contri-
bution to provide Cost Effectiveness, and the key differentiator from other pro-
tocols. When removing the faraway nodes, we need to ensure both safety (Con-
nectivity Preservation) and liveness (Eventual Inclusion and Eventual Cleanup),
in the presence of concurrent replacements and other system events.

To ensure safety, we use a closer node to replace a faraway node instead
of removing it directly. The basic replacement flow consists of two ping-
pong loops. Suppose a node x intends to remove a node z since z is not in
leafset(x, x.neighbors). Node x uses the ping-ask-repl and pong-ask-repl
loop (lines 33–39) with node z to obtain a replacement node y, which is recorded
by x in x.repl[z]. (If there does not exist a node v satisfy the condition at
line 36, y is set to ⊥ and returned to x.) Then x uses the ping-replace and
pong-replace message loop to verify with y about the replacement (lines 40–
52). If y finds z in y.neighbors at the time it receives the ping-replace message
from x, it acknowledges x with a pong-replace message. Only after receiving
the pong-replace message from y, x may replace z with y in x.neighbors. This
method tries to ensure that after the removal of edge 〈x, z〉 from the overlay,
there is still a path from x to z via y. The first ping-pong loop tries to find an
alternative path to replace 〈x, z〉. The second ping-pong loop tries to ensure y’s
liveness and the validity of the path.

Decentralized, Connectivity-Preserving 109

On node x:

29 Data structure:
30 repl[]: for each z ∈ neighbors, repl[z] is a node to replace z, initially ⊥
31 commit[]: for each z ∈ neighbors, commit[z] is the time when x commits to z

in a replacement task, initially 0
/* repl[] and commit[] only maintains entries for nodes in neighbors */

32 ts: timestamp of the replacement task, initially 0

33 Repeat periodically:
34 foreach z ∈ neighbors \ leafset(x,neighbors), send ping-ask-repl to z

35 Upon receipt of ping-ask-repl from z:
36 y ← v such that v ∈ leafset(x,neighbors) and d(z, v) < d(z, x) and

d(z, v) = minu∈leafset(x,neighbors) d(z, u)
37 send (pong-ask-repl, y) to z

38 Upon receipt of (pong-ask-repl, y) from z
39 if z ∈ neighbors then repl[z] ← y

40 Repeat periodically:
41 ts ← getClockValue()
42 foreach z ∈ neighbors \ leafset(x,neighbors) and repl[z] �= ⊥
43 send (ping-replace, z, ts) to repl[z]

44 Upon receipt of (ping-replace, z, ts) from y:
45 if z ∈ neighbors then
46 commit[z] ← getClockValue(); send (pong-replace, z, ts) to y

47 Upon receipt of (pong-replace, z, ts) from y:
48 if z ∈ neighbors \ leafset(x,neighbors) and y = repl[z] then
49 neighbors ← neighbors ∪ {y}
50 if commit[z] < ts then
51 neighbors ← neighbors \ {z}; commit[y] ← getClockValue()
52 register(neighbors)

Fig. 3. Leafset maintenance protocol, Part III: Replace faraway nodes

The above basic flow alone, however, cannot nullify the indirect effects of ad-
verse system events before time GSTD when there are concurrent replacements,
and thus the topology connectivity could still be jeopardized. For example, in
Fig. 4, x replaces z with y after time GSTS when it receives the pong-replace
message sent by y after time GSTD. In the meantime, there is a concurrent task
in which y wants to replace z with u. After sending the pong-replace message
to x, y receives the pong-replace message from u and successfully replaces z
with u. However, the time that u sends the pong-replace message to y could be
before GSTD. So an erroneous “detected(z)” on u immediately after the sending
of the message could remove z from u.neighbors. As the result, x is relying on
the alternative path x → y → u → z to remove z from x.neighbors, but the path
is broken since u removed z from u.neighbors. However, x is not aware of these
concurrent events, and it still removes z after GSTS , which breaks the connec-
tivity. This shows the indirect effect of adverse system events before GSTD. A
similar danger exists when x tries to replace z and y concurrently.

110 Y. Chen and W. Chen

x

y

u

z

GSTSGSTD

PONG-REPLACE

PONG-REPLACE

incorrect “detected(z)”

Fig. 4. Concurrent replacement tasks introduce indirect effects of adverse system events
before GSTD and break topology connectivity

We introduce variables ts and commit[] to eliminate these dangerous concur-
rent replacements. Variable ts is a timestamp identifying the current replacement
task when a node sends out ping-replace messages (line 41), and its value is
piggybacked with the ping-replace and pong-replace messages. For each
z ∈ x.neighbors, variable x.commit[z] records the time when x commits to z in a
replacement task, either when x verifies the replacement of z for another node y
(line 46), or when x uses z to replace another node y (line 51). The key condition
is that x can only successfully replace z in a replacement task whose timestamp
ts is higher than commit[z] on x (line 50). The use of ts and commit[] variables
avoids any dangerous concurrent replacement tasks in the system. In the example
of Fig. 4, after y sends the pong-replace message to confirm the replacement
of z for x, y.commit[z] is updated to a new timestamp that is larger than the
timestamp of y’s own concurrent replacement task to z. So when y receives the
pong-replace from u, it will not remove z from y.neighbors. As shown by our
proof, it is the core mechanism to satisfy the Connectivity Preservation property.

Next, we restrict the selection of replacement node y to guarantee the Eventual
Cleanup property. A node y can be a replacement of z for x only when y is closer
to x than z and is in z’s leafset (line 36). The distance constraint avoids circu-
lar replacement, while the leafset constraint guarantees that y can successfully
verify the replacement. The latter is true because our invite protocol guarantees
that eventually the leafsets are mutual, so z will be in y’s leafset. These two re-
placement selection constraints guarantee the progress of the replacement tasks,
and thus the Eventual Cleanup property.

The mechanisms introduced so far are not enough to guarantee the Even-
tual Inclusion property, however. During the proof of an earlier version of the
protocol, we uncovered the following subtle livelock scenario in which the add()
invocations interfere with leafset convergence. Whenever node x wants to re-
place z with y, the replacement is rejected because x just committed to z in a
replacement task that replaces another node u with z. The rejections can keep
happening if an application keeps invoking add({u}) on x at inopportune times
such that the edge from x to u is continually being added back to the topology.
The inability for x to replace z with y is not an issue by itself. However, it is
possible that there is a node v that should be in x’s leafset, and the only way
x learns about v is through z by the replacement protocol (the invite protocol

Decentralized, Connectivity-Preserving 111

On node x:

53 Data structure:
54 succ: a derived variable, succ = x if neighbors = ∅ else succ = y ∈ neighbors

such that d+(x, y) = min{d+(x, z) : z ∈ neighbors}
55 Repeat periodically:
56 if neighbors �= ∅ and d+(x, 0) < d+(x, succ) then
57 send (ping-deloopy, x) to succ

58 Upon receipt of (ping-deloopy, u) from y:
59 if x = u then return
60 if neighbors = ∅ or d+(x, 0) < d+(x, succ) then
61 cand ← cand ∪ {u}; send pong-deloopy to u
62 else
63 send (ping-deloopy, u) to succ

64 Upon receipt of pong-deloopy from y:
65 cand ← cand ∪ {y}

Fig. 5. Leafset maintenance protocol, Part IV: Loopy detection

will not help if all nodes in z.neighbors are outside x’s leafset range). In this
case, x cannot replace z with y and thus will not learn about v, so the leafset
convergence will not occur.

To fix this problem, we break the replacement of z with y on node x into
two phases. First, x can add node y into x.neighbors (line 49), without checking
the constraint of z.commit < ts. Next, x can remove z only when the condition
z.commit < ts holds (lines 50–51). With this change, x can still find closer nodes
through z even if x cannot replace z.

We also find another similar livelock scenario if the replacement node is se-
lected from z’s neighbors set rather than its leafset (leafset(z, z.neighbors)) in
line 36. The discovery of these subtle and even counter-intuitive livelock sce-
narios shows that a rigorous and complete proof helps us in discovering subtle
concurrency issues that are otherwise difficult to discern.

5.4 Detect Loopy Structure

With the sub-protocols explained so far, the topology still might be incorrect,
because it can be in a special state called the loopy state as defined in [14]. A
node’s successor is the closest node in its neighbors set according to the clockwise
distance. A topology is in the loopy state if following the successor links one may
traverse the entire key space more than once before coming back to the starting
point. We use a deloopy protocol (Fig. 5) similar to the one in [14] to detect the
loopy state and resolve it. The protocol essentially initiates a ping-deloopy
message along the successor links to see if the message makes a complete traversal
of the logical space before coming back to the initiator. If so, a loopy state is
found, and the protocol puts the two end nodes of this traversal into each other’s
cand sets, so that the invite protocol is triggered to resolve the loopy state.

112 Y. Chen and W. Chen

Our protocol is cost-effective because in the steady state each node only main-
tains sets neighbors and cand, mappings repl[] and commit[], which contain O(L)
number of nodes, and only nodes in the neighbors set are eventually registered
with the failure detector.

Putting all sub-protocols together, we have a full protocol that satisfies all
properties in our specification, as summarized by the following theorem.

Theorem 2. The leafset maintenance protocol provided in Fig. 1, 2, 3, and 5
is both convergent and cost-effective, which means it satisfies the Connectivity
Preservation, Partition Healing, Eventual Cleanup, Eventual Inclusion, and Cost
Effectiveness properties.

6 Conclusions and Future Work

In this paper, we propose a formal specification of peer-to-peer structured overlay
maintenance, and introduce a complete protocol that matches the specification.
The protocol is able to preserve overlay connectivity in a purely peer-to-peer
manner while maintaining a small leafset, and it is able to converge any con-
nected topology to the correct configuration.

The primary focus of this paper is the formal treatment of ring-based overlay
maintenance. For a more practical implementation, a number of issues need to
be addressed, which can be regarded as the future directions of our work. First,
potential optimizations is possible to save the maintenance bandwidth of our
protocol. Second, we may be able to weaken our model assumptions such as
the availability of the dynamic failure detector �PD and the existence of the
global stabilization time GSTS to match closer to the dynamic peer-to-peer
environments, by following the similar approach in [12] for example. Another
direction is to study the convergence speed of our protocol. On this front, we
have conducted simulation studies with some heuristics to achieve an O(log N)-
level convergence time where N is the total number of nodes in the system [4].
We are looking into theoretical analysis of the fast convergence protocols. Finally,
generalizing our results to other structured overlay topologies is also useful.

References

1. Angluin, D., Aspnes, J., Chen, J.: Fast construction of overlay networks. In: Pro-
ceedings of the 17th ACM Symposium on Parallelism in Algorithms and Architec-
tures, ACM Press, New York (2005)

2. Castro, M., Costa, M., Rowstron, A.: Performance and dependability of structured
peer-to-peer overlays. In: Proceedings of the IEEE/IFIP International Conference
on Dependable Systems and Networks (2004)

3. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43(2), 225–267 (1996)

4. Chen, Y., Chen, W.: Decentralized, connectivity-preserving, and cost-effective
structured overlay maintenance. Technical Report MSR-TR-2007-84, Microsoft Re-
search (2007)

Decentralized, Connectivity-Preserving 113

5. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM 17(11), 643–644 (1974)

6. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
7. Dolev, S., Kat, R.I.: Hypertree for self-stabilizing peer-to-peer systems. In: Pro-

ceedings of the 3rd IEEE International Symposium on Network Computing and
Applications, IEEE Computer Society Press, Los Alamitos (2004)

8. Ghodsi, A., Alima, L.O., Haridi, S.: Low-bandwidth topology maintenance for ro-
bustness in structured overlay networks. In: Proceedings of the 38th Annual Hawaii
International Conference on System Sciences - Track 9 (2005)

9. Haeberlen, A., Hoye, J., Mislove, A., Druschel, P.: Consistent key mapping in struc-
tured overlays. Technical Report TR05-456, Rice Computer Science Department
(2005)

10. Harvey, N.J.A., Jones, M.B., Saroin, S., Theimer, M., Wolman, A.: Skipnet: A
scalable overlay network with practical locality properties. In: Proceedings of the
4th USENIX Symposium on Internet Technologies and Systems (2003)

11. Jelasity, M., Babaoglu, O.: T-Man: Gossip-based overlay topology management.
In: Brueckner, S.A., Serugendo, G.D.M., Hales, D., Zambonelli, F. (eds.) ESOA
2005. LNCS (LNAI), vol. 3910, pp. 1–15. Springer, Heidelberg (2006)

12. Keidar, I., Shraer, A.: How to choose a timing model? In: Proceedings of the 37th
IEEE/IFIP International Conference on Dependable Systems and Networks (2007)

13. Li, X., Misra, J., Plaxton, C.G.: Active and concurrent topology maintenance.
In: Proceedings of the 18th International Symposium on Distributed Computing
(2004)

14. Liben-Nowell, D., Balakrishnan, H., Karger, D.: Analysis of the evolution of peer-
to-peer systems. In: Proceedings of the 21st ACM Symposium on Principles of
Distributed Computing, ACM Press, New York (2002)

15. Montresor, A., Jelasity, M., Babaoglu, O.: Chord on demand. In: Proceedings of the
5th IEEE International Conference on Peer-to-Peer Computing, IEEE Computer
Society Press, Los Alamitos (2005)

16. Onus, M., Richa, A., Scheideler, C.: Linearization: Locally self-stabilizing sorting
in graphs. In: Proceedings of the 9th Workshop on Algorithm Engineering and
Experiments (2007)

17. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: SIGCOMM 2001. Proceedings of the ACM Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communi-
cation (2001)

18. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling churn in a DHT. In:
Proceedings of the USENIX Annual Technical Conference (2004)

19. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001.
LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

20. Shaker, A., Reeves, D.S.: Self-stabilizing structured ring topology p2p systems. In:
Proceedings of the 5th IEEE International Conference on Peer-to-Peer Computing,
IEEE Computer Society Press, Los Alamitos (2005)

21. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: SIGCOMM 2001.
Proceedings of the ACM Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication (2001)

On the Performance of Dijkstra’s Third

Self-stabilizing Algorithm for Mutual Exclusion

Viacheslav Chernoy1, Mordechai Shalom2, and Shmuel Zaks1

1 Department of Computer Science, Technion, Haifa, Israel
vchernoy@tx.technion.ac.il, zaks@cs.technion.ac.il
2 TelHai Academic College, Upper Galilee, 12210, Israel

cmshalom@telhai.ac.il

Abstract. In [7] Dijkstra introduced the notion of self-stabilizing algo-
rithms, and presented three such algorithms for the problem of mutual
exclusion on a ring of processors. The third algorithm is the most in-
teresting of these three, but is rather non intuitive. In [8] a proof of its
correctness was presented, but the question of determining its worst case
complexity – that is, providing an upper bound on the number of moves
of this algorithm until it stabilizes – remained open. In this paper we
solve this question, and prove an upper bound of O(n2) (n being the size
of the ring) for this algorithm’s complexity. This complexity applies to a
centralized as well as to a distributed scheduler.

1 Introduction

The notion of self stabilization was introduced by Dijkstra in [7]. He considers a
system, consisting of a set of processors, and each running a program of the form:
if condition then statement. A processor is termed privileged if its condition is
satisfied. A scheduler chooses any privileged processor, which then executes its
statement (i.e., makes a move); if there are several privileged processor, the
scheduler chooses any of them. Such a scheduler is termed centralized. A sched-
uler that chooses any subset of the privileged processors, that are then making
their moves simultaneously, is termed distributed. Thus, starting from any ini-
tial configuration, we get sequences of moves (termed executions). The scheduler
thus determines all possible executions of the system. A specific subset of the
configurations is termed legitimate. The system is self-stabilizing if any possible
execution will eventually get - that is, after a finite number of moves - only to
legitimate configurations. The number of moves from any initial configuration
until the system stabilizes is often referred to as stabilization time (see, e.g.,
[2,6,12,15]).

Dijkstra studied in [7] the fundamental problem of mutual exclusion, for which
the subset of legitimate configurations includes the configurations in which ex-
actly one processor is privileged. In [7] the processors are arranged in a ring,
so that each processor can communicate with its two neighbors using a shared
memory, and where not all processors use the same program. Three algorithms

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 114–123, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On the Performance of Dijkstra’s Third Self-stabilizing Algorithm 115

were presented – without correctness or complexity proofs – in which each pro-
cessor could be in one of k > n, four and three states, respectively (n being the
number of processors). A centralized scheduler was assumed.

The analysis - correctness and complexity - of Dijkstra’s first algorithm is
rather straightforward. The correctness under a centralized scheduler is for any
k ≥ n − 1, and under a distributed scheduler for any k ≥ n. The stabilization
time under a centralized scheduler is Θ(n2) (following [4] this is also the ex-
pected number of moves). There is little in the literature regarding the second
algorithm, probably since it was extended in [11] to general trees, or since more
attention was devoted to the third algorithm, which is rather non-intuitive. For
this latter algorithm Dijkstra presented in [8] a proof of correctness (another
proof was given in [10], and a proof of correctness under a distributed scheduler
was presented in [3]). Actually, it is only after [8] that an extensive study of the
area of self-stabilization began, and expanded to a variety of directions (see, e.g.,
[9,13]).

Though while dealing with proofs of correctness one can sometimes get also
complexity results, this was not the case with this proof of [8]. Referring to
this Dijkstra’s third algorithm, the authors in [1] state that ”The complexity
study of this algorithm has never been made”; to the best of our knowledge, this
statement is also true today. Moreover, the authors claim that ”Surprisingly,
no exact result on worst case stabilization time has been published. The reason
for this is perhaps that Dijkstra’s algorithm does not monotonically converge
towards a stabilized state. Some punctual bursts can momentarily lead it far
from its goal”. The authors of [1] then proceed and present an algorithm, similar
to that of Dijkstra, and prove an upper bound of 53

4n2 for the stabilization time
of their algorithm. A lower bound of Ω(n2) for this algorithm is known (see [14],
and also Note 1 in Section 2).

In this paper we provide an upper bound on the stabilization time of Dijk-
stra’s third algorithm; specifically, we prove that the number of moves from any
initial configuration until the system stabilizes is O(n2) . We do so by extending
the proof of [8]. The result applies to a centralized scheduler as well as to a
distributed one.

In Section 2 we present Dijkstra’s algorithm, and outline the details of the
proof of [8] needed for our discussion. In Section 3 we present observations re-
garding the proof of [8], and then present our proof of the upper bound.

2 Dijkstra’s Algorithm

In this section we present Dijkstra’s third algorithm of [7] (to which we refer
throughout this paper as Dijkstra’s algorithm, or just the algorithm), and to its
proof of correctness of [8]. Following [8], our discussion assumes a centralized
scheduler (we will get back to a distributed scheduler after Theorem 2).

In [7] there are n processors p0, p1, . . . , pn−1, that are arranged in a ring;
that is, the processors adjacent to pi are p(i−1) mod n and p(i+1) mod n, for i =
0, 1, . . . , n − 1. Processor pi has a local state xi ∈ {0, 1, 2}. Two processors –

116 V. Chernoy, M. Shalom, and S. Zaks

namely, p0 and pn−1 – run special programs, while all intermediate processors
pi, 1 ≤ i ≤ n − 2, run the same program. The programs of the processors are as
follows:

Program for processor p0:

if x0 + 1 = x1 then x0 := x0 − 1 end.

Program for processor pi, 1 ≤ i ≤ n − 2:

if (xi + 1 = xi−1) or (xi + 1 = xi+1) then xi := xi + 1 end.

Program for processor pn−1:

if (xn−2 = x0) and (xn−1 �= x0 + 1) then xn−1 := x0 + 1 end.

Recall that the subset of legitimate configurations for this problem includes
the configurations in which exactly one processor is privileged. The configuration
x0 = · · · = xn−1 and x0 = · · · = xi �= xi+1 = · · · = xn−1 are legitimate (see also
(7), (8) and (9) of Example 2).

It is proved in [8] that this algorithm self stabilizes, and the system thus
achieves mutual exclusion. In this proof the following notation is used. Given
an initial configuration x0, x1, . . . , xn−1, and placing the processors on a line,
consider each pair of neighbors pi−1 and pi, for i = 1, . . . , n − 1 (note that
though pn−1 and p0 are neighbors on the ring, they are not considered here to
be neighbors). Draw an arrow from xi to xi−1 if xi = xi−1 + 1 (termed left
arrow), and from xi−1 to xi if xi−1 = xi + 1 (termed right arrow). In this paper
we choose to denote a left arrow by ’<’, and a right arrow by ’>’. Thus, for
each two neighboring processors with states xi−1 and xi, either xi−1 = xi, or
xi−1 < xi, or xi−1 > xi. Recall that xi−1 < xi means that xi−1 is smaller by
1 than xi, and xi−1 > xi means that xi−1 is larger by 1 than xi, where all
arithmetic is modulo 3. For a given configuration C = x0, x1, . . . , xn−1, Dijkstra
introduces the function

f(C) = #left arrows + 2#right arrows . (1)

Example 1. For n = 6, a possible initial configuration C is

C : x0 = 1, x1 = 1, x2 = 0, x3 = 1, x4 = 2, x5 = 2 .

This configuration will thus be denoted as

C : 1 1 > 0 < 1 < 2 2 . (2)

For this configuration we have f(C) = 1 × 2 + 2 × 1 = 4. ��

Note 1. Using the set of configurations x0 > x1 > · · · > xn−1 as initial con-
figurations one can easily derive the Ω(n2) lower bound for this algorithm (the
details are left to the reader). ��

On the Performance of Dijkstra’s Third Self-stabilizing Algorithm 117

It follows immediately from (1) that for any configuration C of n processors

0 ≤ f(C) ≤ 2(n − 1) . (3)

Equation (1) is used in [8] for the proof of correctness, as follows. There are
eight possible moves of the system: one possible move for processor p0, five
possible moves for any intermediate processor pi, 0 < i < n−1, and two possible
moves for pn−1. These eight possibilities are summarized in Table 1. In this table
C1 and C2 denote the configurations before and after the move, respectively,
and Δf = f(C2) − f(C1). In the table we show only the local parts of these
configurations. For example, in the first row, p0 is privileged; therefore in C1 we
have x0 < x1, and in C2 x0 > x1, and since one left arrow is replaced by the
right arrow, Δf = f(C2) − f(C1) = 1. It is proved in [8] that each execution is
infinite (that is, the scheduler can always find at least one privileged processor).
Then it is shown that p0 makes infinite number of moves. Then the execution
is partitioned into phases, which start with a move of p0 and end just before
its next move. It is argued that the function f decreases by at least 1 after
each phase. By (3) it follows that the algorithm terminates after at most 2(n-1)
phases.

Table 1.

Case Processor C1 C2 Δf
0 p0 x0 < x1 x0 > x1 +1

1 pi xi−1 > xi = xi+1 xi−1 = xi > xi+1 0

2 pi xi−1 = xi < xi+1 xi−1 < xi = xi+1 0

3 pi xi−1 > xi < xi+1 xi−1 = xi = xi+1 −3

4 pi xi−1 > xi > xi+1 xi−1 = xi < xi+1 −3

5 pi xi−1 < xi < xi+1 xi−1 > xi = xi+1 0

6 pn−1 xn−2 > xn−1 xn−2 < xn−1 −1

7 pn−1 xn−2 = xn−1 xn−2 < xn−1 +1

Though the function f enables the proof of correctness of the algorithm, it
cannot be used for analyzing its complexity (that is, the number of moves from
any configuration until reaching a legitimate configuration). The reason for this
is that in three cases (cases 1, 2 and 5 in Table 1) the function f does not change
(that is, Δf = 0), and therefore the change in the function cannot reflect the
actual number of moves, that might be even unbounded. Indeed, the proof of [8]
takes into account the moves of processors p0 and pn−1 and the cases 3 and 4 of
the intermediate processors pi, but it does not consider the cases 1, 2 and 5.

This is the point one has to overcome in order to modify Dijkstra’s proof so
that it will also enable the estimate of the complexity of the algorithm. This is
what we are doing in the next section, in which we first get more insight into
the properties of the algorithm and its proof, and then introduce a new function
with which we are able to measure its complexity.

118 V. Chernoy, M. Shalom, and S. Zaks

3 Upper Bound Proof

In this section we present our main result for the upper bound of Dijkstra’s
algorithm for n > 2 (the case n = 2 is trivial). Our discussion includes three
steps. We first introduce the function f̂ that is a slight modification of the
function f (of (1)), with which we are able to get more properties of the behavior
of the algorithm. We then introduce a new function g, and discuss its properties;
this function enables us to deal with the complexity of the algorithm. Finally
we put all of these properties together and provide a proof for the upper bound.
These three steps are presented in Sections 3.1, 3.2 and 3.3, respectively.

3.1 Preliminaries

We now present some consequences of the proof of [8] that we will later use in our
proof of the upper bound. We use the function f̂ defined on any configuration
C as follows:

f̂(C) = (#left arrows − #right arrows) mod 3 . (4)

The connection between the functions f and f̂ is obvious, by (1): f(C) =
#left arrows + 2#right arrows = (#left arrows − #right arrows) +
3#right arrows, hence

f̂(C) ≡ f(C) (mod 3) . (5)

We now discuss the properties of the function f̂ in a few lemmas and corol-
laries. Throughout the discussion we refer to the cases according to Table 1.

Lemma 1. For any configuration C:

a. f̂(C) = 0 iff xn−1 = x0.
b. Any move of processor pi, 1 ≤ i ≤ n − 2, does not change the function f̂

(that is, Δf̂ = 0).
c. pn−1 is privileged according to case 7 iff f̂(C) = 0 and xn−2 = xn−1.
d. pn−1 is privileged according to case 6 iff f̂(C) = 2 and xn−2 > xn−1.

Proof.

a. f̂(C) = 0 iff the difference between the number of left arrows and right
arrows is 0 modulo 3. Since ’<’ denotes an increase by 1 from xi−1 to xi,
and ’>’ denotes a decrease by 1, therefore this holds iff xn−1 = x0.

b. Follows immediately from Table 1 and (5).
c. pn−1 is privileged according to case 7 iff x0 = xn−2 = xn−1. By (a) (of this

lemma) this happens iff f̂(C) = 0 and xn−2 = xn−1.
d. pn−1 is privileged according to case 6 iff x0 = xn−2 > xn−1. It remains to

show that f̂(C) = 2. By considering the configuration C′ of the first n − 1
processors it follows by (a) that f̂(C′) = 0, and therefore f̂(C) = 2. ��

On the Performance of Dijkstra’s Third Self-stabilizing Algorithm 119

Corollary 1. After processor pn−1 makes a move (case 6 or 7), we get to a
configuration C for which f̂(C) = 1.

Proof. Note that by Table 1, move 6 decreases and move 7 increases f̂ by 1.
Hence after processor pn−1 moves, f̂(C) = 1. ��

The next corollary follows from Corollary 1 and Table 1; it is actually Lemma 0
of [8].

Corollary 2. Starting from any configuration, in any prefix of an execution the
number of moves of pn−1 is bounded by the number of moves of p0 + 1.

The following lemma and corollary extend this property as follows:

Lemma 2. Starting from any configuration, and during any execution, the fol-
lowing holds:

a. For any two successive moves of processor pn−1 where the second move is of
case 6, there is at least one move of processor p0 between them.

b. For any two successive moves of processor pn−1 where the second move is of
case 7, there are at least two moves of processor p0 between them.

Proof. By Corollary 1, after the first of these two successive moves, f̂ becomes
1.

a. If the second move of processor pn−1 is of case 6, then between the two moves
of pn−1, f̂ had to change from 1 to 2. Since moves 1-5 do not change f̂ , we
conclude that processor p0 moved at least once between them.

b. If the second move is of case 7, then between two moves of pn−1, f̂ had to
change from 1 to 0. Since the only processor that can change the value of f̂
is p0, this means that p0 had to move at least twice between them. ��

By Lemma 2 it follows that

Corollary 3. Starting from any configuration, in any prefix of an execution the
number of moves of case 6 plus twice the number of moves of case 7 of pn−1 is
bounded by the number of moves of p0 + 1.

We summarize the properties of the functions f̂ in Table 2. In this table we
also include the function g discussed in Section 3.2. In this table we denote the
changes in the function f̂ (Δf̂ = f̂(C2) − f̂(C1)) and g (Δg = g(C2) − g(C1)).

3.2 The Function g

We now introduce the function g. This function decreases by at least 1 during
each move of any intermediate processor pi (cases 1-5). Unfortunately, moves of
processors p0 and pn−1 increase g. However, by combining results of Section 3.1
and the properties of g we manage to derive the upper bound on the number of
moves to reach stabilization.

120 V. Chernoy, M. Shalom, and S. Zaks

Table 2.

Case Processor C1 C2 Δg Δf̂
0 p0 x0 < x1 x0 > x1 n − 2 +1

1 pi xi−1 > xi = xi+1 xi−1 = xi > xi+1 −1 0

2 pi xi−1 = xi < xi+1 xi−1 < xi = xi+1 −1 0

3 pi xi−1 > xi < xi+1 xi−1 = xi = xi+1 5 − 3n ≤ −1 0

4 pi xi−1 > xi > xi+1 xi−1 = xi < xi+1 3i − 3n + 5 ≤ −1 0

5 pi xi−1 < xi < xi+1 xi−1 > xi = xi+1 −3i + 2 ≤ −1 0

6 pn−1 xn−2 > xn−1, f̂ = 2 xn−2 < xn−1, f̂ = 1 n − 2 −1

7 pn−1 xn−2 = xn−1, f̂ = 0 xn−2 < xn−1, f̂ = 1 2n − 4 +1

Given a configuration C = x0, x1, . . . , xn−1, we define the function g(C) as
follows:

g(C) =
∑

1 ≤ i ≤ n − 1
xi−1 < xi

(n + i − 3) +
∑

1 ≤ i ≤ n − 1
xi−1 > xi

(2n − i − 3) (6)

Example 2.

• If in a configuration C, x0 = x1 = · · · = xn−1, then g(C) = 0. (7)

• If in a configuration C, x0 = · · · = xi−1 < xi = · · · = xn−1, then

g(C) = n + i − 3. (8)

• If in a configuration C, x0 = · · · = xn−i−1 > xn−i = · · · = xn−1, then

g(C) = n + i − 3. (9)

• If in a configuration C, x0 < x1 = · · · = xn−2 > xn−1, then

g(C) = 2n − 4.

• If in a configuration C, x0 < x1 < · · · < xn−1, then

g(C) =

n−1∑
i=1

(n + i − 3) =
3

2
(n − 1)(n − 2).

• If n is odd and in a configuration C, x0 > · · · > x n−1
2

< x n+1
2

< · · · < xn−1, then

g(C) =

n−1
2∑

i=1

(2n − i − 3) +

n−1∑
i= n+1

2

(n + i − 3) =
7

4
n2 − 5n +

13

4
. (10)

• If n is even and in a configuration C, x0 > · · · > x n
2

< x n
2 +1 < · · · < xn−1, then

g(C) =

n
2∑

i=1

(2n − i − 3) +

n−1∑
i= n

2 +1

(n + i − 3) =
7

4
n2 − 5n +

12

4
. (11)

��

The changes in the function g in each of the eight possible moves are summarized
in Table 2. These changes can be obtained by using the examples above. For

On the Performance of Dijkstra’s Third Self-stabilizing Algorithm 121

example, for a move of case 0 we get by (8) and (9) that Δg = (2n−4)−(n−2) =
n − 2, and for a move of case 5 Δg = (2n − i − 3) − (2n + 2i − 5) = 2 − 3i ≤ −1.

Lemma 3. For any configuration C, 0 ≤ g(C) ≤ 7
4n2 − 5n + 13

4 .

Proof. For any 1 ≤ i ≤ n − 1, the following holds:

n − 2 ≤ n + i − 3 ≤ 2(n − 2),

n − 2 ≤ 2n − i − 3 ≤ 2(n − 2).

This, together with (7), implies minC g(C) = 0.
The maximal value of g is for a configuration C in which the first half of

the arrows point to the right and all others point to the left. Formally, since
n + i − 3 ≤ 2n − i − 3 ⇔ 2i ≤ n, then:

max
C

g(C) =
n−1∑
i=1

max(n+i−3, 2n−i−3) =
n−1∑

i=�n
2 �+1

(n+i−3)+
�n

2 �∑
i=1

(2n−i−3) .

By (10) and (11) we conclude maxC g(C) = 7
4n2 − 5n + 13

4 . ��

3.3 Main Contribution

We now turn to present our main result. Following the proof of [8] we know that
starting from any initial configuration the algorithm will get to a legitimate con-
figuration in finite time. We are now ready to measure this time in the following
theorem.

Theorem 1. Assume the system starts from an initial configuration C, and that
an execution of Dijkstra’s algorithm gets into a legitimate configuration in T
moves. If within these first T moves there are exactly x, y and z moves of cases
0, 6 and 7, respectively (the cases refer to Table 2), then

T ≤ g(C) + x(n − 1) + y(n − 1) + z(2n − 3).

Proof. According to Table 2, each move of any intermediate processor pi de-
creases function g at least by 1 (cases 1-5) and each of the x, y, z moves of case
0, 6, 7 increase the function g by n − 2, n − 2, 2n − 4, respectively.

Therefore the total number of moves performed by all the intermediate pro-
cessors pi is bounded by g(C) + x (n − 2) + y (n − 2) + z (2n − 4). This is
true since otherwise we’ll get into a configuration C′ with g(C′) < 0, which
contradicts Lemma 3.

Since we assumed that the total number of moves performed by p0 and pn−1
is exactly x + y + z, it follows that

T ≤ g(C) + x(n − 2) + y(n − 2) + z(2n − 4) + (x + y + z) =
= g(C) + x(n − 1) + y(n − 1) + z(2n − 3). ��

122 V. Chernoy, M. Shalom, and S. Zaks

In the discussion in Section 2 we mentioned that the number of phases is bounded
by 2(n − 1), and therefore x ≤ 2(n − 1). In addition, by Corollary 2 it follows
that y + z ≤ x + 1. Therefore we get

T ≤ g(C) + x(n − 1) + y(n − 1) + z(2n − 3) ≤
≤ max g + x(n − 1) + (y + z)(max(n − 1, 2n − 3)) =
= max g + x(n − 1) + (x + 1)(2n − 3) =
= max g + x(n − 1 + 2n − 3) + (2n − 3) ≤
≤ max g + 2(n − 1)(3n − 4) + 2n − 3 =
= max g + 6n2 − 12n + 5 ≤

≤ 7
4
n2 − 5n +

13
4

+ 6n2 − 12n + 5 =

= 7
3
4
n2 − 17n + 8

1
4

≤ 7
3
4
n2 .

Note that we achieved this upper bound by combining the properties of the
function g with the original proof of [8] (in particular Corollary 2) and without
considering the function f̂ .

If we also use the function f̂ , then we can apply similar argument and use
Corollary 3. By this corollary we have y + 2z ≤ x + 1, and therefore:

T ≤ g(C) + x(n − 1) + y(n − 1) + z(2n − 3) ≤
≤ max g + x(n − 1) + n(y + 2z) − (y + 3z) ≤
≤ max g + x(n − 1) + n(y + 2z) ≤
≤ max g + x(n − 1) + n(x + 1) =
= max g + x(2n − 1) + n ≤
≤ max g + 2(n − 1)(2n − 1) + n =
= max g + 4n2 − 5n + 2 ≤

≤ 7
4
n2 − 5n +

13
4

+ 4n2 − 5n + 2 =

= 5
3
4
n2 − 10n + 5

1
4

≤ 5
3
4
n2 .

A more careful analysis can be used to show an upper bound of 4n2 ([5]).
Therefore the following theorem holds:

Theorem 2. Starting from any initial configuration, any execution of Dijkstra’s
algorithm gets into a legitimate configuration in at most O(n2) moves.

Recall that the analysis assumed a centralized scheduler. We argue that the same
bound applies also for a distributed scheduler. This is the case since it can be
shown that any move done concurrently by k > 1 processors can be simulated
by a sequence of exactly k moves of individual processors (see [3]); this follows
also from the fact that it is not possible that all n processors are privileged
simultaneously.

On the Performance of Dijkstra’s Third Self-stabilizing Algorithm 123

References

1. Beauquier, J., Debas, O.: An optimal self-stabilizing algorithm for mutual exclusion
on bidirectional non uniform rings. In: Proceedings of the Second Workshop on
Self-Stabilizing Systems, pp. 17.1–17.13 (1995)

2. Beauquier, J., Johnen, C., Messika, S.: Brief announcement: Computing automat-
ically the stabilization time against the worst and the best schedules. In: Dolev, S.
(ed.) DISC 2006. LNCS, vol. 4167, pp. 543–547. Springer, Heidelberg (2006)

3. Burns, J.E., Gouda, M.G., Miller, R.E.: On relaxing interleaving assumptions. In:
Proceedings of the MCC Workshop on Self-Stabilizing Systems, MCC Technical
Report No. STP-379-89 (1989)

4. Chang, E.J.H., Gonnet, G.H., Rotem, D.: On the costs of self-stabilization. Infor-
mation Processing Letters 24, 311–316 (1987)

5. Chernoy, V., Shalom, M., Zaks, S.: Better bounds for Dijkstra’s 3rd algorithm on
mutual exclusion. (in preparation)

6. Cobb, J.A., Gouda, M.G.: Stabilization of general loop-free routing. Journal of
Parallel and Distributed Computing 62(5), 922–944 (2002)

7. Dijkstra, E.W.: Self stabilizing systems in spite of distributed control. Communi-
cations of the Association of the Computing Machinery 17(11), 643–644 (1974)

8. Dijkstra, E.W.: A belated proof of self-stabilization. Distributed Computing 1, 5–6
(1986)

9. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
10. Kessels, J.L.W.: An exercise in proving self-stabilization with a variant function.

Information Processing Letters 29, 39–42 (1988)
11. Kruijer, H.S.M.: Self-stabilization (in spite of distributed control) in tree-structured

systems. Information Processing Letters 8, 91–95 (1979)
12. Nakaminami, Y., Kakugawa, H., Masuzawa, T.: An advanced performance analysis

of self-stabilizing protocols: stabilization time with transient faults during conver-
gence. In: IPDPS 2006. 20th International Parallel and Distributed Processing
Symposium, 25-29 April 2006. Rhodes Island, Greece, (2006)

13. Schneider, M.: Self-stabilization. ACM Computing Surveys 25, 45–67 (1993)
14. Tchuente, M.: Sur l’auto-stabilisation dans un réseau d’ordinateurs. RAIRO Infor-

matique Theoretique 15, 47–66 (1981)
15. Tsuchiya, T., Tokuda, Y., Kikuno, T.: Computing the stabilization times of self-

stabilizing systems. IEICE Transactions on Fundamentals of Electronic Communi-
cations and Computer Sciences E83A(11), 2245–2252 (2000)

Stability of the Multiple-Access Channel

Under Maximum Broadcast Loads

Bogdan S. Chlebus1, Dariusz R. Kowalski2, and Mariusz A. Rokicki3

1 Department of Computer Science and Engineering, University of Colorado
at Denver and Health Sciences Center, Denver CO 80217, USA

2 Department of Computer Science, University of Liverpool, Liverpool L69 3BX, UK
3 Centre National de la Recherche Scientifique, Université Paris Sud,

91405 Orsay Cedex, France

Abstract. We investigate deterministic broadcasting on multiple-access
channels in the framework of adversarial queuing. A protocol is stable
when the number of packets stays bounded, and it is fair when each
packet is eventually broadcast. We address the question if stability and
fairness can be achieved against the maximum injection rate of one packet
per round. We study three natural classes of protocols: acknowledgment
based, full sensing and fully adaptive. We show that no adaptive proto-
col can be both stable and fair for the system of at least two stations
against leaky-bucket adversaries, while this is achievable against window
adversaries. We study in detail small systems of exactly two and three
stations attached to the channel. For two stations, we show that bounded
latency can be achieved by a full-sensing protocol, while there is no sta-
ble acknowledgment-based protocol. For three stations, we show that
bounded latency can be achieved by an adaptive protocol, while there is
no stable full-sensing protocol. We develop an adaptive protocol that is
stable for any number of stations against leaky-bucket adversaries. The
protocol has O(n2) packets queued simultaneously, which is proved to
be best possible as an upper bound. We show that protocols that do not
use queue sizes at stations in an effective way or are greedy by having
stations with nonempty queues withhold the channel cannot be stable in
systems of at least four stations.

Keywords: multiple-access channel, deterministic broadcast, adversar-
ial queuing, stability, fairness, latency.

1 Introduction

Multiple access channels model distributed communication environments sup-
porting broadcasting. The properties of a system that make it multiple-access
channel are as follows. There are a number of stations attached to a transmission
medium. A packet transmitted by a station reaches all the stations, including
the sender. A transmission is successfully received if it does not overlap with any
other transmissions. We consider a synchronous model in which stations use lo-
cal clocks ticking at the same rate. A station transmits at a round determined by

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 124–138, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Stability of the Multiple-Access Channel Under Maximum Broadcast Loads 125

its clock, with a transmission filling the whole round. This means that if at least
two stations transmit at a round, then no messages are received at this round.

We investigate stability, fairness and latency of broadcast protocols for mul-
tiple-access channels. Stability means that the number of packets stored in local
queues is bounded at all rounds of an execution. The injection rate of one packet
per round on the average is the maximum injection rate to be possibly handled
in a stable manner, since at most one packet can be successfully broadcast at a
round. Fairness denotes the property that each packet is eventually successfully
broadcast. Latency of packets is defined as an upper bound on time spent waiting
in queues.

Our results. We address the question if stability, preferably with bounded latency
of packets, can be achieved against the maximum injection rate 1 on multiple-
access channels. The answer turns out to depend on the following parameters:
the kind of adversary, the class of protocols, and finally the number n of stations
attached to the channel. We consider two standard adversarial models: window
adversaries and leaky-bucket adversaries, all adversaries with injection rate 1.
We study three classes of protocols: acknowledgment based, full sensing and
fully adaptive.

We show that the kind of adversary matters. For leaky-bucket adversaries,
achieving both stability and fairness is impossible, except for the trivial case of
a single station. Regarding just stability with respect to leaky-bucket adversaries,
this is not possible by full-sensing protocols but achievable by adaptive protocols.
The stable protocol we develop has the stations store O(n2) packets in queues,
which is shown to be the asymptotically best possible bound in general.

For window adversaries, the situation is more complex. Impossibility of both
stability and fairness holds when there are at least four stations in the system, as
was shown in [8]. For three stations, bounded latency is achievable by adaptive
protocols, but no full-sensing protocol can be stable. For two stations, bounded
latency is achievable by full-sensing protocols, but no acknowledgment-based
protocol is stable.

We show additionally that protocols that are stable need to have some prop-
erties and do not have others. In particular, stable protocols have to use the
queue sizes at stations in a sufficiently explicit way, and cannot have stations
behave greedily by withholding the channel after a successfull transmission.

Related work. Most of the previous work on dynamic broadcasting on multiple-
access channels has concentrated on scenarios when packets are injected subject
to statistical constraints. When a broadcast environment is randomized, the be-
havior of the system can be modeled as a Markov chain and stability is captured
by ergodicity. The well known protocols like Aloha [1] and binary exponential
backoff [17] have been proposed to handle broadcast with stochastic injection
rates; Gallager [9] gives an overview of early research in this direction. For recent
work, see the papers by Goldberg, Jerrum, Kannan and Paterson [11], Goldberg,
MacKenzie, Paterson and Srinivasan [12], H̊astad, Leighton and Rogoff [13], and
Raghavan and Upfal [18].

126 B.S. Chlebus, D.R. Kowalski, and M.A. Rokicki

Adversarial queuing was proposed by Borodin, Kleinberg, Raghavan, Sudan
and Williamson [7] as an approach to study stability of contention-resolution pro-
tocols in store-and-forward routing. They showed, among other things, that a
directed acyclic network is stable with injection rate 1, for any greedy contention-
resolution protocol. Universal stability of a protocol denotes stability in any
network, and universal stability of a network denotes stability of an arbitrary
protocol in the network, both under constant injection rates smaller than 1.
These notions were introduced by Andrews, Awerbuch, Fernández, Leighton,
Liu and Kleinberg [4]; they were later studied by Gamarnick [10] and Alvarez,
Blesa and Serna [3]. Bhattacharjee, Goel and Lotker [6] showed the the popular
FIFO protocol can be unstable at arbitrarily low injection rates. Lotker, Patt-
Shamir and Rosén [15] showed that every work-preserving contention-resolution
protocol is stable if injection rate is smaller than 1/(D+1), where D is an upper
bound on the length of any path that a packet needs to traverse. Koukopoulos,
Mavronicolas, Nikoletseas and Spirakis [14] addressed the question of how struc-
tural properties of networks affect stability of contention-resolution protocols.
Adaptive protocols have packets carry only their destination addresses, rather
than complete routing paths; the stability of such protocols was considered by
Aiello, Kushilevitz, Ostrovsky and Rosén [2].

Bender, Farach-Colton, He, Kuszmaul and Leiserson [5] studied stability of ran-
domized backoff on multiple-access channels in the adversarial queuing model,
where stability meant that throughput is as large as injection rate. They showed,
among other things, that exponential backoff is unstable for rates ρ ≥ c lg lg n/ lg n,
for a sufficiently large constant c, where n denotes the number of stations. Stability
of deterministic broadcast protocols for multiple access channels in the framework
of adversarial queueing was first considered by Chlebus, Kowalski and Rokicki [8].
They defined strong stability to hold when the number of queued packets is pro-
portional to the maximum number of packets that an adversary may inject simul-
taneously in an execution. They showed that no adaptive protocol for a channel
with collision detection can be strongly stable for injection rates that are ω(1

log n)
and gave a full-sensing protocol for a channel with collision detection that is both
universally stable and strongly stable for injection rates at most 1

2(�lg n�+1) . For a
channel without collision detection, they developed a full-sensing protocol that is
both universally stable and strongly-stable for injection rates at most 1

c lg2 n
, for

some c > 0. They showed existence of an acknowledgment-based protocol that is
strongly stable for injection rates at most 1

cn lg2 n
, for some c > 0, and developed an

explicit acknowledgment-based protocol that is strongly stable for injection rates
at most 1

27n2 lnn . Finally, they showed that no acknowledgement-based protocol is
stable for injection rates larger than 3

1+lg n .

2 Technical Preliminaries

A multiple access channel is a broadcast system with specific additional prop-
erties that we discuss in this section. We use letter n to denote the number of

Stability of the Multiple-Access Channel Under Maximum Broadcast Loads 127

stations attached to a communication medium. Each of the n stations has a
unique name assigned to it, each name is an integer in the range [1, n].

Multiple-access channel. What makes a broadcast system multiple-access chan-
nel is the property that a transmission is successfully received by all the stations
if and only if the transmission does not overlap with any other transmissions. A
packet successfully broadcast is said to be heard on the channel. We consider a
synchronous channel in which executions of protocols are structured as sequences
of rounds so that overlapping transmissions occur at the same round. Multiple
transmissions at the same round result in a conflict for access to the channel,
which is called collision. When no stations transmit at a round, then the feed-
back that the stations receive from the channel is called silence; we may also say
about such a round that the channel or the round is silent. A channel may be
equipped with a collision detection mechanism, which makes the stations able
to distinguish between silence and collision at a round. If no collision detection
mechanism is available, then the stations perceive collision as silence. A round
during which no contents is heard as transmitted on the channel is said to be
void ; either silence or collision are merely obtained as the feedback from the
channel during a void round.

Adversaries. We consider worst-case performance of protocols that need to han-
dle traffic determined by an adversarial setting. An adversary is defined by a
set of patterns of injections of packets into stations. We consider two standard
classes of adversaries: window adversaries and leaky-bucket adversaries. In the
context of adversarial queuing, window adversaries were first used by Borodin,
et al. [7] and leaky-bucket adversaries by Andrews, et al. [4].

The letter ρ denotes the rate of packet injection, which intuitively means the
average number of packets injected over a sufficiently long time interval. Let
0 < ρ ≤ 1 be an injection rate and w a positive integer called the window size.
The window adversary of type (ρ, w) may inject at most ρw packets in each
contiguous segment of w rounds into any set of stations. Let 0 < ρ ≤ 1 be an
injection rate and b a positive integer. The leaky-bucket adversary of type (ρ, b)
may inject at most ρt+ b packets in each nonempty contiguous segment of t > 0
rounds into any set of stations. An adversary is said to be of injection rate ρ
when it is either of window-type (ρ, w) or of leaky-bucket-type (ρ, b), for some
w or b, respectively. The maximum number of packets that an adversary may
inject at a round is called burstiness. The window adversary of type (ρ, w) has
burstiness ρw. The leaky-bucket adversary of type (ρ, b) has burstiness ρ + b.

The injection rate 1 is maximum in the sense that any larger injection rate
certainly allows the adversary to make the number of packets queued at stations
grow unbounded, as at most one packet per round can be heard. We consider only
adversaries of injection rates exactly 1. Such adversaries differ among themselves
by their burstiness, which is either the window w, for a window adversary, or
b+1, for a leaky-bucket adversary. Both models of window adversaries and leaky-
bucket adversaries are equivalent for injection rates strictly smaller than 1, while
the leaky-bucket adversary of injection rate 1 can generate sequences of injections
not captured by any window adversary of rate 1, as was showed by Rosén [19].

128 B.S. Chlebus, D.R. Kowalski, and M.A. Rokicki

It follows that a possibility-type of a result for leaky-bucket adversaries of rate 1
holds automatically for window adversaries of rate 1, while an impossibility result
showed for window adversaries (of rate 1) holds automatically for leaky-bucket
adversaries (of rate 1).

Protocols as automata. A protocol executed in a system of stations attached to a
multiple-access channel is formally modeled as automaton in a way standard in
representing distributed systems [16]. The state of a station is determined by the
values of its local variables. Each station has a queue of pending packets, which
operates in a FIFO manner. The contents of transmitted packets do not affect
state transitions, in the sense that each packet is treated as an abstract token.
The value of a local clock at a station is not a component of a state: the clocks
are used only to determine consecutive rounds. No packets are ever discarded by
dequeuing without a prior successful transmission.

An execution is a sequence of events occurring at consecutive rounds, as deter-
mined by synchronized clocks at stations. A message received from the channel
consists of a transmitted packet, if any, and additional control bits, if any. The
event at a round is represented by the following sequence of consecutive actions
at each station:

(1) the station either performs a transmission or pauses, accordingly to its state;
the packet to transmit is taken from the queue at the station.

(2) the station receives a feedback from the channel, in the form of either hearing
a message or a collision signal or silence;

(3) new packets are injected into the station, if any; these packets are enqueued.
(4) a state transition occurs at the station, based on the state at the end of the

previous round, the packets injected at this round, and the feedback from the
channel at this round; in particular, the station that transmitted successfully
dequeues the transmitted packet.

Classes of protocols. We consider three classes of deterministic protocols, as
introduced in [8].

A broadcasting protocol is adaptive if control bits may be piggybacked on
transmitted packets and also control messages without any packet may be trans-
mitted. Feedback from the channel falls into one of the following five categories:
(1) packet without an attached control message, (2) packet with a control mes-
sage piggybacked on it, (3) control message without any packet, (4) silence, or
finally (5) collision.

A broadcasting protocol is full sensing if no control bits may be used, neither
attached to packets nor transmitted as separate messages. A feedback received
from the channel is in one of the following three forms: (1) packet, (2) silence,
or finally (3) collision.

A broadcasting protocol is defined to be acknowledgement based when a state
transition depends only on which consecutive round it is spent to process the
currently handled packet, where the numbering of rounds starts from the first
round when the packet started to be processed. A feedback received from the
channel, that matters for a station running an acknowledgment-based protocol, is

Stability of the Multiple-Access Channel Under Maximum Broadcast Loads 129

of one of two forms: (1) the packet just transmitted by the station or (2) some-
thing else.

A protocol P is said to be queue-size oblivious if the size of queue is not
used in state transitions of P . In particular, such protocols do not maintain
queue sizes, and adaptive queue-size oblivious protocols cannot include queue size
among control bits attached to packets. Any acknowledgment-based protocol is
queue-size oblivious. All the protocols given in [8] are queue-size oblivious; these
protocols were analyzed in [8] for injection rates smaller than 1.

Quality of service. The measures of quality that we work with are to express the
broadcast functionality of the system. A protocol P is said to be fair against
an adversary A when every packet injected by A is eventually heard on the
channel. Another property concerns stability, which occurs when the queues at
stations are bounded. More precisely, a protocol P is said to be stable against an
adversary A if, for any execution of the protocol in a system of n stations against
this adversary, there is a number s(n) such that the number of packets stored in
the queues is at most s(n) at any round. A protocol P is said to have bounded
latency against an adversary A if, in any execution of the protocol in a system
of n stations against the adversary A, there is a number �(n) > 0 such that, for
each injected packet, the time interval from the injection of the packet until the
packet is heard on the channel is of length at most �(n). If a station stores some
x packets in its queue at a round of an execution of a protocol, then the latency
of the protocol is at least x in this execution. It follows that a bounded-latency
protocol is both fair and stable. Any protocol given in this paper, that is both
fair and stable against some adversary, happens also to be of bounded latency
against this adversary.

3 Two Stations

We consider two stations attached to a multiple-access channel. It turns out
that, against leaky-bucket adversaries, an adaptive protocol can handle traf-
fic in a stable way on two stations, while achieving both stability and fairness
is impossible even for two stations. The situation is different with respect to
window adversaries: there is a full-sensing bounded-latency protocol, while no
acknowledgment-based protocol can be stable.

Theorem 1. No protocol can be both stable and fair for the system of at least
two stations against the leaky-bucket adversary with burstiness 2.

Proof. Consider two stations p and q and (an adaptive) protocol P that is both
stable and fair. We construct an execution of P that contains infinitely many
void rounds, while the adversary injects at least one packet per round on the
average.

We determine an execution by specifying milestone rounds t0, t1, t2, . . ., where
ti < ti+1 for any i ≥ 0, and what happens between these rounds. Define t0 to be
the first round of the execution; this round is void because no packets have been

130 B.S. Chlebus, D.R. Kowalski, and M.A. Rokicki

injected before the round. Let the adversary inject one packet at p at the first
round. Suppose the execution has been defined until some round ti, for i ≥ 0.
Next we define the round ti+1 > ti and what happens in the interval between ti
and ti+1.

If the round ti + 1 is void, then the adversary injects one packet at p at this
round and we set ti+1 = ti + 1. Suppose the round ti + 1 is not void: then
the adversary does not inject any packet at round ti + 1. The adversary keeps
injecting one packet at p per round starting from the round ti + 2. Since the
protocol is fair, eventually station q has an empty queue; let u be the first round
after ti+1 when this is the case. When no packet is heard on the channel at some
round w, where w > u, then p does not transmit at round w. If such a round
w exists, then set ti+1 = w and let the adversary inject two packets at p at this
round. Otherwise, when w does not exist, station p keeps transmitting at every
round after u. Let the adversary inject an additional packet at q at round u +1.
This behavior is consistent with the definition of a leaky-bucket adversary with
burstiness 2 because the adversary did not inject any packet at round ti+1. This
means that starting from round u + 1, station q has a pending packet while p
keeps transmitting. Station q needs to transmit the pending packet at least once,
because otherwise the protocol would not be fair. Let q transmit this packet for
the first time at some round t > u + 1. Since p also transmits at t, there is
a collision, which makes the round t void. Define ti+1 to be this t and let the
adversary inject two packets at p at this round.

This pattern of injections is consistent with the definition of the leaky-bucket
adversary of burstiness 2, while the number of packets at the queues of the two
stations at round ti, for i ≥ 0, is at least i + 1. ��

Theorem 2. No full-sensing protocol can be stable for a system of at least two
stations against the leaky-bucket adversary with burstiness 2.

Window adversaries. Next we show that bounded latency can be achieved in a
system of two stations by a full-sensing protocol against any window adversary.
We start with a full-sensing protocol that has a positive integer number i in
its code interpreted as a window; the protocol is called 2-Full-Sensing(i).
The protocol is structured as a sequence of consecutive phases, with each phase
consisting of exactly i rounds. Packets injected in the course of a phase are
considered as available during the next phase. A phase is used to broadcast
precisely the packets injected in the immediately preceding phase.

In the first phase of the first i rounds all stations simply wait. Consider the
first round of one of the next phases. If one of the stations realizes that it
contains exactly i available packets, then it spends the whole phase of i rounds
transmitting these packets. Suppose that none of the stations contains exactly i
available packets. In this case p starts transmitting at the first round of the phase.
Node q counts the number of packets transmitted by p and starts transmitting its
packets immediately after silence or when q realizes at a round that its number
of available packets is equal to the number of the remaining rounds of the phase.
Each station needs to maintain two counters: one is the size of the queue and

Stability of the Multiple-Access Channel Under Maximum Broadcast Loads 131

the other is the consecutive round in a phase. The count of rounds is updated
by incrementing the value by 1 modulo i, while the count of the queued packets
is updated following insertions and successful transmissions.

Next we define an extension called 2-Full-Sensing to handle an adversary
of arbitrary window. The protocol works by trying to run protocols 2-Full-
Sensing(i), for consecutive values of i, starting from 2-Full-Sensing(1) to
test the window w = 1. A transition from 2-Full-Sensing(i) to 2-Full-
Sensing(i + 1) requires a way to handle packets in the queues when 2-Full-
Sensing(i+1) is invoked; such packets are called old. If we started an execution
with 2-Full-Sensing(i), where the window i implicit in 2-Full-Sensing(i) is
the same as that of the adversary, then no collisions ever occur, by the properties
of 2-Full-Sensing(i) discussed above. Otherwise a collision can possibly occur
at an event. Such a collision can be detected by the stations, since both of them
transmit while none can hear a packet. If a collision occurs in the course of ex-
ecuting 2-Full-Sensing(i), then both stations invoke 2-Full-Sensing(i + 1),
which is to run quietly in the background as follows. The action to be per-
formed at a round is not executed but instead enqueued in an additional local
queue DELAY operating in a FIFO manner. At the same time: first station p
transmits all its old packets, and after a silent round station q does the same.
After another silent round, both stations start executing instructions obtained
by dequeuing DELAY, while simultaneously they keep enqueueing the actions
of 2-Full-Sensing(i + 1) as it is running in the background.

Theorem 3. Protocol 2-Full-Sensing has bounded latency for a system of two
stations against any window adversary.

Theorem 4. No acknowledgment-based protocol is stable in a system of two
stations against the window adversary of burstiness 2.

4 Three Stations

We show that there is an adaptive protocol that handles injections of a packet
per round in a stable and fair way in a system of three stations, while no full-
sensing protocol can provide even stability. We consider only window adversaries
in this section. The three stations are named p, q and r. The stations are ordered
〈p, q, r〉 in a cyclic fashion; when we refer to the next station after a given one,
we mean this cyclic ordering. If g is a station, then the station immediately
following g is denoted g′, and the station immediately following g′ is denoted g′′.

Adaptive protocol of bounded latency. We start with an adaptive protocol de-
signed for a specific window adversary. The protocol is called 3-Adaptive-
Window(i), where i is interpreted as the window of the adversary. The protocol
is structured as a sequence of consecutive phases, each phase consists of i con-
secutive rounds. Since the injection rate is 1, there are at most i packets injected
during a phase. A phase is used to send the packets injected in the previous
phase and no other packets; the packets injected in a phase are called available

132 B.S. Chlebus, D.R. Kowalski, and M.A. Rokicki

during the next phase. Stations may attach control information to transmitted
packets, so the protocol is adaptive. For instance, when a station transmits the
last pending packet, then it may attach a label indicating this property of the
packet, which in turn may allow some other station to take over without a delay,
so that the stations can transmit back to back.

For each phase, there is a station designated to be the last for the phase.
The protocol is structured such that the last station of the phase transmits at
the last round of the phase. If the last station still has a packet to transmit
during the last round of the phase, then the packet is transmitted and a control
bit is attached to the packet, otherwise only a control bit is sent. The control
bit is to indicate whether any packets have been injected into the last station
in the current phase. In the first phase, all the stations pause through the first
i − 1 rounds. Station p is designated to be the last one for the fist phase and
it transmits in the last round i of the first phase. Consider an arbitrary phase,
called simply current, and let g be the last station of this phase. We consider
two cases, depending on whether g has received any packets in the current phase
to be transmitted in the next phase.

If g received packets in the current phase, then g starts the next phase with
a sequence of transmissions of all its available packets. If g has exactly i such
packets, then g is also the last station for the next phase. Otherwise, when g
transmits its last available packet in the next phase, g attaches the ‘over’ control
bit to the last packet. After hearing the ‘over’ signal, the stations g′ and g′′

know how many rounds have remained in the next phase; let t be this number.
If any station among g′ or g′′ has received t packets in the current phase, then
this station unloads all its t pending packets in the remaining rounds of the
next phase, and also gains the status to be last for the next phase. Otherwise
station g′ starts unloading its available packets, if any, while g′′ gains the status
to be last for the next phase. If g′ does not have any available packets, then g′

simply pauses, otherwise g′ attaches the ‘over’ bit to the last transmitted packet.
When g′′ hears either silence or the ‘over’ signal, then g′′ starts unloading its
available packets, if any. Finally, g′′ transmits at the last round of the phase.

Next consider the case when g has not received any packets in the current
phase. Station g informes the remaining stations about this fact by the trans-
mission in the last round of the current phase. Now the situation is similar as
in the previous case after g sent the ‘over’ signal, with t = i. If any among g′

or g′′ has received i packets in the current phase, then this station unloads all
its i available packets in the remaining rounds of the next phase, and also gains
the status to be last for the next phase. Otherwise station g′ starts unloading its
available packets, if any, while g′′ gains the status to be last for the next phase.
Station g′′ takes over as soon as either silence or the ‘over’ signal is heard.

Lemma 1. Protocol 3-Adaptive-Window(w) is of bounded latency against
the adversary with window size w in a system of three stations.

We show next that there is a stable and fair adaptive protocol for three stations
that does not know the window of the adversary but relies on the mechanism

Stability of the Multiple-Access Channel Under Maximum Broadcast Loads 133

of collision detection. The protocol is called 3-Adaptive-Col-Det. It is ob-
tained by modifying protocol 3-Adaptive-Window(i) as follow. Initially pro-
tocol 3-Adaptive-Col-Det runs 3-Adaptive-Window(1) to try the window
w = 1. When a collision occurs while running 3-Adaptive-Window(i), then
3-Adaptive-Window(i+1) is invoked. We apply a similar approach as in Sec-
tion 3 by using a local queue DELAY and having 3-Adaptive-Window(i + 1)
run quietly in the background. Packets stored already in the local queues at a
round when 3-Adaptive-Window(i+1) is invoked are called old. First the old
packets are transmitted, by the stations p, q and r, in this order. A transition
to the next station is indicated either by a control bit ‘over’ attached to the last
old packet of a station or only this bit transmitted when the station does not
have any old packets. After all the old packets have been heard, stations proceed
to execute 3-Adaptive-Window(i + 1) by enqueueing each action in DELAY
while executing what is obtained be dequeuing DELAY at the same round.

Lemma 2. Protocol 3-Adaptive-Col-Det is of bounded latency in a system
of three stations for channels with collision detection.

Next we present the ultimate protocol for three stations for the channel without
collision detection, it is called 3-Adaptive. The protocol simulates collisions by
silent rounds. The underlying idea is that if a station transmits at a round and
hears silence, then collision occurred at this round, since otherwise the station
would here its own packet. This might occur with only two stations involved and
detecting collision, while the third one would not realize that collision occurred.
To cope with this, we use the property of protocol 3-Adaptive-Col-Det that
the last station for a phase transmits at the last round of the phase.

The details of the simulation of collision detection in 3-Adaptive-Col-Det
are as follows. Consider a phase that is second or later after an invocation of 3-
Adaptive-Window(i) in 3-Adaptive-Col-Det, for i ≥ 1. Suppose a collision
occurs in this phase. This collision is detected by at least two stations. At least
one of these stations is not last in the phase: this station waits till the last round
of the phase and transmits a dummy message. All the stations hear silence at
this round, and so all of them learn of collision, which results in invocation of
3-Adaptive-Window(i + 1).

Theorem 5. Protocol Adaptive-3 is of bounded latency for a system of three
stations against window adversaries.

Theorem 6. No full-sensing protocol can be stable for three stations against the
window adversary of burstiness 2.

5 More Stations

It was shown in [8] that no protocol can be both fair and stable against window
adversaries for a system of at least four stations. We develop an adaptive protocol
that is stable for any number of stations. Next we show that stability cannot be
achieved for restricted classes of adaptive protocols against window adversaries
in systems with at least four stations.

134 B.S. Chlebus, D.R. Kowalski, and M.A. Rokicki

Stable protocol. We describe an adaptive protocol Move-Big-To-Front(n) and
show that it is stable in any system of n > 0 stations. The protocol schedules
exactly one station to transmit at each round, so collisions never occur. This
is implemented by using a logical ‘token’ giving the right to transmit, which is
assigned in such a way that at each round exactly one station holds the token.

Every station maintains a list of all the stations in its local memory. The lists
are initialized as sorted in increasing order of names of stations. Initially the first
station in the list holds the token.

The protocol is executed at a given round as follows. Station p with the token
broadcasts a packet, if it has any. If the station with the token does not have
a pending packet, then the station does not transmit, which results in a silent
round. A station considers itself big at a round when it has at least n pending
packets in its queue. A big station attaches a control bit to indicate this status
to each packet it transmits while big. After a station announces itself to be big,
it is moved to the front of the list and keeps the token for the next round. After
a station broadcasts and it is not big, then the token is moved immediately to
the next station in the list; the token from the last station in the list is moved
directly to the first one.

Theorem 7. If protocol Move-Big-To-Front(n) is executed against a leaky-
bucket adversary, then the number of packets stored in queues is O(n2).

Proof. Define a pass of the token to be a traversal of the token starting at the
front of the list and ending either at a new big station or again at the front
station of the list after traversing the whole list, whichever occurs first. Define a
life cycle for a station to be a time period which starts either at the first round of
the execution or at a round when the station is discovered to be big, and which
ends just before the stations is discovered to be big.

We show that if burstiness is b + 1 then there are at most 2(n2 + b) packets
in queues at any round. Suppose, to the contrary, that there is a round with at
least 2n2+2b+1 packets in queues. There is a time segment T with the following
properties:

(i) there are at least n2 and at most n2 + b packets in queues at the beginning
of T ,

(ii) there are at least n2 packets in queues at each round of T , and
(iii) there are at least 2n2 + 2b + 1 packets in queues at the end of T .

In the remaining part of the proof we restrict our attention only to the rounds
in T . Consider a pass of the token. A new big station is eventually found during
this pass of the token, because at least one of the stations has at least n packets
in its queue, by the pigeonhole principle based on property (ii) of T .

Let C denote the set of all the stations that are discovered at least once to
be big during a round in T . If a station q is not in C, then it will eventually
drift through the list to be located behind all the stations in C; the token will
not visit q anymore after this has happened. When a token passes through q
and there are no packets at q, then this results in a silent round. We assume the

Stability of the Multiple-Access Channel Under Maximum Broadcast Loads 135

worst case when each event of receiving the token by q results in a silent round.
Let p be the station discovered to be big in this pass of the token. Station p is
moved to front and p will never again be behind q, so p can be associated with
exactly one silent round of each such a station q not in C. Since there are |C|
such stations p and n−|C| such stations q, the total contribution of the stations
that are not in C to the number of silent rounds is at most (n − |C|) · |C|.

We claim that once a station q is discovered to be big, then q transmits a
packet each time q holds a token. To show that this is the case, consider a life
cycle of q. During a pass of the token, either q is discovered to be big again,
which starts a new life cycle for q with at least n − 1 packets still remaining in
the queue, or one station in C located behind q is discovered as big. The latter
event results in the number of stations in C behind q in the list decreasing by
one. Since there are at most |C| − 1 < n stations in C behind q in the list,
station q is visited at most |C| − 1 < n times by the token during the life cycle
of q. It follows that after all the stations in C have been discovered at least once
each to be big, no station in C ever has an empty queue.

It remains to estimate the number of silent rounds before a station q in C
becomes big for the first time in T . Notice that until this happens, q could
obtain the token with an empty queue at most |C| − 1 times. This is because
each time q has both a token and an empty queue, there is some station p from
C behind q on the list such that p is discovered big in this pass of the token. The
discovery results in moving p to the front of the list, so that p stays before q until
q becomes big for the first time. There are |C| such stations q and |C| − 1 such
stations p. Therefore the number of silent rounds contributed by all the stations
in C is at most |C| · (|C| − 1). To sum up, the total number of silent rounds in
T is at most

(n − |C|) · |C| + (|C| − 1) · |C| < n · |C| ≤ n2 . (1)

The difference between the number of injected packets and the number of trans-
mitted packets equals the number of void rounds plus burstiness. The difference
is at most n2 + b by (1). Combine this fact with property (i) of T to obtain
(n2 + b) + (n2 + b) = 2n2 + 2b as an upper bound on the number of packets in
the system at the end of T . This contradicts property (iii) defining T . ��

Theorem 8. For any protocol for n stations, the leaky-bucket adversary of bursti-
ness 2 can enforce an execution such that eventually there are Ω(n2) packets in
queues.

Impossibilities. A station p heard on the channel at a round t reserves the channel
for round t′ > t when the packet of p carries control bits that are interpreted by
all the stations so that p will be the only station transmitting at round t′. We
define a transformation among queue-size oblivious protocols which, for a given
queue-size oblivious protocol P , creates a protocol Ph that has stations reserve
the channel.

To obtain Ph, modify P in terms of the transitions among states as follows.
Each station maintains an array of future rounds reserved by all the stations.

136 B.S. Chlebus, D.R. Kowalski, and M.A. Rokicki

These arrays are identical at all the stations. The array is indexed by the names
of the stations; an entry indicates how many rounds still remain to have the
round reserved for the corresponding station. During a round reserved by some
station p, no station makes any state transition except for the following: (1) p
transmits a packet; (2) stations have packets injected, if any. The mechanism of
reservations does not affect the functionality of a queue-size oblivious protocol
since both the removal of a packet from the queue at a round of the station that
reserved the round or insertions of packets into queues during reserved rounds
can be achieved by having the stations ‘frozen’ without state transitions.

Round reservations are performed as follows. When a station p transmits a
packet at a round t and p has at least one more packet, then p attaches control
bits to the packet to reserve some round in the future. The first available round
at such a round t is defined to be the first smallest round after round t that
is currently not reserved; the second available round is defined similarly as the
smallest round after the first available round that is currently not reserved. When
a reservation is made, then the second available round is reserved. Each station
has at most one reserved round at all times.

A round t when Ph is executed and such that t has not been reserved is
categorized as regular. The simulation of P by Ph proceeds in the regular rounds,
in the sense that decisions inherent to P about broadcasting are made at regular
rounds.

Lemma 3. Let P be a queue-size oblivious protocol that is stable for injection
rate 1 in a given system of n stations. Then protocol Ph is stable for the injection
rate 1 in the same system of n stations.

Theorem 9. There is no adaptive queue-size oblivious protocol that is stable in
a system of at least four stations against the window adversary of burstiness 2.

Proof. Take a queue-size oblivious broadcast protocol P and consider the trans-
formed version Ph. Choose some four stations p, q, r, and s. The adversary will
inject packets only at these four stations, so the remaining stations can be ig-
nored. We define an execution in which the adversary injects a packet per round
on the average while the set of void rounds is infinite. Suppose we have defined
the execution up to a void round; we need to specify what happens starting from
the next round. We consider two cases.

The first case occurs when at least two queues are nonempty at a round. If a
void round is to occur when the adversary injects a packet at a certain station,
then the adversary performs such an injection. Otherwise exactly one station, say
p, is to transmit at the next round. The adversary chooses a station q different
from p but also with a nonempty queue. The adversary keeps injecting a packet
per round into q, while p keeps reserving the channel to transmit eventually all
its packets. This continues until either collision occurs or the queue in station p
becomes empty. In the former case we are done, while if the latter occurs, then
we either repeat the same case, but with fewer nonempty queues, or proceed as
in the other case.

Stability of the Multiple-Access Channel Under Maximum Broadcast Loads 137

The second case occurs when exactly one queue is nonempty at a round.
Suppose that station s has a nonempty queue, while the stations p, q, and r have
empty queues at some round t. Consider a conceptual experiment in which the
adversary keeps injecting one packet into station p and another into station q
at every other round. This means the pattern 0, 2, 0, 2, 0, . . ., in terms of the
numbers of packets injected. If a void round occurs eventually, then we are done.
Otherwise either station p or station q makes the first successful transmission at
some round t′ > t. Suppose it is station q that transmits while station p pauses.
Clearly, also none among the stations s and r transmits at round t′. Consider
another conceptual experiment in which station r replaces station q, that is, we
consider the pair of p and r rather than p and q. Again, if a void round occurs
by round t′, then we are done. Otherwise, either station r pauses or transmits
at round t′. In the former case, the channel is silent at round t′ since both the
stations p and s do not transmit as noted above; so does q, since its queue is
empty. In the latter case, station r transmits successfully at round t′.

The actual action by the adversary is performed as follows. If in any of these
conceptual scenarios considered above there is a void round, then the adversary
mimicks the scenario until a void round occurs. Otherwise the adversary injects a
packet at every other round into both q and r. These stations transmit together
at round t′, which results in collision.

We have considered all possible cases and showed the corresponding scenarios
to cause a void round. Such scenarios can be applied continuously resulting in
queues growing unbounded. Since Ph is unstable, such is also P by Lemma 3. ��

A natural paradigm to organize a broadcast protocol is for stations to be greedy
by withholding the channel: once a station p transmits successfully at a round,
then p keeps transmitting as long as there are pending packets in the queue of p.
We say that a broadcast protocol withholds the channel when stations behave
this way in the course of an execution of the protocol.

Theorem 10. No protocol that withholds the channel can be stable for a system
of at least four stations against the window adversary of burstiness 2.

Proof. Take a broadcast protocol that withholds the channel and consider some
four stations p, q, r, and s to be the only ones into which the adversary will inject
packets. We define an execution in which the adversary will inject a packet per
round on the average while the set of void rounds is infinite. Suppose we have
defined the execution up to a void round; we specify what happens next. We
consider two cases, depending on whether at least two queues are nonempty at
a round or not. Consider the former case first. If a void round is to occur at the
next round when the adversary injects a packet at a certain station, then the
adversary performs such an injection. Otherwise exactly one station, say p, is to
transmit at the next round. The adversary chooses a station q different from p but
also with a nonempty queue. The adversary keeps injecting a packet per round
into q, while p withholds the channel and keeps transmitting all its packets. This
continues until either collision occurs or the queue in station p becomes empty.
In the former case we are done, while if the latter occurs, then we either repeat

138 B.S. Chlebus, D.R. Kowalski, and M.A. Rokicki

the same case, but with fewer nonempty queues, or proceed as in the latter case.
When the latter case occurs, in which exactly one queue is nonempty, then we
proceed exactly as in the proof of Theorem 9 for the analogous case. ��

References

1. Abramson, N.: Development of the Alohanet. IEEE Transactions on Information
Theory 31, 119–123 (1985)

2. Aiello, W., Kushilevitz, E., Ostrovsky, R., Rosén, A.: Adaptive packet routing for
bursty adersarial traffic. Journal of Computer and System Sciences 60, 482–509
(2000)

3. Alvarez, C., Blesa, M., Serna, M.: A characterization of universal stability in the
adversarial queuing model. SIAM Journal on Computing 34, 41–66 (2004)

4. Andrews, M., Awerbuch, B., Fernández, A., Leighton, T., Liu, Z., Kleinberg, J.:
Universal-stability results and performance bounds for greedy contention-resolution
protocols. Journal of the ACM 48, 39–69 (2001)

5. Bender, M.A., Farach-Colton, M., He, S., Kuszmaul, B.C., Leiserson, C.E.: Adver-
sarial contention resolution for simple channels. In: SPAA. Proceedings, 17th ACM
Symposium on Parallel Algorithms, pp. 325–332 (2005)

6. Bhattacharjee, R., Goel, A., Lotker, Z.: Instability of FIFO at arbitrary low rates
in the adversarial queuing model. SIAM Journal on Computing 34, 318–332 (2004)

7. Borodin, A., Kleinberg, J.M., Raghavan, P., Sudan, M., Williamson, D.P.: Adver-
sarial queuing theory. Journal of the ACM 48, 13–38 (2001)

8. Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Adversarial queuing on the multiple-
access channel. In: PODC. Proceedings, 25th ACM Symposium on Principles of
Distributed Computing, pp. 92–101 (2006)

9. Gallager, R.G.: A perspective on multiaccess channels. IEEE Transactions on In-
formation Theory 31, 124–142 (1985)

10. Gamarnik, D.: Stability of adaptive and nonadaptive packet routing policies in
adversarial queueing networks. SIAM Journal on Computing 32, 371–385 (2003)

11. Goldberg, L.A., Jerrum, M., Kannan, S., Paterson, M.: A bound on the capacity
of backoff and acknowledgement-based protocols. SIAM Journal on Computing 33,
313–331 (2004)

12. Goldberg, L.A., MacKenzie, P., Paterson, M., Srinivasan, A.: Contention resolution
with constant expected delay. Journal of the ACM 47, 1048–1096 (2000)

13. Hastad, J., Leighton, T., Rogoff, B.: Analysis of backoff protocols for multiple
access channels. SIAM Journal on Computing 25, 740–774 (1996)

14. Koukopoulos, D., Mavronicolas, M., Nikoletseas, S.E., Spirakis, P.G.: The impact
of network structure on the stability of greedy protocols. Theory of Computing
Systems 38, 425–460 (2005)

15. Lotker, Z., Patt-Shamir, B., Rosén, A.: New stability results for adversarial queu-
ing. SIAM Journal on Computing 33, 286–303 (2004)

16. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
17. Metcalfe, R.M., Boggs, D.R.: Ethernet: distributed packet switching for local com-

puter networks. Communications of the ACM 19, 395–404 (1976)
18. Raghavan, P., Upfal, E.: Stochastic contention resolution with short delays. SIAM

Journal on Computing 28, 709–719 (1998)
19. Rosén, A.: A note on models for non-probabilistic analysis of packet switching

networks. Information Processing Letters 84, 237–240 (2002)

Stabilization of Flood Sequencing Protocols in

Sensor Networks

Young-ri Choi and Mohamed G. Gouda

Department of Computer Sciences, The University of Texas at Austin,
1 University Station C0500, Austin, Texas 78712-0233, U.S.A.

{yrchoi, gouda}@cs.utexas.edu

Abstract. Flood is a communication primitive that can be used by the
base station of a sensor network to send a copy of a message to every
sensor in the network. When a sensor receives a flood message, the sensor
needs to check whether it has received the message for the first time and
so the message is fresh, or it has received the same message earlier and so
the message is redundant. In this paper, we discuss a family of four flood
sequencing protocols that use sequence numbers to distinguish between
fresh and redundant flood messages. They are a sequencing free pro-
tocol, a linear sequencing protocol, a circular sequencing protocol, and
a differentiated sequencing protocol. We analyze the self-stabilization
properties of these four flood sequencing protocols. We also compare the
performance of these flood sequencing protocols, using simulation, over
various settings of sensor networks. We conclude that the differentiated
sequencing protocol has better stabilization property and provides better
performance than those of the other three protocols.

Keywords: Self-stabilization, Flood sequencing protocol, Sequence
numbers, Sensor networks.

1 Introduction

Flood is a communication primitive that can be used by the base station of
a sensor network to send a copy of a message to every sensor in the network.
The execution of a flood starts by the base station sending a message to all its
neighbors. When a sensor receives a message, the sensor needs to check whether it
has received this message for the first time or not. Only if the sensor has received
the message for the first time, the sensor keeps a copy of the message and may
forward it to all its neighbors. Otherwise, the sensor discards the message.

To distinguish between “fresh” flood messages that a sensor should keep and
“redundant” flood messages that a sensor should discard, the base station selects
a sequence number and attaches it to a flood message before the base station
broadcasts the message. When a sensor receives a flood message, the sensor de-
termines based on the sequence number in the received message whether the
message is fresh or redundant. The sensor accepts the message if it is fresh and
discards the message if it is redundant. We call a protocol that uses sequence

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 139–153, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

140 Y.-r. Choi and M.G. Gouda

numbers to distinguish between fresh and redundant flood messages a flood
sequencing protocol.

In a flood sequencing protocol, when a fault corrupts the sequence numbers
stored in some sensors in a sensor network, the network can enter an illegitimate
state where the sensors discard fresh flood messages and accept redundant flood
messages. Therefore, a flood sequencing protocol should be designed such that if
the protocol ever reaches an illegitimate state due to some fault, the protocol is
guaranteed to converge back to its legitimate states where every sensor accepts
every fresh flood message and discards every redundant flood message.

In this paper, we discuss a family of four flood sequencing protocols. They are
a sequencing free protocol, a linear sequencing protocol, a circular sequencing
protocol, and a differentiated sequencing protocol. We analyze the stabilization
properties of these four protocols. For each of the protocols, we first compute an
upper bound on the convergence time of the protocol from an illegitimate state to
legitimate states. Second, we compute an upper bound on the number of fresh
flood messages that can be discarded by each sensor during the convergence.
Third, we compute an upper bound on the number of redundant flood messages
that can be accepted by each sensor during the convergence.

The rest of the paper is organized as follows. In Section 2, we discuss related
work and motivation of the flood sequencing protocols. In Section 3, we present
a model of sensor networks. In Section 4, we give an overview of a flood proto-
col. We present the four flood sequencing protocols in Sections 5, 6, 7, and 8.
We analyze their stabilization properties and compare them with each other in
Section 9. In Section 10, we show the simulation results of these protocols. We
finally make concluding remarks in Section 11.

2 Related Work and Motivation

The practice of using sequence numbers to distinguish between fresh and redun-
dant flood messages has been adopted by most flood protocols in the literature.
In other words, most flood protocols “employ” some flood sequencing protocols
to distinguish between fresh and redundant flood messages. A flood sequencing
protocol can be designed in various ways, depending on several design decisions
such as how the next sequence number is selected by the base station, how each
sensor determines based on the sequence number in a received message whether
the received message is fresh or redundant, and what information the base sta-
tion and each sensor stores in its local memory. Unfortunately, flood sequencing
protocols have been used without full investigation of their design decisions in
the literature.

The flood protocols discussed in [1,2,3,4] assume that when a sensor receives
a flood message, the sensor can figure out whether the sensor has received this
message for the first time or not, without specifying any mechanism to achieve
this. In [5,6], it was suggested to associate a sequence number with each flood
message, but any details on how sequence numbers are used by sensors (i.e. the
design decisions of their flood sequencing protocols) were not specified. The flood

Stabilization of Flood Sequencing Protocols in Sensor Networks 141

protocols discussed in [7,8] propose to attach a unique identifier to each flood
message and make each sensor maintain a list of identifiers that the sensor has
received recently. Similarly, it was suggested in [9] that each sensor maintains a
list of flood messages received by the sensor recently. However, any details such
as how many identifiers or messages each sensor maintains and when a sensor
deletes an identifier or a message from the list were not discussed.

A flood sequencing protocol is important, since the fault tolerance property of
a sensor network is affected by a flood sequencing protocol used in the network.
When a fault corrupts the sequence number stored in some sensor in the net-
work, the sensor may discard fresh flood messages and accept redundant flood
messages. The number of fresh flood messages discarded by the sensor and the
number of redundant flood messages accepted by the sensor, before the network
reaches a legitimate state, are different depending on which flood sequencing
protocol is used in the network. Therefore, we need to study various flood se-
quencing protocols and analyze the stabilization properties of these protocols.
The stabilization properties of the flood sequencing protocols are useful for sen-
sor network designers or developers to select a proper flood sequencing protocol
that satisfies the needs of a target sensor network.

In practice, a flood sequencing protocol is used with a flood protocol that
may use other techniques to improve the performance of flood such as reliability
or efficiency. In this paper, each of the flood sequencing protocols is described
focusing on how sequence numbers are used by sensors, and it is not described as
a specific flood protocol. Note that the stabilization property of a flood protocol
is affected by that of a flood sequencing protocol used in the flood protocol.
If the flood protocol does not maintain any extra state such that it is based
on probability [2,5], the stabilization property of the flood protocol is the same
as that of the used flood sequencing protocol. If the flood protocol maintains
extra state such that it is based on neighbor information [1,5], the stabilization
property of the flood protocol also depends on how the extra state in each sensor
is stabilized.

3 Model of Sensor Networks

In this section, we describe a formal model of the execution of a sensor network,
which was introduced first in [10]. This model accommodates several charac-
teristics of sensor networks such as unavoidable local broadcast, probabilistic
message transmission, asymmetric communication, message collision, and time-
out actions and randomization steps. We use the model to specify our flood
sequencing protocols, verify the stabilization properties of these protocols, and
develop our simulation of these protocols.

The topology of a sensor network is a directed graph where each node repre-
sents a distinct sensor in the network and where each directed edge is labeled
with some probability. A directed edge (u,v), from a sensor u to a sensor v, that
is labeled with probability p (where p > 0) indicates that if sensor u sends a
message, then this message arrives at sensor v with probability p (provided that

142 Y.-r. Choi and M.G. Gouda

neither sensor v nor any “neighboring sensor” of v sends another message at
the same time). If the topology of a sensor network has a directed edge from a
sensor u to a sensor v, then u is called an in-neighbor of v and v is called an
out-neighbor of u.

We assume that during the execution of a sensor network, the real-time passes
through discrete instants: instant 1, instant 2, instant 3, and so on. The time
periods between consecutive instants are equal. The different activities that con-
stitute the execution of a sensor network occur only at the time instants, and not
in the time periods between the instants. We refer to the time period between
two consecutive instants t and t + 1 as a time unit (t, t + 1). (The value of a
time unit is not critical to our current presentation of a sensor network model,
but we estimate that the value of the time unit is around 100 milliseconds.)

A sensor is specified as a program that has global constants, local variables,
one timeout action, and one receiving action.

At a time instant t, if the timeout of a sensor u expires, then u executes
its timeout action at t. Executing the timeout action of sensor u at t causes
u to update its local variables, and to send at most one message at t. It also
causes u to execute the statement “timeout-after <expression>” which causes
the timeout of u to expire (again) after k time units, where k is the value of
<expression> at the time unit (t, t + 1). The timeout action of sensor u is of
the following form:

timeout-expires ->
<update local variables of u>;
<send at most one message>;
<execute timeout-after <expression>>

To keep track of its timeout, each sensor u has an implicit variable named
“timer.u”. In each time unit between two consecutive instants, timer.u has a
fixed positive integer value. If the value of timer.u is k, where k > 1, in a time
unit (t − 1, t), then the value of timer.u is k − 1 in the time unit (t, t + 1). On
the other hand, if the value of timer.u is 1 in a time unit (t − 1, t), then sensor
u executes its timeout action at instant t. Moreover, since sensor u executes the
statement “timeout-after <expression>” as part of executing its timeout action,
the value of timer.u in the time unit (t, t + 1) is the value of <expression> in
the same time unit.

If a sensor u executes its timeout action and sends a message at an instant t,
then an out-neighbor v of u receives a copy of the message at t, provided that
the following three conditions hold.

i. A random integer number is uniformly selected in the range 0 .. 99, and this
selected number is less than 100 ∗ p, where p is the probability label of edge
(u,v) in the network topology.

ii. Sensor v does not send any message at instant t.
iii. For each in-neighbor w of v, other than u, if w sends a message at t, then a

random integer number is uniformly selected in the range 0 .. 99, and this
selected number is at least 100 ∗ p′, where p′ is the probability label of edge
(w,v) in the network topology.

Stabilization of Flood Sequencing Protocols in Sensor Networks 143

If v sends a message at t, or if w sends a message at t and for v, selects a random
number that is less than 100*p′, then this message collides with the message
sent by u with the net result that v receives no message at t.

If a sensor u receives a message at instant t, then u executes its receiving
action at t. Executing the receiving action of sensor u causes u to update its
own local variables. It may also cause u to execute the statement “timeout-after
<expression>”. The receiving action of sensor u is of the following form:
rcv <msg> ->

<update local variables of u>;
<may execute timeout-after <expression>>

A state of a sensor network protocol is defined by a value for each variable
and timer.u for each sensor u in the protocol. We use the notation <var>.u to
denote the value of variable <var> at some sensor u.

During the execution of a sensor network protocol, several faults can occur,
resulting in corrupting the state of the protocol arbitrarily. Examples of these
faults are wrong initialization, memory corruption, message corruption, and sen-
sor failure and recovery. We assume that these faults do not continuously occur
in the network.

4 Overview of a Flood Protocol

In this section, we give an overview of a flood protocol that is used with our flood
sequencing protocols. Consider a network that has n sensors. In this network,
sensor 0 is the base station and can initiate floods over the network. To initiate
the flood of a message, sensor 0 sends a message of the form data(hmax), where
hmax is the maximum number of hops to be made by this data message in the
network.

If sensor 0 initiates one flood and shortly after initiates another flood, some
forwarded messages from these two floods can collide with one another causing
many sensors in the network not to receive the message of either flood, or (even
worse) not to receive the messages of both floods.

To prevent message collision across consecutive flood messages, once sensor 0
broadcasts a message, it needs to wait enough time until this message is no longer
forwarded in the network, before broadcasting the next message. The time period
that sensor 0 needs to wait after broadcasting a message and before broadcasting
the next message is called the flood period. The flood period consists of f time
units. A lower bound on the value of f is computed as (hmax − 1) ∗ tmax + 1.
(Due to space limit, this bound is presented without proof. We refer the reader
to [11] for proof.) Thus, after sensor 0 broadcasts a message, it sets its timeout
to expire after f time units in order to broadcast the next message.

When a sensor receives a data(h) message, the sensor decides whether the
sensor accepts the message and forwards it as a data(h − 1) message, provided
h > 1. To reduce the probability of message collision, any sensor u, that decides
to forward a message, chooses a random period whose length is chosen uniformly
from the range 1..tmax, and sets its timeout to expire after the chosen random

144 Y.-r. Choi and M.G. Gouda

period, so that u can forward the received message at the end of the random
period. This random time period is called the forwarding period.

To analyze each of the four flood sequencing protocols, we use the following
value for the flood period f :

f = hmax ∗ tmax + 1.

(We choose this value for f , instead of the minimum value (hmax−1)∗tmax+1,
to keep our proofs of the stabilization properties simple.)

Note that the above flood period is computed to guarantee that no two con-
secutive flood messages ever collide with each other. In a typical execution of
the protocol, each sensor chooses its forwarding period at random in the range
1..tmax, and so most sensors likely receive the flood messages within (hmax−1)∗
tmax/2 time units, instead of (hmax− 1) ∗ tmax time units. Therefore, the half
(or even less) of the flood period may be used without significantly degrading
the stabilization property and performance of a flood sequencing protocol.

5 First Protocol: Sequencing Free

In this section, we discuss a first flood sequencing protocol where no sequence
number is attached to each flood message, and so a sensor cannot distinguish
between fresh and redundant flood messages, resulting that the sensor accepts
every received message. This protocol is called the sequencing free protocol.

To initiate the flood of a new message, sensor 0 sends a data(hmax) message,
and then sets its timeout to expire after f time units to broadcast the next
message.

Each sensor u that is not sensor 0 maintains a variable called new. The value
of new is true only when u is in the forwarding period (i.e. u has a flood message
that has been received earlier but has not been forwarded yet). When sensor u
receives a data(h) message, u always accepts the message. Sensor u forwards the
message as data(h − 1), if h > 1 in the received message and new = false in u.
(A formal specification of the sequencing free protocol can be found in [11].)

Note that in all the flood sequencing protocols presented in this paper, the
value of timer.0 is at most f time units, and the value of timer.u is at most
tmax. This is maintained by the executions of all the protocols.

A state S of the sequencing free protocol is legitimate iff either S is a state
where the predicate

(timer.0= 1) ∧ (for all u, u �= 0, new.u=false)
holds or S is a state that is reachable from a state, where this predicate holds,
by some execution of the protocol.

It follows from this definition that if the protocol is executed starting from a
legitimate state, then every time sensor 0 initiates a new flood, previous flood
messages (whether initiated by sensor 0 legitimately or other sensors illegiti-
mately due to some fault) are no longer forwarded in the network.

Stabilization of Flood Sequencing Protocols in Sensor Networks 145

6 Second Protocol: Linear Sequencing

In this section, we discuss a second flood sequencing protocol where each flood
message carries a unique sequence number that is linearly increased, and so
a sensor accepts a flood message that has a sequence number larger than the
last sequence number accepted by the sensor. This protocol is called the linear
sequencing protocol.

1: sensor 0 {base station}
2: const hmax : integer, {max hop count}
3: f : integer {flood period}
4: var slast : integer {last seq number}
5: begin
6: timeout-expires → {generate new msg}
7: slast := slast + 1;
8: send data(hmax,slast);
9: timeout-after f
10: end

Fig. 1. A specification of sensor 0 in the linear sequencing protocol

Each flood message in this protocol is of the form data(h,s), where field h is
the remaining number of hops to be made by this message, and field s is the
unique sequence number of this message.

Whenever sensor 0 broadcasts a new message, sensor 0 increases the sequence
number of the last message by one, and attaches the increased sequence number
to the message. A formal specification of sensor 0 is given in Fig. 1.

Each sensor u that is not sensor 0 keeps track of the last sequence number
accepted by u in a variable called slast. When sensor u receives a data(h, s)
message, sensor u accepts the message if s > slast, and forwards it if h > 1. A
formal specification of sensor u is given in Fig. 2. (Each sensor u also maintains a
received data message that u will forward later, even though this is not explicitly
specified in the specification.)

A state S of the linear sequencing protocol is legitimate iff either S is a state
where the predicate

(timer.0= 1) ∧ (for all u, u �= 0, new.u=false ∧ slast.u ≤ slast.0)

holds or S is a state that is reachable from a state, where this predicate holds,
by some execution of the protocol.

It follows from this definition that if the protocol is executed starting from a
legitimate state, then every time sensor 0 initiates a new flood, previous flood
messages are no longer forwarded in the network, and the new flood message
has a sequence number that is larger than every slast.u in the network, so that
every u accepts the message.

146 Y.-r. Choi and M.G. Gouda

1: sensor u:1 .. n − 1
2: const hmax : integer, {max hop count}
3: tmax : integer {max forwarding period}
4: var h,hlast : 1 .. hmax, {rcvd,last hop count}
5: s, slast : integer, {rcvd,last seq number}
6: new : boolean {true if u has msg to forward}
7: begin
8: timeout-expires → if new → new := false;
9: send data(hlast, slast)
10: [] ¬ new → skip
11: fi; timeout-after random(1,tmax)

12: [] rcv data(h, s) → if s > slast →{accept msg} slast := s;
13: if h>1 → new := true;
14: hlast := h − 1
15: [] h≤ 1 → skip
16: fi
17: [] s ≤ slast → {discard msg} skip
18: fi
19: end

Fig. 2. A specification of sensor u in the linear sequencing protocol

7 Third Protocol: Circular Sequencing

In this section, we discuss a third flood sequencing protocol where each flood
message carries a sequence number that is circularly increased within a limited
range, and so a sensor accepts a flood message that has a sequence number
“logically” larger than the last sequence number accepted by the sensor. This
protocol is called the circular sequencing protocol.

Each flood message is augmented with a sequence number that has a value in
the range 0 .. smax, where smax > 1. We assume that smax is an even number
(to keep our presentation simple).

Whenever sensor 0 broadcasts a new message, sensor 0 increases the sequence
number of the last message by one circularly within the range 0 .. smax, i.e. slast
:= (slast + 1) mod (smax+1), and attaches the increased sequence number to
the message.

From the viewpoint of each sequence number s in the range 0 .. smax, the
range can be divided into two subranges, where one subrange consists of the
sequence numbers that are logically “smaller” than s, and the other subrange
consists of the sequence numbers that are logically “larger” than s. Thus, se-
quence number s has smax

2 numbers logically smaller than it and smax
2 numbers

logically larger than it. For example, if smax = 8, number 0 is logically smaller
than 1, 2, 3, and 4, and is logically larger than 5, 6, 7, and 8.

Stabilization of Flood Sequencing Protocols in Sensor Networks 147

When a sensor u receives a data(h, s) message, sensor u checks if s is logically
larger than slast. Sensor u calls the function “Larger(s, slast)” that returns true
if s is logically larger than slast, and otherwise returns false. Sensor u accepts
the message if Larger(s, slast) returns true, and forwards it if h > 1. Otherwise,
sensor u discards the message.

To prove the stabilization property of the circular sequencing protocol, we
make an assumption of bounded message loss as follows:

Bounded message loss : Starting from any state, if sensor 0 broadcasts
smax

2 consecutive flood messages, then every sensor in the network re-
ceives at least one of those flood messages.

Two explanations concerning the above assumption are in order. First, the
protocol may not be self-stabilizing without any bound on message loss. For
example, consider a scenario where smax=8. Assume that sensor 0 sends a
flood message with sequence number 0 and a sensor u accepts the message.
If sensor u does not receive the next 4 (i.e. smax

2) consecutive messages with
sequence numbers 1, 2, 3 and 4, and later receives a fresh message with sequence
number 5, it discards the message since sequence number 5 is not logically larger
than sequence number 0. Sensor u also discards the next flood messages with
sequence numbers 6, 7, 8, and 0, if it receives them. In this scenario, if sensor u
does not receive flood messages with sequence numbers 1, 2, 3 and 4, it keeps
discarding fresh flood messages. Thus, some assumption of bounded message loss
is necessary for the stabilization property of the protocol.

Second, the above assumption becomes acceptable if the value of smax is
reasonably large enough for a given network setting. Selecting an appropriate
value for smax depends on the size of the network, the topology of the network,
and a flood sequencing protocol used in the network. (In Section 10, we show
how different values are selected for smax depending on these factors.)

A state S of the circular sequencing protocol is legitimate iff either S is a state
where the predicate

(timer.0=1) ∧
(for all u, u �= 0,

(new.u=false) ∧
(slast.u = slast.0 ∨
slast.u = (slast.0−1) mod (smax+1) ∨
...
slast.u = (slast.0− smax

2 +1) mod (smax+1)
)

) ∧
(sensor 0 has already initiated at least smax

2 + 2 floods)

holds or S is a state that is reachable from a state, where this predicate holds,
by some execution of the protocol.

It follows from this definition that if the protocol is executed starting from a
legitimate state, then every time sensor 0 initiates a new flood, previous flood
messages are no longer forwarded in the network, and the new flood message has

148 Y.-r. Choi and M.G. Gouda

a sequence number that is logically larger than every slast.u in the network, so
that every u accepts the message.

8 Fourth Protocol: Differentiated Sequencing

In this section, we discuss the last flood sequencing protocol where the sequence
numbers of flood messages are in a limited range, similar to the circular sequenc-
ing protocol. However, in this protocol, a sensor accepts a flood message if the se-
quence number of the message is different from the last sequence number accepted
by the sensor. This protocol is called the differentiated sequencing protocol.

Each flood message is augmented with a sequence number that has a value in
the range 0 .. smax, where smax > 0. We assume that smax is an even number
(to keep our presentation simple).

Sensor 0 in this protocol is identical to the one in the circular sequencing pro-
tocol. However, when a sensor u receives a data(h, s) message, sensor u accepts
the message if s is different from slast, i.e. s �= slast, and forwards the message
if h > 1. Otherwise, sensor u discards the message.

Similar to the circular sequencing protocol, if a sensor does not receive a large
number of consecutive flood messages, the differentiated sequencing protocol may
not be self-stabilizing. Thus, the proofs of the stabilization property of this proto-
col are based on the assumption of bounded message loss described in Section 7.

A state S of the differentiated sequencing protocol is legitimate iff either S is
a state where the predicate

(timer.0=1) ∧
(for all u, u �= 0,

(new.u=false) ∧
(slast.u = slast.0 ∨
slast.u = (slast.0−1) mod (smax+1) ∨
...
slast.u = (slast.0− smax

2 +1) mod (smax+1)
)

)

holds or S is a state that is reachable from a state, where this predicate holds,
by some execution of the protocol.

It follows from this definition that if the protocol is executed starting from a
legitimate state, then every time sensor 0 initiates a new flood, previous flood
messages are no longer forwarded in the network, and the new flood message has
a sequence number that is different from every slast.u in the network, so that
every u accepts the message.

9 Stabilization of the Protocols

In this section, we analyze the stabilization properties of the four flood sequenc-
ing protocols. For each of the protocols, we first compute an upper bound on the

Stabilization of Flood Sequencing Protocols in Sensor Networks 149

Table 1. Stabilization properties of the flood sequencing protocols

Convergence time Max # of fresh Max # of redundant Stabilization
(time units) msgs discarded by msg accepted by property

u until convergence u until convergence

free 2 ∗ f 0 2 ∗ f good

lin unbounded unbounded n − 1 bad

cir (smax + 2) ∗ f (smax + 2) ∗ f f + 1 good

dif (smax
2 + 2) ∗ f (smax

2 + 2) ∗ f f + 1 good

convergence time of the protocol from an illegitimate state to legitimate states.
Second, we compute an upper bound on the number of fresh flood messages that
can be discarded by each sensor during the convergence. Third, we compute an
upper bound on the number of redundant flood messages that can be accepted
by each sensor during the convergence.

The stabilization properties of the four protocols are shown in Table 1. (Due
to space limit, we present the stabilization properties without proof. We refer
the reader to [11] for proof.) We also analyze the properties of the protocols after
convergence (or starting from a legitimate state) in Table 2. We call these prop-
erties the stable properties of the protocols. In these tables, “free”, “lin”, “cir”,
and “dif” represent the sequencing free, linear sequencing, circular sequencing,
and differentiated sequencing protocols, respectively. Note that the properties
of the circular sequencing and differentiated sequencing protocols are analyzed
under the assumption of bounded message loss.

Starting from an illegitimate state, the sequencing free protocol converges
to legitimate states faster than the other three protocols do. However, even
starting from any legitimate state, a sensor cannot distinguish between fresh
and redundant messages, and so the sensor accepts every received message. The
number of redundant copies of the same message accepted by a sensor depends
on the value of hmax and the network topology. In worst case, the sensor can
accept a redundant copy of the same message at each time instant during the
flood period of the message. Thus, starting from any legitimate state, every
sensor accepts at most f redundant copies of the same message.

In the linear sequencing protocol, sensors are required to use unbounded se-
quence numbers. Thus, this protocol is very expensive to implement for sensor
networks that have limited resources. However, once the protocol starts its exe-
cution from any legitimate state, every sensor accepts every fresh message and
discards every redundant message under any degree of message loss. On the other
hand, in the circular sequencing and differentiated sequencing protocols, sensors
use bounded sequence numbers. Thus, starting from any legitimate state, every
sensor accepts every fresh message and discards every redundant message under
the assumption of bounded message loss.

From the above results, we conclude that overall the differentiated sequencing
protocol has better stabilization and stable properties than those of the other
three protocols.

150 Y.-r. Choi and M.G. Gouda

Table 2. Stable properties of the flood sequencing protocols

Max # of fresh msgs Max # of redundant copies of Stable
discarded by u the same msg accepted by property

after convergence u after convergence

free 0 f bad

lin 0 0 good

cir 0 0 good

dif 0 0 good

10 Simulation Results

We have developed a simulator that can simulate the execution of the four
flood sequencing protocols, based on our model described in Section 3. In this
simulator, a network is an N ∗ N grid where N is the number of sensors in each
side of the grid, and the distance between a sensor (i, j) and each of (i + 1, j),
(i, j + 1), (i − 1, j), and (i, j − 1), if it exists, where 0 ≤ i, j < N , is 1.

For the purpose of simulation, sensor 0 is (0,0) which is located at the left-
bottom conner in a grid, and the following two types of topologies that have
different network density were used.

– A topology for a sparse network: The edge probability between two sensors
is labeled with a high probability 0.95 if their distance is at most 1, and
with a low probability 0.5 if their distance is larger than 1 and less than 2.
Otherwise, there is no edge between the two sensors. In this topology, each
sensor (i,j) that is not on or near the boundary of the grid generally has 8
neighbors.

– A topology for a dense network: The edge probability between two sensors
is labeled with probability 0.95 if their distance is at most 1.5, and with
probability 0.5 if their distance is larger than 1.5 and less than 3. Otherwise,
there is no edge between the two sensors. In this topology, each sensor (i,j)
that is not on or near the boundary of the grid generally has 24 neighbors.

(The used probabilities, 0.95 and 0.5, were chosen based on some experiments
on sensors. We refer the reader to [10] for details.)

The performance of a flood sequencing protocol can be measured by the fol-
lowing two metrics:

i. Reach: The percentage of sensors that receive a message sent by sensor 0.
ii. Communication: The total number of messages forwarded by all sensors in

the network.

We ran simulations of the four flood sequencing protocols, and measured the
above two metrics in 10*10 and 20*20 grids for both sparse and dense network
topologies. In our simulations, we do not consider other techniques that can
improve the performance of a flood protocol based on extra information such as
probability, location, and neighbor information.

Stabilization of Flood Sequencing Protocols in Sensor Networks 151

Table 3. Performance of the sequencing free and linear sequencing protocols

sparse 10*10 sparse 20*20 dense 10*10 dense 20*20
hmax Reach Com. hmax Reach Com. hmax Reach Com. hmax Reach Com.

free 13 99% 351.3 27 99.2% 2885.7 7 99.8% 200.5 13 99% 1262
lin 15 98.5% 97.8 28 98.5% 390.3 7 98.5% 87.5 14 98.8% 376.4

First, we studied the performance of the sequencing free protocol and the
linear sequencing protocol starting from a legitimate state. The result of each
simulation in this study represents the average value over the simulations of
100,000 floods.

Table 3 shows the reach and communication of the sequencing free and lin-
ear sequencing protocols in sparse and dense networks. In these simulations,
tmax = 6 was used for a sparse network, and tmax = 7 was used for a dense
network. From the above results, one can observe that the sequencing free proto-
col requires the sensors to send much more messages than those that the linear
sequencing protocol does. Note that when the value of smax is reasonably large
for a given network setting, the performance of the circular sequencing and dif-
ferentiated sequencing protocols becomes same as that of the linear sequencing
protocol.

Next, we studied the stabilization properties of the circular sequencing and
differentiated sequencing protocols, and their performance while stabilizing. We
simulated the sequences of floods starting from 1000 different illegitimate states,
and computed the average reach for each i-th flood. We attempted to select an
appropriate value for smax for each network setting such that the assumption
of bounded message loss becomes acceptable, while the convergence time of each
protocol is minimized.

0 10 20 30 40 50

i-th flood

0

20

40

60

80

100

cir smax=18
dif smax=4 reach(%)

(a) A 10*10 network

0 10 20 30 40 50

i-th flood

0

20

40

60

80

100

cir smax=34
dif smax=4 reach(%)

(b) A 20*20 network

Fig. 3. Reach of the circular and differentiated sequencing protocols starting from an
illegitimate state in a sparse network

152 Y.-r. Choi and M.G. Gouda

0 10 20 30 40 50

i-th flood

0

20

40

60

80

100

cir smax=6
dif smax=2reach(%)

(a) A 10*10 network

0 10 20 30 40 50

i-th flood

0

20

40

60

80

100

cir smax=6
dif smax=2reach(%)

(b) A 20*20 network

Fig. 4. Reach of the circular and differentiated sequencing protocols starting from an
illegitimate state in a dense network

Figures 3 and 4 show the reach of the circular sequencing and differentiated
sequencing protocols starting from an illegitimate state in a sparse network and
in a dense network, respectively. During the convergence time, each sensor has
a higher probability to accept a received fresh message in the differentiated se-
quencing protocol than that in the circular sequencing protocol. Thus, in all
simulated network settings, the differentiated sequencing protocol reaches a le-
gitimate state faster than the circular sequencing protocol does.

In summary, starting from a legitimate state, the performance of any flood
sequencing protocol that attaches a sequence number to a flood message is better
than that of the sequencing free protocol in terms of communication. Starting
from an illegitimate state, the differentiated sequencing protocol converges to a
legitimate state quickly in all simulated network settings.

11 Concluding Remarks

In this paper, we discussed a family of the four flood sequencing protocols,
namely the sequencing free, linear sequencing, circular sequencing, and differen-
tiated sequencing protocols. We analyzed the stabilization and stable properties
of these four protocols, and also studied their performance, using simulation,
over various settings of sensor networks. We concluded that the differentiated
sequencing protocol has better overall performance in terms of communication
and stabilization and stable properties compared to those of the other three
protocols.

Acknowledgment

This work was supported in part by the US National Science Foundation under
Grant No. 0520250.

Stabilization of Flood Sequencing Protocols in Sensor Networks 153

References

1. Stojmenovic, I., Seddigh, M., Zunic, J.: Dominating Sets and Neighbor Elimination-
Based Broadcasting Algorithms in Wireless Networks. IEEE Transactions on Par-
allel and Distributed Systems 13(1), 14–25 (2002)

2. Sasson, Y., Cavin, D., Schiper, A.: Probabilistic Broadcast for Flooding in Wireless
Mobile Ad hoc Networks. In: WCNC 2003. Proceedings of IEEE Wireless Com-
munications and Networking Conference, pp. 1124–1130. IEEE Computer Society
Press, Los Alamitos (2003)

3. Li, J., Mohapatra, P.: A Novel Mechanism for Flooding Based Route Discovery in
Ad Hoc Networks. In: GLOBECOM. Proceedings of the IEEE Global Telecommu-
nications Conference, pp. 692–696 (2003)

4. Ganesan, D., Krishnamurthy, B., Woo, A., Culler, D., Estrin, D., Wicker, S.: An
Empirical Study of Epidemic Algorithms in Large Scale Multihop Wireless Net-
works. IRP-TR-02-003 (2002)

5. Ni, S., Tseng, Y., Chen, Y., Sheu, J.: The Broadcast Storm Problem in a Mobile
Ad Hoc Network. In: MOBICOM. Proceedings of the ACM/IEEE International
Conference on Mobile Computing and Networking, pp. 151–162. IEEE Computer
Society Press, Los Alamitos (1999)

6. Heissenbttel, M., Braun, T., Waelchli, M., Bernoulli, T.: Optimized Stateless
Broadcasting in Wireless Multi-hop Networks. In: IEEE INFOCOM, pp. 1–12
(2006)

7. Williams, B., Camp, T.: Comparison of Broadcasting Techniques for Mobile Ad
Hoc Networks. In: MOBIHOC. Proceedings of the ACM International Symposium
on Mobile Ad Hoc Networking and Computing, pp. 194–205. ACM Press, New
York (2002)

8. Johnson, D.B., Maltz, D.A.: Dynamic Source Routing in Ad Hoc Wireless Net-
works. In: Imielinski, T., Korth, H. (eds.) Mobile Computing, vol. 353, pp. 153–181.
Kluwer Academic Publishers, Dordrecht (1996)

9. Sun, M., Feng, W., Lai, T.: Location Aided Broadcast in Wireless Ad Hoc Net-
works. In: Proceedings of the IEEE GLOBECOM 2001, pp. 2842–2846. IEEE Com-
puter Society Press, Los Alamitos (2001)

10. Gouda, M., Choi, Y.: A State-based Model of Sensor Protocols. In: Anderson, J.H.,
Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 246–260.
Springer, Heidelberg (2006)

11. Choi, Y., Gouda, M.: Stabilization of Flood Sequencing Protocols in Sensor Net-
works. Technical Report TR-06-58, Department of Computer Sciences, The Uni-
versity of Texas at Austin (2006)

Stabilization of Loop-Free Redundant Routing

Jorge A. Cobb

Department of Computer Science, The University of Texas at Dallas, U.S.A
cobb@utdallas.edu

Abstract. Consider a network of processes that exchange messages via
FIFO communication channels. Each process chooses a subset of its
neighboring processes to be its successors. Furthermore, there is a distin-
guished process, called root, that may be reached from any other process
by following the successor relation at each hop. Thus, under the successor
relation, the processes are arranged as a directed acyclic graph that con-
verges on the root process, i.e., a converging DAG (c-DAG). We present
a network where each process may dynamically change its choice of suc-
cessors, and during this change, the following two nice properties are
satisfied. First, if the initial state of the network forms a c-DAG, then a
c-DAG is preserved at all times. Second, if the protocol is started from
an arbitrary state (i.e., where each variable has an arbitrary value), then
a c-DAG is automatically restored.

1 Introduction

A network consists of a set of processes that exchange messages via FIFO commu-
nication channels. A common task in a network is the construction of a spanning
tree. To build a spanning tree, each process chooses ones of its neighbors as its
parent on the tree. The parent is also known as the successor of the process.

Spanning trees have multiple uses. Two of the most common are unicast and
broadcast routing of data messages. In unicast routing [1,2], a spanning tree is
built with the destination as the root of the tree. When a process receives a
message addressed to the destination, the message is forwarded to the parent
on the tree. In broadcast routing [3,4], when a process receives a broadcast
message from a neighbor on the spanning tree, it forwards the message to all
other neighbors that are also on this tree.

In both unicast and broadcast routing, the spanning tree is required to adapt
to network conditions, such as congestion, and modify its structure. In doing so,
temporary loops may be introduced, and processes may become disconnected
from the tree. This is undesirable, since it reduces routing performance. Thus,
loop-free spanning trees were developed [5,6,7]. These ensure that, even while
the spanning tree is modifying its structure, no temporary loops are introduced,
and no process is disconnected from the tree. Maintaining loop-freedom is of
particular importance in ad-hoc networks, due to the frequent changes in network
connectivity and low network bandwidth [8,9,10].

An alternative approach is to maintain multiple successors at each node. A
single process, called, root, has no successors, and all processes lead to the

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 154–172, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Stabilization of Loop-Free Redundant Routing 155

root. Thus, rather than maintaining a tree, a converging directed acyclic graph
(c-DAG), is maintained, where all paths converge on the root process. This graph
is used in unicast routing to provide multiple paths to the destination, i.e., to the
root [11,12,13]. In broadcast routing, it provides alternative paths in the event
of link failures.

All the works above assume a fail-safe model of fault-tolerance: if a process
or channel fails, it simply stops functioning. This, however, does not cover some
failures that are hard to detect. These include: transient hardware or software
faults at lower layers, undetected corrupted messages, improper initialization of a
node, or temporary disruptions from a network intruder. A broader fault-tolerant
model that captures all of these transient faults is known as stabilization.

A network of processes is said to be stabilizing iff, starting from any arbitrary
state (such as the state after an undetected fault), the network converges to
a normal operating state within finite time. Stabilizing protocols are desirable
due to their high degree of fault-tolerance [14]. They have the advantage of not
requiring a global initialization, plus they tolerate all types of transient faults.

Multiple techniques to build loop-free and stabilizing spanning trees exist in
the literature [15,16,17,18]. All of these techniques assume a shared memory
model.

To our knowledge, only a single technique for constructing a loop-free and
stabilizing c-DAG has been presented in the literature [19]. However, it suffers
from the following drawbacks: a) a shared memory model is assumed, b) when a
process chooses to change its successor set, this is restricted to occur only during
a diffusing computation initiated by the root, and c) a temporary loop may be
created in the event of a channel failure, even though the failed channel is not
part of the c-DAG.

In this paper, we present a technique that solves the above problems. Processes
exchange information via message passing, which is a more practical model than
shared memory. A process is free to change its successor set without having to
coordinate with the root process. Finally, loops are never introduced, even if
channels fail.

We present our network of processes in three steps. First, we present processes
that avoid loops at all times. However, the choice of successors for each process
is limited. Then, we enhance our processes to have freedom in choosing their
successors. Finally, we further enhance our processes to be stabilizing.

2 A Converging DAG of Processes

In this section, we present a general overview of the problem. We begin with
some notation.

A network consists of a set of processes interconnected via communication
channels. Two processes are neighbors if they are joined by a pair of channels. A
network path is a sequence of processes where for each pair (u, v) of consecutive
processes in the path, v is a neighbor of u.

156 J.A. Cobb

x

root

u
v

w

Fig. 1. Converging DAG of processes

Each process u maintains a variable, u.S, where it stores the identifiers of a
subset of its neighboring processes. If process v ∈ u.S, then v is said to be a
successor of u and u is said to be a predecessor of v.

A path is active when, for each pair (u, v) of consecutive processes in the path,
v is a successor of u. Process v is reachable from a process u when there is an
active path from u to v.

For example, consider Figure 1. In this figure, the neighbor relation is denoted
by lines, and the successor relation is denoted by arrows. Thus, all processes are
neighbors of u, v has two successors, i.e., v.S = {u, root}, and w has only one
successor, w.S = {v}.

We require that all active paths be simple paths, i.e., loop-free. In consequence,
the successor relation forms a directed acyclic graph.

We assume that there exists a distinguished process, which we call root (see
Figure 1). In addition, we require that for every non-root process, there must
exist an active path from the process to the root. This implies that the successor
set of all non-root processes is non-empty. Also, the root process becomes a
convergence point for the digraph, and hence, we refer to this structure as a
converging DAG (c-DAG).

Contrary to earlier work [15,19,16,17,18], our processes do not choose which
neighbors should be added to the successor set. We assume this is guided by
a higher-layer application that chooses a particular structure. To capture the
behavior of the application without imposing any restrictions, our processes
simply choose non-deterministically whether or not to add a neighbor to the
successor set. Our processes ensure that the requirements presented above are
met at all times. Furthermore, if these requirements are not met initially, then
the processes automatically converge to a state where the requirements are met.

We conclude this section with some path notation.

|P | : number of processes in path P

Pj : jth process in P , 1 ≤ j ≤ |P |
L : maximum length of a simple path

active(P) : (∀ j : 1 < j ≤ |P | : Pj ∈ Pj−1.S)
below(u, v, x) : (∃ P : active(P) ∧ |P | ≤ x : P1 = u ∧ P|P | = v)

Stabilization of Loop-Free Redundant Routing 157

3 Process Notation

Before presenting our processes, we first give a short overview of the notation that
we use in specifying their behavior. This is similar to the notation introduced in
[20]. Processes communicate with each other via the exchange of messages over
FIFO channels. We use the following notation when referring to channels and
messages.

Ch(u, v) : channel from u to v
m(u, v) : message of type m from u to v

m(u, v).f : value of field f in message m(u, v)
neigh(u, v) : function returning true iff both Ch(u, v) and Ch(v, u) exist.

Without loss of generality, for every pair of distinct processes u and v, either
both Ch(u, v) and Ch(v, u) exist or neither of these two channels exist.

Each process is specified by a set of inputs, a set of variables, a parameter,
and a set of actions. In general, a process is specified as shown below.

process <process name>
inp

<input name> : <type>,
. . .

var
<variable name> : <type>,

. . .
par

<parameter name> : <type>
begin

<action>
[]

. . .
[]

<action>
end

The inputs declared in a process can be read, but not written, by the actions
of that process. The variables declared in a process can be read and written by
the actions of that process. The parameter is discussed below. To distinguish
between variables of different processes, we prefix the variable names with the
process name. For example, variable u.r corresponds to variable r in process u.
If a variable does not have a process prefix, the process is understood from the
context.

Every action in a process is of the form: <guard> → <statement>. The
<guard> can be of three types: local, receiving, and timeout.

A local guard is a boolean expression over the inputs, variables, and parameter
declared in the process. A receiving guard at process u is of the form

rcv m from v

where v is a neighbor of u. Finally, a timeout guard is of the form

158 J.A. Cobb

timeout m /∈ Ch(u, v) ∧ m′ /∈ Ch(v, u)

where v is a neighbor of u.
The <statement> is a sequence of message send statements or conditional

statements. Conditional statements are of the following form.

<variable> := <expression> if <boolean expression>

If <boolean expression> is true before the conditional statement is executed,
then <variable> is assigned the current value of <expression>.

The parameter declared in a process is used to write a set of actions as one
action, with one action for each possible value of the parameter. For example, if
we have the following parameter definition,

par
g : 1 .. 2

then the following action

x = g → x := x + g

is a shorthand notation for the following two actions.

x = 1 → x := x + 1
[]
x = 2 → x := x + 2

An execution step of a protocol consists of choosing an action whose guard
evaluates to true and executing the statement of this action. We assume all
executions of a protocol are weakly fair, that is, an action whose guard is con-
tinuously true must be eventually executed.

We often refer to each element in an array variable A. With some abuse of
notation, the expression A = x is equivalent to (∀ i :: A[i] = x). Similarly, the
assignment statement A := x assigns the value x to each element of A.

4 Ranked Processes

In this section we present a network of simple processes that maintain a c-DAG.
We assume such structure exists in the initial state. Thus, this network is not
stabilizing.

Active paths are maintained loop-free as follows. Each process is assigned a
rank value. We denote by R the set of all possible rank values, and by u.r the
rank of process u. Whenever process u adds a new successor to u.S, the new
successor must have a rank greater than that of u. In consequence, for every
pair of processes u and v, where v ∈ u.S, v.r is greater than u.r.

The reason all active paths are loop-free is simply as follows. Let P be an
active path with a loop, that is, P1 = u = P|P |. Then, because ranks increase
from each process to its successor, this implies that u.r is greater than u.r, which
is not possible.

We next formalize process ranks and the relation on rank values. We are given
a relation � on ranks. This relation satisfies the following properties.

Stabilization of Loop-Free Redundant Routing 159

i. Transitive:
For every r, r′, and r′′,
(r � r′ ∧ r′ � r′′) ⇒ (r � r′′)

ii. Antisymmetric:
For every r and r′,
r � r′ ∧ r′ � r ⇒ r = r′

iii. Bounded:
There exists a value
 (top) such that, for all r, r �
, and a value ⊥
(bottom) such that, for all r, ⊥ � r.

We denote the reflexive reduction of � as ≺.
The above general definition of rank allows for many possible choices of R

and �. For example, R could simply be the set of natural numbers, � be ≤, and
≺ be <. In addition, ranks could be based on the model of maximizable metrics
introduced in [21,22]

Ranks could be independent of the application that chooses the successor
set. In this case, ranks would simply be used to prevent the application from
violating the requirements on active paths. On the other hand, ranks could
be intimately related to the application. E.g., assume the c-DAG is used for
datagram routing in computer networks. Then, the successor set may be chosen
to be those neighbors that provide the lowest metric to the root process. The
metric could be as simple as the hop count to the root, or it could be a more
complex metric, such as bottleneck bandwidth, queuing delay, or a combination
of all of these. The rank in this case would simply be the metric used by the
application.

We next present the processes in this network. The rank given to each process
is fixed. However, we relax this requirement in the next section. We first show
the specification of a non-root process u.

process u
inp

G : set of pid’s, {neighbor set}
r : element of R {rank}

var
S : subset of G {successor set}

par
g : element of G {any neighbor}

begin
true → upd.r := r;

send upd to g
[]

rcv upd from g → S := S
⋃

{g} if r ≺ upd.r ∧ any
[]

any ∧ |S| > 1 → S := S − {g}
end

Each process periodically sends an upd (update) message to each of its neigh-
bors. The upd message contains the rank of the process.

160 J.A. Cobb

Each non-root process contains three actions. In the first action, process u
sends an update to neighbor g, and includes its rank in this update.

In the second action, process u receives an upd message from neighbor g. If the
rank of g is greater than that of u, then u adds g to its successor set. We model
the application’s choice of adding g to the successor set by including the operator
any in the statement’s condition. The operator any nondeterministically returns
true or false.

In the third action, process u removes a neighbor g from its successor set.
This, however, is done only if the successor set of u does not become empty.
Again, we represent the choice of removing g from the successor set of u by
including the operator any in the guard of the action.

The specification of the root process is given below.

process root
inp

G : set of pid’s, {neighbor set}
const

S : ∅ {successor set}
r : � {rank}

par
g : element of G {any neighbor}

begin
true → upd.r := r;

send upd to g
[]

rcv upd from g → skip
end

The root process consists of two actions. In the first action, the root sends
an update message to a neighbor. In the second action, the root receives an
update message from a neighbor. Since the root is not allowed to have successors,
it simply discards the message. Note that the successor set and the rank are
constant values, which are the empty set and the top rank, respectively.

5 Dynamically-Ranked Processes

Having a fixed rank at each process restricts significantly the set of neighbors
from which the process can choose successors. In consequence, the overall struc-
ture of the c-DAG is also restricted. To allow a dynamic structure, the rank of
each process must also be dynamic. We address dynamic ranks in this section,
and show how loops are avoided. Our technique has some similarities with earlier
non-stabilizing loop-free protocols [5,6,7].

In the previous section, loops were avoided by ensuring the following two
conditions.

1. The rank of every process is less than the rank of each of its successors.
2. When a process adds a new successor, the rank of the new successor is greater

than that of the process.

Stabilization of Loop-Free Redundant Routing 161

However, these conditions are stronger than necessary, and are a consequence
of processes having a fixed rank. To support dynamic ranks, we replace the above
conditions with the following.

Definition 1. (Loop-Avoidance Conditions)

1. When a process adds a new successor, the rank of the new successor is greater
than the rank of the process.

2. When a process u adds a new successor, all processes below u must have a
rank at most the rank of u.

3. A process cannot increase its rank to a value greater than the rank of any of
its successors.

4. If the rank of a process is greater than that of any of its successors, then the
process must reduce its rank to be at most the rank of all of its successors. �

Note that the above conditions allow a process to reduce its rank at any time
and by any amount.

The first three conditions imply that a new successor cannot be below the
process, and thus loops are avoided. That is, if process u adds a new successor,
the rank of the successor is greater than that of u, but at the same time all
processes below u have a rank at most that of u. Hence, the new successor
cannot be below u. The fourth condition aids in the implementation of the
second condition, as will be shown later in this section.

As an example, consider Figure 2(a). The structure is the same as that in
Figure 1, and each process is labeled with its rank. The rank of each process is
an integer, and ≺ is simply <.

Assume u attempts to add x to its successor set. Since the rank of u is greater
than that of x, from the perspective of u, x may be below u. To determine if
this is the case, u decreases its rank to be less than the rank of x, as shown in
Figure 2(b). This in turn causes all processes below u to decrease their ranks,
as shown in Figure 2(c). Once this operation completes, if the rank of x is still
greater than that of u, then x is not below u, and u can add x to its successor
set. This is shown in Figure 2(d).

We next consider each of the first three loop avoidance conditions. For each,
we show how violating the condition may result in a loop.

Consider the first condition, and consider Figure 2(a). If u adds a successor
with lesser rank, namely w, then a loop is formed. Consider the second condition,
and consider Figure 2(b). If u adds a successor, again w, before the rank of w
has been decreased to be less than that of u, then a loop is formed, even though
the rank of w is greater than that of u. Finally, consider the third condition and
Figure 2(c). If w were to increase its rank to a value greater than the rank of v,
its rank would be greater than the rank of u. This would allow u to add w to its
successors and cause a loop.

We next address how to implement the conditions above. In particular, each
process must lower its rank to be at most the rank of each of its successors. In
addition, each process must be able to determine that each process below it has
a rank no greater than its own. We consider each of these in turn.

162 J.A. Cobb

v 4

root 100

w 4

x 5u 4v 4

(d)

root 100

w 8

x 5

root 100

w 4

x 5u 4

(c)

(a)

root 100

w 8

x 5u 4v 9

(b)

u 10v 9

Fig. 2. Avoiding a loop while decreasing the rank

As in the previous section, each process u periodically sends an upd message
to all its neighbors. The message contains the rank of the process. Process u
maintains two additional variables, u.r̃ and u.S̃. Variable u.S̃ is a set containing
those neighbors from whom u has received an upd message. Variable u.r̃ contains
a lower bound on the ranks of the successors of u from whom u has received an
upd message, i.e., from successors in u.S̃. When u has received an upd message
from all successors, i.e., u.S ⊆ u.S̃, r̃ contains a lower bound on the rank of
all successors. At this time, u.r̃ is assigned to u.r. Furthermore, to prepare for
another round of upd messages from each neighbor, u.S̃ is set to the empty set,
and u.r̃ is assigned the top rank.

We next address how a process can determine that the ranks of all processes
below it are at most its own rank. Each process maintains an array D with the
depth of rank ordering. That is, D has an entry per neighbor, and the value of
the entry is in the range 0 .. L. Let g be a predecessor of u. If u.D[g] = i, then
all processes that are below both u and g up to i hops below u have a rank that
is at most the rank of u.

More formally, we have the following rank ordering property.

Definition 2. (Rank Ordering Property)
Consider any active path P , where: t = P1, g = P|P |−1, u = P|P |, and 2 ≤ |P | ≤
u.D[g]. Then, the following holds:

Stabilization of Loop-Free Redundant Routing 163

t.r � u.r ∧ (t.r̃ � u.r ∨ P2 /∈ t.S̃) ∧ (∀ x : neigh(x, t) : upd(t, x).r � u.r)

In addition, if u.D[g] = 1, then upd(u, g).r � u.r. �

Note that when u.D[g] = L, the rank of all processes below u is at most the
rank of u, and u is free to add a new successor.

Finally, consider how D should be updated. When a neighbor g receives an
upd message from process u, g returns an ack message to u. This ack message
contains two values. The first value, ack(g, u).r, is the current rank of g. The
second value, ack(g, u).d, contains the minimum of all the elements in array D
at g. This indicates to u the depth at which processes below g have a rank at
most that of g. However, if u is not a successor of g, then ack(g, u).r = ⊥ and
ack(g, u).d = L.

When process u receives an ack message from neighbor g, it checks the rank of
the message and its own rank. If the rank of g is at most the rank of u, then the
depth along g is increased by one. That is, u.D[g] := max(u.D[g], ack(g, u).d+1).

We have yet to address when the value of u.D[g] is decreased. Note that as
long as u.r increases, then the value of u.D[g] need not decrease, since the rank
ordering property is not violated. However, if u.r decreases, this property may
no longer hold. Thus, whenever u.r is decreased, u.D[g] is assigned zero for all g.

We are now ready to present the specification of a network with dynamic
rank. Below, we present the specification of a non-root process u.

process u
inp

G : set of pid’s {neighbor set}
L : integer {max. path length}

var
S, S̃ : subset of G {successor set and its iteration set}
r, r̃ : element of R {rank and its iteration value}
D : array [G] of 0 .. L {rank depth}

par
g : element of G {any neighbor}

begin
timeout upd /∈ Ch(u, g) ∧ ack /∈ Ch(g, u) →

D[g] := max(1,D[g]);
upd.r := r;
send upd to g

[]

rcv upd from g → S̃ := S̃
⋃

{g};
S := S

⋃
{g} if r ≺ upd.r ∧ D = L ∧ any;

r̃ := any{x | x � min(r̃, upd.r)} if g ∈ S;
reply(g)

[]
rcv ack from g → D[g] := max(D[g], ack.d + 1)

if ack.r � r ∧ D[g] > 0
[]

164 J.A. Cobb

S ⊆ S̃ → D := 0 if r̃ ≺ r;

r, r̃, S̃ := r̃,�, ∅
[]

any ∧ |S| > 1 → S := S − {g}
end

The process consists of five actions. In the first action, a new upd message is
sent to a neighbor g. The message is sent only if the previous upd message has
been received (or is lost) and its corresponding ack has been received (or is lost).
Furthermore, since upd(u, g).r = u.r, we can safely assign a value of at least one
to u.D[g].

In the second action, an upd message is received from a neighbor g. Neighbor
g is added as a successor if the rank ordering property is not violated, and in
addition, the higher layer application chooses g as a successor. We represent this
by the operator any, which nondeterministically returns true or false. In this
action, reply(g) is a shorthand for the following sequence of statements.

ack.r, ack.d := r, min{D} if g ∈ S;
ack.r, ack.d := ⊥, L if g /∈ S;
send ack to g

In the third action, an ack is received from a neighbor g. Variable u.D[g] is
increased provided the rank of g is at most the rank of u and u.D[g] > 0. The
reason for u.D[g] > 0 is as follows. If u.D[g] = 0, then is possible that the ack
received is in response to an upd message sent before u.r was decreased. This
would cause synchronization problems between u and g, and the rank ordering
property may be violated.

In the fourth action, process u has finished receiving an upd message from all
neighbors. It then updates u.r, u.r̃, and u.S̃ as discussed earlier.

In the fifth action, process u removes neighbor g from its successor set, pro-
vided the successor set does not become empty, and provided that the higher-
layer application, which we model by the operator any, chooses to remove g.

We present below the specification of the root process.

process root
inp

G : set of pid’s {neighbor set}
L : integer {max. path length}

const
S, S̃ : ∅, ∅ {successor set and its iteration set}
r, r̃ : �,� {rank and its iteration value}
D : array [G] of L {rank depth}

par
g : element of G {any neighbor}

begin
timeout upd /∈ Ch(u, g) ∧ ack /∈ Ch(g, u) = 0 →

upd.r := r;
send upd to g

Stabilization of Loop-Free Redundant Routing 165

[]
rcv upd from g → reply(g)

[]
rcv ack from g → skip

end

The root process consists of three simple actions. In the second action, reply(g)
is a shorthand for the following sequence of statements.

ack.r, ack.d := �, L;
send ack to g

Notice that the value of root.D is always L, and that the value of root.r is
always
. This is because the root does not need to decrease its rank, since it
has no successors.

6 c-DAG Restoration

The processes in the previous section ensure that the network is maintained
loop-free at all times. However, they are not stabilizing. In particular, if a loop
exists at the initial state of the execution, then the loop may be maintained
throughout the execution. In this section, we enhance our processes with the
ability of automatically breaking any existing loop, and restoring the integrity of
the c-DAG. Loops are detected using an extension of the spanning-tree technique
we presented in [16].

Although the dynamically-ranked processes of the previous section are not
stabilizing, they have an interesting property. Starting from any arbitrary state,
the rank ordering property will eventually hold and continue to hold. That is,
the processes stabilize to the rank-ordering property. Therefore, even though
loops that exist at the initial state may not be broken, there is a point in the
execution after which no new loops may be created.

Given that the rank-ordering property is stabilizing, the main obstacle in the
stabilization of our processes is the removal of existing loops. Thus, processes
must be able to detect the presence of a loop. In addition, the loop must be
broken, and any processes that become separated from the c-DAG must rejoin it.

To detect loops, each process maintains an estimate of the number of hops to
the root process. This estimate is maintained in variable u.h. Each upd message
from u now contains two values: the rank u.r and hop count u.h. Process u
assigns to u.h the largest hop count of each of its successors plus one.

To collect the hop counts from each neighbor, process u maintains a variable
u.h̃. This variable contains the maximum hop count (plus one) of every neighbor
in u.S̃, i.e., of every neighbor from whom an upd message has been received.
When an upd has been received from every neighbor, u.h̃ is assigned to u.h and
u.h̃ is assigned zero.

166 J.A. Cobb

d(2, 5)

a(2, 1)

b(2, 2)

a(1, 1)

b(2, 6)

c(2, 7)c(2, 3)

(i) (iii)

rootroot

f(3, 1)

e(2, 4)

d(2, 5)

f(3, 1)

e(3, 2)

d(2, 5)

a(1, 1)

b(1, 2)

c(1, 3)

(ii)

root

f(3, 1)

e(3, 2)

Fig. 3. Incorrect loop detection

Since the maximum length of a simple network path is L, we expect the value
of u.h to never increase beyond L − 1. Thus, a straightforward way to detect a
loop is to check if u.h ≥ L. If so, process u concludes that it is involved in a
loop. However, this is not accurate due to the dynamic nature of the network,
as we demonstrate below.

Consider the network in Figure 3. The rank of each process is an integer, and
≺ is simply <. In this network, L = 7. Alongside each process are its rank and
its distance, in that order. The initial state of the network is given in Figure 3(i).

Assume process e adds f to its successor set, and then removes c from its
successor set. For the moment, assume the channel from e to d is slow, so d does
not update its values from those of e for some time. After e changes successors,
the rank of a drops to one, and this new rank is propagated to b and c. Still, d
has not updated its values from those of e. This is shown in Figure 3(ii). Next,
assume process b chooses d as a successor, and then removes a from its successor
set. The new rank of b is then propagated to c. Still, d has not updated its values
from those of e. This is shown in Figure 3(iii).

Note that in Figure 3(iii), c.h = 7 = L. Thus, c.h indicates the presence of a
loop, even though none exists. (The scenario in Figure 3 can be extended further
to show that c.h grows without bound even though a loop is never present.)
Therefore, a simple hop count cannot be used as a method of loop detection.

The above problem of erroneous loop detection is due to the flexibility in
adding and removing successors. These operations need to be restricted, but not
to the extent of making the structure inflexible. We choose to restrict them as
follows.

Definition 3. (Loop Detection Conditions)

1. A process u cannot add a neighbor v to its successor set if v.h ≥ L.
2. A process u, where u.h ≥ L, cannot add nor remove neighbors from its

successor set unless all of processes v below it have v.h ≥ L.
3. A process u cannot decrease u.h to less than L until all processes v below it

have v.h ≥ L. �

Stabilization of Loop-Free Redundant Routing 167

From the above restrictions, when process u reaches a hop count of at least L, it
stops adding or removing successors. In addition, no process will choose u as its
successor. Then, a hop count of at least L propagates to all descendants of u. In
this way, the structure below u will cease to change. Thus, since the maximum
length of a simple path is L, no process below u should obtain a hop count of
2L unless a loop exists.

When u.h ≥ 2L, process u assumes that either itself or a process above it is
part of a loop. Process u will empty its successor set (thus breaking the loop)
and then choose as a successor the first neighbor which indicates that its hop
count is less than 2L. As in the previous section, process u ensures that the new
successor is not below u, and thus, no new loops are be formed.

What remains to be addressed is the method by which process u determines
that all its descendants have a hop count of at least L. We present a property
similar to the rank ordering property of the previous section. Previously, u.D = i
implied that all processes at most i hops below u have a rank that is at most
u.r. We now strengthen the meaning of u.D = i to also imply that, if u.h ≥ L,
then all processes at most i hops below u have a hop count of at least L.

We refer to the pair of values (u.r, u.h) as the extended-rank of u. For terseness,
we will write this pair as u.(r, h). Below, we define a relation � on extended-
ranks1. The loop-avoidance conditions (Definition 1) of the previous section also
hold for extended-ranks.

We define � on extended-ranks as follows: (r, h) � (r′, h′) iff

r � r′ ∧ (h′ ≥ L ⇒ h ≥ L)

We define (r, h) ≺ (r′, h′) similarly, except that r � r′ is replaced by r ≺ r′.
The rank-ordering property of the previous section (Definition 2) can now be

replaced by the following extended-rank-ordering property.

Definition 4. (Extended-Rank Ordering Property)
Consider any active path P , where: t = P1, g = P|P |−1, u = P|P |, and 2 ≤ |P | ≤
u.D[g]. Then, the following holds:

t.(r, h) � u.(r, h) ∧ (t.(r̃, h̃) � u.(r, h) ∨ P2 /∈ t.S̃)∧
(∀ x : neigh(x, t) : upd(t, x).(r, h) � u.(r, h))

In addition, if u.D[g] = 1, then upd(u, g).(r, h) � u.(r, h). �

Using the above property, each process u can deduce that, if u.D = L ∧ u.h ≥ L,
then all processes below u have a hop count of at least L. Once this happens,
u, can reduce its hop count to less than L (if allowed by the hop counts of its
successors) and make changes to its successor set.

We may now present the specification of a non-root process u in the c-DAG-
forming network of processes.

1 We overload the symbol � to be a relation on ranks and a relation on extended-ranks.
Which of these two meanings is appropriate is evident from the context.

168 J.A. Cobb

process u
inp

G : set of pid’s {neighbor set}
L : integer {max. path length}

var
S, S̃ : subset of G {successor set and its iteration set}
r, r̃ : element of R {rank and its iteration value}
h, h̃ : 0 .. 2L {hop count and its iteration value}
D : array [G] of 0 .. L {rank depth}

par
g : element of G {any neighbor}

begin
timeout upd /∈ Ch(u, g) ∧ ack /∈ Ch(g, u) →

D[g] := max(1,D[g]);
upd.r, upd.h := r, h;
send upd to g

[]

rcv upd from g → S̃ := S̃
⋃

{g};
S := S

⋃
{g} if new succ(g);

r̃ := any{x | x � min(r̃, upd.r)}
if g ∈ S;

h̃ := max{h̃, upd.h + 1}
if g ∈ S;

S, r̃, h̃ := {g}, upd.r, upd.h + 1
if break(g);

reply(g)
[]

rcv ack from g → D[g] := max(D[g], ack.d + 1)
if ack.(r, h) � (r, h) ∧ D[g] > 0

[]

S ⊆ S̃ → h̃ := max(h̃, L) if max(h, h̃) ≥ L ∧ D < L;

r̃ = ⊥ if h̃ = 2L;

D := 0 if (r̃, h̃) ≺ (r, h);

r, h, r̃, h̃, S̃ := r̃, h̃,�, 0, ∅
[]

any ∧ |S| > 1 → S := S − {g} if ¬(max(h, h̃) ≥ L ∧ D < L)
end

Process u consists of five actions. In the first action, process u sends an upd
message to a neighbor g. This action is the same as before except that the
message also contains the hop count.

In the second action, an upd message is received from a neighbor g. The
first two statements are similar to those in the previous section. In this action,
new succ(g) is equivalent to the following.

Stabilization of Loop-Free Redundant Routing 169

(r, h) ≺ upd.(r, h) ∧ D = L ∧ upd.h < L

Thus, the only difference from before is that extended-ranks are used when
comparing the values of u against those of the received message, and furthermore,
upd.h < L is necessary to satisfy the loop-detection conditions.

The next two statements in the action remain the same. The fifth statement
breaks away from a loop. Here, break(g) is defined as follows.

(r, h) = (⊥, 2L) ∧ D = L ∧ (r, h) ≺ upd.(r, h)

That is, if h = 2L, then u is involved in a loop, and it may choose g as its sole
successor (thus breaking the loop) provided the loop avoidance conditions are
not violated, i.e., the extended-rank of g is greater than that of u and D = L.
The reason we chose r = ⊥ is explained below.

Finally, reply(g) in the second action is a shorthand for the following sequence
of statements.

ack.r, ack.h := r, h;
ack.d := L if g /∈ S;
ack.d := min{D} if g ∈ S;
send ack to g

In the third action, an ack message is received from a neighbor g, and D[g]
is increased. The only difference between this action and that of the previous
section is that the decision to increase D[g] is based on process extended-ranks.

In the fourth action, r and h are updated from r̃ and h̃ after an upd message
has been received from every neighbor. The action differs from the previous
section by not allowing h to be reduced below L until all descendants of u
have a hop count of at least L. This is necessary to satisfy the loop detection
conditions. In addition, if h = 2L, i.e., if a loop is detected, the rank is set to
the bottom value. This is done to “poison” all the descendants of u also with a
bottom rank, and thus the successor which will be used to break the loop must
have a rank higher than the bottom value.

In the fifth action, a successor is removed. This operation is not allowed if the
hop count of u is at least L and there are still neighbors whose hop count is less
than L. This is also necessary to satisfy the loop detection conditions.

The specification of the root process is shown below.

process root
inp

G : set of pid’s {neighbor set}
L : integer {max. path length}

const
S, S̃ : ∅, ∅ {successor set and its iteration set}
r, r̃ : �,� {rank and its iteration value}
h, h̃ : 0, 0 {hop count and its iteration value}
D : array [G] of L {rank depth}

par

170 J.A. Cobb

g : element of G {any neighbor}
begin

timeout upd /∈ Ch(u, g) ∧ ack /∈ Ch(g, u) →
upd.r, upd.h := r, h;
send upd to g

[]
rcv upd from g → reply(g)

[]
rcv ack from g → skip

end

The process consists of four simple actions. In the first action, the root sends
an upd message to a neighbor g. In the second action, the root receives an upd
message and it returns an ack message. In this action, reply(g) is a shorthand
for the following sequence of statements.

ack.r, ack.h, ack.d :=
, 0, L;
send ack to g

In the third action, the root receives (and discards) an ack.

7 Protocol Correctness

Due to space restrictions, we present the proof of correctness in [23]. Here, we
very briefly outline the proof for the interested reader.

A network stabilizes to a predicate Z iff every computation of the network
contains a suffix where each state of the computation satisfies Z [14]. Thus, the
system will reach a state after which it will continuously satisfy Z.

Starting from any initial state, the first property that is restored automatically
is the rank-ordering property (in the dynamic-rank network), and the extended-
rank-ordering property (in the c-DAG-forming network). Since the structure of
the proof is similar for both networks, in [23], we abstract both of these proofs
into a single one by introducing a network of abstract processes, where each
abstract process has a general behavior that captures the behavior of both the
dynamically-ranked processes and the stabilizing processes.

Theorem 1. (Restoring Ranks)

– The rank-ordering property (Definition 2) is stabilizing in the dynamic-rank
network of processes (Section 4).

– The extended-rank-ordering property (Definition 4) is stabilizing in the c-
DAG-forming network (Section 6). �

Once ranks between nodes have the correct relationship, new loops cannot be
formed, and we have the following.

Theorem 2. (Loop-Freedom)
The c-DAG-forming network stabilizes to the following:

(∀ u :: ¬(∃ P :: active(P)∧ (P1 = u)∧ loop(P))) �

Stabilization of Loop-Free Redundant Routing 171

That is, loops are broken when the hop-count of processes reaches 2 · L, and
no new loops are formed due to the label-ordering property. Finally, the desired
state is then reached.

Theorem 3. (c-DAG Restoration)
The c-DAG-forming network stabilizes to the following:

(∀ u :: (∃ P :: active(P) ∧ P1 = u ∧ P|P | = root) �

We therefore have that all active paths are loop-free, and each node has at least
one active path to the root, i.e., a c-DAG is restored and maintained.

References

1. Hedrick, C.: Routing information protocol. RFC 1058 (1988)

2. Moy, J.: Ospf version 2. RFC 1247 (August 1991)
3. Cobb, J.A., Gouda, M.G.: The request-reply family of group routing protocols.

IEEE Transactions on Computers 46(6), 659–672 (1997)
4. Deering, S., Cheriton, D.: Multicast routing in datagram networks and extended

lans. ACM Transactions on Computer Systems 8(2) (May 1990)
5. Garcia-Luna-Aceves, J.J.: Loop-free routing using diffusing computations.

IEEE/ACM Transactions on Networking 1(1) (February 1993)
6. Garcia-Luna-Aceves, J.J., S., M.: A path-finding algorithm for loop-free routing.

IEEE/ACM Transactions on Networking 5(1) (February 1997)

7. Segall, A.: Distributed network protocols. IEEE Transactions on Information The-
ory IT-29(1), 23–35 (1983)

8. Garcia-Luna-Aceves, J., Soumya, R.: On-demand loop-free routing with link vec-
tors. In: Proceedings of the 12th IEEE International Conference on Network Pro-
tocols, IEEE Computer Society Press, Los Alamitos (2004)

9. Johnson, D.B., Maltz, D.A., Hu, Y.C.: The dynamic source routing protocol for
mobile ad hoc networks (dsr). draft-ietf-manet-dsr-09.txt (work in progress)

10. Perkins, C.E., Royer, E.M.: Ad hoc on-demand distance vector routing. In: Pro-
ceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applica-
tions, pp. 90–100. IEEE Computer Society Press, Los Alamitos (1999)

11. Vutukury, S., Garcia-Luna-Aceves, J.J.: An algorithm for multi-path computation
using distance-vectors with predecessor information. In: Proceedings of the ICCCN
Conference (1999)

12. Vutukury, S., Garcia-Luna-Aceves, J.J.: A distributed algorithm for multi-path
computation. In: Proceedings of the IEEE GLOBECOM Conference, IEEE Com-
puter Society Press, Los Alamitos (1999)

13. Zaumen, W., Garcia-Luna-Aceves, J.J.: Loop-free multi-path routing using gener-
alized diffusing computations. In: Proc. of the INFOCOM Conference (1998)

14. Gouda, M.G.: The triumph and tribulation of system stabilization. In: Helary, J.-
M., Raynal, M. (eds.) WDAG 1995. LNCS, vol. 972, pp. 1–18. Springer, Heidelberg
(1995)

15. Arora, A., Gouda, M.G., Herman, T.: Composite routing protocols. In: Proceedings
of the Second IEEE Symposium on Parallel and Distributed Processing, IEEE
Computer Society Press, Los Alamitos (1990)

172 J.A. Cobb

16. Cobb, J.A., Gouda, M.G.: Stabilization of general loop-free routing. Journal of
Parallel and Distributed Computing 62, 922–944 (2002)

17. Cobb, J.A., Waris, M.: Propagated timestamps: A scheme for the stabilization
of maximum-flow routing protocols. In: Proceedings of the Third Workshop on
Self-Stabilizing Systems, pp. 185–200 (1997)

18. Gouda, M.G., Schneider, M.: Maximum flow routing. In: Proceedings of the Second
Workshop on Self-Stabilizing Systems (1995)

19. Cobb, J.A.: Convergent multipath routing. In: Proceedings of the International
Conference on Network Protocols (2002)

20. Gouda, M.: The Elements of Network Protocols. Wyley (1997)
21. Gouda, M.G., Schneider, M.: Maximizable routing metrics. In: Proceedings of the

IEEE International Conference on Network Protocols, pp. 71–78. IEEE Computer
Society Press, Los Alamitos (1998)

22. Gouda, M., Schneider, M.: Stabilization of maximal metric trees. In: Proceedings
of the Workshop on Self-Stabilizing Systems at the International Conference on
Distributed Computing Systems (June 1999)

23. Cobb, J.A.: Stabilization of loop-free redundant routing. The University of Texas
at Dallas technical report (2007)

Secure Failure Detection in TrustedPals�

Roberto Cortiñas1, Felix C. Freiling2, Marjan Ghajar-Azadanlou3,
Alberto Lafuente1, Mikel Larrea1, Lucia Draque Penso2, and Iratxe Soraluze1

1 The University of the Basque Country, San Sebastián, Spain
2 Department of Computer Science, University of Mannheim, Germany

3 Department of Computer Science, RWTH Aachen University, Germany

Abstract. This paper presents a modular redesign of TrustedPals, a
smartcard-based security framework for solving secure multiparty com-
putation (SMC). TrustedPals allows to reduce SMC to the problem of
fault-tolerant consensus between smartcards. Within the redesign we in-
vestigate the problem of solving consensus in a general omission failure
model augmented with failure detectors. To this end, we give novel def-
initions of both consensus and the class of �P failure detectors in the
omission model and show how to implement �P and have consensus in
such a system with some weak synchrony assumptions. The integration of
failure detection into the TrustedPals framework uses tools from privacy
enhancing techniques such as message padding and dummy traffic.

1 Introduction

Consider a set of parties who wish to correctly compute some common function
F of their local inputs, while keeping their local data as private as possible, but
who do not trust each other, nor the channels by which they communicate. This
is the problem of Secure Multi-party Computation (SMC) [22]. SMC is a very
general security problem, i.e., it can be used to solve various real-life problems
such as distributed voting, private bidding and auctions like Ebay, sharing of
signature or decryption functions and so on. Unfortunately, solving SMC is—
without extra assumptions—very expensive both in terms of communication
(number of messages) and time (number of synchronous rounds).

TrustedPals [3] is a smartcard-based implementation of SMC which allows
much more efficient solutions to the problem. Conceptually, TrustedPals consid-
ers a distributed system in which processes are locally equipped with tamper
proof security modules (see Fig. 1). In practice, processes are implemented as
a Java desktop application and security modules are realized using Java Card
Technology enabled smartcards [5]. Roughly speaking, solving SMC between
processes is achieved by having the security modules jointly simulate a trusted
third party (TTP), as we now explain.

� Work by the Spanish authors was supported by the Spanish Research Council, under
grant HA2005-0078. Work by the German authors was supported by DAAD PPP
Programme Acciones Integradas Hispano Alemanas.

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 173–188, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

174 R. Cortiñas et al.

security
module

untrusted host

security
module

untrusted host

Fig. 1. Processes with tamper proof security modules

To solve SMC in the TrustedPals framework, the function F is coded as a Java
function and is distributed within the network in an initial setup phase. Then
processes hand their input value to their security module and the framework
accomplishes the secure distribution of the input values. Finally, all security
modules compute F and return the result to their process. The network of se-
curity modules sets up confidential and authenticated channels between each
other and operates as a secure overlay within the distribution phase. Within
this secure overlay, arbitrary and malicious behavior of an attacker is reduced to
rather benign faulty behavior (process crashes and message omissions). Trusted-
Pals therefore allows to reduce the security problem of SMC to a fault-tolerant
synchronization problem [3], namely that of consensus.

To date, TrustedPals assumed a synchronous network setting, i.e., a setting in
which all important timing parameters of the network are known and bounded.
This makes TrustedPals sensitive to unforeseen variations in network delay and
therefore not very suitable for deployment in networks like the Internet. In this
paper, we explore how to make TrustedPals applicable in environments with less
synchrony. More precisely, we explore the possibilities to implement TrustedPals
in a modular fashion inspired by results in fault-tolerant distributed comput-
ing: We use an asynchronous consensus algorithm and encapsulate (some weak)
timing assumptions within a device known as a failure detector [4].

The concept of a failure detector has been investigated in quite some detail
in systems with merely crash faults [13]. In such systems, correct processes (i.e.,
processes which do not crash) must eventually permanently suspect crashing
processes. There is very little work on failure detection and consensus in mes-
sage omissions environments. In fact, it is not clear what a sensible definition
of a failure detector (and consensus) is in such environments because the no-
tion of a correct process can have several different meanings (e.g., a process
with no failures whatsoever or a process which just does not crash but omits
messages).

Related Work. Delporte, Fauconnier and Freiling [8] were the first to investigate
non-synchronous settings in the TrustedPals context. Following the approach of

Secure Failure Detection in TrustedPals 175

Chandra and Toueg [4] (and similar to this paper) they separate the trusted
system into an asynchronous consensus layer and a partially synchronous failure
detection layer. They assume that transient omissions are masked by a piggy-
backing scheme. The main difference however is that they solve a different ver-
sion of consensus than we do: Roughly speaking, message omissions can cause
processes to communicate only indirectly, i.e., some processes have to relay mes-
sages for other processes. Delporte, Fauconnier and Freiling [8] only guarantee
that all processes that can communicate directly with each other solve con-
sensus. In contrast, we allow also those processes which can only communicate
indirectly to successfully participate in the consensus. As a minor difference, we
focus on the class �P of eventually perfect failure detectors whereas Delporte,
Fauconnier and Freiling [8] implement the less general class Ω. Furthermore,
Delporte, Fauconnier and Freiling [8] do not describe how to integrate failure
detection within the TrustedPals framework: A realistic adversary who is able
to selectively influence the algorithms for failure detection and consensus can
cause their consensus algorithm to fail.

Apart from Delporte, Fauconnier and Freiling [8], other authors also investi-
gated solving consensus in systems with omission faults. Unpublished work by
Dolev et al. [10,9] also follows the failure detector approach to solve consensus,
however they focus on the class �S(om) of failure detectors. Babaoglu, Davoli
and Montresor [19] also follow the path of �S to solve consensus in partitionable
systems.

Recently, solving SMC without security modules has received some atten-
tion focusing on two-party protocols [17,18]. In systems with security modules,
Avoine and Vaudenay [2] examined the approach of jointly simulating a TTP.
This approach was later extended by Avoine et al. [1] who show that in a sys-
tem with security modules fair exchange can be reduced to a special form of
consensus. They derive a solution to fair exchange in a modular way so that
the agreement abstraction can be implemented in diverse manners. Benenson et
al. [3] extended this idea to the general problem of SMC and showed that the
use of security modules cannot improve the resilience of SMC but enables more
efficient solutions for SMC problems. All these papers assume a synchronous
network model.

Correia et al. [6] present a system which employs a real-time distributed secu-
rity kernel to solve SMC. The architecture is very similar to that of TrustedPals
as it also uses the notion of architectural hybridization [21]. However, the ad-
versary model of Correia et al. [6] assumes that the attacker only has remote
access to the system while TrustedPals allows the owner of a security module to
be the attacker. Like other previous work [3,2,1] Correia et al. [6] also assume a
synchronous network model at least in a part of the system.

Our work on TrustedPals can also be regarded as building failure detectors
for arbitrary (Byzantine) failures which has been investigated previously (see for
example Kihlstrom, Moser and Melliar-Smith [15] and Doudou, Garbinato and
Guerraoui [11]). In contrast to previous work on Byzantine failure detectors, we
use security modules to avoid the tar pits of this area.

176 R. Cortiñas et al.

Contributions. In this paper we present a modular redesign of TrustedPals us-
ing consensus and failure detection as modules. More specifically, we make the
following technical contributions:

– We give a novel definition of �P in the omission model and we show how to
implement �P in a system with weak synchrony assumptions in the spirit
of partial synchrony [12].

– We give a novel definition of consensus in the omission model and give an
algorithm which uses the class �P to solve consensus. The algorithm is an
adaptation of the classic algorithm by Chandra and Toueg [4] for the crash
model.

– We integrate failure detection and consensus securely in TrustedPals by em-
ploying message padding and dummy traffic, tools known from the area of
privacy enhancing techniques.

Paper Outline. This paper is structured as follows: In Sect. 2 we give an overview
over and motivate the system model of TrustedPals. In Sect. 3 we define and
implement the failure detector �P in the omission failure model. We then use
this failure detector to solve consensus in Sect. 4. In Sect. 5 we describe how to
integrate failure detection and consensus securely in the TrustedPals framework.
For lack of space, the correctness proofs of the algorithms as well as more details
on the security evaluation can be found elsewhere [7].

2 System Model and Architecture

2.1 Untrusted and Trusted System

To be able to precisely reason about algorithms and their properties in the Trust-
edPals system we now formalize the system assumptions within a hybrid model,
i.e., the model is divided into two parts (see Fig. 2). The upper part consists
of n processes which represent the untrusted hosts. The lower part equally con-
sists of n processes which represent the security modules. Because of the lack
of mutual trust between untrusted hosts, we call the former part the untrusted
system. Since the security modules trust each other we call the latter part the
trusted system. Each host is connected to exactly one security module by a direct
communication link.

Summarizing, there are two different types of processes: processes in the un-
trusted system and processes in the trusted system. For brevity, we will use the
unqualified term process if the type of process is clear from the context.

Within the untrusted system each pair of hosts is connected by a pair of unidi-
rectional communication links, one in each direction. Since the security modules
also must use these links to communicate, the trusted system can be considered
as an overlay network which is a network that is built on top of another network.
Nodes in the overlay network can be thought of as being connected by virtual or

Secure Failure Detection in TrustedPals 177

host
h1

host
h2

security
module

s2

security
module

s1

security
module

s3

host
h3

untrusted system

trusted system

Fig. 2. The untrusted and trusted system

logical links. In practice, for example, smartcards could form the overlay network
which runs on top of the Internet modeled by the untrusted processes. Within
the trusted system we assume the existence of a public key infrastructure, which
enables two communicating parties to establish confidentiality, message integrity
and user authentication without having to exchange any secret information in
advance.

We assume reliable channels, i.e., every message inserted to the channel is
eventually delivered at the destination. We assume no particular ordering rela-
tion on channels.

2.2 Timing Assumptions

We assume that a local clock is available to each host, but clocks are not syn-
chronized within the network. Security modules do not have any clock, they just
have a simple step counter, whereby a step consists of receiving a message from
other security modules, executing a local computation, and sending a message
to other security modules. Passing of time is checked by counting the number of
steps executed.

Since trusted and untrusted system operate over the same physical commu-
nication channel, we assume the same timing behavior for both systems. Both
systems are assumed to be partially synchronous meaning that eventually bounds
on all important network parameters (processing speed differences, message de-
livery delay) hold. The model is a variant of the partial synchrony model of
Dwork, Lynch and Stockmeyer [12]. The difference is that we assume reliable
channels.

We say that a message is received timely if it is received after the bounds on
the timing parameters hold. Omission of such a message can be reliably detected
using timeout-based reasoning.

178 R. Cortiñas et al.

2.3 Failure Assumptions

The model is hybrid because we have distinct failure assumptions for both sys-
tems. The failure model we assume in the untrusted system is the Byzantine
failure model [16]. A Byzantine process can behave arbitrarily. In the trusted
system we assume the failure model of general omission, which we now explain.

The concept of omission faults, meaning that a process drops a message ei-
ther while sending (send omission) or while receiving it (receive omission), was
introduced by Hadzilacos [14] and later generalized by Perry and Toueg [20]. The
failure model used for the trusted system is that of general omission, in which
processes can crash and experience either send-omissions or receive omissions.
We allow the possibility of transient omissions, i.e., a process may temporarily
drop messages and later on reliably deliver messages again.

A process (untrusted host or security module) is correct if it does not fail.
A process is faulty if it is not correct. We assume a majority of processes to
be correct both in the untrusted and in the trusted system. Note that a faulty
security module implies a faulty host but a faulty host not necessarily implies a
faulty security module.

The motivation behind this hybrid approach is that the system runs in an
environment prone to attacks, but the assumptions on the security modules and
the possibility to establish secure channels reduce the options of the attacker in
the trusted system to attacks on the liveness of the system, i.e., destruction of
the security module or interception of messages on the channel.

2.4 Classes of Processes in the Trusted System

The omission model in the trusted system implies the possibility of both tran-
sient send omissions and receive omissions. Given two processes, p and q, if a
single message m sent from p to q is not delivered by q, the following ques-
tion arises: has p suffered a send omission, or has q suffered a receive omission?
Formally, one of the two processes is incorrect, but it is not possible to deter-
mine which one. Observe that considering both processes p and q incorrect can
be too restrictive. This leads us to reconsider the different classes of processes
in the omission model with respect to the common correct/incorrect classifi-
cation. In particular, processes suffering a limited number of omissions, e.g.,
processes that do not suffer omissions with some correct process, will be con-
sidered as good, since they can still participate in a distributed protocol like
consensus.

On the basis of this motivation, we consider the following two classes of pro-
cesses:

Definition 1. A process p is in-connected if and only if:

(1) p is a correct process, or
(2) p does not crash and there exists a process q such that q is in-connected and

all messages sent by q to p are eventually received timely by p (i.e., q does not
suffer any send-omission with p, and p does not suffer any receive-omission
with q).

Secure Failure Detection in TrustedPals 179

p q

u

r s

Majority
of correct processes

v

Fig. 3. Examples for classes of processes

Definition 2. A process p is out-connected if and only if:

(1) p is a correct process, or
(2) p does not crash and there exists a process q such that q is out-connected and

all messages sent by p to q are eventually received timely by q (i.e., p does not
suffer any send-omission with q, and q does not suffer any receive-omission
with p).

Observe that correct processes are both in-connected and out-connected. Ob-
serve also that the definitions of in-connected and out-connected processes are
recursive. Intuitively, there is a timely path with no omissions from every cor-
rect process to every in-connected process. Also, there is a timely path with no
omissions from every out-connected process to every correct process, and hence
to every in-connected process.

Fig. 3 shows an example. In the figure, arcs represent timely links with no
omissions (they are not shown for the majority of correct processes). Processes
p and q are out-connected, while process s is in-connected, and processes r

Consensus

TrustedPals

Application

Failure Detector

protocol messages failure detector messages

Transport

on the smartcard

partially under
control

of the process

under control
of the process

Fig. 4. The architecture of our system

180 R. Cortiñas et al.

and v are both in-connected and out-connected. Finally, process u is neither
in-connected nor out-connected.

2.5 The TrustedPals Architecture

Fig. 4 shows the layers and interfaces of the proposed modular architecture for
TrustedPals. A message exchange is performed on the transport layer, which
is under control of the untrusted host. The failure detector and the security
mechanisms for message encryption etc. run in the TrustedPals layer. In the
consensus layer runs the consensus algorithm. On the application layer, which
again is under the control of the untrusted host, protocols like fair exchange
operate.

3 Failure Detection in TrustedPals

Based on the two new classes of processes defined in the previous section, we
redefine now the properties that �P must satisfy in the omission model. While
the common correct/faulty classification of processes is well addressed by means
of a list of suspected processes, in the omission model we will consider two lists
of processes, one for the in-connected processes and the other one for the out-
connected processes. If a process p has a process q in its list of in-connected (out-
connected) processes, we say that p considers q as in-connected (out-connected).
The �P class of failure detectors in the omission model satisfies the following
properties:

– Strong Completeness. Eventually every process that is not out-connected
will be permanently considered as not out-connected by every in-connected
process.

– Eventual Strong Accuracy. Eventually every process that is out-connected
will be permanently considered as out-connected by every in-connected pro-
cess.

– In-connectivity. Eventually every process that is in-connected will perma-
nently consider itself as in-connected.

Figs. 5, 6 and 7 present an algorithm implementing �P . The algorithm pro-
vides to every process p a list of in-connected processes, InConnectedp, and
another list of out-connected processes, OutConnectedp. For every in-connected
process p, these lists will have the information required to satisfy the properties
of �P . In particular, the list OutConnectedp will eventually and permanently
contain exactly all the out-connected processes. Regarding the InConnectedp list,
it will eventually and permanently contain p itself.

In order to detect message omissions, messages carry a sequence number.
Besides, every process p uses a matrix Mp of n × n elements. In the beginning,
all processes are supposed to be correct, so every element in the matrix has a
value of 1. If all messages sent from a process q to a process p are received timely
by p, Mp[p][q] will be maintained to 1. Otherwise, process p will set Mp[p][q] to

Secure Failure Detection in TrustedPals 181

Procedure main()(1)

InConnectedp ← Π(2)

OutConnectedp ← Π(3)

forall q ∈ Π − {p} do(4)

Δp(q)← default time-out interval {Δp(q) denotes the duration of p’s time-out(5)

interval for q}
next sendp[q]← 1 {sequence number of the next message sent to q}(6)

next receivep[q]← 1 {sequence number of the next message expected from q}(7)

Bufferp[q]← ∅(8)

forall q ∈ Π do(9)

forall u ∈ Π do(10)

Mp[q][u]← 1 {Mp[q][u] = 0 means that q has not received at least one message(11)

from u}
V ersionp[q]← 0 {V ersionp contains the version number for every row of Mp}(12)

UpdateV ersion ← false(13)

|| Task 1: repeat periodically(14)

if UpdateVersion then {p’s row has changed}(15)

V ersionp[p]← V ersionp[p] + 1(16)

UpdateV ersion← false(17)

forall q ∈ Π − {p} do(18)

send (ALIV E, p, next sendp[q], Mp, V ersionp) to q {sends a heartbeat}(19)

next sendp[q]← next sendp[q] + 1 {p updates its sequence number for q}(20)

|| Task 2: repeat periodically(21)

if
(

p did not receive (ALIV E, q, next receivep [q], Mq , V ersionq)
from q �= p during the last Δp(q) ticks of p’s clock

)
then

(22)

{the next message in the sequence has not been received timely}
Δp(q)← Δp(q) + 1(23)

if Mp[p][q] = 1 then(24)

Mp[p][q]← 0 {the potential omission is reflected in Mp}(25)

UpdateV ersion← true(26)

call update In Out Connected lists()(27)

|| Task 3: when receive (ALIV E, q, c, Mq , V ersionq) for some q(28)

if c = next receivep[q] then {it is the next message expected from q}(29)

call deliver next message(q, Mq , V ersionq) {the message is delivered}(30)

next receivep[q]← next receivep [q] + 1(31)

while (ALIV E, q, next receivep[q], Mq, V ersionq) ∈ Bufferp[q] do(32)

call deliver next message(q, Mq , V ersionq)(33)

remove (ALIV E, q, Mq , next receivep[q], V ersionq) from Bufferp[q](34)

next receivep [q]← next receivep[q] + 1(35)

if Bufferp[q] = ∅ then(36)

Mp[p][q]← 1 {so far p has received all messages from q}(37)

UpdateV ersion← true(38)

if Mp has changed then(39)

call update In Out Connected lists()(40)

else(41)

insert (ALIV E, q, c, Mq , V ersionq) into Bufferp[q](42)

Fig. 5. �P in the omission model: main algorithm

0. In this way, the matrix will have the information needed to calculate the lists
of in-connected and out-connected processes.

Actually, M represents the transposed adjacency matrix of a directed graph,
where the value of the element M [p][q] shows if there is an arc from q to p.
We can derive from powers of the adjacency matrix if there is a path with no

182 R. Cortiñas et al.

Result: InConnectedp and OutConnectedp lists

Procedure update In Out Connected lists()(43)

Ap ← (Mp)n {Ap is the n-th power of the Mp matrix}(44)

forall u, v ∈ Π do(45)

if Ap[u][v] > 0 then(46)

Ap[u][v]← 1(47)

In← ∅(48)

Out← ∅(49)

forall q ∈ Π do(50)

if (
∑ n−1

i=0 Ap[q][i] ≥ � (n+1)
2) then(51)

In← In ∪ {q}(52)

if (
∑ n−1

i=0 Ap[i][q] ≥ � (n+1)
2) then(53)

Out ← Out ∪ {q}(54)

InConnectedp ← In(55)

OutConnectedp ← Out(56)

Fig. 6. �P in the omission model: procedure update In Out Connected lists()

Input: q: process from which the message has been received; Mq : q’s knowledge about the
system; V ersionq : version number of each row of Mq

Result: update of Mp matrix and V ersionp vector

Procedure deliver next message()(57)

forall v ∈ Π do {q’s row of Mq is systematically copied into Mp}(58)

Mp[q][v]←Mq [q][v](59)

forall u ∈ Π − {p, q} do(60)

if V ersionq [u] > V ersionp[u] then {q’s information about u is more recent than(61)

p’s}
forall v ∈ Π do(62)

Mp[u][v]←Mq [u][v](63)

V ersionp[u]← V ersionq [u](64)

Fig. 7. �P in the omission model: procedure deliver next message()

omission of any length between every pair of processes. Observe that in the given
algorithm a process does not monitor itself and, as a consequence, the elements
of the main diagonal of the matrix are always set to 1. Taking this into account,
the n-th power of the adjacency matrix, Ap = (Mp)n, gives us the information we
need to obtain the sets of in-connected and out-connected processes. A process
p is in-connected if it is able to receive all the messages (either directly or indi-
rectly) from at least � (n+1)

2 � processes. Similarly, a process p is out-connected
if at least � (n+1)

2 � processes are able to receive (either directly or indirectly) all
the messages sent by p. The lists of in-connected and out-connected processes
are computed in the update In Out Connected lists() procedure, which is called
every time a value of the matrix Mp is changed.

In Task 1 (line 14), a process p periodically sends a heartbeat message to the
rest of processes. When a message is sent, the sequence number associated to the
destination is incremented. Observe that the matrix Mp is sent in the heartbeat
messages.

In Task 2 (line 21), if a process p does not receive the next expected message
from a process q in the expected time, the value of Mp[p][q] is set to 0.

Secure Failure Detection in TrustedPals 183

In Task 3 (line 28), received messages are processed. The messages a process
p receives from another process q are delivered following the sequence num-
ber next receivep[q]. Every process p has a buffer for every other process q to
store unordered messages received from q. If p receives a message from q with
a sequence number different from the expected one, this message is inserted in
Bufferp[q] and the message is not delivered yet (line 42). A message is delivered
when it is the next expected message, either because it has been just received
(line 30) or it is inside the buffer (line 33). If the delivered message was in the
buffer, it is removed from there. Having delivered the next expected message
from a process q, if the buffer is empty it means that there is no message left
from q, so Mp[p][q] is set to 1. This way, process p fills its corresponding row in
the matrix indicating if all the messages it expected from every other process
have been received timely.

The procedure deliver next message() is used to update the adjacency matrix
Mp using the information carried by the message. In the procedure, process
p copies into Mp the row q of the matrix Mq received from q. This way, p
learns about q’s input connectivity. With respect to every other process u, a
mechanism based on version numbers is used to avoid copying old information
about u’s input connectivity. Process p will only copy into Mp the row u of Mq

if its version number is higher.

4 �P-Based Consensus in TrustedPals

In the consensus problem, every process proposes a value, and correct processes
must eventually decide on some common value that has been proposed. In the
crash model, every correct process is required to eventually decide some value.
This is called the Termination property of consensus. In order to adapt consensus
to the omission model, we argue that only the Termination property has to be
redefined. This property involves now every in-connected process, since, despite
they can suffer some omissions, in-connected processes are those that will be
able to decide.

The properties of consensus in the omission model are the following:

– Termination. Every in-connected process eventually decides some value.
– Integrity. Every process decides at most once.
– Uniform agreement. No two processes decide differently.
– Validity. If a process decides v, then v was proposed by some process.

Figs. 8 and 9 present an algorithm solving consensus using �P in the omis-
sion model. It is an adaptation of the well-known Chandra-Toueg consensus
algorithm. Instead of explaining the algorithm from scratch, we just comment
on the modifications required to adapt the original algorithm:

– In Phase 2, the current coordinator waits for a majority of estimates while it
considers itself as in-connected in order not to block. Only in case it receives
a majority of estimates a valid estimate is sent to all. If it is not the case,

184 R. Cortiñas et al.

{Every process p executes the following}
Procedure propose(vp)(1)

estimatep ← vp {estimatep is p’s estimate of the decision value}(2)

statep ← undecided(3)

rp ← 0 {rp is p’s current round number}(4)

tsp ← 0 {tsp is the last round in which p updated estimatep , initially 0}(5)

{Rotate through coordinators until decision is reached}
while statep = undecided do(6)

rp ← rp + 1(7)

cp ← (rp mod n) + 1 {cp is the current coordinator}(8)

Phase 1: {All processes p send estimatep to the current coordinator}(9)

send (p, rp, estimatep , tsp) to cp(10)

Phase 2:(11) {
The current coordinator tries to gather � (n+1)

2 	 estimates. If it succeeds,
it proposes a new estimate. Otherwise, it sends a NEXT message to all

}

if p = cp then(12)

wait until(13) (
(p ∈ Π − InConnectedp) or
(for � (n+1)

2 	 processes q: received (q, rp, estimateq , tsq) from q)

)

if for � (n+1)
2 	 processes q: received (q, rp, estimateq , tsq) from q then(14)

successp ← TRUE(15)

msgsp[rp]← {(q, rp, estimateq , tsq) | p received(16)

(q, rp, estimateq , tsq) from q}
t← largest tsq such that (q, rp, estimateq , tsq) ∈ msgsp[rp](17)

estimatep ← select one estimateq such that (q, rp, estimateq , t)(18)

∈ msgsp[rp]
send (p, rp, estimatep) to all(19)

else(20)

successp ← FALSE(21)

send (p, rp, NEXT) to all(22)

Phase 3: {All processes wait for the new estimate proposed by the coordinator}(23)

wait until(24) ⎛
⎝ (p ∈ Π − InConnectedp) or

received [(cp, rp, estimatecp) or (cp, rp, NEXT)] from cp or
(cp ∈ Π −OutConnectedp)

⎞
⎠

if received (cp, rp, estimatecp) from cp then(25)

estimatep ← estimatecp(26)

tsp ← rp(27)

send (p, rp, ack) to cp(28)

else(29)

send (p, rp, nack) to cp(30)

Phase 4:(31) ⎧⎨
⎩

If the current coordinator sent a valid estimate in Phase 2, it waits for replies of
out-connected processes while it considers itself as in-connected. If � (n+1)

2 	
processes replied with ack, the coordinator R-broadcasts a decide message

⎫⎬
⎭

if (p = cp) and (successp = TRUE) then(32)

wait until

⎡
⎢⎢⎣

(p ∈ Π − InConnectedp) or

for all process q:

⎛
⎝ received (q, rp, ack) or

received (q, rp, nack) or
q ∈ Π −OutConnectedp

⎞
⎠

⎤
⎥⎥⎦

(33)

if for � (n+1)
2 	 processes q:received (q, rp, ack) then(34)

R-broadcast(p, rp, estimatep , decide)(35)

Fig. 8. Solving consensus in the omission model using �P : main algorithm

Secure Failure Detection in TrustedPals 185

{If p R-delivers a decide message, p decides accordingly}
when R-deliver(q, rq, estimateq , decide) do(36)

if statep = undecided then(37)

decide(estimateq)(38)

statep ← decided(39)

Fig. 9. Solving consensus in the omission model using �P : adopting the deci-
sion

the coordinator sends a NEXT message indicating that the current round
cannot be successful.

– In Phase 3, every process p waits for the new estimate proposed by the cur-
rent coordinator while p considers itself as in-connected and the coordinator
as out-connected in order not to block. Also, p can receive a NEXT message
indicating that the current round cannot be successful. In case p receives
a valid estimate, it replies with a ack message. Otherwise, p sends a nack
message to the current coordinator.

– In Phase 4, if the current coordinator sent a valid estimate in Phase 2, it
waits for replies of out-connected processes while it considers itself as in-
connected in order not to block. If a majority of processes replied with ack,
the coordinator R-broadcasts a decide message.

When a process p sends a consensus message m to another process q, the fol-
lowing approach is assumed: (1) p sends m to all processes, including q, except p
itself, and (2) whenever p receives for the first time a message m whose destina-
tion is another process q different from p, p forwards m to all processes (except
the process from which p has received m and p itself). Clearly, this approach
can take advantage of the underlying all-to-all implementation of the �P failure
detector.

5 Integrating Failure Detection and Consensus Securely

As depicted in Fig. 4, the TrustedPals layer receives messages from the consen-
sus protocol and from the failure detector. If an untrusted host could distinguish
protocol messages from failure detector messages he could intercept all former
messages while leaving the latter untouched. This would result in a failure de-
tector working properly but a consensus protocol to block forever. In order to
prevent such malicious actions we piggyback the protocol messages on the failure
detector messages, which are sent in regular time intervals. To make sure that
the adversary can not distinguish the packets with the protocol message piggy-
backed from the ones without protocol message, packets will have the same size,
i.e., failure detector messages are padded and protocol messages are divided into
a predefined length. It might be inefficient for small messages to be padded or
large packets split up in order to get a message of the desired size. However, it is
necessary to find an acceptable tradeoff between security and performance such
that a message size provides better security in expense of worse performance.

186 R. Cortiñas et al.

smartcard

protocol

failure detector

scrambler

Fig. 10. Smartcard with scrambler

We assume a scrambler which receives the protocol and failure detector mes-
sages and outputs equal looking messages of the same size in regular time in-
tervals (see Fig. 10). It proceeds as follows. Whenever a protocol message has
to be sent, it will be piggybacked on the failure detector message. If there is
no protocol message ready to be sent, the packet’s payload will be filled with
random bits. In order to be efficient, the predefined size of the messages sent
will be kept as small as possible. If a protocol message is too big, it will be di-
vided, using a fragmentation mechanism, and piggybacked into multiple failure
detector messages. Since the protocol is asynchronous, even long delays can be
tolerated as long as the failure detector works correctly.

Cryptography is applied to prevent and detect cheating and other malicious
activities. We use a public key cryptosystem for encryption. Each message m
in our model will be signed and then encrypted in order to reach authenticity,
confidentiality, integrity, and non-repudiation.

The source and destination address are encrypted because this enables the
receiver of a message to check whether the received message was intended for
it or not and who the sender was. Thus, a malicious process cannot change the
destination address in the header of a message from its security module and
send it to an arbitrary destination without being detected. To detect a message
deletion or loss, each message which is sent gets an identification number, where
the fragment offset field determines the place of a particular fragment in the
original message with same identification number.

As an example for the scrambler’s function, consider the situation where the
scrambler takes a protocol message m, whose size is three times the size of
a failure detector message, from the queue of protocol messages to be sent.
The scrambler divides the protocol message in three parts and assigns the next
available sequence number to each part. Also each part gets a fragment offset.
The first message part gets the fragment offset 1, the second message part gets
the fragment offset 2, and the last message part gets the fragment offset 3. Next,
the sequence number, all other fields, and the first message part all together are
signed with the private key of the sender. After that, the signature is encrypted.
Then, the next failure detector message is taken from the queue of failure detector
messages to be sent and the encrypted message part is inserted into the failure

Secure Failure Detection in TrustedPals 187

detector message payload. Now, the first message part is ready to be sent in the
next upcoming interval. The same is applied to the second and third part of the
protocol message.

References

1. Avoine, G., Gärtner, F., Guerraoui, R., Vukolic, M.: Gracefully degrading fair
exchange with security modules. In: Dal Cin, M., Kaâniche, M., Pataricza, A.
(eds.) EDCC 2005. LNCS, vol. 3463, pp. 55–71. Springer, Heidelberg (2005)

2. Avoine, G., Vaudenay, S.: Optimal fair exchange with guardian angels. In: Chae,
K.J., Yung, M. (eds.) Information Security Applications. LNCS, vol. 2908, pp.
188–202. Springer, Heidelberg (2004)

3. Benenson, Z., Fort, M., Freiling, F., Kesdogan, D., Penso, L.D.: Trustedpals: Secure
multiparty computation implemented with smartcards. In: Gollmann, D., Meier,
J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp. 306–314. Springer,
Heidelberg (2006)

4. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43(2), 225–267 (1996)

5. Chen, Z.: Java Card Technology for Smart Cards, 1st edn. Addison-Wesley, Read-
ing (2000)

6. Correia, M., Veŕıssimo, P., Neves, N.F.: The design of a COTS-Real-time dis-
tributed security kernel. In: Bondavalli, A., Thévenod-Fosse, P. (eds.) Dependable
Computing EDCC-4. LNCS, vol. 2485, pp. 234–252. Springer, Heidelberg (2002)

7. Cortiñas, R., Freiling, F.C., Ghajar-Azadanlou, M., Lafuente, A., Larrea, M.,
Penso, L.D., Soraluze, I.: Secure Failure Detection in TrustedPals. Technical Report
EHU-KAT-IK-07-07, The University of the Basque Country, (July 2007), Available
at http://www.sc.ehu.es/acwlaalm/

8. Delporte-Gallet, C., Fauconnier, H., Freiling, F.C.: Revisiting failure detection and
consensus in omission failure environments. In: Van Hung, D., Wirsing, M. (eds.)
ICTAC 2005. LNCS, vol. 3722, Springer, Heidelberg (2005)

9. Dolev, D., Friedman, R., Keidar, I., Malkhi, D.: Failure detectors in omission failure
environments. Technical Report TR96-1608, Cornell University, Computer Science
Department (September 1996)

10. Dolev, D., Friedman, R., Keidar, I., Malkhi, D.: Failure detectors in omission failure
environments. In: Proceedings of the 16th Annual ACM Symposium on Principles
of Distributed Computing, p. 286 (1997)

11. Doudou, A., Garbinato, B., Guerraoui, R.: Encapsulating failure detection: from
crash to Byzantine failures. In: Proceedings of the Int. Conference on Reliable
Software Technologies, Vienna (May 2002)

12. Dwork, C., Lynch, N.A., Stockmeyer, L.: Consensus in the presence of partial
synchrony. Journal of the ACM 35(2), 288–323 (1988)

13. Freiling, F.C., Guerraoui, R., Kouznetsov, P.: The failure detector abstraction.
Technical report, Department for Mathematics and Computer Science, University
of Mannheim (2006)

14. Hadzilacos, V.: Issues of Fault Tolerance in Concurrent Computations. PhD thesis,
Harvard University 1984, also published as Technical Report TR11-84

15. Kihlstrom, K.P., Moser, L.E., Melliar-Smith, P.M.: Byzantine fault detectors for
solving consensus. The Computer Journal 46(1) (2003)

http://www.sc.ehu.es/acwlaalm/

188 R. Cortiñas et al.

16. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems 4(3), 382–401 (1982)

17. MacKenzie, P., Oprea, A., Reiter, M.: Automatic generation of two-party com-
putations. In: ACM SIGSAC. SIGSAC: 10th ACM Conference on Computer and
Communications Security, ACM Press, New York (2003)

18. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay — A secure two-party compu-
tation system. In: USENIX. Proceedings of the 13th USENIX Security Symposium
(August 2004)

19. Babaoglu, Ö., Davoli, R., Montresor, A.: Group communication in partitionable
systems: Specification and algorithms. IEEE Trans. Softw. Eng. 27(4), 308–336
(2001)

20. Perry, K.J., Toueg, S.: Distributed agreement in the presence of processor and
communication faults. IEEE Transactions on Software Engineering 12(3), 477–482
(1986)

21. Sousa, P., Neves, N.F., Veŕıssimo, P.: Proactive resilience through architectural hy-
bridization. In: Proceedings of the 2006 ACM Symposium on Applied Computing,
pp. 686–690 (2006)

22. Yao, A.C.: Protocols for secure computations. In: Proceedings of the Twenty-Third
Annual Symposium on Foundations of Computer Science, pp. 160–164 (1982)

Probabilistic Fault-Containment

Anurag Dasgupta1, Sukumar Ghosh2, and Xin Xiao3

1 University of Iowa, USA
adasgupt@cs.uiowa.edu

2 University of Iowa, USA
ghosh@cs.uiowa.edu

3 University of Iowa, USA
xinxiao@cs.uiowa.edu

Abstract. Research on fine tuning stabilization properties has received
attention for nearly a decade. This paper presents a probabilistic algo-
rithm for fault-containment, that confines the effect of any single fault
to the immediate neighborhood of the faulty process, with an expected
recovery time of O(Δ3). The most significant aspect of the algorithm is
that the fault-gap, defined as the smallest interval after which the system
is ready to handle the next single fault with the same efficiency, depends
only on Δ, and is independent of the network size. We argue that a small
fault-gap increases the availability of the fault-free system.

1 Introduction

A distributed system is self-stabilizing, when starting from an arbitrary initial
configuration, the system returns to a legitimate configuration in a bounded
number of steps, and remains in that configuration thereafter. Such arbitrary
configurations may be caused by transient failures that can corrupt the system
state. However, in most well-designed systems, the possibility of a massive failure
is miniscule, and single failures are much more likely to occur. To increase the
efficiency of fault-tolerance, it is important to guarantee a much faster recovery
from all single failures, while also guaranteeing eventual recovery from more
major failures.

The problem of containing the effect of minor failures is becoming important
not only because they are more likely to occur, but also due to the dramatic
growth of network sizes. In most self-stabilizing systems, a single transient fail-
ure can potentially contaminate a large portion of the system. The tight contain-
ment of the effect of single failures depends on the context: containment in time
implies that all observable variables of the system recover to their legitimate
values in O(1) time, whereas containment in space means that the processes
at O(1) distance from the faulty process make observable changes. For optimal
performance, both of these properties should hold.

An important issue in system design is the mean time between failures, com-
monly termed as MTBF. Once a fault-containing system recovers from a single
failure in constant time, how much time will elapse before the system becomes

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 189–203, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

190 A. Dasgupta, S. Ghosh, and X. Xiao

ready to recover from the next single failure with the same efficiency, is an im-
portant metric, and is called the fault-gap [6]. If the next failure hits the system
sooner than this period, then the guarantee of O(1) time recovery falls apart.
Thus fault-gap determines the availability of the fault-free system, and a low
fault-gap reflects better availability. The growth of the network size increases
the probability of the occurrence of failures. So scale-free fault-gap is an impor-
tant design goal.

1.1 Our Contributions

In this paper, we present a probabilistic solution to the fault-containment prob-
lem for a class of distributed systems. The solution transforms a self-stabilizing
distributed system S into a system T that is both weakly fault-containing and
self-stabilizing, with a randomized scheduler. Weak fault-containment means
that from all single failures, the expected recovery time of the transformed ver-
sion is dependent only on the degree of the nodes, and independent of the net-
work size. Furthermore, observable changes are confined to only the immediate
neighbors of the faulty processes with a high probability. In addition to the weak
fault-containment property, T recovers from all k-faulty (k > 1) configurations
in O(k.n) steps.

Why should anyone care about an algorithm that allows the neighbors to
be contaminated, when better solutions are available? The answer lies in the
small fault-gap. The dramatic growth of the network size raises the probability
of failures, and most solutions to fault-containment that we know of achieve a
fault-gap of O(n) or worse. As a result, when two single faults occur relatively
quickly, the system fails to provide the guarantee of efficient recovery, and in
fact the second single failure may require O(n) (or higher) time for recovery.
This seriously undermines the availability of the fault-free system. Our solution
guarantees that the fault-gap depends only on the degree of the nodes, and
is independent of the size of the network. This will significantly increase the
availability of the fault-free system. In fact, our solution handles the recovery
from simultaneous failures at nodes that are distance-3 apart with the same
efficiency, as long as such failures occur at intervals of O(Δ3) or higher.

1.2 Related Work

Kutten and Peleg [11] introduced a protocol for fault-mending that corrects the
systems from minor failures, but provides no guarantee for stabilization. Ghosh et
al [6][7] demonstrated how containment can be combined with stabilization, and
analyzed the cost of it. Dolev and Herman introduced superstabilizing protocols
[4], that, in addition to being stabilizing, guarantee that during convergence from
configurations that arise from legitimate states by small-scale topology changes,
certain passage predicates are satisfied.

For specific problems, self-stabilizing protocols that exhibit certain fault-
containment properties have been studied: [5] solves the leader election problem

Probabilistic Fault-Containment 191

on a ring, [8] addresses the spanning tree construction problem, and [9] demon-
strates BFS tree construction.

Herman’s self-stabilizing protocol [10] for mutual exclusion on a ring contains
the effect of any spurious token that may have been generated by a single-
process fault. Kutten and Patt-Shamir [12] proposed an asynchronous stabilizing
algorithm for the persistent-bit problem – their solution leads to recovery in O(k)
time from any k-faulty configuration. A similar protocol for mutual exclusion
appears in [1]. Recently, Beauquier et al investigated the 1-strong property [2]
that guarantees strong spatial confinement, and time-adaptive recovery.

1.3 Organization of the Paper

This paper has seven sections. Section 2 describes the model of computation.
Section 3 presents the main algorithm for fault-containment. Section 4 presents
the important results and their proofs. Section 5 presents a bounded version of
the unbounded solution of Section 3. The experimental results are summarized
in Section 6. Section 7 contains some concluding remarks. Finally, the proof of
the main theorem of Section 3 appears in the Appendix.

2 The Model of Computation

Let G = (V, E) denote the topology of a distributed system, where V represents
the set of processes {0, 1, · · · , n − 1} , and each edge (i, j) ∈ E represents a
bidirectional link between processes i and j. We use the notation Ni to represent
the neighbors of i: thus (i, j) ∈ E ⇔ j ∈ Ni. Processes communicate with
their immediate neighbors (also called the distance-1 neighbors) using the shared
memory model. Each process i executes a program that consists of one or more
guarded actions g → A, where g is a predicate involving the variables of i and
those of its immediate neighbors, and A is an action that updates one or more
variables of i. A central demon serializes all guarded actions. The global state
consists of the local states of all the processes. A computation of the system is
a finite or infinite sequence of global states that satisfies two properties: (a) if s
and s′ are two consecutive states in the sequence, then there exists a process i
such that i has an enabled guard in s and execution of the corresponding action
results in the state s′, and (b) if the sequence is finite, then in the last state
of the sequence, no process has an enabled guard. We assume a randomized
scheduler, where the central demon randomly chooses an action with an enabled
guard with uniform probability. We focus on a class of systems for which actions
are reversible, i.e. if there exists an action that changes the state from s to s′,
then there exists another action that changes the state from s′ to s.

A stabilizing system converges to a legitimate configuration L that is ordi-
narily defined in terms of the observable or primary variables. However, in most
cases, fault-containment requires the use of auxiliary or secondary variables too.
Define the local state of each process i as an ordered pair 〈pi, si〉, where pi

denotes the primary variables, and si denotes the secondary variables. Corre-
spondingly, we write the global state as an ordered pair 〈p, s〉, where p is the

192 A. Dasgupta, S. Ghosh, and X. Xiao

collection all primary variables and s is the collection of all secondary variables.
For a legitimate configuration L, 〈p, s〉 ∈ L ⇒ p ∈ Lp and s ∈ Ls. The contain-
ment time Tc is the time needed to establish Lp from any 1-faulty configuration,
and ideally it should be O(1). The stabilization time Ts is the maximum time
needed to establish L from an arbitrary initial configuration. After the system
recovers from a single fault in O(1) time, and before it is ready to recover from
the next single fault in O(1) time, both p and s need to stabilize. The maximum
time between these two events is the fault gap. Thus, it is the worst case time,
starting from any 1-faulty state, to reach a state in L. Finally, the contamination
number is the maximum number of processes that change the primary part of
their local states during recovery from any 1-faulty configuration.

3 Probabilistic Algorithms for Fault-Containment

For the sake of exposition, we consider the persistent-bit protocol, in which a
set of processes maintains the value of a replicated bit v ∈ {0, 1} across a con-
nected network. Thus L ≡ ∀i, j : v(i) = v(j), and there are two distinct legal
configurations. Using a randomized demon, the following protocol is trivially
stabilizing:

Algorithm 1. Program for process i

do ∃j ∈ Ni : v(j) �= v(i) → v(i) := v(j) od

We begin with the following lemma about Algorithm 1:

Lemma 1. The persistent bit protocol is not fault-containing with a randomized
demon.

Proof. Consider a linear array of processes numbered 0, 1, . . . , n − 1 from left
to right, and assume that initially ∀i : v(i) = 1 holds. Let a failure of process
0 change v(0) to 0. With this as the starting state, the computation can be
reduced to a run of gambler’s ruin1: whenever a process with v = 0 executes an
action, the boundary between the dissimilar values of v shifts to the left, and
whenever a process with v = 1 executes an action, the boundary moves to the
right. The game is over when the system reaches L, and per [3] the expected
number of moves needed is (1 × n − 1), i.e. O(n). Thus, the protocol is not
fault-containing. �

Note. With a deterministic demon, the protocol is not even stabilizing. (End of
note)

1 The original study is by Coolidge[3] in 1909, where he showed that if two gambler
start with capitals of x and N − x, and each fair coin toss transfers a dollar from
one to the other depending on the outcome of the toss, then the expected number
of steps to finish the game is x.(N − x).

Probabilistic Fault-Containment 193

To make the protocol fault-containing, we add to each process i a secondary
variable x(i) whose domain is the set of non-negative integers. In a way, x(i) will
reflect the priority of process i in executing an action to update v(i). Process i
will update v(i), when the following three conditions hold:

1. The randomized scheduler chooses i,
2. ∃j ∈ Ni : v(j) �= v(i), and
3. ∀j ∈ Ni : x(i) ≥ x(j).

After updating v(i), process i will increase x(i) to max {x(j) : j ∈ Ni} + m,
where m > 0. In case only the first two conditions hold, but not the third, process
i will increment the value of x(i) by 1, and leave v(i) unchanged. Algorithm 2
shows the modified protocol:

Algorithm 2. Program for process i

do {action 1} ∃j ∈ Ni : v(j) �= v(i) ∧ ∀k ∈ Ni : x(i) ≥ x(k) →
v(i) := v(j); x(i) := max{x(k) : k ∈ Ni} + m

� {action 2} ∃j ∈ Ni : v(j) �= v(i) ∧ ∃ k ∈ Ni : x(i) < x(k) →
x(i) := x(i) + 1

� {action 3} ∀j ∈ Ni : v(j) �= v(i) → v(i) := v(j)
od

Observe that once a process i updates v(i), it becomes difficult for its neigh-
bors to change their v-values, since their x-values will lag behind that of i. The
larger is the value of m, the greater is the difficulty. A neighbor j of i will be able
to update v(j) only if it is chosen by the random scheduler m times, without
choosing i even once. On the other hand, it becomes easier for i to update v(i)
again in the near future.

Failures can not only corrupt v, but also corrupt x. Assume that L ≡ ∀j :
v(j) = 1, a single failure at process i changes v(i) to 0, and x(i) to some unknown
value. If ∀j ∈ Ni : x(i) > x(j) then process i is likely to change its v(i) soon
again. As a result, the fault is contained in a small number of steps, and the
contamination number is one. However, a smart adversary injecting the failure
at process i is likely to set x(i) to the smallest value (i.e. 0). This makes the
neighbors of process i better candidates for changing their v, before process i
executes a move to complete the recovery. However, it also raises the x-values
of these neighbors of i above those of their neighbors. In order that the fault
percolates to a node at distance-2 from the faulty process i, such a distance-2
node has to be chosen by the scheduler at least m times, without choosing its
neighboring distance-1 node even once. With a large value of m, the probability
of such an event is very low. This explains the mechanism of containment. In
the mean time, the condition ∀j ∈ Ni : v(j) = 1 is likely to hold several times. If
on one such occasion the faulty process is chosen by the random scheduler (the
third action, note that its guard does not depend on x) then v(i) will change to
1, and the recovery will be complete.

194 A. Dasgupta, S. Ghosh, and X. Xiao

4 Results

We begin with an analysis of the spatial containment. Assume that all nodes
have a degree Δ. Then the following theorem holds:

Theorem 1. When m is large, the effect of a single failure is restricted to only
the immediate neighbors of the faulty process.

Proof. Suppose the faulty process has n1 neighbors and the contaminated pro-
cess has n2 neighbors that are distance-2 neighbors of the faulty process. The
probability that a distance-2 neighbor is contaminated is largest, when only one
distance-1 process is contaminated, then only one neighbor of that contami-
nated distance-1 process (which is a distance-2 neighbor of the faulty process)
is contaminated. The probability of one distance-1 neighbor being contaminated
is n1

n1+1 . To contaminate a distance-2 neighbor, the scheduler must select the
specific process m times. So the probability of one distance-2 neighbor being
contaminated is 1

(n1+n2+1)m . Therefore, after a node becomes faulty, the proba-
bility that some distance-2 neighbor of the faulty process becomes contaminated
is n1

n1+1 × n2 × 1
(n1+n2+1)m . By choosing a large value of m, this probability can

be made as small as possible. �

Theorem 2. If Δ << m then the expected number of steps needed to contain a
single fault is O(Δ3).

Proof. The proof appears in the Appendix.

Theorem 2 paints a pessimistic picture about the containment time when the
graph is dense, i.e. Δ = O(n). The containment time is not O(1) anymore. How-
ever, spatial containment property still holds in as much as the contamination
number is between 1 and Δ w.h.p. The more dense the graph is, the smaller is
the contamination number. Below, we separately analyze the extreme case of a
dense topology: a completely connected graph.

Theorem 3. For a completely connected graph, if m >> 1 then the contamina-
tion number is 1 with high probability.

Proof. At least one neighbor j of the faulty process i is likely to update v(j),
and raise x(j) at least m steps above the x-values of the rest. To prevent a
second neighbor k from updating v(k), the system must recover to L before
the scheduler chooses the neighbor k at least m times, without choosing j even
once. We use P{n0, n1, n2, . . . , ni, ni+1, . . . , nΔ−1} to denote the probability that
∀i, 1 ≤ i ≤ Δ, node i is chosen ni times. So the probability of node k being chosen
m times before j being chosen even once is:

P{n0, n1, n2, . . . , nj−1, nj = 0, nj+1, . . . , nk = m, . . . , nΔ−1} (1)
∀i, 0 ≤ i ≤ Δ − 1 ∧ i �= j, ni ≤ m.

With increasing ni, 1 ≤ i ≤ Δ ∧ i �= j (1) is decreasing (see Lemma 2 in the
Appendix for a proof). So the above probability is maximum when node k is

Probabilistic Fault-Containment 195

consecutively chosen m times, and other nodes are never chosen. The maximum
probability is:

P{0, 0, . . . , 0, m, 0, . . . , 0, 0} =
1

Δm
(2)

Since ni, 0 ≤ i ≤ Δ − 1 ∧ i �= j can be any value between 0 and m, and there
are totally mΔ−2 possible situations, we apply the maximum estimate to each
such case. As a result, the probability of the system having two contaminated
processes is no larger than mΔ−2

Δm , which approaches 0 as m approaches ∞. �

The mechanism will reveal that a high clustering coefficient limits the probabil-
ity of contamination to only a small fraction of the distance-1 neighbors. The
completely connected graph exhibits an extreme form of this property.

4.1 Computing the Availability

An interesting aspect of the proposed algorithm is that Ls = true, thus there is
no overhead for stabilizing the secondary variables. So, L holds as soon as Lp

holds. This leads to the following theorem:

Theorem 4. For single failures, the fault gap equals the containment time.

As a consequence of this, within an expected time of O(Δ3) after each single
failure, the system is ready to withstand the next single failure with the same
efficiency. Furthermore, since only the distance-1 neighbors are contaminated
with high probability, the proposed algorithm enables the system to recover from
all concurrent failures of nodes that are distance-3 or more apart with the same
efficiency. This significantly increases the availability of the system compared to
existing solutions that we know of.

5 A Bounded Solution

A drawback of the proposed solution is that the x-variables grow in an un-
bounded manner, and it affects the implementability of the protocol. To address
this, we will now transform the solution into one that relies on bounded variables
only.

In Algorithm 2, when a process i executes action 1, it raises the value of x(i)
so that ∀j ∈ Ni : x(j) < x(i) holds. This makes process i a local leader, and
when the local leader is chosen by the scheduler, it immediately executes its
action to update v(i). Let us set an upper bound M − 1 for x, where M is an
odd integer and M > 1 Furthermore, we let actions 1 and 3 increment x mod
M . To make x(j) “less than” x(i), we have to define the less than operation ≺
appropriately. We define it as follows:

if x(j) ∈ {x(i) + 1 mod M , x(i) + 2 mod M , . . ., x(i) + M−1
2 mod M}

then x(i) ≺ x(j) else x(j) ≺ x(i)

196 A. Dasgupta, S. Ghosh, and X. Xiao

Fig. 1. (a) Identifying the ports of a node, (b) With M = 9, there is no local leader
here

Clearly, ≺ is not transitive. In order that the condition ∀j ∈ Ni : x(j) ≺ x(i)
holds, we will treat each x as a vector (and denote it henceforth by X) with Δ
elements 0, 1, . . . , Δ − 1. Let the kth port of process i be connected to the lth

port of process j (Fig. 2(a)). We denote this by ((i, k), (j, l)) ∈ E. A process i
will execute action 1 when

∃j ∈ Ni : v(j) �= v(i), ∧
∀k ∈ Ni : ((i, u), (k, w)) ∈ E, X(k, w) ≺ X(i, u).
We also modify the last part of action 1 as:

∀k ∈ Ni : ((i, u), (j, w)) ∈ E, X(i, u) := X(j, w) + M−1
2 mod M

The above modification explicitly forces the condition X(k, w) ≺ X(i, u) across
each edge (i, k) of node i connecting to a neighbor, and establishes process i as
a local leader, by setting the components of X at a maximum distance “above”
those of its neighbors. Algorithm 3 shows the bounded version of Algorithm 2.
The purpose of the second action is to let the non-leaders gradually “catch up”
with a neighboring local leader, and is an adaptation od action 2 in Algorithm
2.

Algorithm 3. The bounded solution: Program for process i

do {action 1} ∃j ∈ Ni : v(j) �= v(i) ∧
∀k ∈ Ni : ((i, u), (k, w)) ∈ E, X(k, w) ≺ X(i, u) →
v(i) := v(j); ∀k ∈ Ni : ((i, u), (j, w)) ∈ E,
X(i, u) := X(j, w) + M−1

2 mod M
� {action 2} ∃j ∈ Ni : v(j) �= v(i) ∧ ∃k ∈ Ni : ((i, u), (k, w)) ∈ E ∧

X(i, u) ≺ X(k, w) → X(i, u) := X(i, u) + 1 mod M
� {action 3} ∀j ∈ Ni : v(j) �= v(i) → v(i) := v(j)
od

Using the modified interpretation of the “less than” relation ≺, and by replac-
ing m by M−1

2 , Algorithm 3 becomes semantically equivalent to Algorithm 2.

Probabilistic Fault-Containment 197

However, by converting x into a vector X , there is no guarantee that there will
be always be a local leader (Fig. 2(b)) ready to execute action 1. If the initial
configuration is 1-faulty, and the scheduler chooses the faulty process, then this
is not a concern, since action 3 does not rely on the x values at all. However,
this may be an issue when the system starts from a k-faulty configuration and
k > 1 We close our arguments by discussing the impossibility of deadlock in
Algorithm 3.

Theorem 5. Algorithm 3 guarantees that starting from any initial configura-
tion, eventually some node is elected as a local leader.

Proof. Assume that the system starts with a configuration where there is no local
leader eligible to execute action 1. The possibility of some non-leader becoming
a local leader requires that the scheduler chooses it M−1

2 times without choosing
a neighbor even once. The probability of this event is 2−

M−1
2 . �

Once a local leader is elected, there always exists at least one local leader until
the recovery is complete. Thus the time 2

M−1
2 is an additional start-up cost that

needs to be added to the stabilization time.

Theorem 6. On an array of processes, the expected number of moves needed to
stabilize from a failure of k contiguous nodes is O(k.n).

Proof. On an array of processes numbered 0 through n − 1 from left to right,
assume that initially ∀i : v(i) = 1 holds. Let a failure change the values of v(0)
through v(k−1) (1 < k < n) to 0. Whenever the node to the left of the boundary
(between 0 and 1) executes move to update its v, the boundary moves one place
to the left. Similarly, when the node to the right of the boundary makes a move
to update its v, the boundary moves to the right. The system will stabilize when
all v become identical.

The probability of the boundary moving to the right (or to the left) is 2−
M−1

2 ,
and the balance reflects the probability of the boundary remaining unchanged.
We reduce this computation to a version of gambler’s ruin where to win or lose
a dollar (call it a step), not one, but M−1

2 consecutive heads or tails of a fair
coin will be necessary2. It follows from [3] that, the expected number of steps
needed to finish the game is k × (n − k). Since each step here costs an expected
number of 2

M−1
2 moves, the expected number of moves needed to finish the game

is 2
M−1

2 .k.(n − k). �

To validate this result on a general topology, we need to analyze gambler’s ruin
in multiple dimensions. This is beyond the scope of the current paper. We leave
this as a conjecture. Based on the fact that a legal configuration is reachable,
the following theorem is a weaker version of the result.

Theorem 7. Algorithm 2 is stabilizing.
2 One extra step will be needed whenever the fortune changes from one player to the

other, but with large M , we ignore the impact of this, and map the computation to
a Markov process.

198 A. Dasgupta, S. Ghosh, and X. Xiao

6 Experimental Results

We ran simulation experiments to study the containment property for graphs
with various degrees, and different values of m. In the first experiment, the
topology is a multidimensional torus with each node having a degree of Δ, and
in each dimension there are 9 nodes (so n = 9Δ). The initial values of x were
randomly chosen. For a given Δ, after a single fault is injected, the fraction of
cases where the fault is successfully contained increases as m increases. This is
consistent with the analysis – the value of m represents the effectiveness of the
“fence” around the faulty zone.

0 2 4 6 8 10 12
degree0

1000

2000

3000

4000

5000
containment time

m�15

m�7

m�5

0 2 4 6 8 10 12
degree0

1000

2000

3000

4000

5000
containment time

m�15

m�7

m�5

0 2 4 6 8 10 12
degree0

1000

2000

3000

4000

5000
containment time

m�15

m�7

m�5

0 5 10 15 20
m

0.0

0.2

0.4

0.6

0.8

1.0
fraction of cases

cn�3

cn�2

cn�1

0 5 10 15 20
m

0.0

0.2

0.4

0.6

0.8

1.0
fraction of cases

cn�3

cn�2

cn�1

0 5 10 15 20
m

0.0

0.2

0.4

0.6

0.8

1.0
fraction of cases

cn�3

cn�2

cn�1

Fig. 2. (a) Stabilization time for various values of m with Δ as a parameter. (b)
Fraction of nodes that are contaminated at distances 1 and 2 from the faulty node for
various values of m.

Also, the stabilization time increases for smaller values of m, since the fault
contaminates a small number of nodes beyond the distance-1 neighbors, and
recovery from multiple failures is inefficient. (This explains the existence of a
knee in the curves). When Δ increases (but the fault is successfully contained),
for a long time, the system may be in a “stuttering mode” since neither the fault
propagates beyond the distance-1 neighbors, nor the recovery is complete.

A second experiment conducted on a (30 × 30) grid measured the fraction of
cases where the fault was not contained after 900 moves. When m = 5, the fault
is successfully contained in 96% of the cases, and for m = 10 the number exceeds
99% (Fig. 2(b)).

7 Conclusion

The proposed algorithm allows the immediate neighbors of the faulty process to
be contaminated. However with high probability, the failure does not propagate
to the distance-2 neighbors and beyond. One can use m (or M for the bounded
version of the solution) as a tuning parameter to tune the performance of the

Probabilistic Fault-Containment 199

protocol. A lower value of m allows faster recovery at the expense of an increase
in the contamination number, and the recovery time from multiple failures.

The major advantages of the proposed technique is that the fault-gap is in-
dependent of the network size. This increases the availability of the system by
restoring the system’s readiness to efficiently tolerate the next single fault within
a short time. This is where our algorithm is different from other algorithms,
where the fault-gap is O(n) or worse.

As the degree of the nodes increases, the stabilization time increases fairly
rapidly. Therefore the algorithm is suitable for sparse topologies. When the topol-
ogy is dense or the clustering coefficient is large, although the stabilization time
increases, a smaller fraction of the distance-1 neighbors is contaminated.

We believe that the solution to the persistent bit problem can be utilized
to find fault-containing algorithms for more general problems. The task is non-
trivial, and the details will be the topic for a future work.

References

1. Beauquier, J., Genolini, C., Kutten, S.: Optimal reactive k-stabilization the case
of mutual exclusion. In: Proceedings of the 18th Annual ACM Symposium on
Principles of Distributed Computing, pp. 209–218. ACM Press, New York (1999)

2. Beauquier, J., Delaet, S., Haddad, S.: A 1-Strong Self-Stabilizing Transformer. In:
Proceedings of the Eighth Symposium on Self-Stabilizing Systems (2006)

3. Coolidge, J.L.: The Gambler’s Ruin. The Annals of Mathematics 10(4), 181–192
(1909)

4. Dolev, S., Herman, T.: Superstabilizing protocols for dynamic distributed systems.
In: Proceedings of the Second Workshop on Self-Stabilizing Systems, pp. 3.1–3.15
(1995)

5. Ghosh, S., Gupta, A.: An exercise in fault-containment: Self- stabilizing leader
election. Informat. Process. Lett. 5(59), 281–288 (1996)

6. Ghosh, S., Gupta, A., Herman, T., Pemmaraju, S.V.: Fault-containing self-
stabilizing distributed protocols. Distributed Computing, 53–73 (June 2007)

7. Ghosh, S., Gupta, A., Herman, T., Pemmaraju, S.V.: Fault- containing self-
stabilizing distributed algorithms. In: Proceedings of the 15th Annual ACM Sym-
posium on Principles of Distributed Computing, pp. 45–54. ACM Press, New York
(1996)

8. Ghosh, S., Gupta, A., Pemmaraju, S.V.: A fault-containing self-stabilizing algo-
rithm for spanning trees. J. Comput. Informat. 2, 322–338 (1996)

9. Ghosh, S., Gupta, A., Pemmaraju, S.V.: Fault-containing network protocols. In:
Proceedings of 12th Annual ACM Symposium on Applied Computing, ACM Press,
New York (1997)

10. Herman, T.: Superstabilizing mutual exclusion. In: Proceedings of 1st International
Conference on Parallel and Distributed Processing: Techniques and Applications
(1995)

11. Kutten, S., Peleg, D.: Fault-local distributed mending. In: Proceedings of the 14th
Annual ACM Symposium on Principles of Distributed Computing, pp. 20–27. ACM
Press, New York (1995)

12. Kutten, S., Patt-Shamir, B.: Stabilizing time-adaptive protocols. Theor. Comput.
Sci. 220, 93–111 (1999)

200 A. Dasgupta, S. Ghosh, and X. Xiao

Appendix

Proof of Theorem 3

Assume m (or M for the bounded solution) is very large, so the error is un-
likely to propagate to the distance-2 neighbors of the faulty process. In such
a scenario, it is sufficient to consider the case when the error propagates to
the immediate neighbors of the 1-faulty process. The state transfer diagram
showing the transitions among various faulty configurations is shown in
Fig. 3.

0 1 2 3

i i+1 i+2

Δ Δ + 1

1
Δ+1

1
2Δ

1
Δ+1

Δ
2Δ

2
3Δ−1

Δ−1
2Δ

2Δ−1
3Δ−1

i
(Δ+1)+i(Δ−1)

1+i(Δ−1)
(Δ+1)+i(Δ−1)

Δ−1
(Δ+1)+i(Δ−1)

Δ
(Δ+1)+Δ(Δ−1)

1+Δ(Δ−1)
(Δ+1)+Δ(Δ−1)

Fig. 3. Each node is a state corresponding to the size of the faulty region, and the
label on each edge represents the probability of the corresponding state transition

As the error will propagate at most to the immediate neighbors, the system
can have at most Δ+1 errors. We use pi,j to denote the probability that the
number of the errors changes from i to j. So the probabilities are listed below:

p1,0 =
1

Δ + 1
(3)

p2,1 =
1

2Δ
(4)

p2,2 =
Δ

2Δ
(5)

p1,2 =
1

Δ + 1
(6)

Probabilistic Fault-Containment 201

and for 3 ≤ i ≤ Δ − 1

pi,i+1 =
i

(Δ + 1) + i(Δ − 1)
(7)

pi+1,i+1 =
1 + i(Δ − 1)

(Δ + 1) + i(Δ − 1)
(8)

pi+1,i+2 =
Δ − 1

(Δ + 1) + i(Δ − 1)
(9)

and
pΔ+1,Δ =

Δ − 1
(Δ + 1) + Δ(Δ − 1)

(10)

pΔ+1,Δ+1 =
1 + Δ(Δ − 1)

(Δ + 1) + Δ(Δ − 1)
(11)

We use P [X] to denote the probability that the system recovers using x moves.
The expected number of moves needed is

E = 1 × P [1] + 2 × P [2] + 3 × P [3] + · · ·

=
∞∑

x=1

XP [X].

We can calculate P [X] as following using (3), (6), (4):

P [1] = p1,0 =
1

Δ + 1
(12)

P [2] = 0 (13)

P [3] = p1,2p2,1p1,0 =
1

Δ + 1
1

2Δ

1
Δ + 1

=
1

2Δ(Δ + 1)2
(14)

P [4] = p1,2p2,2p2,1p1,0 =
1

Δ + 1
Δ

2Δ

1
2Δ

1
Δ + 1

(15)

and for n ≥ 1, we get the following recursive function of P [2n+2] using P [2n+1]:

P [2n + 2] = 2
m∑

j=2

pj,jP [2n + 1] (16)

If n + 1 < Δ + 1 then m=n. If n + 1 > Δ + 1 then m = Δ + 1. This is because
if n + 1 < Δ + 1, using 2n + 2 steps, the system can reach at most the n + 1-th
state. So the repeated moves can happen in any state within the n-th state. But
if n + 1 > Δ + 1, the system can move through all the states, so the repeated
moves can happen anywhere within the Δ + 1 states.

202 A. Dasgupta, S. Ghosh, and X. Xiao

We can also write P [2n + 3] using P [2n + 1] as:

P [2n + 3] = 2
m∑

j=2

m∑
i=2

pj,jpi,iP [2n + 1] + 2
m′∑
k=2

pi,i+1pi+1,iP [2n + 1] (17)

The values of m and m′ are the same as in (16). The system can have either
two additional moves that do not change the current state, or the system can
first reach a state in one step and come back in the next step. So we substitute
P [1], P [2], P [3], P [4] using (12), (13), (14), (15), (16), (17) in (12) and let
pmax = max{pi,j , ∀i, ∀j}:

E = 1 × P [1] + 2 × P [2] + 3 × P [3] + 4 × P [4]

+

∞∑
n=2

{(2n + 1)P [2n + 1] + (2n + 2)P [2n + 2] + (2n + 3)P [2n + 3]}

= 1 × 1

Δ + 1
+ 2 × 0 + 3 × 1

2Δ(Δ + 1)2
+ 4 × 1

4Δ(Δ + 1)2

+
∞∑

n=2

{(2n + 1) + 2(2n + 2)
m∑

j=2

m∑
i=2

pi,ipj,j + (2n + 3)(2
m′∑
i=2

pi,i+1pi+1,i

+ 2

m′′∑
j=2

m′′∑
i=2

pi,ipj,j)} × P [2n + 1]

< O(
1

Δ2) +
∞∑

n=2

{(2n + 1)p2n+1
max + 2(2n + 2)Δ2p2n+2

max + (2n + 3)(2Δ + 2Δ2)p2n+3
max }

=
∞∑

n=2

(2n + 1)p2n+1
max + 2Δ2

∞∑
n=2

(2n + 2)p2n+2
max + (2Δ + 2Δ2)

∞∑
n=2

(2n + 3)p2n+3
max .

Let T1 =
∑∞

n=2(2n + 1)p2n+1
max , T2 = 2Δ2 ∑∞

n=2(2n + 2)p2n+2
max , T3 = (2Δ +

2Δ2)
∑∞

n=2(2n + 3)p2n+3
max . As T3’s order is the same as T2 and larger than T1,

we just need to calculate T3.

T3 = (2Δ + 2Δ2)
∞∑

n=2

(2n + 3)p2n+3
max

= (2Δ + 2Δ2)(2p3
max

∞∑
n=2

np2n
max + 3pmax

∞∑
n=2

p2n
max)

= (2Δ + 2Δ2)[2p3
max(

2p4
max

1 − p2
max

+ p6
max) + 3p3

max

1
1 − p2

max

]

= (2Δ + 2Δ2)
4p7

max + 2p3
maxp6

max(1 − p2
max) + 3p3

max

1 − p2
max

.

Probabilistic Fault-Containment 203

Let pmax = a
Δ+a , a = 1 + Δ(Δ − 1):

T3 = (2Δ + 2Δ2)
4a7(Δ + a)2 + 2a9 + 3a3(Δ + a)6

(Δ2 + 2Δa)(Δ + a7)

= O(Δ2) × O(a9)
O(Δ3)O(a7)

=
O(a2)
O(Δ)

= O(Δ3).

So we get

E = O(
1

Δ2) + O(Δ3) = O(Δ3) (18)

�

Lemma 2. The probability that node k is chosen m times before node j is chosen
once is maximum when node k is consecutively chosen m times and other nodes
are never chosen

Proof. The probability that node k is chosen m times before node j is chosen
once is:

P{nk = m, nj = 0} =
Δ∑

i=1∧i�=j∧i�=k

m∑
ni=0

P{n1, n2, . . . , nj = 0, . . . , nk = m, . . . , nΔ}

=
(∑Δ

i=1 ni

n1

) (∑Δ
i=2 ni

n2

)
. . .

(∑Δ
i=j ni

0

)
. . .

×
(∑Δ

i=k ni

m

)
. . .

(∑Δ
i=Δ ni

nΔ

) (
1
Δ

)∑ Δ
i=1 ni

= l ×
(

1
Δ

)q

.

If we increase any ni, 1 ≤ i ≤ Δ∧ i �= j ∧ i �= k to ni +1, we can see this selection
process as follows: first do the selection in the same way as before we increase
ni, then choose any one of the eligible process. There are in all Δ − 1 processes
that can be chosen for the last step, and the probability of choosing any one of
them is 1

Δ , so the probability will be l × (Δ − 1) ×
(1

Δ

)q+1 and this is smaller
than l ×

(1
Δ

)q. So the probability that node k is chosen m times before choosing
node j chosen once will decrease as ni increases. �

Self∗ Minimum Connected Covers of Query

Regions in Sensor Networks

A.K. Datta1, M. Gradinariu Potop-Butucaru2, R. Patel1, and A. Yamazaki1

1 School of Computer Science, University of Nevada Las Vegas
2 LIP6, Université Pierre et Marie Curie (Paris 6), CNRS-INRIA, France

Abstract. Sensor networks are mainly used to gather strategic informa-
tion in various monitored areas. Sensors may be deployed in zones where
their internal memory, or the sensors themselves, can be corrupted. Since
deployed sensors cannot be easily replaced, network persistence and ro-
bustness are the two main issues that have to be addressed while ef-
ficiently deploying large scale sensor networks. The goal of forming a
Minimum1 Connected Cover of a query region in sensor networks is to
select a subset of nodes that entirely covers a particular monitored area,
which is strongly connected, and which does not contain a subset with
the same properties.

In this paper, we consider the general case, wherein every sensor has
a different sensing and communication radius. We propose two novel
and robust solutions to the minimum connected cover problem that can
cope with both transient faults (corruptions of the internal memory of
sensors) and sensor crash/join. Also, our proposal includes extended ver-
sions which use multi-hop information. Our algorithms use small atom-
icity (i.e., each sensor reads variables of only one of its neighbors at a
time). Our solutions are self∗ (self-configuration, self-stabilization, and
self-healing). Via simulations, we conclude that our solutions provide bet-
ter performance, in terms of coverage, than pre-existing self-stabilizing
solutions. Moreover, we observe that multi-hop solutions produce a bet-
ter approximation to an optimal cover set.

1 Introduction

Recent advances in technology have enabled the production of tiny networked
sensors which will revolutionize information gathering and processing in both
urban environments and inhospitable terrain. These wireless ad hoc sensor net-
works consist of a large number of tiny sensing devices with very limited resources
that must coordinate amongst themselves to gather, process, and communicate
information about their environments. The information to be gathered by a
sensor network may need to be collected only within a particular region of a
monitored area. Therefore, replies for queries should only be made by the nodes
monitoring this particular area. Also, because these sensors are often densely
1 Selecting a minimal number of connected sensors is an NP hard problem. In our

work, we address the minimality in terms of inclusion.

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 204–218, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Self∗ Connected Covers in WSN 205

deployed, some sensors within a network may fail or merely exhaust their energy
supply. However, it may be impossible or infeasible to recharge sensors once they
have been deployed, especially if they have been deployed in an inhospitable or
physically unreachable terrain. Therefore, since the fundamental constraint on
a networked sensor is its energy consumption, only a subset of sensors, those for
which the union of their sensing regions cover the particular sensing region (or
query region) should be in an active state. Our research is focused on designing a
reliable, self-organizing, self-healing query-response system. To allow networked
sensors to collaborate while detecting events and delivering the collected data to
the sink of a query, the sensors must be able to communicate with each other,
either directly or indirectly. Therefore, the sensor cover should also be strongly
connected.

Related Work. In this paper, we propose novel strategies for the computation of
a minimum connected cover of a query region in sensor networks.

The first strategy computes a minimum connected cover in a distributed man-
ner using almost local (two hop neighbors) information. The second strategy is
an extension of the first strategy that uses more than 2-hop information to com-
pute a better minimum connected cover.

The problem of computing a minimum connected cover of a query region was
first introduced in [9]. Two self-organizing solutions were presented in [9]. Both
solutions follow a greedy strategy; however, none of the solutions is localized.
The first solution is centralized — a fixed leader chooses the nodes to be part of
the cover. In the second solution, a particular sensor node (which is not always
the same node) behaves as the coordinator or leader. This special node collects
global information in order to select the nodes to include in the final cover set.

The issues of coverage and connectivity, and the relationship between them,
were analyzed in a unified framework in [13]. The CCP protocol [13] can be
used to provide different degrees of coverage. It was shown in [13,17] that if
the communication range is at least twice the sensing range, then complete
coverage implies connectivity. When the above condition does not hold, CCP
was integrated with SPAN [2] to provide both coverage and connectivity.

SPAN is a connectivity maintenance protocol in which a node volunteers to
be a coordinator when it finds that two of its neighbors cannot communicate
with each other directly or indirectly. To reduce the number of redundant co-
ordinators, after a certain delay, only a single node announces its decision to
be a coordinator. A similar approach was discussed in ASCENT [1]. ASCENT
nodes use the number of active neighbors and message losses to decide if they
should be active or passive. However, this protocol does not guarantee complete
coverage of the query region.

Probabilistic studies related to coverage and connectivity in unreliable sensor
networks were done in [11]. A sensor grid network of unit area was considered.
This work includes a necessary and sufficient condition for network coverage and
connectivity, which is based upon the probability of a node to be active (i.e.,
not failed) and the transmission radius of a node. Some optimal conditions for
coverage were established in [17]. An algorithm for coverage was proposed based

206 A.K. Datta et al.

on those optimal conditions. However, that result is valid only when complete
coverage implies connectivity (as discussed above). A coverage protocol in which
nodes use a random delay to announce their decision to turn off was proposed
in [12]. The issue of connectivity was not addressed in [12].

The GAF protocol [14] uses GPS to reduce redundant nodes when maintaining
routing paths in ad-hoc networks. A randomized probing-based density control
algorithm was used to maintain coverage despite node failures in the PEAS pro-
tocol [15]. In this algorithm, probing range can be changed to provide different
degrees of coverage. Although these solutions are efficient in fault free environ-
ments, they are neither fault-tolerant nor self-stabilizing. Since this algorithm
must be re-executed in order to repair overlay, in this scheme, every member of
the network must be notified of any corruption and of the need to re-execute the
algorithm.

Very recent solutions to the connected cover problem address fault-tolerance
issues by reinforcing the degree of coverage and connectivity. In [18], the problem
of k-coverage was addressed; the protocol ensures that any sensor is covered by
k other sensors. This work is further extended in [19] to the k-coverage and
k-connectivity problem. The proposed solution involves the computation of a
Voronoi diagram for independent sensor nodes. However, the implementation of
local Voronoi diagrams is not addressed, nor are transient faults.

To the best of our knowledge, in [4,5] we proposed the first totally decentral-
ized, self-stabilizing, and fault-tolerant algorithms for the minimum connected
covering of a query region in sensor networks. The first solution in [5], based
on a greedy strategy, needs only one bit per node. However, it requests addi-
tional knowledge — the distance to the center of the query region. That is, the
region is covered in successive waves from outside to inside. The coverage stops
once the wave reaches the center of the monitored area. The second solution
proposed in the same paper uses a pruning strategy — the elimination of re-
dundant nodes from the final cover. Nodes were removed if their removal did
not disconnect their respective neighborhoods, and if their sensing regions were
completely covered by their chosen neighbors. Furthermore, in [4] we proposed
another pruning-based algorithm that outperformed the solutions presented in
[5]. Nodes were considered redundant if their sensing regions were covered by
other chosen nodes, and if their chosen neighbors were connected through a con-
nection path. However, this solution has a major drawback — its stabilization
time is longer than the solutions presented in [5] due to the overhead introduced
by the detection of communication paths between connected neighboring nodes.

Contributions. In this paper, we propose fully distributed and robust solutions
to the minimum connected cover problem of query regions. Our solutions can
cope with both transient faults (corruptions of the internal memory of sensors)
and sensor crash/join. That is, our algorithms are self-stabilizing, fault-tolerant,
and outperform the solutions presented in [4,5]. Note that we work in the general
model wherein every sensor has a different sensing and communication radius.
The strategy we use in our algorithms is similar to pruning used in the compu-
tation of connected dominating sets [3,8,10]. A dominating set is a set of vertices

Self∗ Connected Covers in WSN 207

such that every vertex in the graph is either in the dominating set, or adjacent to
a vertex in the dominating set. A connected dominating set is a dominating set
which is also a connected subgraph. The main difference between a connected
dominating set and a query region connected cover stems from the selection
of dominators. In the former case, a node is a dominator of another node if the
dominated node is in the transmission range of the dominator. In the latter case,
a dominated node is a node that communicate with at least one dominator in its
neighborhood, and whose sensing region is completely covered by dominators.
Obviously, these problems are not equivalent, although a connected dominating
set is also a good preliminary coverage pattern for a query region that can be
extended to fully cover a query region.

Outline of the paper. In Section 2, we define the model used in this paper
and specify the connected sensor cover problem. In Section 3, we present self-
stabilizing solutions to the problem and their informal description. In Sections 4,
we present extended versions of the algorithm. Simulation results and their dis-
cussion are included in Section 5. Due to the lack of space, the proofs of the
self∗ aspects of our solutions, and the full simulation results are presented in
the extended version of our paper [6]. Finally, in Section 6, we present some
concluding remarks and propose ideas to extend this research.

2 Preliminaries and Model

Sensor Network. In this research, we consider sensor networks [9,13] consisting
of a large number of sensors (also referred to, in this paper, as sensor nodes or,
simply as nodes) which are randomly distributed in a geographical region. We
model the sensor network as a directed communication graph G(V, E), where
each node in V represents a sensor, and each edge (i, j) ∈ E, called communica-
tion edge, indicates that j is a neighbor of i.

For a sensor i, there is a region, called a sensing region, which signifies the area
in which sensor i can sense a given physical phenomenon at a desired confidence
level. The sensing regions are of any convex shape. For the sake of simplicity,
especially, for showing examples, the sensing regions are assumed to be circular.
The sensing range of a sensor i indicates the maximum distance between sensor
i and any point p in the sensing region of sensor i. A point p is covered (or
monitored) by a sensor node i if the Euclidean distance between p and i is less
than the sensing range of sensor i.

The communication region of sensor i (also called the transmission region)
defines the area in which sensor i can communicate directly (i.e., in single hop)
with other sensor nodes. The maximum distance between node i and any other
node j, where j is in the communication region of i, is called the communica-
tion range of sensor i. Node i can communicate with node j (i.e., i can send a
message to j) if the Euclidean distance between them is less than the communica-
tion range of i. Then i is called a neighbor of j, and this relation is represented by

208 A.K. Datta et al.

a directed edge (i, j). The set of neighbors of i is represented by Ni. Two nodes
i and j can communicate directly with each other only if i ∈ Nj ∧ j ∈ Ni, i.e.,
they are neighbors of each other. If i and j are neighbors of each other, then
there are two edges between them: (i, j) and (j, i).

Fault Model. This research deals with the following types of faults: (i) The
state or configuration of the system may be arbitrarily corrupted. However, the
program (or code) of the algorithm cannot be corrupted. (ii) Nodes may crash.
That is, faults can fail-stop nodes. (iii) Nodes may recover or join the network.
The topology of the network may change due to these faults. Faults may occur
in any finite number, in any order, at any frequency, and at any time.

Problem Specification. In this section, we formally define the problem Connected
Cover of a Query Region in sensor networks.

Definition 1 (Connected Sensor Cover). Consider a sensor network G con-
sisting of n sensors I1, I2, . . . , In. Let Si be the sensing region associated with
sensor Ii. Given a query Q over a region RQ in the sensor network, a set of
sensors SCQ = Ii1 , Ii2 , . . . , Iim is called a connected sensor cover for Q if the
following two conditions are satisfied: (a) Coverage: RQ ⊆ (Si1 ∪Si2 ∪ . . . Sim),
where Sij is the sensing region of sensor Si; (b) Connectivity: The subgraph
induced by SCQ is strongly connected in the sense that any two sensors in this
set can communicate with each other directly or indirectly.

Definition 2 (Minimum Connected Sensor Coverage Problem). Given
a sensor network and a query over the network, the connected sensor coverage
problem is to find the minimal connected sensor cover. A cover is considered
minimum if it does not include another connected cover.

Additionally, we require the algorithm (solving the above problem) to be self-
organizing, self-stabilizing and self-healing [7,16]. That is, regardless of the initial
state (wrong initialization of the local variables, memory or program counter cor-
ruptions) nodes self-configure/self-organize using only local information in order
to make the system self-stabilize to a legitimate state. The legitimate state is
defined with respect to a minimum connected cover formed out of the nodes
that can communicate with each other either directly or indirectly. The nodes in
this set are the only nodes that remain active. Moreover, under various perturba-
tions, such as node joins, failures (due to crash or energy loss), state corruptions,
or weakening of power, the minimal connected cover should be able to self-heal
without any external intervention and the impact should be confined within a
tightly bounded region around the perturbed area.

The following assumptions are made for our solutions:

Work hypothesis 1
(i) The communication radius may not be equal the sensing radius for the sen-
sors.

(ii) The sensing radii and the communication radii of all sensors may not be
equal.

Self∗ Connected Covers in WSN 209

(iii) There always exist a sufficient number of sensors in the network with suffi-
cient density to cover the query region if all of them are deployed.

(iv) There exist a lot of redundant sensors which are either boundary or interior
sensors with respect to the query region.

Data Structures and Notations. The data structure Info has fields UID, Status,
Position, Rc, Rs, S, and MinUID. UID represents the unique identifier (UID)
of a sensor, which is a positive integer. Status represents the status of a sensor.
The status of a sensor may be unchosen, undecided, or chosen. A node with the
status chosen is part of the connected cover. Position represents a geometric
location or coordinate of a sensor. Rc and Rs represents a communication radius
and a sensing radius of a sensor, respectively, and S represents a sensing region
of a sensor. Finally, MinUID represents the minimum UID amongst all of a
sensor’s neighbors’ UIDs. All sensors that have the minimum UID, within a
particular chosen sensor’s neighborhood, are needed to ensure connectivity.

Sensor i has three shared variables: Self Infoi, Ni and N Infoi. Self Infoi

is a data type of Info which contains Sensor i’s own information. Ni is a set of
sensors within the communication range of Sensor i. Since we assume that each
sensor has a different communication radius, we include only those sensors which
have bi-directional communication with Sensor i to be within the neighbor set
Ni. From this point onward, the term neighbors means communication neighbors
and refers to only those sensors which have bi-directional communication. We
use the term sensing neighbors to represent the sensors that are located within
each others’ sensing disks. Sensing neighbors may or may not be communication
neighbors. N Infoi is a set of δ Info structures containing Self Infoj of all
sensors j in Ni.

The local variables of Sensor i are 2N Infoi, which is a set of δ2 Info struc-
tures containing all 2-hop neighbors j’s Self Infoi, and NNi, which is a set of
Nj for Sensor i’s all neighbors j. That is, NNi is a set of sensors located at most
two hops away from Sensor i.

Macro. We introduce the macro Read(j) to gather sensor i’s neighbors’ infor-
mation using small atomicity. That is, Sensor i reads only one of its neighbor’s
shared variables, instead of reading all neighbors’ shared variables, in one atomic
step.

When there is a timeout, a timeout action is enabled and the macro Read(j)
reads one of Sensor i’s neighbors j’s variables. It reads Sensor j’s Self Infoj ,
and includes it in its N Infoi. If there is a duplicate, i.e., Sensor i reads Sen-
sor j for a second time, then Self Infoj overwrites the old data. Also, Sen-
sor i needs to gather information from sensors located 2-hops away by read-
ing its neighbor j’s neighbor information N Infoj . Thus, NNi and 2N Infoi,
will be also updated. We assume that there is a function F (j, NNi), j ∈ Ni,
that returns Nj. Then the Next(Ni) function updates the pointer to the next
neighbor.

210 A.K. Datta et al.

3 Single Hop Self∗ Query Region Connected Cover

3.1 UID-Based Query Region Connected Cover

The solution we present in this section is given as Algorithm 3.1 (referred in this
paper as SHID). Although this algorithm uses 2-hop information to compute
the redundant cover, messages are exchanged only within a single hop.

The steps of the algorithm are as follows:

1. The algorithm marks an unchosen sensor whose sensing region intersects
with any portion of the query region (RQ) as undecided, if one of the fol-
lowing is true: 1) It does not have chosen neighbor which is also a sensing
neighbor. 2) Its UID is greater than a a UID of chosen neighbor which is
also a sensing neighbor. 3) Among the neighbors of chosen sensor, it has the
minimum UID.

2. MCSCNode(i) checks if Sensor i’s status is undecided, and if one of the
following is true: 1) It does not have any chosen neighbor which is also a
sensing neighbor. 2) Its UID is greater than a chosen neighbor’s UID. 3) It
is the minimum UID neighbor of a chosen sensor. 4) A part of the sensing
disk of Sensor i is not covered by a chosen sensor. In this case, the sensing
disk of Sensor i is needed in the final cover set, so Sensor i changes its status
to chosen.

3. Redundant(i) removes any undecided or chosen sensor that has a smaller
UID than a chosen neighbor’s UID and is not a minimum UID neighbor of
a chosen sensor, if its entire sensing disk is covered by chosen sensors and
all chosen neighbors of this sensor are connected through a second path. In
this case, the status of such a sensor is changed to unchosen (rule A1).

4. Rule A1 also ensures that any sensor whose sensing disk does not intersect
with the query region has its status changed to unchosen.

5. All chosen sensors are in the final query region connected cover.

3.2 Sensing-Based Query Region Connected Cover

In the previous algorithm, the UID is used to solve the contention of sensors and
remove the redundant sensors. That is, between two neighboring sensors, the one
with the greater UID remains in the final cover set, and among the neighbors
of a chosen sensor, the one with the minimum UID also remains to maintain
the connectivity. In this section, we show the modification of Algorithm SHID,
which uses the sensing region instead of the UID for the above purpose, and we
refer this algorithm as SHRS(Algorithm 3.2). The idea behind this is that since
every sensor has a different sensing radius, keeping the sensors which have larger
coverage region results in a smaller number of sensors in the final set. Note that
although the algorithm uses the sensing region instead of the UID, in the case
of two or more sensors having the same sensing region, the UID is still needed
as a deciding factor. The followings are necessary changes.

Self∗ Connected Covers in WSN 211

Algorithm 3.1 Query Region Connected Sensor Cover Algorithm for Sensor i
(SHID)
Constants:

RQ:: Query region;

Structure:
Info{

UID :: Unique user identification number
Status ∈ {unchosen, undecided, chosen} :: Status of a sensor
Position :: Geometric location or coordinate of a sensor
RC :: Communication radius of a sensor
RS :: Sensing radius of a sensor
S :: Sensing region of a sensor
MinUID :: minimum UID amongst all of a sensor’s neighbors’ UIDs

}

Shared Variables:
Info Self Infoi :: One structure that contains information for Sensori
Set N Infoi :: Set of δ structures that contain all neighbors’ information
Set Ni :: {j ∈ V |Dist(i, j) ≤ RCi

∧ Dist(i, j) ≤ RCj
}

Local Variables:
Set 2N Infoi :: Set of δi +

∑
δj∈Ni

structures that contain all 2-hop neighbors’ information

Set NNi:: Set of Nj , ∀j ∈ Ni

Macro:
Read(j)

N Infoi = N Infoi
⋃

Self Infoj
NNi = NNi

⋃
Nj

2N Infoi = 2N Infoi
⋃

N Infoj
j = Next(Ni)

Predicates:
QryRgnIntrsctn(i) ≡ Self Infoi.S ∩ RQ �= ∅;

≡ sensing disk of Sensor i intersects with some portion of query region;

Dist(i, j) ≡ Returns the Euclidean distance between Sensor i and Sensor j;

SnsngNgbr(i, j) ≡ (∀j : Dist(i,j) ≤ min(Self Infoi.RS, N Infoi.Self Infoj.RS));
≡ Sensor i and Sensor j are located within each others’ sensing disks;

CvrSnsngByChsn(i) ≡ (∃A : ∀j, k ∈ A, j ∈ Ni ∧ k ∈ Nj
∧N Infoi.Self Infoj .Status = 2N Infoi.N Infoj.Self Infok.Status = chosen

∧ Self Infoi.S ⊂
⋃

j,k∈A N Infoi.Self Infoj.S, 2N Infoi.N Infoj.Self Infok.S);
≡ Sensing region of Sensor i is covered by a subset of chosen sensors that are located
no farther than two communication hops from Sensor i;

NeighborsConnectivity(i) ≡
(∀j, t ∈ Ni, N Infoi.Self Infoj.Status = N Infoi.Self Infot.Status = chosen,

∃k �= i, 2N Infoi.N Infoj .Self Infok.Status = chosen ∧ j, t ∈ Nk);
≡ All chosen pairs of neighbors of Sensor i are connected by a chosen node;

LstUIDNgbr(i, j) ≡ i ∈ Nj ∧ (Self Infoi.UID = N Infoi.Self Infoj.MinUID);
≡ Sensor i is a neighbor of Sensor j, and is also the neighbor of Sensor j having the least UID;

GrtrLstOrNotNgbrOfChsn(i) ≡ (∀j : i ∈ Nj, N Infoi.Self Infoj.Status �= chosen∨
¬SnsngNgbr(i, j) ∨ Self Infoi.UID > N Infoi.Self Infoj.UID ∨ LstUIDNgbr(i, j));

≡ Sensor i is not the communication neighbor, nor the sensing neighbor,
of a chosen sensor whose UID is greater than its own unless it is the “least UID”
neighbor of this chosen sensor;

SensorCover(i) ≡ Self Infoi.Status = unchosen ∧ QryRgnIntrsctn(i) ∧ GrtrLstOrNotNgbrOfChsn(i);
≡ status of Sensor i is unchosen, sensing disk of Sensor i intersects with some portion of query region,
and Sensor i is not the communication neighbor, nor the sensing neighbor, of a chosen sensor
whose UID is greater than its own unless it is the “least UID” neighbor of this chosen sensor;

MCSCNode(i) ≡ Self Infoi.Status = undecided
∧(GrtrLstOrNotNgbrOfChsn(i) ∨ ¬CvrSnsngByChsn(i));

≡ Sensor i is an undecided sensor and is not the communication neighbor, nor the sensing neighbor,
of a chosen sensor whose UID is greater than its own unless it is the “least UID” neighbor of this
chosen sensor, or a part of the sensing disk of Sensor i is not covered by a chosen sensor;

Redundant(i) ≡ (Self Infoi.Status = undecided ∨ Self Infoi.Status = chosen)∧
¬GrtrLstOrNotNgbrOfChsn(i) ∧ CvrSnsngByChsn(i) ∧ NeighborsConnectivity(i);

≡ Sensor i is an undecided or a chosen sensor and is the “lesser” communication
and sensing neighbor of a chosen sensor, but is not the neighbor of this
sensor that has the smallest UID, the entire sensing disk of Sensor i is covered
by chosen sensors, and chosen neighbors of Sensor i are connected through a second path

Actions:
A1 :: ¬QryRgnIntrsctn(i) ∨ Redundant(i) −→ Self Infoi.Status = unchosen;

A2 :: SensorCover(i) −→ Self Infoi.Status = undecided;

A3 :: MCSCNode(i) −→ Self Infoi.Status = chosen;

A4 :: T imeout ∧ j ∈ Ni −→ Read(j);

212 A.K. Datta et al.

– The data structure Info includes the variable MaxRSUID instead of
MinUID. It represents the UID of the sensor with the maximum RS

amongst all of a sensor’s neighbors. If several sensors have the same sensing
radius, then the one with the greatest UID will be selected.

– The predicate LstUIDNgbr(i, j) changes to GrtstRsNgbr(i, j). To maintain
connectivity in Algorithm SHRS, the predicate GrtstRsNgbr(i, j) selects
the sensor which has the greatest RS among the neighbors of a chosen sensor.

– The predicate GrtrLstOrNotNgbrOfChsn(i) changes to
GrtrGrtstOrNotNgbrOfChsn(i). Sensor i evaluates this predicate as true
if one of the followings is true: 1) Sensor i does not have any chosen neighbor
which is also a sensing neighbor. 2) Sensor i’s RS is greater than a chosen
sensing neighbor’s RS . 3) Sensor i has the greatest RS among the neighbors
of a chosen sensor.

Algorithm SHRSbelow shows only the modified parts while the rest remains
the same.

Algorithm 3.2 Query Region Connected Sensor Cover Algorithm for Sensor i
(SHRS)
Changed Structure:

Info{
UID :: Unique user identification number
Status ∈ {unchosen, undecided, chosen} :: Status of a sensor
Position :: Geometric location or coordinate of a sensor
RC :: Communication radius of a sensor
RS :: Sensing radius of a sensor
S :: Sensing region of a sensor
MaxRSUID :: UID of sensor with maximum RS amongst all of a sensor’s neighbors; in case of a tie,

sensor with greatest UID is selected
}

Changed Predicates:
GrtstRsNgbr(i, j) ≡ i ∈ Nj ∧ (Self Infoi.R = N Infoi.Self Infoj.MaxRSUID);

≡ Sensor i is a neighbor of Sensor j, and is also the neighbor of Sensor j having the greatest sensing radius;

GrtrGrtstOrNotNgbrOfChsn(i) ≡ (∀j : i ∈ Nj, N Infoi.Self Infoj.Status �= chosen ∨
¬SnsngNgbr(i, j) ∨ Self Infoi.RS > N Infoi.Self Infoj .RS ∨ GrtstRsNgbr(i, j));

≡ Sensor i is not the communication neighbor, nor the sensing neighbor, of a chosen sensor
whose sensing radius is greater than its own unless it is the “MaxR′′

S neighbor of this chosen sensor;

SensorCover(i) ≡ Self Infoi.Status = unchosen ∧ QryRgnIntrsctn(i)∧
GrtrGrtstOrNotNgbrOfChsn(i);

≡ status of Sensor i is unchosen, sensing disk of Sensor i intersects with some portion of query region,
and Sensor i is not the communication neighbor, nor the sensing neighbor, of a chosen sensor whose sensing
radius is greater than its own unless it is the “MaxR′′

S neighbor of this chosen sensor;

MCSCNode(i) ≡ Self Infoi.Status = undecided ∧ (GrtrGrtstOrNotNgbrOfChsn(i)∨
¬CvrSnsngByChsn(i));

≡ Sensor i is an undecided sensor and is not the communication neighbor, nor the sensing neighbor,
of a chosen sensor whose sensing radius is greater than its own unless it is the “MaxR′′

S neighbor of
this chosen sensor, or a part of the sensing disk of Sensor i is not covered by a chosen sensor;

Redundant(i) ≡ (Self Infoi.Status = undecided ∨ Self Infoi.Status = chosen) ∧
¬ GrtrGrtstOrNotNgbrOfChsn(i) ∧ CvrSnsngByChsn(i) ∧NeighborsConnectivity(i);

≡ Sensor i is an undecided or a chosen sensor and is the communication and sensing neighbor of a chosen
sensor that has a greater RS than its own, but is not the “MaxR′′

S neighbor of this sensor, the entire sensing
disk of Sensor i is covered by chosen sensors, and chosen neighbors of Sensor i are connected through
a second path

3.3 Faults and Recovery of Algorithms SHID and SHRS

In this section, we focus on the fault handling features of the proposed algorithms
SHIDand SHRS. There are seven variables in the Info structure used in the
solutions for a Sensor i: UID, Status, Position, RC , RS , S, and MinUID

Self∗ Connected Covers in WSN 213

(or MaxRSUID). By hypothesis only status can be corrupted. So, we need
to show that our solutions can cope with all possible corruptions associated
with this variable. In the following, we will show how they are dealt with in
algorithms SHID(1) Wrong initialization of the Statusi variable. All
sensors, if properly initialized, start as unchosen. (a) Sensor i is initialized to
undecided . Assume that Sensor i is initialized to undecided. If i is not a
redundant node, then i remains undecided, and subsequently changes to chosen.
(see Actions A2 and A3). That is, no correction is necessary. If i is redundant,
then it will satisfy the predicate Redundant(i) and will change to unchosen.
(b) Sensor i is initialized to chosen . If the sensing disk of Sensor i does not
intersect with the query region, then, by executing A1, Sensor i will change
to unchosen. So, no correction is necessary. If Sensor i is redundant, then it
will satisfy the predicate Redundant, and will change to unchosen. If it is non
redundant then Sensor i is necessary, either to ensure coverage or connectivity,
and should not be unmarked. (2) Weakening or Failure of sensors, both in
terms of communication and sensing ability. The weakening or failure of
sensors will affect their sensing and communication range. Change of RS or RC

may change the values of Redundant(i), SensorCover(i), and MCSCNode(i).
All these changes will be reflected in the change of values of the guards of the
corresponding actions. So, eventually, the status of the affected nodes will change
due to the execution of these actions. These changes will affect the execution of
these actions by the neighbors of the affected nodes. Therefore, any changes in
the Statusi variable of the affected nodes will be handled as mentioned earlier.

4 Multi-hop Self∗ Query Region Connected Cover

In Algorithms SHID and SHRS (Algorithms 3.1, 3.2), a sensor uses only
2-hop information to check if its entire sensing region is covered by a subset of
chosen sensors and to check if every pair of its chosen neighbors has an alternate
communication path. If the sensing radius is greater than the communication ra-
dius, then 2-hop information is not enough to verify this coverage condition. Since
we did not assume any limitation for the sensing radius, it is possible that the
sensing region of Sensor i is covered by the sensors that are located several hops
away from Sensor i. Similarly, it is possible that chosen neighbors are connected
to each other via paths of more than 2 hops. Thus, to obtain a better approxima-
tion, multi-hop information is required. Therefore, in Algorithms MHID and
MHRS (the multihop versions of Algorithms SHIDand SHRS), our goal
is to further reduce the number of nodes in the final set by increasing the avail-
able information in exchange for an extra communication cost. We would like to
collect upto a maximum of H-hop count information, where H is a constant.

The information required to compute the coverage condition is the UID, S,
and coordinates of all chosen sensors within H-hops of Sensor i. Also, the hop
count should be recorded. To collect this information, flooding is too expensive,
and there are many redundant messages. So, we assume that there is a self-
stabilizing BFS tree construction running in the background. Each chosen sensor

214 A.K. Datta et al.

maintains its own BFS tree, with height of H , rooted to itself. The information
of all chosen sensors within H-hops from Sensor i will be passed along using
these BFS trees and Sensor i receives it only from its parent sensor. Therefore,
each sensor has to maintain the set of parent pointers Pi. The number of parent
pointers per node is less than or equal to the number of chosen sensors within
H-hops. This approach is studied in both ID-based and sensing-based models for
breaking the network symmetry.

To gather information from chosen sensors located more than 2-hops away,
the following change has been made in the data structure and the read action
of Algorithms SHID and SHRS . The data structure Root, which contains
the root node’s UID, S, Position, and Hop, was added. Also, there are extra
shared variables Root Infoi and Ci. Root Infoi is a set of Root structures, and
Ci is a set of chosen sensors within H-hop distance. A set of parent pointers is
kept as a local variable. There are two separate read macros dependent upon
whether or not Sensor i’s neighbor j is i’s parent. If j is not i’s parent, then
the read action is the same as that of Algorithms SHID and SHRS . If j is
the parent of i, when timeout occurs, i reads the root information, as well as j’s
information and j’s neighbors’ (i’s 2-hop neighbors’) information. After Sensor
i reads Root Infoj from j, i increments Hop count in Root Infoi.Rootr. If it is
greater than H − 1, then this data is discarded, and r is removed from Ci.

This multi-hop information is applied to the predicates CvrSnsngByChsn(i)
and NeighborsConnectivity(i). CvrSnsngByChsn(i) is evaluated as true if
Sensor i’s sensing disk is covered by a subset of chosen sensors that are lo-
cated no farther than H communication hops from Sensor i. For the predi-
cate NeighborsConnectivity(i) to check the connectivity of Sensor i’s chosen
neighbors, the new predicate Cycle(x, y) is added, which is evaluated as true
if there exists a cycle such that Sensors x, i, and y are vertices in the cycle,
and all other vertices in this cycle are chosen sensors. Hence, the predicate
NeighborsConnectivity(i) is true when all pairs of chosen neighbors of Sen-
sor i are connected by a path of chosen sensors located within H-hops from
Sensor i.

5 Simulation and Results

Algorithms SHID, SHRS, MHID and MHRS compute a minimum con-
nected sensor cover for the query region. Moreover, all proposed algorithms are
fault-tolerant in terms of the self-∗ feature (see [6] for the analytical proofs).

In our simulations, we assumed that nodes are randomly deployed on a grid
of size 500 × 500 (350,000 nodes). Similar to [9,11,17], we considered the sensing
region associated with a sensor to be a circular region centered around the sensor
itself. We considered a network of 350,000 nodes in which sensors had both
sensing radii and transmission radii that varied in size from 0 to 8 units. However,
in some of the cases tested in our simulations, we restricted the sizes of sensors’
sensing and transmission radii to be within a certain range.

Self∗ Connected Covers in WSN 215

The query region used in our simulations was 15 x 15 square graph units. We
measured the number of sensors in the final minimum connected cover set, the
number of query region sensors covered per MCSC sensor, the average number
of sensors within a sensor’s sensing disk, and the stabilization times for Algo-
rithms SHID, SHRS, MHID and MHRS, Algorithm MCSC [5], and Rule
k [3] 2. We also computed an approximation ratio for each algorithm. This ap-
proximation ratio was used as a measure of optimality for each algorithm and
was computed as the ratio between the number of query region sensors covered
per MCSC sensor, and the average number of sensors within a sensor’s sensing
disk. The smaller this ratio is, the closer the final cover set chosen by a particular
algorithm is to an optimal minimum connected cover set.

We used varying relative sizes of RC and RS for our simulations. Cases tested
include RC ≥ RS (all sensors had the same size of radii of communication), RC

≥ RS (all sensors had the same size of sensing radii), RC ≥ RS (sensors had
different sizes of RC and RS), RC > RS (all sensors had the same size of radii
of communication), RC > RS (all sensors had the same size of sensing radii),
RC = RS (all sensors had the same size of RC and RS), RC < RS (all sensors
had the same size of radii of communication), RC < RS (all sensors had the
same size of sensing radii), RC < RS (sensors had different sizes of RC and
RS), all sensors had equal sizes of radii of communication but unequal sizes
of sensing radii, all sensors had equal sizes of sensing radii but unequal sizes
of radii of communication, and finally, all sensors had unequal sizes of radii of
communication and unequal sizes of sensing radii.

In the following we will partially discuss the results related to the approxima-
tion ratio of the studied algorithms3.

For the UID based algorithm, multi-hop coverage does significantly improve
the algorithm’s approximation ratio. Also, in most cases tested, for a RS based
algorithm, multi-hop coverage significantly improves the algorithm’s approxi-
mation ratio. This implies that an algorithm that uses multi-hop coverage and
connectivity versus two-hop coverage and connectivity, produces a final cover set
that is closer to an optimal minimum connected cover set.

Algorithm SHRS or the RS based algorithm that uses two-hop coverage and
connectivity, had a better approximation ratio than the UID based algorithm
that uses two-hop coverage and connectivity, when the size of RC was less than
RS . This is due to the fact that when RC < RS , the SnsngNgbr(i,j) predicate will
evaluate to true when Sensor j is a neighbor of Sensor i. Thus, ¬SnsngNgbr(i,j)
will evaluate to false in the predicate GrtrGrtstOrNotNgbrOfChsn(i), and the
sensor with the greatest RS , within Sensor i’s neighborhood, will evaluate this
predicate to true and be marked as chosen by A2. This allows the query region
to be covered with fewer nodes. However, in nearly all cases, if RC is greater
than or equal to RS , Algorithm SHRS has a worse approximation ratio than
Algorithm SHID. This is due to the fact that a sensor with a sensing radius that

2 In order to perform a fair comparison between our solutions and Rule k algorithm
we have implemented the self-stabilizing version of this algorithm.

3 Tables and detailed description of simulations are provided in [6].

216 A.K. Datta et al.

is smaller than RC can evaluate ¬SnsngNgbr(i,j) to true in GrtrGrtstOrNotNg-
brOfChsn(i), even though it may have a small RS . Thus, it can evaluate this
predicate as true and change to chosen, even though there may be more suitable
sensors (those with greater RS ’) outside Sensor i’s neighborhood.

As an improvement, an RS based algorithm using multi-hop coverage (Al-
gorithm MHRS) produced a better cover set than all of our other algorithms
when RC > RS (all RC equal) and produced one of the lowest approximation
ratios obtained by our algorithms. This is due to the fact that the CvrSnsngBy-
Chsn(i) and NeighborsConnectivity(i) predicates have a greater chance of being
evaluated to true as sensors further than 2-hops from Sensor i are considered.
Subsequently, as a greater number of sensors are marked as chosen, a sensor,
that may not have been the most suitable to be marked, may evaluate Grtr-
GrtstOrNotNgbrOfChsn(i) as false, evaluate Redundant(i) as true, and unmark
itself. This leads to fewer nodes in the final cover set.

The approximation ratio for the multi-hop, RS based algorithm (RC > RS

and all RC equal) is equal to that of Algorithm MCSC (RC = RS and all RC

and RS equal). However, Algorithm MHRS can also produce a cover set that
is connected and that completely covers RQ at all ranges of size of sensing and
transmission radii.

Also, our Algorithm MHRS produces better approximation ratios than Rule
k for most cases, when RC ≥ RS or RC > RS . This improvement may be at-
tributed to the fact that a greater number of nodes were unmarked by Algorithm
MHRS’s redundancy predicate. Since the CvrSnsngByChsn(i) predicate in this
algorithm considers nodes that can be located further than two hops from Sensor
i, there is a greater chance that a node evaluate this predicate to true and be
unmarked by Redundant(i) in Algorithm MHRS, than a node evaluate the re-
dundancy predicate of Rule k to true. As a result, a greater number of nodes will
be unmarked by Redundant(i) in Algorithm MHRS. Algorithm MHID also
produces better approximation ratios than Rule k for most cases, when RC ≥
RS or RC > RS . In addition to this, when RC > RS and all RS are equal,
Algorithm SHID and SHRS produce better approximation ratios than Rule
k. In contrast to Rule k, our algorithms can also produce a cover set that is
connected and that completely covers RQ at all ranges of size of sensing and
transmission radii.

Our experiments lead us to believe that the ability to produce a better ap-
proximation to an optimal cover set, combined with the ability to completely
cover and produce a connected cover set for all ranges of sizes of the radius of
communication and sensing radius, justify the increase in stabilization time and
message complexity required for multi-hop coverage and connectivity.

6 Conclusion and Future Work

We presented two local, and two multi-hop, distributed, scalable, self-∗ solutions
to the minimum query region connected cover problem and showed how these
solutions are self-organizing and self-healing as well. The algorithms are also

Self∗ Connected Covers in WSN 217

self∗ contained, meaning that after a fault (transient or definitive) occurs in the
system, and after stabilization, only nodes within the locality of faulty nodes
change their status.

We proved the self∗ properties of our solutions through analytical analysis.
Moreover, we have conducted extended simulations using the following measures:
stabilization time, number of nodes in the final cover, the number of query
region sensors covered per MCSC sensor, and the average number of sensors
within a sensor’s sensing disk. Due to space restrictions, the correctness proofs
of our solutions and a summary of our experiments are provided in [6]. Our
experiments demonstrate that the proposed algorithms perform better than the
self-stabilizing algorithms proposed in [4,5,3], under certain conditions, and also
produce a cover set that is connected and that completely covers the query region
at all ranges of size of sensing and transmission radii.

The area of study concerned with connected coverage still raises a broad class
of challenges. The generalization of this problem to the k-connected k-coverage
problem has been studied in fault-free environments in [18,19]. However, an
interesting open issue would be to address this problem in fault prone environ-
ments, which can be considered, in its generalized form, as the self-stabilizing,
k-coverage k-connectivity problem of query regions. Another interesting research
direction is the analytical evaluation of the approximation ratio and complexity
of the proposed algorithms.

References

1. Cerpa, A., Estrin, D.: Ascent: Adaptive self-configuring sensor networks topologies.
In: INFOCOM 2002. Proceedings of the Conference on Computer Communications
(June 2002)

2. Chen, B., Jamieson, K., Balakrishnan, H., Morris, R.: Span: An energy-efficient
coordination algorithm for topology maintenance in ad hoc wireless networks. In:
MobiCom 2002. Proceedings of the Seventh Annual Inernational Conference on
Mobile Computing and Networking, pp. 85–96 (July 2001)

3. Dai, F., Wu, J.: Distributed dominant pruning in ad hoc networks. In:Proceedings
of ICC 2003 (2003)

4. Datta, A.K., Gradinariu, M., Patel, R.: Distributed self-∗ minimum connected
covering of a query region in sensor networks. In: ISPAN 2005, pp. 448–453 (2005)

5. Datta, A.K., Linga, P., Gradinariu, M., Raipin-Parvedy, P.: Self-* distributed query
region covering in sensor networks. In: SRDS 2005. 24th IEEE Symposium on
Reliable Distributed Systems, pp. 50–59 (October 2005)

6. Datta, A.K., Potop-Butucaru, M.G., Patel, R., Yamazaki, A.: Self* minimum con-
nected covers of sensing regions in sensor networks. Technical report, INRIA,
France (2007)

7. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
8. Drabkin, V., Friedman, R., Gradinariu, M.: Self-stabilizing wireless connected over-

lays. In: Shvartsman, A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 425–439.
Springer, Heidelberg (2006)

9. Gupta, H., Das, S.R., Gu, Q.: Connected sensor cover: Self-organization of sensor
networks for efficient query execution. In: MobiHoc 2003. Proceedings of the Fourth
ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp.
189–200 (2003)

218 A.K. Datta et al.

10. Jiang, Z., Kline, R., Wu, J., Dai, F.: A practical method to form energy effi-
cient connected -coverage in wireless sensor networks. In: ICDCS Workshops, p. 81
(2006)

11. Shakkottai, S., Srikant, R., Shroff, N.: Unreliable sensor grids: Coverage, connec-
tivity and diameter. In: INFOCOM 2003. Twenty-Second Annual Joint Conference
of the IEEE Computer and Communications Societies, vol. 2, pp. 1073–1083 (April
2003)

12. Tian, D., Georganas, N.D.: A coverage-preserving node scheduling scheme for large
wireless sensor networks. In: WSNA 2002. Proceedings of the First Workshop on
Sensor Networks and Applications, pp. 32–41 (September 2002)

13. Wang, X., Xing, G., Zhang, Y., Lu, C., Pless, R., Gill, C.: Integrated coverage
and connectivity configuration in wireless sensor networks. In: ACM SenSys 2003.
Proceedings of the First International Conference on Embedded Networked Sensor
Systems, pp. 28–39 (November 2003)

14. Xu, Y., Heidemann, J., Estrin, D.: Geography-informed energy conservation for ad
hoc routing. In: MobiCom 2002. Proceedings of the Seventh Annual Inernational
Conference on Mobile Computing and Networking, pp. 70–84 (2001)

15. Ye, F., Zhong, G., Cheng, J., Lu, S., Zhang, L.: PEAS: A robust energy conserving
protocol for long-lived sensor networks. In: ICDCS 2003. Proceedings of the 23rd
International Conference on Distributed Computing Systems, pp. 1–10 (2003)

16. Zhang, H., Arora, A.: GS3: Scalable self-configuring and self-healing in wireless net-
works. In: PODC 2002. Proceedings of the Twentyfirst Annual ACM Symposium
on Principles of Distributed Computing (2002)

17. Zhang, H., Hou, J.C.: Maintaining sensing coverage and connectivity in large sen-
sor networks. Technical Report UIUCDCS-R-2003-2351, University of Illinois at
Urbana Champaign, (June 2003)

18. Zhou, Z., Das, S.R., Gupta, H.: Connected k-coverage problem in sensor networks.
In: ICCCN, pp. 373–378 (2004)

19. Zhou, Z., Das, S.R., Gupta, H.: Fault tolerant connected sensor cover with variable
sensing and transmission ranges. In: SECON (2005)

Robust Stabilizing Leader Election�

Carole Delporte-Gallet1, Stéphane Devismes2, and Hugues Fauconnier1

1 LIAFA, Université D. Diderot (France)
{cd,hf}@liafa.jussieu.fr

2 LaRIA, Université de Picardie Jules Verne (France)
stephane.devismes@u-picardie.fr

Abstract. We mix two approaches of the fault-tolerance: robustness
and stabilization. Using these approaches, we propose leader election al-
gorithms that tolerate both transient and crash failures. Our goal is to
show the implementability of the robust self- and/or pseudo- stabilizing
leader election in various systems with weak reliability and synchrony
assumptions. We try to propose, when it is possible, communication-
efficient implementations. Also, we exhibit some assumptions required
to obtain robust stabilizing leader election algorithms. Our results show
that the gap between robustness and stabilizing robustness is not really
significant when we consider fix-point problems such as leader election.

1 Introduction

Two kinds of faults are usually considered: the transient and crash failures. The
stabilization introduced by Dijkstra in 1974 [2] is a general technique to design
algorithms tolerating transient failures. However, such stabilizing algorithms are
usually not robust: they do not withstand crash failures. Conversely, robust al-
gorithms are usually not designed to go through transient failures (n.b., some
robust algorithms tolerate the loss of messages, e.g., [3]). There is some papers
that deal with both stabilization and crash failures, e.g., [4,5,6,7]. In [4], Gopal
and Perry propose techniques for transforming robust protocols in a synchronous
network into robust self-stabilizing versions. Beauquier and Kekkonen-Moneta
introduce in [6] the first self-stabilizing failure detector implementation in a syn-
chronous system. In [5], authors prove that robust self-stabilization cannot be
achieved in asynchronous networks for a wide range of problems including leader
election even when self-stabilization or robustness alone can be done.

We are interested in designing leader election algorithms that tolerate tran-
sient and crash failures. Actually, we focus on finding stabilizing solutions in
message-passing with the possibility of some process crashes. The impossibility
results in [8,5] constraints us to make some assumptions on the link and process
synchrony. So, we look for the weakest assumptions allowing to obtain stabilizing
leader election algorithm in a system where some processes may crash.

Leader election has been extensively studied in both stabilizing (e.g., [9,10])
and robust (e.g., [11,12]) areas. In particular, note that in the robust systems,
� The full version of this paper in available on the HAL server, see [1].

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 219–233, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

220 C. Delporte-Gallet, S. Devismes, and H. Fauconnier

leader election is also considered as a failure detector. Such a failure detector,
called Ω, is important because it has been shown in [13] that it is the weakest
failure detector with which one can solve the consensus.

The notion of stabilization appears with the concept of self-stabilization: a
self-stabilizing algorithm, regardless of the initial configuration of the system,
guarantees that the system reaches in a finite time a configuration from which
it cannot deviate from its intended behavior. In [14], Burns et al introduced
the more general notion of pseudo-stabilization. A pseudo-stabilizing algorithm,
regardless of the initial configuration of the system, guarantees that the sys-
tem reaches in a finite time a configuration from which it does not deviate from
its intended behavior. These two notions guarantee the convergence to a correct
behavior. However, the self-stabilization also guarantees that since the system re-
covers a legitimate configuration, it remains in a legitimate configuration forever:
the closure property. In contrast, a pseudo-stabilizing algorithm only guarantees
an ultimate closure: the system can move from a legitimate configuration to an
illegitimate one but eventually it remains in a legitimate configuration forever.

We study the problem of implementing robust self- and/or pseudo- stabilizing
leader election in various systems with weak reliability and synchrony assump-
tions. We try to propose, when it is possible, communication-efficient implemen-
tations: an algorithm is communication-efficient if it eventually only uses n − 1
unidirectionnal links (where n is the number of processes), which is optimal
[15]. Communication-efficiency is quite challenging in the stabilizing area be-
cause stabilizing implementations often require the use of heartbeats which are
heavy in terms of communication. In this paper, we first show that the notions
of immediate synchrony and eventually synchrony are in some sense equivalent
concerning the stabilization. Hence, we only consider synchrony properties that
are immediate. In the systems we study: (1) all the processes are synchronous
and can communicate with each other but some of them may crash and, (2) some
links may have some synchrony or reliability properties. Our starting point is a
full synchronous system noted S5. We show that a self-stabilizing leader election
can be communication-efficiently done in such a system. We then show that such
strong synchrony assumptions are required in the systems we consider to obtain
a self-stabilizing communication-efficient leader election. Nevertheless, we also
show that a self-stabilizing leader election that is not communication-efficient
can be obtained in some weaker systems: any system where there exists at least
one path of synchronous links between each pair of alive processes (S3) and any
system having a timely bi-source1 (S4). In addition, we show that we cannot
implement any self-stabilizing leader election without these assumptions. Hence,
we then consider the pseudo-stabilization. We show that communication-efficient
pseudo-stabilizing leader election can be done in various weak models: any sys-
tem S4 and any system having a timely source2 and fair links (S2). Using a
previous result of Aguilera et al ([3]), we recall that communication-efficiency

1 A timely bi-source is a synchronous process having all its links that are synchronous.
2 A timely source is a synchronous process having all its output links that are syn-

chronous.

Robust Stabilizing Leader Election 221

Table 1. Implementability of the robust stabilizing leader election

S5 S4 S3 S2 S1 S0
Communication-Efficient Self-Stabilization Yes No No No No No
Self-Stabilization Yes Yes Yes No No No
Communication-Efficient Pseudo-Stabilization Yes Yes ? Yes No No
Pseudo-Stabilization Yes Yes Yes Yes Yes No

cannot be done if we consider now systems having at least one timely source but
where the fairness of all the links is not required (S1). However, we show that a
non-communication-efficient pseudo-stabilizing solution can be implemented in
such systems. Finally, we conclude with the basic system where all links can be
asynchronous and lossy (S0): the leader election can be neither pseudo- nor self-
stabilized in such a system ([8,5]). Table 1 summarizes our results.

It is important to note that the solutions we propose are essentially adapted
from previous existing robust algorithms provided, in particular, in [11,3]. Actu-
ally, the motivation of the paper is not to propose new algorithms. Our goal is
merely to show some required assumptions to obtain self- or pseudo- stabilizing
leader election algorithms in systems where some processes may crash. In par-
ticular, we focus on the borderline assumptions where we go from the possibility
to have self-stabilization to the possibility to have pseudo-stabilization only. An-
other interesting aspect of adaptating previous existing robust algorithms is to
show that, for fix-point problems3 such as leader election, the gap between ro-
bustness and stabilizing robustness is not really significant: in such problems,
adding the stabilizing property is quite easy.

Roadmap. In the next section, we present the model for our systems. We then
consider the problem of the robust stabilizing leader election in various kinds of
systems (Sections 3 to 8). We conclude with the future works in Section 9.

2 Preliminaries

2.1 Distributed Systems

We consider distributed systems where each process can communicate with each
other through directed links: there is a directed link from each process to all
the others. We denote the communication network by the digraph G = (V , E)
where V = {1,...,n} is the set of n processes (n > 1) and E the set of directed
links. A collection of distributed algorithms run on the system. These algorithms
can be seen as automata that enable processes to coordinate their activities. We
modelize the executions of a distributed algorithm A in the system S by the pair
(C,�→) where C is the set of configurations and �→ is a collection of binary transi-
tion relations on C such that for each transition γi−1 �→ γi we have γi−1 �= γi. A
configuration consists in the state of each process and the collection of messages
3 Roughly speaking, a problem is a fix-point problem if the problem can be expressed

by some invariant properties of some variables.

222 C. Delporte-Gallet, S. Devismes, and H. Fauconnier

in transit at a given time. The state of a process is defined by the values of its
variables. An execution of A is a maximal sequence γ0,τ0,γ1,τ1,. . .,γi−1,τi−1,γi,. . .
such that ∀i ≥ 1, γi−1 �→ γi and the transition γi−1 �→ γi occurs after time elapse
τi−1 time units (τi−1 ∈ R+). For each configuration γ in any execution e, we
denote by −→eγ the suffix of e starting in γ, ←−eγ denotes the associated prefix. We
call specification a particular set of executions.

2.2 Self- and Pseudo- Stabilization

Definition 1 (Self-Stabilization [2]). An algorithm A is self-stabilizing for
a specification F in the system S if and only if in any execution of A in S, there
exists a configuration γ such that any suffix starting from γ is in F .

Definition 2 (Pseudo-Stabilization [14]). An algorithm A is pseudo-stabili-
zing for a specification F in the system S if and only if in any execution of A
in S, there exists a suffix that is in F .

Robust Stabilization. Here, we not only consider the transient failures: our sys-
tems may go through transient and crash failures. We assume that some pro-
cesses may be crashed in the initial configuration. We also assume that the links
are not necessary reliable during the execution. In the following, we will show
that despite these constraints, it is possible (under some assumptions) to design
stabilizing algorithms. Note that the fact that we only consider initial crashes is
not a restriction (but rather an assumption to simplify the proofs) because we
focus on the leader election which is a fix-point problem: in such problems, the
safety properties do not concern the whole execution but only a suffix.

2.3 Informal Model

Processes. Processes execute by taking steps. In a step a process executes two ac-
tions in sequence: (1) either it tries to receive one message from another process,
or sends a message to another process, or does nothing, and then (2) changes its
state. A step need not to be instantaneous, but we assume that each action of a
step takes effect at some instantaneous moment during the step. The configura-
tion of the system changes each time some steps take effect: if there is some steps
that take effect at time ti, then the system moves from a configuration γi−1 to
another configuration γi (γi−1 �→ γi) where γi−1 was the configuration of the
system during some time interval [ti−1, ti[and γi is the configuration obtained
by applying on γi−1 all actions of the steps that take effect at time ti.

A process can fail by permanently crashing, in which case it definitively stops
to take steps. A process is alive at time t if it is not crashed at time t. Here,
we consider that all processes that are alive in the initial configuration are alive
forever. An alive process executes infinitely many steps. We consider that any
subset of processes may be crashed in the initial configuration.

We assume that the execution rate of any process cannot increase indefini-
tively: there exists a non-null lower bound on the time required by the alive

Robust Stabilizing Leader Election 223

processes to execute a step4. Also, every alive process is assumed to be timely:
it satisfies a non-null upper bound on the time it requires to execute each step.
Finally, our algorithms are structured as a repeat forever loop with a bounded
number of steps in each loop iteration. So, each alive process satisfies a lower
and an upper bound, resp. noted α and β, on the time it needs to execute an
iteration of its repeat forever loop. We assume that each process knows α and β.

Links. Processes can send messages over a set of directed links. There is a
directed link from each process to all the others. A message m carries a type T
in addition to its data D: m = (T ,D) ∈ {0,1}∗ × {0,1}∗. For each incoming link
(q,p) and each type T , the process p has a message buffer, Bufferp[q,T], that
can hold at most one single message of type T . Bufferp[q,T] =⊥ when it holds
no message. If q sends a message m to p and the link (q,p) does not lose m, then
Bufferp[q,T] is eventually set to m. When it happens, we say that message m is
delivered to p from q (n.b., we make no assumption on the delivrance order). If
Bufferp[q,T] was set to some previous message, this message is then overwritten.
When p takes a step, it may choose a process q and a type T to read the contents
of Bufferp[q,T]. If Bufferp[q,T] contains a message m (i.e., Bufferp[q,T] �=⊥),
then we say that p receives m from q and Bufferp[q,T] is reset to ⊥.

A link (p,q) is timely if there exists a constant δ such that, for every execution
and every time t, each message m sent to q by p at time t is delivered to q from
p within time t + δ (any message that is initially in a timely link is delivered
within time δ). A link (p,q) is eventually timely if there exists a constant δ for
which every execution satisfies: there is a time t such that every message m that
p sends to q at time t′ ≥ t is delivered to q from p by time t′ + δ (any message
that is already in an eventually timely link at time t is delivered within time
t + δ). We assume that every process knows δ. We also assume that δ > β. A
link which is neither timely nor eventually timely can be arbitrary slow, or can
lose messages. A fair link (p,q) satisfies: for each type of message T , if p sends
infinitely many messages of type T to q, then infinitely many messages of type
T are delivered to q from p. A link (p,q) is reliable if every message sent by p to
q is eventually delivered to q from p.

Particular Caracteristics. A timely source (resp. an eventually timely source) [3]
is an alive process having all its output links that are timely (resp. eventually
timely). A timely bi-source (resp. an eventually timely bi-source) [16] is an alive
process having all its (input and output) links that are timely (resp. eventually
timely). We call timely routing overlay (resp. eventually timely routing overlay)
any strongly connected graph G′ = (V ′,E′) where V ′ is the subset of all alive
processes and E′ a subset of timely (resp. eventually timely) links.

Finally, note that the notions of timeliness and eventually timeliness are
“equivalent” in (pseudo- or self-) stabilization in a sense that every stabiliz-
ing algorithm in a system S having some timely links is also stabilizing in the
system S′ where S′ is the same system as S except that all the timely links in
S are eventually timely in S′, and reciprocally (see Theorems 1 and 2).
4 Except for the first step that we allow to not satisfy this lower bound.

224 C. Delporte-Gallet, S. Devismes, and H. Fauconnier

Theorem 1. Let S be a system having some timely links. Let S′ be the same
system as S except that all the timely links in S are eventually timely in S′. An
algorithm A is pseudo-stabilizing for the specification F in the system S if and
only if A is pseudo-stabilizing for the specification F in the system S′.

Proof. By definition, a timely link is also an eventually timely link. Hence, we
trivially have: if A is pseudo-stabilizing for F in S′, then A is also pseudo-
stabilizing for F in S.

Assume now that A is pseudo-stabilizing for F in S but not pseudo-stabilizing
for F in S′. Then, there exists an execution e of A in S′ such that no suffix of e
is in F . Let γ be the configuration of e from which all the eventually timely links
of S′ are timely. As no suffix of e is in F , no suffix of −→eγ is in F too. Now, −→eγ is
a possible execution of A in S because (1) γ is a possible initial configuration of
S (S and S′ have the same set of configurations and any configuration can be
initial) and (2) every eventually timely link of S′ is timely in −→eγ . Hence, as no
suffix of −→eγ is in F , A is not pseudo-stabilizing for F in S — a contradiction. �

Following a proof similar to the one of Theorem 1, we have:

Theorem 2. Let S be a system having some timely links. Let S′ be the same
system as S except that all the timely links in S are eventually timely in S′. An
algorithm A is self-stabilizing for the specification F in the system S if and only
if A is self-stabilizing for the specification F in the system S′.

Communication-Efficiency. An algorithm is communication-efficient [11] if there
is a time from which it uses only n − 1 unidirectional links.

Systems. We consider six systems denoted by Si, i ∈ [0...5] (see Figure 1). All
these systems satisfy: (1) the value of the variables of every alive process can
be arbitrary in the initial configuration, (2) every link can initially contain a
finite but unbounded number of messages, and (3) except if we explicitly state,
each link between two alive processes is neither fair nor timely (we just assume
that the messages cannot be corrupted). The system S0 corresponds to the basic
system where no further assumptions are made: in S0, the links can be arbitrary
slow or lossy. In S1, we assume that there exists at least one timely source (whose
identity is unknown). In S2, we assume that there exists at least one timely source
(whose identity is unknown) and every link is fair. In S3, we assume that there
exists a timely routing overlay. In S4, we assume that there exists at least one
timely bi-source (whose identity is unknown). In S5, all links are timely.

2.4 Robust Stabilizing Leader Election

In the leader election, each process p has a variable Leaderp that holds the
identity of a process. Intuitively, eventually all alive processes should hold the
identity of the same process forever and this process should be alive. Formally,
there exists an alive process l and a time t such that at any time t′ ≥ t, every
alive process p satisfies Leaderp = l.

Robust Stabilizing Leader Election 225

System Properties
S0 Links: arbitrary slow, lossy, and initially not necessary empty

Processes: can be initially crashed, timely forever otherwise
Variables: initially arbitrary assigned

S1 S0 with at least one timely source

S2 S0 with at least one timely source and every link is fair

S3 S0 with a timely routing overlay

S4 S0 with at least one timely bi-source

S5 S0 except that all links are timely

S0

S1

S2

S3

S4

S5

Fig. 1. Systems considered in this paper (S → S ′ means S ′ ⊂ S)

3 Communication-Efficient Self-Stabilizing Leader
Election in S5

We first seek a communication-efficient self-stabilizing leader election algorithm
in system S5. To get the communication-efficiency, we proceed as follows: Each
process p periodically sends ALIVE to all other processes only if it thinks to be
the leader, i.e., only if Leaderp = p (Lines 16-18 of Algorithm 1).

Any process p such that Leaderp �= p always chooses as leader the process
from which it receives ALIVE the most recently (Lines 6-13). When a process
p such that Leaderp = p receives ALIVE from q, it sets Leaderp to q if q < p
(Lines 6-13). By this method, there eventually exists at most one alive process
p such that Leaderp = p.

Finally, every process p such that Leaderp �= p uses a counter that is incre-
mented at each loop iteration to detect if there is no alive process q such that
Leaderq = q (Lines 21-27). When the counter becomes greater than a well-chosen
value, p can deduce that there is no alive process q such that Leaderq = q. In
this case, p simply elects itself by setting Leaderp to p (Line 24) in order to
guarantee the liveness of the election: in order to ensure that there eventually
exists at least one process q such that Leaderq = q.

To apply the previously described method, Algorithm 1 uses only one message
type: ALIVE and two counters: SendT imerp and ReceiveT imerp. Any process p
such that Leaderp = p uses the counter SendT imerp to periodically send ALIVE
to the other processes. ReceiveT imerp is used by each process p to detect when
there is no alive process q such that Leaderq = q. These counters are incremented
at each iteration of the repeat forever loop in order to evaluate a particular time
elapse. Using the lower and upper bound on the time to execute an iteration
of this loop (i.e., α and β), each process p knows how many iterations it must
execute before a given time elapse passed. For instance, a process p must count

δ/α� loop iterations to wait at least δ times.

Theorem 3. Algorithm 1 implements a communication-efficient self-stabilizing
leader election in system S5.

226 C. Delporte-Gallet, S. Devismes, and H. Fauconnier

Algorithm 1. Communication-Efficient Self-Stabilizing Leader Election on S5

Code for each process p:

1: variables:
2: Leaderp ∈ {1,...,n}
3: SendTimerp, ReceiveTimerp : non-negative integers
4:
5: repeat forever
6: for all q ∈ V \ {p} do
7: if receive(ALIVE) from q then
8: if (Leaderp �= p) ∨ (q < p) then
9: Leaderp ← q
10: end if
11: ReceiveTimerp ← 0
12: end if
13: end for
14: SendTimerp ← SendTimerp + 1
15: if SendTimerp ≥
δ/β� then
16: if Leaderp = p then
17: send(ALIVE) to every process except p
18: end if
19: SendTimerp ← 0
20: end if
21: ReceiveTimerp ← ReceiveTimerp + 1
22: if ReceiveTimerp > 8�δ/α then
23: if Leaderp �= p then
24: Leaderp ← p
25: end if
26: ReceiveTimerp ← 0
27: end if
28: end repeat

4 Self-Stabilizing Leader Election in S4

We first prove that we cannot implement any communication-efficient self-stabi-
lizing leader election algorithm in S2 and S4. To that goal, we show that it is
impossible to implement such an algorithm in a stronger system: S−5 where S−5
is any system S0 having (1) all its links that are reliable and (2) all its links that
are timely except at most one which can be neither timely nor eventually timely.

Lemma 1. Let A be any self-stabilizing leader election algorithm in S−5 . In
any execution of A, any alive process p satisfies: from any configuration where
Leaderp �= p, ∃k ∈ R+ such that p modifies Leaderp if it receives no message
during k times.

Proof. Assume, by the contradiction, that there exists an execution e where
there is a configuration γ from which a process p satisfies Leaderp = q forever
with q �= p while p does not receive a message anymore. As A is self-stabilizing,
it can start from any configuration. So, −→eγ is a possible execution. Let γ′ be a
configuration which is identical to γ except that q is crashed in γ′. Consider any
execution eγ′ starting from γ′ where p did not receive a message anymore. As
p cannot distinguish −→eγ and eγ′ , it behaves in eγ′ as in −→eγ : it keeps q as leader
while q is crashed — a contradiction. �

Theorem 4. There is no communication-efficient self-stabilizing leader election
algorithm in system S−5 .

Robust Stabilizing Leader Election 227

Proof. Assume, by the contradiction, that there exists a communication-efficient
self-stabilizing leader election algorithm A in system S−5 .

Consider any execution e where no process crashes and all the links behave as
timely. By Definition 1 and Lemma 1, there exists a configuration γ in e such that
in any suffix starting from γ: (1) there exists an alive process l such that any alive
process p satisfies Leaderp = l forever, and (2) messages are received infinitely
often through at least one input link of each alive process except perhaps l.

Communication-efficiency and (2) implies that messages are received infinitely
often in −→eγ through exactly n − 1 links of the form (q,p) with p �= l. Let E′ ⊂ E
be the subset containing the n − 1 links where messages transit infinitely often
in −→eγ .

Consider now any execution e′ identical to e except that there is a time after
which a certain link (q,p) ∈ E′ arbitrary delays the messages. (q,p) can behave
as a timely link an arbitrary long time, so, e and e′ can have an arbitrary large
common prefix. In particular, e′ can begin with any prefix of e of the form ←−eγe′′

with e′′ a non-empty prefix of −→eγ . Now, after any prefix ←−eγe′′, (q,p) can start to
arbitrary delay the messages and, in this case, p eventually changes its leader
by Lemma 1. Hence, for any prefix ←−eγe′′, there is a possible suffix of execution
in S−5 where p changes its leader: for some executions of A in S−5 there is no
guarantee that from a certain configuration the leader does not change anymore.
Hence, A is not self-stabilizing in S−5 — a contradiction. �

By definition, any system S−5 is also a system S2 and any system S−5 having
n ≥ 3 processes is a particular case of system S4. Hence:

Corollary 1. There is no communication-efficient self-stabilizing leader elec-
tion algorithm in systems S2 and S4 with n ≥ 3 processes.

Since S4 is a particular case of systems S3, Corollary 1 also holds for S3. How-
ever, a (non-communication-efficient) self-stabilizing leader election algorithm
can be trivially implemented for S3, henceforth for S4 too, as explained af-
terwards. Any system S3 is characterized by the existence of a timely routing
overlay. Using this characteristic, our solution works as follows: (1) every pro-
cess p periodically sends an (ALIVE,1,p) message through all its links; (2) when
receiving an (ALIVE,k,r) message from a process q, a process p retransmits an
(ALIVE,k + 1,r) message to all the other processes except q if k < n − 1. Us-
ing this method, we have the guarantee that, any alive p periodically receives
an (ALIVE,−,q) message for each other alive process q. Each process can then
locally compute in an Alives set the list of all alive processes. Once the list is
known by each alive process, designate a leader is easy: each alive process just
outputs the smallest process of its Alives set.

5 Pseudo-Stabilizing Communication-Efficient Leader
Election in S4

We now show that, contrary to self-stabilizing leader election, pseudo-stabilizing
leader election can be communication-efficiently done in S4. To that goal, we

228 C. Delporte-Gallet, S. Devismes, and H. Fauconnier

Algorithm 2. Communication-Efficient Pseudo-Stabilizing Leader Election on S4

Code for each process p:

1: variables:
2: Leaderp ∈ {1,...,n}
3: SendTimerp, ReceiveTimerp , Roundp: non-negative integers
4:
5: procedure StartRound(s)
6: if p �= (s mod n + 1) then
7: send(START,s) to s mod n + 1
8: end if
9: Roundp ← s
10: SendTimerp ←
δ/β�
11: end procedure
12:
13: repeat forever
14: for all q ∈ V \ {p} do
15: if receive (ALIVE,k) or (START,k) from q then
16: if Roundp > k then
17: send(START,Roundp) to q
18: else
19: if Roundp < k then
20: StartRound(k)
21: end if
22: ReceiveTimerp ← 0
23: end if
24: end if
25: end for
26: ReceiveTimerp ← ReceiveTimerp + 1
27: if ReceiveTimerp > 8�δ/α then
28: if p �= (Roundp mod n + 1) then
29: StartRound(Roundp + 1)
30: end if
31: ReceiveTimerp ← 0
32: end if
33: SendTimerp ← SendTimerp + 1
34: if SendTimerp ≥
δ/β� then
35: if p = (Roundp mod n + 1) then
36: send(ALIVE,Roundp) to every process except p
37: end if
38: Leaderp ← (Roundp mod n + 1)
39: SendTimerp ← 0
40: end if
41: end repeat

study an algorithm provided in [11]. In this algorithm (Algorithm 2), each process
p executes in rounds Roundp = 0, 1, 2, . . ., where the variable Roundp keeps
p’s current round. For each round r a unique process, lr = r mod n + 1, is
distinguished: lr is called the leader of the round. The goal here is to make all
alive processes converge to a round value having an alive process as leader.

When starting a new round k, a process p (1) informs the leader of the round,
lk, by sending it a (START,k) message if p �= lk (Line 6-8), (2) sets Roundp to
k (Line 9), and (3) forces SendT imerp to �δ/β� (Line 10) so that (a) p sends
(ALIVE,k) to all other processes if p = lk (Lines 35-37) and (b) p updates
Leaderp (Line 38). While in the round r, the leader of the round lr periodi-
cally sends (ALIVE,r) to all other processes (Lines 33-40). A process p modifies
Roundp only in two cases: (i) if p receives an ALIVE or START message with
a round value bigger than its own (Lines 19-20), or (ii) if p does not recently
receive an ALIVE message from its round leader q �= p (Lines 26-32). In case (i),

Robust Stabilizing Leader Election 229

p adopts the round value in the message. In case (ii), p starts the next round
(Line 29). Case (ii) allows a process to eventually choose as leader a process
that correctly communicates. Case (i) allows the round values to converge. Intu-
itively, the algorithm is pseudo-stabilizing because, the processes with the upper
values of rounds eventually designates as leader an alive process that correctly
communicates forever (perhaps the bi-source) thanks to (ii) and, then, the other
processes eventually adopt this leader thanks to (i).

Theorem 5. Algorithm 2 implements a communication-efficient pseudo-stabi-
lizing leader election in system S4.

6 Impossibility of Self-Stabilizing Leader Election in S2

To prove that we cannot implement any self-stabilizing leader election algorithm
in S2, we show that it is impossible to implement such an algorithm in a par-
ticular case of S2: let S−3 be any system S2 having all its links that are reliable
but containing no eventually timely overlay.

Let m be any message sent at a given time t. We say that a message m’ is older
than m if and only if m’ was initially in a link or m’ was sent at a time t′ such that
t′ < t. We call causal sequence any sequence p0,m1,...,mi,pi,mi+1,...,pk−1,mk

such that: (1) ∀i, 0 ≤ i < k, pi is a process and mi+1 is a message, (2) ∀i,
1 ≤ i < k, pi receives mi from pi−1, and (3) ∀i, 1 ≤ i < k, pi sends mi+1
after the reception of mi. By extension, we say that mk causally depends on p0.
Also, we say that mk is a new message that causally depends on p0 after the
message mk′ if and only if there exists two causal sequences p0,m1,...,pk−1,mk

and p0,m1′ ,...,pk′−1,mk′ such that m1′ is older than m1.

Lemma 2. Let A be any self-stabilizing leader election algorithm in S−3 . In
every execution of A, any alive process p satisfies: from any configuration where
Leaderp �= p, ∃k ∈ R+ such that p changes its leader if it receives no new
message that causally depends on Leaderp during k times.

Proof. Assume, by the contradiction, that there exists an execution e where
there is a configuration γ from which a process satisfies Leaderp = q forever
with q �= p while from γ p does not receive anymore a new message that causally
depends on q. As A is self-stabilizing, it can start from any configuration. So, −→eγ

is a possible execution of A. Let γ′ be a configuration that is identical to γ except
that q is crashed in γ′. As p only received messages that do not causally depend
on q in −→eγ (otherwise, this means that from γ, p eventually receives at least one
new message that causally depends on q in e), there exists a possible execution
−→eγ′ starting from γ′ where p received exactly the same messages as in −→eγ (the
fact that q is crashed just prevents p from receiving the messages that causally
depend on q). Hence, p cannot distinguish −→eγ and −→eγ′ and p behaves in −→eγ′ as
in −→eγ : it keeps q as leader forever while q is crashed: A is not a self-stabilizing
leader election algorithm — a contradiction. �

230 C. Delporte-Gallet, S. Devismes, and H. Fauconnier

Theorem 6. There is no self-stabilizing leader election algorithm in system S−3 .

Proof. Assume, by the contradiction, that there exists a self-stabilizing leader
election algorithm A in system S−3 . By Definition 1, in any execution of A, there
exists a configuration γ such that in any suffix starting from γ there exists a
unique leader and this leader no more changes. Let e be an execution of A where
no process crashes and every link is timely. Let l be the alive process which is
eventually elected in e. Consider now any execution e′ identical to e except that
there is a time after which there is at least one link in each path from l to some
process p that arbitrary delays messages. Then, e and e′ can have an arbitrary
large common prefix. Hence, we can construct executions of A beginning with
any prefix of e where l is eventually elected (during this prefix, every link behaves
as a timely link) but in the associated suffix, any causal sequence of messages
from l to p is arbitrary delayed and, by Lemma 2, p eventually changes its leader
to a process q �= l. Thus, for any prefix ←−e of e where a process is eventually
elected, there exists a possible execution having ←−e as prefix and an associated
suffix −→e in which the leader eventually changes. Hence, for some executions of
A, we cannot guarantee that from a certain configuration the leader will no more
change: A is not self-stabilizing — a contradiction. �

Intuitively, Theorem 6 means that self-stabilization is impossible for a weaker
system than S3, in particular, S2. Hence:

Corollary 2. There is no self-stabilizing leader election algorithm in system S2.

7 Communication-Efficient Pseudo-Stabilizing Leader
Election in S2

From Corollary 2, we know that there does not exist any self-stabilizing leader
election algorithm in S2. We now show that pseudo-stabilizing leader elections
exist in S2. Furthermore we can achieve communication-efficiency. The solution
we propose is an adaptation of an algorithm provided in [3].

To obtain communication-efficiency, Algorithm 3 uses the same principle as
Algorithm 1: Each process p periodically sends ALIVE to all other processes only
if it thinks it is the leader. However, this principle cannot be directly applied in
S2: if the only source happens to be a process with a large ID, the leadership
can oscillate among some other alive processes infinitely often because these
processes can be alternatively considered as crashed or alive.

To fix the problem, Aguilera et al propose in [3] that each process p stores in
an accusation counter, Counterp[p], how many time it was previously suspected
to be crashed. Then, if p thinks that it is the leader, it periodically sends ALIVE
messages with its current value of Counterp[p] (Lines 23-29). Any process stores
in an Actives set its own ID and that of each process it recently received an
ALIVE message (Lines 8 and 12-16). Also, each process keeps the most up-to-
date value of accusation counter of any process from which it receives an ALIVE
message. Finally, any process q periodically chooses as leader the process having

Robust Stabilizing Leader Election 231

Algorithm 3. Communication-Efficient Pseudo-Stabilizing Leader Election on S2

Code for each process p:

1: variables:
2: Leaderp ∈ {1,...,n}, OldLeaderp ∈ {1,...,n}
3: SendTimerp, ReceiveTimerp : non-negative integers
4: Counterp[1...n], Phasep[1...n]: arrays of non-negative integers
5: Collectp, OtherActivesp : sets of non-negative integers
6:
7: macros:
8: Activesp = OtherActivesp ∪ {p}
9:
10: repeat forever
11: for all q ∈ V \ {p} do
12: if receive(ALIVE,qcnt,qph) from q then
13: Collectp ← Collectp ∪ {q}
14: Counterp[q] ← qcnt
15: Phasep[q] ← qph
16: end if
17: if receive(ACCUSATION,ph) from q then
18: if ph = Phasep[p] then
19: Counterp[p]← Counterp[p] + 1
20: end if
21: end if
22: end for
23: SendTimerp ← SendTimerp + 1
24: if SendTimerp ≥
δ/β� then
25: if Leaderp = p then
26: send(ALIVE,Counterp[p],Phasep[p]) to every process except p
27: end if
28: SendTimerp ← 0
29: end if
30: ReceiveTimerp ← ReceiveTimerp + 1
31: if ReceiveTimerp > 5�δ/α then
32: OtherActivesp ← Collectp

33: if Leaderp /∈ Activesp then
34: send(ACCUSATION,Phasep[Leaderp]) to Leaderp

35: end if
36: OldLeaderp ← Leaderp

37: Leaderp ← r such that (Counterp[r],r) = min{(Counterp[q],q) : q ∈ Activesp}
38: if (OldLeaderp = p) ∧ (Leaderp �= p) then
39: Phasep[p]← Phasep[p] + 1
40: end if
41: Collectp ← ∅
42: ReceiveTimerp ← 0
43: end if
44: end repeat

the smallest accusation value among the processes in its Activesq set (IDs are
used to break ties). After choosing a leader, if the leader of q changes, q sends an
ACCUSATION message to its previous leader (Lines 33-35). The hope is that
the counter of each source remains bounded, and, as a consequence, the source
with the smallest counter is eventually elected.

However, the accusation counter of any source may increase infinitely often.
Indeed, a source s can stop to consider itself as the leader: when s selects another
process p as its leader. In this case, the source volontary stops sending ALIVE
messages (for the communication efficiency), each other process that considered
s as its leader eventually suspects s, and sends ACCUSATION messages to s.
These messages cause incrementations of s’accusation counter. Later, due to the

232 C. Delporte-Gallet, S. Devismes, and H. Fauconnier

quality of the output links of p, p can also increase its accusation counter and
then the source may obtain the leadership again.

Aguilera et al add a mechanism so that a source increments its own accusation
counter only a finite number of times. A process now increments its accusation
counter only if it receives a “legitimate” accusation: an accusation due to the
delay or the loss of one of its ALIVE message. To detect if an accusation is
legitimate, each process p saves in Phasep[p] the number of times it loses the
leadership in the past and includes this value in each of its ALIVE messages (Line
26). When a process q receives an ALIVE message from p, it also saves the phase
value sent by p in Phaseq[p] (Line 15). Hence, when q wants to accuse p, it now
includes its own view of p’s phase number in the ACCUSATION message it sends
to p (Line 34). This ACCUSATION message will be considered as legitimate by p
only if the phase number it contains matches the current phase value of p (Lines
18-20). Moreover, whenever p loses the leadership and stops sending ALIVE
message voluntary, p increments Phasep[p] and does not send the new value to
any other process (Line 38-40): this effectively causes p to ignore all the spurious
ACCUSATION messages that result from its voluntary silence.

Theorem 7. Algorithm 3 implements a communication-efficient pseudo-stabi-
lizing leader election in system S2.

8 Pseudo-Stabilizing Leader Election in S1

Let S−1 be any system S0 with an eventually timely source and n ≥ 3 processes.
In [3], Aguilera et al show that there is no communication-efficient leader election
algorithm in system S−1 . Now, any pseudo-stabilizing leader election algorithm
in S1 is also a pseudo-stabilizing leader election algorithm in S−1 by Theorem 2.

Theorem 8. There is no communication-efficient pseudo-stabilizing leader elec-
tion algorithm in system S1 with n ≥ 3 processes.

By Theorem 8, there is no communication-efficient pseudo-stabilizing leader elec-
tion algorithm in system S1 with n ≥ 3 processes. However, using similar tech-
niques as those previously used in the paper, we can adapt the robust but non
communication-efficient algorithm for S−1 given in [?] to obtain a pseudo-stabi-
lizing but non communication-efficient leader election algorithm for S1.

9 Future Works

There is some possible extensions to this work. First, getting a communication-
efficient leader election in a system having a timely routing overlay remains an
open question. Then, we can study robust stabilizing leader election in systems
where only a given number of processes may crash. It could be interesting to
extend these algorithms and results to other models like those in [18,12] and
other communication topologies. Finally, we can study the implementability of
robust stabilizing decision problems.

Robust Stabilizing Leader Election 233

Acknowledgements. We are grateful to Ajoy K. Datta for his interesting remarks.

References

1. Delporte-Gallet, C., Devismes, S., Fauconnier, H.: Robust stabilizing leader
election. Technical report, LIAFA (2007) available at the following address,
http://hal.archives-ouvertes.fr/hal-00167935/fr/

2. Dijkstra, E.: Self stabilizing systems in spite of distributed control. Communica-
tions of the Association of the Computing Machinery 17, 643–644 (1974)

3. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On implementing
omega with weak reliability and synchrony assumptions. In: PODC 2003, pp. 306–
314 (2003)

4. Gopal, A.S., Perry, K.J.: Unifying self-stabilization and fault-tolerance (preliminary
version). In: PODC, pp. 195–206 (1993)

5. Anagnostou, E., Hadzilacos, V.: Tolerating transient and permanent failures (ex-
tended abstract). In: Schiper, A. (ed.) WDAG 1993. LNCS, vol. 725, pp. 174–188.
Springer, Heidelberg (1993)

6. Beauquier, J., Kekkonen-Moneta, S.: Fault-tolerance and self-stabilization: Im-
possibility results and solutions using failure detectors. Int. J of Systems Sci-
ence 28(11), 1177–1187 (1997)

7. Hutle, M., Widder, J.: Self-stabilizing failure detector algorithms. In: Parallel and
Distributed Computing and Networks, pp. 485–490 (2005)

8. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Communication-
efficient leader election and consensus with limited link synchrony. In: PODC, pp.
328–337 (2004)

9. Dolev, S., Israeli, A., Moran, S.: Uniform dynamic self-stabilizing leader election.
IEEE Transactions on Parallel and Distributed Systems 8(4), 424–440 (1997)

10. Beauquier, J., Gradinariu, M., Johnen, C.: Memory space requirements for self-
stabilizing leader election protocols. In: PODC 1999, pp. 199–207. ACM Press,
New York (1999)

11. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Stable leader elec-
tion. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 108–122. Springer,
Heidelberg (2001)

12. Malkhi, D., Oprea, F., Zhou, L.: Omega meets paxos: Leader election and stability
without eventual timely links. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724,
pp. 199–213. Springer, Heidelberg (2005)

13. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. J. ACM 43(4), 685–722 (1996)

14. Burns, J.E., Gouda, M.G., Miller, R.E.: Stabilization and pseudo-stabilization.
Distrib. Comput. 7(1), 35–42 (1993)

15. Larrea, M., Fernández, A., Arévalo, S.: Optimal implementation of the weakest
failure detector for solving consensus. In: SRDS, pp. 52–59 (2000)

16. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Consensus with
byzantine failures and little system synchrony. In: DSN, pp. 147–155 (2006)

17. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On implementing
omega with weak reliability and synchrony assumptions. journal version of [3](Un-
published)

18. Hutle, M., Malkhi, D., Schmid, U., Zhou, L.: Brief announcement: Chasing the
weakest system model for implementing omega and consensus. In: Datta, A.K.,
Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 576–577. Springer, Heidelberg
(2006)

http://hal.archives-ouvertes.fr/hal-00167935/fr/

Byzantine Self-stabilizing Pulse in a

Bounded-Delay Model

Danny Dolev� and Ezra N. Hoch

School of Engineering and Computer Science,
The Hebrew University of Jerusalem, Israel

{dolev,ezraho}@cs.huji.ac.il

Abstract. “Pulse Synchronization” intends to invoke a recurring dis-
tributed event at the different nodes, of a distributed system as simulta-
neously as possible and with a frequency that matches a predetermined
regularity. This paper shows how to achieve that goal when the system
is facing both transient and permanent (Byzantine) failures.

Byzantine nodes might incessantly try to de-synchronize the correct
nodes. Transient failures might throw the system into an arbitrary state
in which correct nodes have no common notion what-so-ever, such as
time or round numbers, and thus cannot use any aspect of their own
local states to infer anything about the states of other correct nodes.
The algorithm we present here guarantees that eventually all correct
nodes will invoke their pulses within a very short time interval of each
other and will do so regularly.

The problem of pulse synchronization was recently solved in a system
in which there exists an outside beat system that synchronously signals
all nodes at once. In this paper we present a solution for a bounded-delay
system. When the system in a steady state, a message sent by a correct
node arrives and is processed by all correct nodes within a bounded time,
say d time units, where at steady state the number of Byzantine nodes,
f, should obey the n > 3f inequality, for a network of n nodes.

1 Introduction

When constructing distributed systems, fault tolerance is a major consideration.
Will the system fail if part of the memory has been corrupted (e.g. by a buffer
overrun)? Will it withstand message losses? Will it overcome network discon-
nections? To build distributed systems that are fault tolerant to different types
of faults, two main paradigms have been used: The Byzantine model and the
self-stabilizing model

The Byzantine fault paradigm assumes that up to some fraction of the nodes
in the system (typically one-third) may behave arbitrarily. Moreover, these nodes
can collude in order to try and bring the system down (for more on Byzantine
faults, see [1]).
� Part of the work was done while the author visited Cornell university. The work was

funded in part by ISF, ISOC, NSF, CCR, and AFOSR.

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 234–252, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Byzantine Self-stabilizing Pulse in a Bounded-Delay Model 235

The self-stabilization model assumes that the system might be thrown out of
its assumed working conditions for some period of time. Once the system is back
to its normal boundaries, all nodes should converge to the desired solution. For
example, starting from any memory state, after a finite time, all nodes should
have the same clock value (for more on self-stabilization, see [2]).

The strength of self-stabilizing systems emerges from their ability to continue
functioning after recovering from a massive disruption of their assumed working
conditions. The advantage of Byzantine tolerant systems comes from being able
to withstand any kind of faults while the system operates in its known bound-
aries. By combining these two fault models, a distributed system can continue
operating properly in the presence of faults as long as “everything is going well”;
however, if “things aren’t going well”, the system will be able to recover once
the conditions hold again, and the ratio of Byzantine nodes hold.

Clock synchronization is a fundamental building block in many distributed
systems; hence, creating a self-stabilizing Byzantine tolerant clock synchroniza-
tion is a desirable goal. Once such an algorithm exists, one can stabilize Byzantine
tolerant algorithms that were not designed for self-stabilization (see [3]). Clock
synchronization can be created upon a pulseing algorithm (see [4]), which is
the main motivation behind the current paper.

The main contribution of the current paper is to develop a pulse synchroniza-
tion algorithm that converges once the communication network resumes deliv-
ering messages within bounded, say d, time units, and the number of Byzantine
nodes, f, obeys the n > 3f inequality, for a network of n nodes. The attained
pulse synchronization tightness is 3d with a deterministic convergence time of a
constant number of pulse cycles (each containing O(f) communication rounds).

1.1 Related Work

Algorithms combining self-stabilization and Byzantine faults, can be divided
into two classes. The first consists of problems in which the state of each node
is determined locally (see [5,6,7]). The other class contains problems such that a
node’s state requires global knowledge - for example, clock synchronization such
that every two nodes’ clocks have a bounded difference that is independent of
the diameter of the network (see [8,9,4]). The current paper is of the latter class.

The current paper makes use of the self-stabilizing Byzantine agreement al-
gorithm (ss-Byz-Agree) presented in [10]. The above work operates in exactly
the same model as the current paper, and its construction will be used as the ba-
sic building block in our current solution. Appendix A lists the main properties
of this building block.

When discussing clock synchronization, it is common to represent the clocks
as an integer value that progresses linearly in time (see [11]). This was previously
termed digital clock synchronization ([12,13,14,15]) or “synchronization of phase-
clocks” ([16]). In the current paper we provide a pulseing algorithm; however,
when comparing it to other results, we consider the digital clock synchronization
algorithm that can be built upon it (as in [4]).

236 D. Dolev and E.N. Hoch

The first ever algorithm to address self-stabilizing Byzantine tolerant clock
synchronization is presented in [8]. [8] discusses two models; one is synchronous,
that is, all nodes are connected to some global “tick” system that produces
“ticks” that reach all nodes at the same time, and messages sent at any given
tick reach their destination before the following tick. The second model is a
bounded-delay network, in which there is no common tick system, but messages
have a bounded delay on their delivery time. There is no reason to consider
an asynchronous model, since even a single fail-stop failure can’t be overcome
(see [17]). Note that the bounded-delay model contains the first (synchronous)
one. [8] gives two solutions, one for each model, both of which converge in ex-
pected exponential time; both algorithms support f < n

3 .
In [9] clock synchronization is reached in deterministic linear time. However,

[9] addresses only the synchronous model, and supports only up to f < n
4 . In [18],

a pulseing algorithm that operates in the synchronous model is presented, which
converges in deterministic linear time, and supports f < n

3 , matching the lower
bounds both in the maximal number of Byzantine nodes, and in the convergence
time (see [19] for lower bounds). In [20] a very complicated pulse synchronization
protocol, in the same model as the current paper, was presented.

The current paper presents a pulse-synchronization algorithm, which has de-
terministic linear convergence time, supports f < n

3 , and operates in a bounded-
delay model.

2 Model and Problem Definition

The model used in this paper consists of n nodes that can communicate via
message passing. Each message has a bounded delivery time, and a bounded
processing time at each node; in addition the message sender’s identity can be
validated. The network is not required to support broadcast.

Each node has a local clock. Local clocks might show different readings at
different nodes, but all clocks advance at approximately the real-time rate.

Nodes may be subject to transient faults, and at any time a constant fraction
of nodes may be Byzantine, where f , the number of Byzantine nodes satisfies
f < n

3 .

Definition 1. A node is non-faulty if it follows its algorithm, processes mes-
sages in no more than π time units and has a bounded drift on its internal clock.
A node that is not non-faulty is considered faulty (or Byzantine). A node is
correct if it has been non-faulty for Δnode time units.1

Definition 2. A communication network is non-faulty if messages arrive at
their destinations within δ time units, and the content of the message, as well as
the identity of the sender, arrive intact. A communication network is correct
if it has been non-faulty for Δnet time units.2

1 The value of Δnode will be stated later.
2 The value of Δnet is stated below.

Byzantine Self-stabilizing Pulse in a Bounded-Delay Model 237

The value of Δnet is chosen so if at time t1 the communication network is non-
faulty and stays so until t1 + Δnet, then only messages sent after t1 are received
by non-faulty nodes.

Definition 3. A system is coherent if the network is correct and there are at
least n − f correct nodes.

Once the system is coherent, a message between two correct nodes is sent, re-
ceived and processed within d time units, where d is the sum of δ, π and the
upper bound on the potential drift of correct local timers during such a period.
Δnet should be chosen in such a way as to satisfy Δnet ≥ d.. Since d includes the
drift factor, and since all the intervals of time will be represented as a function
of d, we will not explicitly refer to the drift factors in the rest of the paper.

2.1 Self-stabilizing Byzantine Pulse-Synchronization

Intuitively, the pulse synchronization problem consists of synchronizing the cor-
rect nodes so they invoke their pulses together Cycle time apart. That is, all
correct nodes should invoke pulses within a short interval, then not invoke a
pulse for approximately Cycle time, then invoke pulses again within a short
interval, and so on. Adding “Self-stabilizing Byzantine” to the pulse synchro-
nization problem, means that starting from any memory state and in spite of
ongoing Byzantine faults, the correct nodes should eventually invoke pulses to-
gether Cycle time apart.

Since message transmission time varies and also due to the Byzantine presence,
one cannot require the correct nodes to invoke pulses exactly Cycle time apart.
Instead, cyclemin and cyclemax are values that define the bounds on the actual
cycle length in a correct behavior. The protocol presented in this paper achieves
cyclemin = Cycle ≤ cycle ≤ Cycle + 12d = cyclemax.

To formally define the pulse synchronization problem, a notion of “pulseing
together” needs to be addressed.

Definition 4. A correct node p invokes a pulse near time unit t if it invokes a
pulse in the time interval [t − 3

2 · d, t + 3
2 · d]. Time unit t is a pulsing point if

every correct node invokes a pulse near t.

Definition 5. A system is in a synchronized pulsing state in the time in-
terval [r1, r2] if

1. there is some pulsing point t0 ∈ [r1, r1 + cyclemax] ;
2. for every pulsing point ti ≤ r2 − cyclemax there is another pulsing point ti+1,

ti+1 ∈ [ti + cyclemin, ti + cyclemax];
3. for any other pulsing point t̄ ∈ [r1, r2], there exists i, such that |ti − t̄| ≤ 3

2 ·d.

Intuitively, the above definition says that in the interval [r1, r2] there are pulsing
points that are spaced at least cyclemin apart and no more than cyclemax apart.

238 D. Dolev and E.N. Hoch

Definition 6. Given a coherent system, The Self-Stabilizing Pulse Synchroniza-
tion Problem requires that:

Convergence: Starting from an arbitrary system state, the system reaches a
synchronized pulsing state within a finite amount of time.
Closure: If the system is in a synchronized pulsing state in some interval [t1, t2]
(s.t. t2 > t1 + cyclemax), then it is also in a synchronized pulsing state in the
interval [t1, t] for any t > t2.

3 Solution Overview

The main algorithm, Erratic-Pulser, assumes a self-stabilizing, Byzantine
tolerant, distributed agreement primitive, Q, which is defined in the following
section. A protocol providing the requirements of Q is presented in Section 5.

Using Q, the Erratic-Pulser algorithm produces agreement among the
correct nodes on different points in time at which they invoke pulses; and
these points become sparse enough. Using this basic point-in-time agreement,
a full pulse algorithm is built, named Balanced-Pulser. By using the basic
pulseing pattern produced by Erratic-Pulser, Balanced-Pulser manages
to solve the pulse-synchronization problem.

During the rest of this paper, the constants Cycle, cyclemin and cyclemax are
used freely. However, it is important to note that Cycle must be chosen such
that it is large enough. The exact limitations on the possible values of Cycle will
be stated later. An explanation on how to create a pulseing algorithm with an
arbitrary Cycle value is presented in Section 9.

4 The Q Primitive

Q is a primitive executed by all the nodes in the system. However, each invocation
of a specific Q is associated with some node, p, hence a specific invocation will
sometimes be referred to as Q(p). That is, Q(p) is a distributed algorithm,
executed by all nodes, and triggered by p (p’s special role in the execution of
Q(p) will be elaborated upon later). In the following discussion several instances
of Q(p) may coexist, but it will be clear from the context to which instance Q(p)
refers. Each instance is a separate copy of the protocol and each node executes
each instance separately.

Q(p) is a “consensus primitive”, that is, each node q has an input value vq,
and upon completing the execution of Q(p) it produces some output value Vq.
The input values and output values are boolean, i.e., vq, Vq ∈ {0, 1}. Denote by
τq the local-time at node q at which Vq is defined; that is τq is the local time at
node q at which q determines the value of Vq (and terminates Q(p)).

The un-synchronized and distributed nature of Q(p) requires distinguishing
between two stages. The first stage is when p attempts to invoke Q(p); this at-
tempted invocation involves exchanging messages among the nodes. The second
stage is when enough correct nodes agree to join p’s invocation of Q(p), and

Byzantine Self-stabilizing Pulse in a Bounded-Delay Model 239

hence start executing Q(p). When p is correct, the first stage and the second
stage are close to each other; however, when p is faulty, no a priori bound can
be set on the time difference between the first and the second stages. Note that
p itself joins the instance of Q(p) only after the preliminary invocation stage.

Informally, joinq is the time at which q agrees to join the instance of Q(p)
(which is also the time at which q determines its input value vq.) Following
this stage it actively participates in determining the output value of Q(p). The
implementation of Q(p) needs to explicitly instruct a node when to determine
its input value.

In the following discussion, rtinvoke will denote the time at which p invoked
Q(p) and joinfirst will denote the time value at which the first correct node
joins the execution of Q(p); joinlast will denote the time value at which the last
correct node joins p in executing Q(p). That is, joinfirst = mincorrect q{joinq}
and joinlast = maxcorrect q{joinq}.

Q(p) is self-stabilizing, and its properties hold once the system executing it is
coherent for at least ΔQ time. In other words, no matter what the initial values
in the nodes’ memory may be, after the system has been coherent for ΔQ time,
the properties of Q(p) will hold.3

Q(p)’s properties follow. Observe that there are different requirements, de-
pending on whether p is a correct node or not.

1. For any node p invoking Q(p), the following holds:
(a) Agreement: all correct nodes that have terminated have the same out-

put value. That is, for any pair of correct nodes, q and q′, which have
completed Q(p), Vq = Vq′ . V denotes this common output value.

(b) Validity: if all correct nodes have the same input value ν then V = ν.
(c) Termination: if some correct node joins Q(p) then all correct nodes ter-

minate within Δmax time units from joinfirst but no quicker than Δmin.
That is, for a correct q, rt(τq) ∈ [joinfirst +Δmin, joinfirst +Δmax], where
τq is the local time at which q determines the value of Vq, and rt(τq) is
the time at which this takes place.

(d) Tightness: if a correct node terminates, then for any correct nodes q, q′:
|rt(τq) − rt(τq′)| ≤ 3 · d.

(e) Collaboration: if one correct node joins the execution of Q(p), then all
correct nodes join the execution of Q(p) within 3 · d of each other; that
is, |joinlast − joinfirst| ≤ 3 · d.

2. For a correct node p, starting the execution of Q(p) at time rtinvoke, the
following holds:
(a) Strong Termination: joinfirst ≤ rtinvoke + 3 · d. That is, the first correct

node to join p in executing Q(p) does so within 3 · d time from p’s
invocation of Q(p). Combined with termination, this property means
that all correct nodes terminate by rtinvoke + 3 · d + Δmax.

(b) Separation: p does not start Q(p) more than once every 3 · Δmax time
units.

3 ΔQ is defined below.

240 D. Dolev and E.N. Hoch

3. The following holds for a faulty p, invoking Q(p):
(a) Separation: if a correct node q assigns an output value for Q(p) at some

time t1, then it does not assign an output value for Q(p) again before
t1 + 2 · Δmin.

Remark 1. According to “termination” if joinfirst is not defined, all correct nodes
do not terminate. This implies that all correct nodes terminate if and only if some
correct node joins p in executing Q(p).

Note that p may require the invocation of several Q(p) instances concurrently.
To differentiate between these instances, they are marked with an additional
index, e.g Q1(p), Q2(p), etc. Each such instance has its own memory space, and
hence is independent of other instances. According to the separation property,
a correct node does not execute the same instance of Q(p) too often. That is,
Q1(p) is not executed until the previous Q1(p) has terminated. A faulty node p
may try to invoke Q1(p) as often as it likes, however correct nodes will ignore
the multiple executions.

5 Implementing Q(p), the ss-Byz-Q Algorithm

The implementation of Q(p) makes use of ss-Byz-Agree ([10]). The proper-
ties of ss-Byz-Agree and its guarantees are listed in Appendix A. In ss-Byz-
Agree, when a node p wants to start an agreement on some value, it sends
(Initiator, p, vp) to all other nodes. Nodes receiving this message, initiate the ss-
Byz-Agree algorithm, and start participating in the agreement. Other nodes,
that have not received the (Initiator, p, vp) message (in case p is Byzantine),
join the ss-Byz-Agree algorithm once they are “convinced” that enough cor-
rect nodes are already executing ss-Byz-Agree on p’s value.

This leads to the following insight. If a correct node q ignores an (Initiator, p,
vp) message sent by a Byzantine node (for any reason), it does not change the
properties of ss-Byz-Agree. Since due to p’s Byzantine nature, if p would have
not sent this specific message to q, ss-Byz-Agree’s properties would still hold.
Hence, whether p sends the message and a correct node ignores it, or p doesn’t
send the message at all, the properties of ss-Byz-Agree remain the same. Note
that this is true only if p is Byzantine. In what follows, when a node rejects a
message it ignores it, and when it accepts a message it continues to execute the
protocol as instructed.

Figure 1 presents an algorithm that implements the Q primitive. If node p
wants to invoke Q(p), it does so by executing ss-Byz-Agree (p, start Q) (this
is the Init stage), which means it sends (Initiator, p, start Q) messages to other
nodes. This action triggers the prolog stage of the protocol. If this stage completes
successfully, each correct node peforms a timing test to determine whether to
join the computation of the primitive Q(p). The algorithm is executed in the
background continuously, and it responds to messages / events that are triggered
by p’s execution of ss-Byz-Agree (p, start Q).

Byzantine Self-stabilizing Pulse in a Bounded-Delay Model 241

Algorithm ss-Byz-Q
(implementing Q(p)) /* executed at node q */

Init: If p = q invoke ss-Byz-Agree (p, start Q));
/* by sending (Initiator, p, start Q)) message to all */

Prolog: On receiving (Initiator, p, start Q) message from p

if localq > lastq[p] + 2 · Δmax then accept the message;
else ignore the message;

The Primitive Q(p):

1. On returning from ss-Byz-Agree for p with value “start Q” do
if localq > lastq[p] + Δmax + 3 · d then

begin
determine the input value vq; /* this is when q joins Q(p) */
startq[p] := localq;
reset valq[p,];
wait for 3 · d and then invoke ss-Byz-Agree (q, (p, vq));

/* by sending (Initiator, q, (p, vq)) message to all */
end

lastq[p] := localq;
2. On receiving (Initiator, p′, (p, vp′))

if localq ≤ startq[p] + 7 · d then accept the message;
else ignore the message;

3. On returning from ss-Byz-Agree for p′ with value (p, vp′) do
valq[p, p′] = vp′ ;

4. At time localq = startq[p] + Δ + 17 · d
for all p′, check the agreement values valq[p, p′]

if there are n − f 1’s, then set Vq[p] := 1, otherwise set Vq[p] := 0;
return Vq[p] as Q(p)’s output value;

Cleanup:

for any p: if lastq[p] > localq then lastq[p] := localq
for any p: if startq[p] > localq then startq[p] := localq

Fig. 1. An algorithm that implements Q(p)

The values of the constants for the ss-Byz-Q algorithm are: Δmax := Δ+20·d
and Δmin := Δmax − 3 · d, where Δ represents the maximal time required to
complete ss-Byz-Agree (Δ := 7(2f + 3)d, see Appendix A).

In the Q(p) protocol in Figure 1, localq represents the local time at each node
q; in addition there are two arrays of values: startq , lastq. These arrays hold
local-time values (per node p) of events regarding Q(p)’s execution at q. lastq[p]
is used to ensure that q doesn’t participate in Q(p) too often. startq[p] is used
so that all correct nodes know when to stop collecting values of other nodes
(regarding Q(p)’s instance); these values are stored in valq[p, p′].

Remark 2. In the protocols, all the comparisons of the value of localq to some
other value, always compare values that are at most some bounded range apart,
say D. To deal with the possible wraparound of the counter localq, it is enough

242 D. Dolev and E.N. Hoch

that the range of values of localq will be D′ > 2D. The “cleanup” stage of the
protocol (See Figure 1) ensures that comparisons over a circle of size D′ are
uniquely determined.

Note that the protocol parameters n, f and Cycle (as well as the system
characteristic d) are fixed constants and thus considered part of the incorruptible
correct code.4 Thus we assume that non-faulty nodes do not hold arbitrary values
of these constants.

The value of Δnode is crucial for the following claims. Δnode is used to ensure
that non-faulty nodes “run” for some time before they become correct. In the
context of this paper, a non-faulty node should not be considered correct when it
executes ss-Byz-Q that it might have joined before it was non-faulty. Moreover,
since ss-Byz-Q uses ss − Byz-Agree which has its own requirements for a
node’s correctness, we set Δnode := Δnode-ss-byz-agree + Δmax + 3 · d .5

Lemma 1. Once the system is coherent, if all correct nodes pass the condition
in Line 1 during a time interval [t1, t2] s.t.
1. t2 − t1 ≤ 3 · d, and
2. at t1 for any correct node q it holds that localq > startq[p] + Δmax,

then Agreement, Validity, Termination, Tightness and Collaboration hold.

Proof. First we show that no ss − Byz-Agree(p′, (p, vp′)) that was initiated
before t1, terminates after t1. By assumption, at time t1, each correct node q
has localq > startq[p] + Δmax, which means that no correct node has accepted
(Initiator, p′, (p, vp′)) in the time interval [t1 − Δmax + 7 · d, t1]. In the protocol,
any correct node that accepts (Initiator, p′, (p, vp′)) before t1−Δmax+7 ·d, must
have terminated the ss-Byz-Agree no later than t1 − Δmax + 7 · d + Δ + 7 · d,
and hence all correct nodes must have terminated the ss-Byz-Agree no later
than t1 − Δmax + 17 · d + Δ. Since Δmax := Δ + 20 · d, we conclude that any
ss-Byz-Agree that was invoked before t1 terminated before t1.

In addition, due to setting of lastq[p] in Line 1, no correct node will pass the
condition in Line 1 again, before t1 + Δmax + 3 · d. Hence, during the interval
[t2, t2 + Δmax] no correct node passes the condition in Line 1. Note that each
correct node passes the condition in Line 1 exactly once in the interval [t1, t2].
Hence, all correct nodes reset valq[p,] in the interval [t1, t2] and never do so
again before t2 + Δmax. In a sense, the above means that all correct nodes join
p in the interval [t1, t2] and do not join p again, until after time t2 + Δmax.

From the lemma’s condition; for any two correct nodes q, q′, it holds that
|rt(startq [p]) − rt(startq′ [p])| ≤ 3 · d. At this stage, each correct node joins p’s
execution of Q(p) and hence Collaboration holds.

For any pair of correct nodes, q, q′, |rt(startq [p]) − rt(startq′ [p])| ≤ 3 · d.
Moreover, q sends its (Initiator, q, (p, vq)) message 3 · d after its startq[p]. Since
|rt(startq [p]) − rt(startq′ [p])| ≤ 3 · d, q′ has already set its startq′ [p] value when
it receives q’s (Initiator, q, (p, vq)) message. Similarly, q′ receives q’s (Initiator,
q, (p, vq)) message within 7 ·d of startq′ [p] (3d is the waiting of 3d in Line 1 of the

4 A system cannot self-stabilize if the entire code space can be perturbed, see [21].
5 Δnode-ss-byz-agree := 14(2 · f + 3) · d + 10 · d (see [10]).

Byzantine Self-stabilizing Pulse in a Bounded-Delay Model 243

protocol, additional 3d is the time difference in startq, and d is the uncertainty
in message delivery), and thus does not ignore it.

This last argument implies that for every correct node q, any other correct
node q′ accepts its (Initiator, q, (p, vq)) message, and hence finishes ss-Byz-
Agree (q, vq) before time startq′ + Δ + 7 · d. Therefore, every correct node
“hears” every other correct node’s value. That is, for any triplet of correct nodes,
q, q′, q′′ it holds that valq[p, q′′] = valq′ [p, q′′].

Consider a Byzantine node q. If some correct node q′ has accepted its (Initia-
tor, q, (p, vq)) message, then according to point 3 of the “Timeliness-Agreement”
property (see Appendix A), ss-Byz-Agree will terminate within Δ + 7 · d time
units. Hence, any other correct node q′′ will terminate within 3·d. Since |startq′ −
startq′′ | ≤ 3 · d, node q′′ will have accepted the same value no later than
startq′′ + Δ + 16 · d (7d come from above, 3d come from the difference in startq,
3d come from the difference in the termination of ss-Byz-Agree and another
3d from the waiting after setting startq[p]; all together 7d+3d+3d+3d = 16d).
Note that this proof holds even though correct nodes may ignore an (Initiator,
q, (p, vq)) message sent by a Byzantine node q. Since no ss-Byz-Agree that was
invoked before t1 is accepted after t1, it holds that valq′ [p, q] = valq′′ [p, q]. As
a result all correct nodes have the same set of values when they consider the
output value vq[p], hence they all agree on the same output value. In addition,
if all correct nodes started with “0”, they will see at most f “1”s, and hence
decide V = 0. Moreover, if all correct nodes started with “1”, then all correct
nodes will decide 1. Thus Agreement and Validity hold.

Each correct node terminates within Δ+17 ·d of returning from p’s invocation
of ss-Byz-Agree (which is the joining point of each correct node to Q(p)),
and they all terminate within 3 · d time units of each other (since |rt(startq) −
rt(startq′)| ≤ 3 · d). Hence Termination and Tightness hold. ��

The following shows that ss-Byz-Q converges in ΔQ := 4·Δmax+Δss−Byz-Agree.
For ss-Byz-Q to operate correctly, ss-Byz-Agree must converge as well. Hence,
in the following, we will assume that Δss−Byz-Agree time has already passed. 6

Lemma 2. Once the system has been coherent for 4 · Δmax time units, then for
a faulty p, the properties of Q(p) hold for ss-Byz-Q.

Proof. Note that once the system is coherent, startq[p], lastq[p] ≤ localq. Notice
that startq[p] can only be updated at Line 1.

Consider the first 2 · Δmax time units following the time at which the system
became coherent. If some correct node terminates ss-Byz-Agree (p, start Q)
during this period, then all correct nodes do so within 3 ·d of each other. Hence,
they all set their lastq[p] variable within 3 · d time units of each other. That is,
the values rt(lastq[p]) are at most 3 ·d units apart from each other. If no correct
node terminates ss-Byz-Agree (p, start Q) for 2·Δmax, then all lastq[p] haven’t
been updated for 2 · Δmax and hence all lastq[p] + 2 · Δmax < localq for every
correct node q.

6 Δss−Byz-Agree := 2Δ + 10d (see [10]).

244 D. Dolev and E.N. Hoch

Thus, we conclude that after 2 ·Δmax time units either all correct nodes have
rt(lastq[p]) within 3·d of each other or all correct nodes have lastq[p]+2·Δmax <
localq. Note that this state continues to hold as long as no correct node enters
Line 1 since lastq[p] is not updated at any correct node. If some correct node
does update lastq[p] at Line 1, then all correct nodes do so 3 ·d time units apart.

Now consider the period between 2·Δmax and 4·Δmax time units following the
time the system became coherent. If no correct node terminated ss-Byz-Agree
(p, start Q), then each correct node, q, has localq > startq[p] + Δmax (since
startq[p] had not been updated for at least 2 · Δmax time units). Otherwise,
if some correct node q′ has terminated ss-Byz-Agree (p, start Q), it means
that there exists some correct node q̄ that accepted (Initiator, p, start Q) at the
Prolog stage. Thus, localq̄ > lastq̄[p] + 2 · Δmax, which means that until lastq̄[p]
is reset, localq̄ > lastq̄[p] + Δmax + 3 · d. Remember that either the rt(lastq[p])
of each correct node q̄ is within 3 · d time units of all other correct nodes, or
each correct node has lastq[p]+2 ·Δmax < localq. Therefore, we have that for all
correct nodes, until lastq[p] is reset, localq > lastq[p]+Δmax +3 ·d; which means
that when q terminates ss-Byz-Agree (p, start Q) it passes the condition of
Line 1, along with all other correct nodes (within a 3 ·d interval). Therefore, the
rt(startq [p]) of all correct nodes are within 3 · d time units.

Thus, after 4 · Δmax, the rt(startq [p]) of all correct nodes are within 3 · d
time units and rt(lastq[p]) within 3 · d time units of each other or all correct
nodes have lastq[p] + 2 · Δmax < localq. Note that the next time p invokes
ss-Byz-Agree, all correct nodes values of startq[p] will be greater than their
localq by at least 2 · Δmax. Hence, if p invokes ss-Byz-Agree and some correct
node terminates that instance of ss-Byz-Agree, then all correct nodes pass the
condition of Line 1 within 3 ·d of each other, and each correct node has localq >
startq[p] + Δmax. Hence, by Lemma 1 all properties except for Separation hold.

To show that Separation holds, notice that once a correct node has passed
Line 1, it won’t do so again for at least 2 ·Δmax − 3 ·d time units. In addition, it
will terminate the current instance of Q within Δmax. Hence, the next invocation
of Q cannot terminate before 2 · Δmin. And Separation holds. ��
Lemma 3. Once the system has been coherent for 4 · Δmax time units, then
for a correct p, the properties of Q(p) hold for ss-Byz-Q, given that p does not
initiate ss-Byz-Agree (p, start Q) earlier than 3 · Δmax time units following
its previous invocation.

Proof. Since Agreement, Validity, Termination, Tightness and Collaboration
were proven to hold even if p is faulty (under the lemma’s conditions), they
clearly hold if p is correct. Hence, we still need to prove Strong Termination and
Separation. To prove Strong Termination, note that if p is correct, and it has
not invoked Q(p) for 3 · Δmax time units, then when it does invoke Q(p), all
correct nodes will accept the message (Initiator, p, start Q) and hence, accord-
ing to item 2 of the “Timeliness-Agreement” property of ss-Byz-Agree (see
Appendix A), all correct nodes will terminate within 3 · d time units following
p’s invocation of ss-Byz-Agree (p, start Q) and join the execution of Q(p).
Separation follows from the conditions of the lemma. ��

Byzantine Self-stabilizing Pulse in a Bounded-Delay Model 245

From the above lemmas, we conclude that after 4 · Δmax + Δss−Byz-Agree time
units, ss-Byz-Q behaves according to Q’s properties. Setting ΔQ := 4 · Δmax +
Δss−Byz-Agree satisfies the claim that if the system has been coherent for ΔQ
time units, then the properties of Q hold.

Since ss-Byz-Q implements Q’s properties correctly, in the rest of the paper
we will use ss-Byz-Q and Q interchangeably.

6 Constructing the Erratic-Pulser Algorithm

The Erratic-Pulser algorithm (Figure 2) is written in an event-driven fash-
ion; that is, it is continuously executed in the background and no explicit ini-
tialization is needed. The algorithm requires invoking two Q instances per node
(Qstart and Qend). In addition, each node has three timers timerstart,timerend
and timermain with elapsed time of cyclestart,cycleend and cyclemain, respec-
tively. When timerstart or timerend elapse, an instance of ss-Byz-Q is invoked
(Qstart for timerstart and Qend for timerend). timermain is used to determine the
value of WantToPulse, which is used as the input value for Qstart and Qend.
If timermain is elapsed, then WantToPulse := 1, and once timermain is reset,
WantToPulse := 0 until it elapses again.

The intuition behind the algorithm is that WantToPulse determines when p
is willing to invoke a pulse. Once all correct nodes have WantToPulse = 1, the
next time a ss-Byz-Q instance is invoked, all of them will invoke pulses.
Remark: Notice that there is a difference between timerstart, timerend and
timermain. timerstart, timerend are timers that when they elapse, an event
occurs, and the algorithm performs some action. These timers are always set,
that is, once they elapse, they are reset immediately. timermain, on the other

Algorithm Erratic-Pulser /* executed at node p */
/* the Qs are executed in the background */

/* the input value vq for each Q instance, is the
value of WantToPulse at the time q joins Q */

1. when timerstart elapses
reset timerstart with cyclelarge;
reset timerend;
invoke Qstart(p);

2. when timerend elapses
reset timerend with cyclelarge;
invoke Qend(p);

3. WantToPulse := 1 if timermain has elapsed, and WantToPulse := 0, otherwise;
4. on returning from either Qstart(q) or Qend(q) for some q with value V = 1

(a) invoke a pulse;
(b) reset timermain;
(c) reset timerstart;

cleanup:
if a timer is set with invalid value (below 0 or above its maximal value),
reset it; for timermain, 0 is a valid value;

Fig. 2. An algorithm achieving basic synchronized pulseing

246 D. Dolev and E.N. Hoch

hand, will remain in its elapsed state until it is reset. That is, Line 3 is not
executed only when timermain elapses, but rather it is executed continuously. In
a sense, when q wants to read its WantToPulse variable value, it checks whether
timermain has elapsed; if so then it considers WantToPulse = 1, otherwise it
reads WantToPulse = 0.

The following are the values of the constants used in Erratic-Pulser.

cyclestart := cyclemain := Cycle − Δmax − Δmin;
cycleend = Δmin − 10 · d;
cyclelarge := 2 · (Δmax + cyclestart + cycleend).

Note: cyclemain needs to be larger than Δmax +9 ·d time units, hence, Cycle
must be larger than 2 · Δmax + Δmin + 9 · d time units.

7 Erratic-Pulser’s Correctness Proofs

Definition 7. A correct node p pulses-in-unison, there is a pulsing point t,
such that p invokes a pulse near t each time that p invokes a pulse. The system
pulses-in-unison, if for every correct node p , p pulses-in-unison

Remark 3. The definition of “near t” implies that if p pulses-in-unison then
each time p invokes a pulse there is a time interval [t1, t2] such that |t2−t1| ≤ 3·d
and each correct node (including p) invokes a pulse within this interval. This
also implies that if there exists a correct node p that pulses-in-unison then the
system pulses-in-unison.

Lemma 4. Once the system has been coherent for ΔQ time, the system pulses-
in-unison.

Proof. According to Lemma 2 and Lemma 3 (in Section 5), once the system has
been coherent for ΔQtime units, all copies of ss-Byz-Q behave according to
the requirements of Q. This means that all correct nodes see the same output
values. Since a correct node invokes a pulse only in accordance with the output
of a Q, if some correct node invokes a pulse, then within 3 · d time units from
its pulse, all correct nodes will also invoke pulses. This means that every correct
node pulses-in-unison, which means that the system pulses-in-unison. ��

The following lemma proves that a correct node will eventually invoke a pulse.
The previous lemma claims that after some time, if a correct node invokes a
pulse, then all the correct nodes invoke pulses.

Lemma 5. Eventually some correct node will invoke a pulse. This happens no
later than ΔQ+Δmax +cyclelarge +cyclemain +3 ·d time units after the point
at which the system becomes coherent.

Proof. Consider the system ΔQ after it becomes coherent: If a correct node in-
vokes a pulse, the lemma holds. Otherwise, after cyclemain time units, all correct
nodes will have WantToPulse as 1. Eventually, after no more than cyclelarge,

Byzantine Self-stabilizing Pulse in a Bounded-Delay Model 247

timerstart at some correct p will expire, which will initiate Qstart(p), that termi-
nates no more than Δmax + 3 · d time units afterwards (by strong termination),
and will have the output value V = 1 (since all correct nodes had the input value
of v = 1). By line 4, of the Erratic-Pulser, p will invoke a pulse. ��

Lemma 6. Once the system pulses-in-unison, let t1 be a time unit at which a
correct node p invokes a pulse. Let t2 be the last time at which p invokes a pulse
in the interval [t1, t1 + Δmax + 3 · d]. p does not invoke a pulse in the interval
[t2, t2 + cyclemain − 3 · d + Δmin]. p invokes a pulse at some time t3, where
t3 ≤ t2 + cyclemain + 6 · d + Δmax.

Proof. According to the lemma’s assumption the system pulses-in-unison. Hence,
when p invokes a pulse at t1 all correct nodes invoke pulses before time t1 +3 ·d.
Define [ts, te] to be the time interval in which all correct nodes have invoked
a pulse, such that t1 ∈ [ts, te] and te − ts ≤ 3 · d. All correct nodes execute
lines 4.a, 4.b and 4.c during the interval [ts, te]. Therefore, the correct nodes’
timers timermain,timerstart are reset. Hence, after te all correct nodes’ values
of WantToPulse are 0, and hence any correct node that joins any Q instance
after te has an input value vq = 0. This holds until timermain elapses at some
correct node, that is until ts + cyclemain. In other words, no correct node joins
any Q instance in the interval [te, ts + cyclemain] with input value of 1.

By definition, t2 is the last time that p invoked a pulse in the interval [t1, t1 +
Δmax + 3 · d]. Hence, after t2 + 3 · d all correct nodes have invoked pulses,
and hence have WantToPulse as 0 for at least cyclemain − 3 · d time units.
Therefore, in the interval [t2 + 3 · d, t2 + cyclemain − 3 · d] no correct node joins
any instance ofQ with an input value of 1. Since cyclemain ≥ Δmax + 9 · d,
it holds that t2 + 3 · d ∈ [te, ts + cyclemain], hence during the time interval
[te, t2 + cyclemain − 3 · d] no correct node joins any Q instance with an input
value of 1. Hence, in the time interval [te + Δmax, t2 +cyclemain − 3 · d + Δmin]
no correct node invokes a pulse. Since t1 + 3 · d + Δmax ≥ te + Δmax and since
t2 is the last time p invoked a pulse before t1 + 3 · d + Δmax, it holds that p did
not invoke a pulse in the time-interval [t2, t2 + cyclemain − 3 · d + Δmin].

Lastly, after t2 + 3 · d time units have elapsed, all correct nodes have reset
timermain and timerstart. Since cyclemain = cyclestart, we have that when
timerstart elapses at some correct node, then WantToPulse = 1 at that correct
node. By time t2 + 3 · d + cyclemain all correct nodes have set their value of
WantToPulse to 1. Consider the last correct node to do so, it starts executing
Q, as instructed by Line 1 (the elapsing of timerstart), and since the input values
of all correct nodes are 1, it terminates with an output value of 1. This happens
no later that t2 + 6 · d + cyclemain + Δmax. That is, p invokes a pulse no later
than t3 = t2 + 6 · d + cyclemain + Δmax. ��

Note that the above lemma shows that a correct node p invokes a pulse in some
pattern. That is, after each pulse there is a period of uncertainty, and afterwards
there is a long period of no pulseing. Then p invokes a pulse again, and so on.
Note that in the above lemma, the timerend was never used; it will be used
in the following lemma, which claims the “uncertainty” period is of a constant

248 D. Dolev and E.N. Hoch

length, and at the end of it a pulse is invoked. This lemma will give us the
required properties, since with it the pulseing pattern of a correct node p will
be constant, and since the system pulses-in-pattern, the entire pulseing pattern
of the system will be determined.
Lemma 7. Consider t1, t2 to be as defined in Lemma 6. Once the system pulses-
in-unison, the value of t2 is in the interval [t1 + Δmin − 13 · d, t1 + Δmax + 3 · d].

Proof. According to Lemma 6, after the last pulse there is a silent period during
which timermain and timerstart tick away. Once they elapse (they both elapse
together), the following happens. First, WantToPulse is set to 1 (until the next
pulse). Second, timerend is reset; and third, a Q instance is initiated.

Since the system pulses-in-unison, after the last pulse (at time t2) all correct
nodes reset timerstart. This means that timerstart elapses at all correct nodes
within a 3 · d interval, which implies that timerend elapses at all correct nodes
within a 3 · d interval. Consider the last node q to have had timerstart elapse
(at time t′). No correct node has had timerstart elapse before time t′ − 3 · d,
hence at time t′ − 3 · d + Δmin all correct nodes still have WantToPulse = 1
(no Q instance managed to finish yet). Therefore, when q’s timerend elapses at
time t′ − 10 · d + Δmin (since cycleend = Δmin − 10 · d), all correct nodes are
guaranteed to join q’s Q(q) instance with input value of 1, and hence in time
interval [t′ + Δmin − 10 · d + Δmin, t′ + Δmin − 7 · d + Δmax] q invokes a pulse.

t′1, t′2 represent the same meaning as t1, t2, just for the “pulseing cycle” that
starts after t2. Consider t′1 to be the first time value at which a correct q′ invokes
a pulse after t2 (note that according to Lemma 6, t′1 ∈ [t2 + cyclemain − 3 ·
d + Δmin, t3]). For q′ to invoke a pulse, at least one correct node should have
WantToPulse = 1 in the interval [t′1 − Δmax, t′1 − Δmin]. Since t′1 is the first
time some node invokes a pulse, and since t′− 3 · d is the first time some correct
node has WantToPulse = 1 in the current “pulseing cycle”, we have that
t′ ∈ [t′1 −Δmax, t′1 −Δmin +3 ·d]. Therefore, q invokes a pulse due to timerend’s
elapsing is in the interval [t′1 − Δmax + Δmin − 10 · d + Δmin, t′1 − 4 · d + Δmax].
Since Δmax = Δmin + 3 · d, we have that the above time interval is [t′1 − 13 ·
d + Δmin, t′1 − 4 · d + Δmax]. This implies that t′2 ≥ t′1 − 13 · d + Δmin. Which
means that starting from the first pulse, the next “pulseing cycle” will have
that t2 ≥ t1 − 13 · d + Δmin. ��
The above lemmata show that if the system has been coherent for ΔErratic-Pulser

:= ΔQ+3 ·Cycle, then all correct nodes invoke pulses together, and they have a
distinctive pulseing pattern: say a node invokes a pulse at some time t1; during
the interval [t1, t1 + Δmin − 13 · d] there could be some additional pulses, then
during the interval [t1 + Δmin − 13 · d, t1 + Δmax + 3 · d] at least one pulse is
invoked, and then there is an interval of at least cyclemain + Δmin − 3 · d time
units during which no pulse is invoked, and finally, within the next 12 · d there
will be new pulses and a new pulseing “cycle” will start.

Note that the length of this “cycle” is bounded from below by Δmax +
cyclemain+Δmin, and bounded from above by Δmax+cyclemain+Δmin+12·d.
In addition, notice that each such “cycle” starts with a “possibly noisy period”
of length Δmax +3 ·d, and ends with a “quiet period” of cyclemain +Δmin −3 ·d

Byzantine Self-stabilizing Pulse in a Bounded-Delay Model 249

time. Since cyclemain ≥ Δmax + 9 · d, we have that the quiet period is at least
Δmin longer than the first period. This remark is important for the next section.

8 Creating the Balanced-Pulser

The above Erratic-Pulser synchronizes the correct nodes into some repet-
itive pulseing pattern. However, to solve the pulse-synchronization problem,
an additional algorithm is required. We now present the Balanced-Pulser
algorithm, which starting from an arbitrary state, shortly after the system is
coherent, produces pulses approximately once in a Cycle, despite the permanent
presence of Byzantine nodes.

Algorithm Balanced-Pulser /* executed at node p */

1. execute an instance A of Erratic-Pulser in the background;
2. when A produces a pulse

if A has not produced a pulse for at least cyclemain + Δmin − 3 · d time,
invoke a pulse.

Fig. 3. An algorithm solving the pulse-synchronization problem

Theorem 1. Algorithm Balanced-Pulser solves the pulse-synchronization
problem in a self-stabilizing and Byzantine tolerant manner.

Proof. Once the system is coherent for ΔQ time, by Lemma 4 the system pulses-
in-unison. Hence, each time a correct node sees A pulseing, within 3·d time units
all other correct nodes see the same. In addition, by Lemma 6 and Lemma 7, the
pulses that A produces have a distinct pattern. That is, a pulse, then a period
of length Δmax + 3 · d with possible pulses and a period of length cyclemain +
Δmin − 3 · d with no pulses. Then, within 12 · d, another pulse.

If a correct node hasn’t heard A producing a pulse for cyclemain+Δmin−3 ·d
time, it must mean that A has undergone the “quiet period”, since the “possible
noisy period” is short. Hence, the next pulse produced must be the beginning of
a new “cycle”. Therefore, all correct nodes invoke pulses together in Balanced-
Pulser. In addition, all correct nodes invoke pulses only at the beginning of a
“cycle”, and they invoke pulses 3 · d apart of each other. Since all correct nodes
invoke pulses only at the beginning of a “cycle”, we need only to argue about
the length of the “cycle”.

According to the lemmata in the previous section, the difference between
the “long-cycle” and the “short-cycle” is at most 12 · d time units. Setting
cyclemin := Δmax + cyclemain + Δmin, and cyclemax := cyclemin + 12 · d,
we have that the system is in a synchronized pulsing state. That is, starting
from any state, the system reaches a synchronized pulsing state; this proves con-
vergence. In addition, according to the previous section, the pulseing pattern
remains as long is the system is coherent, thus closure also holds. ��

250 D. Dolev and E.N. Hoch

The convergence time of Balanced-Pulser is the same as the convergence of
Erratic-Pulser + Cycle; that is, ΔQ + 4 · Cycle time units.

9 Discussion

Time complexity: Once the system has become coherent, the Balanced-
Pulser algorithm converges in O(f) + O(Cycle) time.

Message complexity: The Balanced-Pulser algorithm executes 2 · (n − f)
ss-Byz-Q instances each Cycle. Since ss-Byz-Q has O(f ·n2) message complex-
ity, then the message complexity becomes O(f · n3) per cycle.

Executing fewer ss-Byz-Q: The main feature of Erratic-Pulser is that
“eventually there will be a correct node that executes ss-Byz-Q”. As pre-
sented, Erratic-Pulser has each correct node execute ss-Byz-Q once its
timers elapse. The algorithm can be adapted such that only f + 1 of the nodes
(predetermined and considered as part of the program, not memory) can invoke
Q. Since there will always be a correct node that invokes Q, the correctness of
the algorithm holds. This reduces the message complexity to O(f2 · n2).

Clock synchronization: The Digital clock synchronization problem consists
of having all correct nodes agree on an integer value that progresses linearly
with time. To build a digital clock synchronization algorithm using a pulseing
algorithm, all that is needed is to execute an agreement on the next clock’s value
each time a pulse is invoked. Setting the cycle of the pulse to be long enough for
the agreement algorithm to terminate, ensures that all correct nodes will agree
on the clock value, and advance it appropriately. Note that the convergence time
of such an algorithm is the convergence time of the underlying pulse algorithm,
plus an additional cyclemaxtime units. See [4] for a more detailed discussion.

Arbitrary Cycle values: According to the constraints of the Balanced-
Pulser algorithm, Cycle must be larger than 2 · Δmax + Δmin + 9 · d time
units. For the purpose of clock synchronization it is enough to have Cycle in the
order of Δ; for example, Cycle = 5 · Δ would suffice for a linear convergence of
the digital clock synchronization algorithm.

However, if one wishes to use pulseing for other reasons, it is desired to be
able to pulse in any Cycle. To pulse every Cycle′ < 2 ·Δmax +Δmin +9 ·d, set
Cycle to be some multiplication of Cycle′ such that it falls within the constraints.
Now, each time that Balanced-Pulser produces a pulse, reset a timer of Cycle′

long, and when it elapses, invoke a pulse and reset the timer again. The pulseing
pattern will be a pulse by Balanced-Pulser every Cycle and Cycle/Cycle′

pulses in between. This scheme is similar to what is done in [18]. The tricky part
is to notice that if a pulse is invoked less than Cycle′ time before a pulse by
Balanced-Pulser then the timer for the “small” pulses is reset, and hence
a pulse is invoked again only in Cycle′ time units. Note that the difference
between cyclemax and cyclemin is still 12 · d, hence there is no meaning to having
Cycle′ ≤ 12 · d. That is, Cycle′ should always be larger than 12 · d time units.

Byzantine Self-stabilizing Pulse in a Bounded-Delay Model 251

References

1. Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)

2. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)

3. Daliot, A., Dolev, D.: Self-stabilization of byzantine protocols. In: Tixeuil, S., Her-
man, T. (eds.) SSS 2005. LNCS, vol. 3764, Springer, Heidelberg (2005)

4. Daliot, A., Dolev, D., Parnas, H.: Linear time byzantine self-stabilizing clock
synchronization. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS 2003.
LNCS, vol. 3144, Springer, Heidelberg (2004), A corrected version appears in
http://arxiv.org/abs/cs.DC/0608096

5. Sakurai, Y., Ooshita, F., Masuzawa, T.: A self-stabilizing link-coloring protocol
resilient to byzantine faults in tree networks. In: Higashino, T. (ed.) OPODIS
2004. LNCS, vol. 3544, pp. 283–298. Springer, Heidelberg (2005)

6. Nesterenko, M., Arora, A.: Local tolerance to unbounded byzantine faults. In: IEEE
SRDS 2002, pp. 22–31 (2002), citeseer.ist.psu.edu/nesterenko02local.html

7. Nesterenko, M., Arora, A.: Dining philosophers that tolerate malicious crashes. In:
22nd Int. Conference on Distributed Computing Systems (2002)

8. Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of
byzantine faults. Journal of the ACM 51(5), 780–799 (2004)

9. Hoch, E.N., Dolev, D., Daliot, A.: Self-stabilizing byzantine digital clock syn-
chronization. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280,
Springer, Heidelberg (2006)

10. Daliot, A., Dolev, D.: Self-stabilizing byzantine agreement. In: PODC 2006. Proc.
of the Twenty-fifth ACM Symposium on Principles of Distributed Computing,
Denver, Colorado (July 2006)

11. Liskov, B.: Practical use of synchronized clocks in distributed systems. In: Pro-
ceedings of 10th ACM Symposium on the Principles of Distributed Computing,
ACM Press, New York (1991)

12. Arora, A., Dolev, S., Gouda, M.G.: Maintaining digital clocks in step. Parallel
Processing Letters 1, 11–18 (1991)

13. Dolev, S.: Possible and impossible self-stabilizing digital clock synchronization in
general graphs. Journal of Real-Time Systems 12(1), 95–107 (1997)

14. Dolev, S., Welch, J.L.: Wait-free clock synchronization. Algorithmica 18(4), 486–
511 (1997)

15. Papatriantafilou, M., Tsigas, P.: On self-stabilizing wait-free clock synchronization.
Parallel Processing Letters 7(3), 321–328 (1997)

16. Herman, T.: Phase clocks for transient fault repair. IEEE Transactions on Parallel
and Distributed Systems 11(10), 1048–1057 (2000)

17. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM 32(2), 374–382 (1985)

18. Dolev, D., Hoch, E.N.: On self-stabilizing synchronous actions despite byzantine
attacks. In: DISC2007. LNCS, vol. 4731, pp. 193–207. Springer, Heidelberg (2007)

19. Fischer, M.J., Lynch, N.A., Merritt, M.: Easy impossibility proofs for distributed
consensus problems. Distributed Computing 1, 26–39 (1986)

20. Daliot, A., Dolev, D.: Self-stabilizing byzantine pulse synchronization. Technical
report, Cornell ArXiv, (August 2005), http://arxiv.org/abs/cs.DC/0608092

21. Freiling, F.C., Ghosh, S.: Code stabilization. In: Tixeuil, S., Herman, T. (eds.) SSS
2005. LNCS, vol. 3764, Springer, Heidelberg (2005)

http://arxiv.org/abs/cs.DC/0608096
citeseer.ist.psu.edu/nesterenko02local.html
http://arxiv.org/abs/cs.DC/0608092

252 D. Dolev and E.N. Hoch

A The Use of ss-Byz-Agree

The mode of operation of the ss-Byz-Agree, a self-stabilizing Byzantine agree-
ment protocol presented in [10] is as follows: A node that wishes to initiate
agreement on a value does so by disseminating an initialization message to all
nodes that will bring them to (explicitly) invoke the ss-Byz-Agree protocol.
Nodes that did not invoke the protocol may join in and execute the protocol in
case enough messages from other nodes are received during the protocol. The
protocol requires correct initiating nodes not to disseminate initialization mes-
sages too often. In the context of the current paper, an (Initiator, p, *) message
serves as the initialization message.

When the protocol terminates, the ss-Byz-Agree protocol returns (in each
correct node q) a triplet (p, m, τp

q), where m is the agreed value that p has sent.
The value τp

q is an estimate, on the receiving node q’s local clock, as to when
node p has sent its value m. We also denote it as the “recording time” of (p, m).
Thus, a node q’s decision value is 〈p, m, τp

q 〉 if the nodes agreed on (p, m). If the
sending node p is faulty then some correct nodes may agree on (p, ⊥), where ⊥
denotes a non-value, and others may not invoke the protocol at all. The function
rt(τq) represents the time at which the local clock of q reads τq.

The ss-Byz-Agree protocol satisfies the following typical Byzantine agree-
ment properties:

Agreement: If the protocol returns a value (
=⊥) at a correct nodes, it returns
the same value at all correct nodes;
Validity: If all correct nodes are triggered to invoke the protocol ss-Byz-Agree
by a value sent by a correct node p, then all correct nodes return that value;
Termination: The protocol terminates within a finite time;

The proof uses the following properties of the ss-Byz-Agree protocol ([10]):

Timeliness-Agreement Properties:
1. (agreement) For every two correct nodes q and q′ that decide 〈p, m, τp

q 〉 and
〈p, m, τp

q′〉 at local times τq and τq′ respectively: |rt(τq) − rt(τq′)| ≤ 3d.
2. (validity) If all correct nodes invoked the protocol in the interval [t0, t0 + d],

as a result of some initialization message containing m sent by a correct
node p that spaced the sending by at least 6d from the completion of the
last agreement on its message, then for every correct node q, the decision
time τq, satisfies t0 − d ≤ rt(τq) ≤ t0 + 3d.

3. (termination) The protocol terminates within Δ time units following its ex-
plicit invocation, and within Δ + 7d time units, in case it was not explicitly
invoked7.

4. (separation) Let q be any correct node that decided on any two agreements
regarding p at local times τq and τ̄q, then t2 + 5d < t̄1 and rt(τq) + 5d <
t̄1 < rt(τ̄q), where t2 is the latest time at which a correct node invoked
ss-Byz-Agree in the earlier agreement, and t̄1 is the earliest time that
ss-Byz-Agree was invoked by a correct node in the later agreement.

7 Δ := 7(2f + 3)d.

Magnifying Computing Gaps�

Establishing Encrypted Communication over
Unidirectional Channels

(Extended Abstract)

Shlomi Dolev1, Ephraim Korach2, and Galit Uzan1

1 Department of Computer Science,
Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel

{dolev,poucema}@cs.bgu.ac.il
2 Department of Industrail Enginering,

Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
korach@bgu.ac.il

Abstract. Consider two, not necessarily identical, powerful computers
or computer-grids connected by a unidirectional communication link that
should transfer a long stream of information in the presence of a listen-
ing adversary that is slightly weaker. We present schemes that enhance
the computation strength gap between the powerful computers and the
adversary. In other words, the gap between the amount of information
decrypted by the adversary and the information decrypted by the re-
ceiver grows with time.

We also suggest schemes based on the shortest vector problem in
which only the receivers are computationally powerful. The scheme is
self-stabilizing in the sense that it can establish a security level without
relying on (previously distributed private keys that are part of) the state.
The iterative nested approach suggested, can be used for enhancing the
security of the classical protocol of Ralph Merkle [19]. Several applica-
tions for sensor networks and for secure communication with survivors
are suggested.

Keywords: unidirectional encryption, combinatorial optimization prob-
lems.

1 Introduction

Truly unidirected encryption. Modern cryptography is based on complexity
theory ensuring that the resources required to reveal the secret, i.e., computing
time and/or space, are too big. One such very useful example is public key
cryptography. However, public key schemes require two way communication —
the sender should know in advance the public key of the receiver. One would like
� Partially supported by the Lynne and William Frankel enter for computer science.

The first author is also supported by the Rita Altura trust chair in computer science.

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 253–265, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

254 S. Dolev, E. Korach, and G. Uzan

to encrypt a message without having any information concerning the recipients.
In other words, we would like to have an encryption scheme that can be used in
a unidirected communication link.

We start with an intuitive example. Imagine a teacher in front of a class
that would like to convey a (long) message only to the smartest students in class
without identifying them. Also consider the case where the teacher may allow the
content of each portion of the message to be revealed some period of time after
message transmission. The teacher uses a (preferably randomly chosen and hard)
puzzle, so that the smartest students can solve it faster than the rest. The teacher
uses the solution of the puzzle to encrypt the first portion of a message he/she
would like to convey. The group of slower students may collaborate to solve a
puzzle, thus the method is useful as long as such a collaboration still requires a
longer time for obtaining a solution in relation to any of the smartest students.
To continue conveying the next portions, the teacher may repeat the procedure
used for the first portion. However, the slower group members may distribute
the different puzzles to be solved independently by the slower members. Still
the teacher would like to avoid the possibility of revealing the next message
portion as fast as the first was revealed. To do so, the teacher also encrypts the
description of the next puzzles using the solutions of the previously sent puzzles.
Thus, over time, the number of puzzles solved by the smartest students, but not
yet solved by the other students, grows.

Applications of the methods may include cases in which a satellite would like
to broadcast a file with instructions to one or many on-ground units. Another sce-
nario is when a sensor that (repeatedly) communicates a secure message (in the
style of S.O.S. with more details concerning location, status. etc.) that should be
understood only by a computationally strong entity (satellite). The schemes pro-
posed here are designed for the case in which there is communication in one direc-
tion, from a sender to a receiver. The adversary can listen to the transmitted infor-
mation along the transmission path, but cannot change it. Self-stabilization [5,6]
has influenced security and cryptography in designing proactive security schemes
[7,8] that start in a consistent state, where private keys are part of the states. In
this work we demonstrate that, under some assumptions, security may be estab-
lished from an arbitrary state. A somewhat similar approach has been suggested
in [19], and is essentially in the heart of public key cryptography that assumes two-
way communication. This work’s main focus is establishing security for directed
communication channels assuming the adversary is computationally restricted.

Must rely on computation gap. Clearly, a listening adversary can reveal
the clear-text if it has the same capabilities as the recipients since we assume
that the encryption protocol is known to all listeners. To overcome the above
obvious limitation, we propose to equip each receiver with a powerful computer
or a computer-grid that is able to compute, maybe only a specific problem,
rapidly. Note that the computation gap abstracts particular limitations either in
memory (as assumed in [11,20,23]) or in processing or in communication. Any
combination of such resources/capabilities that enforces the computation gap
fits our schemes. One may consider a computer with a computing primitive that

Establishing Encrypted Communication over Unidirectional Channels 255

is capable of solving a version of the multicriteria traveling salesman problem for
big enough input, see e.g., [15,18,22]. In this case, a listening adversary that is
not equipped with these or equivalent powerful computers/computer-grids, may
need much more time to decrypt the secret.

Choosing a computation task. As an example, we suggest a scheme based on
the lattice problems defined in [1,3,12], for which a random instance is proved to
be as hard as a worst case instance of a certain computational problem on lattices
(which is believed to be hard on the worst-case). The choice of the lattice problem
is due to lack of a prove that existing methods that use modulo operations and
primes are hard in average though in practice there are parameters that are
believed to produce such instances. The parameters of the lattice problems may
be tuned to fit the desired hardness of finding a solution (by using exhaustive
search). We note that even though the lattice-based problems may be hard to
be solved on average, there are easy to solve instances. The way we magnify the
computation gaps ensures that these easy to solve instances will be averaged
with other instances, and therefore will not give the adversary a real benefit.

The approach in a nutshell. The idea is to use the solution of the first problem
instance to mask the description of the second problem instance, and in general
to use the previous solutions of the problem instances to mask the description
of the current instance and the current secret.

The rest of the paper is organized as follows. In the next section we present the
settings for the competition between the secure protocol participants, namely the
sender and the receiver, and the adversary. Section 3 discusses the complexity of
the average instance and presents a solution based on a lattice problem. The case
in which only the receiver is superior to the adversary is addressed in Section 4.
Concluding remarks appear in Section 5.

2 The Settings

We assume that we have a fast, possibly optical, device, or a computing system,
that can perform a single combinatoric task T within x time units. We compete
with an adversary that has a constant number k of slow computers that each can
perform T in at least y > x time units on the average. The computation of T is
either by a single slow computer or by several computers, including the overhead
of distributing the input and collecting output. Assume that we repeatedly com-
pute tasks T . One can try to compute each instance of the problem by a different
set of computers, and by doing so to eliminate the waiting time for the result of
the predecessor instances of the problem. Roughly speaking, if each iteration of
the problem does not depend on the previous results, and the number of slow
computers (k) is large enough, we may perform the entire computation in a total
time that is only y − x longer than the time it takes for the fast computer.

We may take it to the extreme and compute the output for all the possible
inputs having a computer for each possible input as a preprocessing stage. The
above “solution” may require an unreasonable amount of computing and/or

256 S. Dolev, E. Korach, and G. Uzan

amount of storage. In the sequel we design schemes in which the result of previous
iterations is an input for the current iteration. Thus, the number of task instances
that one needs to compute in order to continue the computation in a non serial
manner, is very large.

Consider a sequence of encrypted secrets s1, s2, · · · , sl, for which the sequence
of the respective (decrypted) clear-texts is cts1, cts2, · · · , ctsl. Assume that s1,
s2, · · · , sl are sequentially sent from the sender to the receiver.

Definition 1. An infinite iterative sequential instance computation is a compu-
tation in which in every iteration a secret is sent and revealed (using the entire
information gained from the previous iterations). We define a time unit to be the
maximal time required for revealing ctsi, the clear-text of si, given the results of
the processes that revealed the clear-texts of s1, s2, · · · , si−1.

Definition 2. We define the fan-out to be the number of problem instances that
should be computed if computations for revealing ctsi+1 starts, by additional com-
puters, before the current iteration that reveals ctsi is completed. Where one of
these computations is identical to, or as fast as, the computation that is per-
formed when the process of revealing cts1, cts2, · · · , ctsi is completed.

A large fan-out implies a requirement for more computing power and memory. In-
terestingly, the fan-out notion is meaningful when there is no useful computation
for revealing ctsi+1, before knowing ctsi. For example, consider the suggestion to
use the scheme presented in [21] to encrypt a long file by using a function over all
previous secrets, which are file portions, and the current secret as the new secret.
In other words, this is a double encryption scheme where first, a function over
the previous secrets and the new secret, f(s1, s2, · · · , si−1, si), is used to encrypt
the new secret, si, and then the scheme presented in [21] is used to encrypt the
result of f . Thus, a non-trivial choice of f will force the adversary to decrypt the
new secret, which is a file portion, only after all previous secrets were decrypted.
In other words, one needs to reveal all previous secrets in order to reveal the
current secret. For example, f(s1, s2, · · · , si−1, si) can be a bitwise xor of si and
si−1. Note that if f is defined over all previous secrets then the fan-out does not
become larger, since the only missing result when we start computing si is si−1.

At first glance the above scheme seems to have a large fan-out, the number
of possible file portion contents. Only in this case we may reveal si+1 almost
together with si using the preprocessing for each possible value of si. However,
there is still a useful pipelined computation for revealing si+1 that we may start
before revealing the clear-text of si. Decrypting si+1 can be started in a pipelined
fashion by revealing the result of f(s1, s2, · · · , si, si+1) in parallel with the com-
putation that reveals si. Once f(s1, s2, · · · , si+1) is revealed, the inexpensive
xor(ctsi, f(s1, s2, · · · , si+1)) may rapidly reveal ctsi+1.

Another important aspect of the problem is the number k of computers (that
may compute T in y time units) that the adversary has for encryption. If k is
greater than or equal to the fan-out, then the adversary may always reveal the
secret almost together with the receiver. Thus, we assume that k is much smaller

Establishing Encrypted Communication over Unidirectional Channels 257

k

k

x

Fig. 1. k fan-out of x time unit computations

than the fan-out. In other words, we prefer schemes that have greater fan-out,
which in turn can cope with larger k.

3 Worst Case Average Case Equivalent Lattice Problem

In this section we present a scheme based on the lattice shortest vector problem
[1,3,12]. A lattice is a set of points in space such that every point is a combination
Σl

i=1aivi, where ai are integers and vi, 1 ≤ i ≤ l, are l independent vectors; each
vi is of dimension (at least) l. Finding the point of the lattice, that is not the
origin but is closest to the origin, is called the (SVP) shortest vector problem
(which is proved to be NP-hard for polynomial random reduction [2]).

An approximation problem is defined such that a solution for a randomly
chosen instance of the approximation problem implies a solution for the worst
case instance of three famous worst-case problems related to the shortest vec-
tor problem of a lattice. This reduction and proof were introduced in [1]. The
approximation problem suggested in [1] is now defined (in fact we follow the
description of Ajtai’s random lattice problem in [12]).

For a given integer n we choose c1 and c2 and compute m = c1n logn and
q = nc2 . c1 and c2 are chosen such that m and q are integers and (1) c2 ≥ 7 and,
(2) n log q < m ≤ q

2n4 and (3) m < n2.1

The input of the problem is a set of m vectors λ = (v1, v2, . . . , vm) of length
n and an integer q. The m − 1 vectors v1, v2. . . . , vm−1 are chosen randomly
from the set of all vectors (x1, x2, . . . , xn), where 0 ≤ xi ≤ q − 1. Then m − 1
values δ1, δ2, . . . , δm−1 are chosen randomly in {0, 1} and vm is computed to be
vm = −

∑m−1
i=1 δi · vi mod q.

A set Λ(λ, q) is defined to be the set of all vectors h = (h1, h2, . . . , hm) for
which

∑
hi · vi ≡ 0 mod q. The length of a vector h is defined as the usual

Euclidean norm ‖h‖ = (h2
1 + h2

2 + . . . + h2
m)1/2. Given λ, q as an input, the

problem is to find a nonzero vector h with length of at most n, ‖h‖ ≤ n. Note
that by the construction of vm Λ(λ, q) includes a vector h = (δ1, δ2, . . . , δm−1, 1)

1 Note that given (1) and (3) above, it is obvious that m ≤ q
2n4 for n > 2.

258 S. Dolev, E. Korach, and G. Uzan

of length at most (12 +12 + . . .+12)1/2 = m1/2, which (by requirement 3 above)
is no greater than (n2)1/2 = n.

Here we define a harder problem requiring that: (r1) the solution h is in
the form of hi ∈ {0, 1}m. This requirement further restricts the set of possible
solutions but includes at least the constructed solution. (r2) the solution h is the
shortest nonzero vector among all solutions that satisfy the requirements above;
furthermore, if there are several such shortest nonzero vectors then the solution
is the vector h that is the smallest among them in a lexicographic order. Again,
we further restrict the set of possible solutions for the original approximation
problem, having a solution to the restricted version implies a solution to the
original approximation problem, and therefore the new defined problem is at
least as hard as the original approximation problem. We use the term shortest
01λq-vector for the problem we have just defined. Note that the shortest 01λq-
vector has the flavor of the subset sum problem (modulo q).

Program for Sender

1: Initialization:
2: choose n ≥ 4, c2 > 7, c1

3: such that n log nc2 < c1n log n ≤ n2

4: m := c1n log n
5: q := nc2

6: Send (m, q)
7: for i := 1 to m− 1
8: vi := random(x1, . . . , xn) mod q

9: δm−1 := random(δ1, . . . , δm−1) | δi ∈ {1, 0}
10: vm := −∑

(δi · vi) mod q
11: for i := 1 to m Send(vi)

12: Repeat
13: λ := (v1, . . . , vm)
14: OTP:=FindShortest(Λ(λ, q))
15: OTPS:=OTPS ◦ OTP
16: CipherText:=OTP⊕ Secret
17: Send (CipherText)
18: for i := 1 to m− 1
19: vi := random(x1, . . . , xn) mod q

20: δm−1 := random(δ1, . . . , δm−1) | δi ∈ {1, 0}
21: vm := −∑

(δi · vi) mod q
22: Send ((v1, v2, . . . , vm)⊕ psuffix(OTPS))
23: Until file transfered

Program for Receiver

1: Initialization:
2: Recv (m, q)
3: Recv (v1, . . . , vm)

4: Repeat
5: λ := (v1, . . . , vm)
6: OTP:=FindShortest(Λ(λ, q))
7: OTPS:=OTPS ◦ OTP
8: Recv(CipherText)
9: Secret:=CipherText ⊕ OTP
10: Recv ((v1, v2, . . . , vm)⊕ psuffix(OTPS))
11: Until file transfered

Fig. 2. Shortest 01λq-Vector

The code of the algorithm that uses the shortest 01λq-vector problem for
magnifying the computing gap appears in Figure 2. In lines 2 and 3 of the code,
the sender chooses n ≥ 4, c2 ≥ 7, and c1 such that (m and q defined in lines
4 and 5 are integers and) n log nc2 < c1n log n ≤ nc2

2n4 . Then in lines 4, 5, and
6 the sender computes m = c1n log n and q = nc2 and sends m and q to the
receiver. In lines 7 and 8 the sender chooses m − 1 random vectors v1, . . . , vm−1
from the set of all vectors (x1, ...xn) with 0 ≤ xi ≤ q − 1. In line 9 the sender

Establishing Encrypted Communication over Unidirectional Channels 259

chooses m − 1 random values δ1, δ2 . . . , δm−1 such that δi ∈ {1, 0}. Then in line
10 the sender computes the vector vm = −

∑
(δi ·vi) mod q. The construction of

vm and the inclusion of vm in the set of the vectors v1, v2, · · · , vm, ensures the
existence of a solution to the shortest 01λq-vector problem. Namely, there is at
least one vector h = (δ1, δ2 . . . , δm−1, 1) such that ((

∑m
i=1(δi ·vi))+vm) mod q =

(
∑m−1

i=1 (δi ·vi)−
∑m−1

i=1 (δi ·vi)) mod q ≡ 0 and the length of h is ‖h‖ ≤ √
m ≤ n.

In line 11 the sender sends to the receiver the vectors v1, v2, . . . , vm.
The sender repeatedly executes lines 13 to 21 until the file to be transferred

is encoded. In line 13 the sender defines λ as the set of vectors (v1, v2, . . . , vm).
In line 14 the sender finds the shortest 01λq-vector. Finding the shortest 01λq-
vector may be performed by exhaustive search over the 2m possible vectors
h = δm = {0, 1}m. For each such vector we check whether

∑m
i=1(δi ·vi) mod q ≡ 0

(its length must be not greater than n); if so we include h in the set S of possible
solutions and compute the length of h. Then we choose a vector from S with
the shortest length among the vectors in S. In case there is a set of two or more
vectors T ⊆ S with the shortest length then we choose the first vector in T
according to a lexicographic order. Note that the construction of vm ensures
that S is not empty; still, the result of the above computation may be a vector
h which is not the δ1, δ2, . . . , δm−1, 1 vector computed in lines 9 and 10. We use
the first m − 1 coordinates h1, h2, . . . , hm−1 of the shortest vector as a one time
pad (OTP) for our encryption scheme.

Assume the user would like to encrypt a secret that may be in the form of
a long file, we next describe the way consecutive portions of the secret file are
encrypted and sent to the receiver. In line 16 the sender computes the Cipher-
Text xoring (bitwise) the OTP and (a portion of) the Secret (that is of m − 1
bits length). Then, in line 17, the sender sends the encrypted secret to the re-
ceiver. Note that in every iteration the sender first sends λ and then the secret
encrypted with the newly obtained OTP. Similarly, the receiver first receives
λ and then decrypts the secret with the obtained OTP. Lines 18 and 19 start
the process for the next m − 1 bits of the secret file, choosing m − 1 random
vectors (v1, v2, . . . , vm−1) modulo q (as done in line 8), and new m − 1 ran-
dom values δ1, δ2, . . . , δm−1 (as done in line 9). In line 21 the sender computes
the value of vm = −

∑
(δi · vi)mod q. Then the sender encrypts the new prob-

lem instance with the OTP portions that were computed so far. The sender
sends to the receiver the vectors (v1, v2, . . . , vm)⊕ psuffix(OTPS). The number
of bits required to describe the matrix is c2m · n · log n. We use a sequence
of the OTP portions to encrypt the new instance of the problem defined by
such a matrix. To do so we propose to use the psuffix(OTPS) function that
xores the OTPS portions that were computed most recently. Let OTPk+1, . . .
OTPk+l be the last l OTPS portions used in our algorithm, where l · (m − 1) ≥
c2m·n·log n > (l−1)·(m−1). Let maskk+i = ⊕j | (j≤k+l) ∧ (j mod (l+1)=i) OTPj,
psuffix(OTPS)=pseudorandom(OTPk+l) ⊕maskk+1 ◦ maskk+2 ◦ · · · maskk+l.
Note that in the beginning we may have less than l OTP portions in OTPS;
in this temporary period, we will use a pseudo random function with a seed
obtained from all the OTP portions revealed so far (here we defined the seed as

260 S. Dolev, E. Korach, and G. Uzan

OTPk+l, but other choices like a seed defined by ⊕k+l
i=1 OTPi may fit as well).

We note that in order to enlarge the fan-out of the problem one would like to
further restrict the choice of (n, c1 and c2) q to ensure that q = 2i for some
integer i.

In line 2 the receiver receives the values m and q. In line 3 the receiver receives
the first v1, v2, . . . , vm. Then the receiver repeatedly executes lines 5 to 10 until
the receiver receives the entire secret file. In line 5 we use λ to denote the
set of vectors (v1, v2, . . . , vm) that define the next problem instance. In line 6
the sender finds the shortest 01λq-vector. Then in line 8 the receiver receives
the CipherText. The secret is decoded by xoring the computed shortest 01λq-
vector as the one time pad (OTP) for the received CipherText. At last the
receiver receives the new vectors (v1, v2, . . . , vm)⊕ psuffix(OTPS). Thus, the
results of previous iterations allow the receiver to compute the problem instance
v1, v2, . . . , vm for the next iteration.

First we address the “hardness” of a bit in psuffix(OTPS) using the results
in [16,17,24]. By our random choice, every bit has the same probability to be
hard and some bit(s) is(are) hard (since the solution is hard on average). Since
we use xor of solutions to define masks, the hardness of bits in psuffix(OTPS)
is averaged. When the pseudo random sequence is obtained from the seed ⊕k+l

i=1
the above claim addresses also the “hardness” of bits of the seed. The security
of our scheme is based on the security of [3], noting that an adversary that
can compromise our scheme is able to compromise the cryptosystem of [3]. We
conclude with the following lemma.

Lemma 1. In every instance in which the receiver decrypted c2 · (m/(m − 1)) ·
n · log n portions of the secret more than the adversary decrypted it, it holds that
the fan-out is at least 2c2·(m−1)·n·log n.

Proof. By our choice of q = 2i, every input prefix of length c2 · (m − 1) · n · log n
defines a valid input prefix of v1, v1, · · · , vm−1 for the problem. If the receiver
decrypted c2 · (m/(m − 1)) · n · log2n portions of length m − 1 of the secret more
than the adversary decrypted the fan-out is at least 2(m−1)·c2·n·log n.

4 One-Sided Computation

In this section we will consider the case in which only one of the participants
(the receiver) has to use extensive computing power. In other words, the gap
in the computation power used is only the gap between the receiver and the
listening adversary, while the sender does not have to (or is not able to) perform
a computation expensive process. The idea is to use the fact that the probability
for having a large number of solutions to the short 01λq-vector problem is very
small and of the possibility of notifying the receiver with the OTP path. The
short 01λq-vectors problem is defined similarly to the definition of the shortest
01λq-vector of Section 3; however, it is harder in the sense that it has to return
the set that consists of all the solutions h = (δ1, δ2 . . . , δm−1, 1) ∈ {0, 1}m−11,
such that

∑m
i=1(δi · vi)) + vm) mod q ≡ 0.

Establishing Encrypted Communication over Unidirectional Channels 261

In this scheme the sender does not have to compute the solution of the short
01λq-vector. The sender builds the random instances (v1, v2, . . . , vm) as in the
previous section. Then the sender sends these instances masked by the psuf-
fix function defined over the l last sequences of the OTP, where the OTP is
the constructed solutions of the short 01λq-vector: (δ1, . . . , δm−1). The sender
uses δ1, · · · , δm−1 as the OTP (the OTP may not include δm since the value
of δm is always 1). Once every k iterations the sender will make one or more
synchronization phases with the receiver by sending the m − 1 δ1, δ2, . . . , δm−1
bits that were randomly chosen (in line 19 of Figure 2) together with the ob-
tained ((v1, v2, . . . , vm)⊕ psuffix(OTPS)) computed in (line 22 of Figure 2) dur-
ing this iteration in every synchronization phase. In other words, the sender
sends ((v1, v2, . . . , vm), (δ1, δ2, . . . , δm)⊕ psuffix(OTPS)). The synchronization
phase does not produce a new element for computing psuffix(OTPS) or used
for encryption.

On the other side, the receiver may find more than one possible solution
(including the one constructed by the sender) and may not determine the con-
structed solution among them. So, how will the sender know which is the con-
structed solution? The receiver will use a computation tree that represents the
set of all the possible solutions and the problem they define. When the receiver
receives the next instances masked by the constructed solution, the receiver will
try to solve the new instance using each of the previous possible solutions. Each
such possible solution will result in an instance of the short 01λq-vector problem.
Then in a synchronization phase the receiver will have a very high probability
to truncate all the possible computations but one. We next prove that the set of
possible solutions never blows up when the period k for synchronization and the
number of synchronization phases l are chosen appropriately. The proof of the
next Theorem is omitted from this extended abstract (See [10] for more details).

Theorem 1. There exist q, n, m, k, and l, for which the expected number of
iterations to reveal the i iteration secret is less than the i + k iteration.

The reasoning used in the proof above is depicted in Figure 3. The paths rooted
at the left node represent computations that start due to the ith constructed
problem. The number of possible solutions including the i + 1st constructed

Fig. 3. The expected number of iterations required to reveal OTPi

262 S. Dolev, E. Korach, and G. Uzan

solution is at most 2m−1 − 1 (all zero solution is not allowed). The bold path
follows the constructed problems sequence; the other paths represent possible
non constructed computation sequences.

5 Concluding Remarks

We define and present a framework for unidirectional encryption schemes. Imag-
ine a person that survived a malicous attack, assume the survivor is surrounded
by adversarial agents that may listen to his/her transmissions. The survivor be-
ing associated with a computationally superior organization may start randomly
choosing matrices to convey his/her messages. Another scenario is a sensor in the
field that should transmit a message to a satellite. Each sensor can be captured
before hand, thereby nullifying the benefit of setting a private shared key of all sen-
sors with the satellite before the distribution of the sensors. Our scheme can be used
to communicate with the computationally strong satellite without issuing private
keys a priori and without the need for maintaining private keys at the satellite.

In the sequel we present several examples that may well use our schemes. We
view the mathematical aspect of taking a computing gap and bootstrapping it
to an even wider gap by an algorithm as an interesting problem by itself that is
not necessarily tied to an encryption task. There are several schemes that can
be used by our magnifying computing gaps approach, we now list a few:

Private key establishment using unidirected link. The scheme presented
in [11] (that uses shared secrets, and therefore does not fit our unidirected com-
munication requirements) can be based on a secret that is sent as a suffix of a
long file.

Anonymity of the receiver. Anonymity (e.g., [4,14]) is another issue that our
scheme may support since the sender does not have to know the receivers.

Encrypted end-to-end and broadcast for unidirected network. Message
delivery using unidirected communication links, where the adversary can listen
to all the transmitted information is one of the main applications of our scheme.
The sender can send a message to be forwarded to a remote receiver such that
the message is transmitted over each hop in the path using our scheme for uni-
directional delivery. An intermediate node may act only as a relay or decrypt
and then encrypt the message again. Broadcast schemes may use the latter op-
tion resulting in decryption of the message by all nodes with superior computing
capabilities over the listening adversary (whether it listens to the transmission
over the links or in the form of a computation weak node). There are several po-
tential users for the above schemes, for example satellite television broadcasters
that would not like to update the satellite with every new subscriber.

Undirected encryption schemes:

Combating spam. We can use the one-sided computation scheme of Section 4
for combating junk mail [13]. For that, the email-sender will act as the receiver

Establishing Encrypted Communication over Unidirectional Channels 263

of the scheme and the email-receiver will act as the sender of the scheme; in this
way the email-receiver will not have to compute the solution for the problem.
In more detail, the email-sender sends a request for delivery, receives problems
to solve (up to the first synchronization phase), then solves them and sends the
email with the solution; the email-receiver will check the solutions and only when
it is correct will it process the message (rare retransmissions will be needed when
the set of solutions for the short 01λq-vector problem includes more than one
solution after the synchronization phase).

Resource allocation. We can also use the above technique for controlling access
to a shared resource. In order to access a resource one will need to solve a problem
supplied by the resource administrator. Thus, the frequency of requests received
from a particular client (in a way similar to the way we handled junk mail)
will be controlled by the administrator (maybe also by tuning the complexity
of the problem to solve) and clients may be effectively denied access when their
computation power is beyond a certain threshold.

Private key strong-weak. Similar scheme for establishing a private key In an
undirected network, when one of the two participants has weak computing power
is possibly letting this participant play the sender in our one-sided computation
scheme. For example, when a person equipped with a weak computational de-
vice would like to transmit, say, his/her current location, to a computationally
strong base station without letting the adversary reveal the secret. One can use
the random instances of the short 01λq-vector for implementing [19] such that
the puzzles are hard on the average and the solution is known to the sender.
Moreover, the encoded puzzles approach can enhance the security obtained by
the scheme in [19]. Using the secret established by the protocol in [19], it is
possible to encode a new set of n puzzles and establish a new key using this set.
Such an iterative protocol will result in a higher security level. Roughly speak-
ing, the chances that the secret is revealed at the same time it is created, are
quadratically smaller than the chances that the secret is revealed in the original
scheme. Note that the communication overhead of the additional iteration is
only a constant factor of the original communication. Obviously, this approach
can be extended beyond two iterations to gain even higher (in a factor of n and
the number of iterations) security levels while communicating only O(n) puzzles.

Overall comment. Note that it is possible to use a similar scheme where the
sender and the receiver start with a key in common and thus have a (knowledge)
gap that they further magnify to gain proactive security, e.g., [7,8]. We believe
that the new defined shortest/short 01λq-vector problems are of independent
interest.

Acknowledgments. It is a pleasure to thank Amos Beimel, Dan Boneh, Cyn-
thia Dwork, Michael Fischer, Yinnon Haviv, Amir Herzberg, and the anonymous
referees for useful comments.

264 S. Dolev, E. Korach, and G. Uzan

References

1. Ajtai, M.: Generating Hard Instances of Lattice Problems. In: Proc. of STOC, pp.
99–108 (1996)

2. Ajtai, M.: The Shortest Vector Problem in L2 is NP-hard for Randomized Reduc-
tions. In: Proc. of the 30th ACM STOC, ACM Press, New York (1998)

3. Ajtai, M., Dwork, C.: Public-Key Cryposystem with Worst-Case/Average-Case
Equivalence, Electronic Colloquium on Computational Complexity, Report TR96-
065 (1996)

4. Beimel, A., Dolev, S.: Busses for Anonymous Message Delivery. Journal of Cryp-
tology 16(1), 25–39 (2003)

5. Dijkstra, E.W: Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM 17(11), 643–644 (1974)

6. Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)
7. Dolev, S., Kopetsky, M.: Secure Communication for RFIDs, Proactive Information

Security within Computational Security. In: Datta, A.K., Gradinariu, M. (eds.)
SSS 2006. LNCS, vol. 4280, Springer, Heidelberg (2006)

8. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive Secret Sharing Or:
How to Cope With Perpertual Leakage. In: Coppersmith, D. (ed.) CRYPTO 1995.
LNCS, vol. 963, pp. 339–352. Springer, Heidelberg (1995)

9. Cormen, T., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms, p. 118. MIT
Press, Cambridge (1990)

10. Dolev, S., Korach, E., Uzan, G.: A Method for Encryption and Decryption of
Messages. PCT Patent Application WO 2006/001006 (January 5, 2006)

11. Ding, Y.Z., Rabin, M.O.: Hyper-Encryption and Everlasting Security. In: Alt, H.,
Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 1–26. Springer, Heidelberg
(2002)

12. Dwork, C.: Positive Applications of Lattice to Cryptography. In: Privara,
I., Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295, pp. 44–51. Springer, Heidelberg
(1997)

13. Dwork, C., Naor, M.: Pricing via processing or combating junk mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993)

14. Dolev, S., Ostrovsky, R.: Xor-Trees for efficient anonymous multicast and reception.
ACM TISSES 3(2), 63–84 (2000)

15. Feitelson, D.G.: Optical Computing: A Survey for Computer Scientists. MIT Press,
Cambridge (1988)

16. Goldreich, O., Levin, L.: A hard-core predicate for all one-way functions. In: Proc.
ACM Symp. on Theory of Computing, pp. 25–32 (1989)

17. Levin, L.A.: One-Way Functions and Pseudorandom Generators. Combinator-
ica 7(4), 357–363 (1987)

18. Lenstra, A.K., Shamir, A.: Analysis and Optimization of the TWINKLE Factoring
Device. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 35–52.
Springer, Heidelberg (2000)

19. Merkle, R.C.: Secure Communications Over Insecure Channels. CACM 21(4), 294–
299 (1978)

20. Maurer, U.M.: Conditionaly-Perfect Secrecy and a Provable-Secure Randomized
Cipher. Journal of Cryptology 5(1), 53–66 (1992)

Establishing Encrypted Communication over Unidirectional Channels 265

21. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and time-release Crypto.
Technical Report, MIT/LCS/TR-684

22. Reif, J.H., Tyagi, A.: Efficient Algorithms for Optical Computing with the DFT
Primitive. Journal of Applied Optics (1997)

23. Vadhan, S.: On Constructing Locally Computable Extractors and Cryptosystems
in Bounded-Storage Model. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
Springer, Heidelberg (2003)

24. Yao, A.C.: Theory and Application of Trapdoor Functions. In: 23rd FOCS, pp.
80–91 (1982)

stabilizing trust and reputation for
Self-Stabilizing Efficient Hosts in Spite of

Byzantine Guests�

(Extended Abstract)

Shlomi Dolev and Reuven Yagel

Department of Computer Science,
Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel

dolev,yagel@cs.bgu.ac.il

Abstract. This work presents a general and complete method to protect
a system against possible malicious programs. We provide concepts for
building a system that can automatically recover from an arbitrary state
including even one in which a Byzantine execution of one or more pro-
grams repeatedly attempts to corrupt the system state. Preservation of a
guest execution is guaranteed as long as the guest respects a predefined
contract, while efficiency is improved by using stabilizing reputation. We
augment a provable self-stabilizing host operating system implementa-
tion with a contract-enforcement framework example.

Keywords: self-stabilization, security, host systems, Byzantine
programs, trust and reputation.

1 Introduction

“Guests, like fish, begin to smell after three days” (Benjamin Franklin). A typ-
ical computer system today is composed of several self-contained components
which in many cases should be isolated from one another, while sharing some
of the system’s resources. Some examples are processes in operating systems,
Java applets executing in browsers, and several guest operating systems above
virtual machine monitors (vmm). Apart from performance challenges, those set-
tings pose security considerations. The host should protect not only its various
guests from other possibly Byzantine guests [16,18,36], e.g. viruses, but also must
protect it’s own integrity in order to allow correct and continuous operation of
the system [43]. Many infrastructures today are constructed with self-healing
properties, or even built to be self-stabilizing. A system is self-stabilizing [13,14]
if it can be started in any possible state, and subsequently it converges to a
desired behavior. A state of a system is an assignment of arbitrary values to the
system’s variables.
� Partially supported by the Lynne and William Frankel Center for Computer Sciences

and the Rita Altura trust chair in Computer Sciences.

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 266–280, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Self-Stabilization Hosts in Spite of Byzantine Guests 267

Recovery with no utility. The fact that the system regains consistency auto-
matically, does not guarantee that a Byzantine guest will not repeatedly drive
the system to an inconsistent state from which the recovery process should be
restarted. In this work we expand earlier self-stabilizing efforts for guaranteeing
that eventually, some of the host’s critical code will be executed. This ensures
that eventually the host has the opportunity to execute a monitor which can
enforce it’s correctness in spite of the possibly existing Byzantine guests. In par-
ticular the host forces the Byzantine code not to influence the other programs’
state. Finally, non-Byzantine programs will be able to get executed by the op-
erating system, and provide their services.

Soft errors and eventual Byzantine programs. Even if we run a closed
system in which all applications are examined in advance (and during runtime),
still problems like soft-errors [38] or bugs that are revealed in rare cases (due to
rare i/o sequence of the environment that was not tested/considered), might lead
to a situation in which a program enters an unplanned state. The execution that
starts from such an unplanned state may cause corruption to other programs or
to the host system itself. This emphasizes the importance of the self-stabilization
property that recovers in the presence of (temporarily or constantly) Byzantine
guests. Otherwise, a single temporal violation may stop the host or the guests
from functioning as required.

Host-guest enforced contract. The host guarantees preservation of the guest
execution as long as the guest respects the predefined rules of a contract. The
host cannot thoroughly check the guest for possible Byzantine behaviors (this
is equivalent to checking whether the guest halts or not). Therefor the host will
force a contract, that is sufficient for achieving useful processing for itself and
the guests. The rules enforced by the host can be restrictive, e.g., never write to
code segments, and allocate resources only through leases.

Stabilizing trust and reputation. Upon detecting a Byzantine behavior of
a guest during run time (namely, sanity checks detect a contract violation) we
can not prevent the guest from being executed, since the Byzantine behavior
might be caused by a transient fault. Does this mean that we must execute
all guests, including the Byzantine ones, with the same amount of resources?
Furthermore, when we accumulate behavior history to conclude that a guest
is Byzantine, the accumulated data maybe corrupted due to a single transient
fault, thus we can not totally count on the data used to accumulate the history.
Instead we continuously refresh our impression on the behavior of a guest while
continuing executing all guests with different amount of resources. Details of
violations are continuously gathered, and the impression depends more on recent
behavior history. Such a trust and reputation function rates the guests with a
suspicious level, and determines the amount of resources a guest will be granted.
In this calculation, recent events are given higher weight, as past event are slowly
forgotten. This approach copes with corruptions in the reputation data itself,
since wrong reputation fades over time.

268 S. Dolev and R. Yagel

Table 1. Byzantine Threats

Mechanism Examples Byzantine Threats
Privileges, Address Commodity (i/o) Resources tampering,
Space separation(MMU) OSes Separation algo. corruption

Type checking JVM Resource sharing
Self modifying code

Emulation and Bochs, Compiled code corruption
Dynamic translator Qemu

Hypervisor Xen, Rootkits,
VmWare Privileged guest corruption

Byzantine guest examples. We review here some systems with their protec-
tion mechanisms and possible ways for Byzantine guests to attack. Commodity
operating systems use standard protection mechanisms [49] such as several priv-
ilege levels and address space separation enforced by hardware, e.g., an mmu.
A Byzantine guest can be executed with high privilege (by an unaware user),
and corrupt the system’s state. Additionally the lack of hardware i/o addresses
separation in today’s common processor architectures enables even kernel data
corruption by, say, a faulty device driver. Managed environments like Java or the
.net clr [22] use various methods of type checking, resource access control and
also sandboxing [52]. These mechanisms rely on the correctness of the runtime
loaders and interpreters and are also sensitive to self modifying code (see e.g.,
[12,23]).

Recently, there is a growing interest in virtualization techniques through vir-
tual machine monitors. vmms may form full emulators like Bochs [8] and Qemu
[3] which interpret (almost) all of the guest’s instructions (and thus can even en-
sure correct memory addressing). Other vmms, like Xen [4], let the guest perform
directly most of the processor instructions, especially the non-privileged ones (in
[1,23,44] there is a classification of the various vmms types). Many vmms rely on
one of the guests for performing complex operations such as i/o, and thus are
vulnerable to Byzantine behavior of this special guest. Some studies, e.g., [44],
show other problems in implementing virtualization above the x86 architecture
[31], including some privileged instructions which are not trappable in user mode,
and direct physical memory access through dma. Recently, vendors augmented
this architecture with partial corrections [40], but still not completely [24].

“Guests” that become super-hosts. Virtualized rootkits [34,43] were re-
cently discussed. They load the original operating system as a virtual machine,
thereby enabling the rootkit to even intercept all hardware calls that are made by
the guest OS. They demonstrate the relative simplicity of a Byzantine program
to take full control of the host. Table 1 summarizes some different mechanisms
and their weaknesses.

Related research towards robust hosts. Various protection mechanisms
were mentioned in the previous section. Some which emphasize separation and
protection are detailed in the following. In [6], a Java virtual machine is

Self-Stabilization Hosts in Spite of Byzantine Guests 269

enhanced with operating system and garbage collection mechanisms (type safety
and write barriers) in order to prevent, cases like, “a Java applet can generate
excessive amounts of garbage and cause a Web browser to spend all of its time
collecting it”. Virtual machine emulators have become tools to analyze malicious
code [23]. Lately, several studies detailed ways of preventing malicious code from
recognizing that it is executing as a guest [23,24,34,40,43,44] (see also [27] for
vmm usage for security, and [43] which argues against relying on a full operating
system kernel as a protection and monitoring base). In addition, well known
hardware manufacturers intend to introduce soon io-mmus with isolation capa-
bility [1,10]. Operating system based emulators or hypervisors such as uml [15]
or kvm [33] are used also to analyze suspected programs. [41] uses virtualization
techniques to contain errors, especially in drivers, in realtime. Methods that are
based on secure boot (e.g., [2,45,51]) are important in order to make sure that
the host gets the chance to load first, and prevent rootkits from fooling it by
actually running the host as a guest [34]. In [42], cryptography techniques are
used in order to ensure that only authorized code can be executed.

Sandboxing techniques were presented in [52] (see also [26]). Sandboxing tech-
niques make sure that code branches are in segment (a distinct memory section
which exclusively belongs to a process), and also rely on different segments for
code and data. For every computed address they add validation code that traps
the system, or just masks addresses to be in the segment (this is actually a sand-
box). They count on dedicated registers which hold correct addresses. Overview
of trust and reputation can be found, e.g., in [25,37]. In [7] a Bayesian based
approach with exponential decay is proposed.

The need for address space separation, the use of capabilities, minimal trusted
base and other protection mechanisms were introduced in well known works
[9,11,35,39,46,49]. Singularity [29,28] achieves process isolation in software by
relying on type safety, and also prevents dynamic code. Self-modifying code
certification is presented in [12].

Generally, extensive theoretical research has been done towards self-stabilizing
systems [13,14,48] and autonomic - computing/ disaster - recovery/ reliability
- availability - serviceability [30,32,50]. However, none of the above suggest a
design for a host system that can automatically recover from an arbitrary state,
even in the presence of Byzantine guests that repeatedly try to corrupt the
system state.

Our contribution. (a) Identifying the need of combined self-stabilization, and
techniques for enforcing a contract over the operations of a guest. We show that
only such a combination will allow (useful) recovery. (b) The introduction of
stabilizing trust and reputation and the use of the level of trust as a criteria
for granting resources while continuing to evaluate the trust of the guests. (c)
Concepts and a proof for designing hosts and contracts. (d) A running example.

Paper organization. Next, in Section 2, we briefly review results from previous
works on self-stabilizing operating systems, which form our basis for a protected
host system. Section 3 details the system settings and requirements. This is

270 S. Dolev and R. Yagel

followed by Section 4 which presents a general framework for protecting against
Byzantine programs. Section 5 presents an example of a simple Byzantine guest
followed by the way a provable host implementation copes with such a Byzantine
guest. As a result of paper length limitation, proofs and some technical and
implementation details are omitted from this extended abstract.

2 Self-stabilizing Operating Systems – Foundations
Overview

In previous works [19,20,21], we presented new concepts and directions for build-
ing a self stabilizing operating system kernel. A self-stabilizing algorithm/system
makes the obvious assumption that it is executed. This assumption is not sim-
ple to achieve since both the microprocessor and the operating system should
be self-stabilizing, ensuring that eventually the (self-stabilizing) applications/
programs are executed. An elegant composition technique of self-stabilizing al-
gorithms [14] is used to show that once the underling microprocessor stabi-
lizes the self-stabilizing operating system (which can be started in any arbitrary
state) stabilizes, then the self-stabilizing applications that implement the al-
gorithms stabilize. This work considers the important layer of the operating
system.

One approach in designing a self-stabilizing operating system is to consider an
existing operating system (e.g., Microsoft Windows, Linux) as a black-box and
add components to monitor its activity and take actions accordingly, such that
automatic recovery is achieved. We called this approach the black-box based
approach. The other extreme approach is to write a self-stabilizing operating
system from scratch. We called this approach the tailored solution approach.
We have presented several design solutions in the scale of the black-box to the
tailored solutions. The first simplest technique for the automatic recovery of
an operating system is based on repeatedly reinstalling the operating system
and then re-executing. The second technique is to repeatedly reinstall only the
executable portion, monitoring the state of the operating system and assign-
ing a legitimate state whenever required. Alternatively, the operating system
code can be “tailored” to be self-stabilizing. In this case the operating system
takes care of its own consistency. This approach may obviously lead to more ef-
ficient self-stabilizing operating systems, since it allows the use of more involved
techniques.

Tailored Approach. An operating system kernel usually contains basic mech-
anisms for managing hardware resources. The classical Von-Neumann machine
includes a processor, a memory device and external i/o devices. The tailored
operating system is built (like many other systems) as a kernel that manages
these three main resources. The usual efficiency concerns which operating sys-
tems must address, are augmented with stabilization requirements.

• Process Scheduling. The system is composed of various processes which are
executing each in turn. The process loading, executing and scheduling part of the

Self-Stabilization Hosts in Spite of Byzantine Guests 271

operating system usually forms the lowest and the most basic level. Two main
requirements of the scheduler are fairness and stabilization preservation. Fairness
means that in every infinite execution every running process is guaranteed to get
a chance to run. Stabilization preservation means ensuring that the scheduler
preserves the self-stabilization property of a process in spite of the fact that
other processes are executed as well (e.g., the scheduler ensures that one process
will not corrupt the variables of another process).
• Memory Management. We deal with two important requirements to the
tasks of memory management. The first requirement is the eventual memory
hierarchy consistency. Memory hierarchies and caching are key ideas in mem-
ory management. The memory manger must provide eventual consistency of
the various memory levels. The second requirement is the stabilization preser-
vation requirement. It means that stabilization proof for a single process p is
automatically carried to the case of multiprocessing in spite the fact that con-
text switches occur and the fact that the memory is actually shared. Namely,
the actions of other processes will not damage the stabilization property of the
process p.
• I/O Device Drivers. Device drivers are programs which are practically an
essential part of any operating system. They serve as an adaptation layer by
managing the various operation and communication details of i/o devices. They
also serve as a translation layer providing consistent and more abstract interface
for other programs and the hardware device resources (and sometimes they also
add extra services not provided by the hardware devices). Device drivers are
known to be a major cause of operating system failures [41].

In [21] we define two requirements which should be satisfied in order for the
protocol between the operating system and an i/o device to be self-stabilizing.
The first requirement (the ping-pong requirement) states that in an infinite sys-
tem execution, in which there are infinitely many i/o requests, the os driver
and the device controller are infinitely often exchanging requests and replies.
The second requirement is about progress and it states that eventually every
i/o request is executed completely and correctly according to some protocol
specification (e.g., the ata protocol for storage devices). A device driver and
device controller can be viewed as a master and a slave working together ac-
cording to some protocol to achieve their mission. Thus, the device driver act-
ing as a master can check that the slave is following, e.g. the ata protocol,
correctly.

The usage and usefulness of such a system in critical and remote systems
cannot be over emphasized. For example entire years of work maybe lost when
the operating system of an expensive complicated device (e.g., an autonomous
spaceship) may reach an arbitrary state (say, due to soft errors) and be lost
forever (say, on Mars). The controllers of a critical facility (e.g., a nuclear reactor
or even a car) may experience an unexpected fault (e.g., an electrical spike) that
will cause it to reach an unexpected state, from which the system will never
recover, therein leading to harmful results. Our proofs and prototypes show that
it is possible to design a self-stabilizing operating system kernel.

272 S. Dolev and R. Yagel

3 Settings and the Requirements

Definitions. We briefly define the system states and state transitions (see [19,20]
for details concerning processor executions, interrupt, registers, read-only mem-
ories, a watchdog and additional settings). A state of the system is an assignment
to its various memory components (including the program counter resister). A
clock tick triggers the microprocessor to execute a processor step psj = (s, i, s′, o),
where the inputs i and the current state of the processor s are used for defin-
ing the next processor state s′, and the outputs o. The inputs and outputs of
the processor are the values of its i/o connectors whenever a clock tick occurs.
The processor uses the i/o connectors values for communicating with other de-
vices, mainly with the memory, via its data lines. In fact, the processor can
be viewed as a transition function defined by e.g., [31]. A processor execution
PE = ps1, ps2, · · · is a sequence of processor steps such that for every two suc-
cessive steps in PE, psj = (s, i, s′, o) and psj+1 = (s, i, s′, o) it holds that s = s′.

Error model – arbitrary transient and Byzantine faults. The system
state, including the program counter, system data structures and also the pro-
gram code and data in ram, may become arbitrarily corrupted, namely, assigned
any possible value. This model is an extension of a previous one ([19]). The main
feature of the extension is the removal of the assumption that all programs are
self-stabilizing (or restartable [4]) so they might exhibit Byzantine behavior for-
ever.
Requirements. We now define the requirements which should be satisfied for
a host system to be self-stabilizing in spite of a Byzantine behavior.
(r1) Guest stabilization preservation. The fact that the host system may
start in an arbitrary state, and execute code of Byzantine guests, will not falsify
the stabilization property of each of the non-Byzantine guests in the system.
(r2) Efficiency guarantee. Non-Byzantine guests will eventually get the
needed resources in order to supply their intended services.

Note that both (r1) and (r2) implicity require that a program that shares re-
sources with others, will not block or will be blocked, outside of acceptable limits,
due to this sharing (although in the worst case, due to the use of leases combined
with a reputation system, resource will eventually be granted).

4 Concepts for Fighting the Byzantines

By combining techniques like secure booting, contract verification and enforce-
ment together with self-stabilization we can protect a system against Byzantine
guests in a provable way.

– Secure booting ensures that there is a minimal trusted computing base
which runs programs and monitors.

– Offline Byzantine behavior detectors use code verification techniques,
analyzing a program offline and looking for possible breaks of contracts.

Self-Stabilization Hosts in Spite of Byzantine Guests 273

– Runtime anti-Byzantine enforcers insert additional instructions in the
executable for online sanity checks to enforce contract properties during a
program execution.

– Stabilizing trust and reputation for determining the amount of resources
a guest will be granted.

– Self-stabilization of these mechanisms and their composition [5,14] ensures
that the system is eventually protected and functioning.

Secure booting is achieved through standard hardware based mechanisms
(e.g., [2,45,51]). These are essential in order to guarantee that a Byzantine guest
is not loaded first.

The system should be augmented with a detector framework which executes
one or more upfront offline Byzantine detector plug-ins. A detector is built to
enforce some aspect of a contract with a guest, and must be provable to perform
its action completely and within acceptable time limits. These detectors scan
the program code in advance for particular violations of the contract that are
easy to check, and in case the scan reveals a Byzantine guest, this guest will not
be loaded at all.

A program that passes the first check is augmented with sanity checks and
access restrictions in sensitive code parts, where execution might do harm. The
augmented code does not change the program semantics (up to stuttering) as
long as the guest respect the contract. Upon detection of a violation in runtime,
an enforcer can reload the program code and also update the trust and reputa-
tion level. An example for such an enforcer is one that enforces that segments
used by the program are not changeable (meaning that self-modifying code is
forbidden according to a contract). Runtime sanity checks, look for possible in-
struction sequences to make sure they do not violate the contract. Note that due
to transient faults (that are rare by nature), a target address may change right
after a sanity check, causing the system later to start a convergence stage as a
self-stabilizing system should. In the case of a Byzantine program, the harm is
prevented, although the detection and reloading will occur again and again (the
trust and reputation record of a guest will limit the amount of processing used
for this particular guest). In case the program is not Byzantine, the reload-of-
code procedure will ensure correct behavior after which the trust and reputation
will reach the maximal possible level.

Stabilizing trust and reputation can be achieved by using methods which favor
recent events over past events. One example is [7] which combines a Bayesian
approach with exponential decay. In such ways, trusted guests get more resources
overtime, while suspected guests are not totally blocked and get chance to “shun
evil and do good”. Such approaches also cope with transient (fault) corruptions
in the reputation data, since wrong reputation fades over time.

Theorem 1. There exists a self-stabilizing host that can fulfill (r1) stabilization
preservation and (r2) efficiency guarantees for guests.

Sketch of proof: We list the mechanisms we use and the properties we estab-
lish by them. (a) The host is built above a self-stabilizing hardware ([17]) which

274 S. Dolev and R. Yagel

guarantees eventually correct operation of the hardware from any state. (b) A
self-stabilizing host operating system [19] which is guaranteed to periodically run
some boot-code loaded in a secure way [2,45,51], without being subverted ([43])
(c) This trusted operating system guarantees eventual execution of all runnable
processes including the contract offline detectors. (d) Code is being refreshed
([19,20]) periodically, so Byzantine or wrong behavior caused by transient faults
to code segments are eventually fixed. (e) Contract properties are asserted by
online enforcers. (f) Self-stabilizing programs might be supplied with a list of
“initial” safe states. In such a case when recognizing Byzantine behavior, apart
from preventing this behavior and refreshing the code, the closest state (using
Hamming distance or some other metric) can be applied to the program. (g)
All resource allocations are granted using leases with a self-stabilizing manager,
as demonstrated in a previous work on dynamic memory [20], ensuring that re-
source allocations are eventually fair. The contract detectors and enforcers check
also for behavior which violates the leasing rules. Resource are leased to a guest
according to its trust and reputation level. (h) System calls and traps are also
leased (again, according to the trust and reputation level), so a Byzantine guest
is limited in the number of times it can cause long delay due to system calls. (i)
Non-Byzantine programs are stabilizing in spite of faults and Byzantine behav-
ior. (j) The interaction between those programs and other programs or devices
is stabilizing too ([21]). (k) The stabilization process of one program only affects
the state of this program and does not affect other programs. Thus, stabilization
preservation and efficiency guarantee is achieved for guests. ��

The implementations presented next, add sanity checks to branches and memory
accesses, ensure correct use of leased resources, and enforce allowed patterns of
out of memory accesses.

5 Host Implementation Example

In previous works we demonstrated the construction of a self-stabilizing oper-
ating system (sos) [19,20,21,47]. Guest separation was achieved by using the
segmentation mechanism of the Pentium processor [31], without mmu hardware
protection. Additionally, we assumed that the code of the programs is hardwired
and correct, thus a program does not contain instructions which affect the state
of the other programs (including the system). When we introduce programs with
arbitrary code, other programs, even the host/operating system itself, may be
corrupted. In the current work we have implemented a prototype of a simple
host that satisfies requirements (r1) and (r2) above the mentioned system.

1 mov ax, 0x8010
2 mov ds, ax
3 mov word [0x292], 3

Fig. 1. Byzantine Code

To demonstrate the possible corruption of
the system designed, we show an example of a
threat in a program that accesses the operat-
ing system’s segment and changes the sched-
uler state. The scheduler state is changed so
that this program will be scheduled (again

Self-Stabilization Hosts in Spite of Byzantine Guests 275

and again) instead of other guests. Figure 1 shows an example of such a 16-bit
x86 assembly code. Lines 1-2 change the data segment pointer to the system’s
segment. Then, line 3 changes the process pointer contents to a value which will
cause re-scheduling of this program.

One can argue that address-space separation, like found in commodity op-
erating system kernels, can prevent this behavior. But if a Byzantine program
manages to operate in a privileged mode, even once due to a transient fault, the
separation algorithm itself might be subverted, followed by the above malicious
behavior. Next we will describe our settings in order to show a provable solution.

To demonstrate these ideas we show: (a) an example containing added code
that enforces memory access within a program’s data segments (sandboxing).
(b) Accessing shared resources through leases. (c) A prototype of a detector
that performs offline verification that out of segment accesses are according to a
list of known patterns allowed by a contract. (d) An example of stabilizing trust
and reputation evaluation according to online sanity checks.

The suggested solution uses an architecture in which some code is read-only
(Harvard model). A non-maskable interrupt (nmi) is generated by a simple self-
stabilizing watchdog. Thus, the hardware triggers a periodic execution of the
host monitoring (detectors) code. This architecture also guarantees that the
monitoring code gets enough time to complete. A detector searches the code
of every program to make sure it does not contain code that changes segments
outside the scope of the program. Computed addresses are enforced to be within
limits, by inserting sanity checks. The correct use of leased resources is also
enforced during runtime. Additionally, from time to time the host refreshes the
code of all guests (including sanity checks insertions), say from a cd-rom, to
allow self-stabilization of programs following a code refresh.

1 mov ax, <<computed address>>
// added sanity check
2 xor ax, SEGMENT MASK
3 jz AfterSanityCheck
4 call Increase-Bad-Reputation
5 mov ax, FIXED SEGMENT
AfterSanityCheck:
...

Fig. 2. Memory Access Enforcer

(a) Figure 2 line 1
demonstrates calculation
of a segment selector
value, as opposed to Fig-
ure 1 in which the ad-
dress is fixed. Then, lines
2-5 are a sanity check
added by the runtime
anti-Byzantine enforcer.
First the calculated ad-
dress is validated to be
in range (in this example
it must have some fixed
value), in case of a viola-
tion detection (line 3) the Increase-Bad-Reputation procedure is called to record
the violation (see (d) below). Then in line 5, the correct address is enforced.
Alternatively, a monitor could start actions of reloading code and data in case
of detecting such a wrong access.

276 S. Dolev and R. Yagel

(b) Figure 3 presents the way a program uses a shared resource, in this case
the dynamic memory heap. The contract is that all accesses to segments in
this memory area must happen only through the segment selector register fs.
Additionally, in order for this access to be leased, a program is not allowed to
load a value in this register, but instead asks the system for a leased allocation
(line 1). After this allocation request, and before every dynamic memory access,
the program must check that the lease is still in effect, by checking the value
in fs (lines 2-3). In case the allocation failed or expired, the value will be 0.
Detectors and enforcers check that the use of shared resources is done according
to this contract [20] and penalize the program in case of irregular use detection.

1 call MM Alloc
After MM Alloc:
2 cmp fs, 0
3 jz TryLater
...

Fig. 3. Shared Resource Access

(c) The Pentium’s operation code for mov-
ing a value into one of the 16-bit segment se-
lector registers, is 8e. Thus, the offline detec-
tor searches for commands starting with this
code (assuming for simplicity that this is the
only possible way). Note that the Pentium
has variable length operations so in order to
detect beginnings of operations we need to
use disassembly techniques. Additionally, the
mentioned operation code is sometimes used
in legitimate ways, e.g. for accessing dynamic data segments. A possible solu-
tion is allowing known fixed patterns of access to other segments. An example
pattern appears in Figure 4, where the program is accessing the video segment,
which is needed for screen output. The es segment register is loaded in line 2
by the allowed value that is computed in line 1. In this case the 8e op-code is
preceded by the sequence b8 00 b8 which is considered valid. Figure 5 presents
the algorithm of the segment access detector. This detector is executed before
loading the guest program. It scans a program’s code segment for the 8e code.
When found, it verifies that it is preceded by one of the allowed patterns, oth-
erwise the program is considered as one that does not respect the contract and
therefore an upfront Byzantine program.

(d) Upon finding an online contract violation through performing the enforced
sanity checks, the violation is recorded in the reputation history record (Figure
6). This record maybe kept as part of a process entry in the system’s process
table. Every predefine period of time (or steps) the system updates this record,
as seen in in the Decay-Reputation procedure in Figure 6. The entries in the
record are shifted in a way that the oldest entry is removed, thus implementing
the needed decay and stabilization. This updated record is used for evaluating

1 mov ax, VIDEO SEGMENT
2 mov es, ax

Fig. 4. An Allowed Pattern

Self-Stabilization Hosts in Spite of Byzantine Guests 277

Byzantine-Detector(process entry, legal patterns)
1 for each instruction code(ic) in process entry.code segment
2 do if ic starts with ′′8e′′

3 then for each pattern in leagal patterns
4 do if pattern precedes ic
5 then continue main loop
6 process entry.byzantine ← true
7 return

Fig. 5. Out of Segment Access Detector

Increase-Bad-Reputation(process entry)
1 process entry.reputation[0] &= BAD REPUTATION BIT
2 process entry.reputation[0] � 1 � Shift left.
3 return

Decay-Reputation(process entry)
1 for i in (MAX HISTORY − 1) .. 1
2 do process entry.reputation[i] ← process entry.reputation[i − 1]
3 return process entry.reputation

Fig. 6. Update Trust and Reputation – Increase and Decay

the trust and reputation level of the relevant guest and granting resources in
accordance.

Performance issues. The timing of the execution of code refreshing (and offline
detectors) can be tuned according to the expected rate of soft-error corruptions
to code. This processes do not have a great impact on the program execution
performance, since the frequency of the checks may be balanced against the
desired recovery speed.

One could suggest a performance gain by having an auxiliary processor (one
core of a multi-core) for performing a repeated contract verification on the loaded
code. However, a Byzantine guest might fool the auxiliary processor, say, by
changing the sanity checks to be correct whenever the auxiliary processor is
checking them. Still we can use such a processor for most of the cases to speed
the indication on soft errors and to trigger code refreshing.

6 Concluding Remarks

In this work we presented an approach to use self-stabilizing reputation in or-
der to gain efficient performance. We believe that self-stabilizing host systems
that use stabilizing reputation are a key technology which can cope with Byzan-
tine behavior in critical computing system. Source code examples can be found
in [47].

278 S. Dolev and R. Yagel

References

1. Adams, K., Agesen, O.: A Comparison of Software and Hardware Techniques for
x86 Virtualization. In: ASPLOS. Proceedings of the Twelfth International Con-
ference on Architectural Support for Programming Languages and Operating Sys-
tems, CA (2006)

2. Arbaugh, W.A., Farber, D.J., Smith, J.M.: A secure and reliable bootstrap ar-
chitecture. In: Proceedings of 1997 IEEE Symposium on Computer Security and
Privacy, IEEE Computer Society Press, Los Alamitos (1997)

3. Bellard, F.: QEMU, a Fast and Portable Dynamic Translator. In: Proc. of USENIX
Annual Technical Conference. FREENIX Track (2005)

4. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the Art of Virtualization. In: Proceedings of
the nineteenth ACM symposium on Operating systems principles, Bolton Landing,
NY, USA (2003)

5. Brukman, O., Dolev, S., Haviv, Y., Yagel, R.: Self-Stabilization as a Foundation
for Autonomic Computing. In: FOFDC. Proceedings of the Second International
Conference on Availability, Reliability and Security, Workshop on Foundations of
Fault-tolerant Distributed Computing, Vienna, Austria (April 2007)

6. Back, G., Hsieh, W.H., Lepreau, J.: Processes in KaffeOS: Isolation, Resource
Management, and Sharing in Java. In: OSDI. Proc. 4th Symposium on Operating
Systems Design and Implementation, San Diego, CA (2000)

7. Buchegger, S., Le Boudec, J.-Y.: A Robust Reputation System for Mobile Ad-hoc
Networks. Technical Report IC/2003/50, EPFL-IC-LCA (2003)

8. Bochs IA-32 Emulator Project. http://bochs.sourceforge.net/
9. Bershad, B.N., Savage, S., Pardyak, P., Sirer, E.G., Fiuchynski, M., Becker, D., Eg-

gers, S., Chambers, C.: Extensibility, Safety, and Performance in the SPIN Oper-
ating System. In: Proceedings of the 15th ACM Symposium on Operating Systems
Principles, Colorado, December (1995)

10. Ben-Yehuda, M., Xenidis, J., Mostrows, M., Rister, K., Bruemmer, A., Van Doorn,
L.: The Price of Safety: Evaluating IOMMU Performance. In: OLS. The 2007
Ottawa Linux Symposium (2007)

11. Chase, J.S., Levy, H.M., Feeley, M.J., Lazowska, E.D.: Sharing and Protection
in a Single-Address-Space Operating System. ACM Transactions on Computer
Systems 12(4) (November 1994)

12. Cai, H., Shao, Z., Vaynberg, A.: Certified Self-Modifying Code. In: Proceedings of
PLDI 2007, CA (2007)

13. Dijkstra, E.W.: Self-Stabilizing Systems in Spite of Distributed Control. Commu-
nications of the ACM 17(11), 643–644 (1974)

14. Dolev, S.: Self-Stabilization. The MIT Press, Cambridge (2000)
15. Dike, J.: A User-mode Port of the Linux Kernel. In: 5th Annual Linux Showcase

and Conference, Oakland, California (2001)
16. Daliot, A., Dolev, D.: Self-stabilizing Byzantine Agreement. In: PODC 2006. Proc.

of Twenty-fifth ACM Symposium on Principles of Distributed Computing, Col-
orado (2006)

17. Dolev, S., Haviv, Y.: Stabilization Enabling Technology. In: Datta, A.K., Gradi-
nariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 1–15. Springer, Heidelberg (2006)

18. Dolev, S., Welch, J.: Self-Stabilizing Clock Synchronization in the Presence of
Byzantine Faults. In: UNLV. Proc. of the 2nd Workshop on Self-Stabilizing Systems
(1995). Journal of the ACM, Vol. 51, No. 5, pp. 780-799, September 2004.

http://bochs.sourceforge.net/

Self-Stabilization Hosts in Spite of Byzantine Guests 279

19. Dolev, S., Yagel, R.: Toward Self-Stabilizing Operating Systems. In:
SAACS04,DEXA. Proceedings of the 15th International Conference on Database
and Expert Systems Applications, 2nd International Workshop on Self-Adaptive
and Autonomic Computing Systems, Zaragoza, Spain, pp. 684–688 (August 2004)

20. Dolev, S., Yagel, R.: Memory Management for Self-Stabilizing Operating Systems.
In: Proceedings of the 7th Symposium on Self Stabilizing Systems, Barcelona, Spain
(2005). also in Journal of Aerospace Computing, Information, and Communication
(JACIC), 2006.

21. Dolev, S., Yagel, R.: Self-Stabilizing Device Drivers. In: Datta, A.K., Gradinariu,
M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 276–289. Springer, Heidelberg (2006)

22. ECMA International. ECMA-335 Common Language Infrastructure (CLI), 4th
Edition, Technical Report (2006)

23. Ferrie, P.: Attacks on Virtual Machine Emulators. Symantec Advanced Threat
Research,
http://www.symantec.com/avcenter/reference/Virtual Machine Threats.pdf

24. Garfinkel, T., Adams, K., Warfield, A., Franklin, J.: Compatibility Is Not Trans-
parency: VMM Detection Myths and Realities. In: Proceedings of the 11th Work-
shop on Hot Topics in Operating Systems, San Diego, CA (2007)

25. Guha, R., Kumar, R., Raghavani, P., Tomkins, A.: Propagation of trust and dis-
trust. In: WWW. Proceedings of the 13th International World Wide Web confer-
ence (2004)

26. Gong, L., Mueller, M., Prafullchandra, H., Schemers, R.: Going beyond the sand-
box: An overview of the new security architecture in the Java Development Kit 1.2.
In: Proceedings of the USENIX Symposium on Internet Technologies and Systems
(1997)

27. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: A virtual
machine-based platform for trusted computing. In: Proceedings of SOSP 2003
(2003)

28. Hunt, G., Larus, J.: Singularity: Rethinking the Software Stack. Operating Systems
Review 41(2) (April 2007)

29. Hunt, G., Aiken, M., Fhndrich, M., Hawblitzel, C., Hodson, O., Larus, J., Levi,
S., Steensgaard, B., Tarditi, D., Wobber, T.: Sealing OS Processes to Improve De-
pendability and Safety. In: Proceedings of EuroSys2007, Lisbon, Portugal (March
2007)

30. Intel Corporation. Reliability, Availability, and Serviceability for the Always-on En-
terprise, The Enhanced RAS Capabilities of Intel Processor-based Server Platforms
Simplify 24 x7 Business Solutions, Technology@Intel Magazine (August 2005),
http://www.intel.com/technology/magazine/Computing/Intel RAS WP 0805.
pdf

31. Intel Corporation. The IA-32 Intel Architecture Software Developer’s Manual
(2006), http://developer.intel.com/products/processor/manuals/index.htm

32. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Com-
puter, 41–50 (January 2003), See also http://www.research.ibm.com/autonomic

33. KVM: Kernel-based Virtual Machine for Linux, http://kvm.qumranet.com/
34. King, S.T., Chen, P.M., Wang, Y., Verbowski, C., Wang, H.J., Lorch, J.R.: SubVirt:

Implementing malware with virtual machines. In: IEEE Symposium on Security
and Privacy (May 2006)

35. Lampson, B.W.: Protection. In: Proceedings of the 5th Princeton Symposium on
Information Sciences and Systems, Princeton University (March 1971). Reprinted
in ACM Operating Systems Review (January 1974)

http://www.symantec.com/avcenter/reference/Virtual_Machine_Threats.pdf
http://www.intel.com/technology/magazine/Computing/Intel_RAS_WP_0805.pdf
http://www.intel.com/technology/magazine/Computing/Intel_RAS_WP_0805.pdf
http://developer.intel.com/products/processor/manuals/index.htm
http://www.research.ibm.com/autonomic
 http://kvm.qumranet.com/

280 S. Dolev and R. Yagel

36. Lamport, L., Shostak, R., Pease, M.: The Byzantine Generals Problem. ACM
Trans. on Programming Languages and Systems 4(3), 382–401 (1982)

37. Mui, L.: Computational Models of Trust and Reputation: Agents, Evolutionary
Games, and Social Networks. Ph.D. thesis, Massachusetts Institute of Technology,
Cambridge, MA (2002)

38. Mastipuram, R., Wee, E.C.: Soft errors’ impact on system reliability. Voice of
Electronics Engineer (2004), http://www.edn.com/article/CA454636.html

39. Neumann, P.G.: Computer-Related Risks. Addison-Wesley, Reading (1995)
40. Neiger, G., Santony, A., Leung, F., Rogers, D., Uhlig, R.: Virtualization Tech-

nology: Hardware Support for Efficient Processor Virtualization. Intel Technology
Journal 10(3) (August 2006)

41. Swift, M., Bershad, B.N., Levy, H.M.: Improving the reliability of commodity op-
erating systems. In: SOSP 2003. Proceedings of the 19th ACM Symposium on
Operating Systems Principles, Bolton Landing, NY (October 2003). See also: M.
Swift. Improving the Reliability of Commodity Operating Systems, Ph.D. Disser-
tation, University of Washington (2005)

42. Sharma, A., Welch, S.: Preserving the integrity of enterprise platforms via an As-
sured eXecution Environment (AxE). In: OSDI. A poster at the 7th Symposium
on Operating Systems Design and Implementation (2006)

43. Rutkowska, J.: “Subvirting Vista Kernel For Fun and Profit — Part II Blue Pill”,
see also (2006), http://www.whiteacid.org/misc/bh2006/070 Rutkowska.pdf,
http://www.whiteacid.org/papers/redpill.html

44. Robin, J., Irvine, C.: Analysis of the Intel Pentiums Ability to Support a Secure
Virtual Machine Monitor. In: Usenix annual technical conference (2000)

45. Ray, E., Schultz, E.E.: An early look at Windows Vista security. Computer Fraud
& Security 2007(1) (2007)

46. Schroeder, M.D.: Cooperation of Mutually Suspicious Subsystems in a Computer
Utility. Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, MA
(September 1972)

47. SOS download page. http://www.cs.bgu.ac.il/∼yagel/sos, 2007
48. http://www.selfstabilization.org
49. Saltzer, J.H., Schroeder, M.D.: The protection of information in computer systems.

Proceedings of the IEEE 63(9), 1268–1308 (1975)
50. Sun Microsystems, Inc. ‘Predictive Self-Healing in the SolarisTM 10 Operating

System”, White paper (September 2004),
http://www.sun.com/software/solaris/ds/self healing.pdf

51. Tygar, J.D., Yee, B.: Dyad: A system for using physically secure coprocessors. In:
Proceedings of IP Workshop (1994)

52. Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L.: Efficient Software-based fault
isolation. In: Proceedings of the Sym. On Operating System Principles (1993)

http://www.edn.com/article/CA454636.html
http://www.whiteacid.org/misc/bh2006 /070_Rutkowska.pdf
http://www.whiteacid.org/ papers/redpill.html
 http://www.cs.bgu.ac.il/~yagel/sos
http://www.selfstabilization.org
http://www.sun.com/software/solaris/ds/self_healing.pdf

r-Semi-Groups: A Generic Approach for

Designing Stabilizing Silent Tasks

Bertrand Ducourthial

Université de Technologie de Compiègne, Lab. Heudiasyc UMR CNRS 6599, France
bertrand.ducourthial@hds.utc.fr

Abstract. In [13,14,7], the modeling of silent tasks by means of so-
called r-operators has been studied, and interesting relations have been
shown between algebraic properties of a given operator and stabilizing
properties of the related distributed algorithms. Modeling algorithms
with algebraic operators allows to determine generic results for a wide
set of distributed algorithms. Moreover, by simply checking some local
algebraic properties, some global properties can be deduced. Stabilizing
properties of shortest path calculus, depth-first-search tree construction,
best reliable transmitters, best capacity paths, ordered ancestors list...
have hence been established by simply reusing generic proofs, either in
the read-write shared register models [13,14] or in the unreliable message
passing models [7]. However, while this approach is promising, it may be
penalized by the difficulty in designing new r-operators.

In this paper, we present the fundation of the r-operators by introduc-
ing a generalization of the idempotent semi-groups, called r-semi-group.
We establish the requirements on the operators to be used in distributed
computation and we show that the r-semi-groups fulfill them. We inves-
tigate the connections between semi-groups and r-semi-groups, in order
to ease the design of r-operators. We then show how to build new r-
operators, to solve new algorithmic problems.

With these new results, the r-semi-groups appear to be a powerful
tool to design stabilizing silent tasks.

1 Introduction

1.1 Aim

Modeling silent tasks. Distributed algorithms resolve either static tasks (such as
distance computation) or dynamic tasks (such as token circulation). The aim of a
static task is to compute a global result, which means that after a running time,
processors always produce the same output (such as the distance from a source).
The specification of a static task is given by the final processor’s outputs. To
solve such a task, each processor uses a local algorithm, which builds some new
outputs with the data owned by the processor itself and the data it has received
from some other nodes.

These outputs can be seen as the result of an algebraic computation on the
set to which belong all the data in the distributed system. The local algorithm is

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 281–295, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

282 B. Ducourthial

then assimilated to an algebraic operator, that operates on this set. For instance,
for the distance computation problem, the local algorithm can be assimilated to
the operator min(x, y + 1) defined on the set N of the integers, where x denotes
the private data of a node (either 0 for a source or any value larger than the
diameter for the other nodes) and y denotes a data received from an ancestor
[13].

Several operators could be used depending on the nodes, meaning that the
modeling is not restricted to uniform distributed algorithms. Moreover, by
adding some control information with the outputs, a node may take into ac-
count only a part of the received outputs, meaning that the modeling is not
restricted to algorithms that always send the same output to all their neighbors
(this is similar to point-to-point communications in a wireless network based on
the receiver address field). Finally this modeling applies for the asynchronous
message passing model where the outputs are sent asynchronously, and stored
locally by the nodes before being used in their next local computation. Some
generic results can then be derived to stronger models (shared memory, compos-
ite atomicity...).

Motivation. Modeling a distributed algorithm by means of algebraic computa-
tions allows to study the termination of a static task with classical methods,
such as for instance fixed points [14]. Moreover the algebraic properties ensuring
the termination can simply be checked on the local algorithm (i.e., operator)
instead of the whole system. And the results generally apply on a large range of
applications by simply varying the operator, leading to generic proofs.

The modeling is also useful to study self-stabilizing algorithms. A distributed
algorithm that solves a static task is self-stabilizing if it can reach a legitimate
configuration while some transient failures occur [8]. A legitimate configuration
is a configuration of the system (state of the processor’s memories and commu-
nication channels) in which the processor’s outputs fulfill the specification of the
distributed algorithm. A self-stabilizing algorithm reaches such a configuration
in finite time after the transient failures disappear. Self-stabilizing proofs are
often long and difficult [16]. A generic modeling is then interesting to study a
class of applications instead of a particular one: proofs and properties are shared
by several distributed algorithms or applications.

1.2 r-Operators

In [10,13,14,7], the modeling of silent tasks by means of so-called r-operators
has been studied, and interesting relations have been shown between algebraic
properties of a given operator and stabilizing properties of the related distributed
algorithms (Figure 1). The following array summarizes these results.

A large set of r-operators have been designed to solve different silent dis-
tributed tasks. On numerical sets, the minc operator defined by minc(x, y) =
min(x, y + 1) solves the distance computation and related problems. By using
other r-mappings (such as x �→ x + weight), the multiple source shortest path
problem is solved similarly [13]. The r-operator max(x, y × π) solves the best

r-Semi-Groups: A Generic Approach 283

associative and comm. operator silent task if there is no circuit

associative, commutative silent task [20]
and idempotent operator not self-stabilizing [13]

idempotent r-operator silent task [10,13]

strictly idempotent r-operator self-stabilizing
with total order read-write demon shared memory (registers) [13]

unreliable messages passing [7]

strictly idempotent r-operator self-stabilizing, shared memory and
with partial order fully distributed demon [14]

Fig. 1. Relations between algebraic properties of the operators and stabilizing proper-
ties of the related distributed algorithms

reliable paths related problems (π characterizes the link, 0 < π < 1). The r-
operator max(x, min(x, κ)) solves the best capacity paths related problems (κ is
the capacity of the link). All these operators lead to self-stabilizing algorithms
in unreliable messages passing systems [7]. Note that the operator max (special
case of r-operator with the r-mapping identity) solves a silent task on any net-
work, but is not self-stabilizing [13], except on networks without any circuit. In
the same way, the r-operator max(x, y + 1) leads to a self-stabilizing algorithm
only if the network has no circuit (topological sort). The algorithm is not silent
if there is a circuit.

With the (non numerical) set of identity’s lists, ordered with the lexicograph-
ical order, and with the r-mapping that adds to the end of a list the identity of
the node, one can build an r-operator that solves the depth-first-search tree [13].
With the set of lists of identity’s sets, and with a mapping that shifts a list to
the right, one can build an r-operator that gives for each node the ordered list
of ancestors [14]. This is useful to discover the k-neighborhood (neighborhood
until distance k), or the distance from the farthest node for instance (assuming
there is a path between each pair of nodes in the network). To the contrary of
the previous operators, this last one defines a partial order relation, and the
self-stabilizing property of the resulting distributed algorithm is established for
the fully distributed demon (instead of the read-write demon).

1.3 Contribution

The generic operators-based approach requires to model the algorithms with
r-operators. A construction of the r-operators is then useful in order to take
benefit of the already established general results. This paper introduces the r-
semi-groups and explains how to build new r-operators from a practical point of
view.

First, we establish the requirements on operators used in distributed com-
putations. Next, we introduce the r-semi-groups and detail their construction.
This leads to a more general definition of the r-operators than in previous work,
because it allows to consider finite set in self-stabilizing proofs (which is in-
teresting for implementation purpose). We prove fundamental properties of the

284 B. Ducourthial

r-semi-groups (requirements fulfilled, order relation) and we investigate the con-
nections between r-semi-groups and semi-groups in order to ease the design of
new r-operators. Finally, by using these results, we show how new r-operators
can be designed for new distributed algorithms. This shows the interest of the
r-operators to design or study stabilizing static tasks.

Several works deal with generic approaches to prove self-stabilizing proper-
ties of distributed algorithms [3,1,21,17,19]. However none of them relies on an
algebraic modeling of the computations, though we think that this method is
powerful, as the examples of already developed r-operators show.

Related works concern path algebra [2,15], while the path algebra structures
require two laws (as in so-called max-plus algebra [4]). To the contrary of the
r-operators, such algebra do not generalize the idempotent semi-groups but are
some particular cases of semi-ring structures (diöıd); they have less applications
for distributed algorithms. Other works deal with some relations between alge-
braic structures and computations on networks (see for instance [5]), but they
do not define operators for useful distributed applications as the r-operators do.

Outlines. In the next section, a generic computing model is presented and some
requirements on the operators are established. In Section 3, we present useful
properties related to the modeling and to the requirements. Then, the r-semi-
groups are introduced in Section 4, as well as their main properties. In particular,
we show that they fulfill the requirements. In Section 5, the connections with the
idempotent Abelian semi-groups are given. These results are used in Section 6 to
build new r-operators. We explain step-by-step with an example how to design
new r-operators for solving or studying new distributed silent tasks. Concluding
remarks end the paper in Section 7.

2 Modeling Distributed Computations with Algebraic
Operators

In this section, we explain how distributed computations can be modeled by
means of algebraic operators, and we exhibit some requirements on the operators.

2.1 Generic Model

The network is modeled by a directed graph G(V, E), composed of nodes (vertices
v ∈ V) and unidirectional communication links (edges (u, v) ∈ E), such that each
node owns a private data, some inputs, an output and an operator (Figure 2).
The topology of the network is unknown.

The private data, inputs and outputs represent some kind of memory cells.
The private data is fixed and cannot be corrupted (e.g., it is stored in a read-
only memory). The inputs and outputs are updated from time to time and could
be corrupted. Reads and writes are atomic on these variables, meaning that a
variable cannot be read (resp. write) if it is currently writing (resp. reading).
Each edge (u, v) connects the output of u to the input of v, and is used to
update the input of v by the output of u.

r-Semi-Groups: A Generic Approach 285

private
data

o
p
e
r
a
t
o
r

o
u
t
p
u
t

i
n
p
u
t
s

t
o

s
u
c
c
e
s
s
o
r

n
e
i
g
h
b
o
r
s

f
r
o
m

a
n
c
e
s
t
o
r

n
e
i
g
h
b
o
r
s

1

2

3

4

Fig. 2. A generic node

A local computation is performed by a node v, and consists in updating its
output by applying its operator (denoted by �) on its private data and its inputs
as follows (Figure 2):

output ← private data � first input � · · · � last input (1)

A global computation is composed of local computations (that update some
outputs) and communications (that update some inputs with some ancestor’s
outputs). In a message-passing environment, a local computation is performed
upon arrival of a new value and the output is sent to the descendant in the
network when it has changed. However, to prevent any memory or message
corruption, the local computations and the sending can be performed regularly.
To model the non-determinism of the distributed system, it is assumed that
the node activity is managed by a global scheduler, considered as an adversary
(demon) [9,18,22].

2.2 Requirements

When the directed graph G has no circuit, the outputs of the sources (nodes with-
out ancestors) are always equal to their private data. The output of a source’s
successor stabilizes on a value equal to the result of an expression composed with
the private data and the operators of the ancestor sources and of the node itself.
All the node outputs, from the sources to the sinks (nodes without successors),
stabilize similarly. However the result of each node does depend on the under-
lying network (which is responsible of the form of the output expressions) while
several different networks can be modeled by the same graph (see Figure 3). We
then state the following requirement:

Requirement 1. The operators should not be aware of the network wiring, in
order to obtain a result that depends on the graph topology (and not on the local
neighborhood numbering).

Moreover when the directed graph G has some circuit, the outputs could never
stabilize. This is the case on the graph represented in Figure 3 when using the
addition on the (non nul) integers N. We then state a second requirement:

Requirement 2. The operators should not be aware of the circuits.

286 B. Ducourthial

1

2

1

1

2

1

v1 v2

v3 v1

v2

v3

Fig. 3. A single graph but two networks (different wiring). Operators should not be
aware of the wiring nor the loops.

2.3 Operators

In [20] it is shown that when instantiated by a so-called infimum (that is the law
of an idempotent Abelian semi-group, such as the minimum on the integers),
the global computation terminates. Note that these operators are associative,
commutative and idempotent, and fulfil the above requirements related to the
wiring and the circuits of the networks. However the applications of idempotent
Abelian semi-groups are limited because a distributed computation with one of
these operators gives the same result on all the nodes belonging to the same
strongly connected component. Moreover, these operators do not support any
transient failures [13]: the computation of the smallest value in the network with
the minimum operator for instance can not recover if a value smaller than all
private data appears in a node due to a transient failure.

In fact, the properties defining the idempotent commutative semi-groups are
not necessary for computing on networks. In particular, some non associative nor
commutative operators still fulfill the above requirements related to wiring and
circuits in the network. In [10], the idempotent r-operators have been introduced.
Since then, several applications have been developed both for parallel (see [12]
and the references herein) and distributed computations [13,14,7]. In [10], it has
been shown that the r-operators lead to the termination of static tasks, extending
the result known for the infimum [20].

In [13], it has been shown that, to the contrary of the infimum, the strictly
idempotent r-operators support transient failure. This has been proved in a
shared memory model, with the weakest synchronization hypothesis (read-write
demon), and assuming that the order relation induced by the operator is total.
In [7], this result has been extended to the unreliable message passing networks;
fair message loss, finite message duplication and arbitrary message reordering
are supported.

In [14], a proof has been given for operators that only define a partial order
relation, which enlarged the set of operators, and then the set of applications. In
this case, a few more constraints is necessary regarding the nodes synchronization
(fully distributed demon). The proof has been established using max-plus algebra
[4] and fixed-point related techniques. The r-operators permitted to model the
distributed computations by means of asynchronous matrix iterations.

r-Semi-Groups: A Generic Approach 287

3 Prerequisites

In this section, we introduce three prerequisites related to the initialization (iden-
tity element), the cancellation and the wiring awareness. We assume that all the
data belong to the set S, and that (S, �) denotes a set S endowed by a law �
(also called operator). In other words, (S, �) is a so-called magma [6] Moreover
in all this paper, we omit the left bracketing: x�y�z = (x�y)�z.

3.1 Right Identity Element

Since a local computation can be performed at any time, without any consider-
ation on the communications, a node could perform a local computation before
having received any value from some of its ancestors. We then admit the follow-
ing hypothesis:

Hypothesis 3. The operator � admits a right identity element.

Supposing that all the inputs of a node v are initialized by a right identity el-
ement e� of the local operator � used by the node, the output obtained by a
local computation is equal to the private data x: x = x�e�� · · · �e�. Hence, this
is equivalent to initialize the inputs by a right identity element of the local oper-
ator, and each output by the private data of the node. Note that self-stabilizing
computations do not require initializations.

Weak left cancellation. Computations based on idempotent operators (such as
the minimum on the integers) cannot be simplified with inverse elements (as we
do with the addition) because there is no inverse element. An operator � is left
cancellative on S if ∀x, y, z ∈ S, x�y = x�z ⇒ y = z. We introduce a new weaker
property that allows some simplifications.

Let y, z be two elements of S endowed by �. We have (y = z) ⇒ (∀x ∈ S, x�y =
x�z) but the reciprocal could be false (consider the silly operator 	1 defined by
x	1 y = x for any x, y ∈ S).

Definition 1. A magma (S, �) is weak left cancellative iff:
∀y, z ∈ S, (∀x ∈ S, x�y = x�z) ⇔ (y = z).

Most usual operators are weak left cancellative on their definition set. This is
in fact a really reasonable hypothesis that could be interpreted as follows: “if
no element of S disagrees with the fact that y could be equal to z, then it is
established that y = z”.

To point out the difference between the left cancellative and the weak left
cancellative property, let consider the set of integers N endowed by the min oper-
ator. If (N, min) is left cancellative, then: ∀x, y, z ∈ N, (min(x, y) = min(x, z)) ⇒
(y = z). But this is false with x = 2, y = 3 and z = 4. Now, if (N, min) is weak left
cancellative, then: ∀y, z ∈ N, (∀x ∈ N, min(x, y) = min(x, z)) ⇒ (y = z). This is
always true. Indeed, if min(x, y) = min(x, z) is true for any x ∈ N, by considering
x = y and x = z we obtain min(y, y) = min(y, z) = min(z, z), and then y = z.

288 B. Ducourthial

This example shows that an operator can be both weak left cancellative and
idempotent, while this is not the case with the left cancellative property. Hence,
while idempotent semi-groups are not regular, some simplifications in equations
will be possible, on the basis of the weak left cancellation. We will see that this is
very useful. The following proposition states that any usual algebraic structure
is weak left cancellative (such as semi-groups and groups):

Proposition 1. If the magma (S, �) admits a left identity element, then it is
weak left cancellative.

Finally, Hypothesis 3 states that the operator � admits a right identity ele-
ment. By weak left cancellative, it is unique:

Proposition 2. If the magma (S, �) is weak left cancellative, then it admits at
most one right identity elements.

Proof. Suppose that e1
� and e2

� are two right identity elements of (S, �). Then
they verify: ∀x ∈ S, x�e1� = x = x�e2�. By weak left cancellation, we have e1� = e2�.

3.2 Rank 2 Commutativity

In order to ensure that the distributed computation is not aware of the wiring
of the network, we introduce the following property. When it is fulfilled by an
operator, it indicates that the operator is not aware of the order of the inputs
received by its ancestors (note that, by convention, the first input of a local
computation is always the private data of the processor, see Equation 1). This
means that the same result will be obtained on the two representations of the
same graph in Figure 3 for instance.

Definition 2. The magma (S, �) is rank 2 commutative on S if:
∀x, y, z ∈ S, x�y�z = x�z�y.

For instance, the 	2 operator defined on the integers by x	2 y = x + 2y is
not commutative but it is rank 2 commutative: x	2 y 	2 z = x + 2y + 2z =
x + 2z + 2y = x	2 z 	2 y.

In a weak left cancellative associative magma, if the operator is rank 2 com-
mutative, then it is commutative. An associative and commutative operator is
rank 2 commutative. Hence, the rank 2 commutativity property is only useful
when the operator is not associative.

3.3 Rank 2 Idempotency

As shown by Equation 1, the local computations produce expressions built with
the operators, the private data, and the received inputs, that can themselves be
considered as expressions. In order to ensure the termination of the distributed
computations even in presence of circuits (as in Figure 3), such expressions
should be finite. We then introduce the following property, that allows to reduce
the expressions, providing there is no brackets. We will show later how brackets
can be “eliminated” from expressions even with non associative operators (note
that other forms of idempotency have been introduced in [11]).

r-Semi-Groups: A Generic Approach 289

Definition 3. A magma (S, �) is rank 2 idempotent if it satisfies:
∀x, y ∈ S, x�y�y = x�y.

For instance, the operator 	3 defined on the integers by x	3 y = x if x < y and
x	3 y = 0 if x ≥ y is not idempotent but is rank 2 idempotent [11].

4 r-Semi-groups

In this section, we define the r-semi-groups, which generalize the idempotent
Abelian semi-groups [6,20,4,11].

4.1 Definition

We begin by three definitions, that generalizes the classical properties of asso-
ciativity, commutativity and idempotency1.

Definition 4. Let r : S → S be an application. The magma (S, �) is r-associative
if it satisfies: ∀x, y, z ∈ S, x�(y�z) = x�y�r(z).

Definition 5. Let r : S → S be an application. The magma (S, �) is r-commutati-
ve if it satisfies: ∀x, y ∈ S, r(x)�y = r(y)�x.

Definition 6. Let r : S → S be an application. The magma (S, �) is r-idempotent
if it satisfies: ∀x ∈ S, r(x)�x = r(x).

For instance, the operator 	2 (defined on N by x	2y = x+2y) is not associative
nor commutative. But it is r-associative and r-commutative, with the mapping
r : x �→ 2x. And the operator 	3 (defined above) is not idempotent but is r-
idempotent with the mapping r : x �→ x − 1. Of course, when the application
r is the identity mapping x �→ x, these three properties are equivalent to the
classical ones. We now define the r-semi-group using the previous definitions.

Definition 7 (r-semi-group). Let (S, �) be a weak left cancellative magma
admitting the right identity element e�, and let r : S → S be an endomorphism.
Then (S, �) is an r-semi-group if it is r-associative, r-commutative, r-idempotent
with the application r.

An endomorphism r of (S, �) is an application from S to S satisfying r(x�y) =
r(x)�r(y) for any x, y ∈ S. The law of an r-semi-group is called r-operator,
and the mapping r is called r-mapping. Note that in previous works [10], the r-
operators relied on a bijective mapping instead of an endomorphism. This limited
the self-stabilization proofs to infinite sets because the r-mapping needs to be
expansive with respect to the order relation (see Proposition 6) [13,14]. Defining
the r-operators with an endomorphism leads to the same properties (and then
1 In the following, the prefix “r-” refers to the fact that an application is used in the

definitions. However, while it is simpler to denote the application by r, it could be
denoted differently without changing the definition’s names.

290 B. Ducourthial

the same proofs) while allowing to consider finite sets, which is important for
implementation purpose (see [11] for more details). For instance, the operator
	4 defined on N by x	4 y = min(x, 2y) is an r-operator on N with the mapping
x �→ 2x, which is an endomorphism of (N, 	4) but not a surjective mapping on
N because odd integers are not reached.

4.2 Properties

By Proposition 2, the right identity element e� is unique. In the same way, the
r-mapping r of an r-semi-group is unique:

Proposition 3. Let (S, �) be an r-semi-group. Then the following holds: (i) r
is unique and satisfies ∀x ∈ S, r(x) = e��x, (ii) r is injective, (iii) ∀x ∈ S,
r(x) = e� ⇔ x = e�.

Proof. (i) For any x, y ∈ S, x�r(y) = x�e��r(y). Then, by r-associativity, we
have x�r(y) = x�(e��y). By weak left cancellation, we then obtain r(y) = e��y
and r is unique by Proposition 2. (ii) For any a, b, x, y ∈ S, if r(x) = r(y), we
have a�b�r(x) = a�b�r(y). Then, by r-associativity, we have a�(b�x) = a�(b�y).
Then, by weak left cancellation, we have b�x = b�y and finally x = y. Thus r is
injective. (iii) Since r(e�) = e� and r is injective, if r(x) = e�, then x = e�.

This proof illustrates the interest of the weak left cancellation. We now prove
that the r-semi-groups are rank 2 commutative and rank 2 idempotent, which
are two important properties for computing in networks, as seen in the previous
section.

Proposition 4. Let (S, �) be an r-semi-group. Then � is rank 2 commutative
on S.

Proof. Let x, y, z ∈ S. We have r(x�y�z) = r(x)�r(y)�r(z) = r(x)�(r(y)�z) (en-
domorphism and r-associativity). By r-commutativity, we have r(x)�(r(y)�z) =
r(x)�(r(z)�y). Then we have: r(x)�(r(z)�y) = r(x)�r(z)�r(y) = r(x�z�y) (r-
associativity and endomorphism). Hence, for any x, y, z ∈ S, r(x�y�z)=r(x�z�y).
Thus, by Proposition 3, x�y�z = x�z�y (injection).

Proposition 5. Let (S, �) be an r-semi-group. Then � is rank 2 idempotent on
S.

Proof. For any x, y ∈ S, we have: r(x�y�y) = r(x)�r(y)�r(y) (endomorphism).
Then, by r-associativity, we obtain: r(x�y�y) = r(x)�(r(y)�y). Then r(x�y�y)
= r(x)�r(y) by r-idempotency, and finally r(x�y�y) = r(x�y) (endomorphism).
Thus, by Proposition 3, x�y�y = x�y (injection).

An idempotent Abelian semi-group (S, ⊕) admits the order relation ⊕ defined
by x ⊕ iff x⊕y = x. The following proposition generalizes this result to r-semi-
groups.

r-Semi-Groups: A Generic Approach 291

Proposition 6. Let (S, �) be an r-semi-group. Then the following binary rela-
tion �� is an order relation: ∀x, y ∈ S, x �� y ⇔ e��x�y = e��x.

Proof. (i) By rank 2 idempotency (Proposition 5), we have: ∀x ∈ S, e��x�x =
e��x and �� is reflexive. (ii) Suppose that x �� y and y �� x hold. Then
e��x�y = e��x and e��y�x = e��y. By rank 2 commutativity (Proposition 4),
we have e�y�x = e��x�y and then e��x = e��y. By Proposition 3, this gives
r(x) = r(y) and then x = y. Hence � is antisymmetric. (iii) Suppose that
x �� y and y �� z. Then we have e��x = e��x�y and e��y�z = e��y. By rank
2 commutativity (Proposition 4), we have: e��x = e��y�x. By substitution, we
obtain e��x = e��y�z�x. By rank 2 commutativity, we have e��x = e��x�y�z.
By substitution, we obtain e��x = e��x�z. Hence x �� z and �� is transitive.
Since �� is reflexive, antisymmetric and transitive, it is an order relation.

In an idempotent r-semi-group (S, �), the r-mapping r is expansive (∀x ∈ S, x ��

r(x)) and reciprocally. Indeed, e��x�r(x) = e��(x�x) = e��x. Thus, when x ��

r(x) and x �= r(x), the r-semi-group is called strictly idempotent. This property
is useful for self-stabilizing proofs.

5 Connections with Idempotent Semi-groups

In this section, we precise the link between idempotent semi-groups and r-semi-
groups. This allows to design new r-operators (see Section 6). Note that in previ-
ous works, the r-operators were defined with a surjective mapping, then bijective
by Proposition 3. In this case, if (S, �) is an r-semi-group, then (S, ⊕) is an idem-
potent Abelian semi-group with ⊕ defined by x⊕y = r(x)⊕y. The Corollary 1
established here is more general. Some propositions are needed before.

Proposition 7. An r-semi-group (S, �) is an idempotent commutative semi-
group if and only if the r-mapping is the identity mapping r : x �→ x.

Proof. The only points to check concern the weak left cancellation and the iden-
tity element. Since a semi-group owns an identity element both on the left and
on the right, it is weak left cancellative by Proposition 1. Conversely, an r-
semi-group with the r-mapping r : x �→ x verifies: ∀x ∈ S, r(x) = x = e�x
(Proposition 3). This means that e� is an identity element (both on the left and
on the right).

Note that Proposition 3 is still true when r is the identity mapping. Moreover, an
idempotent commutative semi-group is rank 2 commutative and rank 2 idempo-
tent. And its order relation ⊕ appears as a particular case of the order relation
�� of an r-semi-group. Indeed we have x �� y ⇔ r(x)�y = r(x) and with
r : x �→ x, we find x �⊕ y ⇔ x�y = x.

We now show that any r-semi-group induces an idempotent Abelian semi-
group. Let define the following property:

∀x, y ∈ S, r(x)�y ∈ r(S) (2)

292 B. Ducourthial

Proposition 8. Let (S, �) be an r-semi-group satisfying Property 2. Then
(r2(S), ⊕) is a magma with ⊕ defined by r2(x)⊕r2(y) = r2(x)�r(y).

Proof. For any x, y ∈ S, we have: r2(x)⊕r2(y) = r2(x)�r(y) by definition of ⊕.
Then, by homomorphism, we have: r2(x)⊕r2(y) = r(r(x)�y). By Property 2,
there exists z ∈ S such that r(x)�y = r(z). Then r2(x)⊕r2(y) = r2(z) ∈ r2(S)
and ⊕ is an internal composition law on r2(S).

In the following, ⊕ denotes the internal law defined on r2(S) by: r2(x)⊕r2(y) =
r2(x)�r(y).

Proposition 9. Let (S, �) be an r-semi-group satisfying Property 2. Then ⊕ is
associative on r2(S).

Proof. For any x, y, z ∈ S, we have by definition of ⊕ and homomorphism prop-
erty of r on (S, �): r2(x)⊕(r2(y)⊕r2(z)) = r2(x)⊕(r2(y)�r(z))= r2(x)⊕r(r(y)�z)
= r2(x)�(r(y)�z). Then, by r-associativity of �, we have: r2(x)�(r(y)�z) =
r2(x)�r(y)�r(z). Since r2(x)⊕r2(y)⊕r2(z) = r2(x)�r(y)� r(z), ⊕ is associative
on r2(S).

Proposition 10. Let (S, �) be an r-semi-group satisfying Property 2. Then ⊕
is commutative on r2(S).

Proof. For any x, y ∈ S, we have by definition of ⊕ and homomorphism property
of r on (S, �): r2(x)⊕r2(y) = r2(x)�r(y) = r(r(x)�y). Then, by r-commutativity,
we have: r(r(x)�y) = r(r(y)�x). Then we have: r(r(y)�x) = r2(y)�r(x) =
r2(y)⊕r2(x) (definition of ⊕ and homomorphism).

Proposition 11. Let (S, �) be an r-semi-group satisfying Property 2. Then ⊕
is idempotent on r2(S).

Proof. For any x ∈ S, we have by definition of ⊕ and homomorphism property
of r on (S, �): r2(x)⊕r2(x) = r2(x)�r(x) = r(r(x)�x). Then, by r-idempotency,
we have: r(r(x)�x) = r(r(x)). Thus r2(x)⊕r2(x) = r2(x) and ⊕ is idempotent
on r2(S).

We then have the following corollary.

Corollary 1. Let (S, �) be an r-semi-group satisfying ∀x, y ∈ S, r(x)�y ∈ r(S).
Then (r2(S), ⊕) is an Abelian idempotent semi-group, where ⊕ is defined by
r2(x)⊕r2(y) = r2(x)�r(y).

The reader will find in [11] a figure that summarizes the construction of the
r-semi-groups, as well as the connections with idempotent Abelian semi-groups.

6 Designing New r-Operators

In this section, we explain how to build new r-operators to solve new algo-
rithmic problems, thanks to the previous results. The idea is to start from an

r-Semi-Groups: A Generic Approach 293

idempotent Abelian semi-group, and then to derivate an r-semi-group with an
endomorphism.

1) Suppose that we seek an r-operator for solving a distributed silent task,
without considering transient fault for the moment. In order to build the legiti-
mate output of a node, a local computation can be considered as discarding some
inputs while keeping some others. For the distance computation by example, if
a node receives the values 3 from a first neighbor and 5 from a second, it should
keep 3 and discards 5. From this choice, we may deduce an order relation � on
the set S to which belong all the values such that the discarded values are larger
than the others (the natural order on the integers for the distance computation).
From this order, we may deduce an operator ⊕ such that (S, ⊕) is an idempotent
commutative semi-group. For the distance, we find (N, min) for instance.

2) If the output of a node is larger than the smallest of its input, then we
may deduce an application r that increases its input (i.e., x � r(x)) such that
the output of the node is equal to the smallest of its inputs increased by r.
In other word, the output would be equal to x0⊕r(x1)⊕ · · · ⊕r(xp) where x0 is
the private data of the node and x1 . . . xp are its inputs. For instance, for the
distance computation, if a node receives both 3 and 5, its output (representing
its distance from a source in the network) will be equal to 4. We then define
r : N → N by r(x) = x + 1.

3) On an other hand, if the output of a node is equal to the smallest of its
inputs, this may indicate that the silent task is solved with an operator issued
from an idempotent commutative semi-group (i.e., r is the identity mapping
x �→ x). Note that if the output is strictly smaller than its inputs for every
nodes, then the task may not be silent when there are some circuits in the
network: the output will be smaller and smaller.

4) From the results of Section 5, we can then define an r-operator using ⊕ and
r using the relation r2(x)�r(y) = r2(x)⊕r2(x). The characteristic of both � and
r allow to determine the properties regarding termination and self-stabilization
of the related distributed algorithm. For the distance computation, the order ≤
is total on N and x �→ x + 1 is strictly expansive. Hence the r-operator minc
– defined by minc(x, y) = min(x, y + 1) – leads to a self-stabilizing distributed
algorithm even in unreliable messages passing networks.

This simple and generic method is convenient to prove the termination or
the self-stabilizing property of a given static task. Stabilizing properties of a
distributed algorithm appear as a result from an equilibrium between the data
decreasing (semi-group, min for the distance) and increasing (endomorphism,
x �→ x + 1 for the distance), which leads to the convergence. For more complex
problems, a preliminary work may be necessary to define the set S (see examples
in Section 1.2).

Assuming a synchronous demon, the time complexity of the generic dis-
tributed algorithm relying on r-operators presented in [13,14,7] is in O(D + |S|)
where D denotes the diameter of the network and |S| denotes the cardinal of the
definition set of the operator.

294 B. Ducourthial

7 Conclusion

A distributed algorithm resolving a static task stabilizes when it reaches a ter-
minal configuration. It is self-stabilizing if it can reach such a legitimate terminal
configuration while some transient failures may occur in the network. Proving
the self-stabilization property of such an algorithm leads generally to long and
complex proofs. Several works deal with the design of a generic approach instead.

We developed an algebraic approach and we pointed out the connection be-
tween the algebraic structure to which belongs the local operators and the sta-
bilization of the distributed algorithms. Hence, when some proofs have been
established for a given algebraic structure, it is sufficient to check whether the
local algorithm is or not an operator of such a structure instead of writing some
potentially long proofs from scratch. An important point is that the behavior of
the whole distributed system is characterized by some local properties. Several
r-operators have been designed for solving different static tasks such as distance
related problems (weighted distance, single or multiple source shortest path...),
depth-first-search tree computation, ordered list of ancestors, topological sort,
diameter computation... These operators lead to silent or self-stabilizing algo-
rithms in different distributed systems, including the unreliable messages passing
networks, depending on their algebraic properties. However, while this approach
is promising, it may be penalized by the difficulty in designing new r-operators.

This paper focused on the construction of the r-operators in the aim of fa-
cilitating the development of new ones. We introduced the r-semi-group, a gen-
eralization of the idempotent semi-group, and presented their construction and
properties. By these properties, we explained how to derivate new r-operators for
solving new static tasks. Moreover the r-semi-group construction we introduced
allows to extend the previous definition of the r-operators to finite sets, which
is more convenient for an implementation purpose.

The r-semi-groups have many applications both in parallel [12] and distributed
computations. They appear as a powerful tool for studying silent or self-stabilizing
static tasks. We guess that new static tasks will be solved and studied this way,
especially in wireless ad hoc networks, which are unreliable messages passing di-
rected networks, and where transformers cannot apply.

Open problems concern the relationship between the partial versus total order
relation and the kind of admissible demon, as well as the completeness of the
r-operators.

Acknowledgment. The author wishes to thank Sébastien Tixeuil for interesting
remarks.

References

1. Afek, Y., Bremler, A.: Self-stabilizing unidirectional network algorithms by power
supply. Chicago Journal of Theoretical Computer Science 4(3), 1–48 (1998)

2. Aho, A., Hopcropft, J., Ullman, J.: The Design and Analysis of Computer Al-
gorithms. In: Series in Computer Science and Information Processing, Addison-
Wesley Publishing, Reading (1974)

r-Semi-Groups: A Generic Approach 295

3. Arora, A., Attie, P., Evangelist, M., Gouda, M.: Convergence of iteration systems.
Distributed Computing 7, 43–53 (1993)

4. Baccelli, F., Cohen, G., Olsder, G., Quadrat, J.-P.: Synchronization and Linearity,
an algebra for discrete event systems. In: Series in Probability and Mathematical
Statistics, Wiley, Chichester (1992)

5. Bilardi, G., Preparata, F.: Characterization of associative operations with prefix
circuits of constant depth and linear size. SIAM Journal of Computing 19(2), 246–
255 (1990)

6. Bourbaki, N.: Algèbre. In: Éléments de Mathématiques, 2nd edn. Hermann,
Paris.(Fascicule IV, Livre II) (1964)

7. Delaët, S., Ducourthial, B., Tixeuil, S.: Self-stabilization with r-operators revis-
ited. Journal of Aerospace Computing, Information, and Computation, A previous
version appeared in SSS’2005, Barcelona (2006)

8. Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)
9. Dolev, S., Israeli, A., Moran, S.: Self stabilization of dynamic systems assuming

only read/write atomicity. Distributed Computing 7, 3–16 (1993)
10. Ducourthial, B.: New operators for computing with associative nets. In: Proc. of

SIROCCO 1998, Amalfi, Italy, pp. 55–65. Carleton Scientific (1998)
11. Ducourthial, B.: r-semi-groups. Technical report, Heudiasyc UMR CNRS 6599,

UTC, 2006.
http://www.hds.utc.fr/∼ducourth/bib/rap-rsemigroups-BDucourthial.pdf

12. Ducourthial, B., Sicard, N., Mérigot, A.: Efficient neighborhood-based computa-
tions on regions using scans. In: Proceeding of IEEE ICIP 2005, IEEE Computer
Society Press, Los Alamitos (2005)

13. Ducourthial, B., Tixeuil, S.: Self-stabilization with r-operators. Distrib.
Comp. 14(3), 147–162 (2001)

14. Ducourthial, B., Tixeuil, S.: Self-stabilization with path algebra. Theoretical Com-
puter Science (Special issue on max-plus algebra)1(293), 219–236 (2003)

15. Gondran, M., Minoux, M.: Graphes et Algorithmes. Eyrolles, Paris (1979)
16. Gouda, M.G.: The triumph and tribulation of system stabilization. In: Helary,

J.-M., Raynal, M. (eds.) WDAG 1995. LNCS, vol. 972, pp. 1–18. Springer, Heidel-
berg (1995)

17. Gouda, M.G., Schneider, M.: Maximizable routing metrics. IEEE/ACM Transac-
tion on Networking 11(4), 663–675 (2003)

18. Israeli, A., Jalfon, M.: Uniform self-stabilizing ring orientation. Inform. and Com-
put. 104, 175–196 (1993)

19. Oehlerking, J., Dhama, A., Theel, O.: Towards automatic convergence verification
of self-stabilizing algorithms. In: Tixeuil, S., Herman, T. (eds.) SSS 2005. LNCS,
vol. 3764, Springer, Heidelberg (2005)

20. Tel, G.: Topics in Distributed Algorithms. In: Cambridge International Series on
Parallel Computation, vol. 1, Cambridge University Press, Cambridge (1991)

21. Theel, O.: Exploitation of Ljapunov theory for verifying self-stabilizing algorithms.
In: Herlihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, Springer, Heidelberg (2000)

22. Tsai, M.S., Huang, S.T.: A self-stabilizing algorithm for the shortest paths problem
with a fully distributed demon. Parallel Proc. Letters 4(1-2), 65–72 (1994)

http://www.hds.utc.fr/~ducourth/bib/rap-rsemigroups-BDucourthial.pdf

Global Predicate Detection in Distributed

Systems with Small Faults

Felix C. Freiling1 and Arshad Jhumka2

1 Department of Computer Science, University of Mannheim, Germany
2 Department of Computer Science, University of Warwick, UK

Abstract. We study the problem of global predicate detection in pres-
ence of permanent and transient failures. We term the transient failures
as small faults. We show that it is impossible to detect predicates in an
asynchronous distributed system prone to small faults even if nodes are
equipped with a powerful device known as failure detector sequencer (de-
noted by Σ). To redress this impossibility, we introduce a theoretical de-
vice, known as a small fault sequencer (denoted by ΣSF), and show that
ΣSF is necessary and sufficient for predicate detection. Unfortunately, we
also show that ΣSF cannot be implemented even in a synchronous dis-
tributed system. Fortunately, however, we show that predicate detection
can be achieved with high probability in synchronous systems.

1 Introduction

The problem of detecting whether a predicate holds on the global state of the sys-
tem (global predicate detection) lies at the heart of several important problems
in distributed computing, e.g., testing and distributed debugging. For fault-free
systems, predicate detection has already been extensively studied and is rather
well-understood [11,2]. Predicate detection has also been studied in faulty sys-
tems, especially under the crash fault model [12,13,14]. In such cases, the pred-
icates encompass predicates about the operational state of processes. In this
stream of work, predicate detection has profited from the large body of work in
the area of failure detection pioneered by Chandra and Toueg [5]. Gärtner and
Pleisch [13] showed that it is impossible to detect general predicates even if a
perfect failure detector is used, explaining why Garg and Mitchell [12] needed
to restrict the class of predicates which they could detect. Gärtner and Pleisch
[14] later defined an extension of a failure detector, called failure detection se-
quencer, denoted as Σ, which is necessary and sufficient to implement predicate
detection in the presence of crashes. A failure detection sequencer yields perfect
information both about the operational state of a process and about the state of
the communication channel from some process to another. Gärtner and Pleisch
[14] showed that Σ can be implemented in perfectly synchronous systems. For a
complete survey, please refer to Gärtner and Pleisch [10].

To the best of our knowledge, no work has yet addressed the problem of
predicate detection in presence of transient failures, which we address in this
paper. We unify this work with previous work on predicate detection in presence

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 296–310, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Global Predicate Detection in Distributed Systems with Small Faults 297

of permanent failures [14]. There exists work that has addressed the problem of
developing protocols that are resilient to both permanent and transient faults. In
such instances, the studies have focused on the interplay between fault tolerance,
which focuses on tolerating permanent failures of a subset of processes, and
self-stabilization, which focuses on tolerating transient failures on all processes
[1,4,15,7]. In other related work, Beauquier et al. [3] studied the concept of
detecting transient failures in a self-stabilizing way. As a matter of contrast, in
this paper, we consider the class of small faults, i.e., transient failures that only
occur on application processes, and not on monitor processes, hence we do not
address the fault class and the problem of self-stabilization.

Nesterenko and Arora [19] studied the problem of dining philosophers in pres-
ence of a new fault class, namely malicious crash, which is a special form of crash
and transient failures where transient failures eventually lead to the crash of a
process. So apart from focussing on a different problem (predicate detection),
we also assume a different fault model than Nesterenko and Arora [19].

Contributions. In this paper, we study the problem of predicate detection in sys-
tems prone to crash and small faults. Investigation under such fault assumptions
is desirable since such models offer a higher assumption coverage.Our contribu-
tions are the following:

1. We show that it is impossible to solve the problem of global predicate de-
tection in asynchronous systems prone to small faults, even in the presence
of Σ (failure detector sequencer, see Sect. 4).

2. We introduce a novel and powerful device called a small fault sequencer,
denoted by ΣSF . We present its interface, and we show that ΣSF is necessary
and sufficient for global predicate detection in Sect. 5.

3. We show that ΣSF cannot be implemented even in a synchronous system.
4. Because ΣSF cannot be implemented in a synchronous system, we show

that, through careful analysis, an almost correct ΣSF can still detect small
faults with high probability. For this, we analyze the conditions under which
ΣSF can miss small faults, and perform a probabilistic analysis of their
occurrences in Sect. 6.

Before presenting these results, we formalize the models used in the paper in
Sect. 2 and define the predicate detection problem in Sect. 3. For lack of space,
we relegate proofs to a technical report [9].

2 Model

2.1 Asynchronous Distributed System

An asynchronous distributed system consists of a set of application processes
Π = {p1, . . . , pn} which communicate using message passing over bidirectional
channels. Each process pi has a local state si, which is determined by the values
of its local variables. The state space of processes can be infinite but we assume

298 F.C. Freiling and A. Jhumka

that the set of all states of every process is countable. Furthermore, every process
has a well-defined initial state. The local algorithm Ai of process pi describes state
transitions of si, denoted as events, which are formalized in a next state relation
δi. We assume that for any state s, the set of possible next states δ(s) is finite.
We distinguish

– internal events which just affect the local state of pi,
– send events describing the sending of a message m to some process, and
– receive events representing the reception of a message m from some process.

The communication channels are assumed to be reliable, i.e., every message is
sent to a designated recipient, only the recipient may receive the message, and
the recipient is notified of the identity of the sender. No message is received
twice. Furthermore, messages are delivered in FIFO order, meaning that if p
first sends message m before message m′ to q then m is received before m′ at q.

We define the causal order as the smallest relation → on the events of an
execution, which satisfies:

– If e and f are different events on the same process and e happens before f ,
then e → f .

– If e is a send event and f is the corresponding receive event, then e → f .
– → is transitive, i.e. for any events e, f , g such that e �= f , if e → f and

f → g, then e → g.

The global state S = (s1, . . . , sn) is composed of the local states of the system’s
processes. Consequently, the global intitial state is the global state consisting of
all initial states of the processes. A distributed algorithm A = (A1, . . . , An) is
the collection of the local algorithms. Hence the events of the local algorithms
yield the events of the distributed algorithm: Internal events modify the state of
the corresponding process, send and receive events additionally modify the set
of messages in transit. A particular execution of a distributed algorithm is called
a distributed computation. We depict distributed computations using space/time
diagrams. As a programming notation we adapt the event-based programming
technique used by Guerraoui and Rodrigues [16].

2.2 Failures

A fault model defines the way in which certain components of a system might
be affected by faults. We consider two different types of faulty behavior in this
paper: crash faults and small faults. We model both types of faults as special
fault events.

A process suffers a crash fault if it simply stops to execute events. We say
that a process crashed in state s if s is the state in which the crash event occurs.

A process suffers a small fault if it experiences a spontaneous state change
which is neither a send, receive nor internal event. A small fault can change the
values stored in variables in an arbitrary fashion. Instances of small faults are
bit flips, stuck-ats etc. A state transition causing a planned program event is

Global Predicate Detection in Distributed Systems with Small Faults 299

by definition no small fault. In this paper, we focus on small faults occurring in
application processes, and only in those parts of the application processes which
do not belong to the predicate detection algorithm or subsystem.

Note that fault events are also part of the causal order defined above. For
example, if at some process a small fault event e1 happens and afterwards a
small fault event e2 then e1 → e2. Note that a causality point of view fault
events are internal events of a process.

2.3 Observations

Since every local state si corresponds to a prefix of events of a local computation
of pi, a global state can be equivalently expressed as the union of all these events
for every process. A global state S is consistent if the corresponding event set is
left-closed with respect to →. Intuitively, this means that all receive events have
a corresponding send event in S.

It is well known that the set of all consistent global states of a distributed
computation form a lattice [18]. An observation is a sequence of global states
S1, S2, S3, . . . such that S1 is the global initial state and for every i > 1, Si

results from executing a single event on some process in global state Si−1. In
other words, an observation is a path through the lattice starting at the empty
global state (bottom).

As an example consider Fig. 1. The starting global state is the point with
coordinate (0, 0). Coordinate (0, 1) is not a consistent global state since event
e2 cannot occur before event e1. Hence, any coordinates on the p2 axis are not
consistent global states. One possible observation by M is

(0, 0), (1, 0), (1, 1), (1, 2), (2, 2).

Another observation is

(0, 0), (1, 0), (2, 0), (2, 1), (2, 2).

In fact, any path through the lattice, starting from (0, 0), with non-decreasing
p1 and p2 coordinates is a possible observation.

2.4 Observation System

To perform predicate detection, we need a system which observes the application
processes. For this purpose, we add a set of monitor processes to the system. The
set of monitor processes is denoted by Φ. We augment the local algorithms of
application processes in such a way that when an event e occurs at a process pk

(denoted by ek), a control message is sent to all the monitor processes. Control
messages do not interfere with the application messages sent by the application
processes in their algorithms. Throughout a computation, monitor processes
continuously collect control messages and construct a set of observations which
are subsequently used for predicate detection. In practice, the same hardware
running an application process also runs a monitor process.

300 F.C. Freiling and A. Jhumka

P1

P2

M

e1

e2

e4

e3

p1 p2

e1 e2

e3e4

(0,0)

(1,0) (1,1)

(2,1) (1,2)

(2,2)

(0,1)

(2,0) (0,2)

Fig. 1. Example of a lattice of consistent global states and observation

2.5 Failure Detector Sequencers Σ

We use the failure detection sequencer definition of Freiling, Henkel and Widder
[8]: The sequencer Σ consists of a set of modules, one for each monitor process.
The sequencer triggers events of the form 〈crash, p, H〉 where H is a sequence
of (application of fault) events ending in a state s. In this case we say that
“process p is suspected to have crashed in state s”. The sequencer guarantees
the following properties:

– (Integrity) Every process is suspected at most once for every crash.
– (Accuracy) If a process is suspected to have crashed in state s, it did crash

in state s.
– (Completeness) If a process crashes in some state s, then it will eventually

be suspected to have crashed in s.

Σ is similar to the concept of a failure detector but it is strictly stronger than
any failure detector class as defined by Chandra and Toueg [5]. Gärtner and
Pleisch [14] show that Σ can be implemented in synchronous systems.

3 Predicate Detection Problem

The predicates we wish to detect are global predicates, meaning that they are
defined on global states. Using the lattice of consistent global states and given
some global predicate ϕ, there can be different notions of what it means that “ϕ
holds” in a computation (see for example Possibly and Definitely [2] or others
[17]). Here we abstract from the particular modality. Instead we postulate a
boolean function modality which tests the particular modality on a lattice of
consistent global states.

Given a global predicate ϕ over the state of a distributed system, the predicate
detection problem [6] consists of finding an algorithm that satisfies the following
two requirements:

Global Predicate Detection in Distributed Systems with Small Faults 301

– (Safety) The algorithm does not raise the exception unless ϕ holds in the
computation, and

– (Liveness) If ϕ holds, the algorithm will eventually raise the exception.

The assumption behind this definition is that the monitored computation never
terminates. This is sometimes called online predicate detection, on which we
focus in this paper.

4 Insufficiency of Σ

In a system prone to small faults, the occurrence of such a fault can cause a
global predicate to hold. Of bigger importance is the fact that the predicate can
hold between fault occurrences, making it necessary to detect the occurrence
of every fault during system execution. To achieve this, the system needs to be
equipped with a device that returns the state of the program. One such device is
the failure detector sequencer Σ. This device returns the final state of a process
prior to its crash. Unfortunately, even this very strong abstraction does not help
to solve predicate detection under crash and small faults.

Proposition 1 (Impossibility of Predicate Detection)

1. Given an asynchronous system in which only small faults may occur it is
impossible to solve predicate detection for a general predicate ϕ.

2. Given an asynchronous system in which crash and small faults may occur it
is impossible to solve predicate detection for a general predicate ϕ even if Σ
is available.

So even with as powerful a device as a failure detector sequencer, it is impossible
to detect a general predicate in a system prone to small and crash faults. The
problem is in fact that, when there is no crash, the sequencer does not offer any
helpful information. To address this impossibility result, in the next section we
identify a more powerful device that helps us solve the problem.

5 Solving Predicate Detection with Small Faults

5.1 Defining ΣSF

To be able to detect the small faults, a more powerful device needs to be identified
that captures the various state changes when faults occur. The device, called a
small fault Σ (denoted ΣSF), continuously monitors both the operational and
functional state changes of the various processes, and has the following interface
operations, i.e., this device yields two types of events:

1. 〈crash, p, H〉: process p crashed in the state following event sequence H .
2. 〈sf, p, e, H〉: p experienced a small fault event e following event sequence H .

Definition 1 (ΣSF). The small fault failure detection sequencer denoted ΣSF

is a device satisfying the following properties:

302 F.C. Freiling and A. Jhumka

– ΣSF does not issue the event 〈crash, p, H〉 unless p executed event sequence
H and crashed in the state following H.

– If p crashes in a state following event sequence H then eventually ΣSF issues
the event 〈crash, p, H〉.

– ΣSF does not issue the event 〈sf,p, e, H〉 unless p executed event sequence
H and the small fault event e occurred following H at p.

– If small fault e happens at process p following event sequence H then even-
tually ΣSF issues the event 〈sf, p, e, H〉.

The idea behind ΣSF is that the device retains at least the same capability with
respect to crash faults as Σ, and can also detect occurrences of small faults.

5.2 Equivalence with Predicate Detection

We now show that ΣSF is in fact necessary and sufficient to solve predicate
detection in the presence of crash and small faults.

Upon 〈Init〉 do1

L = {} /* set of global states with ordering information */2

Upon 〈rcDeliver, p, e〉 do3

L := L ∪ e4

L := join-closure(L)5

if modality(L, ϕ) then6

trigger 〈detected, ϕ〉7

Upon 〈crash, p, H〉 do8

L := L ∪ H9

L := L ∪ crash(p,H) /* construct crash event after H */10

L := join-closure(L)11

if modality(L, ϕ) then12

trigger 〈detected, ϕ〉13

Upon 〈sf, p, e, H〉 do14

L := L ∪ H ∪ e15

L := join-closure(L)16

if modality(L, ϕ) then17

trigger 〈detected, ϕ〉18

Fig. 2. Algorithm for detecting global predicate ϕ using ΣSF

Sufficiency. Fig. 2 depicts a predicate detection algorithm that uses ΣSF . The
central variable is the lattice data structure L which is a set of global states to-
gether with an ordering relation. To build the lattice, we assume that all events
are tagged with corresponding information: For application events, this infor-
mation is derived from the vector timestamp used for causal delivery (rcDeliver,
line 3). For crash events and small fault events it can be derived from the event

Global Predicate Detection in Distributed Systems with Small Faults 303

sequence H attached to every event from ΣSF . We assume that a boolean func-
tion modality exists to check if a given predicate holds on the lattice for the
chosen modality.

All event handlers of the algorithm are structurally similar: First some events
are “added” to L. This means that they extend the axis of the process to which
they are associated. Now L may not be a lattice anymore so we have to compute
the closure of L. Note that we only have to compute the join closure since
events are only appended to “the top” of the lattice (for the definition of the
operations join and meet in the lattice of consistent global states see Mattern
[18]). Subsequently L is checked using modality(L, ϕ). If the function returns
true the detection of ϕ is triggered.

The monitor has to process three kinds of events: (1) control message deliv-
eries, (2) crash events issued by ΣSF , and (3) small fault events issued by ΣSF .
In case (1), event e is added to L. In case (2), an artificial event is generated
representing the crash of process p after executing event sequence H (denoted
by crash(p, H)). In case (3), the information in H is needed to reconstruct the
ordering information of the small fault event e before it is added to L. Note that
in cases (2) and (3) H may contain application events that are not yet part of L.
Events in cases (2) and (3) are always “parallel” (independent, internal) events
of a particular process.

P1

P2

M

e1

e2

crash

SF

p1 p2

e1

p1 p2

e1 e2

p1 p2

e1 e2
sfcrash

(0,0)

(1,0) (1,1)

(2,1) (1,2)

(2,2)

Fig. 3. Example execution of predicate detection algorithm using ΣSF . The figure
shows the lattice of consistent global states constructed at a monitor at three different
points in time. The rightmost lattice depicts also the internal coordinates of the states
in the lattice.

Fig. 3 depicts an example execution of the algorithm with two processes p1 and
p2. Application events are delivered to monitor m using causal broadcast. Other
events (crash of p1 and small fault at p2) are delivered locally to m by ΣSF . If
events are causally dependent, causal broadcast allows to eliminate inconsistent

304 F.C. Freiling and A. Jhumka

global states (e.g., state with coordinates (0, 1)). The central idea of the proof
is to prove that the lattice L is always a prefix of or equal to the “real” lattice
of the computation.

Lemma 1. Let R be the lattice of consistent global states of a computation C
observed using the algorithm in Fig. 2. The algorithm guarantees two things:

1. L ⊆ R.
2. Any event in C is eventually represented in L.

Lemma 2. Global predicate detection is possible given ΣSF .

Necessity. We now investigate the question whether ΣSF is necessary to solve
predicate detection. To prove this, we construct an algorithm that emulates ΣSF

using only the properties of some assumed predicate detection algorithm A. Note
that the existence of small faults makes the problem substantially different from
the problem tackled by Gärtner and Pleisch [14] who used an incremental number
of instances of A to detect crashes of processes in certain states. The difficulty
here is that small faults can be arbitrary state transitions so that (1) we need
to anticipate certain state transitions to distinguish good ones (program events)
and bad ones (small faults), and (2) we need to keep the number of parallel
instances of A finite although the number of possible states is infinite.

Like Gärtner and Pleisch [14] we assume that A can be “forked” into parallel
instances, each checking a different global predicate. Each new instance checks
the complete history of the computation no matter when it is started. Also, we
assume states of the computation to be unique (distinguishable).

We tackle the above two problems as follows: We assume that the next state
relation δ of the algorithm driving the observed computation is known. Given
the current global state s, δ identifies a finite set S = {s1, s2, . . .} of possible next
states. For each such state we define a predicate ϕs,si and fork a new instance
of A for that predicate. We use the detections of these predicates to keep track
of the current state of the computation. They do not trigger any actions of the
emulated ΣSF .

To detect crashes, for every process pi we define a predicate ϕs,pi stating
that “pi crashed in state state s” and fork a new instance of A. Once A detects
such a predicate, we trigger a crash event at the emulated interface of ΣSF .
To detect small faults in state s we could potentially fork an instance of A for
every other possible state transition (the complement of δ(s)). However, having
infinitely many states this set is infinite and we can not have an infinite number
of parallel instances of A (this is problem (2) described above). We tackle this
problem in the following way: In any state s we first define the “complement
predicate”

φs = ¬(
∨

si∈S

ϕs,si ∨
∨

pi∈Π

ϕs,pi)

and fork an instance of A detecting φs. Once this predicate is detected, we need
to find out which element of φs caused A to trigger. Since the set of all global

Global Predicate Detection in Distributed Systems with Small Faults 305

Upon 〈Init〉 do1

H [1, . . . , n] = {} /* local event sequences of processes */2

s = I /* global initial state */3

trigger 〈main loop〉4

Upon 〈main loop〉 do5

S := δ(s) /* compute set of next possible program states */6

forall t ∈ S do7

ϕs,t := “system is in state t”8

fork(ϕs,t)9

forall p ∈ Π do10

ϕs,p := “p crashes in state s”11

fork(ϕs,p)12

φs := ¬(
∨

t∈S ϕs,t ∨
∨

p∈Π ϕs,p)13

fork(φs) /* fork detection of complement predicate */14

Upon 〈ϕs,t detected〉 do15

s := t16

update H [1, . . . , n]17

trigger 〈main loop〉18

Upon 〈ϕs,p detected〉 do19

trigger 〈crash, p, H〉20

update H [1, . . . , n]21

Upon 〈φs detected〉 do22

/* now loop through φs to find state t following s resulting from small
fault */

trigger 〈loop, first(φs), φs \ first(φs)〉23

Upon 〈loop, s′
s, φ′

s〉 do24

fork(s′
s)25

trigger 〈loop, next(φ′
s), φ′

s \ next(φ′
s)〉26

Upon 〈ts detected〉 do27

/* found small fault (s, ts) */
trigger 〈sf, p, (s, ts), H〉28

update H [1, . . . , n]29

Fig. 4. Emulating ΣSF using an abstract algorithm A for predicate detection.
The next state relation of the algorithm driving the computation is given as
δ. The operations first and next are iterators on a set and yield the first and
subsequently next element of the given set.

states is countable, also the subset defined by φs is countable. Therefore we can
enumerate in an incremental fashion all states s′ ∈ φs and fork a corresponding
instance of A. Eventually the new state of the computation will be chosen and
subsequently detected by A. Since the state transition from s to s′ was not de-
fined by δ, it must be the result of a small fault and so we trigger a corresponding
event at the interface of ΣSF .

Lemma 3. ΣSF is necessary for global predicate detection.

306 F.C. Freiling and A. Jhumka

Theorem 1 (Equivalence of predicate detection and ΣSF). Given an
asynchronous system in which crash faults and small faults may occur. Global
predicate detection is possible if and only if the system is augmented with ΣSF .

5.3 Implementing ΣSF

Using ΣSF it is possible to solve predicate detection. So how can we implement
ΣSF ? Since ΣSF is strictly stronger than Σ and Σ is equivalent to a synchronous
system if crash faults can happen, ΣSF at least also needs the strength of a
synchronous system to be implemented.

at every application process p:1

with every step from local state s to s′2

causally broadcast 〈(s, s′), p〉 to all monitors3

at every monitor process m:4

Upon 〈Init〉 do5

laststate [1, . . . , n] := I6

t[1, . . . , n] /* vector of timers */7

Upon 〈causal deliver, (s, s′), p〉 do8

if laststate[p] �= s then9

trigger 〈sf, p, (laststate [p], s), H 〉10

laststate [p] := s′11

reset timer t[p]12

Upon 〈expiry of timer t[p]〉 do13

trigger 〈crash, p, H〉14

Fig. 5. A naive and incorrect (almost correct) algorithm to implement ΣSF in
a synchronous system

Fig. 5 shows a simple instructive algorithm which almost solves the problem.
The algorithm works as follows: Every process pi sends its latest transition,
rather than its latest state, to the monitors. On the other hand, monitors need
to keep track of state changes of various processes to track small faults, and
they need to keep a timer for each process to determine when they have crashed.
When a timer for a process expires, it returns a crash event. Further, when it
receives the latest transition from a process, it compares the initial state of the
transition with the last known state for that process. A discrepancy indicates
occurrence of small faults.

Unfortunately, the above algorithm is not correct if more than one small fault
occurs within two synchronous steps. In fact this is also the reason that in general
ΣSF is not implementable.

Theorem 2 (Impossibility of implementing ΣSF in synchronous sys-
tems). It is impossible to implement ΣSF in a synchronous distributed system.

Global Predicate Detection in Distributed Systems with Small Faults 307

A corollary of Theorems 1 and 2 is that the predicate detection problem cannot
be solved in synchronous systems. In the next section we investigate weakening
the detection problem to tackle this unfortunate result.

6 Probabilistic Predicate Detection

Because of the impossibility of implementing ΣSF , we require processes to send
their states to monitors at regular intervals. To increase the chance of detecting
every fault, the state sampling periods at the processes should be set sufficiently
small so that all faults can be detected. Because fault occurrences are random,
even arbitrarily small sampling period may miss faults.

Hence, we introduce the problem of probabilistic predicate detection. This
problem is a weaker version of the more general problem in that it only requires
the predicate detection specification to be satisfied with high probability. We now
define the probabilistic predicate detection problem: given a global predicate ϕ,
the probabilistic predicate detection problem consists of finding an algorithm
that satisfies the following two requirements:

– The algorithm does not raise the exception unless ϕ holds with probability
1 − Πs

– If ϕ holds, the algorithm will eventually raise the exception with probability
1 − Πl.

Here, Πs (resp. Πl) is the probability of violating the safety (resp. liveness)
specification. We will now provide a probabilistic analysis of the problem. The
requirements for probabilistic predicate detection can be violated in two ways:
(i) safety, and (ii) liveness. Safety specification violation occurs when processes
miss the occurrences of faults between two successive steps, while violation of
liveness occurs when faults “revert” themselves within a step, i.e., a sequence of
faults occurs where the first and final states are equal. This has the property of
“masking” the occurrences of faults.

There are two possible ways of analyzing the problem. The first approach is
based on the sampling and failure rates, where the analysis is on the probability
of either the safety or liveness specification to be violated. Based on this anal-
ysis, the sampling rate can be adjusted such that the probability of violation
is reduced to below a certain threshold. The second approach is a randomized
approach, whereby, at each time instant, each process pi sends a control message
to monitors with probability ρi. This approach allows determining a suitable ρi

such that the probability of violation is reduced to a level less than a prede-
termined threshold level. However, we argue that the randomized approach is
not very good, since it is better to send a “no transition” (looping transition)
than not sending anything. This implies that the monitors are able to track state
changes at all times. Hence, randomization will not help in implementing ΣSF .
Thus, in this paper, we will adopt the first approach.

308 F.C. Freiling and A. Jhumka

6.1 Violation of Safety

Safety property is violated when more than one fault occurs between two steps.
Since a control message is sent at every step, occurrence of more than one fault
implies that some faults will not be notified, thus violating safety. We now ana-
lyze the probability of this occurring.

Assume that σ faults occur in δ steps. We also assume that faults occurrences
are independent. This means that σ

δ faults occur within one step, i.e., between
two consecutive steps.

The probability of violating safety can now be computed as the probability
that the number of faults f within one step will exceed one:

Πs = Prob[f > 1]
= 1 − (Prob[f = 0] + Prob[f = 1])

Assuming that fault occurrences f follow a Poisson distribution (since occur-
rences are independent) we have:

1 − (Prob[f = 0] + Prob[f = 1])

= 1 − exp−(σ
δ)(

σ

δ

0
+

σ

δ

1
)

= 1 − exp−(σ
δ)(1 +

σ

δ
)

Thus, when the rate at which fault occurs is high, i.e., more than one fault occurs
between two steps, the probability of safety violation is high, whereas if the rate
of fault occurrences is low, the probability of safety violation is very low. One
can therefore preset the value of δ such that σ

δ is very low.

6.2 Violation of Liveness

The liveness property of predicate detection is violated when the following hap-
pens: a sequence of faults occurs between two consecutive steps such that the
final state after the sequence is the same as the start state before the sequence
of faults. In other words, the state sequence sk · sk+1 · . . . · sk+n · sl is such that
every transition between sk and sl is a fault transition, and sk = sl, and sk, and
sl occur at the “borders” of a given step.

We make the following assumptions:

1. We consider a sequence of faults occurring between 2 steps, with state se-
quences (of length n) x0 · x1 . . . xn−2 · x0, such that the first and final states
are equal.

2. Let the size of the state space of the program be N , where N 	 n.

When a fault occurs, two consecutive states cannot be equal. In any such state
sequences, there are n − 1 faults. Since consecutive states cannot be equal, we

Global Predicate Detection in Distributed Systems with Small Faults 309

need to compare the third state onwards with the first state. Thus, there are
n − 2 state comparisons for state equality. Also, the probability of two states
being equal is 1

N (probability of states being different is N−1
N).

The probability of the first state being equal to the final state is equal to

(N−2
N−1)(n−3) · (1

N−1) ⇒ (1 − 1
N−1)(n−3) · (1

N−1)

Assume that the probability of a fault occurring to be pf . The probability of
a sequence of n − 1 faults to occur is pn−1

f . Hence, the probability of liveness

violation is given by Πl =
pn−1

f

N−1 · (1 − 1
N−1)(n−3).

References

1. Anagnostou, E., Hadzilacos, V.: Tolerating transient and permanent failures. In:
Schiper, A. (ed.) WDAG 1993. LNCS, vol. 725, pp. 174–188. Springer, Heidelberg
(1993)

2. Babaoğlu, Ö., Marzullo, K.: Consistent global states of distributed systems: Fun-
damental concepts and mechanisms. In: Mullender, S. (ed.) Distributed Systems,
2nd edn. ch. 4, pp. 55–96. Addison-Wesley, Reading (1993)

3. Beauquier, J., Delaët, S., Dolev, S., Tixeuil, S.: Transient fault detectors. In: Kut-
ten, S. (ed.) DISC 1998. LNCS, vol. 1499, pp. 62–74. Springer, Heidelberg (1998)

4. Beauquier, J., Kekkonen-Moneta, S.: On FTSS-solvable distributed problems. In:
Proceedings of the Sixteenth Annual ACM Symposium on Principles of Distributed
Computing, 21–24 August,1997 Santa Barbara, California, p. 290 (1997)

5. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43(2), 225–267 (1996)

6. Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley,
Reading (1988)

7. Delaët, S., Tixueil, S.: Tolerating transient and intermittent failures. Journal of
Parallel and Distributed Computing 62, 961–981 (2002)

8. Freiling, F.C., Henkel, S., Widder, J.: Network synchronization in the crash-
recovery model. Technical Report TR-2006-009, Department for Mathematics and
Computer Science, University of Mannheim(May 2006)

9. Freiling, F.C., Jhumka, A.: Global predicate detection in distributed systems with
small faults. Technical Report TR-2007-008, Department for Mathematics and
Computer Science, University of Mannheim(August 2007)

10. Freiling, F.C., Pleisch, S.: Predicate detection in asynchronous systems with crash
failures. In: Zomaya, A.Y., Diab, H.B. (eds.) Dependable Computing Systems:
Paradigms, Performance Issues and Applications, ch. 7, pp. 171–212. Wiley, Chich-
ester (2005)

11. Garg, V.: Elements of Distributed Computing. Wiley, Chichester (2002)
12. Garg, V.K., Mitchell, J.R.: Distributed predicate detection in a faulty environ-

ment. In: ICDCS 1998. Proceedings of the 18th IEEE International Conference
on Distributed Computing Systems, IEEE Computer Society Press, Los Alamitos
(1998)

13. Gärtner, F.C., Pleisch, S.: ImPossibilities of predicate detection in crash-affected
systems. In: Datta, A.K., Herman, T. (eds.) WSS 2001. LNCS, vol. 2194, pp. 98–
113. Springer, Heidelberg (2001)

310 F.C. Freiling and A. Jhumka

14. Gärtner, F.C., Pleisch, S.: Failure detection sequencers: Necessary and sufficient
information about failures to solve predicate detection. In: Malkhi, D. (ed.) DISC
2002. LNCS, vol. 2508, pp. 280–294. Springer, Heidelberg (2002)

15. Gopal, A.S., Perry, K.J.: Unifying self-stabilization and fault-tolerance. In: PODC
1993. Proceedings of the 12th Annual ACM Symposium on Principles of Dis-
tributed Computing, pp. 195–206. ACM Press (1993)

16. Guerraoui, R., Rodrigues, L.: Introduction to Reliable Distributed Programming.
Springer, Heidelberg (2006)

17. Kshemkalyani, A.D.: A fine-grained modality classification for global predicates.
IEEE Trans. Parallel Distrib. Syst. 14(8), 807–816 (2003)

18. Mattern, F.: Virtual time and global states of distributed systems. In: Cosnard, M.,
et al. (eds.) Proceedings of the International Workshop on Parallel and Distributed
Algorithms, Chateau de Bonas, France, pp. 215–226. Elsevier Science Publishers,
Amsterdam (1989). Reprinted on pages 123–133 in [20]

19. Nesterenko, M., Arora, A.: Dining philosophers that tolerate malicious crashes. In:
Proc. ICDCS, pp. 191–198 (2002)

20. Yang, Z., Marsland, T.A. (eds.): Global States and Time in Distributed Systems.
IEEE Computer Society Press, Los Alamitos (1994)

The Truth System:

Can a System of Lying Processes Stabilize?

Mohamed G. Gouda and Yan Li

Department of Computer Sciences
The University of Texas at Austin

1 University Station (C0500)
Austin, Texas 78712-0233

{gouda,yanli}@cs.utexas.edu

Abstract. We introduce a new abstract system, called the truth system.
In the truth system, a process deduces a true value, with high proba-
bility, from an incoming stream of both true and false values, where the
probability that a value in the incoming stream is true is at least 0.6.
At each instant, the receiving process maintains at most one candidate
of the true value, and eventually the process reaches the conclusion that
its candidate value equals, with high probability, the true value. In this
paper, we present three versions of the truth system, discuss their prop-
erties, and show how to choose their parameters so that their probability
of error is small, i.e. about 10−6. The third version, called the stable sys-
tem, is the most valuable. We employ the stable system as a building
block in a stabilizing unidirectional token ring of n processes. When n is
small, i.e. about 100 or less, the stable system can be considered error-
free and we argue that the resulting token ring is stabilizing with high
probability. We simulate the token ring, when n is at most 100, and ob-
serve that the ring always stabilizes even though each process lies about
its state 40% of the time.

Keywords: Distributed Systems, Network Protocols, Self-Stabilization.

1 Introduction

Faults, that are often assumed to plague the communications between different
processes in a distributed system, can be distinguished into natural faults and
malicious faults [7]. On one hand, natural communication faults are assumed to
occur independently of the underlying computation of the distributed system,
and are usually assumed to be random. On the other hand, malicious communi-
cation faults are assumed to occur in the worst possible times for the underlying
computation of the distributed system, and are usually assumed to be delib-
erate and based on complete knowledge (by the adversary) of the underlying
computation.

Distributed systems that tolerate natural communication faults are elegant,
inexpensive, and practical to implement and use. However, such systems cannot

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 311–324, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

312 M.G. Gouda and Y. Li

tolerate malicious communication faults if they happen to occur. By contrast,
distributed systems that tolerate malicious communication faults are complex,
expensive, and sometimes impossible to design.

Well-known examples of natural communication faults and how to tolerate
them are as follows.

– Loss : Some sent values from one process to another are lost. These faults can
be tolerated by making the sending process send the same value repeatedly
until the sending process receives an “acknowledgement” from the receiving
process [9].

– Delay: Some sent values from one process to another are delayed for an
unbounded time period before these values are received by their intended
receivers. Sometimes, these faults cannot be tolerated as discussed in [6].
This realization has led researchers to adopt weaker model of faults, for
example imperfect fault detectors, that can be tolerated [3] and [16].

– Corruption: Some sent values are corrupted randomly after they are sent by
one process and before they are received by another process. These faults
can be detected by adding a checksum to each sent value. In this case, any
random corruption of a sent value and its checksum can be detected, with
high probability, by the receiving process [14].

– Topology Change: The topology of the distributed system changes over time,
for example due to the mobility of the processes within the system. Methods
for tolerating these “faults” are discussed in [15].

– Anonymity: Each sent value does not include the identity of the sending
process and is received by an arbitrary process in the distributed system.
Methods for tolerating these “faults” are discussed in [1].

– Modification: A sent value from one process to another is modified before it is
received as follows. The value is replaced by any wrong (possibly malicious)
value in such a way that the receiving process cannot tell, by examining
the received value, that the received value is in fact a false value different
from the true value that was sent. For example, if a checksum is attached
to the sent value, then a modification fault causes both the value and its
checksum to be replaced as follows. The true value is replaced by any false
(possibly malicious) value, and the checksum is replaced by the checksum of
the false value and so the receiving process cannot tell that the true value
and its checksum are replaced by a false value and its checksum. Methods
for tolerating modification faults in the context of distributed voting are
presented in [13] and [11].

Well-known examples of malicious communication faults and how to tolerate
them are discussed in [10] and [12].

In this paper, we present a new method, which we call the truth system, for
tolerating modification faults. The truth system is different from the distributed
voting systems, discussed in [13] and [11], in several ways. Most notably, the two
systems have different objectives. The objective of the truth system is to deduce,
with a predefined high probability, the true value from an unbounded stream of
both true and false values. In particular, the parameters of the truth system can

The Truth System: Can a System of Lying Processes Stabilize? 313

be set such that the probability of the deduced value being wrong is very small,
say 10−6. By contrast, the objective of a distributed voting system is to deduce
the value that has the highest probability of being true from a bounded stream
of both true and false values, but the probability of the deduced value being
wrong can be as high as 0.5.

To save space, we omit the proofs of all theorems from this paper. An inter-
ested reader can get these proofs from the full version of the paper [8].

2 Three Versions of the Truth System

The goal of this paper is to introduce a new abstract system, called the truth
system, discuss its properties, and show that this system can tolerate, with high
probability, modification faults. In the truth system, a process deduces a true
value from a mixed stream of both true and false values. The probability, that
a value in the mixed stream is true (or false), is at least 0.6 (or at most 0.4, re-
spectively). The process correctly deduces the true value with a high probability,
that is around (1-10−6).

It is important to explain why we chose the probability, of a value in the
mixed stream being true, to be at least 0.6. First, if we chose this probability to
be at most 0.5, then no system can deduce the true value with any probability
greater than 0. Second, if we chose this probability to be higher than 0.5 but
less than 0.6, then as shown at the end of Section 3 the truth system may need
up to 1700 values in the input stream to deduce the true value. This is 10 times
the number of values needed in the input stream, to deduce the true value, when
the probability of a value in the mixed stream being true, is at least 0.6.

The truth system consists of two processes: source and monitor. Process source
has an integer state, and process monitor attempts to correctly deduce the integer
state of process source.

Periodically, process source sends an integer s to process monitor. With a
probability of at least 0.6, the sent s is the true value of the state of process
source, and with a probability of less than 0.4, the sent s is an arbitrary integer.
Process monitor receives the s integers, one by one, and maintains at most one
candidate for the state of process source. Eventually process monitor reaches the
conclusion that its maintained candidate for the state of process source equals,
with high probability, the true state of process source.

The state of process source can change over time, but we assume that this
change occurs at a slow rate. This is because if the state of source is changed at
a fast rate, the monitor process may never be able to catch up and deduce the
state of source. As shown at the end of Section 3, to ensure that the change rate
of the state of process source is slow, we assume that the state of source is not
changed until process source has sent out this state 170 or more times.

Our presentation of the truth system in this paper consists of three steps. In
each step, we present a version of the truth system and discuss its properties.
We then point out some problem with this version and so clear the way for the

314 M.G. Gouda and Y. Li

next version that is to be presented in the next step, and so on. The version
presented in the third (and last) step has no problems, as far as we can tell.

In the first step, we present a version of the truth system where the monitor
process terminates as soon as it concludes that its maintained candidate for the
state of process source equals, with high probability, the true state of process
source. The problem of this truth system is that the monitor process deduces ex-
actly one true state of process source, even if the state of process source is changed
many times afterwards. We refer to this truth system as the one-shot system.

In the second step, we modify the one-shot system to make the monitor pro-
cess continue to operate indefinitely, even after it concludes that its maintained
candidate for the state of process source equals, with high probability, the true
state of process source. We refer to this truth system as the continuing system.
The problem with the continuing system is that the conclusion reached by pro-
cess monitor (that its candidate for the state of process source equals, with high
probability, the true state of source) is not stable, but it can fluctuate wildly
over time, even when the true state of process source remains fixed for a long
time period.

In the third step, we modify the continuing system to ensure that, when the
true state of process source remains fixed for a long time period, the conclusion
reached by process monitor (that its candidate for the state of process source
equals, with high probability, the true state of source) remains stable over time.
We refer to this truth system as the stable system.

3 The One-Shot System

In this section, we present our first version of the truth system, called the one-
shot system. In the one-shot system, as soon as process monitor concludes, that
its maintained candidate for the state of process source equals, with high prob-
ability, the true state of process source, process monitor terminates.

Process source in the one-shot system is specified in Protocol 1. This process
has one action that it executes over and over, since the guard of the action is
true. During each execution of the action, process source sends an integer s to
process monitor. With probability p/100, the sent s is the value of input state,
and with probability (100-p)/100, the sent s can be any integer, where p is an
input of process source.

Input p can be regarded as the probability of process source telling the truth,
and input state can be regarded as the true state of process source. From the
received s integers, process monitor is expected to deduce the true value of input
state in process source. It is straightforward to show that if the value of p is in
the range 0..50, then process monitor can never deduce the true value of state.
At the end of Section 3, we argue that if the value of p is in the range 51..59,
then process monitor may need to receive up to 1700 s integers (instead of 170)
in order to deduce the true value of state with high probability. That is why we
specified the value of p to be in the range pmin..99, where pmin is a constant
whose value is in the range 60..99.

The Truth System: Can a System of Lying Processes Stabilize? 315

Protocol 1. process source

const pmin : 60..99
input p : pmin..99

state : integer {state of source}
variable r : 0..99 {random number}

s : integer {sent state}
begin

true →
r := random
if r ≥ p then

s := any {assign malicious value}
else

s := state
end
send s to monitor

end

Both p and state are inputs to process source. Thus, their values can be
changed over time by an outside agent. As shown at the end of Section 3, we
assume that once the value of state is changed, the value of state remains fixed
until process source executes its action 170 or more times.

Process monitor in the one-shot system is specified in Protocol 2. Process
monitor has three variables: c, st and s. Variable c is a counter whose value is
in the range 0..cmax, where cmax is a constant of process monitor. Variable
st stores the latest candidate for the state of process source. Variable s stores
the latest received integer from process source. The value of counter c indicates
whether process monitor can conclude that the current value of st equals, with
high probability, the value of state in process source. Process monitor reaches
this conclusion when, and only when, the value of counter c is cmax.

Process monitor has only one action that is executed each time the process
receives an integer s from process source. When an integer s is received, process
monitor checks the value of its counter c. If c = 0, then variable st is assigned s
and counter c is assigned 1. If c > 0 and st is different from the received s, then
c is decreased by 1. If c > 0 and st equals the received s, then c is increased
by 1 (provided that c does not exceed its maximum value cmax). Then process
monitor compares the values of c with cmax. If c = cmax, then process monitor
concludes that the current value of its variable st equals, with high probability,
the value of state in process source.

To complete the specification of process monitor, we need now to compute the
value of constant cmax in monitor. The value of cmax should be chosen such that
the probability of error of the one-shot system is kept small, say around 10−6.

The probability of error, denoted p(error), of the one-shot system is the prob-
ability that starting from its initial global state where c = 0, the system reaches
a global state where c = cmax and cs �= state.

316 M.G. Gouda and Y. Li

Protocol 2. process monitor of the one-shot system

const pmin : 60..99 {same as pmin in source}
cmax : integer

variable c : 0..cmax {counter, init. 0}
s : integer {received state}
cs : integer {candidate state}

begin
rcv s from source →

if c = 0 then
c := 1
cs := s

else if cs �= s then
c := c - 1

else
c := min(c+1, cmax)

end
if c = cmax then

{conclude: cs = state} terminate
end

end

In Theorem 1 below, we give a formula that describes the relationship between
pmin, cmax, and p(error) for the one-shot system. Our proof of this theorem
is based on two simplifying assumptions. First, we assume that the state of
process source does not change over time. This assumption is acceptable given
our understanding that the change rate of the state of process source is slow
anyway. Second, we assume that whenever process source sends an arbitrary
integer s to process monitor, process source always sends the same integer that
is different from the state of process source. This assumption represents the
worst case scenario that assigns p(error) its highest value. We adopt these two
assumptions in proving all the theorems in this paper. (Recall that the proofs of
all the theorems are in [8].)

Theorem 1 (pmin, cmax, and p(error) for the one-shot system)

p(error) =
(1 − pmin)cmax

(1 − pmin)cmax + (pmin)cmax
. ��

For many applications, it is reasonable to expect that p(error) should be around
10−6. In this case, we can use the formula in Theorem 1 to produce the relation-
ship between pmin and cmax, for the one-shot system, shown in Table 1.

An execution step of the one-shot system consists of two parts. First, process
source executes its (sending) action, then process monitor executes its (receiving)
action.

If pmin in this system is 0.6 and the value of variable cs in process monitor
is the correct state of process source, then in each step of the system, counter c
in process monitor is incremented by 1 with probability 0.6, and is decremented

The Truth System: Can a System of Lying Processes Stabilize? 317

Table 1.

pmin cmax

0.6 34

0.7 16

0.8 10

0.9 6

by 1 with probability 0.4. In other words, each step of the system increments
counter c by 0.2 on the average. Thus, the system needs to execute cmax/0.2
steps on the average before counter c reaches its maximum value cmax and the
system terminates. Because cmax in this system is 34 from Table 1, the system
needs to execute 170 steps before it terminates.

If we choose pmin in this system to be 0.51, and assume that cmax remains 34
(rather than being increased in value as it should), and follow the same analysis
in the previous paragraph, we conclude that the system will execute on average
(34/0.02)= 1700 steps before it terminates. In other words, choosing pmin to be
in the range from 0.51 to 0.59 can lead to (sometimes substantial) increase in
the number of steps to be executed. This should explain our choice of pmin to
be at least 0.6.

The above analysis for computing the average number of steps that need to be
executed by the one-shot system before it terminates is based on the assumption
that the state of process source does not change during execution. This is an
important assumption; for instance, if the state is changed at least once every 5
execution steps, the one-shot system may never terminate. This should explain
our above requirement that the state of process source remains fixed for the
duration of 170 steps.

4 The Continuing System

The problem of the one-shot system is that process monitor terminates as soon
as it concludes that the value of its cs variable equals, with high probability,
the value of input state in process source. Thus, monitor cannot observe any
change in the state of process source. To remedy this problem, we modify process
monitor such that the process continues to execute indefinitely. This modification
is achieved by replacing statement terminate by a statement skip in the action
of process monitor. We refer to the resulting system as the continuing system.

Because the continuing system is nonterminating, the initial state of the sys-
tem, where c = 0, is irrelevant. Rather, we define the probability of error p(error)
of the continuing system as the steady state probability that the system is in
a global state where c = cmax and cs �= state. The following theorem gives a
formula that describes the relationship between pmin, cmax, and p(error) for
the continuing system.

318 M.G. Gouda and Y. Li

Theorem 2 (pmin, cmax, and p(error) for the continuing system)

p(error) =
(1 − pmin)2×cmax

(1 − pmin)2×cmax + (pmin)2×cmax
. ��

Assuming that p(error) is around 10−6, we can use the formula in Theorem 2
to produce the relationship between pmin and cmax, for the continuing system,
shown in Table 2. Notice that the cmax values in the one-shot system, shown in
Table 1, are twice the cmax values in the continuing system, shown in Table 2.

The continuing system has an interesting problem. Even if the state of process
source remains fixed for a long time period T, the value of counter c in process
monitor can fluctuate during period T between c < cmax (when process monitor
cannot conclude that cs = state) and c = cmax (when process monitor can
conclude that cs = state). This observation suggests the following definition.

The probability of no conclusion, denoted p(no-conclusion), of the continuous
system is the steady state probability that the system is in a global state where
c < cmax. The following theorem gives a formula for computing p(no-conclusion)
as a function of pmin and cmax.

Theorem 3 (p(no-conclusion) for the continuing system)

p(no-conclusion) =

∑2×cmax−1
i=1 (1−pmin

pmin)i

∑2×cmax
j=0 (1−pmin

pmin)j
. ��

Using the formula in Theorem 3 and the values of pmin and cmax in Table 2,
we can compute the values of p(no-conclusion), for the continuing system, as
shown in Table 2.

From the first row in Table 2, if pmin and cmax for the continuing system
are 0.6 and 17 respectively, then p(no-conclusion) for this system is 0.667. This
means that even if the state of process source remains fixed for a long time
period T, process monitor cannot conclude that cs = state for 66.7% of the
time during period T. Clearly, this is not acceptable and a modification of the
continuing system is in order. In the next section, we describe how to modify
the continuing system to remedy this problem. We refer to the modified system
as the stable system.

Table 2.

pmin cmax p(no-conclusion)
0.6 17 0.667

0.7 8 0.429

0.8 5 0.250

0.9 3 0.111

The Truth System: Can a System of Lying Processes Stabilize? 319

5 The Stable System

The stable system is obtained from the continuing system, discussed in the pre-
vious section, by making the following two modifications to process monitor (in
the continuing system). First, a new variable named ss is added to process mon-
itor. Variable ss stores the latest stable estimate (by process monitor) of the
state of process source. Second, the last if -statement in the action of process
monitor is modified to become as shown in Figure 1. (The first if -statement in
the action of process monitor remains unchanged.)

if c = cmax then
{conclude: cs = state} ss := cs

end

Fig. 1.

The probability of error p(error) of the stable system is defined as the steady
state probability that the system is in a global state where ss �= state. The
following theorem describes the relationship between pmin, cmax, and p(error)
for the stable system.

Theorem 4 (pmin, cmax, and p(error) for the stable system). Given
that p(error) for the stable system is around 10−6, we have the following rela-
tionship between pmin and cmax for the stable system.

A step of the stable system consists of two parts. First, process source executes its
action once. Second, process monitor executes its action once. The convergence
span of the stable system is the average number of steps that needs to be executed
by the stable system in order to change the global state of the system from one
where c = cmax and ss �= state to one where c = cmax and ss = state. The
following theorem gives an approximate formula for computing the convergence
span of the stable system.

Theorem 5 (convergence span of the stable system).

convergence span ≈ 2 × cmax

2 × pmin − 1
. ��

Table 3.

pmin cmax

0.6 20

0.7 9

0.8 5

0.9 4

��

320 M.G. Gouda and Y. Li

Table 4.

pmin cmax convergence span

0.6 20 200

0.7 9 45

0.8 5 17

0.9 4 10

Using the formula in this theorem and the values of pmin and cmax from
Table 3, we compute the convergence span of the stable system as shown in
Table 4.

6 A Stabilizing Token Ring

In this section, we discuss how to employ the stable system, presented in the
previous section, as a building block in constructing a stabilizing unidirectional
token ring of up to 100 processes, where each process can lie about its state
at most 40% of the time. The use of the stable system as a building block in
constructing a stabilizing token ring, (where each process can lie about its state
at most 40% of the time) can be roughly viewed as an example of the cross-over
composition proposed in [2].

We start our discussion by presenting a unidirectional token ring, in Proto-
col 3, where processes do not lie about their states. Note that this ring is similar
to Dijkstra’s token ring in [4] with two exceptions. First, the execution of this ring
is synchronous, whereas the execution of Dijkstra’s token ring is asynchronous.
Second, this ring uses message passing primitives whereas Dijkstra’s token ring
uses shared memory primitives.

Protocol 3. process p[i : 0..n-1] in the original token ring

variable s : 0..n-1 {sent/received state}
ss : 0..n-1 {state}

begin
true →

s := ss
send s to p[i+1 mod n]

|| rcv s from p[i-1 mod n] →
if i > 0 then

ss := s
else if ss = s then

ss := ss + 1 mod n
end

end

The Truth System: Can a System of Lying Processes Stabilize? 321

In this ring, each process p[i] has two variables, s and ss, where variable s
stores the latest state that p[i] has sent or received, and variable ss stores the
state of p[i]. Each p[i] also has two actions: a sending action where p[i] sends its
own state to p[i+1 mod n], and a receiving action where p[i] receives the state
of p[i-1 mod n] then modifies its own state based on the received state.

A global state of this ring is defined by a value for each ss variable in the ring.
(This means that the s variables are not considered part of the global state of
the ring.)

A transition of this ring is a pair (S, S’) of global states of the ring such that if
the ring is in a global state S and a “step” is executed, then the ring becomes in
a global state S’. Executing a step in the ring consists of two parts. First, each
process in the ring executes its sending action, then each process in the ring
executes its receiving action. Thus, each process in the ring ends up executing
both its (sending and receiving) actions in a step.

A computation of this ring is an infinite sequence S.0, S.1, ... of global states
of the ring such that each pair (S.i, S.(i+1)) of consecutive states in the sequence
is a transition of the ring.

It is straightforward to show that each computation of this ring reaches a
legitimate global state where the values of all the ss variables are equal after at
most 2n transitions, and so this ring is stabilizing.

Clearly, stabilization of the ring in Protocol 3 depends heavily on the fact
that the ring processes do not lie when they send their states to other processes.
To allow the ring processes to lie about their states, 40% of the time, and still
retain the stabilization of the ring, we employ the stable system, discussed in the
previous section, in constructing the new ring. Specifically, each process p[i] in
the ring is modified to act as a source when p[i] sends a state s to process p[i+1
mod n], and act as a monitor when p[i] receives a state s from process p[i-1 mod
n]. The new ring is shown in Protocol 4.

A global state of the new ring is defined by a value for each ss variable in
the ring. (This means that none of the other variables, namely r, c, s, and cs, is
considered part of the global state of the new ring.)

A transition of the new ring is a pair (S, S’) of the global states of the new
ring such that if the ring is in a global state S and a “step” is executed, then the
ring becomes in a global state S’. Executing a step in the new ring consists of
two parts. First, each process in the ring executes its sending (or source) action.
Second, each process in the ring executes its receiving (or monitor) action.

A computation of the new ring is an infinite sequence S.0, S.1, ... of global
states of the ring such that each pair (S.i, S.(i+1)) of consecutive states in the
sequence is a transition of the new ring.

The new ring can be viewed as consisting of n stable systems, and each ss
variable in the ring can be viewed as belonging to the monitor of one of those
stable systems. For the new ring to stabilize, if it is to stabilize, each ss variable
needs to be assigned around 2×n new values. From Table 4 and given that pmin
is 0.6, a stable system needs to execute on average 200 steps in order to assign
a new value to its ss variable. Therefore, for the new ring to stabilize, if it is to

322 M.G. Gouda and Y. Li

Protocol 4. process p[i : 0..n-1] in the new token ring

const pmin : 60..99 {pmin = 60}
cmax : integer {cmax = 20}

variable r : 0..99 {random number}
c : 0..cmax {counter, init. 0}
s : 0..n-1 {sent/received state}
cs : 0..n-1 {candidate state}
ss : 0..n-1 {stable state}

begin
true →

r := random
if r ≥ pmin then

s := any
else

s := ss
end
send s to p[i+1 mod n]

|| rcv s from p[i-1 mod n] →
if c = 0 then

c := 1
cs := s

else if cs �= s then
c := c - 1

else
c := min(c+1, cmax)

end
if c = cmax then

if i > 0 then
ss := cs

else if ss = cs then
ss := ss + 1 mod n

end
end

end

stabilize, each of the n stable systems in the ring needs to execute around 400×n
steps. By choosing n to be relatively small, say 100, each stable system in the
ring needs to execute a small number of steps, around 40000 steps in order for
the ring to stabilize. Because the probability of error of a stable system is very
small, around 10−6, it is reasonable to assume that whenever any ss variable is
assigned a value, in the first 40000 transitions of a computation, it is assigned a
correct value. We refer to this assumption as the no-use-lying assumption.

Now consider a computation S.0, ..., S.40000, ... of the new ring. Under the
no-use-lying assumption, whenever an ss variable is assigned a value in the first
40000 transitions of this computation, it is assigned a correct value. Therefore,

The Truth System: Can a System of Lying Processes Stabilize? 323

the global state S.40000 in this computation is a legitimate state, with high
probability. Therefore, the new ring is stabilizing, with high probability.

The probabilistic stabilization of the new ring depends heavily on the validity
of the no-use-lying assumption. To check the validity of this assumption, we
have run 100 simulations of the new ring. For each simulation, we chose n (the
number of processes in the ring) to be 100, the initial global state of the ring to be
random, and the wrong state that each process sends in place of its correct state
to be 0. We observed that each simulation has stabilized to a legitimate global
state, after no more than 32440 transitions. These simulation results justify our
adoption of the no-use-lying assumption.

A probabilistic token ring is proposed in [5]. This ring is significantly different
from our new token ring in Protocol 4 in the following sense. In the probabilistic
ring in [5], when p[i] receives a (possibly wrong) value s from p[i-1 mod n], p[i]
uses the received s to update its own state. By contrast, in our new ring in
Protocol 4, when p[i] receives a (possibly wrong) value s from p[i-1 mod n], p[i]
first uses its counter c to check whether s is correct with high probability, and
only when p[i] is certain that s is correct with high probability, does p[i] use s
to update its own state.

7 Concluding Remarks

The truth system is a building block that can be employed in a distributed system
to ensure that the system performs its intended function, with high probability,
even if up to 40% of the sent values by each process in the system are completely
arbitrary. In this paper, we presented three versions of the truth system: the one-
shot system, the continuing system, and the stable system. We also compared
the properties of these three versions and concluded that the stable system is
superior to the other two. Finally we showed how to employ the stable system in
a unidirectional token ring so that the ring performs its intended function even
if up to 40% of the values sent by each process in the ring are arbitrary.

This paper suggests a number of interesting problems that merit further re-
search. First, are there interesting versions of the truth system other than those
discussed in this paper? Second, are there algorithms that take a distributed sys-
tem that performs a function f under the assumption of perfect communication
and produce a distributed system that employs a version of the truth system
as a building block and performs function f, with high probability, under the
assumption that up to 40% of the values sent by each process in the system are
arbitrary. Third, are there effective methods to compute the probability of error
and the convergence span for a distributed system where a version of the truth
system is employed as a building block?

Acknowledgments. The work of M. G. Gouda is supported in part by a grant
0520250 from the National Science Foundation. The authors are grateful to the
referees who made useful suggestions to improve the presentation. We are espe-
cially grateful to the referee who remembered Gouda’s early proposal to reject

324 M.G. Gouda and Y. Li

any self-stabilization paper that uses Dijkstra’s token ring as an example, and
who accepted our paper nonetheless. We appreciate your tolerance!

References

1. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: On the power of anonymous
one-way communication. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.)
OPODIS 2005. LNCS, vol. 3974, pp. 396–411. Springer, Heidelberg (2006)

2. Beauquier, J., Gradinariu, M., Johnen, C.: Cross-over composition - enforcement
of fairness under unfair adversary. In: Datta, A.K., Herman, T. (eds.) WSS 2001.
LNCS, vol. 2194, pp. 19–34. Springer, Heidelberg (2001)

3. Chandra, T.D., Toueg, S.: Unreliable failure detectors for asynchronous systems.
Journal of the ACM 43(2), 225–267 (1996)

4. Dijkstra, E.W.: Self-stabilization systems in spite of distributed control. In: CACM,
pp. 643–644 (November 1974)

5. Dolev, S., Herman, T.: Dijkstra’s self-stabilizing algorithm in unsupportive envi-
ronments. In: Datta, A.K., Herman, T. (eds.) WSS 2001. LNCS, vol. 2194, pp.
67–81. Springer, Heidelberg (2001)

6. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM 32(2), 374–382 (1984)

7. Fischer, M.J., Merritt, M.: Appraising two decades of distributed computing theory
research. Distributed Computing 16(2-3) (2003)

8. Gouda, M.G., Li,Y.:The truth system: Can a system of lying processes stabilize?
UTCS Technical Report TR-07-42, Department of Computer Sciences, The Uni-
versity of Texas at Austin, Austin, TX, 2007.

9. Herzberg, A., Kutten, S.: Early detection of message forwarding faults. SIAM Jour-
nal of Computing, August-October issue (2000)

10. Hoch, E.N., Dolev, D., Daliot, A.: Self-stabilizing byzantine digital clock synchro-
nization. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp.
350–362. Springer, Heidelberg (2006)

11. Kumar, A., Malik, K.: Voting mechanisms in distributed systems. IEEE Transac-
tions on Reliability 40(5), 593–600 (1991)

12. Malekpour, M.R.: Byzanting-fault tolerant self-stabilizing protocol for distributed
clock synchronization systems. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006.
LNCS, vol. 4280, pp. 411–427. Springer, Heidelberg (2006)

13. Paquette, M., Pelc, A.: Optimal decision strategies in byzantine environments.
Journal of Parallel and Distributed Computing 66(3), 419–427 (2006)

14. Peterson, W.W., Brown, D.T.: Cyclic codes for error detection. In: Proceedings of
the IRE, vol. 49, pp. 228–235 (1961)

15. Walter, J.E., Welch, J.L., Vaidya, N.H.: A mutual exlcusion algorithm for ad hoc
mobile networks. Wireless Networks (2001)

16. Yang, J., Gafni, E., Neiger, G.: Structured derivations of consensus algorithms for
failure detectors. In: PODC, Puerto Vallarta, Mexico (1998)

Temporal Partition in Sensor Networks�

Ted Herman1, Sriram Pemmaraju1, Laurence Pilard1,2, and Morten Mjelde1,3

1 Department of Computer Science,
University of Iowa, Iowa City, IA 52242-1419, U.S.A.

{herman,sriram}@cs.uiowa.edu
2 pilard.laurence@gmail.com
3 University of Bergen, Norway

mortenm@ii.uib.no

Abstract. Sensor networks are composed of nodes embedded in physical
environments where applications may be tasked to run for years with-
out human maintenance and without continuous external power supply.
Strategies for power conservation are thus important in sensor network
protocols and system architecture. One such strategy is to arrange node
sleeping schedules so that radios are powered off until communication is
necessary. Nodes cannot receive messages during periods when the ra-
dio is turned off. In this setting, there can arise situations where groups
of network nodes have somehow become temporally partitioned : due to
having different sleeping schedules, groups of nodes could be unaware of
each other. The paper presents several self-stabilizing protocols to solve
the problem of temporal partition; starting from an arbitrary temporally
partitioned state, these protocols lead the network to a state in which
all nodes have a perfectly aligned sleep schedule. Our techniques include
using randomly chosen relatively prime sleep periods and occasional, and
possibly random, probing of extra time slots. Our protocols aim for fast
convergence while imposing only a small energy consumption overhead.

1 Introduction

Efficient power utilization is widely studied in the Wireless Sensor Network
(WSN) community. WSNs are composed of nodes embedded in physical environ-
ments that may need to operate for years using only battery power, so techniques
reducing power consumption are important. Among the ideas for reducing power
consumption, powering down the processor is the simplest to implement (modern
processor architectures typically enable fast switching to low power idle states).
Auxiliary devices in a sensor node, including flash memory and radio, can also
be put into low power modes or turned off completely. To illustrate the util-
ity of turning off the radio, consider the widely used CC2420 radio chip, which
essentially has four different power modes: transmitting, receiving, idle (awake
to receive), and off. For this chip, receiving a message, which takes about 1.472
milliseconds, consumes the same power as running in idle mode for about 65

� Research supported by NSF Grant 0519907.

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 325–339, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

326 T. Herman et al.

milliseconds. Judiciously powering off the CC2420 (which consumes no power
while off) rather than running in idle mode can thus significantly extend the
lifetime of a WSN application dependent on batteries.

The WSN literature refers to techniques that power off the radio (and other
devices) intermittently as duty cycling. A common strategy is to arrange periodic
time intervals, called cycles, that begin with the radio on for some fixed period
of activity, followed by turning the radio off for the remainder of the cycle. The
fixed period with the radio on is called the active period, and the remainder of
the cycle is the sleeping period (see Figure 1(a)). The duty cycle is defined as the
ratio of the active period length to the length of the entire cycle (sum of active
and sleeping periods). Typical WSN targets for duty cycles are 1% or below,
which can extend to years the life of a sensor network running on batteries.
Though duty cycling seems obviously a good idea to conserve power, there is
some risk associated with duty cycle implementation, as the following paragraph
explains.

time

sleep

active

cycle

A

B

C

(a) (b)

Fig. 1. (a) The typical cycle of an active period followed by a sleep period. (b) Nodes
A and B are aligned, whereas node pairs (A,C) and (B, C) are displaced.

Selection of duty cycle parameters must be balanced against application and
network protocol performance. The question of what are optimal parameters
for duty cycling has been addressed in previous research (Section 3 covers some
results). Some other issues concerning duty cycle implementation are robustness
to deployment errors, adaptation dynamic changes to the network, and mobility
of sensor nodes. The basic problem we examine in this paper is temporal partition.
If different subnetworks of a WSN follow duty cycles that are “displaced” such
that one subnetwork is sleeping while another is active, can the duty cycling
protocol automatically bring the subnetworks together to a common duty cycle?
At any time, a set R of nodes in the WSN are called aligned if their cycles have
the same lengths (active and sleeping periods) and the time instants of when the
next active period starts, for nodes in R, all lie in some time interval of length ε
(a platform-dependent tolerance factor related to timekeeping abilities). If a pair
(x, y) of nodes is not aligned, then we say x and y are displaced ; more generally,
if a set R is aligned and a set S is aligned, but if R ∪ S is not aligned, then

Temporal Partition in Sensor Networks 327

R and S are displaced (see Figure 1(b)). This terminology enables a succinct
statement of the problem we consider, which is a problem of self-stabilization:
starting from an initial state where each node has some arbitrary cycle, does the
protocol eventually converge to state where the set of all nodes is aligned, and
remains aligned thereafter? Implicit in this problem statement is the fact that
a pair of displaced nodes may have no awareness of each other and cannot gain
this awareness until they are aligned.

One could argue that, in practice, temporal partition rarely if ever occurs,
because transient faults of state are very rare (we do not have any data on the
occurrence of such faults) and networks are carefully deployed. The addition
of new nodes to a network is simple to accommodate: after initialization, new
nodes remain active until they overhear the current cycle and then join the
network gracefully. Nevertheless, a protocol that can stabilize from temporal
partition has the virtue of relaxing constraints on deployment, say, that nodes
must be initialized in a controlled order, or disallowing that some group of nodes
accidentally initialized together could later be brought to the network as an
active group with their own established cycle.

2 Assumptions, Definitions, and Results

If two WSN nodes p and q are in bidirectional communication range, we say
there is a link between p and q. Let G be the graph induced by the nodes
and bidirectional links; we assume G is connected at any instant. Nodes have
immutable, distinct identifiers: let ID(p) denote the identifier of node p. A subset
S of nodes in G is stably aligned if all nodes in S are aligned and remain aligned
forever in the absence of any transient faults in the network. The length of the
active period is given; we assume that this is a fixed constant and sufficient for a
node to perform local bidirectional communication, i.e., with all neighbors. This
assumption is partly justified by the local broadcast model of communication
that is typically used for WSNs; in this model a message transmitted by a node
can be heard by all other nodes in its communication range. (Our protocols
remain correct even if the active periods have larger length, e.g., proportional
to the diameter of the network, and if these lengths vary from cycle to cycle).
We are given an upper bound, denoted sleepupper, on the length of the sleeping
period. The motivation for sleepupper is that the WSN application is typically
required to sense and report at some given periodicity, and this requirement
would not be satisfied if nodes sleep longer than sleepupper. Given this upper
bound, 1/(1+ sleepupper) is a lower bound on the duty cycle that protocols can
achieve.

We now restate the temporal partition problem. The nodes of G are partitioned
into subsets N1, N2, . . . such that nodes in each subset Ni are initially aligned,
whereas nodes in any pair of distinct subsets (Ni, Nj), i �= j, are displaced.
Devise a self-stabilizing protocol such that, eventually, the set of all nodes in G
is stably aligned. We use two measures for the performance of our protocols: (i)
duty cycle and (ii) convergence time, which we define (as usual) for deterministic

328 T. Herman et al.

protocols to be the worst case time from initial state to a state in which the set
of all nodes in G is stably aligned. For randomized protocols we compute the
expected convergence time and when possible the convergence time guaranteed
with high probability (i.e., 1 − 1/n, where n is the number of nodes in the
network).

We now state our assumptions related to other important issues such as com-
munication, mobility, and clock synchrony. Nodes send and receive messages to
communicate; transmission of a message is not acknowledged. For simplicity of
exposition, we assume that messages are not lost. Our results extend to the case
where messages can be lost, but if (p, q) remains a bidirectional link for some
constant number of cycles, then at least one of p’s messages is received by q
and vice versa. Due to space restrictions, we assume that nodes are not mobile,
though our protocols are correct even in the presence of limited node mobility.

Sensor nodes have discrete clocks that can provide relative timing functions
and scheduled wakeup signals, which support cycle scheduling of active and
sleeping periods. We assume that the WSN uses a (self-stabilizing) clock syn-
chronization protocol, which exchanges messages during the active period of the
cycle. Note that if a set of nodes has synchronized clocks, and if the protocol
for scheduling active and sleeping periods is purely a function of the clock value,
then stable alignment is simple: all nodes become active and sleep together be-
cause their clocks are the same. Suppose (p, q) is a bidirectional link, but p and q
are not stably aligned. One mechanism to achieve alignment is called discovery,
which would occur if p and q have active periods that overlap sufficiently long
to exchange protocol messages: each node thereby “discovers” the other, and
future cycle scheduling can be adjusted to enforce mutual alignment.

To simplify exposition, we normalize the active period length and take it to
be 1 time unit. We assume the cycle period length is a multiple of the active
period length, hence the cycle and sleeping period lengths are integral values.
A time interval of length 1 is called a slot, and we assume that in any state
of the WSN, nodes wake up at integral times, that is, on slot boundaries. This
assumption simplifies our analysis, though in a real network, nodes could be
displaced by some arbitrary real number. For two nodes to become aligned, the
active periods need to overlap long enough for discovery to occur. One way to
interpret our assumption about nodes waking on slot boundaries would be to
extend, in implementation, the actual radio-on time for an active period so that
sufficient overlap is ensured. Such implementation details are beyond the scope
of this presentation.

Results. The paper presents two classes of self-stabilizing protocols for the tem-
poral partition problem. The first class of protocols (Section 4.1) use a “no cost”
approach, which permits nodes to only vary their sleep periods and does not
allow them to remain active outside their given active periods. This class of pro-
tocols provide O(diam(G) · z2) convergence time with 1/z duty cycle for any
z ≤ sleepupper. The key step in these protocols is a randomized choice of rela-
tively prime sleep periods. The second class of protocols (Section 4.2) use probing.
These protocols permit nodes to remain active for a small number of time slots

Temporal Partition in Sensor Networks 329

outside their active period, for the purposes of probing other components. We
consider deterministic as well as randomized probing techniques. We present a
family of deterministic probing protocols that provide O(diam(G) · z2

c) conver-
gence time with a duty cycle of 1+c

z , for any integer c, 1 ≤ c ≤ z − 1. We show
that these protocols are optimal by providing matching lower bounds. For dense,
constant-diameter networks, randomized probing provides O(z·(log z+log log n))
convergence time with 2/z duty cycle, for any z ≤ sleepupper. We provide a com-
parison of the results for these classes of protocols in Section 5.

3 Related Work

The majority of WSN research on radio power conservation is investigated at
the MAC layer, which can optimize for different communication patterns (broad-
cast, convergecast, etc.) and take advantage of platform-specific abilities. The
application layer, however, may have extra knowledge that enables greater opti-
mization in power control [8]. For instance, at the application layer it could be
known that the WSN should sleep for eight hours. The protocols in this paper
are intended for middleware or for the application layer, which fits the paradigm
of cycles with active and sleeping periods described in Section 2. At the MAC
layer, protocols are not geared to cycles; instead, a node can initiate transmission
at any time, which is generally suited to low-latency, event-driven applications.

MAC-layer protocols for power control are either asynchronous [11,6] or syn-
chronous [1,4,2,3]. The asynchronous protocols arrange the timing of wakeup
and sleep using patterns so that discovery can occur for each transmission oper-
ation [11]. For example, the B-MAC protocol [6] introduces Low-Power Listening
(LPL), in which nodes sleep for some time, followed by brief sampling of the radio
to detect upcoming transmissions. LPL requires that transmitters send a pream-
ble to each message such that the length of the preamble is at least the length of
the LPL sleeping time. In synchronous MAC protocols, nodes may build tables
to represent the schedule of each neighbor, and arrange active periods to suit
the targets of transmission. See [10] for a comparative analysis of power man-
agement protocols and some optimality results in this area. Typical duty cycles
for asynchronous MAC protocols range from 1% to 30%. For synchronous MAC
protocols, it is possible to obtain about 0.1% duty cycles [5]. To get duty cycles
much below 0.1% seems to require knowledge of application behavior [9].

4 Protocols

We distinguish two approaches for protocol design: (i) the “no cost” approach
varies only the length of the sleep period up to the sleepupper bound; (ii) the “prob-
ing” approach adds active periods for the purpose of accelerating convergence.

Before we present our protocols in detail, we discuss the issue of how compo-
nents merge with each other after discovery; this pertains to all our protocols.
When the active period of a node a overlaps with the active period of a node
b, both nodes acquire information about each other. Then using an unspecified

330 T. Herman et al.

“merge rule,” either a decides to join b’s component or vice versa. There can
be a variety of deterministic or randomized merge rules. For example, a node
with smaller clock value may join the component of node with larger clock value;
alternately, IDs of component leaders may be used to make this decision. Ideally
a merge rule should be simple and not impose any communication overhead. Be-
sides the merge rule, there is also the issue of whether or not a node a takes its
component along when it joins node b’s component. If we assume yes, then node
a needs to communicate its decision to the rest of the nodes in its component
and this imposes a communication overhead. The advantage of this approach is
that for any component, each of its nodes contributes to the discovery of other
components, thereby increasing the possibility that this component will join oth-
ers. Despite this advantage, our protocols assume that nodes individually make
the decision to join other components, without taking the rest of their compo-
nent along. This choice was made mainly to keep the communication overhead
low and keep our analysis simple. Exploring the trade-offs between these two
approaches is for the future.

4.1 No Cost Approaches

This section presents an efficient “no cost” protocol to solve the temporal par-
tition problem. The basic structure of protocols being considered here is the
following.

1. If v receives a message from a node u such that clock(v) �= clock(u) and
if the “merge rule” is satisfied then v copies clock(u) and other associated
information.

2. Node v picks its sleep period sv ≤ sleepupper.

The above two steps are executed as part of node v’s active period. After
completion of its active period, v sleeps for sv slots and then repeats the above
protocol. Due to the assumption that the active period of a node occupies one
time slot, the cycle length of node v satisfies zv = 1 + sv. Variants of the above
protocol are obtained by varying how the sleep period sv is chosen. For exam-
ple, sv may vary from node to node and from one cycle to the next, sv may be
chosen using a deterministic rule or a randomized rule, etc. In the rest of this
subsection we assume that all nodes in a stably aligned component choose the
same sleep period in each cycle, though this may vary from cycle to cycle. This
can be achieved without any communication because these nodes share common
information (a synchronized clock, the ID of the component leader, etc.) and the
sleep period is a function of such information. This is true even if the choice of the
sleep period is random; if all nodes in a stably aligned component use their clock
value as a seed for the random number generator, they obtain identical sleep
periods with no need for additional communication. The following lemma uses
elementary number-theoretic arguments to show that the choice of sv is critical.

Lemma 1. Let za and zb respectively be the cycle lengths of nodes a and b, in
every cycle.

Temporal Partition in Sensor Networks 331

(i) If za and zb are not relatively prime then there exists an initial displacement
of a and b such that the active periods never overlap.

(ii) If za and zb are relatively prime then the active periods of a and b overlap
within at most sa · sb time slots, regardless of the initial displacement.

Proof. (i) Let f > 1 be a common factor of za and zb. For any pair of positive
integers ma and mb, the quantity ma · za − mb · zb is a multiple of f and is
therefore distinct from 1. If nodes a and b start with an initial displacement of
1, then no matter how many cycles a runs for and no matter how many cycles
b runs for, the active periods of a and b never overlap.
(ii) Without loss of generality, suppose that za > zb. Then for any possible dis-
placement k, the equation ma · za − mb · zb = k has a positive integer solutions
for ma and mb satisfying ma ≤ sb and mb ≤ sa. Thus the active periods of a
and b overlap in at most sa · sb time slots. ��

The above lemma suggests the assignment of relatively prime cycle lengths to dif-
ferent components in order to guarantee convergence. For a pair of components,
an easy choice would be integers z and z+1 satisfying 2 ≤ z < z+1 ≤ sleepupper
because such a pair is guaranteed to be relatively prime. See Figure 2 for an il-

time

cycle

cycle

overlapz = 5

z = 4

node a

node b

Fig. 2. Illustration for two nodes, a with cycle length 5 and b with cycle length 4. In
this example, after the active periods of a and b overlap, node b adopts the cycle length
of a and the two nodes will continue to be aligned forever.

lustration of how convergence takes place for z = 4. However components are
unaware of each other’s existence and are therefore unaware of the choices that
other components make. Therefore deterministically guaranteeing that the two
components make distinct choices is difficult and so we resort to randomization.
Let z be a fixed integer satisfying 2 ≤ z ≤ sleepupper. Each node v performs the
following step in determining its sleep period.

NoCost1(v): In each cycle, node v picks its sleep period sv uniformly at
random from {z − 1, z}.

Thus the cycle length of each node v is either z or z + 1. Note that the above
protocol assumes that all nodes are aware of z. This is justified by assuming
that all nodes are informed of sleepupper and use a common, deterministic rule

332 T. Herman et al.

for picking an integer z, 2 ≤ z ≤ sleepupper − 1 (e.g., pick the largest integer z:
2 ≤ z ≤ sleepupper − 1). We now prove an upper bound on the number of time
slots it takes for the active periods of a pair of nodes using the NoCost1 rule to
overlap. Define the displacement of a pair of nodes to be the minimum distance,
in time slots, between the active periods of the nodes.

Lemma 2. In a network in which nodes use the NoCost1 rule for picking sleep
periods, for any two nodes a and b, the active periods of a and b will overlap in
expected O(z3) time.

Proof. Let Z be the random variable denoting the displacement between nodes
a and b. Suppose that at the beginning of a cycle 0 < Z < �z/2�. Then at
the end of the cycle, Z increases by 1 with probability 1/4, decreases by 1 with
probability 1/4, and retains the same value with probability 1/2. At the two ex-
treme values Z = 0 and Z = �z/2�, the random variable behaves as follows: (i)
if Z = 0, then at the end of the cycle, Z increases by 1 with probability 1/2 and
retains the same value with probability 1/2; (ii) if Z = �z/2�, then at the end of
the cycle Z decreases by 1 with probability 1/2 and retains the same value with
probability 1/2. This behavior of Z as a function of the number of cycles is a
1-dimensional random walk with reflecting barriers and it is well known [7] that
such a random walk will reach Z = 0 in expected O(z2) steps (cycles), which
translates to O(z3) time slots, independent of what the initial value of Z is. ��

The random walk described in the above proof is a somewhat inefficient way of
removing the displacement between a pair of nodes, especially given the fact that
if we could somehow force one component to pick z and the other to pick z+1 we
could get convergence in O(z) cycles (= O(z2) time slots) because in each cycle
the displacement between the two components would consistently change by one
slot. This observation motivates the following rule for picking a sleep period.

NoCost2(v): Node v picks sv uniformly at random from {z − 1, z} and
retains the same sleep period for 2z cycles.

The use of NoCost2 shaves off a factor of “z” from the expected time to overlap
and gets us to within a constant factor of the optimal deterministic selection.

Lemma 3. In a network in which nodes use the NoCost2 rule for picking sleep
periods, for any two nodes a and b, the active periods of a and b will overlap in
expected O(z2) time.

Proof. Let a phase denote 2z consecutive cycles in which a node has the same
sleep period. Although a and b may not begin phases simultaneously, each phase
of one node will be concurrent for at least z cycles with a phase of the other.
If a and b pick distinct cycle lengths then they overlap within one phase; the
probability of this event is 1/2. On the other hand, with probability 1/2, a and
b might pick the same cycle length and continue to have the same displacement
at the end of the phase. Therefore, the random variable P , denoting the number
of phases before overlap, has the geometric distribution Prob[P = k] = 1/2k and

Temporal Partition in Sensor Networks 333

therefore E[P] = O(1). This means that the active periods of a and b overlap
in expected O(1) phases, which translates to expected O(z) cycles or expected
O(z2) time slots. ��

The above lemma considers only two components. We now consider the general
case where the network has arbitrarily many stably aligned components of ar-
bitrary sizes. Each node executes NoCost2 and to be concrete we assume the
merge rule: if clock(a) < clock(b) then node a joins node b’s component.

Theorem 1. In expected O(diam(G) · z2) time slots, the network will have ex-
actly one stably aligned component. Here diam(G) refers to the diameter of the
network G.

Proof. Let v be a node with largest clock value. From Lemma 3 we see that
in expected O(z2) time slots, all neighbors of v would have inherited v’s clock
value. Note that the stably aligned component containing v will continue to have
the largest clock value in the network. Continuing inductively, we see that in ex-
pected O(t · z2) time slots, all nodes within t hops from v would have inherited
v’s clock, leading to the theorem. ��

Corollary 1. There is a self-stabilizing protocol that solves the temporal parti-
tion problem without using any extra active time periods in O(diam(G) ·z2) time
with a 1/z duty cycle.

A cycle length of z and a duty cycle of 1/z prevents the nodes from using any
extra active time periods, besides the given active periods they are required to
have. In such a setting information takes Ω(z) time slots to traverse O(1) hops
in the network and therefore we get an Ω(diam(G) · z) lower bound on the
convergence time for any no cost protocol. The above result is thus a factor of
“z” away from this lower bound.

4.2 Probing Approaches

While the no-cost approach shows convergence with no additional power con-
sumption beyond what is needed for the prescribed active period, it is possible to
speed up convergence by increasing the duty cycle by only a constant factor. This
is done by permitting nodes to be active for additional time slots outside their
prescribed active periods for the purposes of “probing” for other components.
During the additional active period, each node will probe for nodes not belong-
ing to its own stably aligned component. During its probing period a node will
repeatedly send messages and also listen for messages from other nodes. Con-
trary to the no-cost approach, we make the sleep period length identical for all
nodes in all cycles.

In this section we will consider two methods for probing: deterministic and
randomized. In both approaches, during a component’s prescribed active period,
every node will select a probing period from within the sleeping period during
the probing period it will turn its radio on. This probing period may be selected
deterministically or randomly, as we shall see in the following.

334 T. Herman et al.

Deterministic Probing. We start this section with a deterministic probing
protocol. Let z be the cycle length and assume that time slots in a cycle are
labeled 0, 1, . . . , z − 1. For an integer parameter c, 1 ≤ c ≤ z − 1, we define
the probing period to be a set of size c of consecutive slots in [1, z − 1]. The
basic structure of the protocol is the following: during its active period, a node
chooses its next probing period to immediately follow its current probing period.
For example, if the current probing period of a node is [x, x + c − 1], then its
next probing period is [x + c, x + 2c − 1]. The endpoints of the probing period
are computed modulo z so as to allow the next probing period to start at the
beginning of the cycle, in the event that the previous probing period had reached
the end.

Assuming that each component has an ID which is the greatest ID of any node
in the component, we have the following merging rule. Suppose that during its
active or probing period, the node v ∈ A discovers a node u ∈ B, where A
and B are distinct components. If the ID of B is higher than the ID of A,
then v immediately joins B by adjusting its clock. Otherwise, v sends a message
containing its clock and the ID of A to u; on receiving v’s message u immediately
joins A. Recall two assumptions we made in Section 2: (i) the length of the
active period (i.e., 1 time unit) is sufficiently large to allow reliable bidirectional
communication and (ii) the length of overlap between any two time periods is
integral. These two assumptions along with the fact that v and u are neighbors
implies that all of the communication described above completes before the end
of the active or probing periods of v and u. It is easy to see that the duty cycle of
the protocol is (1 + c)/z, and that in
z/c� cycles, all slots of a cycle are probed
by each node. This leads to the following result.

Lemma 4. In a network where nodes use the deterministic probing protocol with
integral c, 1 ≤ c ≤ z−1, any two adjacent nodes will discover each other in O(z2

c)
time.

Using the above lemma and an argument essentially identical to that in the proof
of Theorem 1, we get the following result.

Theorem 2. The convergence time of the deterministic probing protocol is
O(diam(G) · z2

c).

We now show that the above protocol is optimal within a constant factor by
proving a Ω(diam(G) · z2

c) lower bound on the convergence time of any deter-
ministic ID-based protocol (i.e., a protocol that uses the nodes IDs to govern
the merging of two or more components) with a duty cycle of 1+c

z . We say that
discovery occurs between two connected components if the probing period of
one overlaps with the active period of the other. We assume that discovery is a
sufficient condition to ensure that at least one node belonging to one of the two
components will merge with the other.

We define a probing frame as the union of all probing periods (over several
cycles). For instance, if the probing period of a node is {1, 2, . . . , z − 1} (the
entire sleeping period) each cycle, then the probing frame of the node is the

Temporal Partition in Sensor Networks 335

sleeping period itself. In the same way, if the probing period alternates between
{1, 2} and {3, 4}, the probing frame is {1, 2, 3, 4}. Moreover, we assume that
the probing frame begins just after the active period. Note that all nodes in
one stably aligned component have the same probing frame. The next lemma
considers the minimum length of the probing frame needed to guarantee that
discovery occurs between two connected components.

Lemma 5. Let A and B be two stably aligned components. Regardless of the
initial temporal displacement, when using a deterministic probing protocol dis-
covery is guaranteed between A and B if and only if the length of the probing
frame is at least � z

2� slots.

Proof. In this proof we denote the length of the probing frame as p slots. Recall
that the length of the sleeping period is z − 1. We first show that if discovery is
to be guaranteed, then p ≥ � z

2�. Assuming that the active period of A does not
overlap with the probing frame of B, then since B’s probing period consists of the
first part of its sleeping period it follows that the active period of A overlaps with
B’s remaining sleeping period. Thus in order to ensure that the probing frame of
A overlaps with the active period of B we require that z−1−p ≤ p ⇒ z

2 − 1
2 ≤ p.

Since the length of the probing frame must be an integer number of slots, we
get that p ≥

⌊
z
2

⌋
.

It is easy to show that if p ≥ � z
2� then discovery is guaranteed, but due to

page constraints we omit the details. ��

Given that the length of one probing period is c slots, it follows from Lemma
5 that each probing frame consists of � z

2� · 1
c probing periods. From this we see

that Ω(z
c) cycles are required to guarantee discovery between two components,

and since the length of one cycle is z slots, we get the following result.

Lemma 6. Given a protocol solving temporal partition using a deterministic
probing approach. The minimum time complexity ensured by the protocol for
discovery to occur between two stably aligned components is Ω(z2

c) slots where c
is the length of the probing period.

In the following, we will denote a component graph Gc = (Vc, Ec) such that every
stably aligned component in the network is a node in Vc and there exists an edge
between two nodes A and B in Gc if and only if there exists an edge between at
least one node in A and one node in B in the network.

Theorem 3. There does not exist a deterministic ID-based protocol for solving
the temporal partition problem that with a duty cycle of 1+c

z converges in less
than Ω(z2

c · diam) slots where diam is the diameter of the network.

Proof. Assume that such a protocol exists, we will show that this leads to a
contradiction. We consider a component graph that is a chain consisting of the
components C1, C2, ..., Cdiam where Ci is a neighbor of Ci−1 and Ci+1 for every
2 ≤ i ≤ diam − 1. We assume that initially every component consists of a single

336 T. Herman et al.

node, and we assign an ID to each node such that ID(C1) > ID(C2) > . . . >
ID(Cdiam).

Lemma 6 states that Ω(z2

c) slots are required before a component is guaran-
teed to discover a neighboring component (if one exists). Observe that N(Ci) =
{Ci−1, Ci, Ci+1} for any 1 ≤ i ≤ diam (within the constraints that i−1 ≥ 1 and
i + 1 ≤ diam). Thus following Ω(z2

c) slots C2 will merge with C1, C3 will merge
with C2 etc. Then, after the merging, we obtain a new component graph con-
sisting of the components C1 ∪ C2, C3, . . . , Cdiam connected in a chain such that
ID(C1 ∪ C2) > ID(C3) > ID(C4) > . . . > ID(Cdiam), since ID(C1 ∪ C2) = ID(C1).
In this new component graph, the diameter has been reduced by 1. Note that
the new component graph retains the same properties as the previous one, and
that every component C3, C4, ..., Cdiam still only consists of a single node. This
allows us to apply an inductive argument.

We see that one component is removed from the graph every Ω(z2

c) slots.
Thus the convergence time is Ω(z2

c ·diam), contradicting the initial assumption.
Since each node is active during 1+c time slots each cycles, we see that the duty
cycle is 1+c

z . ��

Randomized Probing. In this section we will use randomized probing to solve
the temporal partition. The basic idea of randomized probing is that each node
picks one slot at random, from its sleep period, and remains active during that
slot. This approach works best when there is a large component and its nodes
have picked different slots to probe, thus covering a large fraction of the sleep
period. Randomization helps to achieve this and our analysis uses standard ar-
guments similar to those in the “birthday paradox” or the “coupon collector”
problem to assert that if the size of a component is a “logn” factor times the
length of a cycle, the component will cover the entire cycle with high probability.

To keep exposition simple, we assume that the underlying network is a clique;
the technique works for more general constant-diameter, dense graphs. The ba-
sic structure of the protocol is the similar to deterministic probing; recall that
there we assumed that all nodes have the same cycle length z in all cycles. The
key differences between our randomized probing protocol and our deterministic
probing protocol are enumerated below.

1. The “merge rule” is different. Node v merges with the component of node u
provided u’s component is larger in size. If the sizes of the two components
are identical, then the IDs of leaders are used to break the tie. We will show
later that using the sizes of components as part of the merge rule plays a
critical role in ensuring fast convergence.

2. Let the time slots in a cycle be labeled {0, 1, . . . , z − 1}, with 0 denoting
the active period. During the active period each node also picks a time slot
t uniformly at random from {1, 2, . . . , z − 1}. After its active period, each
node goes to sleep for the next z − 1 time slots, with the exception of time
slot t; this time slot is used for probing.

Temporal Partition in Sensor Networks 337

For the purposes of ensuring enough “coverage” of the sleep period, it is critical
for this protocol that the random choices of t be independent even for the nodes
in the same component.

We start the analysis of this protocol be assuming that there are k compo-
nents, labeled C1, C2, . . . , Ck such that |C1| ≥ |C2| ≥ · · · ≥ |Ck| and furthermore
if |Ci+1| = |Ci| then the ID of the component leader of Ci+1 is greater than the
ID of the leader of Ci. Note that this labeling is just for the purposes of the proof
and is not computed by the algorithm. This ordering of components guarantees
that if a node v ∈ Ci leaves its component to join another, then that component
is one of C1, C2, . . . , Ci−1. Our analysis assumes that z ≤ n/8 logn (used in the
proof of Lemma 7). There are two cases depending on the size of C1.

“Large” C1. Suppose that |C1| ≥ 2z · log n. We show that in this case, with high
probability, in one cycle, all nodes in C2 ∪ C3 ∪ · · · ∪ Ck will join component C1.
Consider a node v ∈ C2 ∪ C3 ∪ · · · ∪ Ck. The probability that v’s extra active
period will not overlap with the active periods of any node in C1 is

(
1 − 1

z

)|C1|
≤

(
1 − 1

z

)2z·log n

∼ e−2 log n =
1
n2 .

Since there are n nodes, by using the union bound we see that with probability
at most 1/n there is a node v ∈ C2 ∪ C3 ∪ · · · ∪ Ck whose extra active period
does not overlap with the extra active period of any node in C1. Therefore, with
probability at least 1 − 1/n, every node outside C1 will join C1 in one cycle (of
length z time slots).

“Small” C1. Here we suppose that |C1| < 2z · logn. In this case we show that the
number of components decreases by a constant fraction in each cycle. Consider
a permutation π of all nodes in which C1 comes first, followed by C2, followed
by C3, and so on. The nodes in each Ci appear in some arbitrary order in π.
Let v be the node with rank �n/2� in π and let Cj be the component that
contains v. Call Cj the middle component, C1, C2, . . . , Cj−1, the big components,
and Cj+1, Cj+2, . . . , Ck, the small components. We will show two properties.

Property 1. The number of small components is at least a constant fraction of
the number of large components.

Property 2. In one cycle, all the small components will disappear, with high
probability.

Together these properties lead to the claim that in the “small” C1 case a constant
fraction of the components disappear in each cycle. Property (2) follows from
the same argument that was used to deal with the “large” C1 case. Property (1)
is proved in the following lemma.

Lemma 7. The number of small components is at least a constant fraction of
the number of large components.

338 T. Herman et al.

Proof. Since |C1| < 2z log n, every component has size at most 2z log n. Using
the assumption that z ≤ n/8 logn yields an upper bound of n/4 on the size of
every component. In particular, the middle component C1 has size at most n/4
and from this it follows that the union of the small components has size at least
n/4. Let the number of small components be s. The average size of the small
components is at least n/4s. Therefore every big component has size at least
n/4s, implying that the number of big components is at most 2s. ��

Note that if the number of components is n/2z log n or fewer, then there is at
least one component of size at least 2z log n, putting us in the “large” C1 case
and guaranteeing convergence in one cycle (with high probability). So suppose
that the number of components in more than n/2z log n. Even if the network
starts off with n components (i.e., every node is a components by itself), the
progress we make in the “small” C1 case implies that in O(log(z log n)) cycles,
we will reach a state in which there at at most n/2z log n components. Given
that each cycle has z time slots, we get the following theorem.

Theorem 4. In expected O((log z + log log n) · z) time slots, the network will
have exactly one stably aligned component.

5 Conclusions

The no-cost approach provides an O(diam(G) · z2) convergence time with 1/z
duty cycle for any z ≤ sleepupper. The optimality of this result is currently
unclear to us and it is possible that further randomization could improve the
convergence time to O(diam(G) · z log z). The deterministic probing approach
yields a convergence time of O(diam(G) · z2/c) for any c, 1 ≤ c ≤ z − 1. This
leads to a spectrum of convergence times and duty cycles, obtained by varying c
relative to z such that the product of the convergence time and duty cycle equals
O(diam(G)·z). For example, if c is picked close to

√
z, we get a convergence time

of O(z3/2) and a duty cycle that is approximately 1/
√

z. While this flexibility
might seem like an advantage that the deterministic probing approach has over
the no-cost approach, it is worth pointing out that we can pick any z ≤ sleepupper
for the no-cost approach and obtain a similar flexibility. In the light of this, it
is not clear if the deterministic probing approach has any advantage over the
no-cost approach, at least in the worst case. However, the randomized probing
approach does yield asymptotically faster convergence (with the same duty cy-
cle) relative to the no-cost approach under certain circumstances. If the network
is assumed to be a clique, then the no-cost approach guarantees an O(z2) conver-
gence time for a 1/z duty cycle. Comparing this with the O((log z +log log n) ·z)
convergence time of the randomized probing approach, we note that whenever
log log n = o(z), we get an asymptotically faster convergence time using ran-
domized probing. Informally speaking, unless z is very small, the randomized
probing approach is much faster than the no cost approach for dense network.
Given this positive news for the randomized probing approach, it may be worth-
while to expand this approach to more general classes of graphs. For example, we

Temporal Partition in Sensor Networks 339

are currently analyzing the randomized probing approach for classes of graphs
whose min-cut value is bounded from below.

References

1. Ye, W., Heidemann, J., Estrin, D.: An energy-efficient MAC protocol for wireless
sensor networks. In: INFOCOMM 2002. Proceedings of the 21st International An-
nual Joint Conference of the IEEE Computer and Communication Societies, IEEE
Computer Society Press, Los Alamitos (2002)

2. van Dam, T., Langendoen, K.: An adaptive energy-efficient MAC protocol for wire-
less sensor networks. In: SenSys 2003. Proceedings of the First ACM Conference on
Embedded Networked Sensor Systems, pp. 171–180. ACM Press, New York (2003)

3. Rajendran, V., Obraczka, K., Garcia, J.J., Aceves, L.: Energy-efficient collision-free
medium access control for wireless sensor networks. In: SenSys 2003. Proceedings of
the First ACM Conference on Embedded Networked Sensor Systems, pp. 181–193.
ACM Press, New York (2003)

4. Ye, W., Heidemann, J., Estrin, D.: Medium access control with coordinated adap-
tive sleeping for wireless sensor networks. IEEE Transactions on Networking (2004)

5. Ye, W., Silva, F., Heidemann, J.: Ultra-low duty cycle MAC with scheduled chan-
nel polling. In: SenSys 2006. Proceedings of the 4th International Conference on
Embedded Networked Sensor Systems, pp. 321–334 (2006)

6. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor
networks. In: SenSys 2004. Proceedings of the 2nd International Conference on
Embedded Networked Sensor Systems, pp. 95–107 (2004)

7. Motwani, R., Raghavan, P.: Randomized Algorithms. Combridge University Press,
New York (1995)

8. Ramanathan, N., Yarvis, M., Chhabra, J., Kushainagar, N., Krishnamurthy, L.,
Estrin, D.: A stream-oriented power management protocol for low duty cycle sen-
sor network applications. In: EMNETS 2005. Proceedings of the Second IEEE
Workshop on Embedded Networked Sensors, IEEE Computer Society Press, Los
Alamitos (2005)

9. Li, Y., Ye, W., Heidemann, J.: Energy efficient network reconfiguration for mostly-
off sensor networks. In: SECON 2006. Proceedings of the Third IEEE Conference
on Sensor, Mesh and Ad Hoc Communications and Networks, pp. 527–535. IEEE
Computer Society Press, Los Alamitos (2006)

10. Cao, H., Parker, K.W., Arora, A.: O-MAC: a receiver centric power management
protocol. In: ICNP 2006. Proceedings of the 14th IEEE International Conference
on Network Protocols, IEEE Computer Society Press, Los Alamitos (2006)

11. Zheng, R., Hou, J.C., Sha, L.: Asynchronous wakeup for ad hoc networks. In:
MOBIHOC 2003. Proceedings of the 4th ACM International Symposium on Mobile
Ad Hoc Networking and Computing, pp. 35–45. ACM Press, New York (2003)

Secure and Self-stabilizing Clock

Synchronization in Sensor Networks

Jaap-Henk Hoepman1, Andreas Larsson2, Elad M. Schiller2,
and Philippas Tsigas2

1 TNO ICT, and Radboud University Nijmegen
jaap-henk.hoepman@tno.nl

2 Department of Computer Science and Engineering, Chalmers University of
Technology and Göteborg University
{larandr,elad,tsigas}@chalmers.se

Abstract. In sensor networks, correct clocks have arbitrary starting off-
sets and nondeterministic fluctuating skews. We consider an adversary
that aims at tampering with the clock synchronization by intercepting
messages, replaying intercepted messages (after the adversary’s choice
of delay), and capturing nodes (i.e., revealing their secret keys and im-
personating them). We present the first self-stabilizing algorithm for se-
cure clock synchronization in sensor networks that is resilient to such
an adversary’s attacks. Our algorithm tolerates random media noise,
guarantees with high probability efficient communication overheads, and
facilitates a variety of masking techniques against pulse-delay attacks in
the presence of captured nodes.

Keywords: Secure and Resilient Computer Systems, Sensor-Network
Systems, Clock-synchronization, Self-Stabilization.

1 Introduction

Accurate clock synchronization is imperative for many applications in sensor
networks such as mobile object tracking, detection of duplicates, and TDMA
radio scheduling. Broadly speaking, existing clock synchronization protocols are
too expensive for sensor networks because of the nature of the hardware and
the limited resources that sensor nodes have. The unattended environment, in
which sensor nodes typically reside, necessitates secure solutions and autonomous
system design criteria that are self-defensive against a malicious adversary.

To illustrate an example of clock synchronization importance, consider a mo-
bile object tracking application which monitors objects that pass through the net-
work area (see [2]). Nodes detect the passing objects, record the time of detection,
and send the estimated trajectory. Inaccurate clock synchronization would result
in an estimated trajectory that could differ significantly from the actual one.

We propose the first self-stabilizing algorithm for clock synchronization in
sensor networks with security concerns. We consider an adversary that intercepts
messages that it later replays. Our algorithm guarantees automatic recovery after

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 340–356, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Secure and Self-stabilizing Clock Synchronization in Sensor Networks 341

the occurrence of arbitrary failures. Moreover, the algorithm tolerates message
omission failures that might occur, say, due to the algorithm’s message collisions
or due to random media noise.

The propagation delay of messages in short distance wireless communications
allows nodes to use broadcast transmissions to approximate pulses that mark the
time of real physical events (i.e., beacon messages). In the pulse-delay attack, the
adversary snoops messages, jams the synchronization pulses, and replays them
at the adversary’s choice of time (see [9,10,19]).

We are interested in fine-grained clock synchronization, where there are no
cryptographic counter measures for such pulse-delay attacks, e.g., the nonce tech-
niques strive to verify the freshness of a message by issuing pseudo-random num-
bers for ensuring that old communications could not be reused in replay attacks
(see [18]). Unfortunately, the lack of fine-grained clock synchronization implies
that the round-trip time of message exchange cannot be efficiently estimated.

The system strives to synchronize its clocks while forever monitoring the ad-
versary. We assume that the adversary cannot break existing cryptographic prim-
itives for sensor networks by eavesdropping (e.g., [18,22]). However, we assume
that the adversary can capture nodes, reveal their entire state (including private
variables), stop their execution, and impersonate them.

We assume that, at any time, the adversary has a distinct location in space
and a bounded influence radius, uses omnidirectional broadcasts from that dis-
tinct location, and cannot intercept broadcasts for an arbitrarily long period.
(Namely, we consider a model that is comparable to the one of Gilbert et al. [11],
which considers the minimal requirements for message delivery under broadcast
interception attacks.) We explain how, by following these realistic assumptions,
we can sift out responses to delayed beacons.

A secure synchronization protocol should mask attacks by an adversary that
aims to make the protocol give an erroneous output. Unfortunately, due to the
unattended environment and the limited resources, it is unlikely that all the
designer’s assumptions hold forever, e.g., over time, the number of captured
nodes becomes sufficiently large for the adversary to tamper with the clock.

We consider systems that have the capability of monitoring the adversary ,
and then stopping it by external intervention. In this case, the nodes start ex-
ecuting their program from an arbitrary state. From that point on, we require
rapid system recovery. Self-stabilizing algorithms [3,4] cope with the occurrence
of transient faults in an elegant way. Self-stabilizing systems can be started in any
configuration, which might occur due to the occurrence of an arbitrary combi-
nation of failures. From that arbitrary starting point, the algorithm must ensure
that it accomplishes its task if the system obeys the designer’s assumptions for
a sufficiently long period.

We focus on the fault-tolerance aspects of secure clock synchronization pro-
tocols in sensor networks. Our objective is to design a distributed algorithm for
sampling n clocks in the presence of t incorrect nodes (i.e., faulty or captured).
The clock sampling algorithm facilitates clock synchronization using a variety
of existing masking techniques to overcome pulse-delay attacks in the presence

342 J.-H. Hoepman et al.

of captured nodes, e.g., [9,10] uses Byzantine agreement (requires 3t + 1 ≤ n),
and [19] considers the statistical outliers (requires 2t + ε ≤ n, where ε ∈ O(1)).

Our Contribution. We present the first design for secure and self-stabilizing
clock synchronization in sensor networks that is resilient to an adversary that
can capture nodes and launch pulse-delay attacks. Our design tolerates transient
failures that may occur due to temporary violation of the designer assumption,
e.g., the adversary captures more than t nodes and then stops. After the system
resumes operation according to designer assumption, the algorithm secures with
high probability clock precision that is O((log n)3) times the optimum, where
Ω(n2) is the optimum and n is the number of sensor nodes. We assume that
(before and after the system’s recovery) there are message omission failures, say,
due to random media noise or the algorithm’s message collision. The correct node
sends beacons and responds to the other nodes’ beacons. We use a randomized
strategy for beacon scheduling that guarantees collision avoidance with high
probability.

Document structure. We start by describing the system settings (Section 2)
and formally present the algorithm (Section 3). Then we review the literature
and draw our conclusions (Section 4).

2 System Settings

We model the system as one that consists of a set of communicating entities,
which we call processors (or nodes). We denote the set of processors by P , where
|P | ≤ N ; N is an upper bound on the number of processors and is known by the
processors themselves. In addition, we assume that every processor pi ∈ P has
a unique identifier, i.

Time, Clocks, and Their Notation. We follow a model compatible with the
one of Herman and Zhang [12]. We consider three notations of time: real time
is the usual physical notion of continuous time, used for definition and analysis
only; native time is obtained from a native clock, implemented by the operating
system from hardware counters; local time builds on native time with an additive
adjustment factor in an effort to approximate a cluster-wise clock.

We consider applications that require the clock interface to include the read
operation, which returns a timestamp with T possible states. Let Ci

k and ci
k

denote the value pi ∈ P gets from the kth read of the native or local clock,
respectively. Moreover, let ri

k denote the real-time instant associated with that
kth read operation.

Clock counters do not increment at ideal rates, because the hardware oscil-
lators have manufacturing variations and the rates are affected by voltage and
temperature. The clock synchronization algorithm adjusts the local clock in order
to achieve synchronization, but never adjusts the native clock. We define the na-
tive clocks offset δi,j(k, q) = Ci

k −Cj
q , where Δi,j(k, q) = ri

k −rj
q = 0. We assume

that, throughout system execution, the native clock offset is arbitrary. Moreover,

Secure and Self-stabilizing Clock Synchronization in Sensor Networks 343

the skew of pi’s clock ρi = limΔi,i(k,q)→0 δi,i/Δi,i(k, q) is in [ρmin, ρmax], where
ρmin and ρmax are known constants. Thus, the clock skew is the first derivative
of the clock offset value with respect to real time. Because clock skew is generally
not constant, higher order derivatives of the clock rate are nonzero. The relative
clock skew is ρi,j = ρi − ρj . We assume that 1 − κ ≤ ρi ≤ 1 + κ. The second
derivative of the clocks’ offset is called drift. We follow the approach of Herman
and Zhang [12] and allow non-zero drift (as long as ρi ∈ [ρmin, ρmax]).

Communications. Wireless transmissions are subject to collision and noise.
The processors communicate among themselves using a local broadcast primi-
tive, LBcast and LBrecv , with a transmission radius of at most Rlb. We consider
the potential of any pair of processors to communicate directly, or to interfere
with each others communications.

We associate every processor, pi, with a fixed and unknown location in space,
Li. We denote the potential set of processors that processor pi ∈ P can directly
communicate with (with whose communications, processor pi can interfere) by
Gi ⊆ {pj ∈ P |Rlb ≥ |Li − Lj|} (respectively,

−→
Gi ⊆ {pj ∈ P |2Rlb ≥ |Li − Lj |}).

We assume that n ≥ |−→Gi| is a known upper bound on the node’s degree.

Communication Operations. We model the communication channel,
queuei,j, from processor pi to processor pj ∈ Gi as a FIFO queuing list of the
messages that pi has sent to pj and pj is about to receive. When pi broadcasts
message m, the operation LBcast inserts a copy of m to every queuei,j, such
that pj ∈ Gi. Every message m ∈ queuei,j is associated with a particular time
at which m arrives at pj . Once m arrives, pj executes LBrecv . We require that
the period between the time in which m enters the communication channel and
the time in which m leaves it, is at most a constant, d. We assume that d is
a known and efficient upper bound on the communication delay between two
neighboring processors.

Accessing the Communication Media. We assume that processor pi uses the
following optimization, which is part of many existing implementations. Before
accessing the communication media, pi waits for a period d and broadcasts only
if there was no message transmitted during that period. Thus, processor pi does
not intercept broadcasts that have started (and did not finish) before time t−d,
where t is the time of the broadcast by pi.

Security Primitives. The existing literature describes many elements of the
secure implementation of the broadcast primitives LBcast and LBrecv using
symmetric key encryption and message authentication (e.g., [18,22]). We assume
that neighboring processors store predefined pairwise secret keys. In other words,
pi, pj ∈ P : pj ∈ Gi store keys si,j : si,j = sj,i. The adversary cannot efficiently
guess si,j . Confidentiality and integrity are guaranteed by encrypting the mes-
sages and adding a message authentication code. We can guarantee messages’
freshness by adding a message counter (coupled with the beacon’s timestamp)

344 J.-H. Hoepman et al.

to the message before applying these cryptographic operations, and by letting
receivers reject old messages, say, from the clock’s previous incarnation. Note
that this requires maintaining, for each sender, the index of the last properly
received message. As explained above, the freshness criterion is not suitable for
fine-grained clock synchronization in the presence of pulse-delay attacks.

The Interleaving Model. Every processor pi executes a program that is a
sequence of (atomic) steps. For ease of description, we assume the interleaving
model where steps are executed atomically, a single step at any given time. An
input event, which can be either the receipt of a message or a timer going off,
triggers each step of pi. Only steps that start from a timer going off may include
(at most once) an LBcast operation. We note that there could be steps that read
the clock and decide not to broadcast.

Since no self-stabilizing algorithm terminates (see [4]), the program of a pro-
cessor consists of a do-forever loop. An iteration is said to be complete if it
starts in the loop’s first line and ends at the last (regardless of whether it enters
branches). A processor executes other parts of the program (and other programs)
and activates the loop upon a time-out. We assume that every processor triggers
the loop’s time-out within every period of u/2, where u > w + d is the (opera-
tion time) slot, where w is the time it takes to execute a complete iteration of
the do-forever loop, including all messages received in that slot, assuming that
there is a known upper bound on the number of those. Since processors execute
programs other than the clock synchronization, the actual time in which the
timer goes off is hard to predict. Therefore, for the sake of simplicity, we assume
that the this time has a uniform distribution. We note that a simple random
scheduler can be used for the case in which the this time can be characterized.

The state si of a processor pi consists of the value of all the variables
of the processor (including the set of all incoming communication channels,
{queuej,i|pj ∈ Gi}). The execution of a step in the algorithm can change the
state of a processor. The term system configuration is used for a tuple of the
form (s1, s2, · · · , sn), where each si is the state of processor pi (including mes-
sages in transit for pi). We define an execution E = c[0], a[0], c[1], a[1], . . . as an
alternating sequence of system configurations c[x] and steps a[x], such that each
configuration c[x + 1] (except the initial configuration c[0]) is obtained from the
preceding configuration c[x] by the execution of the step a[x]. We often associate
the notation of a step with its executing processor pi using a subscript, e.g., ai.

Tracing Timestamps and Communications. The communication opera-
tions that we use, LBcast and LBrecv , have a time notation that we call times-
tamp. We assume that all timestamps have T possible states. We assume the
existence of an efficient algorithm for timestamping the message in transfer
(see [22]).

That is, the sent message includes the estimated value of the native clock
at sending time. The timestamp of an LBcast operation is the native time
at which message m is sent. When processor pi executes the LBrecv operation, an

Secure and Self-stabilizing Clock Synchronization in Sensor Networks 345

event is triggered with the arguments j, t, and 〈m〉: pj is the sending processor
of message 〈m〉, which pi receives when pi’s native clock is (approximately) t.
We note that every step can be associated with at most one communication
operation and therefore with one access to the native clock counter during or at
the end of the operation. We denote by Ci(ai) the native clock value associated
with the communication operation in step ai, which processor pi takes.

Adversarial Message Omission and Delay. We assume that at any time,
the adversary and all processors have distinct (unknown) locations in space. We
assume that there is a single adversary and that its radio transmitter sends omni-
directional broadcasts (using antennas that radiate equally in space). Therefore,
the adversary cannot arbitrarily control the distribution in space of the set of
recipients for which the beacon’s broadcast is delayed or omitted. We assume
that it chooses a sphere that divides the set of processors in two: (1) The correct
receivers are outside the sphere and receive all beacons on time, and (2) The
late receivers are inside the sphere and receive either no beacon or beacons after
a delay that is greater than a known constant.

Concurrent vs. Independent Broadcasts. We say that processor pi performs
an independent broadcast in a step ai ∈ E if there is no processor pj ∈ P that
broadcasts in a step aj ∈ E, such that either (1) aj is performed after ai and
before step ar

k that receives the message that was sent in ai (where pk ∈ P), or
(2) ai is performed after aj and before step ar

k that receives the message that
was sent in aj . We say that processor pi ∈ P performs a concurrent broadcast
in a step ai if ai is dependent (i.e., “not independent”). Concurrent broadcasts
can cause message collisions.

Fair Communications. The processors reside in the unattended environment
and malicious adversarial activity is not the only reason why communication
links may fail. Therefore, we consider message omission due to either random
media noise or message collisions that the algorithm causes.

Gilbert et al. [11] consider the minimal requirements for message delivery
under broadcast interception attacks and assume that the adversary intercepts
no more than β broadcasts of the algorithm, where β is a known constant. We
note that the result of Gilbert et al. is applicable in a model in which, in every
period, the algorithm is able to broadcast at most α messages the adversary can
intercept at most β. In other words, our assumption regarding the ratio of β/α
is comparable to the model of Gilbert et al. [11]. The parameter ξ ≥ 1 denotes
the maximal number of repeated transmissions required for a single successful
message transfer whenever there are no message collisions due to the algorithm’s
concurrent broadcasts. We assume that all processors know ξ.

We say that execution E has fair communications, if, whenever processor pi

independently broadcasts ξ successive messages in steps aξ
i ∈ E, every processor

receives at least one of these messages. We note that fair communication does
not imply reliable communication even for ξ = 1, because processors might

346 J.-H. Hoepman et al.

broadcast concurrently when there is no agreed broadcast schedule or when the
clock synchrony is not tight.

The Environment. The environment that restricts the adversary’s ability
to launch message interception attacks guarantees fair communication. The
environment can execute the operation omissioni(m) (which is associated with a
particular message, m, sent by processor pi) immediately after LBcasti(m). The
environment selects a subset of pi’s neighbors (Ri ⊆ Gi) to remove any message
mi from their queues queuei,j (such that pj ∈ Ri). We assume that the envi-
ronment arbitrarily selects Ri when invoking omission due to algorithm message
collision. The adversary, under the environment’s supervision, selects messages
to remove due to random media noise. The adversary launches message inter-
ception attacks by selecting Ri. The environment supervises so the adversary
does not violate the fair communication requirements.

System Specifications Fair Executions. An execution E is fair if the com-
munications are fair and every correct processor, pi, executes steps in a timely
manner (by letting the loop’s timer go off in the manner that we explain above).

The Task. We define the system’s task by a set of executions called legal
executions (LE) in which the task’s requirements hold. A configuration c is
a safe configuration for an algorithm and the task of LE provided that any
execution that starts in c is a legal execution (belongs to LE). An algorithm is
self-stabilizing with relation to the task of LE if every infinite execution of the al-
gorithm reaches a safe configuration with relation to the algorithm and the task.

Clock Synchronization Requirements. Roughly speaking, without any at-
tacks or failures, the native clocks follow similar characteristics. Processors can
synchronize their local clocks by revealing these characteristics. The task’s out-
put decodes the coefficient vector of a finite degree polynomial Pi,j(t) that closely
approximates the native clock value of processor pj at time t, where t is a value
of pi’s native clock. Römer et al. [16] explain how to calculate {Pi,j(t)}j �=i.

Elson et al. [7,6] explain how to calculate the global and the local clocks using
{Pi,j(t)}j �=i. We note that the local ci could be agreed in different manners,
one of which is based on clustered networks. In each cluster, every processor
considers a predefined set of processors, call the cluster head, for which it tries
to estimate a common local time using a predefined deterministic function.

This paper presents an algorithm for sampling n neighbouring clocks. We
measure the algorithm’s performance by looking at the period, Γ (n), it takes n
processors to send at least one beacon that all processors respond to. In other
words, we are interested in the minimal period in which all processors are able
to complete roundtrip message exchange.

Let pi, pj , and pk be three correct nodes such that pi and pj are of type (1)
and pk is of type (2). Suppose that pj broadcasts a message that pk receives
(after a delay) and pk then sends a response message that pi receives (possibly
i = j). We require that pk detects that pj has responded to a delayed message
in the presence of at most t captured nodes.

Secure and Self-stabilizing Clock Synchronization in Sensor Networks 347

3 Secure and Self-stabilizing Clock Synchronization

In order to explain better the scope of the algorithm, we present a generic or-
ganization of secure clock synchronization protocols. The objectives of the clock
synchronization protocol are to: (1) periodically broadcast beacons, (2) respond
to beacons, and (3) aggregate beacons with their responses in records and de-
liver them to the upper layer. Every node estimates the clock after sifting out
responses to delayed beacons. Unlike objectives (1) to (3), the clock estimation
task is not a hard realtime task. Therefore, the algorithm outputs records to the
upper layer that synchronizes clocks after neutralizing the effect of pulse-delay
attacks (see section 4 for more details). The algorithm focuses on the following
two tasks:

• Beacon Scheduling: The nodes sample clock values by broadcasting beacons
and waiting for their responses. The task is to guarantee round-trip message
exchange.
• Beacon and Response Aggregation: Once a beacon completes the round-trip
exchange, the nodes deliver to the upper layer the records of a beacon and its
set of responses.

We present a design for an algorithm that samples clocks of neighboring pro-
cessors by continuously sending beacons and response. Without synchronized
clocks, the nodes cannot efficiently follow a predefined schedule. Moreover, as-
suring reliable communication becomes hard in the presence of random media
noise and message collision. The celebrated Aloha protocol [1] (which does not
consider nondeterministic fluctuating skews) inspires us to take a randomized
strategy for scheduling broadcasts and overcome the above difficulties by show-
ing that with high probability there are no concurrent broadcasts. Our scheduling
strategy is simple; the processors choose a random time to broadcast from a pre-
defined period D. We use time redundancy to overcome the clocks’ asynchrony
and the difficulty in measuring D. Moreover, we use a parameter, �, used to
trade off between minimal size of D and the probability of having a collision free
schedule.

Beacon and Response Aggregation. The algorithm allows the use of clock
synchronization techniques such as round-trip synchronization [9,10] and refer-
ence broadcasting [6]. For example, in the round trip synchronization technique,
the sender pj sends a timestamped message 〈t1〉 to receivers, pk, which receive
the message at time t2. The receiver pk responds with the message 〈t1, t2, t3〉,
which pk sends at time t3 and pj receives at time t4. Thus, the output records
are in the form of 〈j, t1, {〈k, 〈t2, t3, t4〉〉}〉, where {〈k, 〈t2, t3, t4〉〉} is the set of all
received responses sent by nodes pk.

We piggyback beacon and response messages. For the sake of presentation
simplicity, let us start by assuming that all beacon schedules are in a (de-
terministic) Round Robin fashion. Given a particular node pi and a partic-
ular beacon that pi sends at time tis, we define tis’s round as the set of re-
sponses, 〈tjs, tjr〉, that pi sends to node pj for pj ’s previous beacon, tjs, where tjr

348 J.-H. Hoepman et al.

is the time in which pi received pi’s beacon tjs. Node pi piggybacks its beacon
with the responses to nodes, pj , and the beacon message, 〈vi〉, is of the form:
〈〈t1s, t1r〉, . . . 〈ti−1

s , ti−1
r 〉, tis, 〈ti+1

s , ti+1
r 〉, . . . 〈tns , tnr 〉〉.

Now, suppose that the schedules are not done in a Round Robin fash-
ion. We denote pj ’s sequence of up to BLog most recently sent beacons with
[tjs(k)]0≤k<BLog, among which tjs(k) is the k-th oldest and BLog is a predefined
constant. (We note that BLog may depend on the safety parameter, �, for assur-
ing that all nodes successfully broadcast.) We assume that, in every schedule, pi

receives at least one beacon from pj before broadcasting BLog beacons. There-
fore, pi’s beacon message, 〈vi〉, can include a response to pj ’s most recently
received beacon, tjs(k), where 0 ≤ k < BLog.

Since not every round includes a response to the last beacon that pi sends,
then pi stores its last BLog beacon messages a FIFO queue, qi[k] = [tjs]0≤k<BLog.
Moreover, every beacon message includes all responses to the BLog most recently
received beacons from all nodes. Let qj = q[k]0≤k<BLog be pi’s FIFO queue of
the last BLog records of the form 〈tjs(k), tjr(k)〉, among which tjs(k) is pi’s k-th
oldest beacon from pj , tjr(k) is the time at which it was received and i 	= j. The
new form of the beacon message is: 〈q1, . . . qi−1, qi, qi+1, . . . qn〉. In the round trip
synchronization, the nodes take the role of a synchronizer that sends the beacon
and waits for responses from the other nodes. The program of node pi considers
both cases in which pi is, and is not, respectively the synchronizer.

The Algorithm’s Pseudo-code. The pseudo-code, in Figure 1, includes two
procedures: (1) a do-forever loop that schedules and broadcasts beacon messages
(lines 53 to 63) and (2) an upon message arrival procedure (lines 66 to 68).

The Do-Forever Loop. Recall that by our system settings assumptions (Sec-
tion 2), we assume that the do-forever loop’s timer will go off within any period
of u/2. Moreover, since the actual time cannot be predicted, we assume that the
actual schedule has a uniform distribution over the period u. (A straightforward
random scheduler can assist, if needed, to enforce the last assumption.) The do-
forever loop periodically tests whether the “timer” has expired (in lines 53 to
58). In case the beacon’s next schedule is in the “too far in the past” or “too far
in the future”, then processor pi “forces” the “timer” to expire (line 55). The
algorithm tests that all the stored beacon messages are ordered correctly and
refer to the last BLog beacons (line 56). In the case where the stored beacon
messages are incorrect, then the algorithm flushes the queues (line 57).

When the time slot arrives, the processor outputs a synchronizer case record,
a response to the beacons that processor pi has sent BLog rounds ago (line59).
These data can be used for the round-trip synchronization and delay detection
in the upper layer. Then, pi enqueues the timestamp of the beacon it is about
to send during this schedule (line 60). The next schedule for processor pi is set
(lines 61 and 62) just before it broadcasts the beacon message (line 63).

The Message Arrival. When a beacon message arrives (line 65), processor pi

outputs a record of the non-synchronizer case (line 68). This is not done before

Secure and Self-stabilizing Clock Synchronization in Sensor Networks 349

Constants:
2 i = id of executing processor

n = total number of processors
4 w = compensation time between lines 53 and 63

d = upper bound on message propagation delay
6 u = size of a slot in time units (u > d + w)

BLog = �(ξ + 2)(ρmax − ρmin)�, backlog size
8 � = the safety parameter

D = � n log n, the broadcast time slots
10 T = number of possible states of a timestamp (T� Du)

12 Variables:
native clock : immutable storage of the native clock

14 m[n] = all received messages and timesamps
each entry is an array v[n]

16 each entry is a queue q[BLog]
each entry is a pair 〈s, r〉

18 cslot : [0, D-1] = current slot in use
next : [0, T -1] = schedule of next broadcast

20 cT = last do-forever loop′s timestamp

22 External functions:
output(R) : delivers record R to the upper layer

24 choose(S) : uniform selection of an item from the set S
siz(Q) : size of the queue

26 fst(Q) : least recently enqueued element in Q, number 0
lst(Q) : most recently enqueued element in Q

28 flush(Q) : empties the queue Q
get(t,Q) : list elements of field t ∈ {s,r} in Q

30

Macros and inlines:
32 border(t) : (D-cslot)u + t mod T

schedule(t) : cslot·u + t mod T
34 leq(x, y) : (∃ b : 0≤ b≤ 2 BLog D u ∧

y mod T = x + b mod T)
36 enq(q, m) : {while full(q) do dequeue(q); enqueue(m) }

cvec(v,t) : siz(v) = 0 ∨ (leq(fst(v),t) ∧ leq(lst(v),t) ∧
38 {∀ b1 < b2 , {b1,b2} ⊆ [1,siz(v)] : leq(v[b1],v[b2])}

checki(t) : cvec(get(s,m[i].v[i].q),t)
40 check(t) : ∧{∀ j ∈ P-{i} : cvec(get(r,m[i].v[j].q),t)}

(∗ Get response-record for pj , for pi as the synchronizer ∗)
42 tsi(s, j) : {if � ∃ b : s = m[j].v[i].q[b].s then return⊥

else return
44 〈m[j].v[i].q[b].r, lst(m[i].v[j]).s, lst(m[i].v[j]).r〉 }

matches(j) : {b : tsi(m[i].v[i].q[b].s, j) �=⊥}
46 sci(j) : if matches(j) = ∅ then return⊥

else return min(matches(j))
48 (∗ Get response-record for pk , for pj as the synchronizer ∗)

ts(s, j, k) : details appear in [14].
50 sc(j, k) : details appear in [14].

52 Do forever, every u/2
let cT = read(native clock) + w

54 if ¬ (leq(next-2Du, cT) ∧ leq(cT, next+u)) then
next← cT

56 if ¬ (checki(cT) ∧ check(cT)) then
∀ j,k ∈ P : flush(m[j].v[k].q)

58 if leq(next, cT) ∧ leq(cT, next + u) then
output 〈i, { 〈sci(j), j, tsi(sci(j), j)〉 : j ∈ P -{i}} 〉

60 enq(m[i].v[i].q, 〈cT,⊥〉)
(next, cslot)← (border(next), choose([0, D-1]))

62 next← schedule(next)
LBcast(m[i])

64

Upon LBrecv(j, r, v) (∗ i �= j ∗)
66 enq(m[i].v[j].q, 〈lst(v[j].q).s, r〉)

m[j]← v
68 output 〈j, {〈sc(j,k), k, ts(sc(j, k), j, k)〉 : k ∈ P -{i, j}}〉

Fig. 1. Secure and self-stabilizing native clock sampling algorithm (code for pi ∈ P)

processor pi stores the arrival time of the message (line 66) and the message
itself (line 67). These data can be used for the reference broadcast in the upper
layer. Once pi receives a beacon from node pk, node pi scans m[] for responses
that refer to pk’s previous beacons.

The Correctness. We divide the correctness proof of the algorithm presented
in Figure 1 into two parts. The first part relates to the task of random broadcast
scheduling and the second relates to the task of beacon and response aggrega-
tion. The second part’s proofs simply verify that the pseudo-code aggregates the
right responses with the right beacon. Due to space limits, some parts of the
correctness proof of the random broadcast scheduling, and the correctness proof
of the aggregation task appears in [14].

We analyze our random broadcasting strategy as a ball throwing game in a
team of n players that throw balls into bins. The bins represent the timeslots.
For the sake of simplicity, we consider every timestamp as a single information
unit, which we call a ball. The players’ coordination is poor and resembles the
clocks’ partial synchrony. We measure the team performance by looking at the

350 J.-H. Hoepman et al.

number, Γ (n), of bins it takes the team to get each at least n balls into bins. A
detailed game description and the correctness proof of corollary 1 appears in [14].

Corollary 1. Γ (n) ∈ Ω(n2) and the random broadcasting strategy of the al-
gorithm presented in Figure 1 secures with probability 1 − 2−� that Γ (n) ∈
O(n2(log n)3).

Let E be an execution and ai ∈ E an atomic step in which processor pi broad-
casts. Let c ∈ E, be the configuration that immediately follows ai. We define
the first round from ai, Eai(1) as a (finite) subsequence of E that starts in c
and ends in the atomic step a′i ∈ E, that is the first step after ai in which pi

broadcasts. We define the second round Eai(2) = Ea′
i
(1). Similarly, the x-th

round Eai(x), ∀x > 1, x ∈ N, is defined as Eai(x) = Ea′
i
(x − 1). We say that

processor pj skips a round Eai(1) if pi does not receive a broadcast from pj in
Eai(1). The beacon broadcast period (BBP) of processor pi for a given broadcast
in atomic step ai ∈ E is the real time length of the round Eai(1).

Definition 1. We define the set LErbs of legal executions with respect to the
task of random broadcast scheduling, such that it includes every execution E in
which: (1) The expected beacon broadcast period (BBP) of processor pi is within
[Du/ρmax, Du/ρmin] and (2) The probability that no processor skips ξ consecutive
rounds Eai(x), . . . Eai(x + ξ) is in O(1 − 2−�), where x ∈ N and ai ∈ E, is an
atomic step in which pi broadcasts).

Let E be a fair execution of the algorithm presented in Figure 1 and c ∈ E
a configuration in which αi = (leq(nexti − 2Du, cTi) ∧ leq(cTi, nexti) holds. We
say that c is safe with respect to LErbs.

We show that cTi follows the native clock.

Lemma 1. Let E be a fair execution of the algorithm presented in Figure 1,
and c a configuration that is at least u after the starting configuration. Then, it
holds that (leq(Ci − u, cTi − w) ∧ leq(cTi − w, Ci)) in c.

Proof. Since E is fair, the do-forever loop’s timer goes off in every period of u/2.
Hence, within a period of u, processor pi performs a complete iteration of the
do-forever loop in an atomic step ai.

Suppose that c immediately follows ai. According to line 53, the value of
cTi − w is the value of Ci in c. Let t = cTi − w = Ci. It is easy to see that
leq(t − u, t) ∧ leq(t, t) in c.

Let ar
i be an atomic step that includes the execution of lines 66 to 68, follows

c, and immediately precedes c′ ∈ E. Let t′ = Ci in c′. Then, within a period
of at most u/2, processor pi executes step a′i ∈ E, which includes a complete
iteration of the do-forever loop. Since the period between ai and a′i is at most
u/2, we have that t′ − t < u/2.

We show that starting from an arbitrary configuration a fair execution researches
a safe configuration.

Secure and Self-stabilizing Clock Synchronization in Sensor Networks 351

Lemma 2. Let E be a fair execution of the algorithm presented in Figure 1.
Then, within a period of u, a safe configuration is reached.

Proof. Let pi be a processor for which αi does not hold in the starting configu-
ration of E. We show that within the first complete iteration of lines 53 to 63,
the predicate αi holds. According to Lemma 1, all processors, pi, complete at
least one iteration of lines 53 to 63, within a period of u.

Let ai ∈ E be the first step in which processor pi completes the first iteration.
If αi does not hold in the configuration that immediately precedes ai, then the
predicate in line 54 holds and processor pi executes line 55.

Immediately after the execution of line 55, the predicate ¬(leq(nexti −
2Du, cTi)∧ leq(cTi, nexti)) does not hold, because ¬(leq(t−2Du, t)∧ leq(t, t)) is
false for any t. Moreover, the predicate in line 58 holds, since leq(t, t + u) holds
for any t. Therefore, pi executes lines 59 to 63.

Claim. Suppose that the predicate ¬(leq(nexti−2Du, cTi)∧leq(cTi, nexti)) (line
54) does not hold and the predicate leq(nexti, cT) ∧ leq(cT, nexti + u) (line 58)
holds. If processor pi executes lines 59 to 63, then αi holds for the configuration
that immediately follows.

Proof. Among the lines 59 to 63, only lines 61 to 62 can change the values of αi.
Let t1 = nexti immediately after line 58 and let t2 = nexti immediately after
the execution of line 62. We denote by A = t2 − t1 the value that lines 61 to 62
adds to nexti, i.e., A = (y + D − x)u, where 0 ≤ x, y ≤ D − 1. Note that x is
the value of csloti before line 61 and y is the value of csloti after line 61.

Therefore, A ∈ [u, (2D − 1)u]. By the claim’s assertion, we have that
leq(cTi, t1 + u) holds before line 61. Since u ≤ A, it holds that leq(cTi, t1 + A)
and therefore leq(cTi, t2) holds. Moreover, by the claim assertion we have that
leq(t1, cTi) holds. Since A ≤ (2D−1)u, it holds that A−2Du ≤ −u. This implies
that leq(t1 − 2Du + A, cTi). Therefore leq(t2 − 2Du, cTi) holds.

We show that a safe configuration follows the configuration of Definition 1.

Lemma 3. Let E be a fair execution of the algorithm presented in Figure 1 that
starts in a configuration c, in which αi holds. Then, every configuration in E is
safe with respect to LErbs.

Proof. Let ti be the value of pi’s native clock in configuration c and ai ∈ E is
the first step of processor pi. According to Lemma 1 and by the fairness of E,
without loss of generality, we can assume that Ci − ti mod T ≤ u/2.

We show that αi holds in configuration c′ that immediately follows ai. Lines
66 to 68 do not change the value of αi. By the proof of Lemma 2, if ai executes
lines 59 to 63 within one complete iteration, then αi holds in c′. Therefore, we
look at step ai that includes the execution of line 53 to 58, but does not include
the execution of lines 59 to 63.

Let t1 = cTi in c and t2 = cTi in c′. We show that while ai executes line 54,
the predicate ¬(leq(nexti − 2Du, cTi) ∧ leq(cTi, nexti)) does not hold in ai.

352 J.-H. Hoepman et al.

Let A = nexti − Du and B = nexti in c. The values of nexti − Du and B =
nexti do not change in c′. Since αi is true in c, it holds that leq(A, t1)∧leq(t1, B).
We claim that leq(A, t2)∧ leq(t2, B+u). Suppose, in a way of contradiction, that
leq(A, t2) = leq(A, t1 + u/2) does not hold. Then, leq(nexti − Du, t1 + u/2) does
not hold in configuration c, which implies that leq(t1 − Du, t1 + u/2) because
leq(t1, nexti) hold in c. Hence, a contradiction.

Since leq(t1, B) in c, we have that leq(t2, B +u) while pi execute line 54 in ai.
By the assumption that t2− t1 mod T < u we have that leq(t1 +u/2, B+u) =⇒
leq(t2, B + u).

We show that every execution (for which the safe configuration requirements
hold) is a legal execution with regard to the random broadcast scheduling task.

Lemma 4. Let E be a fair execution of the algorithm presented in Figure 1,
where all configurations in E are safe. Then, E ∈ LErbs.

Proof. (1) Let ai ∈ E be a step in which processor pi broadcasts and a′i ∈ E is
the first step after ai in which pi broadcasts. Let c1 ∈ E immediately precede
ai and c2 ∈ E immediately follow ai. Let c3 ∈ E immediately precede a′i and
c4 ∈ E immediately follow a′i. Let n1 = nexti in c1, t1 = cTi in c2, n2 = nexti in
c3, t2 = cTi in c4. The BBP can be expressed as B/ρi, where B = t2 − t1 mod T .

Processor pi broadcasts in line 63 only when the predicate γi =
leq(nexti, cTi) ∧ leq(cTi, nexti + u) (line 58) holds. Claim 3 of Lemma 2 shows
that in lines 61 to 62, nexti is incremented (modulo T) by A = (y + D − x)u.
Both integers x and y are chosen independently and from the same uniform dis-
tribution over [0, D − 1]. Therefore, they have the same expected value. There-
fore, the expected value of A is E((y + D − x)u) = (E(y) + E(D) − E(x))u =
(E(D) + E(y) − E(y))u = E(D)u = Du.

Let û1 = t1−n1 and û2 = t2−n2. If we assume that û1 and û2 are independent
and have the same distribution, the expected value of B is E((n2 + û2) − (n1 +
û1)) = E(n2 − n1) + E(û2 − û1) = Du + E(û2) − E(û1) = Du

Even if û1 and û2 are not independent and/or not from the same distribution,
the expected value of B is Du as well, as the decrement of the BBP for a
broadcast in a′i within the period [n2, n2 +u] implies a corresponding increment
of the BBP for the broadcast in ai. By the definition of ρmin and ρmax we have
that Du/ρmax ≤ Du/ρi ≤ Du/ρmin (since ∀i : ρmin ≤ ρi ≤ ρmax).
(2) Let ai be a step in which in which processor pi broadcasts, a′i be the next step
in which processor pi broadcasts, and c be the configuration that immediately
follows ai.

Let r be the value of nexti between lines 61 and 62 in ai. The period of length
Du that begins at r is divided in D slots of length u. A slot begins at time r+xu
and ends at time r + (x + 1)u for a unique integer x ∈ [0, D − 1]. The slot in
which a′i broadcasts is cslot in c. By Corollary 1, the probability of no messages
collides in the period r to r + Du is in O(1 − 2−�).

Secure and Self-stabilizing Clock Synchronization in Sensor Networks 353

Performances. Several elements determine the precision of the clock synchro-
nization. The clock sampling technique is one of them. Elson et al. [6] show
that the reference broadcast technique can be more precise than the roundtrip
synchronization technique. We allow the use of both techniques. Another impor-
tant precision factor is the degree of the polynomial, Pi,j(t), that approximates
the native clock values of the neighboring processors pi and pj (see Römer et
al. [16]). We consider any finite degree of the polynomial. Moreover, the clock
synchronization precision improves, as neighboring processors are able to sam-
ple their clocks more frequently. However, due to the limited energy reserves in
sensor networks, careful considerations are required.

The execution of a clock synchronization protocol can be classified between
two extremes: on-demand and continuous. Nodes that wish to synchronize their
clocks can invoke a distributed procedure for clock synchronization on-demand.
The procedure terminates as soon as the nodes reach their target precision.
An execution of a clock synchronization program is classified as continuous if no
node ever stops invoking the clock synchronization procedure. Our generic design
facilitates a trade-off between energy conservation (i.e., on-demand operation)
and fine-grained clock synchronization (i.e., continuous operation). The trade-off
allows budget policies to balance between application requirements and energy
constraints.

Let us consider the continuous operation mode. The clock precision improves
as the frequency of the beacons (and responses) that the correct processors are
able send increases. Thus, the precision of Pi,j(t) depends on round(n), where
round(n) is the time it takes n processors to send n beacons and then to let n
processors to respond to all n beacons. By Corollary 1, round(n) ∈ Ω(n2) and
round(n) ∈ O(n2(log n)3). Therefore, our design can secure clock precision that
is O((log n)3) times the optimum, with probability that is 1 − 2−�.

We note that the required storage is in O(n2 log T). Moreover, existing sensor
networks technology allows a message size of 14n+O(1) bytes. In [14], we explain
how to further accommodate message size and to optimize performance.

4 Discussion

Sensor networks are particularly vulnerable to interference, whether as a result
of hardware malfunction, environmental anomalies, or malicious intervention.
When dealing with message collisions, message delays and noise, it is hard to
separate malicious from non-malicious causes. For instance, it is hard to distin-
guish between a pulse delay attack from a combination of failures, e.g., a node
that suffers from a hidden terminal failure, but receives an echo of a beacon. Re-
cent studies consider more and more implementations that take security, failures
and interference into account when protecting sensor networks (e.g., [11,5]). We
note that many of the existing implementations assume the existence of a fined
grained synchronized clock, which we implement.

Ganeriwal et al. [9,10] overcome the challenge of delayed beacons using the
round-trip synchronization technique, and the Byzantine agreement protocol

354 J.-H. Hoepman et al.

[13]. Thus, Ganeriwal et al. requires 3t + 1 ≤ n. Song et al.’s [19] consider a dif-
ferent approach that uses the reference broadcasting synchronization technique.
Existing statistics models refer to malicious time offsets as outliers. The statis-
tical outlier approach is numerically stabile for 2t + ε ≤ n ≤ 3t + 1, where ε
is a safety constant (see [19]). We note that both approaches are applicable to
our work. However, based on our practical assumptions, we are able to avoid
the Byzantine agreement overheads and follow the approach of Song et al. [19].
They assume the existence of a distributed algorithm for sending beacons and
collecting their responses. This work presents the first design of that algorithm.

The generalized extreme studentized deviate (GESD) algorithm [17] can be
used to detect outliers. We note that there exists self-stabilizing version of Song
et al.’s [19] strategy. Let B be the set of “recently” delivered beacon records.
By “recently”, we mean that within a predefined period, � ∈ O(D), the node
removes old records from B, where � depends on ξ, i.e., the number of broadcasts
it takes to assure message delivery. The algorithm tests set B for outliers.

Existing implementations of secure clock synchronization protocols
[22,21,9,8,15,10,19] are not self-stabilizing. Thus, their specifications are not
compatible with security requirements for autonomous systems. In autonomous
systems, the self-stabilization design criteria are imperative for secure clock syn-
chronization. For example, many existing implementations require initial clock
synchronization prior to the first pulse-delay attack (during the protocol set
up). This assumption implies that the system uses global restart for self-defense
management, say, using an external intervention. We note that the adversary
is capable of intercepting messages continually. Thus, the adversary can risk
detection and intercept all pulses for a long period. Assume that the system
detects the adversary’s location and stops it. Nevertheless, the system cannot
synchronize its clocks without a global restart.

Sun et al. [20] describe a cluster-wise synchronization algorithm that is based
on synchronous rounds. The authors assume that a Byzantine agreement al-
gorithm [13] synchronizes the clocks before the system executes the algorithm.
Our algorithm is comparable with the requirements of autonomous systems and
makes no assumptions on synchronous rounds or start.

Manzo et al. [15] describe several possible attacks on an (unsecured) clock
synchronization algorithm and suggest counter measures. For single hop syn-
chronization, the authors suggest using a randomly selected “core” of nodes to
minimize the effect of captured nodes. The authors do not consider the cases
in which the adversary captures nodes after the core selection. In this work, we
make no assumption regarding the distribution of the captured nodes. Farrugia
and Simon [8] consider a cross-network spanning tree in which the clock values
propagate for global clock synchronization. However, no pulse-delay attacks are
considered. Sun et al. [21] investigate how to use multiple clocks from external
source nodes (e.g., base stations) to increase the resilience against an attack that
compromises source nodes. In this work, there are no source nodes.

In [22], the authors explain how to implement a secure clock synchronization
protocol. Although the protocol is not self-stabilizing, we believe that some of

Secure and Self-stabilizing Clock Synchronization in Sensor Networks 355

their security primitives could be used in a self-stabilizing manner when imple-
menting our self-stabilizing algorithm.

Herman and Zhang [12] present a self-stabilizing clock synchronization algo-
rithm for sensor networks. The authors present a model for proving the correct-
ness of synchronization algorithms and show that the converge-to-max approach
is stabilizing. However, the converge-to-max approach is prone to attacks with
a single captured node that introduces the maximal clock value whenever the
adversary decides to attack. Thus, the adversary can at once set the clock values
“far into the future”, preventing the nodes from implementing a continuous time
approximation function. This work is the first in the context of self-stabilization
to provide security solutions for clock synchronization in sensor networks.

Conclusions. Designing secure and self-stabilizing infrastructure for sensor net-
works narrows the gap between traditional networks and sensor networks by sim-
plifying the design of future systems. In this work, we consider realistic system
settings and take a clean slate approach in designing a fundamental component;
a clock synchronization protocol.

The designers of sensor networks often implement clock synchronization proto-
cols that assume the system settings of traditional networks. However, sensor net-
works often require fine-grained clock synchronization for which the traditional
protocols are inappropriate, e.g., the nonce techniques cannot resist pulse-delay
attacks.

Alternatively, when the designers do not assume traditional system settings,
they turn to reinforce the protocols with masking techniques. Thus, the designers
assume that the adversary never violates the assumptions of the masking tech-
niques, e.g., there are at most t captured nodes at all times, where 3t + 1 ≤ n.
Since sensor networks reside in an unattended environment, the last assumption
is unrealistic.

Our design promotes self-defense capabilities once the system returns to follow
the original designer’s assumptions. Interestingly, the self-stabilization design
criteria provide an elegant way for designing secure autonomous systems.

Acknowledgments. This work would not have been possible without the con-
tribution of Marina Papatriantafilou in many helpful discussions, ideas, and anal-
ysis. Many thanks to Edna Oxman for improving the presentation.

References

1. Abramson, N., et al.: The Aloha System. Univ. of Hawaii (1972)
2. Demirbas, M., Arora, A., Nolte, T., Lynch, N.A.: A hierarchy-based fault-local sta-

bilizing algorithm for tracking in sensor networks. In: Higashino, T. (ed.) OPODIS
2004. LNCS, vol. 3544, pp. 299–315. Springer, Heidelberg (2005)

3. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

4. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)

356 J.-H. Hoepman et al.

5. Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Gossiping in a Multi-Channel
Radio Network, An Oblivious Approach to Coping with Malicious Interference. In:
DISC 2007. LNCS, vol. 4731, pp. 130–145. Springer, Heidelberg (2007)

6. Elson, J., Girod, L., Estrin, D.: Fine-grained network time synchronization using
reference broadcasts. Operating Systems Review (ACM SIGOPS) 36(SI), 147–163
(2002)

7. Elson, J., Karp, R.M., Papadimitriou, C.H., Shenker, S.: Global synchronization in
sensornets. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 609–624.
Springer, Heidelberg (2004)

8. Farrugia, E., Simon, R.: An efficient and secure protocol for sensor network time
synchronization. J. Syst. Softw. 79(2), 147–162 (2006)

9. Ganeriwal, S., Capkun, S., Han, C.-C., Srivastava, M.B.: Secure time synchroniza-
tion service for sensor networks. In: Ngu, A.H.H., Kitsuregawa, M., Neuhold, E.J.,
Chung, J.Y., Sheng, Q.Z. (eds.) WISE 2005. LNCS, vol. 3806, pp. 97–106. Springer,
Heidelberg (2005)

10. Ganeriwal, S., Capkun, S., Srivastava, M.B.: Secure time synchronization in sensor
networks. ACM Transactions on Information and Systems Security (March 2006)

11. Gilbert, S.,Guerraoui, R., Newport, C.C.: Ofmalicious motes and suspicious sensors:
On the efficiency of malicious interference in wireless networks. In: Shvartsman, A.A.
(ed.) OPODIS 2006. LNCS, vol. 4305, pp. 215–229. Springer, Heidelberg (2006)

12. Herman, T., Zhang, C.: Best paper: Stabilizing clock synchronization for wireless
sensor networks. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280,
pp. 335–349. Springer, Heidelberg (2006)

13. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

14. Larsson, A., Schiller, E.M., Tsigas, P.: Secure and fault-tolerant clock synchroniza-
tion in sensor networks. TR 2006:16, Computer Science and Engineering, Chalmers
University of technology (September 2006)

15. Manzo, M., Roosta, T., Sastry, S.: Time synchronization attacks in sensor networks.
In: SASN 2005. Proceedings of the 3rd ACM workshop on Security of ad hoc and
sensor networks, pp. 107–116. ACM Press, New York (2005)

16. Römer, K., Blum, P., Meier, L.: Time synchronization and calibration in wireless
sensor networks. In: Stojmenovic, I. (ed.) Handbook of Sensor Networks: Algo-
rithms and Architectures, pp. 199–237. John Wiley and Sons, Chichester (2005)

17. Rosner, B.: Percentage points for a generalized esd many-outlier procedure. Tech-
nometrics 25, 165–172 (1983)

18. Schneier, B.: Applied Cryptography, 2nd edn. John Wiley & Sons, Chichester
(1996)

19. Song, H., Zhu, S., Cao, G.: Attack-resilient time synchronization for wireless sensor
networks. Ad Hoc Networks 5(1), 112–125 (2007)

20. Sun, K., Ning, P., Wang, C.: Fault-tolerant cluster-wise clock synchronization for
wireless sensor networks. IEEE Transactions on Dependable and Secure Comput-
ing 2(3), 177–189 (2005)

21. Sun, K., Ning, P., Wang, C.: Secure and resilient clock synchronization in wireless
sensor networks. IEEE Journal on Selected Areas in Communications 24(2), 395–
408 (2006)

22. Sun, K., Ning, P., Wang, C.: Tinysersync: secure and resilient time synchronization
in wireless sensor networks. In: Juels, A., Wright, R.N., di Vimercati, S.D.C. (eds.)
ACM Conference on Computer and Communications Security, pp. 264–277. ACM
Press, New York (2006)

On the Probabilistic Omission Adversary

Taisuke Izumi and Koichi Wada

Nagoya Institute of Technology
Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan

{t-izumi, wada}@nitech.ac.jp

Abstract. This paper newly proposes a novel round-based synchronous
system suffering crash and probabilistic omission failures. In this model,
a novel class of adversaries, called p-probabilistic omission adversary (p-
POA) is introduced. In addition to the ability of complete control of the
crash-failure behavior, p-POA can select any subset of all transmitted
messages as omission candidates. Then, each message in the omission
candidates is lost with probability p. This paper investigates the feasi-
blity and complexity of the consensus problem under p-POA. We first
show two impossibility results that (1) for any p > 0, there exists no
uniform consensus algorithm tolerating more than or equal to n/2 crash
failures, and that (2) for any p > 0, any uniform consensus algorithm
cannot halt. We also show two consensus algorithms CPO and F-CPO.
Both algorithms work under (1/2)-POA and respectively have distinct
advantages. The algorithm CPO can tolerate at most n/2− 1 crash fail-
ures and achieves O(f) expected round complexity, where f is the actual
number of crash failures. This implies that CPO has maximum crash-
failure resiliency. While the second algorithm F-CPO assumes the maxi-
mum number of crash failures less than n/3, it achieves f + O(1) round
compexity in expectation. Since it is known that the lower bound for
crash-tolerant consensus is f +1, this result implies that only a constant
number of extra rounds is nessesary to tolerate a drastic number of mes-
sage omissions.

1 Introduction

Consensus problem is one of fundamental and important problems for design-
ing fault-tolerant distributed systems. In the consensus problem, each process
proposes a value, and has to agree on a common value that is proposed by a pro-
cess unless it crashes. The consensus problem has many practical applications,
e.g., atomic broadcast [3,10], shared object [1,11], weak atomic commitment [9]
and so on. However, despite of such applications, it has no deterministic solu-
tion in asynchronous systems subject to only a single crash failure [7]. Thus,
several consensus algorithms have been considered on systems with some ad-
ditonal assumptions [5,6,16,3]. Especially, the round-based synchrony is one of
the most commonly used assumptions for designing consensus algorithms[16,17].
Executions of the round-based synchronous systems proceed along consecutive

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 357–371, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

358 T. Izumi and K. Wada

communication-closed rounds, where “communication-closed” means that every
message sent in a round is received in the same round.

In literatures about the synchronous consensus, the failure behavior other
than crash is also considered. The omission failure is one of such failures, which
allows a part of communication messages to be lost in transmission. Generally,
for omission failures, two kinds of modelings have been considered. The most
traditional one is the component failure model, which statically specifies the set
of faulty components (i.e., faulty edges and/or faulty processes) and only mes-
sages related to faulty components can be omitted. Since the component failure
model is a natural extension of crash-failure models, it is widely accepted in
many studies [2,4,8,14,15,16]. However, in practical sense, it is not necessarily
the best model: In real systems, the omission failures can occur on any compo-
nent, but their occurrences are not permanent. Thus, the omission failures should
be modeled as a transient and ubiquitous one, which is the contrary of the com-
ponent failure model. The second model, called dynamic failure model, is one
that absorbs these features [13,18]. While the component failure model restricts
its failure behavior by specifying faulty components, the dynamic failure model
bounds the behavior by the number of failures. More precisely, the dynamic fail-
ure model only assumes the existence of upper bound for the number of omission
that can occur in one round. This model is more plausible than the component
failure model in a certain type of real systems. Nevertheless, both the component
and dynamic failure models leave the disadvantage that the failure influcence is
too strong: Only a small fraction of failures makes a number of uniform tasks
unsolvable. For example, in a complete network of n processes, if 2n−1 omission
failures are possible, the system can suffer the isolation of a non-crashed process,
i.e., all messages from/to the process are lost by omission failures. Then, uni-
form solution of the consensus problem is clearly impossible. This disadvantage
derives from the fact that the adversary, which is a daemon determining the
failure behavior of system executions, can deterministically control the targets
where failures appear.

In this paper, as the model to circumvent the above disadvantage, we newly
introduce a round-based synchronous system suffering crash and probabilistic
omission failures, and consider consensus algorithms on this system. Specifi-
cally, our model introduces the novel class of adversaries, called p-probabilistic
omission adversary (p-POA). The p-POA is a generalization of the traditional
crash-failure adversary, and thus it has all ability that the crash-failure adversary
has. In addition, at each round, p-POA can select any subset of all transmitted
messages (even the set consisting of all messages is possible) as omission candi-
dates. Each message in the omission candidate is lost with probability p, where
p is a system parameter of the adversary. Because of its probabilistic nature, the
POA does not cause the isolation of a part of processes, and thus it can handle
more drastic number of message omissions than existing omission failure models.

This paper investigates the feasibility of the consensus problem under the
p-POA. Since communications liveness between any pair of processes is proba-
bilistically guaranteed in our model, it seems not so surpising that the uniform

On the Probabilistic Omission Adversary 359

consensus can be solved in our model (actually, we propose two uniform consen-
sus algorithms under p-POA in this paper). However, it is quite nontrivial how
probabilistic omissions affect the complexity of the consensus problem, which is
the main interst of our study. In the followings, we summarize the contribution
of this paper:

– We show two fundamental impossiblity result about the consensus problem
under p-POA. The first result is that for any p > 0, there is no uniform con-
sensus algorithm that can tolerate more than or equal to n/2 crash failures.
The second one is that for any p > 0, there is no halting algorithm to solve
the uniform consensus, i.e., in any consensus algorithm under p-POA, each
process must continue to execute the algorithm even after it decides.

– We propose a consensus algorithm CPO working correctly under the (1/2)-
POA. This algorithm assumes that the maximum number of failures t is
less than n/2, which implies the maximum failure resiliency. The algorithm
has O(f) expected round complexity, where f is the actual number of crash
failures. In the sense that the round complexity depends only the actual
number of crash failures, this algorithm is early-decideing.

– We also propose another early-deciding consensus algorithm F-CPO work-
ing correctly under the (1/2)-POA. This algorithm requires the stronger
assumption of t < n/3 than CPO, but has f + O(1) round complexity in
expectation. Interestingly, since it is known that the lower bound for crash-
tolerant consensus is f + 1, this result implies that only a constant number
of extra rounds is nessesary to tolerate a drastic number of omission (about
a half of all messages).

The paper is organized as follows: In Section 2, we introduce the system model,
and the definition of the consensus problem. Section 3 shows two impossibility
results. Sections 4 and 5 provides the algoirhm CPO and F-CPO, respectively.
Finally we conclude this paper in Section 6.

2 Preliminaries

2.1 Distributed Systems

We consider a distributed system with round-based synchrony. The distributed
system consists of n processes P = {p0, p1, p2, · · · , pn−1} that are completely con-
nected by communication links, that is, any pair of processes can communicate
with each other by directly exchanging messages. The system is round-based,
that is, its execution is a sequence of synchronized rounds identified by 0, 1, 2,
etc. Each round r consists of three steps:

Send step. Each process pi sends messages.
Receive step. Each process pi receives all the messages sent to pi at the send

step of the current round.
Local processing step. Each process pi executes local computation.

360 T. Izumi and K. Wada

2.2 Failure Models

An adversary is a daemon determining the behaivior of failures at each round.
Notice that the adversary always makes a decision by worst possible cases. In
this paper, to handle both crash and probabilistic omission, we introduce a novel
class of adversaries, called p-Probabilistic Omission Adversaries(p-POA). Same
as the traditional crash adversary, it can completely control the behavior of
process crashes. If a process pi is designated as crash during round r, it makes
no operation subsequently. Then, the messages sent by pi at round r may or
may not be received, which is also controlled by the adversary. In addition to
the ability of crash adversaries, p-POA can omit each in-trasmission message
with probability p, where p is a system-specific parameter. More precisely, it
determines omission candidates Cr at each round r, which is an arbitrary subset
of all messages sent at round r. Every message m �∈ Cr is guaranteed to be
transmitted correctly. On the other hand, each message m ∈ Cr is lost with
probability p. As a summary of the above model, the execution of one round r
in our model can be described as follows:

1. The sending step is executed. Then, for each non-crashed process pi, the
adversary determines whether pi crashes at the current round or not. In
addition, if a process pi is determined as crash, the adversary also determines
its crash behavior (that is, determines which messages that will be sent by
pi at the current round are actually sent).

2. The adversary decides omission candidates Cr. Each message in Cr is lost
with probability p.

3. The receiving step is executed. All remaining messages are correctly received.
4. The local processing step is executed.

It should be noted that the above failure model is a weaker model of the
traditional crash-failure models: The p-probabilistic omission adversary can de-
terminitically control the execution of the system so that it will behave as the tra-
ditional crash-fauilure systems. This implies that any complexity lower bounds
for the crash-failure model also hold in our model.

There is an upper bound t on the number of processes that can crash. Through-
out this paper, we assume t < n/2. This assumption is necessary to exist a con-
sensus algorithm on our model (the necessary proof is given in Section 3). The
actual number of crash processes is denoted by f (≤ t). A process is said to be
correct if it never crashes, and a round r is said to be correct when no process
crashes during the round r.

2.3 Consensus Problem

In a consensus algorithm, each correct process initially proposes a value, and
eventually chooses a decision value from the values proposed by processes so
that all processes decide the same value. The uniform consensus is a stronger
variant of the consensus. It disallows faulty processes to disagree on the decided
value. The standard specification of uniform consensus is described as follows:

On the Probabilistic Omission Adversary 361

Termination. Every correct process eventually decides.
Uniform Agreement. No two processes decide different values.
Validity. If a process decides a value v, then, v is a value proposed by a process.

Since we consider the probabilistic omission, it is clear that there is no algo-
rithm satisfying the above termination property in our model. For example, the
execution where all messages are omitted is a possible execution in our model. In
such execution, no algorithm can correctly reach decisions. Thus, we have to re-
lax the specification of the consensus problem such that it allows a probabilistic
guarantee of Termination property. In this paper, we define the consensus prob-
lem by the uniform agreement property, the validity property, and the following
probabilistic termination property:

Probabilistic Termination. Every correct process decides with probability 1.

Notice that decision does not necessarily implies the halt of the algorithm. Even
after a process decides, it may work for helping the decision of other processes.

3 Impossibility Results

In this section, we present two fundamental impossiblity results about the con-
sensus problem on the system with the p-probabilistic omission adversary (for
lack of space, we omit the proofs).

Theorem 1. For any p > 0, there is no algorithm solving the consensus problem
under the p-probabilistic omission adversary if t ≥ n/2 holds.

Theorem 2. For any p > 0 and t > 0, there is no halting consensus algorithm
under the p-probabilistic omission adversary.

4 The O(f)-Round Algorithm for t < n/2

This section provides a consensus algorithm under the (1/2)-probabilistic omiss-
sion adversary, which can tolerate less than n/2 crash processes. Because of
Theorem 1, this algorithm achieves the maximum crash-failure resilience. The
basic idea of our algorithm derives from Chandra and Toueg’s algorithm using
eventually strong failure detectors [3]. Before the presentation of our algorithm,
we first discuss about the round complexity of a group communication primi-
tive under the (1/2)-probabilistic omission adversary in the following subsection,
which is used to construct our consensus algorithm.

4.1 The Round Complexity of All-to-All Broadcast

In our adversary model, there is no guarantee that a message sent by a correct
process is necessarily received. Thus, if a process wants to broadcast an infor-
mation d, one-time broadcasts bring only a slight possibility that all processes
can corerctly receive d. Thus, this subsection investigates how many rounds are

362 T. Izumi and K. Wada

Algorithm 2RB(d): Code for pi

1: variable:
2: Mi : init ⊥

3: At round 1:
4: if pi is the source process then
5: Sendi(d) to all processes
6: Mi ← d
7: endif
8: At round 2:
9: if Mi �=⊥ then
10: Sendi(d) to all processes
11: endif
12: if a message d is received from pj then
13: Mi ← d
14: endif

Fig. 1. Algorithm 2RB(d): 2-Round Broadcast Algorithm for Transmission Data d

sufficient to guarantee that all processes receive the information d with high
probability.

First, we introduce an broadcast algorithm called 2-round Broadcast(2RB).
The pseudocode description of the 2RB algorithm for each process pi is given in
Figure 1. The variable d is the broadcast information, and the local variable Mi

is the buffer of received messages. In the pseudocode, Mi = d implies that the
process pi received the broadcast information d. The principle of 2RB is quite
simple: The 2RB algorithm consists of 2 rounds. At the first round, the source
process broadcasts the information d to all processes. At round 2, all processes
that received d in previous rounds broadcast the information d.

The following lemma shows that the 2RB correctly broadcasts messages with
high probability if no crash occurs during its execution.

Lemma 1. Let pi be the process that broadcasts an information using 2RB, and
n′ be the number of non-crashed processes at the beginnning of 2RB. If no pro-
cess crashes during the execution of 2RB, all non-crashed processes receive the
information d with probabilty 1 − O(n′/αn′

), where α is a constant more than
one.

Proof . Let X1 and X2 be the random variables that represent the number of
processes receiving d by the end of rounds one and two, respectively. Since each
process receives d with the probability more than 1/2 at round one, we have
E[X1] ≥ n′/2. Using the Chernoff Bound, we can obtain the following inequality;

Pr
[
X1 < n′/4

]
≤ e−

n′
2 · 18 ≤ e−

n′
16 . (1)

On the Probabilistic Omission Adversary 363

This implies that at the end of round one, at least n/4 processes receive d
with high probability. Next, under the assumption of X1 ≥ n′/4, we bound the
probability of X2 = n′.

Pr[X2 = n′|X1 ≥ n′/4]

≥
(

1 −
(1

2

)n′/4
)3n′/4

≥ 1 − 3n′

4

(1
2

)n′/4

≥ 1 − 3n′

2n′/4+2 . (2)

From the inequalities 1 and 2, we obtain Pr[X2 = n′] ≥ (1−O(n′/αn′
)) for some

α > 1. �

Let us consider the case where all n′ non-crashed processes concurrently broad-
cast informations using 2RB. Let di(0 ≤ i ≤ n′ − 1) be the information that is
broadcast by pi. Ths following lemma gives the bound for the probability that
all processes receive all informations d0, d1, · · · dn′−1.

Lemma 2. Let each process pi (0 ≤ i ≤ n′ − 1) broadcasts an information di

using 2RB. If no process crashes during the execution of 2RB, all non-crashed
processes receive all informations d0, d1, · · ·dn′−1 with probabilty 1−O(n′2/αn′

),
where α is a constant more than one.

Proof . Let Ei be the event that all processes receives di, and Ēi be the comple-
ment of Ei. From Lemma 1, Pr[Ēi] ≤ O(n′/αn′

) holds. Then, using the union
bound, we obtain

Pr
[n′−1⋃

i=1

Ēi

]
≤

n′−1∑
i=1

Pr[Ēi]

≤ n′ · O(n′/αn′
) ≤ O(n′2/αn′

). (3)

Therefore, Pr[∩n′−1
i=1 Ei] ≥ 1 − O(n′2/αn′

) holds. The lemma is proved. �

4.2 Algorithm CPO

Algorithm Design. Using the 2RB primitive, we present an algorithm CPO that
solves the consensus problem under the (1/2)-probabilistic omission adversary.
Figure 2 is a pseudocode description of the algorithm. The algorithm CPO is
designed using the rotating coordinator paradigm: An execution of CPO is divided
into consecutive cycles that are identified by 0, 1, 2, A coordinator is assigned
to each cycle. In the k-th cycle of the execution, process p(k mod n−1) works as
the coordinator. In the algorithm CPO, each process maintains an candidate of
decision values. In Figure 2, the candidate value of pi is stored in variable ei.

364 T. Izumi and K. Wada

At initial configurations, the value of candidate variable ei is pi’s proposal vi.
Each candidate variable ei has a timestamp ti, which stores the cycle number
when the last update of ei occurs. In each cycle, the coordinator tries to make
all processes reach agreement by imposing its own candidate value to all other
processes. One cycle consists of two phases, and one phase consists of two rounds.
The first phase of each cycle is called impose phase, and the second one is called
commit-aggregation phase. In impose phases, only the coordinator broadcasts
ei using 2RB to tell its candidate value to all other processes. If a process pi

receives the message with the candidate value e from the coordinator, it stores e
to its candidate variable ei, and also updates its timestamp ti with the current
cycle number. In commit-aggregation phases, each process pi broadcasts the
information (ei, ti) using 2RB. Commit-aggregation phases have two role: The
first role is that each process checks whether more than n/2 processes have the
same candidate value as one owned by itself or not. If a process pi passes the
check, it decides its candidate value. The second role is that the coordinator of
the next cycle aggregates candidate values. If the process p(r mod n−1) aggregates
more than n/2 candidate values at the commit-aggregation phase of cycle r−1, it
updates its candidate value with one having the latest timestamp of all received
candidates. At the next cycle, p(r mod n−1) can actually work as the coordinator
only if it receives more than n/2 candidate values. Otherwise, it will be silent at
the next cycle. In Figure 2, the variable acti is the flag whether the coordinator
pi works or not.

Correctness. We prove the correctness of the algorithm CPO. We first introduce
several notations used in the following proofs: Let cod(c) be the identifier of the
coordinator of cycle c (i.e., cod(c) = (c mod n − 1). We define actci , ec

i and tci as
the values of acti, ei, and ti at the beginning of a cycle c, respectively. We say
that “the coordinator of c is active” if pcod(c) does not crash at the beginning
of c and actccod(c) = TRUE holds. We say “a cycle c is valid” if no crash occurs
during c and the coordinator of c is active. The cycle that is not valid is called
invalid. For lack of space, several proofs are omitted (Lemma 4 and 6).

Lemma 3. Letting pi be the process that decides at cycle c. the decision value
of pi is ec

cod(c).

Proof . Let d be the decision of pi. Since pi decides at the cycle c, it receives the
message (d, c) from the coordinator of cycle c. This implies ec

cod(c). �

Lemma 4. Let pi be the process that decides a value d at cycle c. Then, for a
process pj and any cycle c′ (c′ ≥ c), if tc

′

j ≥ c, then ec′

j = d.

Lemma 5 (Uniform Agreement). No process decides differently.

Proof . Let pi be the process that decides first (if two or more processes decide
at a same round, arbitrary one of them is chosen), d be the decision value of
pi, and c be the cycle when pi decides. Then, we prove that a process pj(�= pi)
also decides d. From Lemma 4, any cycle c′(≥ c) whose coordinator is active,

On the Probabilistic Omission Adversary 365

Algorithm CPO: Code for pi

1: variable:
2: ei : init vi /∗ The vi is the pi’s proposal ∗/
3: ti : init −1
4: acti : init FALSE

5: for each cycle c = 0, 1, 2, · · · do :
6: Impose Phase:
7: if (c mod n − 1) = i and acti = TRUE then 2RB(ei) endif
8: if a message is received from pc mod n−1 then
9: let e be the message from the current coordinator
10: ei ← e; ti ← c
11: Commit-aggregation Phase:
12: 2RB(ei, ti)
13: if messages are received from more than n/2 processes then
14: acti ← TRUE
15: if (c mod n − 1) = i then
16: let (e′, t′) be the message with the latest timestamp
17: ei ← e′; ti ← c
18: endif
19: if ∃w : (w, c) is received more than n/2 times then
20: ei ← w; ti ← c
21: decide(ei)
22: endif
23: else acti ← FALSE endif
24:endfor

Fig. 2. Algorithm CPO: A consensus algorithm under (1/2)-POA

ec′

cod(c′) = d holds. Since each process can decide at cycle x only if x’s coordinator
is active, at the cycle y when pj decides, y’s coordinator has the candidate value d
at the beginning of y. From Lemma 3, this implies that pj decides d. The lemma
holds. �

Lemma 6 (Validity). If a process decides a value d, then, d is a value proposed
by a process.

Lemma 7. If cycles c and c+1 are valid, all processes decide by the end of c+1
with probability 1 − O(n2/αn) (α is a constant).

Proof . Clearly, all processes decide at the end of c + 1 if the following three
events occur:

– The coordinator of c+1 becomes active, i.e., in the commit-aggregation phase
of c, the coordinator of c+1 receives messages from more than n/2 processes.

– In the impose phase of c + 1, all non-crashed processes receive the message
from the coordinator.

366 T. Izumi and K. Wada

– In the commit-aggregation phase of c + 1, all non-crashed processes receive
more than n/2 messages.

Since c and c+1 are valid, from Lemma 2, each of the above three events occurs
with a probability higher than 1 − O(n2/αn). Thus, all processes decide at the
end of c + 1 with proabability (1 − O(n2/αn))3 = 1 − O(n2/αn). �

Lemma 8 (Probabilistic Termination). Every correct process decides with
probability 1. In addition, the worst-case expected number of rounds until all
correct processes decide is O(f).

Proof . We call two consecutive valid cycles a block. Two blocks are said to be
independent if there is no cycle belonging to both blocks. Since at most f processes
can crash, for any k > 0, the execution consisting of 4f + 2k cycles includes
k blocks independent with each other (notice that if a process pj crashes during
cycle c, it does not only makes the cycle c invalid, but also makes the cycle where
pj is coordinator invalid, i.e., one crash failure may make two cycles invalid).
From Lemma 7, In every block, all non-crashed processes decide with probability
1 − O(n2/αn). Then, the probability that there exists the process that does not
decide at the end of the cycle 4f + 2k is (O(n2/αn))k, which converge to zero.
Thus, every correct process decides with probability 1. In addition, The worst
case expected number of cycles until all correct processes decide is

∑∞
k=1(4f +

2k) · (1 − O(n2/αn)) · O(n2/αn)k−1 = O(f). Since one cycle consists of four
rounds, we proved the O(f) worst-case expected round complexity. �

5 The (f + O(1))-Round Algorithm for t < n/3

In this section, we show that a faster algorithm F-CPO, which achives f + O(1)
time complexity under the assumption of t < n/3.

Algorithm Design. We present an algorithm F-CPO in Figure 3. The algorithm
F-CPO is based on the floodset algorithm, which is a traditonal crash-tolerant
consensus algorithm [12]. Same as CPO, the algorithm F-CPO maintains candi-
date variables at each process, and its execution is divided into consecutive cycles
that are identified by 1, 2, However, unlike CPO, one cycle of F-CPO consists
of two rounds. In each cycle, all processes exchange their candidate values using
2RB primitive. At the end of each cycle, each process receiving sufficiently many
number of messages updates its candidate variable by voting. More precicely, if
a process pi receives more than 2n/3 candidate values, it updates its candidate
variable with one that is received by pi most frequently (if the frequencies of
two or more values are same, the maximum one is choosen). In addition, if all
received messages have a same value d, pi decides d (but does not halt).

In the original floodset algorithm, one correct round (i.e., the round where no
crash occurs) is sufficient to guarantee the termination because all non-crashed
processes have a same candidate value after the correct round, and thus they
decide at the following round. In contrast, since message omission is considered
in our model, no-crash-failure round does not guarantee that all candidate values

On the Probabilistic Omission Adversary 367

Algorithm F-CPO: Code for pi

1: variable:
2: ei : init vi /∗ The vi is the pi’s proposal ∗/

3: for each cycle c = 1, · · · do :
4: 2RB(ei)
5: let Ei be the multiset of all received messages
6: if |Ei| > 2n/3 then
7: if Ei includes only one value v then
8: decide(v)
9: else
10: ei ← the most frequent value in Ei

11: endif
12:endfor

Fig. 3. Algorithm F-CPO: A fast consensus algorithm on the system with (1/2)-POA
for t < n/3

become a same one. However, in our model, one correct round (to be exact, one
cycle including one correct round) triggers the agreement of all candidate values.
Actually, in the algorithm F-CPO, it is guaranteed with high probability that
all non-crashed processes have a same candidate if a cycle c includes one correct
round and the number of crashes occuring the following cycle c + 1 is at most
two. Notice that such pair of cycles necesarily exists in the execution of f/2 + 1
cycles, which is the key fact that our algorithm achives f +O(1) expected round
complexity (the detail is shown in the correctness proof).

Correctness. We prove the correctness of the algorithm F-CPO. Let E(c) be
the multiset consisting of candidate values of all non-crashed processes at the
beginning of cycle c, and #x(c) be the times that value x appears in E(c). We
define 1st(c) as the value d that maximize #d(c) (if there are two or more values
that maximize #d(c), the largest candidate value is chosen as 1st(c)). We also
define 2nd(c) as the value d that secondly maximizes #d(c) after 1st(c) (Same
as 1st(c), if two or more values secondly maximize, the largest one is chosen). A
number of proofs are omitted for lack of space (Lemma 9, 10, and 11).

Lemma 9. Assume that pi decides a value d at cycle c. If a process pj (�= pi)
updates its candidate variable ej at cycle c′(≥ c), then its updated value is d.

Lemma 10. No process decides differently.

Proof . Using the lemma 9, we can prove this lemma by the same way as the
lemma 5. �

Lemma 11. If a process decides a value d, then, d is a value proposed by a
process.

368 T. Izumi and K. Wada

Lemma 12. Let n′ be the number of non-crashed processes at the beginning of
c, and pj be the process that broadcast an information d using 2RB. Then,

1. if pj does not crash at round 2c − 1 (that is, the first round of the cycle
c), and at most one process crashes at round 2c (the second round of c),
the information d is received by all non-crashed processes with probability
1 − O(n/αn), and

2. if pj crashes at the first round of c and no process crashes at the second
round of c, the information d is received by more than n′/2 + 2 or less than
n′/2 − 2 processes with probability 1 − O(n−1/2).

Proof . (Proof of 1) This lemma can be proved in the same way as Lemma 1.
(Proof of 2) Let x be the number of processes that receive d at the beginning
of round 2c (notice that the value x is not the random variable because the set
of messages sent by pj at round 2c − 1 is deterministically controlled by the
adversary). Clearly, if x = 0, no process receives messages d at the end of c.
Thus, in the followings, we consider the case of x > 0. We define P1 as the set
of processes that receive d with probability 1 (i.e., any process in P1 receives the
message with d that is not contained in the omission candidate C2c). We also
define n1 as the cardinality of P1. If n1 > n′/2 + 2 holds, n′/2 + 2 processes
necessarily receive d and thus the lemma holds. Thus, we assume n1 ≤ n′/2 + 2.
Since there is no crash at round 2c, any non-crashed process not in P1 unreceives
the information d with probability (1/2)x (denoted by q for short). Letting X as
be the random vabriable representing the number of processes receiving d at the
end of cycle c, we obtain

Pr[X = k] =
(

n′ − n1

n′ − k

)
qn′−k(1 − q)k−n1 . (4)

Since this is the binomial distribution, it takes the maximum in the average case
of n′ − k = (n′ − n1)q. Thus,

Pr[X = k] ≤
(

n′ − n1

(n′ − n1)q

)
q(n′−n1)q(1 − q)(n

′−n1)q

≤ O(n−1/2), (5)

where we use a weaker variant of Stirling approximation
(

N
qN

)
< q−qN (1 −

q)−N(1−q) ·O(N−1/2) and the fact of (n′−n1) = Θ(n). From this inequality, us-
ing the union bound, we have Pr[(n′/2 − 2) ≤ X ≤ (n′/2 + 2)] ≤

∑2
z=−2 Pr[X =

(n′/2 + z)] ≤ 5 · O(n−1/2). The lemma is proved. �.

Lemma 13. Let c be a cycle where at most one process crashes. Then, |#1st(c+
1) − #2nd(c + 1)| > 2 holds with probabilty 1 − O(n−1/2).

Proof . If no crash occurs, the lemma clearly holds from Lemma 2 because
all non-crashed processes receives a same set of messages with probabilty 1 −
O(n2/αn). Thus, we only consider the case where one process crashes. Let p̂0,

On the Probabilistic Omission Adversary 369

p̂1, · · · p̂n′−1 be non-crashed processes at the end of c, and Ei be the event that all
n′ processes receives the information sent by p̂i. The process that crashes during
c is denoted by px. We also intoduce the event EX that the information broadcast
by px is received more than n′/2 + 2 or less than n′/2− 2 processes. For a event
E, we denote its complement by Ē. From Lemma 12, Pr[Ēi] ≤ O(n/αn) and
Pr[ĒX] ≤ O(n−1/2) holds. Then, using the union bound, we obtain

Pr
[(n′−1⋃

k=0

Ēi

)
∪ ĒX

]
≤

n′−1∑
k=0

Pr[Ēi] + Pr[ĒX]

≤ (n′ − 1)O(n/αn) + O(n−1/2) (6)

Therefore, Pr[(∩n−1
k=1Ei) ∩ EX] ≥ 1 − O(n−1/2) holds. This implies that at least

n′/2 + 2 processes receive a same set of messages consisting of more than 2n/3
informations (notice n′ > 2n/3) with probability 1−O(n−1/2). Then, more than
n/2 + 2 processes update their candidate variables with a same value. It follows
that |#1st(c + 1) − #2nd(c + 1)| > 2 holds with probability 1 − O(n−1/2). The
lemma is proved. �

Lemma 14. Let c be a cycle where at most two processes crash, and n′ be the
number of non-crashed processes at the beginning of c. Then, with probability
1 − O(n2/αn), all processes that do not crash at the end of c receive at least
max{n′ − 2, 2n/3} messages.

Proof . Using Lemma 12, we can prove this lemma in the same way as Lemma
2. �

Lemma 15. Assume |#1st(c) − #2nd(c)| > 2. If at most two processes crash
during cycle c, all non-crashed processes have a same candidate value with prob-
abilty 1 − O(n2/αn).

Proof . Let n′ be the number of processes that do not crash at the beginning of c.
From Lemma 14, we can guarantee, with probability 1−O(n2/αn), that all non-
crashed processes receive max{n′−2, 2n/3} messages. Since |#1st(c)−#2nd(c)| >
2 holds, the most frequent value of all received by each process is 1st(c). This
implies that all processes update its candidate variable with the value 1st(c). The
lemma is proved. �

Lemma 16 (Probabilistic Termination). Every correct process decides with
probability 1. In addition, the worst-case expected number of rounds until all
correct processes decide is f + O(1).

Proof . We define a block as two consecutive cycles where the first cycle have
at most one crash, and the second one has at most two crashes, respectively. Two
blocks are said to be independent if there is no cycle belonging to both blocks. Let
X1 be the random variable representing the number of cycles until all processes
have a same candidate value, and X2 be the random variable representing the
number of cycles taken by the decision of all processes from the cycle when all

370 T. Izumi and K. Wada

processe have a same candidate value. We first bound E[X1] under f1 process
crashes. For any k > 0, the execution consisting of f1/2+1 +2k cycles includes
k + 1 blocks independent with each other. From Lemmas 13 and 15, in every
block, all non-crashed processes decides with probability 1 − O(1/

√
n). Thus, we

obtain E[X1] =
∑∞

k=1(f1/2+1+2k) · (1−O(1/
√

n)) ·O(1/
√

n)k = f1/2+O(1).
Next, assuming f2 crash failures are possible, we bound E[X2]. From Lemma 14,
if a cycle c has only two crash processes, all processes decides at the end of c
with probability 1 − O(n2/αn). Thus, we obtain E[X2] =

∑∞
k=1(f2/2 + 1 + 3k) ·

(1 − O(n2/αn)) · O(n2/αn)k = f2/2 + O(1). These two bounds implies that the
expected number of cycles until all correct processes decide is E[X1] + E[X2] =
(f1 +f2)/2+O(1) = f/2+O(1). Since one cycle consists of two rounds, we have
proved the f + O(1) worst-case expected round complexity. �

6 Concluding Remarks

This paper has newly introduced a novel class of adversaries, called p-probabilistic
omission adversary (p-POA). We also investigated the consensus algorithm work-
ing under p-POA, and its complexity. We proposed two impossibility results. The
first one is that no algorithm can tolerate more than of equal to n/2 crash failures,
for any p > 0. The second one is that for any p > 0, no algorithm can halt. We
proposed two consensus algorithms CPO and F-CPO working under the (1/2)-
probabilistic omission adversary. These algorithms have distinct advantages in
the point of crash-failure resiliency and time complexity respectively.

References

1. Attiya, H., Welch, J.L.: Sequential consistency versus linearizability. ACM Trans-
actions on Computer Systems 12(2), 91–122 (1994)

2. Basu, A., Charron-Bost, B., Toueg, S.: Simulating reliable links with unreliable
links in the presence of process crashes. In: Babaoğlu, Ö., Marzullo, K. (eds.)
WDAG 1996. LNCS, vol. 1151, pp. 105–122. Springer, Heidelberg (1996)

3. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43(2), 225–267 (1996)

4. Delporte-Gallet, C., Fauconnier, H., Freiling, F.C.: Revisiting failure detection and
consensus in omission failure environments. In: Van Hung, D., Wirsing, M. (eds.)
ICTAC 2005. LNCS, vol. 3722, pp. 394–408. Springer, Heidelberg (2005)

5. Dolev, D., Dwork, C., Stockmeyer, L.: On the minimal synchronism needed for
distributed consensus. Journal of the ACM 34(1), 77–97 (1987)

6. Dolev, D., Reischuk, R., Strong, R.: Early stopping in byzantine agreement. Journal
of ACM 37(4), 720–741 (1990)

7. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM 32(2), 374–382 (1985)

8. Freiling, F.C., Herlihy, M., Penso, L.D.: Optimal randomized fair exchange with se-
cret shared coins. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS
2005. LNCS, vol. 3974, pp. 61–72. Springer, Heidelberg (2006)

On the Probabilistic Omission Adversary 371

9. Guerraoui, R.: Revisiting the relationship between non-blocking atomic commit-
ment and consensus. In: Helary, J.-M., Raynal, M. (eds.) WDAG 1995. LNCS,
vol. 972, Springer, Heidelberg (1995)

10. Hadzilacos, V., Toueg, S.: Fault-tolerant broadcasts and related problems. In: Mul-
lender, S. (ed.) Distributed Systems, ch. 5, pp. 97–145. Addison-Wesley, Reading
(1993)

11. Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems 13, 124–149 (1991)

12. Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
13. Moses, Y., Rajsbaum, S.: A layered analysis of consensus. SIAM Journal on Com-

puting 31(4), 989–1021 (2002)
14. Neiger, G., Toueg, S.: Automatically increasing the fault-tolerance of distributed

algorithms. Journal of Algorithms 11(3), 374–419 (1990)
15. Parvédy, P.R., Raynal, M.: Optimal early stopping uniform consensus in syn-

chronous systems with process omission failures. In: SPAA. Proc. of the 16th an-
nual ACM symposium on Parallelism in algorithms and architectures, pp. 302–310.
ACM Press, New York (2004)

16. Perry, K.J., Toueg, S.: Distributed agreement in the presence of processor and
communication faults. IEEE Transactions on Software Engineering SE-12(3), 477–
482 (1986)

17. Raynal, M.: Consensus in synchronous systems: A concise guided tour. In: PRDC.
Proc. of Pacific Rim International Symposium on Dependable Computing, pp.
221–228 (2002)

18. Santoro, N., Widmayer, P.: Majority and unanimity in synchronous networks with
ubiquitous dynamic faults. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS,
vol. 3499, pp. 262–276. Springer, Heidelberg (2005)

Upper Bounds for Stabilization
in Acyclic Preference-Based Systems

Fabien Mathieu

Orange Labs, 38-40 rue du général Leclerc, 92794 Issy-les-Moulineaux, France
fabien.mathieu@orange-ftgroup.com
http://gyroweb.inria.fr/~fmathieu/

Abstract. Preference-based systems (p.b.s.) describe interactions be-
tween nodes of a system that can rank their neighbors. Previous work
has shown that p.b.s. converge to a unique locally stable matching if an
acyclicity property is verified. In the following we analyze acyclic p.b.s.
with respect to the self-stabilization theory. We prove that the round
complexity is bounded by n

2 for the adversarial daemon. The step com-
plexity is equivalent to n2

4 for the round robin daemon, and exponential
for the general adversarial daemon.

Keywords: Preference-based systems, b-matching, acyclicity, round
robin, adversarial and round robin daemons.

1 Introduction

A system is called preference-based if each of its nodes selfishly tries to acti-
vate its best edges according to some personal ranking. The description of the
stable configurations — if any — of a p.b.s. is known as the stable b-matching
problem. b-matching theory and its variants have applications in a variety of
real-world situations, including dating agencies, college admissions, roommates
attributions, assignment of graduating medical students to their first hospital
appointment, or kidney exchanges programs [1,2,3,4,5].

Recently, Lebedev et al. showed that many preferences are acyclic. They
also proved that an acyclic p.b.s. has a unique stable configuration, and al-
ways stabilizes[6,7]. This convergence result gave a theoretical proof for up-
load/download correlations in incentive-based networks like BitTorrent [8].

Our contribution is to analyze the convergence properties of acyclic p.b.s.
by using the self-stabilization approach [9,10]. We use the convergence theorem
proved in [6] to compute the step and round complexities for the round robin
and the adversarial daemon.

The rest of this paper is organized as follows. In Section 2 we give a short
introduction to the p.b.s. model and present the convergence theorem. In Sec-
tion 3 we give the round complexity. The step complexity for the round robin
and adversarial daemons are presented in Section 4.

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 372–382, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://gyroweb.inria.fr/~fmathieu/

Upper Bounds for Stabilization in Acyclic Preference-Based Systems 373

2 Model

A preference-based system consists of a set V of n nodes, whose possible inter-
actions are described by an acceptance graph G and a set of rankings (<i)i∈V .

The acceptance graph G = (V, E) is an undirected graph. It describes com-
patibilities: a node i and a node j are capable of collaborating (we say that i is
acceptable for j, and vice versa) if, and only if (iff) {i, j} ∈ E.

The ranking <i of a node i is a total order on the neighbors of i. If j and k
are two distinct neighbors of i, then we say that i prefers j to k iff j <i k.

Preference-based systems are also characterized by a quota vector b: a node
i cannot sustain more that b(i) simultaneous collaborations1. In this paper, we
focus on the case b = 1, thus the state of collaborations at a given time is a
matching of G, that we call configuration. C(i) denotes the match of a node i,
if any, in a configuration C.

The only action allowed in the model is the resolution of blocking pairs. A
blocking pair is a pair of nodes that are not matched together, in which both
could gain by collaborating (even if it means dropping the current match). A
configuration with no blocking pair is stable.

We say that a node is eligible in a configuration if it belongs to at least one
blocking pair. In this paper, we only consider best-match resolution: the action
of an eligible node consists in choosing the node it prefers among the blocking
pairs to which it belongs.

A computation is a maximal sequence of configurations such that for each
configuration Ci, the next configuration Ci+1 is obtained by the action of one
eligible node in Ci. Maximality of a computation means that the computation is
infinite or it terminates in a configuration where none of the actions are enabled,
e.g. a stable configuration.

A daemon is an action scheduler that generates a computation. We consider
here two kinds of daemons: the round robin daemon follows a round robin
scheduling over V , and executes the action of i whenever i is selected by the
scheduler and eligible; the adversarial daemon may select any eligible node at
every step. The adversarial daemon encompasses the round robin.

2.1 Convergence Theorem for Acyclic p.b.s.

A preference cycle is a cycle of nodes i1,. . . ,ik, with k ≥ 3, such that each node ij
prefers its successor ij+1 to its predecessor ij−1 (ij+1 <ij ij−1). A p.b.s. without
any preference cycle is called acyclic.

A particular kind of acyclic p.b.s. are the global-preferences systems, where
the preferences come from an inherent total order. For any global-preferences
system, there exists a labeling i1, . . . , in of its nodes such that for any node ij
with distinct neighbors ik and il, ik <ij il is equivalent to k < l. So, for sake of
simplicity, the nodes of a global-preferences system are often labeled with the
integers 1 to n.

1 The b letter in b-matching stands for this quota vector.

374 F. Mathieu

In [6], Lebedev et al. proved that an acyclic p.b.s. has a unique stable con-
figuration, and that all computations are finite. In other word, for any starting
configuration, the adversarial daemon eventually converges to the stable config-
uration. Thus we can say that acyclic p.b.s. are self-stabilizing for their stable
configuration.

Strong pairs. Strong pairs are a central concept in acyclic preference-based sys-
tems. A pair is strong in a configuration if:

– each node of the pair is ranked first by the other,
– or if there is one or more nodes that are ranked better, each of them is

matched and forms a strong pair with its mate.

Strong pairs have many qualities (cf [6,7] for details):

– they are edges of the stable configuration,
– a strong blocking pair is stable until the pair is matched (the property is not

affected by any daemon),
– the best-match resolution of any of the two nodes of a strong blocking pair

matches these two nodes,
– once matched, a strong blocking pair is a stable matched pair,
– all non-stable configurations of a given acyclic p.b.s. admit at least one strong

blocking pair.

Using strong blocking pairs, the question we will address in the following
is the effective time complexity of the convergence under possibly adversarial
scheduling regimes. We consider two measures for evaluating this complexity.
The round complexity and the step complexity. A round is a sub-sequence of
a computation in which every node that was eligible at the beginning of the
round either is activated or ceases to be eligible during the round. The step
complexity investigates the maximum length of a computation for all possible
starting configurations.

3 Round complexity

The round complexity is simple to compute in the case of acyclic p.b.s., as shown
by theorem 1:

Theorem 1. Starting from any configuration, and under any daemon, an acyclic
preference-based system stabilizes in �n

2 � rounds. Furthermore, there are instances
where the round robin daemon requires �n

2 � rounds.

Proof. The proof comes from the existence of strong blocking pairs in acyclic
preference-based systems: after each round (until stabilization), we are sure that
at least a a node of a strong blocking pair is selected, thus a stable edge is
formed. As the stable configuration is a matching, it has at most �n

2 � edges, so
the stabilization cannot last more than �n

2 � rounds. This bound is tight because
it is reached for global preferences and complete acceptance graph, if we consider
the round robin daemon with scheduling n, (n − 1), . . . , 2, 1, starting from the
empty configuration C∅.

Upper Bounds for Stabilization in Acyclic Preference-Based Systems 375

4 Step Complexity

In [6], the proof of the existence of a stable configuration relies on the following:
in an acyclic p.b.s., all configurations of a given computation are distinct. Thus
a first upper bound for the step complexity is the maximal number of matchings
of a graph with n nodes. This number, also known as the number of involutions
of a set of size n, has a factorial-like asymptotic behavior [11]. In the follow-
ing we prove a tight quadratic bound for the round robin daemon and a tight
exponential bound for the adversarial daemon.

4.1 Round Robin Daemon

The step complexity for the round robin daemon is given by theorem 2:

Theorem 2. Starting from any configuration, the round robin daemon takes at
most

∑�n
2 �−1

k=0 (n − (2k + 1)) steps to converge (hence the complexity is equivalent
to n2

4). This bound is tight.

Proof. The reasoning is the same as for the round complexity. As long as the
current configuration is not stable, there exists at least two nodes that belong to
a strong blocking pair. Hence after at most n− 1 steps, the round robin daemon
is forced to match a strong blocking pair. The remaining non stable nodes are
less than n − 2, and if the configuration is not stable yet, at least two of them
form a strong blocking pair, so after at most n − 3 steps, a new stable edge is
formed. . .

If we continue this process, we see that the number of steps cannot be more
than

(n − 1) + (n − 3) + (n − 5)... =
�n

2 �−1∑
k=0

(n − (2k + 1)) .

This is equal to n2

4 + c, where c is − 1
4 when n is odd and 0 when n is even.

Like for the round complexity, one can see that this bound is reached for
global preferences and complete acceptance graph, if we consider the round robin
daemon with scheduling n, (n − 1), . . . , 2, 1, starting from C∅.

4.2 Adversarial Daemon

The step complexity is harder to compute for the adversarial daemon. First we
will prove that the step complexity is not greater than 2n−1 − 1. Then we will
introduce a daemon with complexity Ω(μn), with μ ≈ 1.6826, thus proving that
the complexity of the adversarial daemon stands somewhere between these two
bounds.

2n Upper Bound

Theorem 3. The number of steps under any daemon is less than 2n−1 − 1 for
an acyclic preference-based system for all possible initial configurations.

376 F. Mathieu

Proof. We need to introduce S(n, k), that denotes the maximal number of steps
that can be made by using only a fixed subset of size k of the nodes of an acyclic
system of length n (the system and its initial configuration are arbitrary). S(n, n)
is the maximal complexity, so we want to prove that S(n, n) ≤ 2n−1 − 1.

Let C be an initial configuration of a system of size n. If C is not stable, C
admits at least one strong blocking pair. Thus any computation can be split in
three subsequences: before, during, and after the resolution of the strong blocking
pair. The two nodes of the strong blocking pair cannot be selected before or after
the pair is resolved, so we have:

S(n, n) ≤ S(n, n − 2)︸ ︷︷ ︸
before resolution

+ 1︸︷︷︸
resolution

+ S(n, n − 2)︸ ︷︷ ︸
after resolution

Now, we need to express S(n, k) for 1 ≤ k < n. First, we have S(n, 1) = 1,
because a single node i cannot be eligible after a selection: it is matched with the
best node j it can (it cannot prefer the possible previous mate k of j, otherwise
{i, j, k} would be a preference cycle).

For 2 ≤ k < n, call A the set of nodes that can be selected, I the set of nodes
that cannot be selected. One of the two following propositions is true:

– there exists a node in A that is never eligible as long as only nodes of A are
selected,

– there exists a pair in A × A or in A × I that is strong with respect to the
action of nodes from A.

In order to prove that, we consider the following path construction scheme:
the successor, if any, of a node a in A is defined as the best choice for a that does
not belong to a pair of I stable under the actions of A (stable nodes internal to
I cannot interfere with other nodes, so one forget them). The successor of a non-
stable node of I is its best choice among its neighbors from A plus its possible
current neighbor. Note that a non stable node of I has always a successor.

Starting from an initial node a0, one construct a path using this scheme. The
successor of each node is the best node it can expect under the action of A.
Because the system is acyclic and finite, the path eventually ends with a node
without successor, or with two nodes j, k such that each one is the successor of
the other.

If the path ends with a node without successor, this node belongs to A, and
it cannot be eligible (its non-stable-neighbors list is empty). If it ends with two
reciprocal successors i and j, then {i, j} is strong under the action of A, and it
belongs to A × A or A × I ({i, j} ∈ I2 would imply that {i, j} is a matched pair
of I that is stable under the action of A).

We can now bound S(n, k), using the same before/during/after argument than
for S(n, n):

S(n, k) ≤

⎧⎨
⎩

S(n, k − 1) if a node from A is never eligible,
1 + 2S(n, k − 2) if a pair from A2 is strong with respect to A,
1 + 2S(n, k − 1) if a pair from A × I is strong with respect to A.

Upper Bounds for Stabilization in Acyclic Preference-Based Systems 377

In any case, we have S(n, k) ≤ 1 + 2S(n, k − 1) for 2 ≤ k < n. An immediate
recurrence gives S(n, n − 2) ≤ 2n−2 − 1, thus we have S(n, n) ≤ 2n−1 − 1. This
concludes the proof.

μn Lower Bound

Theorem 4. There exists an acyclic preference-based system and a daemon
such that the complexity is Ω(μN), with

μ =

√√√√ 3
√

316 + 12
√

249
6

+
20

3 3
√

316 + 12
√

249
+

2
3

≈ 1.683

Proof. As the complexity is obviously increasing with n, we can restrain the
proof to systems of even size. We consider a global-preferences system of size
N = 2n with complete acceptance graph.

The worst eligible daemon (w.e.d.) is defined, for global preference systems,
as follows: as long as there exists an eligible node, the daemon select the worst-
eligible node, i.e. the eligible node with the highest label.

Call TC the number of steps taken by the w.e.d. to reach the stable configu-
ration from an initial configuration C (the number of nodes and the knowledge
graph are implicit). T∅(n) stands for TC∅(n), where C∅(n) is the empty config-
uration in the complete graph with 2n nodes. T12(n) stands for TC12(n), where
C12(n) is the stable configuration in the complete graph with 2n nodes, except
the best pair, {1, 2}, is not matched.

We will prove that T∅(n) = Θ(λn), with λ = μ2. This will guarantee that
the complexity of the adversarial worst-eligible daemon is Ω(μN) (other initial
configurations may take more steps).

T∅ can be expressed as a recursive function of T12. This shown by Equation (1).

T∅(n) = n2 +
n−1∑
i=1

(n − i)T12(i) (1)

For proving (1), we need to understand how the w.e.d. performs from C∅. The
basic idea is that at each step of the w.e.d., nodes can be split according to a
pivot. Nodes above the pivot or matched with those form the upper part. Other
nodes form the lower part. Upper nodes are never selected by the daemon, while
lower nodes perform the w.e.d. in a recursive way, with little change on upper
part configuration. The pivot increases one by one until the stable configuration
is reached.

We start with C∅ where all nodes are single.

{2n}, {2n − 1}, . . . , {n + 1}︸ ︷︷ ︸
lower part

, {n}, . . . , {2}, {1}︸ ︷︷ ︸
upper part

First, 2n goes with 1. 2n is not eligible, so 2n−1 is selected and takes 1 from 2n,
that goes to 2. Then 2n−2 matches with 1, forcing 2n−1 to lower its matching,

378 F. Mathieu

cascading to 2n. After n(n+1)
2 steps, the w.e.d. reaches the configuration where

each node of the lower part is matched with a node of the upper part as follows:

{2n, n︸︷︷︸
lowest eligible node

}, {2n − 1, n − 1}, . . . , {n + 2, 2}, {n + 1, 1}

At this point, all nodes from what we have called the lower part are not
eligible. So the first upper node, n, is selected and becomes the pivot, leading to
the configuration

{2n}, {n + 1}︸ ︷︷ ︸
lower part

, {2n − 1, n − 1}, . . . , {n + 2, 2}, {n, 1}︸ ︷︷ ︸
upper part

The lower part ({2n}, {n + 1}) performs T∅(1) = T12(1) (in other words, 2n
matches with n + 1), then n + 1 swaps with n + 2 as 2’s mate. The lower part
is now {2n}, {n + 2} and performs T12(1), then n + 2 swaps with n + 3 as 3’s
mate, and so on. . . Eventually, 2n − 2 swaps with 2n − 1 as n − 1’s mate and 2n
matches with 2n − 1, resulting in the following configuration :

{2n, 2n − 1}, {2n − 2, n − 1︸ ︷︷ ︸
lowest eligible node

}, {2n − 3, n − 2}, . . . , {n + 1, 2}, {n, 1}

Now n − 1 is the lowest eligible node (l.e.n.) and becomes the pivot.
More generally, the configuration before 2 ≤ i ≤ n becomes the pivot is

{2n, 2n − 1}, . . . , {2i + 2, 2i + 1}, {2i, i︸︷︷︸
l.e.n.

}, . . . , {i + 2, 2}, {i + 1, 1}

After i is selected, we obtain

{2n, 2n−1}, . . . , {2i+2, 2i+1}, {2i}, {i+ 1}︸ ︷︷ ︸
lower part

, {2i − 1, i − 1} . . . , {i + 2, 2}, {i, 1}︸ ︷︷ ︸
upper part

The upper part needs will mutate i−1 times (including i’s selection) to become

{2i − 2, i − 1} . . . , {i + 1, 2}, {i, 1}

Each mutation is due to the selection of the highest node from the lower part.
This is what we call a transitional step (selection of a lower part node to match
with an upper part node). After a transitional step, the lower part is made of
2(n − i + 1) nodes; More precisely 2(n − i) nodes perform a local {2k, 2k − 1}
matching, while the two best nodes (of the lower part) are single. As only the
best node of the lower part can interact with the upper part and as the w.e.d.
never selects the best node, the lower part will perform T12(n−i+1) steps before
the next transitional step. To summarize, the w.e.d. computation, starting from
C∅ is made of:

Upper Bounds for Stabilization in Acyclic Preference-Based Systems 379

– n(n+1)
2 steps to match each node of the upper half to a node of the lower

half.
– for each pivot i (n ≤ i ≤ 2), i−1 transitional steps, and (i−1)T12(n− i+1)

low steps.

That leads to Equation (1) :

T∅(n)=n(n+1)
2 +

∑n
i=2(i − 1)(1 + T12(n − i + 1))

=n(n+1)
2 + n(n−1)

2 +
∑n−1

i=1 (n − i)T12(i)
=n2 +

∑n−1
i=1 (n − i)T12(i)

Now that we have an expression of T∅ that depends on T12, we need to specify
the behavior of T12. This is given by Equation (2).

T12(n) =

⎧⎪⎨
⎪⎩

0 if n < 1
1 if n = 1

4
(
n − 1 +

∑n−3
i=1 T12(i)

)
+ 3T12(n − 2) + T12(n − 1) if n > 1

(2)

For n ≤ 1, (2) is obvious. For n ≥ 2, we adapt (1)’s proof. The w.e.d. first
matches all upper nodes, then combinatorics can be made using transitional
and low steps derived from a pivot. The main difference is that due to pre-
existing upper matchings, we need to distinguish odd and even pivots. Now, let
us describe the different phases of the w.e.d. computation starting from C12 :

Initial phase. First 2n matches 1, 2n−1 matches 1 and 2n matches 2. So after
3 steps, nodes form the configuration

{2n − 2, 2n − 3}, . . . , {4, 3}, {2n, 2}, {2n− 1, 1}

Our first pivot will be 2n − 2 (even).
Even pivot. The configuration before 2i (n− 1 ≤ i ≤ 2)2 becomes the pivot is:

{2n, 2n−1}, . . . , {2i+4, 2i+3}, {2i, 2i−1}, . . . , {4, 3}, {2i+2, 2}, {2i+1, 1}

After 2i is selected, we obtain

{2n, 2n − 1}, . . . , {2i + 4, 2i + 3}, {2i + 1}, {2i − 1}︸ ︷︷ ︸
lower part

, . . . , {2i + 2, 2}, {2i, 1}

The lower part is made of 2(n − i) nodes that form a C12 configuration (the
two best nodes, 2i + 1 and 2i − 1, are single). Low transitions occurs until
the second best node (2i+1) is selected and matches with 2. In other words,
after T12(n−i)−T12(n−i−1) transitions (we count the T12(n−i) transitions

2 We treat the pivot 2 separately.

380 F. Mathieu

except we remove transitions that happens after node 2 is selected) we obtain
the configuration

{2n, 2n − 1}, . . . , {2i + 4}, {2i + 2}, {2i + 3, 2i − 1}︸ ︷︷ ︸
lower part

, . . . , {2i + 1, 2}, {2i, 1}

The lower part configuration is similar to C12(n− i) except for the four best
nodes3 : first and third nodes (2i − 1 and 2i + 3) are together, while second
and fourth nodes are single. The w.e.d. first performs the stable solution for
the lower part minus 2i − 1 and 2i + 3 in T12(n − i − 1) steps:

{2n, 2n − 1}, . . . , {2i + 4, 2i + 2}, {2i + 3, 2i − 1}︸ ︷︷ ︸
lower part

, . . . , {2i + 1, 2}, {2i, 1}

Then 2i + 2 is selected and matches 2i − 1:

{2n, 2n − 1}, . . . , {2i + 4}, {2i + 3}, {2i + 2, 2i − 1}︸ ︷︷ ︸
lower part

, . . . , {2i + 1, 2}, {2i, 1}

Lastly, after T12(n − i − 1) steps, the lower part is stabilized and we have

{2n, 2n− 1}, . . . , {2i+ 4, 2i+ 3}, {2i+ 2, 2i − 1︸ ︷︷ ︸
l.e.n.

}, . . . , {2i + 1, 2}, {2i, 1} (3)

2i − 1 is now the lowest eligible node and is ready to become the pivot.
Odd pivot. (3) is the configuration before 2i − 1 (n − 1 ≤ i ≤ 2) becomes the

pivot. After that step, the configuration is

{2n, 2n − 1}, . . . , {2i + 4, 2i + 3}, {2i + 2}, {2i}︸ ︷︷ ︸
lower part

, . . . , {2i + 1, 2}, {2i − 1, 1}

After T12(n − i) steps, the w.e.d. stabilizes the lower part:

{2n, 2n − 1}, . . . , {2i + 4, 2i + 3}, {2i + 2, 2i}︸ ︷︷ ︸
lower part

, . . . , {2i + 1, 2}, {2i − 1, 1}

Then 2i swaps with 2i + 1 as 2’s mate:

{2n, 2n − 1}, . . . , {2i + 4, 2i + 3}, {2i + 2}, {2i + 1}︸ ︷︷ ︸
lower part

, . . . , {2i, 2}, {2i − 1, 1},

3 For i = n−1, there is only two nodes involved. However, the presented results stand
if we set T12(n) = 0 for any n ≤ 0.

Upper Bounds for Stabilization in Acyclic Preference-Based Systems 381

and after another T12(n − i) steps, the configuration is

{2n, 2n−1}, . . . , {2i+4, 2i+3}, {2i+2, 2i+1}, {2i−2︸ ︷︷ ︸
l.e.n.

, 2i−3}, . . . , {2i, 2}, {2i−1, 1}.

This is the point where 2i − 2 becomes the next pivot
2 as a pivot. Eventually, 2 is selected and matches with 1. After that, the

w.e.d. performs T12(n − 1) to produce the stable configuration.

We can now verify Equation (2):

T12(n) = 3︸︷︷︸
Initial phase

+
n−1∑
i=2

(2 + T12(n − i) + T12(n − i − 1))

︸ ︷︷ ︸
Even pivots

+
n−1∑
i=2

(2 + 2T12(n − i))

︸ ︷︷ ︸
Odd pivots

+ 1 + T12(n − 1)︸ ︷︷ ︸
2 as a pivot

= 4 + T12(n − 1) +
∑n−1

i=2 (4 + 3T12(n − i)) +
∑n

i=3 (T12(n − i))
= 4(n − 1) +

∑n−3
i=1 4T12(i) + 3T12(n − 2) + T12(n − 1)

Equation and (2) allows us to affirm that T12 follows an asymptotic geometric
progression. Moreover, the asymptotic common ratio can be explicitly found: it
must be a positive solution of Equation (4).

x2 = x1 + 3 +
4

x − 1
(4)

This equation leads to Equation (5), a third degree equation whose only pos-
itive root is the asymptotic common ratio for T12.

x3 = 2x2 + 2x + 1 (5)

Analysis indicates that the positive root of Equation (5) is

λ =
3
√

316 + 12
√

249
6

+
20

3 3
√

316 + 12
√

249
+

2
3

≈ 2.8312

Using Equation (1), we see that T∅ is also Θ(λn). That ends our proof.

5 Conclusion

We have shown that acyclic preference-based systems have a linear round com-
plexity even for the adversarial daemon, and a quadratic step complexity for
the round robin daemon. This means the the self-stabilization of such systems
is good, as long as nodes cannot be eligible and not selected for an arbitrary

382 F. Mathieu

long period of time. These bounds are tight for global p.b.s., but according to a
previous work, the round complexity may be logarithmic for most acyclic p.b.s.
that are not global [12]. On the other hand, the step complexity stands between
Ω(μn) and 2n−1 − 1 for the adversarial daemon. This is a more precise result
than the factorial-like upper bound that can be deduced from the convergence
theorem. Note, that global p.b.s. with complete acceptance graph have been
used whenever we needed to prove that a bound was reached. Thus the global
p.b.s. with complete acceptance graph is a sort of extremum among the possible
acyclic p.b.s., as empirically observed in [12].

References

1. Gale, D., Shapley, L.: College admissions and the stability of marriage. American
Math. Monthly 69, 9–15 (1962)

2. Irving, R.W., Manlove, D., Scott, S.: The hospitals/residents problem with ties.
In: Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851, pp. 259–271. Springer,
Heidelberg (2000)

3. Irving, R.W., Manlove, D.F.: The stable roommates problem with ties. J. Algo-
rithms 43(1), 85–105 (2002)

4. Roth, A.E.: The evolution of the labor market for medical interns and residents: A
case study in game theory. Journal of Political Economy 92(6), 991–1016 (1984)

5. Roth, A.E., Sonmez, T., Utku Unver, M.: Pairwise kidney exchange. Journal of
Economic Theory 125(2), 151–188 (2005)

6. Lebedev, D., Mathieu, F., Viennot, L., Gai, A.T., Reynier, J., Montgolfier, F.D.:
On using matching theory to understand p2p network design. In: INOC (2007)

7. Gai, A.T., Lebedev, D., Mathieu, F., de Montgolfier, F., Reynier, J., Viennot, L.:
Acyclic preference systems in p2p networks. In: Euro-Par (2007)

8. Gai, A.T., Mathieu, F., Reynier, J., De Montgolfier, F.: Stratification in P2P net-
works application to bittorrent. In: ICDCS (2007)

9. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

10. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
11. Chowla, S.: The asymptotic behavior of solutions of difference equations. In: Pro-

ceedings of the International Congress of Mathematicians, vol. I, 377, Amer. Math.
Soc (1950)

12. Mathieu, F.: Self-stabilization in preference-based networks. In: P2P (2007)

A Self-stabilizing Weighted Matching Algorithm

Fredrik Manne and Morten Mjelde

University in Bergen, Norway
{fredrik.manne, mortenm}@ii.uib.no

Abstract. The problem of computing a matching in a graph involves
creating pairs of neighboring nodes such that no node is paired more than
once. Previous work on the matching problem has resulted in several self-
stabilizing algorithms for finding a maximal matching in an unweighted
graph. In this paper we present the first self-stabilizing algorithm for
the weighted matching problem. We show that the algorithm computes
a 1

2 -approximation to the optimal solution. The algorithm is simple and
uses only a fixed number of variables per node. Stabilization is shown
under various types of daemons.

Keywords: self-stabilizing algorithms, weighted matching.

1 Introduction

Given a graph with n nodes and m edges, a matching is a set of edges in a graph
such that no node is incident to more than one selected edge. In a distributed
setting a matching can model a situation where each node must choose exactly
one of its neighbors for communication. The associated optimization problem
then becomes to choose a matching of maximum cardinality.

The matching problem lends itself well to distributed solutions since progress
towards a maximal solution can be made by selecting any edge in any order and
adding it to the current matching just as long as the selected edge is not incident
to an edge already included in the matching. It is well known that any maximal
matching (i.e. where no more edges can be added) is also a 1

2 -approximation to
the maximum matching.

Figure 1a shows an example of a non-maximal matching, while Figure 1b
illustrates a matching that is maximal, but not maximum. A maximum matching
is shown in Figure 1c. Finally, Figure 1d shows a set of edges that is not a
matching, since they are incident on the same node.

Previous work on the matching problem has resulted in several self-stabilizing
algorithms. Hsu and Huang [7] gave the first such algorithm and proved a bound
of O(n3) on the number of moves assuming a sequential model under an adver-
sarial daemon. This analysis was later improved to O(n2) by Tel [9] and finally
to O(m) by Hedetniemi et al. [6].

Gradinariu and Johnen [5] employed a method of randomization to assign an
ID to each node that is unique within distance 2, and used this to run Hsu and

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 383–393, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

384 F. Manne and M. Mjelde

Fig. 1.

Huang’s algorithm under an adversarial daemon. They show only finite stabi-
lization time however. Using the same technique of randomized local symmetry
breaking, Chattopadhyay et al. [1] later provided a maximal matching with O(n)
round complexity, but assuming the weaker fair distributed daemon.

In [4] Goddard et al. describe a synchronous version of Hsu and Huangs al-
gorithm and show that it stabilizes in O(n) time steps. Very recently, Manne et
al. [8] presented an algorithm that stabilizes in O(m) time steps in the more gen-
eral distributed model. Goddard et al. [3] also gave a self-stabilizing algorithm for
computing a maximal strong matching, however with exponential stabilization
time.

In the current paper we present the first self-stabilizing algorithm for comput-
ing a weighted matching. As opposed to the unweighted case, we now assume an
edge weighted graph and the objective is to compute a matching such that the
sum of the weights of the edges in the matching is as large as possible. Again
considering an example where every node in a network must choose exactly one
neighbor to communicate with, the weighted matching problem can be used to
model networks where not all lines of communication are equally desirable. For
example, in a wireless system the weight assigned to a link might reflect the qual-
ity or bandwidth of the link. In this setting selecting a matching of maximum
weight would ensure maximum information flow in the network.

We show that the presented algorithm computes a 1
2 -approximation to the

optimal solution. As to speed of convergence, we show that the algorithm stabi-
lizes in O(n) rounds in the distributed model under a fair daemon. This implies
that it also stabilizes in O(n) time steps in the synchronous model which is the
same as the algorithm by Goddard et al. [4] for the unweighted case. For an ad-
versarial daemon we show that the algorithm stabilizes in a finite (exponential)
number of steps both for the sequential and the distributed daemon.

It should be noted that computing a 1
2 -approximation for the weighted match-

ing problem is an inherently more difficult problem than for the unweighted case.
The reason for this is that in the weighted case any maximal solution can be
arbitrarily bad compared to the optimal solution.

The rest of this paper is organized as follows. In Section 2 we give a short
introduction to self-stabilizing algorithms and the computational environment

A Self-stabilizing Weighted Matching Algorithm 385

we assume. In Section 3 we present our new algorithm while we show correctness
and speed of stabilization in Section 4 before concluding in Section 5.

2 The Self-stabilizing Paradigm

A self-stabilizing algorithm is a distributed system where each node is an in-
dependent entity with knowledge only of itself and its neighbors. Unlike many
other distributed systems, a self-stabilizing algorithm is not initialized. Instead
the algorithm has to be able to reach a stable, or terminal, configuration regard-
less of its starting configuration. In this sense, a self-stabilizing algorithm is very
resistant to transient faults and can also handle a dynamic environment where
the structure of the underlying graph is changing.

A self-stabilizing algorithm is comprised of a set of rules, where each rule is
made up of a predicate and a move. If a predicate evaluates to true for a node, the
node is referred to as privileged and only then may it execute the corresponding
move. An algorithm is stable if there are no privileged nodes in the graph.

The general distributed model allows a non-empty subset of the privileged
nodes to perform one move each during a time step in the execution of the
algorithm. The synchronous model is a sub-variant of this model, and requires
that every privileged node executes a move in each step. Another sub-variant
of the distributed model, the often-used sequential model, allows only a single
node to make a move during each step.

If more than one node in the graph is privileged at that start of a particu-
lar time step there are several models that govern which nodes will perform a
move. Common to all of these models is the notion of a daemon that makes the
actual choice as to which subset of privileged nodes are selected for a move. We
distinguish between a fair and an adversarial daemon. Under a fair daemon a
privileged node will never have to wait an infinite number of time steps before
it is permitted to make a move, while an adversarial daemon can select any
privileged node for a move.

With the adversarial daemon, the moves complexity of an algorithm is mea-
sured in time steps for the distributed and synchronous model and in single
moves for the sequential model. Under a fair daemon we measure moves com-
plexity in rounds, where one round is a minimal sequence of time steps during
which every node privileged at the start of the round has either made a move or
become non-privileged. For further reading about self-stabilization algorithms
see [2].

3 The Algorithm

In the following we present and motivate our self-stabilizing weighted matching
algorithm. Note that at this stage we do not make any assumptions as to which
model or which daemon the algorithm will execute under.

386 F. Manne and M. Mjelde

3.1 The Graph Model

Given an undirected weighted graph G = (V, E) where |V | = n and |E| =
m. We denote wv,u > 0 as the weight of the edge (v, u) ∈ E. Furthermore,
we assume that every node v ∈ V has a unique, comparable, ID, denoted
by IDv. To ensure uniqueness of the edges we define a function w(v, u) =
(wv,u, max{IDv, IDu}, min{IDv, IDu}). This triplet, referred to as the effec-
tive weight of an edge, is used to define a total ordering of the edges. That is,
the edges are first ranked by their weight and if two edges have the same weight
they are ranked by the highest ID of the two nodes incident on that edge. If these
are also equal the edges are ranked by the lowest ID of the two incident nodes.
In this way, any node can compute the effective weight of all edges incident on
it, and no two edges in the graph will ever be considered to be of equal weight
(note that w(v, null) is by definition 0). Thus the heaviest edge in any subset of
E is the edge with greatest effective weight. For ease of presentation we will not
distinguish between weight and effective weight in the rest of the presentation
but merely assume that the weight of each edge is unique.

We also use the notation N(v) for the neighborhood of v. That is, for a
node v ∈ V , u ∈ N(v) ⇔ (v, u) ∈ E. We say that two edges are incident if
they share at least one common end point. Note that an edge is incident to
itself.

3.2 Variables

Every node v ∈ V has two variables, mv and hv. The intent being that in a stable
configuration mv should point to the neighbor of v that v is matched with, while
hv is the weight of the edge (v, mv). If the node v is not matched then mv should
be set to null and hv to 0. During the execution of the algorithm a node v will
use mv and hv to propose a matching with one of its neighbors by pointing to
it. However, two neighbors v and w are only considered to be matched with each
other if both mv = w and mw = v. A matching M consists of all the matched
edges in the graph, while the weight of M is the sum of the weights of the edges
in M .

The algorithm also makes use of the set N ′(v) defined as follows: N ′(v) is a
subset of N(v) such that u ∈ N ′(v) ⇔ (u ∈ N(v)∧w(v, u) ≥ hu). That is, N ′(v)
consists of all the neighbors of v that could achieve a match of equal or higher
weight than their current one if they were to match with v. Note that N ′(v) is
not a variable, but rather a set that v can compute during the execution of the
algorithm.

3.3 The Algorithm

In this section we present our algorithm. It is quite simple, consisting of one
function and one rule:

A Self-stabilizing Weighted Matching Algorithm 387

BestMatch(v)
return u : maxu∈N ′(v)∪{null} w(v, u)

SetMatch
if mv �= BestMatch(v)

∨
hv �= w(v, mv)

then
mv = BestMatch(v)
hv = w(v, mv)

Algorithm 1.

The function BestMatch(v) returns the neighbor u ∈ N ′(u) such that
w(v, u) is maximal among all nodes in N ′(v), while the rule SetMatch sets
mv to point to the node returned by BestMatch(v) and also updates the value
of hv accordingly. Thus a node will always strive to match with the node in
N ′(v) so that the resulting matched edge has maximal weight.

Fig. 2.

Figure 2 shows a possible execution of Algorithm 1. Starting from the config-
uration in Figure 2a, we observe that nodes b and c are matched. However, for
both node b and c there exists an unmatched neighbor such that both the edge
(a, b) and the edge (a, c) has a greater weight than (b, c). Assume now that c
makes a move first and points to a (Figure 2b). Since (a, c) is the heaviest edge
incident on a, the node a can now execute a move and point to c (Figure 2c)
(note that the moves executed up till this point could have been done in any
order). At this point b can no longer point to c, and since a is matched to c, it
is left with d as its only unmatched neighbor. Thus b points to d (Figure 2d),
and d, having now become privileged, points back (Figure 2e). Thus we have
two pairs of matched nodes in the graph.

4 Proof of Correctness

In the following we will first show that when Algorithm 1 has reached a sta-
ble configuration it also defines a matching that is a 1

2 -approximation to the

388 F. Manne and M. Mjelde

maximum weight matching. We will then bound the number of steps the al-
gorithm needs to stabilize both for the fair and for the adversarial distributed
daemon. Note that the fair daemon is a subset of the adversarial one, thus any
result for the latter also applies to the former.

4.1 Correct Stabilization

We now show that the algorithm, once stable, has found a 1
2 -approximation to

the maximum weight matching problem. To do so, we first need the following
observation which follows from the BestMatch function and from the predicate
of SetMatch.

Observation 1. In a stable configuration mv ∈ N ′(v)∪{null} and hv=w(v, mv)
for every node v ∈ V .

The next step is to show that when stable, there is consensus in the graph as to
which pairs of nodes are matched.

Lemma 1. In a stable configuration mv =u ⇔ mu =v for every edge (v, u) ∈ E.

Proof. We note from Observation 1 that in a stable configuration mv ∈
{N ′(v), null}, mu ∈ {N ′(u), null}, hv = w(v, mv), and hu = w(u, mu).
The rest of the proof is by contradiction.

We first show that mv = u ⇒ mu = v. Assume that mv = u while
mu = y where y �= v. Depending on the weights of (v, u) and (u, y) we
have the following two possibilities: i) w(v, u) > w(u, y), in which case
u would be privileged, since v would be a better match for u than y.
ii) w(v, u) < w(u, y) in which case v is not a better match for u, thus
u /∈ N ′(v) and v is privileged. In either case, the algorithm is not stable.
Using the same argument it also follows that mv = u ⇐ mu = v, thus
proving the lemma.
�

In the following we refer to a stable matching as a set of edges M in a stable
configuration such that for every edge (x, y) ∈ E, (x, y) ∈ M ⇔ mx = y and
my = x. The next lemma shows that we cannot have a stable configuration
where two adjacent nodes each have a matching of lower weight than that of the
edge joining them.

Lemma 2. In a stable configuration, for every edge (v, u) ∈ E we have w(v, u)
≤ max(hv, hu).

Proof. From Observation 1 we know that in a stable configuration hx =
w(x, mx) for any node x ∈ V . The rest of the proof is by contradiction.

Assume that there exists an edge (v, u) ∈ E in a stable configuration
such that w(v, u) > max(hv, hu). Then since w(v, u) > hu we have u ∈
N ′(v). Also, since the current configuration is stable BestMatch(v)
returns a node x ∈ N ′(v) such that mv = x and w(v, x) > w(v, u). But
since hv < w(v, u) it follows that w(v, mv) < w(v, u) and we must have
mv �= BestMatch(v) contradicting that the solution is stable. The same
argument can also be used to show that u is privileged.
�

A Self-stabilizing Weighted Matching Algorithm 389

Corollary 1. Let M be any stable matching given by Algorithm 1. Then every
edge (v, u) ∈ E is incident on at least one edge (x, y) ∈ M such that w(v, u) ≤
w(x, y).

Proof. Let (v, u) be any edge in E in a stable configuration. From Lemma
2 we know that w(v, u) ≤ max(hv, hu). Assume (without loss of gener-
ality) that hu = max(hv, hu). Then since w(v, u) > 0 we must also have
hu > 0 and it follows that u is matched in M . From Observation 1 we
know that hu = w(u, mu) implying that w(v, u) ≤ w(u, mu) and the
result follows.
�

This enables us to show the main result of this section.

Theorem 1. Any stable matching M given by Algorithm 1 is a 1
2 -approximation

to the maximum weighted matching problem.

Proof. Let M∗ be a maximum weighted matching for G. From Corollary
1 we know that it is possible to associate every edge (v, u) ∈ M∗ with
exactly one incident edge (x, y) ∈ M such that w(v, u) ≤ w(x, y). Since
at most two edges from M∗ can be associated with each edge of M we
have that 2w(M) ≥ w(M∗) and the result follows.
�

We note that it is fairly straight forward to show that the matching produced
by Algorithm 1 is in fact exactly the same matching as the sequential greedy
algorithm would give.

4.2 Convergence

We now show that Algorithm 1 stabilizes from any given starting configura-
tion. Specifically, we will be looking at the rate of convergence first using the
distributed adversarial model and then using the distributed fair model. The
distributed model is the most general model, where a non-empty subset of the
privileged nodes makes a move during each time step. Note that if at each time
step only one node is allowed to make a move, this model is identical to the
sequential model.

4.3 The Distributed Adversarial Model

We proceed to bound the number of time steps needed before Algorithm 1 stabi-
lizes under an adversarial daemon. The proof is based on counting the number of
moves needed before at least one node v stabilizes permanently. We then repeat
the argument recursively for the remaining set of nodes A = V − {v} obtaining
our desired bound. First we show that if parts of the graph has stabilized per-
manently then there exists at least one node that can at most make two more
moves.

Lemma 3. Given a set A ⊆ V where the nodes in A are the only nodes in the
graph permitted to move. Then there exists at least one node in A that can make
at most two moves.

390 F. Manne and M. Mjelde

Proof. Let (v, u) be the heaviest edge in the set {(x, y) ∀ x, y ∈ A :
(x, y) ∈ E} ∪ {(a, b) ∀ a ∈ A, b ∈ V \A : (a, b) ∈ E ∧ w(a, b) ≥ hb}. We
assume without loss of generality that at least v ∈ A.

If u ∈ V \A then w(v, u) ≥ hu and the only move v can make is one
that sets mv = u (provided that this is not already the case). Since there
does not exist any edge incident on v in A that is heavier than (v, u) and
since u cannot make a move, it follows that v will not move again.

If u ∈ A then there are two possibilities: i) hu ≤ w(v, u) or ii) hu >
w(v, u). In the first case it follows that the only move v can make is to
match with u before becoming permanently stable (again assuming that
only nodes in A may execute moves).

In the second case, u will need to make one move to correct its h-
value (which is incorrect). During this time step v can also make a move.
Following this move hu ≤ w(v, u), and as in case i), the only move v can
make is to match to u, again becoming permanently stable. Thus v has
executed at most two moves not counting any moves executed before u’s
first move. If v executes any move before u, we can simply switch the
roles of v and u and repeat the argument.

In either of the above cases we see that there has to exist at least one
node in A that can move at most twice.
�

Based on Lemma 3 we can now give a recursive formula for the number of moves
that Algorithm 1 can execute on the remaining nodes that have not yet stabilized
permanently.

Lemma 4. Let A ⊆ V be a set where |A| = k and let t(k) be the maximum num-
ber of moves needed for A to stabilize given that only nodes in A are permitted
to move. Then t(k) ≤ 3 · t(k − 1) + 2.

Proof. Recall from Lemma 3 that there exists at least one node v ∈ A
that can execute at most two moves. From the premise of the lemma we
know that at most t(k − 1) moves can be made by the nodes in A\{v}
before v makes its first move. Following this, another t(k − 1) moves can
be made before v’s second move. And finally at most t(k−1) subsequent
moves can be made as a result of v’s second and final move. Thus at
most 3 · t(k − 1) + 2 moves can be made in a set of size k.
�

Theorem 2. Algorithm 1 stabilizes after O(3n) time steps under the distributed
adversarial model.

Proof. From Lemma 4 we know that the time needed for a subset of
nodes of size k to become stable is t(k) ≤ 3 · t(k − 1) + 2. Since t(1) = 1
it follows that the maximum number of moves needed to ensure stabi-
lization is t(n) ≤ 2 · 3n−1 − 1. Thus the number of time steps used by
the algorithm is O(3n).
�

For the sequential adversarial model the bound from Theorem 2 can be improved
to O(2n). This follows by noting that for any unstable configuration there ex-
ists at least one node that can make at most one more move before becoming
permanently stable. We omit the details.

A Self-stabilizing Weighted Matching Algorithm 391

4.4 The Distributed Fair Model

We now look at the convergence rate of Algorithm 1 assuming a distributed
model under a fair daemon, and prove that the algorithm stabilizes after at
most 2 · |M | + 1 rounds where M is the final matching found by the algorithm.
We remind the reader that in the distributed fair model, complexity is measured
in rounds, where one round is a minimum period of time during which every
node that was privileged at the start of the round has either made at least one
move or at some point become non-privileged.

We first note that since the distributed fair model is a subset of the distributed
adversarial model it follows from Theorem 2 that Algorithm 1 will eventually
stabilize with a matching M that is a 1

2 -approximation to the maximum weighted
matching problem. Thus it is meaningful to refer to the resulting matching M .
We now proceed to bound the number of rounds before Algorithm 1 stabilizes.

Lemma 5. After at most one round mv ∈ N(v) ∪ {null} and hv = w(v, mv)
for every v ∈ V .

Proof. Recall from the predicate of SetMatch that a node v is privileged
if its m-value is incorrect or if hv �= w(v, mv). In either case SetMatch
will set mv to some node u ∈ N ′(v) ∪ {null} and hv to w(v, mv). Since
N ′(v) ⊆ N(v) the result follows.
�

Note that one cannot guarantee that mv ∈ N ′(v) ∪ {null} after the first round
as N ′(v) might change after v has made its move.

Lemma 6. After at most two rounds, the heaviest edge (v, u) ∈ E is part of M .
Furthermore, the algorithm will never cause (v, u) to leave M .

Proof. From Lemma 5 we know that after the first round every node
has a correct h-value and mv ∈ N(v) ∪ {null}. If (v, u) is the heaviest
edge in G it follows that hv ≤ w(v, u) and hu ≤ w(v, u), implying that
u ∈ N ′(v) and v ∈ N ′(u). Thus if mv �= u then v is privileged and if
mu �= v then u is privileged. In either case, at most one more round is
needed before v and u are matched. This will happen since neither of
the two nodes has a neighbor that can give a better matching than the
other node.

Since there does not exist any edge in the graph with weight greater
than (v, u) neither v nor u will become privileged again, and thus the
edge (v, u) will never leave the matching.
�

We can now give the final bound on the number of rounds needed before Algo-
rithm 1 stabilizes.

Theorem 3. Algorithm 1 converges after at most 2 · |M | + 1 rounds.

Proof. Let e1, e2, . . . , e|M| be the edges in M sorted in descending order.
We show by induction that e1, e2, . . . , ei are all part of the matching after
at most 2i rounds, and that they will not leave M in subsequent rounds.

392 F. Manne and M. Mjelde

The base case is covered by Lemma 6 and it follows that e1 must be
the heaviest edge in E.

For the induction step assume that the algorithm has run for at most
2 · (i− 1) rounds and that the edges Mi−1 = {e1, e2, . . . , ei−1} have been
permanently added to M . It follows that we do not need to consider any
edge incident on Mi−1 for future inclusion in M .

Let (v, u) be the heaviest edge not incident on Mi−1. Then by the
same argument as in the proof of Lemma 6 it follows that within the
next two rounds (v, u) will be permanently added to M . Since no edge
of weight greater than w(v, u) will be added to M in subsequent time
steps it follows that ei = (v, u).

From the above is follows that at most 2 · |M | rounds are needed to
find the matching. However, since some nodes may not be part of the
matching, one more round may be needed for these nodes to right any
incorrect variables they may have. Thus the algorithm requires at most
2 · |M | + 1 rounds.
�

It should be noted that the size of a matching in a graph G = (V, E) cannot
exceed |V |/2. Since this would imply that every node is matched, the number of
rounds needed for the algorithm to stabilize in this case is at most 2 · |M | = |V |,
not 2 · |M | + 1.

As was noted in Section 2, both the synchronous and sequential fair models
are sub variants of the distributed fair model. Thus the bound from Theorem 3
also holds for either of these models.

5 Conclusion

We have presented the first self-stabilizing algorithm for computing a 1
2 - approx-

imation for the maximum weighted matching problem. In addition to being short
and simple, the complexity of the algorithm is linear over the number of nodes
in the graph when using a distributed fair daemon. Furthermore the algorithm
requires only two variables per node.

It is worth noting that while we in Section 3.1 require that all IDs are unique,
this is in fact not needed. The algorithm requires only that every ID is unique
within distance 2. That is, no node can have two or more neighbors with the
same ID. On the same note, we do not need to create a global ordering of the
edges in the graph. While a global ordering was used to make the proofs more
understandable, a local ordering is sufficient for the algorithm.

One common method for improving the approximation ratio of a matching is
by the use of augmenting paths. An augmenting path is a path such that exactly
every other edge in the path is part of the current matching. The length of an
augmenting path is the number of unmatched edges in it. It is well known that if
a matching does not contain an augmenting path of length i then the matching
is a i

i+1 -approximation. Thus it would be of interest to see if it is possible to
design self-stabilizing algorithms that can detect and correct augmenting paths

A Self-stabilizing Weighted Matching Algorithm 393

of length larger than i = 1 as is done in the current paper, while at the same
time limiting the number of variables and stabilization time. One possible way
of doing this could be to use the same kind of augmentations as is used in the
sequential linear time algorithm by Vinkelmeier and Hougardy [10] to produce
a solution with approximation ratio arbitrarily close to 2/3.

References

1. Chattopadhyay, S., Higham, L., Seyffarth, K.: Dynamic and self-stabilizing dis-
tributed matching. In: PODC 2002. Proceedings of the twenty-first annual sympo-
sium on Principles of distributed computing, pp. 290–297. ACM Press, New York
(2002)

2. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
3. Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Self-stabilizing dis-

tributed algorithm for strong matching in a system graph. In: HiPC 2003. LNCS
(LNAI), vol. 2913, pp. 66–73. Springer, Heidelberg (2003)

4. Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Self-stabilizing pro-
tocols for maximal matching and maximal independent sets for ad hoc networks.
In: IPDPS, p. 162 (2003)

5. Gradinariu, M., Johnen, C.: Self-stabilizing neighborhood unique naming under
unfair scheduler. In: Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.)
Euro-Par 2001. LNCS, vol. 2150, Springer, Heidelberg (2001)

6. Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Maximal matching stabilizes in time
o(m). Inf. Process. Lett. 80(5), 221–223 (2001)

7. Hsu, S.-C., Huang, S.-T.: A self-stabilizing algorithm for maximal matching. Inf.
Process. Lett. 43(2), 77–81 (1992)

8. Manne, F., Mjelde, M., Pilard, L., Tixeuil, S.: A new self-stabilizing maximal
matching algorithm. In: Sirocco 2007. Proceedings of the 14th International Col-
loquium on Structural Information and Communication Complexity, pp. 96–108.
Springer, Heidelberg (2007)

9. Tel, G.: Maximal matching stabilizes in quadratic time. Inf. Process. Lett. 49(6),
271–272 (1994)

10. Vinkemeier, D.E.D., Hougardy, S.: A linear-time approximation algorithm for
weighted matchings in graphs. ACM Trans. Algorithms 1(1), 107–122 (2005)

Self-stabilization and Virtual Node Layer

Emulations

Tina Nolte and Nancy Lynch�

MIT CSAIL, Cambridge, MA, USA

Abstract. We present formal definitions of stabilization for the Timed
I/O Automata (TIOA) framework, and of emulation for the timed Vir-
tual Stationary Automata programming abstraction layer, which con-
sists of mobile clients, virtual timed machines called virtual stationary
automata (VSAs), and a local broadcast service connecting VSAs and
mobile clients. We then describe what it means for mobile nodes with
access to location and clock information to emulate the VSA layer in a
self-stabilizing manner. We use these definitions to prove basic results
about executions of self-stabilizing algorithms run on self-stabilizing em-
ulations of a VSA layer, and apply these results to a simple geographic
routing algorithm running on the VSA layer.

Keywords: self-stabilization, virtual stationary automata, virtual node
layer, geocast, abstraction layer emulation, mobile ad-hoc networking,
TIOA.

1 Introduction

A system with no fixed infrastructure in which mobile clients may wander in the
plane and assist each other in forwarding messages is called an ad-hoc network.
The task of designing algorithms for constantly changing networks is difficult.
Highly dynamic networks, however, are becoming increasingly prevalent, espe-
cially in the context of pervasive and ubiquitous computing, and it is therefore
important to develop and use techniques that simplify this task.

In addition, nodes in these networks may suffer from crashes or corruption
faults, which cause arbitrary changes to their program states. Self-stabilization
[2,3] is the ability to recover from an arbitrarily corrupt state. This property
is important in long-lived, chaotic systems where certain events can result in
unpredictable faults. For example, transient interference may disrupt wireless
communication, violating our assumptions about the broadcast medium.

In this paper, we first develop a basic formal theory of stabilization for the
Timed I/O Automata (TIOA) framework [11], used to describe and analyse
timed systems (Section 2). We then describe the abstract timed Virtual Station-
ary Automata (VSA) layer presented in [6], used to simplify algorithm design for
� Research supported by AFRL contract number F33615-010C-1850, DARPA/AFOSR

MURI contract number F49620-02-1-0325, NSF ITR contract number CCR-0121277,
and DARPA-NEST contract number F33615-01-C-1896.

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 394–408, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Self-stabilization and Virtual Node Layer Emulations 395

mobile networks (Section 3). The VSA layer is a virtual infrastructure, consisting
of mobile client automata, timing-aware and location-aware machines at fixed
locations (VSAs), and a local broadcast service connecting VSAs and clients.

We introduce a formal theory of self-stabilizing emulation of a VSA layer in
Section 4. This provides proof obligations required to conclude that an algorithm
successfully emulates the VSA layer, allowing an application programmer to
write programs for the VSA layer without worrying about its implementation.

We finally show that a self-stabilizing VSA layer emulation running on the
physical layer and instantiated with a self-stabilizing VSA layer service imple-
mentation, is a stabilizing implementation of the service on the physical layer
(Section 5). This separates the reasoning about stabilization properties of a VSA
layer emulation algorithm from those of the VSA layer service being run. We
apply these results to a simple self-stabilizing VSA layer algorithm that provides
geographic routing, a version of which appeared in [7].

Virtual Stationary Automata programming layer. In prior work [6,5,4],
we developed a notion of “virtual nodes” for mobile ad hoc networks. A virtual
node is an abstract, relatively well-behaved active node implemented using less
well-behaved real physical nodes. The GeoQuorums algorithm [5] proposes stor-
ing data at fixed locations; however it supports only atomic objects, rather than
general automata. A more general mobile automaton is suggested in [4].

The static infrastructure we use in this paper includes fixed, timed virtual au-
tomata with an explicit notion of real time, called Virtual Stationary Automata
(VSAs), distributed at known locations over the plane [6] and connected as in a
wired network. Each VSA represents a predetermined geographic area and has
broadcast capabilities similar to those of the physical nodes, allowing nearby
VSAs and physical nodes to communicate. VSAs have access to virtual clocks,
guaranteed to not drift too far from real time; many algorithms depend signifi-
cantly on timing, and it is reasonable to assume that many mobile nodes have
access to reasonably synchronized clocks. This layer provides mobile nodes with
a fixed timed virtual infrastructure, reminiscent of more traditional and better
understood wired networks, with which to coordinate their actions.

Our clock-equipped VSA layer is emulated by physical nodes. Each physical
node is periodically told its region by a reliable GPS oracle. A VSA for a partic-
ular region is then emulated by a subset of the physical nodes in its region: the
VSA state is maintained in the memory of the physical nodes emulating it, and
the physical nodes perform VSA actions on behalf of the VSA. If no physical
nodes are in the region, the VSA fails; if physical nodes later arrive, it restarts.

The implementation in [6] was designed to be self-stabilizing. This paper pro-
vides the necessary formal machinery to both formally express and prove that
such an implementation is a VSA layer emulation and that it is self-stabilizing.

Geographic routing. We use a basic geographic routing service [7], based on
greedy depth-first search, to demonstrate concepts we introduce in this paper.
Geocast algorithms [14,1], GPSR [10], AFR [13], GOAFR+ [12], and polygonal

396 T. Nolte and N. Lynch

broadcast [8] are other examples of greedy geographic routing algorithms, for-
warding messages to the neighbor geographically closest to the destination.

2 Definitions

We start by defining the Timed I/O Automata modeling framework for timed
systems, and then outline basic definitions and facts with respect to stabilization.

2.1 Timed I/O Automata (TIOA)

Here we define Timed I/O Automata (TIOA) terminology used in this paper.
TIOAs are nondeterministic state machines whose state can change in two ways:
instantaneously through a discrete transition, or according to a trajectory de-
scribing the evolution, possibly continuous, of variables over time. The TIOA
framework can be used to carefully specify and analyse timed systems. (Addi-
tional details can be found in [11].)

A valuation for a set V of variables is a function mapping each variable v ∈ V
to a value in type(v). The set of such valuations is val(V).

A trajectory, τ , for V is a function mapping a left-closed interval of time
starting at 0 to the set of valuations for V , such that for v ∈ V , τ restricted to
v is in the dynamic type of v.

• τ is closed if domain(τ) is both left and right-closed.
• τ.fstate is the first valuation of τ , and, for τ closed, τ.lstate is the last.
• The limit time of τ , τ.ltime, is the supremum of domain(τ).
• The concatenation, ττ ′, of trajectories τ and τ ′, τ closed, is the trajectory

resulting from the pasting of τ ′, shifted by τ.ltime, to the end of τ .

A Timed I/O Automaton (TIOA), A = (X, Q, Θ, I, O, H,D, T), consists of:

– Set X of internal variables.
– Set Q ⊆ val(X) of states.
– Set Θ ⊆ Q of start states, nonempty.
– Sets I of input actions, O of output actions, and H of internal actions, each

disjoint. A = I ∪ O ∪ H is all actions. E = I ∪ O is all external actions.
– Set D ⊆ Q × A × Q of discrete transitions.

We say action a is enabled in state x if (x, a, x′) ∈ D, for some x′ ∈ X . We
require A be input-enabled (every input action is enabled at every state).

– Set T ⊆ trajectories of Q. We require:
• For every state x, the point trajectory for x must be in T ,
• For every τ ∈ T , every prefix and suffix of τ is in T ,
• For every sequence of trajectories in T , where for every τi but the last, τi

is closed and τi.lstate = τi+1.fstate, the concatenation of the trajectory
sequence is also in T , and

• Time-passage enabling: for every state x, there exists a τ ∈ T where
τ.fstate = x, and either τ.ltime = ∞ or τ is closed and some l ∈ H ∪ O
is enabled in τ.lstate.

Self-stabilization and Virtual Node Layer Emulations 397

Two TIOAs A and B are compatible if they share no internal variables, and
their internal actions are not actions of the other. Two compatible TIOAs A and
B can be composed into a new TIOA A‖B, which has A and B as components
where an action performed in one component that is an external action of the
other component is also performed in the other component.

Given a set A of actions and a set V of variables, an (A, V)-sequence is an
alternating sequence α = τ0a1τ1a2τ2 · · · where: (a) Each ai is an action in A,
(b) Each τi is a trajectory for V , (c) If α is finite, it ends with a trajectory, and
(d) Each τi but the last is closed.

• α is closed if it is a finite sequence and its final trajectory is closed.
• The limit time of α, α.ltime, is the sum of limit times of α’s trajectories.
• The concatenation, αα′, of two (A, V)-sequences α and α′, α closed, is α

followed by α′, where the last trajectory of α is concatenated to the first
trajectory of α′.

• For sets of actions A and A′, and sets of variables V and V ′, the (A′, V ′)-
restriction of an (A, V)-sequence α, written α�(A′, V ′), is the (A′, V ′)-
sequence that results from projecting the trajectories of α on variables in
V ′, removing actions not in A′, and concatenating all adjacent trajectories.

An execution fragment of a TIOA A is an (A, V)-sequence α = τ0a1τ1a2τ2 · · · ,
where each τi is a trajectory in T , and if τi is not the last trajectory of α, then
(τi.lstate, ai+1, τi+1.fstate) ∈ D. The set of execution fragments of A starting
from a state in some S ⊆ Q is referred to as fragsS

A.
An execution fragment of A, α, is an execution of A if α.fstate is in Θ. The

set of executions of A is referred to as execsA.
A state of A is reachable if it is the last state of some closed execution of A.

The set of reachable states of A is referred to as reachableA.
A trace (external behaviour) of an execution fragment α of A, trace(α), is

α restricted to external actions of A and trajectories over the empty set of
variables. tracesA is the set of traces of executions of A.

2.2 Stabilization

We define stabilization in terms of sets of (A, V)-sequences. This is general
enough to talk about stabilization of traces and execution fragments of TIOAs,
and about stabilization of transformed versions of these (A, V)-sequences.

Definition 1. Let α and α′ be (A, V)-sequences, and t be in R
≥0. α′ is a t-suffix

of α if a closed (A, V)-sequence α′′ exists where α′′.ltime = t and α = α′′α′.

Definition 2. Let α = α′′α′ be an (A, V)-sequence and t be in R
≥0. α′ is a

state-matched t-suffix of α if it is a t-suffix of α, and α′.fstate = α′′.lstate.

Lemma 1. Let α be an (A, V)-sequence and t be in R
≥0 where either t <

α.ltime, or t = α.ltime and α is closed. A state-matched t-suffix of α exists.

For the following definitions, let B be a set of (AB , V)-sequences, C be a set
of (AC , V)-sequences, and D be a set of (AD, V)-sequences, where AB, AC , and
AD are sets of actions, and V is a set of variables.

398 T. Nolte and N. Lynch

Definition 3. Let t be a non-negative real. B stabilizes in time t to C if any
state-matched t-suffix α of a sequence in B is a sequence in C.

Since executions and traces of TIOAs are (A, V)-sequences, the above definition
can be used to talk about executions or traces of one TIOA stabilizing to exe-
cutions or traces of some other TIOA. The following lemma is a general result
that can be used to show, for example, that if executions of one TIOA stabilize
to those of another then its traces also stabilize to traces of the other.

Lemma 2. Let A be a set of actions and V ′ a set of variables. If B stabilizes to
C in time t, then {α�(A, V ′)|α ∈ B} stabilizes to {α�(A, V ′)|α ∈ C} in time t.

Lemma 3 (Transitivity). If B stabilizes to C in time t1, and C stabilizes to
D in time t2, then B stabilizes to D in time t1 + t2.

Proof sketch: Assume B stabilizes to C in time t1, and C stabilizes to D in time
t2. Consider a sequence αB = α1

Bα2
Bα3

B in B, where αB.ltime ≥ t1 + t2, α2
Bα3

B is
a state-matched t1-suffix of αB, and α3

B is a state-matched t1 + t2-suffix of αB .

We will show that α3
B is in D:

αB : �α1
B

t1

α2
B

t2

α3
B

Since B stabilizes to C in time t1, α2
Bα3

B is in C. Also, since α3
B.fstate =

α2
B.lstate, α3

B is a state-matched t2-suffix of α2
Bα3

B . Since C stabilizes to D in
time t2, and α3

B is a state-matched t2-suffix of a sequence in C, α3
B is in D.

We conclude that B stabilizes to D in time t1 + t2. 	

The following definitions capture the idea of a TIOA being self-stabilizing when
composed with another TIOA, allowing us to write algorithms that can be
started in an arbitrary state but take advantage of separate oracles, in order
to eventually reach some legal state of the composed automaton. (The idea of a
TIOA stabilizing given another can be used to arrive at layering results similar
to those of fair composition, described in [3], showing that under certain condi-
tions, if you have a self-stabilizing implementation A of a service that’s used by
a self-stabilizing implementation B of a higher level service, then B using A is
still stabilizing.) We begin by defining a function that takes a TIOA and a state
set L and returns the same TIOA with its start state set changed to L.

Definition 4. Let A be any TIOA and L be any nonempty subset of QA. Then
changeStart(A, L) is defined to be A except with ΘchangeStart(A,L) = L. We use
notation U(A) for changeStart(A, QA) (or A started in an arbitrary state), and
R(A) for changeStart(A, reachableA) (or A started in a reachable state).

Lemma 4. Let O and A be compatible TIOAs, L ⊆ QA, L′ ⊆ QO, and L′′ ⊆
QA‖O. Then:

1. changeStart(A, L)‖changeStart(O, L′) = changeStart(A‖O, L × L′).
2. fragsL

A = execschangeStart(A,L).
3. fragsL′′

changeStart(A,L)‖changeStart(O,L′) = fragsL′′

A‖O
4. For any αα′ ∈ tracesU(A)‖R(O), α′ ∈ tracesU(A)‖R(O).

Self-stabilization and Virtual Node Layer Emulations 399

Definition 5. Let A be a TIOA, and L ⊆ QA. L is a legal set for A if:

1. For every (x, a, x′) ∈ DA, if x ∈ L then x′ ∈ L.
2. For every closed τ ∈ TA, if τ.fstate ∈ L then τ.lstate ∈ L.

Definition 6. Let O and A be compatible TIOAs, and L be a legal set for A‖O.
A self-stabilizes in time t with respect to L and given O if execsU(A)‖O stabilizes
in time t to fragsL

A‖O.

Notice in the definition above that when O = R(O′) for some TIOA O′, the
TIOA A can recover from a corruption fault, where A’s state can be changed
arbitrarily: the resulting state s is in QA × reachableO′, meaning any execution
fragment starting from s is in execsU(A)‖O.

3 Physical Layer and VSA Layer System Models

The physical layer consists of a bounded, tiled region of the plane, where mobile
physical (real) nodes are deployed. These nodes are TIOAs susceptible to crash
failures and restarts, and with access to a local clock. They also have access to a
local broadcast service and a reliable RW (real world or GPS) automaton that
models moves, failures, and restarts of the physical nodes and real-time. This
layer can be used to emulate the VSA layer (we define emulation in Section 4).

The Virtual Stationary Automata abstraction layer [6] includes a modified
version of RW called RW ′, client nodes that correspond to physical nodes,
virtual stationary automata (VSAs) the physical nodes emulate, and a local

.

.

.

.

.

.

V-bcast

Dout[e]u

Dout[e]v

Cp

Cq

GPSupdate(u, now)p

GPSupdate(u, now)p

RW ′

GPSupdate(v, now)q

GPSupdate(v, now)q

Vu

Vv

bcast(m)p

brcv(m)p

bcast(m)q

brcv(m)q

bcast(m)u

brcv(m)u

bcast(m)v

brcv(m)v

Fig. 1. Virtual Stationary Automata layer. VSAs and clients communicate locally using
V-bcast. VSA outputs may be delayed in Dout.

400 T. Nolte and N. Lynch

broadcast service between them, V-bcast, similar to that of the physical layer
(see Figure 1). Since each physical layer component has a corresponding virtual
layer component, this section describes the more complicated VSA layer in depth
and explains connections or differences from the physical layer as appropriate.

3.1 Network Tiling

The deployment space of the network is a fixed, closed, bounded portion of the
two-dimensional plane called R. R is partitioned into known connected regions,
with unique ids drawn from the set of region identifiers U . Distances between
points in the same region are bounded by a constant rvirt. We also define a
neighbor relation nbrs on ids from U : nbrs holds for any distinct region ids u
and v where the distance between points in u and v is bounded by rvirt.

Connection to physical layer: The constant rvirt is the broadcast radius of the
underlying physical nodes. The network tiling then ensures that any two physical
nodes in the same or neighboring regions will be able to communicate.

3.2 Real World

Real world TIOA RW of the physical level models system time and mobile
node region locations, failures, and restarts. It maintains a variable, now, that
is considered the true system time, and two mappings, locReg and fail.

locReg, mapping the set of physical node ids, P , to U , indicates the region
where a particular mobile node is located. RW outputs a GPSupdate(u, now)
at a mobile node whenever the node changes regions, and every εsample time in
addition, informing the node of the node’s new region and the current time.

fail, mapping the physical node ids, P , to Booleans, indicates whether a
physical node is failed. RW outputs failp at a node when it fails, setting fail(p)
to true, and outputs restartp when the node restarts, setting fail(p) to false. A
fail only occurs at a non-failed node, and a restart only occurs at a failed node.

The real world TIOA RW ′ of the virtual level is an extension of RW that is
also able to fail and restart regions in U (corresponding to failing and restarting
VSAs). The mapping fail is extended to also map region identifiers in U to a
Boolean, and fail and restart actions similar to those for mobile nodes are added.
In addition to the locReg and fail variables of RW , RW ′ also maintains a log
history variable, in which the execution of RW ′ up to now is stored.

RW and RW ′ outputs are also inputs to physical level broadcast and V-bcast
services, respectively.

RW ′ is parameterized by failure and recovery conditions for regions, expressed
as two precondition (allowed-to-happen) predicates, failprec and restartprec,
and two stopping condition (must-happen) predicates, failstop and restartstop,
each of which is parameterized by region id. These predicates are allowed to be
over the variable log and the current time, now, and we require that for any
region u, if failstop[u] holds, then restartprec[u] does not, and if restartstop[u]
holds, then failprec[u] does not. Given these, the precondition of a failu, u ∈ U ,
action will be ∼ failed(u)∧failedprec[u]. Similarly, the precondition of a restartu

Self-stabilization and Virtual Node Layer Emulations 401

action will be failed(u)∧restartprec[u]. The associated stopping conditions are
∼ failed(u) ∧ failstop[u], and failed(u) ∧ restartstop[u].

Example predicates: One suitable failprec for a region is that some failure or
leave of a client occurred at the current time. The stopping condition can be that
there are no clients in the region or none of the clients have been in the region for
at least d time. (Region failures only occur in reaction to some mobile node fail
or leave, and are guaranteed to happen if there are no clients populating their
regions that have been around for some time.) For restartprec, we can require
that there be some client in the region that’s been in the region for at least 2d
time. The stopping condition can be that the last client fail or leave was at least
e time ago and there is some client that has been in the region at least 2d time.
(Region restarts only occur if some mobile node has been around long enough,
and are guaranteed to happen if none of the mobile nodes in the region have
failed or left for some time. Constants e and d are explained in Section 3.5.)

3.3 Client Nodes

For each p in the set of physical node ids P , we assume a Cp from a set of TIOAs,
CProgramp. Each Cp has access to a local clock, now. Clients receive accurate
information from the reliable GPS oracle, RW ′. A GPSupdate(u, now)p happens
at Cp each time the client enters the system or changes region, indicating to the
client the region u where it is currently located and the current system time. It
also occurs every εsample time at each client. Clients accept this now real-time
clock value as the value of their own local clock. For simplicity, this local variable
progresses at the rate of real time. This implies that, outside of client failures
and arbitrary initial states, the local value of now will equal real time.

Cp has access to V-bcast (see Section 3.5), allowing it to communicate with
its own and neighboring regions’ VSAs and clients with bcast(m)p and brcv(m)p.

Clients can suffer crash failures. After a crash, a client performs no locally-
controlled actions until restarted. If restarted, it starts from an initial state.

Additional arbitrary external interface and environment actions and local
state used by algorithms running at the client are allowed. (Environment ac-
tions are external actions that are not actions of any other system component.)
Connection to physical layer: Each client node is hosted by its corresponding
physical node. In addition, RW ′ inputs occur at a client node exactly when
corresponding RW inputs occur at the physical node.

3.4 Virtual Stationary Automata (VSAs)

Here we describe VSAs; details on their implementation can be found in [6].
An abstract VSA is a clock-equipped virtual machine at a region in the net-

work. We formally describe a timed machine for region u, Vu, as a TIOA from
a set of TIOAs, V Programu. The state of Vu is referred to as vstate and is
assumed to include a variable corresponding to real time, vstate.now. Vu’s ex-
ternal interface is restricted to include only stopping failures, restarts, and the
ability to broadcast and receive messages using V-bcast.

402 T. Nolte and N. Lynch

The VSA layer provides a delay-augmented TIOA, an augmentation of Vu

with timing perturbations, represented with buffers Dout[e]u, composed with
Vu’s outputs, with the Vu outputs then hidden. The buffer delays messages by
a nondeterministically-chosen time [0, e]. Programs must take into account e,
as they would message delay. Also, a failure of region u also means a failure of
Dout[e]u, clearing its buffer of messages.

Connection to physical layer: While an emulation of Vu would ideally be identical
to a legitimate execution of Vu, an abstraction must reflect that, due to message
delays or node failure, the emulation might be behind real time, appearing to be
delayed in performing outputs by up to some time. This time is the e referred
to with respect to Dout.

Since we emulate a VSA using physical nodes, its interface must be emulatable
by them. This is why a VSA’s external interface is restricted to include only the
various failure and broadcast-related inputs and outputs. Also, its failures can
be defined in terms of physical node fail status and movement, as described by
the fail and restart predicates in Section 3.2.

3.5 Local Broadcast Service (V-bcast)

Communication is in the form of local broadcast service V-bcast, with message
delay d. It allows communication between VSAs and clients in the same or neigh-
boring regions. The service allows the broadcasting and receiving of message m
at each port i ∈ P ∪ U through bcast(m)i and brcv(m)i. It also receives GPSup-
date, fail, and restart inputs from RW ′, informing the service of the location and
failure status of nodes in the network.

V-bcast guarantees two properties: integrity and reliable local delivery. In-
tegrity guarantees that for any brcv(m)i that occurs, a bcast(m)j , j ∈ P ∪ U
previously occurred. Reliable local delivery guarantees, roughly, that a transmis-
sion will be received by nearby ports: If port i, where i is a client or VSA port in
any region u, transmits a message, then every port j, whether a client or VSA,
in region u or neighboring regions during the entire time interval starting at
transmission and ending d later receives the message by the end of the interval.

Connection to physical layer: V-bcast is implemented using the underlying phys-
ical nodes’ broadcast capabilities. We assume that the physical layer broadcast
satisfies, for physical nodes, integrity and reliable local delivery between physical
nodes within distance rvirt of each other. The message delay d of V-bcast is the
message delay of the underlying broadcast.

4 Self-stabilizing Emulations

In Section 3, we described the VSA layer and noted that it can be provided by a
physical layer’s broadcast and GPS-enabled physical nodes running an emulation
algorithm. Here we formally define what it means for an algorithm to emulate an
abstract VSA layer. We begin by providing definitions for a VSA layer algorithm
and a VSA layer instantiation.

Self-stabilization and Virtual Node Layer Emulations 403

Definition 7. A V-algorithm, alg, is a mapping from each mobile node id p ∈ P
to some TIOA Cp ∈ CProgramp, and from each each u ∈ U to some Vu ∈
V Programu. The set of all V-algorithms is referred to as V Algs.

Definition 8. For each alg ∈ V algs, V Layer[alg], the instantiation by alg
of the abstract VSA layer, is the abstract VSA layer where for each p ∈ P ,
Cp = alg(p), and for each u ∈ U , Vu = alg(u). More formally, V Layer[alg] is
the composition of V-bcast, alg(q) for each q ∈ P ∪ U , and Dout[e]u for each
u ∈ U , where the bcast action between Vu and Dout[e]u is hidden.

We are interested in the traces of a VSA layer, with VSA fails and restarts
hidden (there is no natural analogue for such actions at the physical layer):

Definition 9. Let E be the set of fail(u) and restart(u) actions for each u ∈ U ,
and let A be a TIOA. We refer to A’s traces with E hidden, {β�(EA−E, ∅)|β ∈
tracesA}, as HtracesA.

For any set S of states of A, we refer to A’s traces with E hidden of execution
fragments started in S, {trace(α)�(EA − E, ∅)|α ∈ fragsS

A}, as HtracefragsS
A.

We then define an emulation of the abstract layer as a pair consisting of: (a) an
emulation program, amap, and (b) a mapping, tmap, from traces of the emu-
lation to traces of the abstract VSA layer without fails and restarts of regions.
Like V Layer, amap is instantiated with programs from V algs. However, unlike
in our definition for V Layer[alg], we do not restrict the instantiation of amap by
alg to assign particular client and VSA programs to individual components; the
mapping can be arbitrary. For example, for a particular alg, amap[alg] could be
defined to be a physical layer in which each physical node’s program is a com-
position of the client program in the VSA layer for that node, and an emulator
portion where the physical node helps emulate its current region’s VSA.

Definition 10. An emulation, (amap, tmap), of the abstract VSA layer has:

– Function amap : V Algs → {T |T is a TIOA compatible with RW}.
– For each alg ∈ V algs, function tmap[alg] : (Eamap[alg], ∅)-sequences →

(EV Layer[alg] − {fail(u), restart(u)|u ∈ U}, ∅)-sequences.

We require that for any alg ∈ V algs and trace fragment β of amap[alg]‖RW :

1. Let B be ERW ∪ {environment actions}. β�(B, ∅) = tmap[alg](β)�(B, ∅).
2. β ∈ tracesamap[alg]‖RW implies tmap[alg](β) ∈ HtracesV Layer[alg]‖RW ′ .

The following definition of a self-stabilizing emulation of a VSA layer says an
emulation is self-stabilizing if any execution of amap[alg]‖RW started in an
arbitrary state of amap[alg] and a reachable state of RW has a suffix in the set
of execution fragments of amap[alg]‖RW starting in a state in L[alg]. L[alg] is
a legal set for amap[alg]‖RW with the added restriction that tmap[alg] applied
to any legal execution fragment is in HtracesU(V Layer[alg])‖R(RW ′). This means
once the emulation stabilizes, the mapped traces of the emulation look like those
of the virtual layer with V Layer[alg] started in an arbitrary state and RW ′

404 T. Nolte and N. Lynch

started in some reachable state. This will allow us to guarantee that if the alg
being emulated is such that V Layer[alg] is self-stabilizing with respect to some
legal set and given R(RW ′), then the mapped traces of the emulation stabilize
to traces of legal execution fragments of V Layer[alg]‖RW ′ (Theorem 3).

Definition 11. Let (amap, tmap) be an emulation of the abstract VSA layer
and t be in R

≥0. (amap, tmap) is a self-stabilizing emulation of a VSA layer
with stabilization time t if for each alg ∈ V Algs, there exists a legal set L[alg]
for amap[alg]‖RW such that:

1. amap[alg] is self-stabilizing with respect to L[alg] and given R(RW) in time
t.

2. For each α ∈ frags
L[alg]
amap[alg]‖RW , tmap[alg](trace(α)) ∈

HtracesU(V Layer[alg])‖R(RW ′).

Let null(t) be the closed empty trajectory with ltime = t.
We use Mtracest,alg

amap,tmap to refer to: {null(t)tmap[alg](β)|
β is a state-matched t-suffix of some element in tracesU(amap[alg])‖R(RW).

We conclude that a transformed trace of a self-stabilizing emulation of the VSA
layer started in an arbitrary state has a suffix in the traces of the VSA layer
started in an arbitrary state:

Theorem 1. Let (amap, tmap) be a self-stabilizing emulation of the abstract
VSA layer with stabilization time t, and let alg be any element of V algs.
Then Mtracest,alg

amap,tmap stabilizes to HtracesU(V Layer[alg])‖R(RW ′) in time t.

Proof sketch: Let β be a sequence in Mtracest,alg
amap,tmap, and β′ be a state-

matched t-suffix of β. We must show that β′ ∈ HtracesU(V Layer[alg])‖R(RW ′).
By definition of traces and Mtraces, there exists some αα′ ∈

execsU(amap[alg])‖R(RW) such that α′ is a state-matched t-suffix of αα′, and
β = null(t)tmap[alg](trace(α′)). By definition of self-stabilizing emulation, there
exists some legal set L[alg] for amap[alg]‖RW such that properties 1 and 2
of the definition hold. Since α′ is a state-matched t-suffix of a sequence in
execsU(amap[alg])‖R(RW) then property 1 implies α′ ∈ frags

L[alg]
amap[alg]‖R(RW).

By Lemma 4, α′ ∈ frags
L[alg]
amap[alg]‖RW . This implies by property 2 that

tmap[alg](trace(α′)) is in HtracesU(V Layer[alg])‖R(RW ′).
Since β′ is a state-matched t-suffix of null(t)tmap[alg](trace(α′)), β′ is a

state-matched 0-suffix of tmap[alg](trace(α′)). By Lemma 4, this implies β′ ∈
HtracesU(V Layer[alg])‖R(RW ′). 	

Application to an Existing Emulation Algorithm

In prior work, we developed a self-stabilizing emulation algorithm for the VSA
layer (details can be found in [6]). Physical nodes both implement their own
corresponding client node and cooperate with other physical nodes to implement
VSAs. For VSAs, at most one physical node in a VSA’s tile is a leader (chosen by
a stabilizing leader service), with primary responsibility for emulating the VSA

Self-stabilization and Virtual Node Layer Emulations 405

and sole responsibility for performing VSA outputs. For fault-tolerance, other
nodes receive VSA messages and maintain and update their own local versions
of the VSA state, but do not perform broadcasts on behalf of the VSA.

Our implementation was made self-stabilizing with local correction and update
and checksum messages. Update messages sent by a leader contain state infor-
mation which overwrites VSA state information at other emulators, bringing
emulators into agreement about VSA state. The leader also sends out checksum
messages with an attached checksum. An emulator, when it receives the mes-
sage, compares the attached checksum to the version it locally computed. If they
differ, the emulator re-joins, ensuring its state is consistent with the leader’s.

With our definitions, we can make formal correctness claims about [6]:

Theorem 2. The VSA layer emulation algorithm of [6] is a self-stabilizing emu-
lation of the VSA layer parameterized by the region failure and restart conditions
described in Section 3.2.

Proof sketch: We can show this by providing a mapping from states of the
emulation algorithm to states of the abstract layer. For the emulation of an
individual VSA, the mapping is from physical node and message channel states
to a state of the abstract VSA. We then augment the emulation automaton to
explicitly add fail and restart actions for regions, triggered based on conditions of
the state of the emulation. A simple tmap function preserves interactions with
RW and the environment, and renames certain physical node broadcasts and
receives as V-bcast actions while hiding others. For example, a VSA receives a
message sent to it the first time a client in the region receives it. We can then
show that tmap applied to a trace of an execution of the emulation, combined
with the added fail and restart actions for regions, has a suffix that is the trace of
an execution of the abstract VSA layer started in an arbitrary initial state. 	

5 Self-stabilizing Services on Emulated Layers

We can now combine a self-stabilizing emulation of the abstract VSA layer with
a self-stabilizing algorithm run on the layer and conclude that the traces of the
result stabilize to those of the algorithm running on the abstract VSA layer,
with regions’ fails and restarts hidden.

Theorem 3. Let (amap, tmap) be a self-stabilizing emulation of the abstract
VSA layer, with stabilization time t1 ∈ R

≥0. For any alg ∈ V Algs, t2 ∈ R
≥0,

and legal set vlegal[alg] for V Layer[alg]‖RW ′, if V Layer[alg] self-stabilizes with
respect to vlegal[alg] and given R(RW ′) in time t2, then Mtracest1,alg

amap,tmap sta-

bilizes in time t1 + t2 to Htracefrags
vlegal[alg]
V Layer[alg]‖RW ′ .

Proof sketch: Fix alg ∈ V Algs where V Layer[alg] self-stabilizes with respect to
vlegal[alg] and given R(RW ′) in time t2. By Theorem 1, Mtracest1,alg

amap,tmap

stabilizes to HtracesU(V Layer[alg])‖R(RW ′) in time t1. By definition of self-
stabilization, since V Layer[alg] self-stabilizes with respect to vlegal[alg] and
given R(RW ′) in time t2, execsU(V Layer[alg])‖R(RW ′) stabilizes in time t2 to

406 T. Nolte and N. Lynch

frags
vlegal[alg]
V Layer[alg]‖R(RW ′), which by Lemma 4 is frags

vlegal[alg]
V Layer[alg]‖RW ′ . By Lemma

2, HtracesU(V Layer[alg])‖R(RW ′) stabilizes to Htracefrags
vlegal[alg]
V Layer[alg]‖RW ′ in

time t2. With Mtracest1,alg
amap,tmap as B, HtracesU(V Layer[alg])‖R(RW ′) as C, and

Htracefrags
vlegal[alg]
V Layer[alg]‖RW ′ as D in Lemma 3, we conclude Mtracest1,alg

amap,tmap

stabilizes in time t1 + t2 to Htracefrags
vlegal[alg]
V Layer[alg]‖RW ′ . 	

Application to a Geocast Service

We now apply this theorem to a particular self-stabilizing service implemented
using the VSA layer and conclude that the emulation of the VSA layer running
this service eventually has traces that you could get in the abstract layer (minus
regions’ fail and restart events). We use a simple variant of a geocast service
specification and implementation originally published in [7].

Specification. The geocast service is a timed channel automaton that allows a
client Cp in region u to send a message m to region v via geocast(v, m)p, and to
receive such a broadcast message via geoRcv(m)p, under certain conditions. For
some constant ttlGeo, say that a geocast by a client in region u to a region v at
time t is serviceable if there exists at least one path of non-failed regions from
u to v for the entire interval [t, t + ttlGeo + 2d + e]. The geocast service’s traces
guarantee: (1) If a client geocasts a message at some time t and the geocast
is serviceable, then all nonfailed clients in the destination region geoRcv the
message by time t + ttlGeo + 2d + e. (2) If a message is geoRcved by a client in
region u, the message was geocast to region u within the last ttlGeo +2d+e time.

Implementation. Geocast is implemented as a self-stabilizing V alg, algGeo,
over the VSA layer. A client with a geocast input broadcasts the message to its
local VSA, and the local VSA initiates VSA-to-VSA communication. VSA-to-
VSA communication is based on a greedy depth-first search (DFS) procedure.

When a VSA receives a message for which it is not the destination, it greedily
chooses a neighboring VSA using a function NxtNbr, mapping a set of region
neighbors not yet tried, its own region, and the destination, to the next neighbor
to forward the message to. (The selection is greedy in that the next neighbor cho-
sen to receive the forwarded message is one on a shortest path to the destination
VSA, after excluding paths that begin with neighbors associated with previous
tries.) It then forwards the message in a forward message to that neighbor. If the
VSA does not receive an indication through a found message that the message
has been delivered to the destination within some bounded amount of time, it
forwards the message to the next neighboring VSA returned by NxtNbr, etc.

Once the destination region is reached, the VSA at that region broadcasts the
geocast message to its local clients, who then geoRcv it.

Self-stabilization is ensured by the use of a real-time timestamp to identify
the version of the DFS for a forwarded message. Too old forwarded messages are
eliminated from the system and newer forwarded messages do not impact the
treatment of the older ones. Extending the results in [7], we can show that:

Self-stabilization and Virtual Node Layer Emulations 407

Lemma 5. V Layer[algGeo] self-stabilizes with respect to
reachableV Layer[algGeo]‖RW ′ and given R(RW ′) in time e + 2d + ttlGeo.

Theorem 4. Let (amap, tmap) be a self-stabilizing emulation of the abstract
VSA layer with stabilization time tstab. Then Mtraceststab,algGeo

amap,tmap stabilizes to

Htracefrags
reachableV Layer[algGeo]‖RW ′

V Layer[algGeo]‖RW ′ in time tstab + ttlGeo + 2d + e.

Proof sketch: By Lemma 5, V Layer[algGeo] self-stabilizes with respect to
reachableV Layer[algGeo]‖RW ′ and given R(RW ′) in time ttlGeo +2d+e. By Theo-

rem 3, Mtraceststab,algGeo

amap,tmap stabilizes to Htracefrags
reachableV Layer[algGeo]‖RW ′

V Layer[algGeo]‖RW ′ in
time tstab + ttlGeo + 2d + e. 	

This means that if we run a self-stabilizing emulation of algGeo, the transformed
trace of an execution of this emulation will eventually look like the suffix of a
trace of the geocast specification.

By translating the geocast specification based on an abstract VSA layer’s re-
gion failure and restart conditions, we can rephrase this result to be strictly in
terms of the physical level. Consider the example region failure and restart condi-
tions in Section 3.2. With those conditions, we can say that a region is definitely
non-failed over some interval if some physical node at the start of the interval
was non-failed and in the region for at least 2d time, and no failures or leaves of
physical nodes occur during the interval or in the e time before the interval. This
property is expressible with traces of physical node interactions with RW . The
abstract geocast specification can then be transformed into a new, but weaker,
physical level specification, physGeo, that replaces clients with physical nodes,
replaces non-failed regions with definitely non-failed regions, and makes no men-
tion of VSAs. We then get the corollary that traces of U(amap[algGeo])‖R(RW)
stabilize to traces of physGeo in time tstab + ttlGeo + 2d + e.

6 Conclusions

We’ve presented a basic formal theory of self-stabilizing emulations for timed
abstract virtual node layers. Abstract VSA layers can make the task of designing
algorithms for mobile ad hoc networks considerably simpler than it would be in
the absence of any infrastructure. Self-stabilizing algorithms were previously
presented for emulation of VSA layers [6], and here we formalize the notion of
emulation and self-stabilizing emulation. Such formalization provides a clear set
of proof obligations required to conclude that an algorithm successfully provides
an emulation of an abstract VSA layer, allowing an application programmer to
program the VSA layer without worrying about how that layer is provided.

The formalization of self-stabilizing emulation also allows us to guarantee
that if a self-stabilizing emulation of the abstract VSA layer is running a self-
stabilizing VSA layer application, then the result is a system whose externally
visible actions eventually look like those of a legal execution fragment of the
application being run. This separates the reasoning about the stabilization prop-
erties of the emulation algorithm from those of the application being run.

408 T. Nolte and N. Lynch

These support application developers for unpredictable mobile networks by
allowing them to safely and easily take advantage of timed virtual infrastructure
to aid in problem solving.

References

1. Camp, T., Liu, Y.: An adaptive mesh-based protocol for geocast routing. Journal of
Parallel and Distributed Computing: Special Issue on Mobile Ad.-hoc Networking
and Computing, 196–213 (2002)

2. Dijkstra, E.W.: Self stabilizing systems in spite of distributed control. Communi-
cations of the ACM, 643–644 (1974)

3. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
4. Dolev, S., Gilbert, S., Lynch, N., Schiller, E., Shvartsman, A., Welch, J.: Virtual

Mobile Nodes for Mobile Ad Hoc Networks. In: Guerraoui, R. (ed.) DISC 2004.
LNCS, vol. 3274, pp. 230–244. Springer, Heidelberg (2004)

5. Dolev, S., Gilbert, S., Lynch, N., Shvartsman, A., Welch, J.: GeoQuorums: Im-
plementing Atomic Memory in Ad Hoc Networks. In: Fich, F.E. (ed.) DISC 2003.
LNCS, vol. 2848, pp. 306–320. Springer, Heidelberg (2003)

6. Dolev, S., Gilbert, S., Lahiani, L., Lynch, N., Nolte, T.: Timed Virtual Stationary
Automata for Mobile Networks. In: Anderson, J.H., Prencipe, G., Wattenhofer, R.
(eds.) OPODIS 2005. LNCS, vol. 3974, Springer, Heidelberg (2006)

7. Dolev, S., Lahiani, L., Lynch, N., Nolte, T.: Self-stabilizing Mobile Node Location
Management and Message Routing. In: Tixeuil, S., Herman, T. (eds.) SSS 2005.
LNCS, vol. 3764, Springer, Heidelberg (2005)

8. Dolev, S., Herman, T., Lahiani, L.: Polygonal Broadcast, Secret Maturity and the
Firing Sensors. In: FUN. Third International Conference on Fun with Algorithms,
pp. 41–52 (May 2004). Also to appear in Ad Hoc Networks Journal, Elseiver.

9. Dolev, S., Israeli, A., Moran, S.: Self-Stabilization of Dynamic Systems Assum-
ing only Read/Write Atomicity. In: PODC 1990. Proceeding of the ACM Sym-
posium on the Principles of Distributed Computing, pp. 103–117 (1990). Also in
Distributed Computing 7(1), 3–16 (1993)

10. Karp, B., Kung, H.T.: GPSR: Greedy Perimeter Stateless Routing for Wireless
Networks. In: Proceedings of the 6th Annual International Conference on Mobile
Computing and Networking, pp. 243–254. SCM Press (2000)

11. Kaynar, D., Lynch, N., Segala, R., Vaandrager, F.: The Theory of Timed I/O
Automata. Morgan and Claypool Publishers (2006)

12. Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A.: Geometric Ad-Hoc Routing:
Of Theory and Practice. In: Proceedings of the 22nd Annual ACM Symposium on
Principles of Distributed Computing (PODC), pp. 63–72 (2003)

13. Kuhn, F., Wattenhofer, R., Zollinger, A.: Asymptotically Optimal Geometric
Mobile Ad-Hoc Routing. In: Proceedings of the 6th International Workshop on
Discrete Algorithms and Methods for Mobile Computing and Communications
(DialM), pp. 24–33. ACM Press, New York (2002)

14. Navas, J.C., Imielinski, T.: Geocast- geographic addressing and routing. In: Pro-
ceedings of the 3rd MobiCom, pp. 66–76 (1997)

Author Index

Abujarad, Fuad 21
Albayrak, Şahin 37
Alpcan, Tansu 37
Arora, Anish 67

Biely, Martin 4
Bonakdarpour, Borzoo 21
Bye, Rainer 37

Çamtepe, Seyit Ahmet 37
Canepa, Davide 52
Cao, Hui 67
Caron, Eddy 82
Chen, Wei 97
Chen, Yu 97
Chernoy, Viacheslav 114
Chlebus, Bogdan S. 124
Choi, Young-ri 139
Cobb, Jorge A. 154
Cortiñas, Roberto 173

Dasgupta, Anurag 189
Datta, Ajoy K. 204
Delporte-Gallet, Carole 219
Desprez, Frédéric 82
Devismes, Stéphane 219
Dolev, Danny 234
Dolev, Shlomi 253, 266
Ducourthial, Bertrand 281

Fauconnier, Hugues 219
Freiling, Felix C. 173, 296

Ghajar-Azadanlou, Marjan 173
Ghosh, Sukumar 189
Gouda, Mohamed G. 139, 311
Gradinariu Potop-Butucaru,

Maria 52, 204

Herman, Ted 325
Hoch, Ezra N. 234
Hoepman, Jaap-Henk 340
Hutle, Martin 4

Izumi, Taisuke 357

Jhumka, Arshad 296

Korach, Ephraim 253
Kowalski, Dariusz R. 124
Kulkarni, Sandeep S. 21

Lafuente, Alberto 173
Larrea, Mikel 173
Larsson, Andreas 340
Li, Yan 311
Luther, Katja 37
Lynch, Nancy 394

Manne, Fredrik 383
Mathieu, Fabien 372
Mjelde, Morten 325, 383

Nolte, Tina 394

Patel, Rajesh 204
Pemmaraju, Sriram 325
Penso, Lucia Draque 4, 173
Petit, Franck 82
Pilard, Laurence 325

Quisquater, Jean-Jacques 1

Rokicki, Mariusz A. 124
Römer, Kay 2l

Schiller, Elad M. 340
Shalom, Mordechai 114
Soraluze, Iratxe 173

Tedeschi, Cédric 82
Tsigas, Philippas 340

Uzan, Galit 253

Wada, Koichi 357
Widder, Josef 4

Xiao, Xin 189

Yagel, Reuven 266
Yamashita, Masafumi 3
Yamazaki, Ai 204
Yener, Bülent 37

Zaks, Shmuel 114

	Title Page
	Preface
	Organization
	Table of Contents
	The Power of Cryptographic Attacks: Is Your Network Really Secure Against Side Channels Attacks and Malicious Faults?
	Role-Based Self-configuration of Sensor Networks
	Robots and Molecules
	Relating Stabilizing Timing Assumptions to Stabilizing Failure Detectors Regarding Solvability and Efficiency
	Introduction
	Contribution

	System Models
	Common Definitions
	The Failure Detector Model
	The Partially Synchronous Model
	The Eventually Synchronous Model
	The Round Model
	Algorithm Transformations

	Equivalence of Solvability
	Possibility of $Async+GParSync$
	Possibility of $ParSyncSync$
	Possibility of $SyncRound$
	Possibility of $RoundAsync+G$

	Efficiency of Transformations
	Lower Bounds
	Upper Bound on $Async+GSync$

	Discussion
	References

	Distributed Synthesis of Fault-Tolerant Programs in the High Atomicity Model
	Introduction
	Preliminaries
	Programs and Specifications
	Faults and Fault-Tolerance

	Problem Statement
	Distributed Automated Addition of Fault-Tolerance
	Parallel Construction of State Space
	Distributed Addition of Failsafe Fault-Tolerance
	Distributed Addition of Masking Fault-Tolerance

	Conclusion and Future Work
	References

	Decentralized Detector Generation in Cooperative Intrusion Detection Systems
	Introduction
	Our Contribution
	Organization

	Background
	Cooperative IDS
	Classical Epidemic Model
	Balanced Incomplete Block Designs (BIBD)
	Finite Generalized Quadrangle (GQ)
	Ramanujan Expander Graphs (REG)

	Distributed Detector Set Generation
	Random Graph G(N,p) Based Approach
	Ramanujan Expander Graph Based Approach
	Combinatorial Design Based Approach

	Analysis and Comparisons
	Conclusions
	References

	Stabilizing Flocking Via Leader Election in Robot Networks
	Introduction
	Model
	Leader Election and Flocking Problems
	Architecture of a Flocking System
	Leader Election Module
	Impossibility Results for Leader Election
	Probabilistic Leader Election

	Preprocessing Module: Setting a Moving Formation
	Phase 1: Placement on the Smallest Enclosing Circle
	Phase 2: Setting the Flocking Configuration

	Flocking Module
	Conclusions and Open Problems
	References

	Stabilization in Dynamic Systems with Varying Equilibrium
	Introduction
	Summary of Our Results
	Related Work
	System Model

	Stabilizing Optimality Via a Stabilizing Estimator
	Stabilizing Optimality Via MinMax Strategies
	Case Study: Pursuit-Evasion Game (PEG)
	Discussion

	Stabilizing Optimality Via Feedback Control
	Case Study: Duty Cycle Adaptation

	Conclusion
	References

	Snap-Stabilizing Prefix Tree for Peer-to-Peer Systems
	Introduction
	Related Work
	Preliminaries
	Distributed System
	Snap-Stabilization
	Proper Greatest Common Prefix Tree

	Snap-Stabilizing PGCP Tree
	The Algorithm
	Correctness Proof
	Complexity

	Simulation Results
	Conclusion
	References

	Decentralized, Connectivity-Preserving, and Cost-Effective Structured Overlay Maintenance
	Introduction
	Related Work
	System Model
	The Specification for Leafset Maintenance
	Leafset Maintenance Protocol
	Add New Contacts and Handle Failures
	Invite Closer Nodes
	Replace Faraway Nodes
	Detect Loopy Structure

	Conclusions and Future Work
	References

	On the Performance of Dijkstra’s Third Self-stabilizing Algorithm for Mutual Exclusion
	Introduction
	Dijkstra's Algorithm
	Upper Bound Proof
	Preliminaries
	The Function g
	Main Contribution

	References

	Stability of the Multiple-Access Channel Under Maximum Broadcast Loads
	Introduction
	Technical Preliminaries
	Two Stations
	Three Stations
	More Stations
	References

	Stabilization of Flood Sequencing Protocols in Sensor Networks
	Introduction
	Related Work and Motivation
	Model of Sensor Networks
	Overview of a Flood Protocol
	First Protocol: Sequencing Free
	Second Protocol: Linear Sequencing
	Third Protocol: Circular Sequencing
	Fourth Protocol: Differentiated Sequencing
	Stabilization of the Protocols
	Simulation Results
	Concluding Remarks
	References

	Stabilization of Loop-Free Redundant Routing
	Introduction
	A Converging DAG of Processes
	Process Notation
	Ranked Processes
	Dynamically-Ranked Processes
	c-DAG Restoration
	Protocol Correctness
	References

	Secure Failure Detection in TrustedPals
	Introduction
	System Model and Architecture
	Untrusted and Trusted System
	Timing Assumptions
	Failure Assumptions
	Classes of Processes in the Trusted System
	The TrustedPals Architecture

	Failure Detection in TrustedPals
	$\eventually\perfect$-Based Consensus in TrustedPals
	Integrating Failure Detection and Consensus Securely
	References

	Probabilistic Fault-Containment
	Introduction
	Our Contributions
	Related Work
	Organization of the Paper

	The Model of Computation
	Probabilistic Algorithms for Fault-Containment
	Results
	Computing the Availability

	A Bounded Solution
	Experimental Results
	Conclusion
	References

	Self^∗ Minimum Connected Covers of Query Regions in Sensor Networks�
	Introduction
	Preliminaries and Model
	Single Hop Self Query Region Connected Cover
	UID-Based Query Region Connected Cover
	Sensing-Based Query Region Connected Cover
	Faults and Recovery of Algorithms $\cal SHID$ and $\cal SHRS$

	Multi-hop Self Query Region Connected Cover
	Simulation and Results
	Conclusion and Future Work
	References

	Robust Stabilizing Leader Election
	Introduction
	Preliminaries
	Distributed Systems
	Self- and Pseudo- Stabilization
	Informal Model
	Robust Stabilizing Leader Election

	Communication-Efficient Self-Stabilizing Leader Election in S_5
	Self-Stabilizing Leader Election in S_4
	Pseudo-Stabilizing Communication-Efficient Leader Election in S_4
	Impossibility of Self-Stabilizing Leader Election in S_2
	Communication-Efficient Pseudo-Stabilizing Leader Election in S_2
	Pseudo-Stabilizing Leader Election in S_1
	Future Works
	References

	Byzantine Self-stabilizing Pulse in a Bounded-Delay Model
	Introduction
	Related Work

	Model and Problem Definition
	Self-stabilizing Byzantine Pulse-Synchronization

	Solution Overview
	The Q Primitive
	Implementing $Q(p), the ss-Byz-Q$ Algorithm
	Constructing the Erratic-Pulser Algorithm
	Erratic-Pulser's Correctness Proofs
	Creating the Balanced-Pulser
	Discussion
	References

	$Magnifying Computing Gaps$ Establishing Encrypted Communication over Unidirectional Channels
	Introduction
	The Settings
	Worst Case Average Case Equivalent Lattice Problem
	One-Sided Computation
	Concluding Remarks

	$stabilizing trust and reputation for$ Self-Stabilizing Efficient Hosts in Spite of Byzantine Guests
	Introduction
	Self-stabilizing Operating Systems -- Foundations Overview
	Settings and the Requirements
	Concepts for Fighting the Byzantines
	Host Implementation Example
	Concluding Remarks
	References

	r-Semi-Groups: A Generic Approach for Designing Stabilizing Silent Tasks
	Introduction
	Aim
	r-Operators
	Contribution

	Modeling Distributed Computations with Algebraic Operators
	Generic Model
	Requirements
	Operators

	Prerequisites
	Right Identity Element
	Rank 2 Commutativity
	Rank 2 Idempotency

	r-Semi-groups
	Definition
	Properties

	Connections with Idempotent Semi-groups
	Designing New r-Operators
	Conclusion
	References

	Global Predicate Detection in Distributed Systems with Small Faults
	Introduction
	Model
	Asynchronous Distributed System
	Failures
	Observations
	Observation System
	Failure Detector Sequencers $sigma$

	Predicate Detection Problem
	Insufficiency of $sigma$
	Solving Predicate Detection with Small Faults
	Defining $Sigma_SF$
	Equivalence with Predicate Detection
	Implementing $Sigma_SF$

	Probabilistic Predicate Detection
	Violation of Safety
	Violation of Liveness

	The Truth System: Can a System of Lying Processes Stabilize?
	Introduction
	Three Versions of the Truth System
	The One-Shot System
	The Continuing System
	The Stable System
	A Stabilizing Token Ring
	Concluding Remarks
	References

	Temporal Partition in Sensor Networks
	Introduction
	Assumptions, Definitions, and Results
	Related Work
	Protocols
	No Cost Approaches
	Probing Approaches

	Conclusions
	References

	Secure and Self-stabilizing Clock Synchronization in Sensor Networks
	Introduction
	System Settings
	Secure and Self-stabilizing Clock Synchronization
	Discussion
	References

	On the Probabilistic Omission Adversary
	Introduction
	Preliminaries
	Distributed Systems
	Failure Models
	Consensus Problem

	Impossibility Results
	The $O(f)$-Round Algorithm for $t < n/2$
	The Round Complexity of All-to-All Broadcast
	Algorithm CPO

	The $(f + O(1))$-Round Algorithm for $t < n/3$
	Concluding Remarks
	References

	Upper Bounds for Stabilization in Acyclic Preference-Based Systems
	Introduction
	Model
	Convergence Theorem for Acyclic p.b.s.

	Round complexity
	Step Complexity
	Round Robin Daemon
	Adversarial Daemon

	Conclusion

	A Self-stabilizing Weighted Matching Algorithm
	Introduction
	The Self-stabilizing Paradigm
	The Algorithm
	The Graph Model
	Variables
	The Algorithm

	Proof of Correctness
	Correct Stabilization
	Convergence
	The Distributed Adversarial Model
	The Distributed Fair Model

	Conclusion
	References

	Self-stabilization and Virtual Node Layer Emulations
	Introduction
	Definitions
	Timed I/O Automata (TIOA)
	Stabilization

	Physical Layer and VSA Layer System Models
	Network Tiling
	Real World
	Client Nodes
	Virtual Stationary Automata (VSAs)
	Local Broadcast Service (V-bcast)

	Self-stabilizing Emulations
	Self-stabilizing Services on Emulated Layers
	Conclusions
	References

	Author Index

