
8 Communication

The Semantic Web would be impossible without the advent of simple and efficient
communication networks that allow any user connected to the Web to access any
public Semantic Web site without effort, very efficiently and extremely fast (most
of the time). The basis for this ease of access is a very simple data format for spec-
ifying Semantic Web pages and a very simple communication protocol for their
access. Both can be easily implemented on any computing platform. This ease of
implementation ensures that everybody can participate independent of their partic-
ular computing equipment.

Complementing the Semantic Web, machine-to-machine communication (in
contrast to serving up content for human consumption) is addressed by Semantic
Web Services. Semantic Web Services are the mechanism for software-to-software
communication and coordination (whereas the Semantic Web is for human users).
Semantic Web Services are not a disruptive new paradigm, instead, they leverage
existing communication knowledge, conventions and technologies and improve on
them.

This Section builds the fundamental basis for Semantic Web Services. It dis-
cusses the concepts of communication from a principled perspective in Section 8.1.
Based on these fundamental concepts, major communication paradigms are listed
in Section 8.2. Long-running communication in the context of B2B integration and
EAI integration is reviewed in Section 8.3. In Section 8.4 a particular type of com-
munication, Web Services, is emphasized as the focus of the following Chapters.
Section 8.6 summarizes this Chapter.

8.1 Communication Concepts

Communication in its basic form allows two or more parties to exchange data that
for them has value (at least equivalent to the effort spent on communication). There
are basic forms of communication like synchronous or asynchronous communica-
tion that provide the fundamental basis. In addition, for senders and receivers to
understand each other, data formats have to be agreed upon as well as the possible
range of content for those data formats so that the communication partners can
understand each other: a date with the value of 01-02-07 can be misunderstood eas-
ily if its precise semantics is not captured (one possible interpretation is July 2nd,
2001). Finally, in order for senders and receivers to synchronize the sending and
receiving of data, they have to follow specific communication protocols. This Sec-

196 8 Communication
tion outlines the basics of communication and builds the foundation for the remain-
ing Sections in this Chapter.

8.1.1 Fundamental Types

When parties are communicating they need to establish a communication channel
over which the data is communicated between them. All communication channels
can be classified into only a few basic classes that define the basic properties of
communication. The three basic forms are as follows:

• Synchronous Connection. A synchronous communication channel requires all
communicating parties to be part of the communication channel concurrently in
order to communicate. The parties exchange data between each other. The send-
ing party puts the data on the synchronous channel (or connection) and the
receiving party or parties receive the data. In a synchronous connection it is pos-
sible that the receiving party starts receiving the initial data while the sending
party still sends the remaining data. If one party leaves the synchronous connec-
tion, it cannot participate in the communication any more. If the leaving party is
one of the last two parties on the connection, the communication finishes (or is
disrupted) as the communication requires at least two concurrent communica-
tion partners. Elaborate synchronous connections allow parties to send and
receive concurrently in both communication directions; less advanced connec-
tions can be used only for one direction of data transfer at any given point in
time. Examples for synchronous connections are the ancient telephone for
humans or the remote procedure call between software systems.

• Asynchronous Connection. Asynchronous connections are very different in
nature from synchronous connections. An asynchronous connection does not
require all communicating parties to be concurrently connected to the connec-
tion itself. At any point in time a sending party can put data on the asynchronous
connection and at the same or different points in time a receiving party can take
data from the connection (as long as data is present and as long as the connec-
tion itself is available). The asynchronous connection itself stores the data. In
this sense it is stateful and through this mechanism allows the independent pres-
ence of sending and receiving parties. If a sending party puts several separate
pieces of data on the asynchronous connection, it depends on the particular
implementation of the asynchronous channel if the order of the data is preserved
or not. If it is not preserved and the receiving party depends on the correct order,
the data must contain some information about the order so that the receiving
party can reorder the data appropriately independent of the asynchronous com-
munication channel. In the general case data on the asynchronous connection is
consumed by the receiving party once it takes the data off the connection. In this
sense the reading is removing (“destroying”) the data on the channel.

• Shared Variable. Communication over shared variables is the third type of
connection. A shared variable is accessible by a sending as well as a receiving

 8.1 Communication Concepts 197
party. A sending party can put data into a shared variable any number of times at
any point in time. Each time the sending party puts data into the shared variable
it overwrites the previous value. A receiving party can take data from a shared
variable. When it does so, the data is not consumed; instead, the data remains
and other receiving parties can access the data in the shared variable. The
receiver can write data to the shared variable, too, of course. In this case, if the
receiver does not want any other party to read the shared variable, it can put a
“null” on it, i.e., overwriting its value. Putting data into a shared variable and
reading a shared variable are asynchronous to each other. It is also not guaran-
teed that a receiving party sees all values of the shared variable. If the sending
party writes very often, it might very well be the case that the receiving party
does not read fast enough and misses intermediate values. Since the shared vari-
able allows concurrent access it needs to ensure that the read or the write is
atomic to avoid that senders and receivers are interfering while operating on the
shared variable.

All specific implementations of communication technology can be reduced to
one of the three fundamental types discussed above. For example, communicating
through a database is a shared variable communication. Communicating through
queues is an asynchronous communication. A remote procedure call is a synchro-
nous connection. Some of the major technologies are introduced later in Section
8.2..

8.1.2 Formats and Protocols (FAP)

A communication channel of either type is minimally required in order for parties
to communicate with each other. If the communication itself should be successful,
meaning, the communicating parties understand each other and have a constructive
communication with a defined outcome, more has to be agreed upon then just the
communication channel. There are two major aspects of communication that need
to be in place for a meaningful communication: formats and protocols.

Formats refers to the data structure and data content that is communicated. The
sender as well as the receiver have to agree on the data structure and content in
order to understand each other. Structure refers to the particular data elements and
their relationship that is communicated whereas content refers to the values in the
data elements. Only if sender and receiver agree on structure and content, can they
“make sense” out of each other’s data and have a meaningful conversation. This
agreement that has to be in place and needs to cover all possible values and struc-
tures. As the communication has to work under all allowed combinations, the
agreement is quite difficult to achieve in general, as it is practically impossible to
enumerate all possible combinations to prove that the communicating parties
understand each other for each combination.

Protocols refer to the exchange sequence of the data in their particular formats.
A communication in the general sense requires that sender and receiver exchange

198 8 Communication
several distinct sets of data by sending them to each other. This requires a specific
order to ensure that both, sender and receiver understand where they are in the
communication and what data has to be exchanged next in the sequence of
exchanges. The involved parties only make constructive progress during their com-
municating if they follow the correct exchange sequence or one of several correct
sequences (if several are permissible).

No matter which fundamental type of communication channel is used, the for-
mats as well as protocols have to be agreed upon so that all involved parties can
participate in the communication in a meaningful way. Furthermore, if formats are
transmitted that cannot be understood, or if protocols are violated, then the com-
munication must be able to recognize this error situation and try to get back to a
meaningful state. For example, if formats are not understood, then the receiver
must be able to send back a “not understood, please send again” response. Other-
wise, if a communication error is not detected, no repair is possible and the com-
munication has ended unsuccessfully.

If the protocol is violated, the violation must be detected, the overall communi-
cation must stop and synchronize on a state that all parties agree to as a consistent
state from which to continue. This might happen if, for example, certain data mes-
sages are lost in the communication and the receiver is waiting for a specific
exchange that the sender assumes happened already.

Both formats and protocols play an important role in Web Services as well as
Semantic Web Services. Formats are described using Semantic Web languages
whereas protocols are defined through various elements that the Semantic Web
Services efforts provide.

8.1.3 Separation of Interface and Logic

Formats and protocols have to be implemented as software code in order to make
communication over communication channels work. The data formats and data
values that are sent over communication channels have to be independent of the
software of the sender or the software of the receiver to achieve maximum inde-
pendence. In any communication setup it is impossible to guarantee, ensure or
enforce that both, sender and receiver use the same software from the same vendor
for sending and receiving the data. Consequently there needs to be a distinction
between the implementation of how to produce the data or consume the data
(implementation or logic) and the definition of the data itself (including its possible
contents). This distinction follows the well-established separation of interface and
implementation in computer science. Later on when Web Services and Semantic
Web Services are discussed this distinction becomes a very important aspect.

The same applies to the behavior of communication. The order of formats sent
and received by the communicating parties must be described in such a way that all
communicating parties can agree to it independently of the software used to imple-
ment and enforce the behavior. This means that the definition of behavior must be
done in such a way that the behavior can be inferred from the language used to

 8.1 Communication Concepts 199
describe the behavior (instead of examining the code of the software that imple-
ments the behavior). In consequence, this allows both, the sender and receiver to
agree on the behavior while implementing it in their preferred software technology
or with technology of their preferred software vendor. Again, when talking about
Web Services and Semantic Web Services this aspect becomes important in the for-
malisms and languages used.

8.1.4 Communicating Parties

Communication cannot take place without communication partners engaging in the
communication by sending and receiving data from each other. In a given commu-
nication there is always a sending partner (sender) and at least one receiving part-
ner (receiver). The sender sends out data that the receiver obtains by taking part in
the communication. Several receivers are possible in a communication and all of
them receive the data sent by the sender.

During a communication the role of sending and receiving can change if the
communication is conversational. Once a sender has sent out data, and after the
receivers have received the data, one of the receivers can assume the sender role
and send out data. This is especially the case in the situation where the communi-
cating parties have a dialog in the sense that formats are sent back and forth in
order for both parties to accomplish the goal of the communication. In a multi-
party communication it is possible that several parties start sending at the same
time as they do not know about each other’s state and intent. In such a situation it is
important to ensure that either the protocol does not allow such a conflict to happen
or that a dynamic mechanism is available at run time that enforces only one sender
at a time.

Some communication channels allow only one sender at any given point in time.
In this case there can only be a single sender for a given communication and no
coordination has to be enforced through the protocol. However, some communica-
tion channels allow the concurrent sending of data by several senders. In this case
several senders can send data, but for the communication to be meaningful, the
participating receivers needs to be able to receive data from different senders con-
currently. If a channel allows several concurrent senders it is not necessary to
enforce the one-sender-at-a-time policy, of course.

Another dimension opens up when a single communication channel can “host”
several independent communications. In this case it is necessary to distinguish the
communication not only by communication channel, but also by identifier within
one communication channel. In computer science this case can take place when
asynchronous technology like queueing technology is used. In this technology it is
possible to send messages across a queue that originate from different senders and
are addressed to different receivers. In this case each message must either carry a
communication identifier to identify the communication or each message carries a
receiver identifier so that the respective receiver knows which messages to read.

200 8 Communication
If the approach is followed that messages carry the identifier of a communica-
tion then the notion of an “instance of communication” is important. This can be
further formalized by associating senders and receivers (which are instances, too)
to communication instances. Going forward we assume this notion. At any given
point in time, when senders and receivers communicate, they do this in context of
an instance of a communication. Consequently, it is possible that the same senders
and receivers open up a separate instance of communication. In addition, the same
senders and receivers can be participants in different instances of communications,
either concurrently or sequentially.

This notion of communication is independent of the fundamental types of com-
munication as outlined in Section 8.1.1. They have to agree on a fundamental type
(by selecting a given communication technology). Of course, the separation of
interface and implementation is important, as stated in Section 8.1.3. The relevance
here is that no matter in how many communications a given participant (or party)
takes part, it has to maintain the separation.

And, furthermore, the communicating parties have to agree on the FAP, as out-
lined in Section 8.1.2. Each communication in the general case follows a defined
FAP. Different communications can follow different FAPs, as agreed upon by the
participants. This ensures that every communication over any channel is meaning-
ful for the participants.

A further generalization is possible, although not really used widely. If a FAP is
defined (for example as a standard), then in many cases the definition might be suf-
ficient for the communication requirements of several parties. However, some-
times a given FAP might not be sufficient. This could be if data formats are
missing that are required for a particular case. The parties, in order to overcome
this problem, can either extend or modify the FAP, or they can change the FAP
during a communication and switch over to a different FAP. The switch over then
enables the set of participants to use as many FAPs in one communication as
required to make the communication work and meaningful. While this is a very
interesting generalization, it is not usually done.

If two parties are involved in a communication it is called a binary communica-
tion. If more than two parties are involved, it is called a multi-party communica-
tion. A multi-party communication enables several parties to take place in a
communication. So far it was assumed that there is one communication instance
and all parties are related. Furthermore, it was assumed that all parties are aware of
each other and all concurrently receive data from a sender. However, this is not
necessarily always the case. A multi-party communication can actually be
achieved by one party being the “communication coordinator” and all other parties
engaging in a binary communication with the coordinator. So only the coordinator
is aware of all the parties, but each party is only aware of the one coordinator. This
requires that the coordinator is part of the communication for its whole length, can
receive all data from all senders, and can relay sent data to all parties that are not
sending at a given point in time. This also allows having the coordinator engage
with different parties using different FAPs.

 8.1 Communication Concepts 201
8.1.5 Mediation

Formats and protocols are agreed upon between the parties of a communication.
Once they have agreed upon it, they will follow it precisely as otherwise the com-
munication will most likely not be meaningful and therefore unsuccessful. The
communicating parties have no interest in this situation. Therefore, they will do
everything necessary to comply with the FAPs.

In the general case, the FAP is determined by the interface that the communicat-
ing party can support (see Section 8.1.3). This interface determines what the com-
municating party can support, and hence this interface allows the selection of one
or more FAPs that comply with this interface.

As in the general case, the interface has to be implemented in order to support it
at run time. Therefore, the interface is implemented by software. If the internal data
processing environment, however, supports different data structures and data con-
tent, then there is a mismatch between the interface and the software used to
achieve the implementation. Why would this ever be the case? Why would a party
not define the interface in such a way that the interface can be implemented easily?

In the world of communication over world-wide networks across company
boundaries there are established practices of FAPs (often referred to as B2B proto-
cols). [263] discusses quite a number of those. In order for a given party to easily
participate in a communication it is wise to support the FAPs of a given industry.
Therefore, the party is probably inclined to solve the discrepancy between the
interface it needs to support and its available implementation technology rather
then supporting an interface that does not allow it to easily participate in given
FAPs.

Bridging the data structures and data content on the interface and the implemen-
tation software is the data mediation problem. This problem is well-studied and
many attempts are made to structurally overcome it [263].

The same is true for the protocol aspect. The behavior that a given FAP
demands might be the same or might be different from the behavior the underlying
software for implementing it exposes. In addition to data mediation as described
above the concept of protocol mediation is required. [264] describes the protocol
mediation problem in detail. Only if data and protocol mediation are both sup-
ported it is possible to map the interface to the implementation within a given party
of a communication.

Not all parties can support at their interface all the FAPs that they need to in
order to participate properly in the various communications. In this case it is neces-
sary to move the mediation (data and protocol) outside the interface. So instead of
mediating the difference between the interface and implementation within a party,
the mediation is done outside the interface between parties. This makes the concept
of a “middle man” necessary. The middle man is a party to the communication for
specifically mediating between communicating parties. The middle man estab-
lished a communication channel with all participating parties and uses different
FAPs for that. The FAPs used are those that the parties can support. The middle

202 8 Communication
man itself mediates between the FAPs as it passes along the data from the sender to
the receivers.

The benefit of this approach is that parties can participate in communications
that they could not support directly. Of course, the middle man has to be available
and able to mediate appropriately.

The most flexible party to a communication is the one that has a declarative way
of mediation within its boundaries between its interface and its implementation. If
the mediation is declarative, existing mediations can be changed or new mediations
can be added. If the change or addition of mediation is fast and flexible, the party
can define additional interfaces as required by FAPs as it can build the mediation
to its implementation easily. It is therefore assumed for simplicity that this is the
approach going forward in the remaining Chapters about processes and the Seman-
tic Web. If a given party cannot implement mediation this way, the way out is the
middle man.

8.1.6 Non-functional Aspects

Ideally, communication is secure, reliable, recoverable, fast, and has many other
“nice” properties that make it convenient for the communicating parties. Properties
like security, reliability, recoverability, performance, and others are called non-
functional communication properties (as they are related to the communication
system behavior, not the semantics of a communication). Different implementa-
tions of communication channels have various support for non-functional commu-
nication properties. Depending on the particular needs of the communicating
parties they have to select the most suitable mechanism.

A few properties are discussed in the following. The list is not complete and
only highlights the most important aspects:

• Security. Security has many different facets. The most relevant are that data
communicated should not be visible to any party not involved in the communi-
cation. This is usually achieved by either encrypting the data packets themselves
that are communicated or encrypting the whole communication channel instead
of the individual packets. Furthermore, no other attack should be possible like
taking data packets off the communication channel, or introducing additional
ones in order to cause disruption in the protocol. Another aspect is authentica-
tion and authorization of the parties that want to join a communication channel.
Not all parties should be easily able to join a communication just like that. The
originator of the communication should be able to restrict access as necessary
and have parties authenticate themselves in order to allow the proper authoriza-
tion.

• Reliability. Reliability is important in the presence of failures. In case of a fail-
ure it must be clear what status the communication is in and which of the last
data transmissions succeeded successfully and which did not. This allows after a
failure to continue the communication from a consistent state forward.

 8.2 Communication Paradigms 203
• Transactionality. Transactional behavior of communication is important in the
presence of fatal errors. If a server goes down and has to be restarted, if a net-
work fails or a communication software stops working, then it is important that
the communication can be recovered to its last consistent state. This is important
as it allows the communicating parties to continue the communication without
having to execute any recovery strategy itself, let alone compensating actions
that would modify already achieved states.

• Throughput. If the data sent is of high volume or if many communications are
ongoing in parallel then the communication channel might become a bottleneck
in the sense that it cannot support all communication as fast as in a low load sit-
uation. In this case the communication system degrades in terms of perfor-
mance. Throughput is important and the ideal situation is that degradation
happens only under very high load. Furthermore, it should be gradual, not sud-
den.

• Performance. Performance is related to the speed of data transmission. In many
situations speed is of high importance, for example, when communication takes
place over synchronous connections that require a fast response. In other situa-
tions performance is not as important as the communicating parties do not have
to operate within the bounds of specific time lines.

• Availability. We are used to the immediate and constant availability of the
phone system. Whenever we want to make a call we expect the phone be avail-
able and ready. Connections to the Internet are also expected to be “always-on”.
In this sense every party is expecting to be able to engage in a communication
whenever they need to. High availability of the communication channel is
important. Of course, this does not mean that all communicating parties are
always available; a phone call might not be taken by the intended recipient.

This discussion of non-functional communication properties concludes this Sec-
tion. The fundamental communication concepts have been introduced that form the
conceptual basis of communication as related to Semantic Web Services. In the
next Section specific communication paradigms that are based on the fundamental
types are introduced.

8.2 Communication Paradigms

Based on the fundamental types of communication, namely shared variables, syn-
chronous and asynchronous communication, different specific communication par-
adigms were developed over time. Leaving the postal mail approach of storing data
on a storage medium like DVDs and sending them by postal mail aside (i.e. “phys-
ical communication”), the most important current communication paradigms (like
client/server or queueing) that are en vogue are discussed throughout this Section.

For each paradigm, the FAP as well as the number of communicating parties are
discussed as well as to which basic type it belongs.

204 8 Communication
8.2.1 Client/Server (C/S)

The client/server communication paradigm is one of the oldest paradigms and is
part of the synchronous connection type. This approach distinguishes a provider of
functionality, called server, from the consumer of functionality, called client. Cli-
ents and the server can be on the same computer or they can be on different com-
puters. In the latter case, communication is established over a network (be it a local
network or a wide-area network).

The FAPs for this paradigm are determined by the server. The server defines
and specifies the possible invocations a client can make and their order, it defines
the data structures as well as the data content. And it defines the behavior, too. The
client has no ability to influence any of these definitions, it can only use whatever
the server provides and allows at any given point in time.

A server can serve many clients. The exact number depends the server’s capac-
ity and the size of the computation its clients request. The clients do not know
about each other, so it is not possible to have a multi-party communication; instead,
all communication is binary between a client and the server.

8.2.2 Queueing

The queueing paradigm became popular in recent times with the advent of explicit
queueing systems as a separate architecture and technology component or implicit
database or application server functionality. Queueing is of the asynchronous con-
nection type as it decouples the communicating parties.

Queueing is in principle a one-way communication mechanism where a sender
submits messages to a particular queue using an enqueue operation. The messages
will be stored in the queue, generally in the order of receipt. The receiver takes
messages from the queue using a dequeue operation. In its simplest form, queues
maintain the message order and operate under the first-in-first-out (FIFO) mode.

In this situation the determination of the FAP becomes an interesting topic as it
depends on the viewpoint of who decides on the FAP. In the majority of cases the
queueing paradigm takes the form of an asynchronous client/server model where
the receivers determine the FAP and the senders have to comply. However, this is
not necessarily the only possible viewpoint. An alternative viewpoint is that the
sender is an information source and publishes its message to a queue and is not
really interested in which receivers pick up the message content. In this viewpoint
fundamentally the receiver is the one that is “interested” in the message and has to
comply to the senders FAP accordingly.

Over a queue many senders can communicate with many receivers. In order to
establish a two-way communication two queues can be put in place, each queue for
one direction of communication. Alternatively one queue can be used and the send-
ers and receivers both put messages and read message from the same queue. If it is
important to know in this case what messages are response messages, they have to
be marked accordingly either through typing the message or an attribute in the con-

 8.2 Communication Paradigms 205
tents of the message. In the case of two queues, one can be marked as the request
queue and one as the response queue. Still, in any case one sender and one receiver
communicate with each other. The reason is that on dequeue the message gets
removed from a queue, meaning, the only one receiver can receive a single mes-
sage.

However, more advanced queueing systems allow more than one receiver to
receive the same message. The queueing system in this case ensures that all receiv-
ers receive a copy of the same message. This is accomplished by receivers declar-
ing interest in specific messages and the queueing system notifying all receivers
about the advent of those. These systems are called publish/subscribe systems.
Receivers (subscribers) then will receive those messages from the senders (pub-
lishers) and can proceed with whatever processing they need to do.

8.2.3 Peer-to-Peer (P2P)

The peer-to-peer paradigm is very similar to the client/server paradigm and is of
the type synchronous connection. The major difference is that the server in the cli-
ent/server paradigm is usually stationary and in a central location to which all cli-
ents connect to. In the peer-to-peer paradigm this is not the case. Two
communicating parties (in this case called peers) communicate directly with each
other and establish a connection directly, not going through some central location
like a stationary server at all. Each party can become server whenever it wants to
and can become client whenever necessary. Fundamentally, every peer is a server
or a client at any point in time. In this case any two pairs of parties that know about
each other can establish a direct connection at any time, establishing peer-to-peer
links.

In the peer-to-peer paradigm, as each party can become a peer at any time, all
have to agree on the FAP in order to be able to establish direct connections. More
elaborate peer-to-peer protocols allow peers to communication with each other that
do not have a direct communication link. In this case other peers act as relay station
forwarding the communication. Two peers therefore communicate directly,
whereby the actual data transport is over other peers as intermediaries (invisible to
the communication channel itself).

It is possible that one peer communicates concurrently with several other peers.
In addition, several peers can communicate with each other at the same time. So a
true multi-party communication can be established where the peers know about
each other.

8.2.4 Blackboard

The blackboard paradigm is an approach to further decouple senders and receivers,
even more then a queueing system allows to do. A blackboard architecture pro-
vides a space where data can be posted, changed or removed by a sender. There is

206 8 Communication
no specific guarantee about when data is made available and how long it will reside
there. Receivers can read data at any point in time and as often as they want or need
to. The basic protocol of how to post data and how to read data is determined by
the blackboard. However, the FAP between senders and receivers is not deter-
mined by the blackboard, that remains within the control of senders and receivers.
Still, the FAP that senders and receivers use between them and the FAP of the
blackbaord has to match within the constraints of the blackboard. For example, if
the FAP requires versions, but the blackboard does not support versions, the proto-
cols are incompatible.

There can be any number of senders and receivers, and there can be many
receivers participate in the same communication as the blackbord does not restrict
data to be accessible only to specific senders.

8.2.5 Web Services

Web Services is a new communication paradigm that is centered around the public
Internet as communication transport layer. Web Services have three aspects to it.
First, the interface of the communicating parties is described using an interface
definition language (called the Web Service Definition Language (WSDL)). This
formal language allows the definition of the messages a communicating party
sends as well as receives. Message sending and receiving is based on operations
that have messages as input and output parameters. This approach differs from
B2B protocols where messages are sent and received without the notion of opera-
tions.

Second, an explicit transmission protocol is defined, called SOAP (initially
standing for the Simple Object Access Protocol, however this has since been
dropped). This protocol is abstract in the sense that it defines how a message as
defined in WSDL is structured when it is sent using a concrete transmission proto-
col. A separate binding is defined to bind the SOAP protocol to a real transport.
Bindings exist (amongst others) for HTTP as well as MIME. This is interesting as
HTTP is a synchronous protocol based on the synchronous communication type
whereas MIME is an asynchronous protocol based on the asynchronous base type.
The interesting aspect is that the interface definition is independent of the actual
communication mechanism.

Third, a publication mechanism is defined that allows communicating parties, if
they so wish, to publish their interface definitions in public or private directories
for others to look up. This supports the detection of communicating parties based
on their defined interfaces.

The FAP are in part predefined by the notion of operations with input and output
parameters. However, the sequence or order of operations that has to be called is
undefined and open for the communicating parties to agree upon. The data struc-
ture and content is free for the participating parties to decide, however, the specifi-
cation language is XML Schema. With XML Schema the communicating parties

 8.2 Communication Paradigms 207
can agree on structure and content to the extent XML Schema supports the defini-
tion.

Web Services are a bilateral communication mechanism that allows two parties
to communicate with each other. A multi-party communication is not supported by
the current Web Service standards or technology.

8.2.6 Representational State Transfer (REST)

REST (representational state transfer) [265] is a particular style of enabling com-
munication based on the principle that all data as well as operations on data are
enabled using strictly static URLs based on the HTTP protocol. The fundamental
approach is to see data and operations as identifiable resources and the identifica-
tion mechanism is URLs. As such, resources like data or operations are identified
by URLs. Accessing a particular car (identified for example as 45671) from a car
selling web site (for example, www.sellyourcar.com) could be www.selly-
ourcar.com/car/45671. The response to issuing the URL would be the data format
and data content representing the car identified with 45671. Searching a car could
be www.sellyourcar.com/findCarForm. This would provide the client to obtain the
data format with the search criteria to be filled for searching a particular car.

REST implements a “classical” client/server model where the client requests
action from a server through particular structured URLs. A server provides a
response to clients if a well-formed URL is transmitted to it. The communication is
synchronous and over the HTTP protocol. The static URLs ensure that the data or
functionality can be accessed with the same URL at any point in time.

The form of communication is binary as only two parties can participate in one
communication. However, a server can provide responses to several clients, of
course. The FAPs are not explicit, but implicit (analogous to the client/server
model). In this communication style there is no explicit definition of the data for-
mats, permissible values or the protocols as interface as the interface is not explic-
itly defined. Instead, all aspects, including the URL structure, are defined by the
server in implicit form (as opposed to a WSDL definition). This follows closely
“normal” HTML page requests and responses.

8.2.7 Agents

Agents is a concept stemming from the area of Artificial Intelligence (AI). Agents
are autonomous entities that form a perception of the world around them and that
can communicate with other agents. The communication allows agents to achieve
their task by asking other agents to contribute. From a communication viewpoint
agents do not only communicate data, but explicitly ask other agents to perform
specific tasks. The asked agent can execute the task, delegate the task to another
agent or refuse to engage in executing the task (effectively rejecting it). In this
sense there is an explicit notion of acceptance as well as refusal of tasks.

208 8 Communication
An agent can communicate with any number of other agents. However, all agent
communication is bilateral in the sense that each agent communicates with one or
more other agents directly, never in a multi-interaction way.

The formats are not predefined by an agent protocol. Agents can agree on the
formats and data content they want to use. They even can engage in communica-
tion without having agreed upfront on the specific formats as an agent can always
respond with the “I don’t understand” message back to the message originator in
order to indicate that the communication will not be possible due to data format or
data content misunderstanding. However, in order for every agent to exchange
messages with any other agent, a basic protocol for at least exchanging messages
needs to be in place. Otherwise any communication is impossible. Also, minimally
the “I don’t understand” message needs to be agreed upon upfront, too, for agents
to be able to tell each other that they could not understand. Otherwise the response
message could not be interpreted either, making any communication impossible.

8.2.8 Tuple Spaces

Tuple spaces are like blackboards where communicating parties can add tuples into
a space that can be read by other parties. The data structure is predefined as tuples
and all communicating parties have to follow this structure. The tuple space itself
is a space that exists on its own without communicating parties to be connected to
it. Tuple spaces are therefore following the shared variable basic principle. Access
to the tuple space is concurrent, however, each individual tuple is accessed atomi-
cally for consistency reasons.

The formats are open for the parties to determine or to define. The basic proto-
col of tuple management is determined by the tuple space. Any protocol beyond
that, i.e., the number and order of specific tuples written is solely in the discretion
of the communicating parties.

Any number of parties can communicate with each other at the same time using
tuple spaces. In this approach bi-lateral as well as multi-party communication is
supported. Interestingly enough, from the viewpoint of an individual party, it is not
clear at all if there is a bilateral or multi-party communication. It can be the case
that one party writes tuples that are never picked up by any other party. In this
sense tuple spaces (like blackboards) allow a one-party communication; this is
really an oxymoron, unless the storing and reading of tuples by the same party is
considered communication with itself.

8.2.9 Co-location

Co-location is a communication paradigm that allows parties to communicate with-
out crossing remote networks for the purpose of the communication. Co-location is
based on the principle that the communicating parties share their communication
code so that a party communicating with another one really does a local invocation

 8.3 Long-Running Communication 209
instead of a remote invocation. This allows the existence of a structured communi-
cation without incurring the network overhead for sending data between the par-
ties.

However, one must ask the question how data actually ever gets transferred
between the two parties as in the end of the day they are in separate environments?
The basic assumption in the co-location paradigm is that the communication code
implements database updates as side effects. If this is the case, if one party calls
another party’s communication code, that updates the database of that party. So in
reality the communication on a communication protocol level is local, however,
the remote access part is “pushed down” to the database access layer.

This paradigm is relevant especially within organizations where remote data-
base connectivity is possible. In such an environment all communication is limited
to a one-hop database invocation without additional remote invocations across a
network. This reduces the remote invocations while keeping the database connec-
tivity constant.

Any number of parties can participate in such a co-location as each party uses
the communication code of every other party it communicates with. In addition,
the formats and protocols can be freely agreed upon as the shared communication
code can be invoked as needed by the sender.

8.2.10 Summary

Many communication paradigms exist, each having its very own properties. In a
given communication situation, some might be more appropriate then others. How-
ever, at the end of the day, all allow the transmission of data from a sender to a
receiver.

8.3 Long-Running Communication

Communication between two parties is not restricted to only a single individual
exchange of data. In many cases several exchanges take place, from sender to
receiver and back. These exchanges usually take place one after another. If this
communication is following a protocol for the whole duration of the communica-
tion and is about the same business process or about the same business objective
(like for example clarifying the insurance coverage of a patient) then it is consid-
ered a long-running communication.

The term long-running comes from the fact that the individual communications
are related to each other and not arbitrary. Furthermore, if one individual commu-
nication fails, then only the failed one needs to be repeated or corrected, not the
whole communication from the beginning up to this point. In a long-running com-
munication each individual successful communication is regarded as a consistent
state. So if the last individual communication fails, and as the last consistent state

210 8 Communication
is persisted, it can be retrieved and taken as the restart point for continuing the
long-running communication.

Long-running communication is widely used, especially in context of inter-
organization communication in form of B2B protocols as well as in intra-organiza-
tion communication in form of Enterprise Application Integration (EAI), also
called Application-to-Application (A2A) integration. In the following each is dis-
cussed separately in turn.

8.3.1 Business-to-Business (B2B) Protocols

B2B communication takes place when company boundaries are crossed while data
is passed back and forth between the communicating parties. A typical situation in
the supply chain industry is when a buyer sends a purchase order to a seller and the
seller responds with an acknowledgment that the order will be fulfilled. Later on
the seller would send an invoice for the goods shipped, expecting a payment from
the buyer. Another situation in the healthcare domain would be the communication
about clinical tests between different healthcare providers.

B2B communication is about sending and receiving meaningful business data
that allow businesses to act upon or to react to. The formats have to be agreed upon
so that the communicating parties can understand each other. The same is true for
protocols as the communicating parties have to comply to the protocols in order to
send or to wait for a message at the precisely correct time.

As outlined in [263] there are several standards organizations maintaining and
further extending standards that define the formats and protocols. Examples are
RosettaNet, HIPPAA, EDI, just to name a few.

The challenges in setting up proper B2B communication are manifold. The main
challenge is the semantically correct interpretation of the various data elements in
the messages that are exchanged. As the data sent across is in general coming from
various back end application systems, it reflects many different data models. As
the formats themselves represent a data model the correct interpretation depends
not only on the structure of the messages but also their contents.

Another challenge is to design the long-running B2B interactions and to ensure
run-time compliance to the agreed long-running protocol. Depending on the com-
plexity of the long-running process it is possible that many correct executions of
the processes exist. Plus, many different error situations can happen that require
compensation in order to get back on track to a correct execution.

Since important business data are communicated other aspects are of impor-
tence. Security is a big and important item, and so is reliability. Reliability refers to
the guarantee that a message was not only passed, but also received. Nirvana in this
case would be an exactly-once transmission so that both, sender and receiver are
guaranteed that each message was transmitted exactly once. This ensures that
every message is accounted for and not lost. In addition, neither sender nor
receiver have to worry about error detection, handling and recovery on a message
passing level.

 8.4 Web Services 211
In addition to the reliability of a single data exchange, the consistency of the
overall long-running process is very essential as both communicating parties rely
on the consistency in order to do successful business with each other. If one trans-
mission in a process fails (and keeps failing) then it might be the time when the
overall process needs to be abandoned. As it is a long-running process many states
were committed along the way clearly requiring compensation to undo already
achieved work.

At run time, speed and throughput is of concern as well as security. However,
these are non-functional properties not relevant to the discussion in context of
semantics.

8.3.2 Application-to-Application (A2A) Protocols

Application-to-Application integration is also referred to as Enterprise Application
Integration (EAI). A2A protocols are very similar to B2B protocols in that data is
passed back and forth. In contrast to B2B protocols, the endpoints are applications
within an enterprise, not systems across a network between companies.

The issues and problems are the very same as in B2B protocols, including secu-
rity. This might be a surprising statement as in general applications are invoked
over their interfaces. However, applications may still provide purchase orders or
wait for acknowledgements at their interfaces. In this sense there may be a long-
running process implemented inside that requires compliance. Transformation is
necessary as the data model inside the application might be different from that of
the B2B protocol or other applications that are integrated. As enterprises, espe-
cially larger ones have different physical locations communication between appli-
cations is possibly going over the Internet, so security becomes an important
aspect. In this sense, A2A and B2B integration are very similar.

Some of the problems can be solved a lot easier due to the fact that the integra-
tion is within an enterprise. For example, the exactly-once semantics in data trans-
mission can be achieved using transactional communication systems like
transactional RPC or transactional queueing systems. Also, the endpoint of the
integration are applications within the same enterprise, so supposedly the commu-
nication between the governing groups should be a lot easier then across company
boundaries.

From a semantics viewpoint there is no difference between B2B and A2A proto-
cols at all. This is the reason why not distinction is made in the remainder of the
book.

8.4 Web Services

Web Services are the current silver bullet for (remote) communication in context of
the Web as well as within enterprises or governmental organizations. Aside from
the fact that Web Services is a relatively new development (only a few years old)

212 8 Communication
the initial charm lay within its perceived simplicity. To keep things simple, there
was the notion of an interface, a transport protocol and a mechanism to register
interfaces. And that was all there was to it initially. Everybody liked this simplicity
despite the fact that everybody knew from the very beginning that additional fea-
tures and functionality are needed like security, transactions, policy, processes, and
so on.

The initial run-time model was that of a client/server model. A server defines
services by means of interfaces in a XML-based language call WSDL (Web Ser-
vice Description Language). These interfaces are made available in a registry that
clients can lookup. The initial effort was UDDI (Universal Description, Discovery
and Integration). Clients wanting to invoke services, could lookup UDDI reposito-
ries, retrieve interfaces and (having this knowledge) invoke those interfaces
dynamically. Of course, there was no security, no reliability, no policy or any addi-
tional functionality.

Over time, the realization set in that these features were necessary leading to the
development of WS-* (spoken “Web Service Star” or half-jokingly “Web Service
Death Star”) which refers to a (relatively large) set of standards and proposals that
together lead to an acceptable set of technologies for communication. This set of
standards is in the meanwhile so complex that efforts are underway to simplify this
(leading to a split and proliferation of multiple activities).

All these efforts have as common denominator a few technical concepts and
principles that will be discussed in the next Chapter of the book in more detail. The
next Chapter discusses also the most important standards from this set in more
detail to outline the overall complexity that is to be mastered in order to implement
useful Web Services.

One of the efforts that wants to enhance the state-of-the-art are Semantic Web
Services. This is a very important activity as it strives to incorporate semantics at
the level of description models, mechanisms and languages. A separate Chapter is
devoted to those to introduce current efforts in this space and yet another Chapter
of the book looks at standards activities for Semantic Web Services.

8.5 Clinical Use Case

The clinical use case (see Chapter 2 and Chapter 13) is fundamentally a distributed
application system with many concurrent activities. Doctors retrieve and enter
data, clerks schedule appointments, test results are forwarded or inferencing takes
place to derive information.

All the various subsystems of the clinical use case implementation are indepen-
dent in their data management and they communicate with each other in order to
exchange data. Chapter 2 outlines the basic use case as well as its requirements.
Chapter 13 outlines the complete use case in detail and shows how semantic tech-
nologies are used to define the functionality.

 8.5 Clinical Use Case 213
Here we discuss how communication technologies are used to support the clini-
cal use case implementation. First of all, as the use case takes place in a clinical
environment, security and reliability play very big roles. Security ensures that the
patient specific data is only accessible to those authorized to see it. For the commu-
nication technology this means that only those communication technologies and
their implementations can be used that support security.

The second big requirement in clinical environments is reliability. It is essential
that any data that is collected manually is transmitted and stored in such a way that
it cannot get lost. Transactional communication technologies ensure this require-
ment. Also, any derived information as well as information gathered through test
results have to be reliably communicated so that it is ensured that data is not lost
during communication, be it a one-step communication between two systems or a
multi-step (long-running) communication between several systems.

For the latter case, when several systems have to cooperate, long-running com-
munication is the best approach to ensure that the cooperation finishes and does not
stop undiscovered at a partial state. Long-running communication maintains the
state during the cooperation and can restart or continue after a failure from the last
consistent state.

The next few chapters will introduce Semantic Web Service technology. Ser-
vices will be discovered, put together into an orchestration as well as invoked. This
technology is in principle independent of the underlying communication technolo-
gies as they can use any available one. For the clinical use case this means that all
remote invocations of services is based on secure and reliable communication. Web
Service orchestration will be executed on long-running communication so that
state is not lost.

Some of the systems, like for example the system that discovers services, does
not have to be reliable. In these special cases, when a discovery fails, it can be re-
run in order to obtain a good result. In more general terms this means that idempo-
tent functionality does not have to be reliable as it can be re-executed without loss
of information.

When it comes to the selection of a sepecific technology implementation no
general advice can be given as in every real life implementations the choice is
determined mostly by the already existing infrastructure. For example, if a hospital
has already a transactional queueing system from a specific vendor, than this is the
one that needs to be deployed in Semantic Web Service implementations, too, for
pragmatic and financial reasons. Also, if some of the remote connections are based
on B2B protocols using healthcare document or message standards than this is the
one to be chosen. However, independent of the specific technology that is avail-
able, the aspects of security and reliability are essential and must be achieved.

The use case in Chapter 13 focusses on the functional definition of the clinical
use case and does not further go into the specific communication technologies any
more.

214 8 Communication
8.6 Summary

In summary, communication is a highly utilized and very well researched area of
computer science. Communication between computers is at an all time high as the
networks around the globe get more tightly integrated every day. The latest devel-
opment, Web Services, made communication a lot easier (initially) leading to a lot
of development of remote services.

Various communication styles and mechanisms exist that address different func-
tionality. However, common to all is the lack of semantic description languages
and concepts, as pointed out in this Chapter. The following Chapters focus first on
Web Services and later on Semantic Web Services that in the end strive to over-
come the semantic description problem of dynamic behavior expressed as long-
running processes.

	8 Communication
	8.1 Communication Concepts
	8.1.1 Fundamental Types
	8.1.2 Formats and Protocols (FAP)
	8.1.3 Separation of Interface and Logic
	8.1.4 Communicating Parties
	8.1.5 Mediation
	8.1.6 Non-functional Aspects

	8.2 Communication Paradigms
	8.2.1 Client/Server (C/S)
	8.2.2 Queueing
	8.2.3 Peer-to-Peer (P2P)
	8.2.4 Blackboard
	8.2.5 Web Services
	8.2.6 Representational State Transfer (REST)
	8.2.7 Agents
	8.2.8 Tuple Spaces
	8.2.9 Co-location
	8.2.10 Summary

	8.3 Long-Running Communication
	8.3.1 Business-to-Business (B2B) Protocols
	8.3.2 Application-to-Application (A2A) Protocols

	8.4 Web Services
	8.5 Clinical Use Case
	8.6 Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

