7 Applications of Metadata and Ontologies

A key value proposition enabled by the use of metadata descriptios based on con-
cepts from domain specific ontologies, is the ability to describe Web and other
types of content using semantic descriptions with fine grained abstractions. These
descriptions could appear in the form of annotations in the case of unstructured
data. Alternatively, in the case of structured data created according to a well
defined schema, these descriptions can be created based on a mapping between the
schema and a domain specific ontology. These metadata descriptions may also be
used to query the underlying structured data as well. Finally, with the mappings
between the schema and domain ontologies form a critical component, that enables
domain ontolog driven information integration. In this chapter, we discuss:

e Structured and semi-structured metadata annotations of unstructured and semi-
structured documents on the Web. Tools and techniques to support metadata
annotation are presented in Section 7.1.

e Structured metadata annotations of structured Web resources with a well-
defined set of types and schemas. Techniques to support schema and ontology
mapping are discussed in Section 7.2.

¢ Approaches for ontology driven information integration are discussed in Section
7.3.

7.1 Tools and Techniques for Metadata Annotation

Knowledge about documents has traditionally been managed through the use of
metadata, which can concern the world around the document, e.g., the author, and
often at least part of the content, e.g., keywords. The Semantic Web proposes anno-
tating document content using semantic information from domain ontologies. The
result is Web pages with machine interpretable markup that provide the source
material with which agents and Semantic Web Services can operate. The goal is to
create annotations with well-defined semantics, however those semantics may be
defined. This is a crucial requirement for interoperability, as it ensures that the
annotator and annotation consumer actually share meaning.

Semantic Web annotations go beyond familiar textual annotations about the
content of the documents, such as “clause seven of this contract has been deleted
because . . .” and “the test results need to go in here”. This kind of informal annota-
tion is common in word processor applications and is intended primarily for use by

162 7 Applications of Metadata and Ontologies

document creators. Semantic annotation formally identifies concepts and relations
between concepts in documents, and is intended primarily for use by machines. For
example, a semantic annotation might relate “Paris” in a text to an ontology which
both identifies it as the abstract concept “City” and links it to the instance “France”
of the abstract concept “Country”, thus removing any ambiguity about which
“Paris” it refers to. Annotations can be utilized to make the knowledge contained in
unstructured sources (medical images such as X-rays) available in a structured
form, allowing both accurate and focussed retrieval and knowledge sharing for a
given patient’s case. Moreover, they can be processed to automatically draft textual
reports about the patient, the diagnostic information that is available and the
assessments made about the data by the medical team.

In this section, we discuss some requirements identified for semantic annotation
and review the systems that currently exist to support annotations of documents
presented in [171]. Seven requirements, which are used to assess the capabilities of
existing annotation systems, are identified for semantic annotation systems.

7.1.1 Requirements for Metadata Annotation

The metadata task may be considered from four viewpoints: ontologies, docu-
ments, annotations that link ontologies to documents, and end users. Each view-
point suggests one or more requirements, e.g., the need for tools to support
multiple, evolving ontologies (ontology viewpoint) and the need to support the
reuse and versioning of documents (document viewpoint). Some requirements for
metadata annotation are as follows [171]:

1. Standard Formats: Using standardized formats and data models is preferable
whenever possible. Two types of standard are required, standards for describing
ontologies such as OWL [45] and standards for annotations such as tRDF [42].

2. User-Centered/Collaborative Design: Since few organizations have the
capacity to employ professional annotators, it is crucial to provide knowledge
workers with easy to use interfaces that simplify the annotation process and
place it in the context of their everyday work. Thre is a need to facilitate collab-
oration between users, with experts from different fields contributing to and
reusing metadata annotations. Other issues for collaboration include imple-
menting systems with access control functionality. For example, in a medical
context, physicians might share all information about patients among them-
selves but only share anonymized information with planners. Issues related to
access policies, trust and provenance are important in this context.

3. Ontology Support (Multiple Ontologies and Evolution): Metadata annota-
tion tools need to be able to support multiple ontologies. For example, in a med-
ical context, there may be one ontology for general metadata about a patient
and other domain-specific ontologies that deal with diagnosis and medications.
In addition, systems will have to cope with changes made to ontologies over
time, such as incorporating new classes or modifying existing ones. This is a

7.1 Tools and Techniques for Metadata Annotation 163

crucial requirement as in some domains such as the biomedical domain, stan-
dardized vocabularies and ontologies are regularly updated. In this case, the
problem is ensuring consistency between ontologies and annotations with
respect to ontology changes. Some important issues for the design of an annota-
tion environment are to determine how changes should be reflected in the
knowledge base of annotated documents and whether changes to ontologies
create conflicts with existing annotations. Knowledge workers may require
facilities to help them explore and edit the ontologies they are using.

4. Document Evolution (Document and Annotation Consistency): Ontologies
change sometimes but some documents change many times. What should hap-
pen to the annotations on a document when it is revised? Is it even desirable, in
general, to transfer annotations to a new version of a document, or do versions
of annotations need to be maintained in parallel with document versions. For
example, if a contract were prepared for a new client, annotations that referred
to a legal ontology could be retained, but annotations which referred to previ-
ous clients could be removed. How can this selective transfer of annotations be
achieved?

5. Annotation Storage: The Semantic Web model assumes that annotations will
be stored separately from the original document, whereas the “word processor”
model assumes that comments are stored as an integral part of the document,
which can be viewed or not as the reader prefers. The Semantic Web model,
which decouples content and semantics, works particularly well for the Web
environment in which the authors of annotations do not necessarily have any
control over the documents they are annotating.

6. Automation: Easing the knowledge acquisition bottleneck can be enabled by
the provision of facilities for automatic markup of document collections to
facilitate the economical annotation of large document collections. To achieve
this, the integration of knowledge extraction and natural language processing
technologies into the annotation environment is vital.

7.1.2 Tools and Technologies for Metadata Annotation

In this section, we discuss annotation frameworks, tools and environments that pro-
duce semantic metadata annotations, i.e., metadata annotations that are based on a
vocabulary presented by ontologies.

Metadata Annotation Frameworks

We discuss two frameworks for annotation in the Semantic Web, the W3C annota-
tion project Annotea [172], and CREAM [173], an annotation framework being
developed at the University of Karlsruhe. These frameworks can be implemented
by multiple tools.

164 7 Applications of Metadata and Ontologies

Annotea is a W3C project, which specifies infrastructure for annotation of Web
documents, with emphasis on the collaborative use of annotations. The main for-
mat for Annotea is RDF and the kinds of documents that can be annotated are lim-
ited to HTML or XML-based documents. XPointer is used as the method for
locating annotations within a document. The Annotea approach concentrates on a
semiformal style of annotation, in which annotations are free text statements about
documents. These statements must have metadata (author, creation time, etc.) and
may be typed according to user-defined RDF schemas of arbitrary complexity. The
storage model proposed is a mixed one with annotations being stored as RDF held
either on local machines or on public RDF servers. The Annotea framework has
been instantiated in a number of tools including Amaya, Annozilla and Vannotea,
which are discussed later in this section.

The CREAM framework looks at the context in which annotations could be
made. It specifies components required by an annotation system, including the
annotation interface, with automatic support for annotators, the document manage-
ment system and the annotation inference server. CREAM subscribes to W3C stan-
dard formats with annotations made in RDF or OWL and XPointers used to locate
annotations in text, which restricts it to Web-native formats such as XML and
HTML. The CREAM framework supports annotating the databases from which
deep Web pages are generated so that the annotations are generated automatically
with the pages. It is supported by a storage model that allows users to choose
whether they want to store annotations separately on a server or embedded in a
Web page. The CREAM framework allows for relational metadata, defined as
“annotations which contain relationship instances”. Relational metadata is essen-
tial for constructing knowledge bases which can be used to provide semantic ser-
vices. Examples of tools based on the CREAM framework are S-CREAM and
OntoMat-Annotizer, discussed later in the section.

Metadata Annotation Tools

The most basic annotation tools allow users to manually create annotations. They
have a great deal in common with purely textual annotation tools but provide some
support for ontologies. The W3C Web browser and editor Amaya [174] can mark-
up Web documents in XML or HTML. The user can make annotations in the same
tool they use for browsing and for editing text, making Amaya a good example of a
single point of access environment. The Annozilla [179] browser aims to make all
Amaya annotations readable in the Mozilla browser and to shadow Amaya devel-
opments. Teknowledge [180] produces a similar plug-in for Internet Explorer.

The Mangrove system is another example of manual but user-friendly annota-
tion [175]. The annotation tool itself is a straightforward graphical user interface
that allows users to associate a selection of tags with text that they highlight. Man-
grove has recently been integrated with a semantic email service [176], which sup-
ports the initiation of semantic email processes, such as meeting scheduling, via
text forms. The COHSE Annotator [188] produces annotations that are compatible

7.1 Tools and Techniques for Metadata Annotation 165

with Annotea. The annotator is provided as a plug-in suitable for use in Mozilla or
Internet Explorer, giving the user a choice of working environment. The COHSE
architecture has been used to support a number of domain applications, including
the generation of semantic annotation for visually impaired users [190] and enrich-
ing a Java tutorial site [189].

Multimedia annotation is the next phase of development for annotation, expand-
ing the range files types that can be marked up into images, video and audio. Van-
notea [177] has been developed by the University of Brisbane for adding metadata
to MPEG-2 (video), JPEG 2000 (image) and Direct 3D (mesh) files, with the mesh
being used to define regions of images. It has been designed to allow input from
distributed users enabling deployment to annotate cultural artifacts in a collabora-
tive annotation exercise involving both museum curators and indigenous groups
[177].

Some manual annotation tools provide more sophisticated user support and a
degree of semi-automatic or automatic annotation facilities. The OntoMat-Anno-
tizer is a tool for making annotations based on the CREAM framework. A Web
browser displays the page being annotated and provides user-friendly function,
such as drag-and-drop creation of instances and the ability to markup pages while
they are being created. OntoMat has been extended to include support for semi-
automatic annotation. The first of these extensions was S-CREAM [181], which
uses an information extraction (IE) system (Amilcare [182]). The system learns
how to reproduce the user annotation, to be able to suggest annotations for new
documents. OntoMat also incorporates methods for deep annotation [183]. M-
OntoMat-Annotizer [184] supports manual annotation of image and video data by
indexers with little multimedia experience by automatic extraction of low-level
features that describe objects in the content.

SHOE Knowledge Annotator [186] was an early system which allowed users to
markup HTML pages in SHOE guided by ontologies available locally or via a
URL. Users were assisted by being prompted for inputs. Running SHOE took a
step toward automated markup by assisting users to build wrappers for Web pages
that specify how to extract entities from lists and other pages with regular formats.
A recent addition is the RDF annotator SMORE [185] which allows mark-up of
images and emails as well as HTML and text. A tool with similar characteristics to
SMORE is the Open Ontology Forge (OOF) [187], an ontology editor that supports
annotation, taking it a step further toward an integrated environment to handle doc-
uments, ontologies and annotations.

Automation can generally be regarded as falling into three categories. The most
basic kind uses rules or wrappers written by hand that try to capture known pat-
terns for the annotations. Supervised systems learn from sample annotations
marked up by the user. A problem with these methods is that picking enough good
examples is a nontrivial and error-prone task. In order to tackle this problem unsu-
pervised systems employ a variety of strategies to learn how to annotate without
user supervision, but their accuracy is limited.

166 7 Applications of Metadata and Ontologies

Lixto is a Web information extraction system which allows wrappers to be
defined for converting unstructured resources into structured ones. The tool allows
users to create wrappers interactively and visually by selecting relevant pieces of
information [191]. MnM was designed to markup training data for IE tools rather
than as an annotation tool per se [192]. It stores marked up documents as tagged
versions of the original, rather than in RDF format. It provides an HTML browser
to display the document and ontology browser features. MnM provides open APIs
to link to ontology servers and for integrating information extraction tools, making
it flexible with the formats and methods it uses.

Melita [193] is a user-driven automated semantic annotation tool which makes
two main strategies available to the user. It provides an underlying adaptive infor-
mation extraction system (Amilcare) that learns how to annotate the documents by
generalizing on the user annotations. It also provides facilities for rule writing
(based on regular expressions) to allow sophisticated users to define their own
rules. Documents are not selected based on the expected usefulness, to the IE sys-
tem, of annotating the document. The Amilcare IE system has been incorporated in
K@, a legal KM system with RDF-based semantic capabilities produced by Qui-
nary [194].

CAFETIERE is a rule-based system for generating XML annotations developed
as part of the Parmenides project [195]; it has been used to annotate the GENIA
biomedical corpus [208]. Text mining techniques supplemented with slot-based
constraints are used to suggest annotations to analysts [196]. The Parmenides
project also experimented with a clustering approach to suggest concepts and rela-
tions to extend ontologies [197].

Armadillo is a system for unsupervised creation of knowledge bases from large
repositories (e.g., the Web) as well as for document annotation [198]. It uses the
redundancy of the information in repositories to bootstrap learning from a handful
of seed examples selected by the user. Seeds are searched in the repository. Then
Adaptive IE is used to generalize over the examples and find new facts. Confirma-
tion by several sources (e.g., documents) is then required to check the quality of the
newly acquired data. After confirmation, a new round of learning can be initiated.
This bootstrapping process can be repeated until the user is satisfied with the qual-
ity of the learned information.

KnowlItAll [199] automates extraction of large knowledge bases of facts from
the Web. The pointwise mutual information (PMI) measure is used. The PMI mea-
sure is roughly the ratio between the number of search engine hits obtained by que-
rying with the discriminator phrase (e.g., “Liege is a city”’) and the number of hits
obtained by querying with the extracted fact (e.g., “Liege”). Three extensions to
the system (pattern learning, subclass extraction and list extraction) which are
shown to improve overall performance have also been provided.

The SmartWeb project is also investigating unsupervised approaches for RDF
knowledge base population [200]. Their approach uses class and subclass names
from the ontology to construct examples. The context of these examples is then
learned. In this way, instances can be identified which have similar contexts, but

7.1 Tools and Techniques for Metadata Annotation 167

which may use different terminology from the ontology. SmartWeb is aimed at
broadband mobile access.

Another approach to learning annotations which exploits the sheer size of the
Web is Pattern-based Annotation through Knowledge On the Web (PANKOW)
[201]. PANKOW uses a range of relatively rare, but informative, syntactic patterns
to markup candidate phrases in Web pages without having to manually produce an
initial set of marked-up Web pages and go through a supervised learning step.
AeroSWARMS is an automatic tool for annotation using OWL ontologies based
on the DAML annotator AeroDAML [202]. This has both a client/server version
and a Web-enabled demonstrator in which the user enters a URI and the system
automatically returns a file of annotations on another Web page.

SemTag is another example of a tool which focusses only on automatic markup
[124]. It is based on IBM’s text analysis platform Seeker and uses similarity func-
tions to recognize entities which occur in contexts similar to marked-up examples.
The key problem of large-scale automatic markup is identified as ambiguity, e.g.,
identical strings, such as “Niger”, which can refer to different things, a river or a
country. A Taxonomy-Based Disambiguation (TBD) algorithm is proposed to
tackle this problem. SemTag is proposed as a bootstrapping solution to get a
semantically tagged collection off the ground. It is intended as a tool for specialists
rather than one for knowledge workers.

KIM [203] [204] uses information extraction techniques to build a large knowl-
edge base of annotations. The annotations in KIM are metadata in the form of
named entities (people, places, etc.) which are defined in the KIMO ontology and
identified mainly from references to extremely large gazetteers. In the Rich News
application KIM has been used to help annotate television and radio news by
exploiting the fact that Web news stories on the same topic are often published in
parallel [207].

The Rainbow project is taking a Web-mining-led approach to automating anno-
tation. Rainbow is in fact a family of independent applications which share a com-
mon Webservice front end and upper-level ontology [205]. The applications
include text mining from product catalogs as well as more general pattern-match-
ing applications such as pornography recognition in bit map image files. The gen-
erated RDF is stored in Sesame databases for semantic retrieval [210].

A traditional approach to information extraction is used by the h-TechSight
Knowledge Management Platform, in which the GATE rule-based IE system is
used to feed a semantic portal [206]. This work is of particular interest because the
automatically generated annotations are monitored to produce metrics describing
the “dynamics” of concepts and instances which can be fed back to end users
[209]. It is envisaged that dynamics data will be used to inform the manual evolu-
tion of ontologies.

168 7 Applications of Metadata and Ontologies
Integrated Annotation Environments

In this section, we discuss systems that are aimed at integrating annotation into
standard tools and making annotation simultaneous to writing. WiCKOffice [211]
demonstrates how writing within a knowledge-aware environment has useful sup-
port possibilities, such as automatic assistance for form filling using data extracted
from knowledge bases. AktiveDoc [212] enables annotation of documents at three
levels: ontology-based content annotation, free text statements and on-demand
document enrichment. Support is provided during both editing and reading. Semi-
automatic annotation of content is provided via adaptive information extraction
from text (using Amilcare). AktiveDoc is designed for knowledge reuse; it is able
to monitor editing actions and to provide automatic suggestions about relevant
content. Armadillo supports searches of relevant knowledge in large repositories;
annotations in the document are used as context for searches. Annotations are
saved in a separate database; levels of confidentiality are associated with annota-
tions to ensure confidentiality of knowledge when necessary. AeroDAML can pro-
vide automation within authoring environments. For example, the SemanticWord
annotator [213] provides graphical-user-interface based tools to help analysts
annotate Microsoft Word documents with DAML ontologies as they write.

Two systems discussed next, are not strictly annotation tools, but produce anno-
tation-like services on demand for users browsing unannotated resources. Magpie
[214] operates from within a Web browser and does “real-time” annotation of Web
resources by highlighting text strings related to an ontology of the user’s choice.
The Thresher uses wrappers to generate RDF on the fly as users browse deep Web
resources [215]. The user can access semantic services for recognized objects.
Writing wrappers is a complex task which Thresher tackles by providing facilities
for nontechnical users to markup examples of a particular class. These are then
used to induce wrappers automatically. Thresher is part of the Haystack semantic
browser [216], which enables users to personalize the ontologies they use.

7.1.3 Comparative Evaluation

We now revisit the requirements presented in Section 7.1.1, and discuss a compar-
ative evaluation of the various tool discussed in the previous section with respect to
the requirements.

1. Standard Formats: The discussion in the previous section shows that the W3C
standards, particularly Annotea, are becoming dominant in this area. Systems
like CAFETIERE, which use their own XML-based annotation scheme, are
rare. This requirement has been fulfilled, although the standards may need to be
augmented to tackle inadequacies in the existing standards.

2. User-Centered/Collaborative Design: The most common home environment
of the tools we have seen is a Web browser, a natural result of the fact that most
of them were designed for the Semantic Web. The downside is that it both

7.1 Tools and Techniques for Metadata Annotation 169

focusses development on native Web formats like HTML and XML and tends
to divorce the annotation process from the process of document creation. More
attention needs to be paid to developing built-in or plug-in semantic annotation
facilities in commonly used packages to encourage knowledge workers to view
annotation as part of the authoring process, not as an afterthought, and also to
support annotation in collaborative environments, as for example in Vannotea.
Most of the tools discussed in the previous section did not address issues of
provenance or access rights. Standard methods to restrict access to databases or
the file system are available. As a result of offering this kind of support for
trust, provenance and access policies concerning annotations are important
issues which need to be addressed.

Ontology Support (Multiple Ontologies and Evolution): Annotation tools
have adapted rapidly to recent changes in ontology standards for the Web, with
many of the more recent tools already supporting OWL. However, support for
doing anything more complex than searching and navigating an ontology
browser is the exception. Ontology maintenance, which directly affects the
maintenance of annotations, is poorly supported, or not supported at all, by the
current generation of tools. This perhaps reflects the assumption that knowl-
edge workers will use existing ontologies rather than editing or creating them.
However there are signs that annotation systems are giving users more control
of ontologies. Melita allows users to split a concept and then view all the
instances that have been created for the old concept and reassign them. The
COHSE architecture includes a component for maintaining the ontology but
this does not appear to be available from the annotator. The Open Ontology
Forge supports the creation of new classes from a root class. h-TechSight moni-
tors the dynamics of instances and concepts to assist endusers in manual ontol-
ogy evolution. Parmenides has gone further and experimented with clustering
methods to suggest ontology changes. However there is still a long way to go
and we believe that ontology maintenance presents a significant research chal-
lenge.

Document Evolution (Document and Annotation Consistency): Keeping
annotations synchronized with changes to documents is challenging and this is
one area in which the current annotation standards are inadequate. The Annotea
approach adopted by many of the tools stores annotations separately from the
document and uses XPointer to locate them in the document. There are strong
arguments in favor of separate storage of annotations and documents, but the
problem with the XPointer approach is that connections are one-way from
annotations to documents and, therefore, too easily broken by edits at the docu-
ment end. An environment in which documents and annotations are stored sep-
arately, but closely coordinated is required. A number of practical fixes have
been implemented in OntoMat, including the ability to search for similar docu-
ments that have already been annotated, and a proposal to use pattern matching
to help relocate annotations in suitable places in the new document. However, a
coordinated approach is needed to tackle the issues of versioning annotations as

170 7 Applications of Metadata and Ontologies

documents evolve. These include determining who has permission to edit anno-
tations, at which points in the document life cycle is it appropriate to update the
annotations, and what automatic interventions are possible to reduce the burden
on users.

Annotation Storage: In the Semantic Web, documents and their annotations
are stored separately. This is unavoidable since documents and annotations are
likely to be owned by different people or organizations and stored in different
places. A variety of approaches to separate storage were seen in the tools dis-
cussed. The Annotea approach calls for RDF servers. Web storage technologies
that have been used are RDF triplestore (Armadillo and AktiveDoc), Label
Bureaus (SemTag) and DLS (COHSE). An alternative model is to store annota-
tions directly in the document. This approach has been used for in Semantic-
Word and MnM. Separate storage of annotations results in decoupling of
semantics and content and facilitates document reuse because it is possible to
set up rules which control and automate which kinds of annotations are trans-
ferred to new documents and which are not. It allows information from hetero-
geneous resources to be queried centrally as a knowledge base. It also makes it
easy to produce different views of a document for users with different roles in
an organization or different access rights, thus facilitating knowledge sharing
and collaboration. The results of the comparative evaluation of the various tools
with respect to the above requirements is presented in Table 7.1 below.

Table 7.1. Comparison of metadata tools

Annotation | User-Centered Ontology Document Annotation
Tool Design support Evolution Storage
Amaya ‘Web browser, editor Annotation XPointer Local, annotation
server server
Mangrove Graphical annotation RDF database
tool (Jena)
Vannotea Collaboration support Annotation server
OntoMat Drag/drop, create, Ontobroker Xpointer, Annotation server,
annotate annotations pattern embedded in Web
inference server matching page, separate file
M-OntoMat Extraction of visual Annotation server
Annotizer descriptors
SHOE Prompting Ontology server Embedded in Web
Knowledge page
Annotator
SMORE Web browser, editor Ontology server,
editing
Open Ontol- | Web browser, drag, Local, editable Xpointer Local RDF or XML
ogy Forge drop, create, annotate | ontologies file
COHSE Plug-in for Mozilla Ontology server Xpointer Annotation server
Annotator and Internet Explorer

7.1 Tools and Techniques for Metadata Annotation 171

Table 7.1. Comparison of metadata tools

Annotation | User-Centered Ontology Document Annotation
Tool Design support Evolution Storage
Lixto
MnM ‘Web browser Ontology server Store anno- | Embedded inWeb
tated page page
Melita Control IE intrusive- Local, editable Regular
ness ontologies expressions
Parmenides Additions based
on clustering
Armadillo RDEF triple store
KnowlItAll
SmartWeb RDF Knowledge
base
PANKOW CREAM
Aero- Web Services Local ontologies
SWARM
SemTag Label Bureau
(PICS)
KIM Various plug-in front KIMO RDF Knowledge-
ends base
Rainbow AmphorA XHTML Shared upper- RDF repository
Project database level ontology (Sesame)
h-TechSight | KM Portal Ontology editor, Tagged HTML web
dynamics metrics server
WiCKOf- Office application, Annotation server
fice support for form fill-
ing
AktivDoc Integrated editing RDEF triple store
environment
Semantic- Microsoft Word GUIs Markup
Word tied to text
regions
Magpie Web browser plug-in
Thresher Haystack semantic Ontology person-

browser

alization

6. Automation: Automation is vital to ease the knowledge acquisition bottleneck,
as discussed above. Many of the systems we examined had some kind of auto-
matic and semi-automatic support for annotation. Most of these handled just
text, using mainly wrappers, IE and natural language processing although there
are some systems, notably M-OntoMat-Annotizer and parts of the Rainbow
Project, looking to automate the handling of other media. Language technolo-

172 7 Applications of Metadata and Ontologies

gies present usability challenges when deployed for knowledge workers since
most are research tools or designed for use by specialists. A first step in
addressing these challenges is Melita, where attention has been paid in finding
ways to enable a seamless user interaction with the underlying IE system. In
addition to the usability challenges there are also research challenges, among
which extraction of relations is important for semantic annotation. A compari-
son of annotation tools for automation is presented in Table 7.2 below.

Table 7.2. A comparison of annotation tools based on automation support

Annotation Tool Automation Type of Analysis Learning
Amaya No
Mangrove No
Vannotea No
OntoMat Yes PANKOW, Amilcare (IE) Supervised learning
M-OntoMat Yes Extraction of spatial descrip- Genetic algorithms
Annotizer tion
SHOE Knowledge | Yes Running SHOE (wrappers) No
Annotator
SMORE Yes Screen scraper No
Open Ontology Yes String matching No
Forge
COHSE Annotator | Yes Ontology string matching No
Lixto Yes Wrappers No
MnM Yes POS tagging, named entity rec- | Supervised learning
ognition
Melita Yes String matching, POS tagging, | Supervised learning
named entity recognition
Parmenides Yes Text mining with constraints Unsupervised
learning
Armadillo Yes String matching, POS tagging, | Unsupervised
named entity recognition learning
KnowltAll Yes String matching, Hearst Unsupervised
patterns learning
SmartWeb Yes Shallow linguistic parsing Unsupervised
learning
PANKOW Yes Hearst patterns Unsupervised
learning
AeroSWARM Yes AeroText No
SemTag Yes Seeker, similarity, TBD Unsupervised
learning
KIM Yes String matching, POS tagging. No
named entity recognition

7.2 Techniques for Schema/Ontology Mapping

Table 7.2. A comparison of annotation tools based on automation support

173

Annotation Tool Automation Type of Analysis Learning

Rainbow Project Yes Hidden markov models, bit- Supervised learning
map classification

h-TechSight Yes Shallow linguistic analysis No

WiCKOffice Yes Named entity recognition No

AktivDoc Yes String matching, POS tagging, Unsupervised and
named entity recognition supervised learning

SemanticWord Yes AeroDAML No

Magpie Yes String matching, named entity No
recognition

Thresher Yes Screen scraping, wrappers Supervised learning

7.2 Techniques for Schema/Ontology Mapping

Schema and ontology matching is a critical problem in many application domains,
such as Semantic Web, schema/ontology integration, data warchouses, and e-com-
merce. Many different matching solutions have been proposed so far. In the fol-
lowing we present a discussion of schema and ontology matching techniques based
on classifications presented in [217] [218].

7.2.1 A Classification of Schema-matching Approaches

Schema-matching approaches can be classified as follows [217] [218]:

¢ Elementary matchers: These consist of instance-based and schema-based, ele-
ment- and structure-level, linguistic- and constraint-based matching techniques.

¢ Combination of matchers: These consist of various ways of combining the
schema matchers using committee-based or hybrid approaches.

Elementary schema-based matching techniques are classified based on two per-
spectives (Figure 7.1). These two perspectives are presented as two trees sharing
their leaves. The leaves represent classes of elementary matching techniques and
their concrete examples, identified as basic techniques in the figure. The two per-
spectives are discussed below.

Granularity/Input Interpretation: This is based on the granularity of the
match, i.e., whether it is at the element or structural level, and how these tech-
niques interpret this information. This perspective is illustrated from the top in a
descending manner in Figure 7.1 till it reaches the Basic Techniques Layer. Ele-
mentary matchers are further distinguished based on the following criteria:

Element-level vs. structure-level. Element-level matching techniques compute
mapping elements by analyzing entities in isolation, ignoring their relations with

174 7 Applications of Metadata and Ontologies

other entities. Structure-level techniques compute mapping elements by analyzing
how entities appear together in a structure.

Syntactic vs. external vs. semantic. The key characteristic of the syntactic
techniques is that they interpret the input as a function of its syntactic structure.
External techniques exploit auxiliary (external) resources of a domain and common
knowledge in order to interpret the input. These resources might be human input or
some thesaurus expressing the relationships between terms. The key characteristic
of the semantic techniques is that they use some formal semantics (e.g., model-the-

oretic semantics), possibly with some sort of reasoning to interpret the input and
justify their results.

l Schema-Based Matching Techniques l

Granularity and
Interpretation of Input
Element Level

Structure Level

Syntactic External Syntactic External Semantic
List of Technique/\
String-based Language- Linguistic | Constraint- | Alignment Upper level | Graph- Taxonomy- | Structures Model-based
-Name based resource based reuse ontologies based based Repository || - Propsitional SAT
snml\apty_ - Tokenization - Lexicon - Type - Entire - SUMO - Graph - Taxonomic | . Structure’s || - DL-based
- Description - Lemmatization | - Thesauri similarity schema/ - DOLCE Matching Structure tadata
similarity - I - Key ontology -BFO - Paths ik
Global analysis properties | - Fragments - Children
namespaces - Elimination - Leaves

Linguistic m Relational

Type of Input

Terminological

Structural

l Schema-Based Matching Techniques l

Fig. 7.1. A Classification of schema-based matching approaches

Type of Input. This is based on the type of input used by the elementary match-
ing techniques. This perspective is illustrated from the bottom in an ascending
manner in Figure 7.1 till it reaches the Basic Techniques Layer. Elementary match-
ers are further distinguished based on the following criteria:

e The first level is categorized depending on which kind of data the algorithms
work on: string (terminological), structure (structural) or model (semantics).
The two first ones are found in the ontology descriptions, the last one requires
some semantic interpretation of the ontology and usually uses some semanti-
cally-compliant reasoner to deduce the correspondences.

7.2 Techniques for Schema/Ontology Mapping 175

e The second level of this classification decomposes further these categories if
necessary: terminological methods can be string-based (considering the terms
as sequences of characters) or based on the interpretation of these terms as lin-
guistic objects (linguistic). The structural methods category is split into two
types of methods: those which consider the internal structure of entities (e.g.,
attributes and their types) and those which consider the relation of entities with
other entities (relational).

We discuss below the main classes of the Basic Techniques Layer and the asso-
ciated matching systems according to the above classification in more detail. Tech-
niques based on upper-level ontologies and DL-based techniques have not been
implemented in any matching system yet. However, their use in matching systems
seems quite likely in the near future.

Element-level techniques

String-based techniques consider strings as sequences of letters in an alphabet.
They assume that the more similar the strings, the more likely they denote the same
concepts. A comparison of different string-matching techniques, from distance-like
functions to token-based distance functions can be found in [219]. Some examples
of string-based techniques which are extensively used in matching systems are pre-
fix/suffix, edit distance, and n-gram.

Prefix/Suffix. Two strings are input and a check of whether the first string
starts/ends with the second one is performed. Prefix is efficient in matching cog-
nate strings and similar acronyms (e.g., int and integer). This test can be trans-
formed into a smoother distance by measuring the relative size of the prefix and the
strings. These techniques have been used in [225] [231] [232] [233].

Edit distance. This distance takes as input two strings and computes the edit
distance between the strings, that is, the number of insertions, deletions, and substi-
tutions of characters required to transform one string into another, normalized by
the length of the longest string.

N-gram. This test takes as input two strings and computes the number of com-
mon n-grams (i.e., sequences of n characters) between them. These techniques
have been used in [225] [231] [234].

Language-based techniques consider names as words in some natural language
(e.g., English) and apply Natural Language Processing (NLP) techniques that
exploit morphological properties of the input words.

Tokenization. Names of entities are parsed into sequences of tokens by a token-
izer which recognizes punctuation, cases, blank characters, digits, etc. (e.g., see
[230]).

Lemmatization. The strings, underlying tokens are morphologically analyzed
in order to find all their possible basic forms (e.g., see [230]).

Elimination. The tokens that are articles, prepositions, conjunctions, and so on,
are marked to be discarded (e.g., see [232]).

176 7 Applications of Metadata and Ontologies

Usually, the above-mentioned techniques are applied to names of entities before
running string-based or lexicon-based techniques in order to improve their results.
However, language-based techniques may be considered as a separate class of
matching techniques, since they can be naturally extended, for example, in a dis-
tance computation (by comparing the resulting strings or sets of strings).

Constraint-based techniques are algorithms which deal with the internal con-
straints being applied to the definitions of entities, such as types, cardinality of
attributes, and keys.

Datatype comparison involves comparing the various attributes of a class with
regard to the datatypes of their value. Contrary to objects that require interpreta-
tion, the datatypes can be considered objectively and it is possible to determine
how a datatype is close to another (ideally this can be based on the interpretation of
datatypes as sets of values and the set-theoretic comparison of these datatypes). For
instance, the datatype day can be considered closer to the datatype workingday
than the datatype integer. This technique is used in [228].

Multiplicity comparison attribute values can be collected by a particular con-
struction (set, list, multiset) on which cardinality constraints are applied. It is possi-
ble to compare the so constructed datatypes by comparing (i) the datatypes on
which they are constructed and (ii) the cardinality constraints that are applied to
them. For instance, a set of between two and three children is closer to a set of
three people than a set of ten to twelve flowers (if children are people). This tech-
nique is used in [228§].

Linguistic resources such as common knowledge or domain-specific thesauri
are used to match words (in this case names of schema/ontology entities are con-
sidered as words of a natural language) based on linguistic relations between them
(e.g., synonyms, hyponyms).

Common knowledge thesauri are used to obtain the meaning of terms used in
schemas/ontologies. For example, WordNet [237] is an electronic lexical database
for English (and other languages), where various senses (possible meanings) of
words or expressions are put together into sets of synonyms. Relations between
schema/ontology entities can be computed in terms of bindings between WordNet
senses; see, for instance [221] [230]. Other matchers exploit thesauri based on their
structural properties, e.g., WordNet hierarchies. In particular, hierarchy-based
matchers measure the distance, for example, by counting the number of arcs tra-
versed, between two concepts in a given hierarchy.

Domain-specific thesauri usually store some specific domain knowledge,
which is not available in common knowledge thesauri (e.g., proper names) as
entries with synonym, hypernym and other relations; see, for instance [232].

Alignment reuse techniques exploit alignments of previously matched schemas
and ontologies, for instance, when we need to match schema/ontology o and o,
given the alignments between o and o’, and between o’ and 0 from the external
resource, storing previous match operation results. The alignment reuse is moti-
vated by the intuition that many schemas/ontologies to be matched are similar to
already-matched schemas/ontologies, especially if they are describing the same

7.2 Techniques for Schema/Ontology Mapping 177

application domain. These techniques are particularly promising when dealing
with large schemas/ontologies consisting of hundreds and thousands of entities. In
these cases, first, large match problems are decomposed into smaller sub-problems,
thus generating a set of schema/ontology fragment-matching problems. Then, reus-
ing previous match results can be more effectively applied at the level of schema/
ontology fragments compared to entire schemas/ontologies. The approach was first
introduced in [217], and later was implemented as two matchers, i.e., reuse of (i)
entire schemas/ontologies alignments, or (ii) their fragments; see, for details [220]
[225] [235].

Upper-level formal ontologies can be also used as external sources of common
knowledge. Examples are the Suggested Upper Merged Ontology (SUMO) [49]
and Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE)
[92]. The key characteristic of these ontologies is that they are logic-based systems,
and therefore, matching techniques exploiting them can be based on the analysis of
interpretations. Even though current matching systems do not use these techniques,
it is likely that this will happen in the near future. In fact, the DOLCE ontology
aims at providing a formal specification (axiomatic theory) for the top-level part of
WordNet. Therefore, systems exploiting WordNet now in their matching process
might also consider using DOLCE as a potential extension.

Structure-level techniques

Graph-based techniques view database schemas, taxonomies and ontologies as
graph-like structures containing terms and their interrelationships. Usually, the
similarity comparison between a pair of nodes from the two schemas/ontologies is
based on the analysis of their positions within the graphs. The intuition behind this
is that if two nodes from two schemas/ontologies are similar, their neighbors might
also be somehow similar.

Graph matching. Matching graphs is a combinatorial problem and is usually
solved by approximate methods. In schema/ontology matching, the problem is
encoded as an optimization problem (finding the graph matching minimizing some
distance like the dissimilarity between matched objects) which is further resolved
with the help of a graph-matching algorithm. This optimization problem is solved
through a fix-point algorithm (improving gradually an approximate solution until
no improvement is made). Examples of such algorithms are [233] and [228].

Children. The (structural) similarity between inner nodes of the graphs is com-
puted based on similarity of their children nodes, that is, two non-leaf schema ele-
ments are structurally similar if their immediate children sets are highly similar. A
more complex version of this matcher is implemented in [225].

Leaves. The (structural) similarity between inner nodes of the graphs is com-
puted based on similarity of leaf nodes, that is, two non-leaf schema elements are
structurally similar if their leaf sets are highly similar, even if their immediate chil-
dren are not; see, for example [225] [232].

178 7 Applications of Metadata and Ontologies

Relations. The similarity computation between nodes can also be based on their
relations. For example, if class Photo and camera relates to class Nkn by relation
hasBrand in one ontology, and if class Digitalcamera relates to class Nikon by
relation hasMarque in the other ontology, then knowing that classes Photo and cam-
era and DigitalCamera are similar, and also relations hasBrand and hasMarque
are similar, we can infer that Nx§ and Nikon may be similar.

Taxonomy-based techniques consider only the specialization relation. The intu-
ition behind taxonomic techniques is that is-a links connect terms that are already
similar (each being a subset of the other); therefore their neighbors may be also
somehow similar.

Bounded path matching. Bounded path matchers take two paths with links
between classes defined by the hierarchical relations, compare terms and their
positions along these paths, and identify similar terms; see, for instance [234].

Super(sub)-concept rules. These matchers are based on rules capturing the
above stated intuition. For example, if super-concepts are the same, the actual con-
cepts are similar to each other. If sub-concepts are the same, the compared concepts
are also similar; see, for example [224] [226].

Repository of structures stores schemas/ontologies and their fragments together
with pairwise similarities (e.g., coefficients in the [0,1] range) between them.
When new structures are to be matched, they are first checked for similarity to the
structures which are already available in the repository. The goal is to identify
structures which are sufficiently similar to be worth matching in more detail, or to
reuse already existing alignments. Obviously, the determination of similarity
between structures should be computationally cheaper than matching them in full
detail. In order to match two structures, [235] proposes using some metadata
describing these structures, such as structure name, root name, number of nodes,
maximal path length, etc. Then, these indicators are analyzed and are aggregated
into a single coefficient, which estimates the similarity between them.

Model-based algorithms handle the input based on its semantic interpretation
(e.g., model-theoretic semantics). Examples are propositional satisfiability (SAT)
and description logics (DL) reasoning techniques. As from [221] [229] [230], the
approach is to decompose the graph(tree)-matching problem into a set of node-
matching problems. Then, each node-matching problem, namely each pair of
nodes with possible relations between them, is translated into a propositional for-
mula of form, Axioms => rel(context;, context,), and checked for validity. Axioms
encode background knowledge (e.g., HypertrophicCardioMyopathy subClassOf
Disease codifies the fact that Hypertrophic Cardiomyopathy is a kind of disease),
which is used as premises to reason about relations rel (e.g., =, subClassoOf,
unsatisfiability) holding between the nodes context; and context,. A proposi-

tional formula is valid iff its negation is unsatisfiable. The unsatisfiability is
checked by using state-of-the-art SAT solvers. Propositional language used for
codifying matching problems into propositional unsatisfiability problems is limited
in its expressiveness; namely it allows for handling only unary predicates. Thus, it
cannot handle, for example, binary predicates, such as properties or roles, which

7.2 Techniques for Schema/Ontology Mapping 179

are expressible in OWL and various variants of DLs. The relations (e.g., =, sub-
ClassOf, unsatisfiability) can be expressed using subsumption in DLs. In fact,
first merging two ontologies (after renaming) and then testing each pair of concepts
and roles for subsumption is enough for aligning terms with the same interpretation
(or with a subset of the interpretations of the others). Currently, there are no sys-
tems supporting DL-based techniques.

7.2.2 Schema-matching Techniques: Overview

We now look at some recent schema-based state-of-the-art matching systems in the
context of the classification presented in Figure 7.1. A summary of the various
characteristics of these techniques is presented in Table 7.3.

Similarity Flooding. The Similarity Flooding (SF) [233] approach utilizes a
hybrid-matching algorithm based on the ideas of similarity propagation. Schemas
are presented as directed labeled graphs; the algorithm manipulates them in an iter-
ative fix-point computation to produce an alignment between the nodes of the input
graphs. The technique starts with string-based comparison (common prefix and
suffix tests) of the vertex labels to obtain an initial alignment which is refined
within the fix-point computation. The basic concept behind the SF algorithm is the
similarity spreading from similar nodes to the adjacent neighbors through propaga-
tion coefficients. From iteration to iteration the spreading depth and the similarity
measure increase till the fix-point is reached. The result of this step is a refined
alignment which is further filtered to finalize the matching process. SF considers
the alignment as a solution to a clearly stated optimization problem.

Artemis. Analysis of Requirements: Tool Environment for Multiple Informa-
tion Systems (Artemis) [222] was designed as a module of the MOMIS mediator
system [238] for creating global views. It performs affinity-based analysis and
hierarchical clustering of source schema elements. Affinity-based analysis repre-
sents the matching step: in a hybrid manner it calculates the name, structural and
global affinity coefficients exploiting a common thesaurus. The common thesaurus
is built with the help of Ontology Development Tools, WordNet or manual input. It
represents a set of intensional and extensional relationships which depict intra- and
inter-schema knowledge about classes and attributes of the input schemas. Based
on global affinity coefficients, a hierarchical clustering technique categorizes
classes into groups at different levels of affinity. For each cluster it creates a set of
global attributes and the global class. The logical correspondence between the
attributes of a global class and source schema attributes is determined through a
mapping table.

Cupid. Cupid [232] implements a hybrid-matching algorithm comprising lin-
guistic and structural schema-matching techniques, and computes similarity coeffi-
cients with the assistance of a domain-specific thesaurus. Input schemas are
encoded as graphs. Nodes represent schema elements and are traversed in a com-
bined bottom-up and top-down manner. The matching algorithm consists of three
phases and operates only with tree structures to which non-tree cases are reduced.

180 7 Applications of Metadata and Ontologies

The first phase (linguistic matching) computes linguistic similarity coefficients
between schema element names (labels) based on morphological normalization,
categorization, string-based techniques (common prefix, suffix tests) and a thesauri
lookup. The second phase (structural matching) computes structural similarity
coefficients weighted by leaves which measure the similarity between contexts in
which elementary schema elements occur. The third phase (mapping elements gen-
eration) computes weighted similarity coefficients and generates final alignment
by choosing pairs of schema elements with weighted similarity coefficients which
are higher than a threshold.

COMA. COmbination ofMAtching algorithms (COMA) [225] is a composite
schema-matching tool. It provides an extensible library of matching algorithms, a
framework for combining obtained results, and a platform for the evaluation of the
effectiveness of the different matchers. Matching library is extensible, and contains
six elementary matchers, five hybrid matchers, and one reuse-oriented matcher.
Most of the matchers implement string-based techniques (affix, n-gram, edit dis-
tance, etc.) as a background idea; others share techniques with Cupid (thesauri
look-up, etc.); and the reuse-oriented matcher tries to reuse previously obtained
results for entire new schemas or for its fragments. Schemas are internally encoded
as DAGs, where the elements are the paths. This aims at capturing contexts in
which the elements occur. Distinct features of the COMA tool with respect to
Cupid are a more flexible architecture and a possibility of performing iterations in
the matching process.

NOM. Naive Ontology Mapping (NOM) [227] adopts the idea of composite
matching from COMA [225]. Some other innovations with respect to COMA are
in the set of elementary matchers based on rules exploiting explicitly codified
knowledge in ontologies, such as information about super- and sub-concepts and
super- and sub-properties. At present the system supports 17 rules. For example,
one rule states that if super-concepts are the same, the actual concepts are similar to
each other. NOM also exploits a set of instance-based techniques.

QOM. Quick Ontology Mapping (QOM) [226] is a successor of the NOM sys-
tem [227]. The approach is based on the idea that the loss of quality in matching
algorithms is marginal (to a standard baseline); however, improvement in effi-
ciency can be tremendous. This fact allows QOM to produce mapping elements
fast, even for large-size ontologies. QOM is grounded in matching rules of NOM.
However, for the purpose of efficiency the use of some rules has been restricted.
QOM avoids the complete pairwise comparison of trees in favor of an incomplete
top-down strategy. Experimental study has shown that QOM is on par with other
state-of-the-art algorithms for the quality of the proposed alignment, while outper-
forming them with respect to efficiency. Also, QOM shows better results than
approaches within the same complexity class.

OLA. OWL Lite Aligner (OLA) [228] is designed with the idea of balancing the
contribution of each component that composes an ontology (these include classes,
properties, names, constraints, taxonomy, and even instances). As such it takes
advantage of all the elementary matching techniques that have been considered in

7.2 Techniques for Schema/Ontology Mapping 181

the previous sections except the semantic ones. OLA is a family of distance-based
algorithms which converts definitions of distances based on all the input structures
into a set of equations. These distances are almost linearly aggregated (they are lin-
early aggregated modulo local matches of entities). The algorithm then looks for
the matching between the ontologies that minimizes the overall distance between
them. For that purpose it starts with base distance measures computed from labels
and concrete datatypes. Then, it iterates a fix-point algorithm until no improvement
is produced. From that solution, an alignment is generated which satisfies some
additional criterion (on the alignment obtained and the distance between aligned
entities). As a system, OLA considers the alignment as a solution to a clearly stated
optimization problem.

Anchor-PROMPT. Anchor-PROMPT [234] (an extension of PROMPT) is an
ontology-merging and alignment tool with a sophisticated prompt mechanism for
possible matching terms. The anchor-PROMPT is a hybrid alignment algorithm
which takes as input two ontologies (internally represented as graphs) and a set of
anchor-pairs of related terms, which are identified with the help of string-based
techniques (edit-distance test) or defined by a user, or another matcher computing
linguistic similarity. Then the algorithm refines them by analyzing the paths of the
input ontologies limited by the anchors in order to determine terms frequently
appearing in similar positions on similar paths. Finally, based on the frequencies
and user feedback, the algorithm determines matching candidates.

S-Match. S-Match [229] [230] [231] is a schema-based matching system. It
takes two graph-like structures (e.g., XML schemas or ontologies) and returns
semantic relations (e.g., equivalence, subsumption) between the nodes of the
graphs that correspond semantically to each other. The relations are determined by
analyzing the meaning (concepts, not labels) which is codified in the elements and
the structures of schemas/ontologies. In particular, labels at nodes, written in natu-
ral language, are translated into propositional formulas which explicitly codify the
label’s intended meaning. This allows for a translation of the matching problem
into a propositional unsatisfiability problem, which can then be efficiently resolved
using (sound and complete) state-of-the-art propositional satisfiability deciders. S-
Match was designed and developed as a platform for semantic matching, namely,
as a highly modular system with a core of semantic relationship computations,
where single components can be plugged, unplugged or suitably customized. It is a

182 7 Applications of Metadata and Ontologies

hybrid system with a composition at the element level. At present, S-Match librar-

ies contains thirteen element-level matchers and three structure-level matchers.

Table 7.3. Summary of schema-matching approaches

Element Level Matching Structure Level Matching
Syntactic External Syntactic Semantic
SF string-based, iterative fix-
datatypes, key point computa-
properties tion
Artemis domain compatibil- | common matching of
ity; thesaurus, neighbors via
language based broader term, clustering
related term
Cupid string-based, lan- auxiliary tree matching
guage-based, thesauri, weighted by
datatypes, key synonyms, leaves
properties hypernyms,
abbreviations
COMA string-based, lan- auxiliary DAG match-
guage-based, thesauri, ing with bias
datatypes synonyms, toward chil-
hypernyms, dren of leaf
abbreviations nodes; paths
alignment reuse
NOM/ string-based, application spe- | neighbor
QOM domains and ranges | cific vocabulary | matching, tax-
onomic struc-
ture
Anchor- string-based, bounded path
PROMPT | domain and ranges matching
OLA string-based, lan- WordNet iterative fix-
guage based, point computa-
datatypes tion, neighbor
matching, tax-
onomic struc-
ture
S-Match string-based, lan- WordNet, sense- proposi-
guage based based, gloss- tional SAT,
based DLs

7.3 Ontology Driven Information Integration 183
7.3 Ontology Driven Information Integration

In order to achieve semantic interoperability in a heterogeneous information sys-
tem, the meaning of the information that is interchanged has to be understood
across the systems. Semantic conflicts occur whenever two contexts do not use the
same interpretation of the information. The use of ontologies and metadata descrip-
tions for the explication of implicit and hidden knowledge is a possible approach to
overcome the problem of semantic heterogeneity. Uschold and Gruninger mention
interoperability as a key application of ontologies, and many ontology-based
approaches [239] to information integration in order to achieve interoperability
have been developed.

In this section we discuss existing solutions for ontology-based information
integration presented in [240]. Various approaches to intelligent information inte-
gration have been adopted in systems such as SIMS [241], TSIMMIS [242],
OBSERVER [147], Carnot [21], InfoSleuth [243], KRAFT [244], PICSEL [245],
DWQ [246], Ontobroker [247], SHOE [248], Crossvision Enterprise Information
Integrator by Software AG [413] and others. Most of these systems use some
notion of ontologies for integration across information resources. An evaluation of
these approaches is presented based on the following criteria:

Use of Ontologies: The role and the architecture of ontologies heavily influence
their representation formalism.

Ontology Representation: Depending on the use of the ontology, the represen-
tation capabilities differ from approach to approach.

Use of Mappings: In order to support the integration process the ontologies
have to be linked to the underlying schemas used to store the data. If several ontol-
ogies are used in an integration system, inter-ontology mappings between classes
in different ontoologies is also important.

Ontology Engineering: Before an integration of information sources can begin
the appropriate ontologies have to be acquired or be selected for reuse. How does
the integration approach support the acquisition or reuse of ontologies?

We begin with a discussion on various ontology-based architectures and the role
of plau. This is followed by a discussion of the use of different representations, i.e.,
different ontology languages for information integration. Mappings used to con-
nect ontologies to information sources, inter-ontology mappings, and associated
methodologies for ontology engineering for information integration are also dis-
cussed.

7.3.1 The Role of Ontologies in Information Integration

Ontologies can be used in an integration task to explicitly describe the semantics of
data an information stored in the underlying information sources. This can be
achieved by identification of corresponding concepts from ontologies. The uses
and roles played by ontologies in information integration is discussed next.

184 7 Applications of Metadata and Ontologies
Explicit Semantic Descriptions

Different approaches for using ontologies for information integration can be char-
acterized as: single ontology approaches, multiple ontology approaches and hybrid
ontology approaches, and are illustrated in Figure 7.2. Some approaches provide a
general framework where all three architectures can be implemented (e.g., DWQ
[246]). A discussion of the three main architectures is as follows.

Domain
Ontology

a) Single Ontology Approach

b) Multiple Ontology Approach

Local Local Local
Ontology Ontology Ontology

c) Hybrid Approach Shared Vocabulary

Local Local Local
Ontology Ontology Ontology

-

Fig. 7.2. Ontology-driven architectures for Information Integration

Single Ontology Approaches. Single ontology approaches use a domain ontol-
ogy providing a shared vocabulary for the specification of the semantics. All infor-
mation sources are related to one global ontology. We have adopted the single
ontology approach in the solution design presented for the clinical use case and
scenario. A prominent approach of this kind of ontology integration is SIMS [241].
The SIMS model of the application domain includes a hierarchical terminological
knowledge base with nodes representing objects, actions, and states. An indepen-
dent model of each information source is described for this system by relating the
objects of each source to the global domain model. The relationships clarify the
semantics of the source objects and help to find semantically corresponding
objects.

Single ontology approaches can be applied to integration problems where all
information sources to be integrated provide nearly the same view on a domain.
But if one information source has a different view on a domain, e.g., by providing
another level of granularity, finding the minimal ontology commitment [89]
becomes a difficult task. For example, if two information sources provide product
specifications but refer to absolute heterogeneous product catalogs which catego-

7.3 Ontology Driven Information Integration 185

rize the products, the development of a global ontology which combines the differ-
ent product catalogs becomes very difficult. Information sources with reference to
similar product catalogs are much easier to integrate. Also, single ontology
approaches are susceptible to changes in the information sources which can affect
the conceptualization of the domain represented in the ontology. Depending on the
nature of the changes in one information source it can imply changes in the global
ontology and in the mappings to the other information sources. These disadvan-
tages led to the development of multiple ontology approaches.

The domain ontology can also be a combination of several specialized ontolo-
gies. A reason for the combination of several ontologies can be the modularization
of a potentially large monolithic ontology. The combination is supported by ontol-
ogy representation formalisms, i.e., by importing other ontology modules (e.g.,
Ontolingua [89]).

Multiple Ontology Approaches. In multiple ontology approaches, each infor-
mation source is described by its own domain- or application-specific ontology.
For example, in OBSERVER [147], the semantics of an information source is
described by a domain-specific ontology. In principle, the domain ontology can be
a combination of several other ontologies but it cannot be assumed that the differ-
ent domain ontologies share the same vocabulary. The Crossvision Information
Integrator supports a multiple ontology approach. It relies on information models
which are organized using ontologies, which are managed in a metadata repository
(CentraSite). A semantic inference engine (Semantic Server) then allows the raw
data to be aggregated dynamically, perfectly tailored for the individual business
user's needs.

At a first glance, the advantage of multiple ontology approaches seems to be that
no common and minimal ontology commitment around an ontology is needed.
Each ontology could be developed without respect to other information sources or
domain ontologies — no common ontology with the agreement of all information
sources/ontologies are needed. This ontology architecture can simplify the change,
i.e., modifications in one information source/ontology or the adding and removing
of information sources/ontologies. But in reality the lack of a common vocabulary
makes it extremely difficult to compare different source ontologies. To overcome
this problem, an additional representation formalism defining the inter-ontology
mapping is required. The inter-ontology mapping identifies semantically corre-
sponding terms of different ontologies, terms which are semantically equal or sim-
ilar. But the mapping also has to consider different views on a domain, i.c.,
different granularities of the ontology concepts. Issues of semantic heterogeneity
may also occur in defining inter-ontology mappings.

Hybrid Ontology Approaches. To overcome the drawbacks of the single or
multiple ontology approaches, hybrid approaches were developed. Similar to mul-
tiple ontology approaches the semantics of each source is described by its appropri-
ate domain ontology. But in order to make the source ontologies comparable to
each other they are built upon one global shared vocabulary [249] [250]. The
shared vocabulary contains basic terms (the primitives) of a domain. In order to

186 7 Applications of Metadata and Ontologies

build complex terms of ontologies the primitives are combined by some operators.
Because each term of an ontology is based on the primitives, the terms can be eas-
ily mapped to each other, than in multiple ontology approaches. Sometimes the
shared vocabulary is also an ontology.

In the COIN system [249], the local description of a piece of information, the
so-called context, is simply an attribute value vector. The terms for the context
stem from the common shared vocabulary and the data itself. In the MECOTA sys-
tem [250] each piece of source information is annotated by a label which indicates
the semantics of the information. The label combines primitive terms from the
shared vocabulary. The combination operators are similar to the operators known
from the description logics, but are extended for the special requirements resulting
from integration of sources, e.g., by an operator for aggregation. In the BUSTER
system [251], the shared vocabulary is a (general) ontology, which covers all possi-
ble refinements. For example, the general ontology defines the attribute value
ranges of its concepts. A domain ontology is one (partial) refinement of the general
ontology, e.g., restricting the value range of some attributes. Since domain ontolo-
gies only use the general ontology, they remain comparable.

The advantage of a hybrid approach is that new sources can easily be added
without the need of modification in the mappings or in the shared vocabulary. It
also supports the acquisition and evolution of ontologies. The use of a shared
vocabulary makes the source ontologies comparable and avoids the disadvantages
of multiple ontology approaches. The drawback of hybrid approaches, however, is
that existing ontologies cannot be reused easily, but have to be redeveloped from
scratch, because all domain ontologies have to refer to the shared vocabulary.

Ontologies as a Query Model

Integrated information sources normally provide an integrated view. Some integra-
tion approaches use the ontology as the query schema, e.g., the SIMS system [241].
The user formulates a query in terms of the ontology. The system reformulates the
query into subqueries for each appropriate source, collects and combines the query
results, and returns the results. Using an ontology as a query model has the advan-
tage that the structure of the query model should be more intuitive for the user
because it corresponds more to the user’s appreciation of the domain. However, the
user has to know the structure and the contents of the ontology.

Ontologies as Verification Mechanism

During the integration process several mappings must be specified from a domain
ontology to the local source schema. The correctness of such mappings can be con-
siderably improved if these can be verified automatically. A subquery is correct
with respect to a query if the local subquery provides a part of the queried answers,
i.e., the subqueries must be contained in the global query (query containment)
[246][245]. Since an ontology contains a (complete) specification of the conceptu-

7.3 Ontology Driven Information Integration 187

alization, the mappings can be validated with respect to these ontologies. Query
containment means that the ontology concepts corresponding to the local subque-
ries are contained in the ontology concepts related to the query.

In the DWQ system [246], each source is assumed to be a collection of rela-
tional tables. Each table is described in terms of its ontology with the help of con-
junctive queries. A query and the decomposed subqueries can be unfolded to their
ontology concepts. The subqueries are correct, i.e., are contained in the query, if
their ontology concepts are subsumed by the ontology concepts. The PICSEL
project [245] can also verify the mapping, but in contrast to DWQ it can also gen-
erate mapping hypotheses automatically which are validated with respect to a glo-
bal ontology.

The quality of the verification strongly depends on the completeness of an
ontology. If the ontology is incomplete, the verification result can erroneously
imply a correct query subsumption. Since in general the completeness can not be
measured, it is impossible to make any statements about the quality of the verifica-
tion.

7.3.2 Ontology Representations Used in Information Integration

Various approaches to intelligent information integration based on ontologies have
predominantly used variants of description logics in order to represent ontologies.
The CLASSIC system [165] has been used in the OBSERVER system [148] and by
database researchers investigating semantic heterogeneities and interoperability
[252]. The SIMS system makes use of the LOOM description logic [253]. Other
terminological languages used are GRAIL [254], used in the TAMBIS system [46],
and OIL [256], which is used for terminology integration in the BUSTER system
[255].

Besides the purely terminological languages mentioned above there are also
approaches using extensions of description logics which include rule bases. Some
examples are the use of CARIN [167], a description logic extended with function-
free horn rules in the PICSEL system [245]. The DWQ project [246] uses AL-log
[257], which combines simple description logics with Datalog and the logic DLR,
a description logic with n-ary relations. The integration of description logics with
rule-based reasoning makes it necessary to restrict the expressive power of the ter-
minological part of the language in order to maintain decidability.

The second main group of languages used in ontology-based information inte-
gration systems are classical frame-based representation languages. Examples for
such systems are COIN [249], KRAFT [244] and InfoSleuth [243]. There are also
approaches that directly use F-Logic [82] with a self-defined syntax (Ontobroker
[247] and COIN [249]).

188 7 Applications of Metadata and Ontologies

7.3.3 The Role of Mapping in Information Integration

The task of integrating heterogeneous information sources provides a use case for
ontologies. Ontologies may be viewed as the glue that puts together information of
various kinds. Mappings refer to the connection of an ontology to other parts of the
system. Mapping are a critical requirement for information integration for (a) con-
necting ontologies with the information source they describe; and (b) connecting
different ontologies used in a system. In Section 7.2, we discussed a representative
set of techniques to identify and discover mappings between two schema or ontol-
ogy like artifacts. In this section, we discuss how these mappings, once generated
can be used in the context of Information Integration.

Mapping Ontologies to Information Resources

Different approaches used to establish a connection between ontologies and infor-
mation sources are as follows.

Structure Resemblance. A straightforward approach to connecting an ontology
with the database schema is to simply produce a one-to-one copy of the structure of
the database and encode it in a language that makes automated reasoning possible.
The integration is then performed on the copy of the model and can easily be
tracked back to the original data. This approach is implemented in the SIMS medi-
ator [258] and also by the TSIMMIS system [242].

Definition of Terms. In order to make the semantics of terms in a database
schema clear it is not sufficient to produce a copy of the schema. There are
approaches such as those used in the BUSTER system [255] that use the ontology
to further define terms from the database or the database schema. These definitions
can consist of a set of rules defining the term and are, in most cases, described by
concept definitions.

Structure Enrichment. This is the most common approach for relating ontolo-
gies to information sources, and combines the two previous approaches. A logical
model is built that resembles the structure of the information source and contains
additional definitions of concepts. A detailed discussion of structure is presented in
[252], which is used in OBSERVER [147], KRAFT [244], PICSEL [245] and
DWQ [246]. While OBSERVER uses description logics for both structure resem-
blance and additional definitions, PICSEL and DWQ define the structure of the
information by (typed) horn rules. Additional definitions of concepts mentioned in
these rules are given by a description logic model. KRAFT does not commit to a
specific definition scheme.

Meta-annotation. An interesting approach is the use of meta-annotations that
add semantic information to an information source. This approach is particularly
relevant in the context of the integrating information on the Web, where annotation
may be viewed as a natural way of adding semantics. Ontology-based integration
approaches developed for the Web context are the Ontobroker [247] and SHOE
[248] systems.

7.3 Ontology Driven Information Integration 189

Inter-ontology Mapping

Some information integration systems such as [148] [244] use more than one
ontology to describe the information. The problem of mapping different ontologies
is a well-known problem in knowledge engineering. We now discuss approaches
that are used in the context of information integration systems.

Defined Mappings. In the KRAFT System [244], translations between different
ontologies are done by special mediator agents which can be customized to trans-
late between different ontologies and even different languages. Different kinds of
mappings are distinguished in this approach starting from simple one-to-one map-
pings between classes and values to mappings between compound expressions.
This approach allows great flexibility, but it fails to ensure a preservation of
semantics: the user is free to define arbitrary mappings even if they do not make
sense or produce conflicts.

Lexical Relations. An attempt to provide at least intuitive semantics for map-
pings between concepts in different ontologies is made in the OBSERVER system
[148]. The approaches extend a common description logic model by quantified
inter-ontology relationships borrowed from linguistics. The relationships used are
synonym, hypernym, hyponym, overlap, covering and disjoint. While these rela-
tions are similar to constructs used in description logics they do not have a formal
semantics. Consequently, the query translation algorithm is probabilistic in nature.

Top-Level Grounding. In order to avoid a loss of semantics, one has to stay
inside the formal representation language when defining mappings between differ-
ent ontologies (e.g., DWQ [Calvanese et al., 2001]). A straightforward way to
achieve this is to relate all ontologies used to a single top-level ontology. This can
be done by inheriting concepts from a common top-level ontology. This approach
can be used to resolve conflicts and ambiguities. While this approach enables
establishment of connections between concepts from different ontologies in terms
of common superclasses, it does not establish a direct correspondence. This might
lead to problems when exact matches are required.

Semantic Correspondences. An approach that tries to overcome the ambiguity
that arises the previous approach, is to identify well-founded semantic correspon-
dences between concepts from different ontologies. In order to avoid arbitrary
mappings between concepts, these approaches have to rely on a common vocabu-
lary for defining concepts across different ontologies. One approach uses semantic
labels in order to compute correspondences between database fields. Another
approach is to represent concepts from different ontologies in a description logic
model of terms and use subsumption reasoning to establish relations between dif-
ferent terminologies. Approaches using formal concept analysis also fall into this
category, because they define concepts on the basis of a common vocabulary to
compute a common concept lattice.

190 7 Applications of Metadata and Ontologies

7.3.4 The Role of Ontology Engineering in Information Integration

Since ontologies play a crucial role semantic information integration, it is crucial to
support the ontology engineering process, especially that part which is likely to
have an impact on the information integration process.

Ontology Development Methodologies

Example information integration systems and their approaches for developing
ontologies are discussed as follows.

InfoSleuth. Ontologies in InfoSleuth are defined primarily manually using
Entity-Relationship (E-R) models. Approaches for semi-automatic construction of
ontologies from textual databases have been proposed in [259]. The methodology
is as follows: first, human experts provide a small number of seed words to repre-
sent high-level concepts. The system then processes the incoming documents,
extracting phrases that involve seed words, generates corresponding concept terms,
and classifies them into the ontology. During this process the system also collects
seed word candidates for the next round of processing. This iteration can be com-
pleted for a predefined number of rounds. A human expert verifies the classifica-
tion after each round. As more documents arrive, the ontology expands and the
expert is confronted with the new concepts. This is a significant feature of this sys-
tem, called the “discover and alert” feature.

KRAFT. Ontologies in KRAFT are built based on two methods: manual con-
struction of shared ontologies and extraction of domain or information source
ontologies. KRAFT offers two methods for building ontologies:

¢ The steps of the development of shared ontologies are (a) ontology scoping, (b)
domain analysis, (c) ontology formalization and (d) top-level ontology. The
minimal scope is a set of terms that is necessary to support the communication
within the KRAFT network. The domain analysis is based on the idea that
changes within ontologies are inevitable and the means to handle changes
should be provided. The authors pursue a domain-led strategy, where the shared
ontology fully characterizes the area of knowledge in which the problem is situ-
ated. Within the ontology formalization phase the fully characterized knowledge
is defined formally in classes, relations and functions. The top-level ontology is
needed to introduce predefined terms/primitives.

¢ A bottom-up approach to extract an ontology from existing shared ontologies
was introduced in [260]. The first step is a syntactic translation from the
KRAFT exportable view (in a native language) of the resource into the KRAFT
schema. The second step is the ontological upgrade, a semi-automatic transla-
tion plus knowledge-based enhancement, where the local ontology adds knowl-
edge and further relationships between the entities in the translated schema.

Ontobroker. There are three classes of Web information sources [261]: (a) Mul-
tiple-instance sources with the same structure but different contents, (b) single-

7.3 Ontology Driven Information Integration 191

instance sources with large amount of data in a structured format, and (c) loosely
structured pages with little or no structure. Ontobroker uses two ways of formaliz-
ing knowledge. First, sources from (a) and (b) allow it to implement wrappers that
automatically extract factual knowledge from these sources. Second, sources with
little or no knowledge have to be formalized manually.

SIMS. An independent model of each information source is described in the
SIMS system, along with a domain model that must be defined to describe objects
and actions. The SIMS model of the application domain includes a hierarchical ter-
minological knowledge base with nodes representing objects, actions, and states.
In addition, it includes indications of all relationships between the nodes. Scalabil-
ity and maintenance problems on addition of a new information source or change
in domain knowledge are addressed. As every information source is independent
and modeled separately, the addition of a new source is relatively straightforward.
A graphical LOOM knowledge base builder (LOOM-KB) is used to support this
process. The domain model is enlarged to accommodate new information sources
or new knowledge.

Tools for the Annotation Process

Some of the systems discussed in this chapter provide support with the annotation
process of information sources, leading to a semantic enrichment of the informa-
tion. Some tools used in the process are OntoStudio (previously known as Onto-
edit, discussed in Chapter 6.3), the SHOE Knowledge Annotator and the I-COM
tool used in the DWQ project. With the help of the SHOE Knowledge Annotator
tool, the user can describe the contents of a Web page [262]. The Knowledge
Annotator has an interface which displays instances, ontologies, and claims (docu-
ments collected). The tool also provides integrity checks. With a second tool called
Expose the annotated Web pages are parsed and the contents stored in a repository.
The I-COM tool [111] was developed within the DWQ project. This tool uses an
extended entity-relationship (EER) conceptual data model and enriches it with
aggregations and inter-schema constraints.

Ontology Evolution

Support for ontology evolution is a critical piece of functionality in the context of
an information integration system. An integration system and the ontologies must
support adding and/or removing sources and must be robust to changes in the
information source. The SHOE system is one system that takes these issues into
account.

Once the SHOE-annotated Web pages are uploaded on the Web, the Expose tool
has the task to update the repositories with the knowledge from these pages. This
includes a list of pages to be visited and an identification of all hypertext links, cat-
egory instances, and relation arguments within the page. The tool then stores the
new information in the PARKA knowledge base. The problems associated with

192 7 Applications of Metadata and Ontologies

managing dynamic ontologies through the Web have been presented in [248]. By
adding revision marks to the ontology, changes and revision become possible. The
authors illustrated that revisions which add categories and relations will have no
effect, and that revisions which modify rules may change the answers to queries.
When categories and relations are removed, answers to queries may be eliminated.

7.4 Summary

In this chapter we presented applications of metadata and ontologies, such as
semantic annotations, mappings and information integration. These applications
are enabled by semantic descriptions of data and resources on the web-based and
other repositories; and themselves enable new functionality on the web and on
internal organizations’ intranets. We presented tools and techniques for annotation
of Web resources with semantic metadata annotations. Two types of metadata data
annotations are considered: (a) structured and semi-structured metadata annota-
tions of unstructured Web content; and (b) structured metadata annotations of
structured Web content. It was noted that the latter corresponds to mapping the
schemas underlying the structured content to domain-specific ontologies, and a
discussion and taxonomy of schema-matching techniques was also presented.
Finally, we presented various approaches adopted for ontology driven information
integration, including a discussion on various types of architectures, the role played
by ontologies in the creation of mappings, specifying queries and as a verification
mechanisms.

