
6 Ontology Authoring and Management

Ontologies are a critical component of the Semantic Web architecture. In this chap-
ter, we present a discussion on various aspects of ontology authoring and manage-
ment. We discuss a collection of ontology building tools and present an evaluation
across various dimensions. A brief discussion on techniques for boostrapping of
ontologies is presented along with a discussion on techniques of integration, merg-
ing and versioning of ontologies.

6.1 Ontology Building Tools

We begin with a survey of ontology building and editing tools that are in use today
[99] [100]. The tools may be useful for building ontology schemas (terminological
components) alone or together with instance data. Ontology browsers without an
editing focus and other types of ontology building tools are not included. Concise
descriptions of each software tool are presented and compared according to differ-
ent criteria which are presented below.

Software architecture and tool evolution, which includes information about
the tool architecture (standalone, client/server, n-tier application), how the tool can
be extended with other functionalities/modules, how ontologies are stored (data-
bases, text files, etc.) and if there is any backup management system.

Interoperability with other ontology development tools and languages,
which includes information about the interoperability capabilities of the tool. We
will review the tool's interoperability with other ontology tools (for merge, annota-
tion, storage, inferencing, etc.), as well as translations to and from ontology lan-
guages.

Knowledge representation. We will present the KR paradigm underlying the
knowledge model of the tool. It is very relevant in order for us to know what and
how knowledge can be modeled in the tool. We will also analyze if the tool pro-
vides any language for building axioms.

Inference services attached to the tool. We will analyze whether the tool has a
built-in inference engine or it can use other external inference engines. We will
also analyze if the tool performs constraint/consistency checking, if it can automat-
ically classify concepts in a concept taxonomy and if it is able to manage excep-
tions in taxonomies.

Usability. We will analyze the existence of graphical editors for the creation of
concept taxonomies and relations, the ability to prune these graphs and the possi-

138 6 Ontology Authoring and Management
bility to perform zooms of parts of it. We will also analyze if the tool allows some
kind of collaborative working and if it provides libraries of ontologies.

6.1.1 Ontology Editors: Brief Descriptions

A brief description of some of the prominent ontology editors in use today is pre-
sented below.

Apollo: Apollo [101] is a user-friendly ontology development application, moti-
vated by requirements of industrial users who wished to use knowledge-modeling
techniques, but require a syntax and an environment that is easy to use. The appli-
cation is implemented in Java and supports all the basic primitives of knowledge
modeling: ontologies, classes, instances, functions and relations. Full consistency
checking is done while editing, for example, detecting the use of undefined classes.
Apollo has its own internal language for storing the ontologies, but can also export
the ontology into different representation languages, as required by the user.

LinKFactory: Link Factory [102] LinKFactory® is a formal ontology manage-
ment system developed by Language & Computing NV, designed to build and
manage very large and complex language-independent formal ontologies. The
LinKFactory system consists of 2 major java-based components: the LinKFac-
tory® Server, and the LinKFactory Workbench (client side component). The Link-
Factory Workbench allows the user to browse and model several ontologies and
align them. From the knowledge representation and underlying reasoning point of
view, LinkFactory has the following characteristics and possibilities: fixed built-in
ISA (formal subsumption), DISJOINT, and SAME-AS relationships, definable
relationship hierarchy (multiple hierarchies), specification of necessary and suffi-
cient conditions for individual concept definitions, several constraint-checking
methods, autoclassification of new concepts on the basis of natural language terms
as well as formal definitions, mechanisms to map and/or merge various ontologies;
and automatic text analysis to assign links to the ontology.

OntoStudio: OntoStudio [103], the successor of OntoEdit, is a engineering
environment for ontology creation and maintenance. OntoStudio is built on top of a
powerful internal ontology model. This paradigm supports representation-lan-
guage-neutral modeling as much as possible for concepts, relations and axioms.
Several graphical views on structures in the ontology support representation of dif-
ferent phases of the ontology engineering cycle. The tool allows the user to edit a
hierarchy of concepts or classes. A concept may have several names, which essen-
tially is a way to define synonyms for that concept. The tool for reorganization of
concepts within the hierarchy is based on a “copy-and-paste” like functionality.
The tool is based on a flexible plug-in framework, allowing easy extension and
customization. Some available plug-ins are: (a) inferencing for consistency check-
ing, classification and execution of rules; (b) collaborative engineering of ontolo-
gies; and (c) an ontology server for administration, collaborative sharing of and
persistent storage for ontologies.

 6.1 Ontology Building Tools 139
Ontolingua Server: The Ontolingua Server is a set of tools and services that
support the building of shared ontologies between distributed groups, and that have
been developed by the Knowledge Systems Laboratory (KSL) at Stanford Univer-
sity. The ontology server architecture provides access to a library of ontologies,
translators to languages (Prolog, CORBA IDL, CLIPS, Loom, etc.) and an editor to
create and browse ontologies. Remote editors can browse and edit ontologies, and
remote or local applications can access any of the ontologies in the ontology
library using the OKBC (Open Knowledge-Based Connectivity) protocol.

Ontosaurus: Ontosaurus [105], developed by the Information Sciences Institute
(ISI) at the University of South California, consists of two modules: an ontology
server, which uses Loom as its knowledge representation language, and an ontol-
ogy browser server that dynamically creates HTML pages (including image and
textual documentation) that displays the ontology hierarchy. The ontology can be
edited by HTML forms, and translators exist for translation from LOOM to Ontol-
ingua, KIF, KRSS and C++.

Protege: Protégé [106] is an open source ontology editor that has seen wide
usage from modeling cancer protocol guidelines to nuclear power stations. Protégé
provides a graphical and interactive ontology design and knowledge base develop-
ment environment. Tree controls allow quick and simple navigation through a class
hierarchy. Protégé uses forms as the interface for filling in slot values. The knowl-
edge model of Protégé is OKBC compatible, and includes support for classes and
the class hierarchy with multiple inheritance; template and own slots; specification
of pre defined and arbitrary facets for slots, which include allowed values, cardi-
nality restrictions, default values, and inverse slots; and metaclasses and metaclass
hierarchy. The Protege architecture supports a database backend and caching
mechanism. Its component-based architecture enables system builders to add new
functionality by creating appropriate plug-ins, which fall into one of the three cate-
gories: (1) backends for import and export of knowledge bases in various formats;
(2) slot widgets for display and edit of slot values in domain and task specific
ways; and (3) tab plug-ins which are typically applications tightly linked with Pro-
tege knowledge bases. Current back-end plug-ins include export and import from-
RDF Schema, XML Schema and OWL files. Currently, tabs that enable advanced
visualization, ontology merging, version management and inferences are available.

WebODE: WebODE [107] [108] is engineering workbench that provides ser-
vices for the ontology development process. Ontologies are represented using a
very expressive knowledge model, based on the reference set of intermediate rep-
resentations of the METHONTOLOGY methodology [109], which includes ontol-
ogy components such as concepts (with instance and class attributes), partitions, ad
hoc binary relations, predefined relations (taxonomic and part-of), instances, axi-
oms, rules, constants and bibliographic references. It also allows the import of
terms from other ontologies. Ontologies in WebODE are stored in a relational data-
base underlying a well-defined service-oriented API for ontology access that
makes easy integration with other systems. Ontologies built with WebODE can be
easily integrated with other systems by using its automatic export/import services

140 6 Ontology Authoring and Management
from and into XML, and translation services into and from various ontology speci-
fication languages (currently, RDF(S), OWL, CARIN and FLogic) and systems
such as Java and Jess. Authoring is aided both by form-based and graphical user
interfaces, a user-defined views manager, a consistency checker, an inference
engine, an axiom builder and the documentation service. Two interesting and novel
features of WebODE are: instance set for instantiating the same conceptual model
for different scenarios, and conceptual views from the same conceptual model. The
graphical user interface allows browsing all the relationships defined on the ontol-
ogy as well as pruning these views with respect to selected types of relationships.
WebODE also supports collaborative authoring of ontologies. Constraint-checking
capabilities are also provided for type constraints, numerical values constraints,
cardinality constraints and taxonomic consistency verification.

WebOnto: WebOnto [110] is a tool developed by the Knowledge Media Insti-
tute (KMi) of the Open University (England). It supports the collaborative brows-
ing, creation and editing of ontologies, which are represented in the knowledge-
modeling language OCML. Its main features are: management of ontologies using
a graphical interface; the automatic generation of instance editing forms from class
definitions; support for Problem Solving Methods (PSMs) and task modeling;
inspection of elements incorporating inheritance of properties and consistency
checking; a full tell and ask interface, and support for collaborative work; by
means of broadcast/receive; and making annotations.

ICOM: ICOM [111] supports the conceptual design phase of an information
system. An Extended Entity-Relationship (EER) conceptual data model, enriched
with multidimensional aggregations and inter-schema constraints, is used. ICOM is
fully integrated with a very powerful description logic reasoning server which acts
as a background inference engine. The ICOM modeling language can express: (a)
the standard E-R data model, enriched with IsA links (i.e., inclusion dependen-
cies), disjoint and covering constraints, full-cardinality constraints, and definitions
attached to entities and relations by means of view expressions over other entities
and relationships in the schema; (b) aggregated entities together with their multiply
hierarchically organized dimensions; and (c) a rich class of (inter-schema) integrity
constraints, as inclusion and equivalence dependencies between view expressions
involving entities and relationships possibly belonging to different schemas. ICOM
reasons with (multiple) diagrams by encoding them in a single description logic
knowledge base, and shows the result of any deductions such as inferred links, new
stricter constraints, and inconsistent entities or relationships. The DLR description
logics is used to encode the schemas and to express the views and the constraints.
The Java-based tool allows for the creation, the editing, the managing, and the stor-
ing of several interconnected conceptual schemas, with a user-friendly graphical
interface (including an auto-layout facility).

IODE: OntologyWorks IODE [112] is a data and information modeling tool for
creating high-definition ontologies, specifically designed for supporting ontology
development for database and application development. IODE incorporates a
library of vetted and comprehensive domain-independent content that knits

 6.1 Ontology Building Tools 141
together and guides the development of ontologies, ensuring interoperability across
domains and across time. It uses a powerful logic (SCL) for representation of
ontologies and verifies the consistency of these ontologies, both internally and with
respect to domain-independent content. IODE supports existing W3C standards
such as RDF and OWL, and supports management of ontology versions in a trans-
actional environment.

Visual Ontology Modeler: The Visual Ontology Modeler [113] by Sandpiper
Software is a visual application for building component-based ontologies. It is a
UML-based modeling tool that enables ontology development and management for
use in collaborative applications and interoperability solutions. Some key features
are: (a) A multi-user, network-based environment for ontology development in a
rich, graphical notation; (b) Automated import/export facilities in XML schema,
RDF, OWL, DAML, and MOF formats; (c) A feature-rich set of ontology author-
ing wizards that create and maintain the required UML model elements for the
user, saving time and substantially reducing construction errors and inconsisten-
cies. The Visual Ontology Modeler implements Sandpiper's UML Profile for
Knowledge Representation, which extends UML to enable modeling of frame-
based knowledge representation concepts such as class, relation, function and indi-
vidual frames, as well as the slots and facets that constrain those frames. It also
includes a library of ontologies, including the IEEE Standard Upper Ontology
(SUO), concepts relevant to XML schema, RDF, and DAML generation, and other
basic concepts to develop rich ontologies. The framework supports analysis, align-
ment, development, merging, and evolution, with consistency checking and valida-
tion for OWL-DL, first order, and production rules-related applications.

Semtalk: Semtalk [114] is a Microsoft Visio based graphical modeling tool,
which is used for business process modeling, product configuration and visual
glossaries. Since it is based on an open extensible meta-model, new modeling tools
can be created with reasonable effort. Most of these solutions make use of
SemTalk’s ability to represent ontologies or at least taxonomies in a visual way
using Microsoft Visio. The native modeling language supported by the SemTalk
consistency engine is a mixture of RDF(S) and OWL. It supports multiple inherit-
ance, instances, and object and datatype properties. A UML-based graphical repre-
sentation is adopted for the graphical representation of ontologies. Semtalk
provides export and import interfaces to RDF(S), OWL, DAML and F-Logic.

COBra: COBra [115] is an ontology browser and editor for GO and OBO
ontologies. It has been specifically designed to be usable by biologists to create
links between ontologies, and supports: (a) drag-and-drop editing of GO ontolo-
gies; (b) mapping between two ontologies; and (c) translation to OWL and other
Semantic Web languages. COBra supports manual creation of links between terms
in two ontologies, e.g.,links or mappings between tissues in an anatomy and the
cell types of the tissues can be recorded and stored. COBra supports import/export
of ontologies from and into GO and GO XML/RDF/RDF(S), DAG Edit and OWL.

Generic Knowledge Base (GKB) Editor: The GKB Editor [116] is a tool for
graphically browsing and editing knowledge bases across multiple frame represen-

142 6 Ontology Authoring and Management
tation systems (FRSs) in a uniform manner. It offers an intuitive user interface in
which objects and data items are represented as nodes in a graph, with the relation-
ships between them forming the edges. A sophisticated incremental browsing facil-
ity allows the user to selectively display only that region of a KB that is currently
of interest, even as that region changes. The GKB Editor consists of three main
modules: a graphical interactive display based on Grasper-CL, and a library of
generic knowledge-base functions, and corresponding libraries of frame-represen-
tation-specific methods, based on Open Knowledge Base Connectivity (OKBC).

SWOOP: Most existing ontology development toolkits provide an integrated
environment to build and edit ontologies, check for errors and inconsistencies
(using a reasoner), browse multiple ontologies, and share and reuse existing data
by establishing mappings among different ontological entities. However, their UI
design (look and feel) and usage style are inspired by traditional KR-based para-
digms, whose constrained and methodical framework have steep learning curves,
making them cumbersome to use for the average Web user. SWOOP [117] is a
hypermedia-inspired ontology editor that employs a Web browser metaphor for its
design and usage. Such a tool would be more effective (in terms of acceptance and
use) for the average web user by presenting a simpler, consistent and familiar
framework for dealing with entities on the Semantic Web. Some features of
SWOOP are: (a) Web-browser-like look and feel including URI-based access and
hyperlink-based navigation; (b) inline editing with HTML renderer; (c) browsing,
comparison and mapping of multiple ontologies; (d) ontology partitioning and
explanation; (e) collaborative annotation support; and (e) sound and complete con-
junct Abox queries.

WSMT: The Web Services Modeling Toolkit [377] is an open source graphical
development environment for all elements of the Web Service Modeling Ontology
(WSMO). It is built as a set of plug-ins for the Eclipse development environment
and allows ontology engineers to graphically build their ontologies. Particular
focus is placed on visualization of large ontologies with zoom-in and zoom-out
capabilities. Verification and consistency checking are provided through a
plugged-in WSML reasoner. Another plug-in allows the creation of mappings
between ontologies that can be used in a WSMO execution environment.

WSMO Studio: WSMO Studio [378] also provides an open source Eclipse-
based development environment for building WSMO ontologies. Similarly to
WSMT, reasoning support can be plugged in for different WSML language vari-
ants. It also directly supports WSMO annotations of existing WSDL Web Service
descriptions via the W3C SAWSDL. Another difference with WSMT is that
WSMO Studio does not focus on graphical visualization of ontologies.

TopBraid Composer: TopBraid Composer is an enterprise-class modeling
environment for developing Semantic Web ontologies and building semantic appli-
cations. Fully compliant with W3C standards, Composer offers comprehensive
support for developing, managing and testing configurations of knowledge models
and their instance knowledge bases. Composer incorporates a flexible and extensi-

 6.1 Ontology Building Tools 143
ble framework with a published API for developing semantic client/server or
browser-based solutions, that can integrate disparate applications and data sources.
Implemented as an Eclipse plug-in, Composer is used to develop ontology models,
configure data source integration as well as to customize dynamic forms and
reports. Other than W3C standards, there is support for importing UML models,
XML Schemas and relational databases. It supports integration with leading RDF
data stores such as Jena, Pellet and Racer.

Neon Toolkit: The NeOn toolkit [406], based on the OntoStudion Editor core, is
an extensible Ontology Engineering Environment. It contains plugins for ontology
management and visualization. The core features of the Neon toolkit include sup-
port for basic schema editing operations, visualization and browsing of ontologies,
the ability to import and export ontologies in various representation languages such
as F-Logic, subsets of RDF(S) and OWL. It is designed around an open and modu-
lar architecture, which includes infrastructure services such as registry and reposi-
tory, and supports distributed components for ontology management, reasoning
and collaboration in networked ontologies. Building on the Eclipse platform, the
Toolkit provides an open framework for plug-in developers. A number of commer-
cial plugins are available that extent the toolkit by various functionalities including
support for rules, development and interpretation of mappings, ability to access
databases and import database schemas and specify queries in a Query-Editor.

6.1.2 Ontology Editors: A Comparative Evaluation

We present a comparative evaluation based on the dimensions identified earlier.

Table 6.1. Ontology editing tools: Architecture

Tool
SW
Architecture Extensibility

Ontology
Storage

Backup
Management

Apollo Standalone Plug-ins Files No

LinKFactory 3-tier Plug-ins DBMS No

OntoStudio Client Server Plug-ins DBMS No

Ontolingua
Server

Client Server No Files No

Ontosaurus Client Server No Files No

Protege Standalone Plug-ins DBMS No

WebODE 3-tier Plug-ins DBMS Yes

WebOnto Client Server No Files Yes

ICOM Client Server No XML Files

IODE Standalone No Deductive
DBMS

Yes

144 6 Ontology Authoring and Management
Table 6.1 presents a comparison of various ontology editors and tools based on
its software architecture (standalone, client/server, n-tier application), extensibility,
storage of the ontologies (databases, ASCII files, etc.) and backup management.
From this perspective, most of the tools are moving toward Java platforms, and
most of them are moving to extensible architectures as well. Storage in databases is
and backup management are weak points of ontology tools.

Interoperability (Table 6.2) with other ontology development tools, merging
tools, information systems and databases, as well as translations to and from some
ontology languages, are important for integration of ontologies into applications.
Most of the new tools export and import to adhoc XML and other markup lan-
guages.

Visual Ontol-
ogy Modeler

Plug-in to
Rational Rose

Yes As UML
class dia-
gram

Yes

Semtalk Plug-in for
Microsoft
Visio

No Visio files No

COBra Standalone No Flat files
(multiple
formats)

No

GKB Standalone
and client
server

No Yes No

SWOOP Web-based cli-
ent server

Yes via plug-
ins

As HTML
models

No

WSMT Standalone
Eclipse plug-in

Plug-ins Flat file No

WSMO Studio Standalone
Eclipse plug-in

Plug-ins Flat file No

Topbraid Com-
poser

Standalone
Eclipse plug-in

Plug-ins DBMS Yes

Neon Toolkit Standalone
Eclipse plug-in

Plug-ins DBMS Yes

Table 6.1. Ontology editing tools: Architecture

Tool
SW
Architecture Extensibility

Ontology
Storage

Backup
Management

 6.1 Ontology Building Tools 145
Table 6.2. Ontology editing tools: Knowledge representation and methodological support

Tool KR Knowledge Model
Axiom
Language

Methodological
Support

Apollo Frames (OKBC) Unrestricted No

LinKFactory Frames + First Order Logic Restricted First
Order Logic

Yes

OntoStudio Frames + First Order Logic FLogic OntoKnowledge

Ontolingua
Server

Frames + First Order Logic KIF No

Ontosaurus Description Logics LOOM No

Protege Frames + First Order Logic
+ Metaclasses

PAL No

WebODE Frames + First Order Logic WAB Methontology

WebOnto Frames _ First Order Logic OCML No

ICOM Description Logics with
extension

DLR No

IODE Common Logic, extended
with temporal reasoning
and quantification over
predicates

FOL Yes

Visual Ontol-
ogy Modeler

Description Logics DL Own - collabo-
rative ontology
development

Semtalk OWL OWL Full is pos-
sible

No

COBra RDF and OWL Not used No

GKB Multiple Frame Represen-
tation Systems

LOOM and oth-
ers

No

SWOOP OWL OWL-DL No

WSMT WSML WSML No

WSMO Studio WSML WSML No

Topbraid
Composer

RDF, OWL and SWRL OWL-DL No

Neon Toolkit F-Logic, RDF and OWL F-Logic,
OWL-DL

Yes, Neon
Ontology Dev
Process and
Lifecycle

146 6 Ontology Authoring and Management
From the knowledge representation point of view (Table 6.2), there are two fam-
ilies of tools: description-logic-based tools, and other tools, which allow represen-
tation of knowledge following a hybrid approach based on frames and first order
logic. Additionally, Protégé provides flexible modeling components like meta-
classes. Some ontology building methodologies that are supported are: the Onto-
Knowledge methodology, GALEN methodology and Methontology. None of the
tools provide project management facilities, and provide only a little support for
ontology maintenance and evaluation.

Table 6.3. Ontology editing tools: Inference services

Tool

Inbuilt
Inference
Engine

External
Inference
Engine

Constraint,
Consistency
Checking

Automatic
Classification

Exception
Handling

Apollo No No Yes No No

LinKFac-
tory

Yes Yes Yes Yes No

OntoStudio Yes
(Ontobro-
ker)

No Yes No No

Ontolingua
Server

No ATP No No No

Ontosaurus Yes Yes Yes Yes No

Protege Yes
(PAL)

Jess,
FLogic,
Pellet

Yes No No

WebODE Yes (Pro-
log)

Jess Yes No No

WebOnto Yes No Yes No No

ICOM Not in
GUI

Connect
to ICOM
server

Yes No No

IODE Yes No Yes No Yes

Visual
Ontology
Modeler

No DL rea-
soner,
rules
engines

Yes No No

Semtalk No No No No No

COBra No No No No No

GKB No Yes Yes No No

 6.1 Ontology Building Tools 147
Before selecting a tool, it is also important to know which inference services are
attached to it (Table 6.3). This includes built-in and other inference engines, con-
straint and consistency-checking mechanisms, automatic classifications and excep-
tion handling, among others. LinkFactory has its own inference engine,
OntoStudio uses OntoBroker, Ontolingua uses ATP, Ontosaurus uses the Loom
classifier, Protégé uses PAL and can also be linked to DL reasoners, WebODE uses
Ciao Prolog and WebOnto uses the OCML inference engine. Besides, WebODE
and Ontosaurus provide evaluation facilities. LinkFactory performs automatic clas-
sification. Finally, none of the tools provide exception-handling mechanisms.

SWOOP No Yes (Pel-
let or
other
engine)

Only with
reasoner
plug-in

No No

WSMT No Yes, via
plug-in

Yes No No

WSMO
Studio

No Yes, via
plug-in

Yes No No

Topbraid
Composer

No Yes,
OWLIM,
Pellet,
Jena, Ora-
cle Rules

Yes Yes Yes

Neon Tool-
kit

Yes,
Ontobro-
ker

Yes,
KAON-2
Engine

Yes No Yes

Table 6.4. Ontology editing tools: Usability

Tool
Graphical
Taxonomy

Graphical
prunes Zoom Collaboration

Ontology
Libraries

Apollo Yes Yes No Yes Yes

LinKFactory Yes Yes Yes Yes Yes

OntoStudio No* No No* Yes Yes

Ontolingua
Server

Yes No No Yes Yes

Ontosaurus Yes Yes Yes Yes No

Protege Yes Yes Yes No Yes

Table 6.3. Ontology editing tools: Inference services

Tool

Inbuilt
Inference
Engine

External
Inference
Engine

Constraint,
Consistency
Checking

Automatic
Classification

Exception
Handling

148 6 Ontology Authoring and Management
Related to the usability of tools (Table 6.4), WebOnto has the most advanced
features related to the cooperative and collaborative construction of ontologies. In
general, more features are required in existing tools to ensure the successful collab-
orative building of ontologies. Finally, other usability aspects related to help sys-
tem, editing and visualization should be improved in most of the tools.

6.2 Ontology Bootstrapping Approaches

There have been various approaches for semi-automatic generation of ontologies
or taxonomies from underlying unstructured text data. These approaches can be
broadly characterized as:

• Supervised-machine-learning based approaches, which require a large number
of training examples, traditionally generated manually.

• Natural Language Processing (NLP) based approaches applied for generating
ontological concepts and relationships. These are based on rules that analyze

WebODE Yes Yes No Yes No

WebOnto Yes Yes No Yes Yes

ICOM Yes No No No Import and
export as
XML

IODE No No No Yes Yes

Visual Ontol-
ogy Modeler

Yes No No Yes Yes

Semtalk Yes No No Yes Yes

COBra Yes No No No Limited to
GO and
OBO

GKB Yes No Yes Yes No

SWOOP Yes No No Yes No

WSMT Yes No Yes No No

WSMO
Studio

No No No No Yes

Topbraid
Composer

Yes Yes Yes Yes No

Neon Toolkit Yes Yes Yes Yes No

Table 6.4. Ontology editing tools: Usability

Tool
Graphical
Taxonomy

Graphical
prunes Zoom Collaboration

Ontology
Libraries

 6.2 Ontology Bootstrapping Approaches 149
patterns based on syntactic categories, which requires significant human
involvement, making it expensive and infeasible for large-scale applications.

• Statistical clustering methods have been used to partition data-sets, categorize
search results and visualize data. However, they have not focussed on generat-
ing labels for clusters and creation of new taxonomies.

Machine learning approaches are for the most part supervised, for which a set of
manually generated positive and negative training examples are used. An approach
using the concept-forming system COBWEB [118] has been used to perform incre-
mental conceptual clustering on structured instances of concepts extracted from the
Web [119]. Experimental and theoretical results on learning the CLASSIC descrip-
tion logic were presented in [120], and were used to construct concept hierarchies.
An approach to bootstrapping a classification taxonomy based on a set of struc-
tured rules was proposed in [121]. A supervised approach presented in [122] sup-
ports semi-automatic and incremental bootstrapping of a domain-specific
information extraction system.

Empirical and corpus-based NLP methods to build domain-specific lexicons
have been proposed in [123] and used in [124]. Approaches that learn meanings of
unknown words based on other word definitions in the surrounding context have
been presented in [125] [126]. Case-based methods that match unknown word con-
texts against previously seen word contexts are described in [127] [128].
Approaches presented in [129] [130] apply shallow parsing, tagging and chunking,
along with statistical techniques to extract terminologies or enhance existing ontol-
ogies. Full parse tree construction followed by decomposition into elementary
dependency trees has been used to create medical ontologies from French text cor-
pora in [131]. In [132], a thesaurus is built by performing clustering according to a
similarity measure after having retrieved triples from a parsed corpus.

Linguistic structures such as verbs, appositions and nominal modifications have
been used to identify hypernymic propositions in biomedical text [133]. Lexico-
syntactic patterns have been investigated for inferring hyponymy from textual data
in [134]. Salient words and phrases extracted from the documents are organized
hierarchically using subsumption type co-occurrences in [130]. A description of
supervised and unsupervised approaches to extract semantic relationships between
terms in a text document is presented in [135]. A generalized association rule algo-
rithm proposed in [136] detects non-taxonomic relationships between concepts and
also determines the right level of abstraction at which to establish the relationship.

Effectively mining relevant information from a large volume of unstructured
documents has received considerable attention in recent years [137] [138] [139]. A
survey on the use of clustering in information retrieval is presented in [140]. Docu-
ment clustering has been used for browsing large document collections in [141],
using a “scatter/gather” methodology. These approaches create vector space repre-
sentations of documents and use Euclidean or cosine-distance-based similarity
metrics like the Euclidean ones to extract clusters from groups of documents. Clus-
tering of Web documents to organize search results has been proposed in [142]
[143].

150 6 Ontology Authoring and Management
There is a realization amongst researchers that one needs to leverage the
strengths of a wide variety of techniques across machine learning, natural language
processing and statistical approaches to address the difficult problem of ontology
generation. Frameworks for hybrid approaches have been proposed:

• The ontology learning framework developed by Maedche and Staab [144].
• The Thematic Mapping System [144].
• The Taxaminer approach, which presents a framework to combine the tech-

niques enumerated above [145].
• A complementary approach that uses the structure and content of HTML-based

pages on the Web to generate ontologies [146].

6.3 Ontology Merge and Integration Tools

Ontology merging and integration, including functionalities related to versioning
and keeping track of various changes, are very important in the context of the
ontology design process. Furthermore, a large number of ontologies are being used
to annotate content on the Web. There is a need to be able to reconcile annotations
based on multiple ontologies and also support query processing across multiple
ontologies. An approach to address the above challenge is to establish mappings
between ontologies and to merge them at run time, as proposed in [147] [148]. A
large number of ontology mapping and merging tools have appeared to address
these issues. We now present a brief survey and a comparative evaluation of vari-
ous ontology merge and integration tools [99]. The criteria used for the compara-
tive evaluation of these tools are as follows:

Knowledge used during the merge process: The merging process can be much
more efficient if additional knowledge can be made to bear on the process. Some
examples of these knowledge resources are: electronic dictionaries, thesauri, lexi-
cons, concept definitions and slot values, graph structures, instances of concepts
and inputs from the user.

Interoperability: It is important because key activities such as transformation
of formats and evaluation can be performed by other non-merging tools. Some
important considerations are interoperability with other ontology tools or informa-
tion systems and whether ontologies expressed in different languages can be
merged.

Management of different versions of ontologies: A change in the source
ontology results in a change in the merged ontology. Some important consider-
ations are whether the tool takes advantage of the former versions of the ontologies
and whether it warns that the merged ontology is not an accurate reflection of the
source ontologies.

Components manipulated by the tools: An important consideration is about
which components that can be merged by the ontology development tools or about
which suggestions can be made by the merging tools. The main components that

 6.3 Ontology Merge and Integration Tools 151
need to be considered are concepts (including slots, and taxonomic and other rela-
tionships), axioms, rules and instances.

Editing and Visualization: This is very important for the usability of the tool.
Some important considerations are support for a step-by-step view of the process, a
simultaneous view of the source ontologies being merged, graphical prunes
(views) of the ontologies being merged, zooming and the ability to hide/show
information.

6.3.1 Ontology Merge and Integration Tools: A Brief Description

In this section, we present a brief description of some of the ontology merge and
integration tools in use today.

Chimaera: Chimaera [149] is a merging and diagnostic Web-based browser
ontology environment. It contains a simple editing environment in the tool and also
allows the user to use the full Ontolingua editor/browser environment for more
extensive editing. It facilitates merging by allowing users to upload existing ontol-
ogies into a new workspace (or into an existing ontology). Chimaera will suggest
potential merging candidates based on a number of properties. Chimaera allows the
user to choose the level of vigor with which it suggests merging candidates. Higher
settings, for example, will look for things like possible acronym expansion. Chi-
maera also supports a taxonomy resolution mode. It looks for a number of syntactic
term relationships, and when attached to a classifier, it can look for semantic sub-
sumption relationships as well. Chimaera includes analysis capability that allows
users to run a diagnostic suite of tests selectively or in its entirety. The tests include
incompleteness tests, syntactic checks, taxonomic analysis, and semantic checks.
Terms that are used but that are not defined, terms that have contradictory ranges,
and cycles in ontology definitions are also detected.

PROMPT: PROMPT [150] is a tool for semi-automatic guided ontology merg-
ing, and is available as a plug-in for Protege. PROMPT leads the user through the
ontology-merging process, identifying possible points of integration, and making
suggestions regarding what operations should be done next, what conflicts need to
be resolved, and how those conflicts can be resolved. PROMPT’s ontology-merg-
ing process is interactive. A user makes many of the decisions, and PROMPT
either performs additional actions automatically based on the user’s choices or cre-
ates a new set of suggestions and identifies additional conflicts among the input
ontologies. The tool takes into account different features in the source ontologies to
make suggestions and to look for conflicts. These features include names of classes
and slots, class hierarchy, slot attachment to classes, facets and facet values. Some
conflicts identified by PROMPT are: name conflicts, dangling references, redun-
dancy in the class hierarchy (more than one path from a class to a parent other than
the root) and slot value restrictions that violate class inheritance.

ODEMerge: ODEMerge [151] is a tool to merge ontologies that is integrated in
WebODE [107]. This tool is a partial software support for the methodology for
merging ontologies [152], which proposes the following steps: (1) transformation

152 6 Ontology Authoring and Management
of formats of the ontologies to be merged; (2) evaluation of the ontologies; (3)
merging of the ontologies; (4) evaluation of the result; and (5) transformation of
the format of the resulting ontology to be adapted to the application where it will
be used. WebODE helps in steps (1), (2), (4) and (5) of the merging methodology,
and ODEMerge carries out the merge of taxonomies of concepts in step (3).
Besides, ODEMerge helps in the merging of attributes and relations, and it incor-
porates many of the rules identified in the methodology. ODEMerge uses the
source ontologies to be merged, and the synonymy, hyponymy and hypernymy
relationships between terms across ontologies in the merging process. Customized
dictionaries can be added to provide the relationships, and new merging rules can
also be defined. ODEMerge supports the merging of ontologies in all the ontology
languages supported by the WebODE tool.

6.3.2 Evaluation of Ontology Merge and Integration Tools

We now present a comparative evaluation of the various tools based on the dimen-
sions identified earlier.

Table 6.5 compares the information used by these tools (electronic dictionaries,
lexicons, etc.) during the merge process. The more information a tool uses during
this process, the more work it is able to perform without the user's participation.
Most of the tools start the merging process by searching for similar concepts of
ontologies.

Table 6.5. Information used during the merge process

Feature PROMPT ODEMerge Chimaera

Thesauri, Dictionaries No No No

Lexicons No No No

Concept Definitions
and Slot Values

Yes Yes Yes

Graph Structure Yes Yes No

Instances of concepts Yes No No

User Input Yes Yes Yes

Table 6.6. Interoperability

Feature PROMPT ODEMerge Chimaera

Tools and systems
Interoperability

Yes Yes Yes

Multiple ontology
language support

Yes Yes Yes

 6.3 Ontology Merge and Integration Tools 153
Interoperability with other ontology tools is also an important aspect (Table 6.6)
and is usually determined by the ontology development platform in which the
merge tool is integrated. Another important aspect is whether the tool can merge
ontologies expressed in different languages. All these tools are able to merge ontol-
ogies expressed in different languages (XML, RDFS, OIL, etc.).

Given that ontologies usually evolve, the management of different ontology ver-
sions is also important (Table 6.7). None of these tools takes advantage of former
versions of the ontologies to be merged, and none of them warns users about
changes in the source ontologies.

Table 6.7. Management of different versions

Feature PROMPT ODEMerge Chimaera

Leveraging previous
ontology versions

No No No

Notifications of changes
in source ontologies

No No No

Table 6.8. Components of ontologies manipulated by the tools

Feature PROMPT ODEMerge Chimaera

Concepts Merge, Suggest Merge Merge, Suggest

Own Slots Merge, Suggest Merge Merge, Suggest

Template Slots Merge, Suggest Merge Merge, Suggest

Taxonomies Merge, Suggest Merge Merge, Suggest

Concepts Merge, Suggest Merge Merge, Suggest

Relations Merge Merge Not currently
supported

Partitions and/or
Decompositions

No Merge Both supported

Relations or
Functions?

Merge, Suggest
(relations only)

Merge Not currently
supported

Arity Merge, Suggest
(binary relations)

Merge No

Sets of axioms No No No

Sets of rules No No No

Instances Merge, Suggest No Not currently
supported

of Concepts Merge, Suggest No No

154 6 Ontology Authoring and Management
We present in Table 6.8 which kinds of components can be merged by the tool
and about which kinds of component merging suggestions can be proposed by the
tools. All the tools allow merging concepts, taxonomies, relations and instances.
However, no tool allows merging axioms and rules. From among all of them,
PROMPT is the tool that provides most suggestions to the users.

Edition and visualization features (Table 6.9) are strongly influenced by the
ontology development platform in which these tools are integrated.

6.4 Ontology Engines and Reasoners

In this section, we present a brief description of ontology reasoners and engines.
Whereas most of the ontology-reasoning systems are based on description logics,
some reasoners are implemented based on rules and first-order logic theorem prov-
ers.

CEL: The system CEL [153] is a description logic system that offers both sound
and complete polynomial-time algorithms and expressive means that allow its use
in real-world applications. It is based on recent theoretical advances that have
shown that the description logics (DL) EL, which allows for conjunction and exis-
tential restrictions, and some of its extensions have a polynomial-time subsumption
problem even in the presence of concept definitions and so-called general concept

of Relations Merge, Suggest No No

Claims No No No

Table 6.9. Editing and visualization support

Feature PROMPT ODEMerge Chimaera

Step by Step view of
Process

Graphical, tabu-
lar, hierarchical

Non-graphical HTML text

Simultaneous view
of source ontologies

Yes No Yes

Graphical view of
source ontologies

Through host
tool

Through host
tool

No

Zoom Through host
tool

Through host
tool

No

Hide/Show Through host
tool

Through host
tool

Yes: for subclass/
superclass relation-
ships and child slots

Table 6.8. Components of ontologies manipulated by the tools

Feature PROMPT ODEMerge Chimaera

 6.4 Ontology Engines and Reasoners 155
inclusions (GCI). The DL EL+ handled by CEL extends EL by so-called role inclu-
sions (RI). On the practical side, it has turned out that the expressive power of EL+
is sufficient to express several large life science ontologies. In particular, the Sys-
tematized Nomenclature of Medicine (SNOMED) [7] can be expressed using EL
with RIs and acyclic concept definitions. The Gene Ontology (GO) [10] can also
be expressed in EL with acyclic concept definitions and one transitive role (which
is a special case of an RI). Finally, large parts of the Galen Medical Knowledge
Base (GALEN) [154] can be expressed in EL with GCIs and RIs.

CEL is a tractable fragment of OWL 1.1 [407], which is an extension of OWL
and is currently a W3C member submission. A W3C group is currently working on
creating the next version of the OWL, to be christened OWL 2.0, based on this sub-
mission. This tractability is achieved by eliminating the allValuesFrom construct
and retaining the someValuesFrom construct. CEL also supports the role inclusion
axioms e.g., hasStructuredTestResult o indicatesDisease => suffersFrom.
The constructs from OWL 1.1 which cause intractability are cardinality restric-
tions, union, negation, inverse properties, functional and inverse functional proper-
ties.

FaCT++: FaCT++ [155] is the new generation of the well-known FaCT [156]
OWL-DL reasoner. FaCT++ uses the established FaCT algorithms, with a different
internal architecture, and is implemented using C++ for efficiency and portability.
Some interesting features of FaCT are: (a) its expressive logic (in particular the
SHIQ reasoner): SHIQ is sufficiently expressive to be used as a reasoner for the
DLR logic, and hence to reason with database schemas; (b) its support for reason-
ing with arbitrary knowledge bases (i.e., those containing general concept inclu-
sion axioms); (c) its optimized tableaux implementation (which has now become
the standard for DL systems); and (d) its CORBA- based client server architecture.

fuzzyDL: fuzzyDL [157] is a Description Logics Reasoner supporting Fuzzy
Logic reasoning. The fuzzyDL system includes a reasoner for fuzzy SHIF with
concrete fuzzy concepts (ALC augmented with transitive roles, a role hierarchy,
inverse roles, functional roles, and explicit definition of fuzzy sets). Some interest-
ing features of fuzzyDL are: (a) extension of the classical Description Logics SHIF
to the fuzzy case; (b) explicit definitions of fuzzy concepts with left-shoulder,
right-shoulder, triangular and trapezoidal membership functions; (c) concept modi-
fiers in terms of linear hedges; (d) support for General Inclusion Axioms; (e) sup-
port for “Zadeh semantics” and Lukasiewicz logic; and (f) backward compatibility,
i.e. it support for classical description logic reasoning.

KAON2: KAON2 [158] is an infrastructure for managing OWL-DL, SWRL,
and F-Logic ontologies and has the following interesting features: (a) an API for
programmatic management of OWL-DL, SWRL, and F-Logic ontologies; (b) a
stand alone server providing access to ontologies in a distributed manner using
RMI; (c) an inference engine for answering conjunctive queries (expressed using
SPARQL syntax); (d) a DIG interface, allowing access from tools such as Protege;
and (e) a module for extracting ontology instances from relational databases.

156 6 Ontology Authoring and Management
Pellet: Pellet [159] is an open source OWL-DL reasoner written in Java, origi-
nally developed at the University of Maryland's Mindswap Lab, and funded by a
diverse group of organizations. Pellet is based on the tableaux algorithms devel-
oped for expressive Description Logics (DLs). It supports the full expressiveness
of OWL-DL including reasoning about nominals (enumerated classes). In addition
to OWL-DL, as of version 1.4, Pellet supports all the features proposed in OWL
1.1, with the exception of n-ary datatypes. Thus the expressiveness of supported
DL is SROIQ(D), which extends the well-known DL SHOIN(D) (the DL that cor-
responds to OWL-DL) with qualified cardinality restrictions, complex subproperty
axioms (between a property and a property chain), local reflexivity restrictions,
reflexive, irreflexive, symmetric, and anti-symmetric properties, disjoint proper-
ties, and user-defined datatypes. Pellet provides many different reasoning services
such as consistency checking, concept satisfiability, classification and realization.
It also incorporates various optimization techniques described in the DL literature
and contains several novel optimizations for nominals, conjunctive query answer-
ing and incremental reasoning.

RacerPro: RacerPro [160] provides a first implementation of the Semantic Web
Rules Language (SWRL) in its latest version. It also supports services for OWL
ontologies and RDF data descriptions such as: (a) consistency checking for OWL
ontologies and a set of data descriptions; (b) inference of implicit subclasses and
synonyms for resources (classes or instances); (c) OWL-QL query processing for
OWL documents (ontologies and their instances); and (d) incremental query
answering for information retrieval tasks. RacerPro implements a highly optimized
tableau calculus for a very expressive description logics. It offers reasoning ser-
vices for multiple T-boxes and for multiple A-boxes as well. The system imple-
ments the description logic ALCQHIR, also known as SHIQ. This is the basic logic
ALC augmented with qualifying number restrictions, role hierarchies, inverse
roles, and transitive roles. In addition to these basic features, RacerPro also pro-
vides facilities for algebraic reasoning including concrete domains for dealing with
min/max restrictions over the integers; linear polynomial (in)equations over the
reals or cardinals with order relations; and equalities and inequalities of strings.
RacerPro combines description logic reasoning with, for instance, reasoning about
spatial (or temporal) relations within the A-box query language nRQL. Bindings
for query variables that are determined by A-box reasoning can be further tested
with respect to an associated constraint network of spatial (or temporal) relation-
ships.

Jena: The Jena2 inference subsystem [408], is designed to allow a range of
inference engines or reasoners to be plugged into Jena. Such engines are used to
derive additional RDF assertions which are entailed from some base RDF together
with any optional ontology information and the axioms and rules associated with
the reasoner. The primary use of this mechanism is to support the use of languages
such as RDFS and OWL which allow additional facts to be inferred from instance
data and class descriptions. However, the machinery is designed to be quite general
and, in particular, it includes a generic rules engine that can be used for many RDF

 6.5 Clinical Scenario Revisited 157
processing or transformation tasks. Other than the generic rules engine, there are
other pre-defined reasoners included in the Jena2 system, such as a transitive rea-
soner that stores and traverses class and property lattices, a RDFS rule reasoner
that implements a configurable set of RDFS entailments, and a set of reasoners for
various subsets of OWL.

JESS: Jess [409], is a rules engine and scripting environment written entirely in
Sun's Java language at Sandia National Laboratories in Livermore, CA. Using Jess,
it is possible to build Java software that has the capacity to perform reasoning
using knowledge supplied in the form of declarative rules. Jess includes a full-fea-
tured development environment based on the award-winning Eclipse platform. Jess
uses an enhanced version of the Rete algorithm [410] to process rules. Jess has
many unique features including backward chaining and working memory queries,
and Jess can directly manipulate and reason about Java objects.

6.5 Clinical Scenario Revisited

Consider the clinical use case scenario presented in Chapter 2. In particular con-
sider the important issue of knowledge change propagation in this section. Con-
sider the definition in natural language of fibric acid contraindication:

A patient is contraindicated for fibric acid if he or she has an
allergy to fibric acid or has an abnormal liver panel.

Suppose there is a new (hypothetical) biomarker for fibric acid contraindication
for which a new molecular diagnostic test is introduced in the market. This leads to
a redefinition of a fibric acid contraindication as follows.

The patient is contraindicated for fibric acid if he has an allergy to
fibric acid or has elevated Liver Panel or has a genetic mutation.

Let us also assume that there is a change in a clinically normal range of values
for the lab test AST which is a part of the liver panel lab test. This leads to a knowl-
edge change and propagation across various knowledge objects that are sub-com-
ponents and associated with the fibric acid contraindication concept. A
diagrammatic representation of the OWL representation of the new fibric contrain-
dication with the changes marked in red ovals is illustrated below. The definition of
“fibric acid contraindication” changes, triggered by changes at various levels of
granularity.

A potential sequence of change propagation steps are enumerated below:
1. The clinically normal range of values for the AST lab result changes.
2. This leads to a change in the abnormal value ranges for the AST lab result
3. This leads to a change in the definition of an abnormal liver panel.

158 6 Ontology Authoring and Management
4. This leads to a change in what it means to be a patient with an abnormal liver
panel.

5. The definition of fibric acid contraindication changes due to the following
changes:
(A) The change in the definition of a patient with an abnormal liver panel as
enumerated in steps 1-4 above.
(B) Introduction of a new condition: a patient having a mutation: “Missense:
XYZ3@&%” (hypothetical). This is a new condition which could lead to a
change in what it means to be a patient with a contraindication to fibric acid.

Fig. 6.1. Knowledge change and propagation

It may be noted that in our discussion in Section 6.3.1, none of the ontology edi-
tors and tools today support versioning and change management functionality. In
our solution approach, we propose to load these ontologies as data into a rules
engine and write specialized rules to identify the impacts of a change operation.

6.6 Summary

In this chapter, we presented a discussion on different aspects of ontology author-
ing, bootstrapping and management. In particular, we present a survey of ontology
building tools, ontology-reasoning engines, and techniques for ontology bootstrap-

StructuredTestResult

ALPResult ALTResult ASTResult TotalBillirubinResult CreatinineResult

AbnormalALPResult AbnormalCreatinineResult

AbnormalLiverPanel
AbnormalALP AND AbnormalALT
AND AbnormalAST AND AbnormalTotalBillirubin
AND AbnormalCreatinine

AbnormalALTResult

AbnormalASTResult

AbnormalTotalBillirubinResult

Patient

PatientWithAbnormalLiverPanel
hasLiverPanel allValuesFrom AbnormalLiverPanel

PatientWithFibricAcidAllergy
isAllergicTo hasValue FibricAcid

PatientWithFibricAcidContraindication
PatientWithAbnormalLiverPanel
OR PatientWithFibricAcidAllergy

PatientWithBiomarker
hasMutation hasValue “Missense:XYZ3@&%”

StructuredTestResult

ALPResult ALTResult ASTResult TotalBillirubinResult CreatinineResult

AbnormalALPResult AbnormalCreatinineResult

AbnormalLiverPanel
AbnormalALP AND AbnormalALT
AND AbnormalAST AND AbnormalTotalBillirubin
AND AbnormalCreatinine

AbnormalALTResult

AbnormalASTResult

AbnormalTotalBillirubinResult

StructuredTestResult

ALPResult ALTResult ASTResult TotalBillirubinResult CreatinineResult

AbnormalALPResult AbnormalCreatinineResult

AbnormalLiverPanel
AbnormalALP AND AbnormalALT
AND AbnormalAST AND AbnormalTotalBillirubin
AND AbnormalCreatinine

AbnormalALTResult

AbnormalASTResult

AbnormalTotalBillirubinResult

Patient

PatientWithAbnormalLiverPanel
hasLiverPanel allValuesFrom AbnormalLiverPanel
PatientWithAbnormalLiverPanel
hasLiverPanel allValuesFrom AbnormalLiverPanel

PatientWithFibricAcidAllergy
isAllergicTo hasValue FibricAcid
PatientWithFibricAcidAllergy
isAllergicTo hasValue FibricAcid

PatientWithFibricAcidContraindication
PatientWithAbnormalLiverPanel
OR PatientWithFibricAcidAllergy

PatientWithFibricAcidContraindication
PatientWithAbnormalLiverPanel
OR PatientWithFibricAcidAllergy

PatientWithBiomarker
hasMutation hasValue “Missense:XYZ3@&%”
PatientWithBiomarker
hasMutation hasValue “Missense:XYZ3@&%”

 6.6 Summary 159
ping, matching, merging and integration. A more detailed account of ontology
authoring and management may be obtained from the Handbook on Ontologies by
Staab and Ruder [411]. The clinical use case is revisited and an approach for mod-
eling knowledge change and propagation as ontology versioning and change man-
agement is presented.

	6 Ontology Authoring and Management
	6.1 Ontology Building Tools
	6.1.1 Ontology Editors: Brief Descriptions
	6.1.2 Ontology Editors: A Comparative Evaluation

	6.2 Ontology Bootstrapping Approaches
	6.3 Ontology Merge and Integration Tools
	6.3.1 Ontology Merge and Integration Tools: A Brief Description
	6.3.2 Evaluation of Ontology Merge and Integration Tools

	6.4 Ontology Engines and Reasoners
	6.5 Clinical Scenario Revisited
	6.6 Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

