
8

On the Interplay Between Software Testing
and Evolution and its Effect
on Program Comprehension

Leon Moonen1, Arie van Deursen1,2, Andy Zaidman1, and Magiel Bruntink2,1

1 Delft University of Technology, The Netherlands
2 CWI, The Netherlands

Summary. We know software evolution to be inevitable if the system is to survive in the
long-term. Equally well-understood is the necessity of having a good test suite available in
order to (1) ensure the quality of the current state of the software system and (2) to ease future
change. In that light, this chapter explores the interplay that exists between software testing
and software evolution, because as tests ease software evolution by offering a safety net against
unwanted change, they can equally be experienced as a burden because they are subject to the
very same forces of software evolution themselves.

In particular, in this chapter, we describe how typical refactorings of production code
can invalidate tests, how test code can (structurally) be improved by applying specialized test
refactorings. Building upon these concepts, we introduce “test-driven refactoring”, or refac-
torings of production code that are induced by the (re)structuring of the tests. We also report
on typical source code design metrics that can serve as indicators for testability. To conclude,
we present a research agenda that contains pointers to—as yet—unexplored research topics in
the domain of testing.

8.1 Introduction

Lehman has taught us that a software system must evolve, or it becomes progres-
sively less satisfactory [317, 321]. We also know that due to ever changing surround-
ings, new business needs, new regulations and also due to the people working with
the system, the software is in a semi-permanent state of flux [319]. Combined with
the increasing life-span of most software systems [56], this leads to a situation where
an ever higher fraction of the total budget of a software system is spent during the
maintenance or evolution phase of a software system, considerably outweighing the
initial development costs of a system [329].

For many people, evolving a software system has become a synonym for adapt-
ing the source code as this concept stands central when thinking of software. Soft-
ware, however, is multidimensional, and so is the development process behind it.
This multidimensionality lies in the fact that to develop high-quality source code,
other artifacts are needed. Examples of these are: specifications, which are needed

T. Mens, S. Demeyer (eds.), Software Evolution.
DOI 10.1007/978-3-540-76440-3, © Springer 2008



174 L. Moonen et al.

to know what should be developed, constraints, which are defined so that the soft-
ware has to adhere to them, documentation, which needs to be written to ease future
evolution, and tests, which need to be set up and exercised to ensure quality [436].
The central question then is how evolution should happen: in a unidimensional way,
where only the source code is changed, or in a multidimensional way, where (all) the
other artifacts are also evolved?

Within this chapter we will explore two dimensions of the multidimensional soft-
ware evolution space, as we will focus on how the production software evolves with
regard to the accompanying tests of the software system. To characterize why tests
are so important during evolution, we first discuss some general focal points of tests:

Quality assurance Tests are typically engineered and run to ensure the quality of
a software system [131]. Other facets that are frequently tested are the robustness
and stress-resistance of a software system.

Documentation In agile software development methods such as extreme program-
ming (XP), tests are explicitly used as a form of documentation, and as such, the
tests serve as a means of communication between developers [516, 149].

Confidence At a more psychological level, test code can help the software (re-) en-
gineer become more confident, because of the safety net that is provided by
the tests. Furthermore, the confidence within the development team can be im-
proved when they see that the system they are trying to deliver, is working cor-
rectly [119, 149].

An aspect of testing that cannot be neglected is the impact on the software develop-
ment process: testing is known to be very time-intensive, thus driving up the total
costs of the software system. Estimates by Brooks put the total time devoted to test-
ing at 50% of the total allocated time [85, 447], while Kung et al. suggest that 40 to
80% of the development costs of building software is spent in the testing phase [301].

Several types of testing activities can be distinguished. The focus of this chapter
is on developer testing (often also called unit testing), i.e., testing as conducted by
the development team in order to assess that the system that is being built is work-
ing properly. In some cases, such tests will be set up with knowledge of the inner
workings of the system (white box testing)—in others the test case will be based
on component requirements, (design) models or public interfaces (black box test-
ing) [66, 346].

One of the alternatives to developer testing is acceptance testing, i.e., testing
as conducted by end user representatives in order to determine whether the system
meets the stated criteria. Although acceptance testing is not the primary focus of this
chapter, it has many techniques in common with developer testing (as observed by
Binder [66]), which is why we believe that the results that we discuss will to a large
extent be valid for acceptance testing as well.

Having discussed the necessity of a software system’s evolution and also the
importance of having a test suite available for a system, we can turn our attention to
the interactions that occur between tests and the system under evolution. To this end,
we define a number of research questions that we will investigate in the remainder of
this chapter:



8 On the Interplay Between Software Testing and Evolution 175

1. How does a system’s test suite influence the program comprehension process of
a software engineer trying to understand a given system? What are the possible
side effects with regard to evolving the software system?

2. Are there typical code characteristics that indicate which test code resists evolu-
tion? And if so, how can we help alleviate these, so called, test smells?

3. Given that production code evolves through e.g. refactorings—behavior preserv-
ing changes—, what is the influence of these refactorings on the associated test
code? Does that test code need to be refactored as well or can it remain in place
unadapted? And what will happen to its role as safety net against errors?

4. Can we use metrics to understand the relation between test code and production
code? In particular, can object-oriented metrics on the production code be used
to predict key properties of the test code?

In order to find answers to the above questions, we have studied how the test suites
of a number of applications evolve through time. We have specifically looked at
software developed using agile software development methods since these meth-
ods explicitly include a number of evolutionary steps in their development process.
Furthermore, such projects typically make use of testing frameworks, such as JUnit
[49, 262]. To sketch this context, we give a short introduction to agile methods in
Section 8.2.

The four research questions introduced above, are discussed in Sections 8.3
through 8.6: we investigate the effects of test suites on comprehension in Section 8.3.
We present a catalogue of test smells and test refactorings in Section 8.4. In Sec-
tion 8.5 we make a classification of classical refactorings [183] into categories, so
that one can easily see which refactorings (possibly) break a test. Finally, we discuss
a study that shows how certain object-oriented metrics correlate to testing effort in
Section 8.6.

In our concluding remarks (Section 8.7) we present a retrospective and touch
upon a number of unexplored research tracks.

8.2 Agile Software Development Methods

Agile software development methods (or Agile methods in short) refer to a collec-
tion of “lightweight” software development methodologies that adhere to the ideas
in the Agile Manifesto [233]. Agile methods aim at minimizing risk and achieving
customer satisfaction through a short (development) feedback loop.

Agile methods recognize that continuous change of software systems is natural,
inevitable and actually a desirable aspect of successful software systems. Agile soft-
ware development is typically done in short iterations, lasting only a few weeks. Each
iteration includes all software engineering activities, such as planning, design, cod-
ing, and testing, that are needed to add a (small) piece of functionality to the system.
Agile methods aim at having a working product (albeit not functionally complete)
deliverable to the customer after each iteration.

Agile software development builds upon various existing and common sense
practices and principles, such as code reviewing, testing, designing and refactoring.
However, these practices are done continuously rather than at dedicated phases of



176 L. Moonen et al.

the software process only. On the other hand, the need for extensive documentation
on an agile project is reduced by several of its practices: test-driven development
and a focus on acceptance testing ensures that there is always a test suite that shows
that your system works and fulfills the requirements implemented to that point. For
the developers, these tests act as significant documentation because it shows how the
code actually works [9], and how it should be invoked.

A particular agile method that is studied in more detail in this chapter is Extreme
Programming (XP). XP is one of the initial and most prominent of the agile meth-
ods and applies many of the agile practices to “extreme levels”. It is a lightweight
methodology for small teams of approximately 10 people developing software in the
face of vague or rapidly changing requirements [50]. XP is performed in short it-
erations, which are grouped into larger releases. The planning process is depicted
as a game in which business and development determine the scope of releases and
iterations. The customer describes features via user stories, informal use cases that
fit on an index card. The developers estimate each of the user stories. User stories
are the starting point for the planning, design, implementation, and acceptance test
activities conducted in XP.

Two key practices of XP play an important role within the scope of our study,
namely testing and refactoring. In XP (and most other agile methods) tests are written
in parallel with (or even before) the production code by the programmers. The tests
are collected and they must all pass at any time. Customers write acceptance tests
for the stories in an iteration, if needed supported by the development team. Tests
are typically fully automatic, making it cheap to run them frequently. To write tests,
testing frameworks such as JUnit [49] are used (see the next section).

The second key practice of interest is refactoring: improving the design of ex-
isting code without changing functionality. The guiding design principle is “do the
simplest thing that could possibly work”. In XP, continuous refactoring during cod-
ing replaces the traditional (big) up front design effort.

Note that although this chapter uses agile software development methods and XP
to discuss the interaction between software evolution and software testing, this does
not mean that the issues observed only apply to agile methods; they are just as likely
to come up in any other development process where developer testing and refactoring
plays an important role. We choose agile methods as showcase because of its explicit
focus on testing and inclusion of evolutionary steps in the development cycle.

8.3 Program Comprehension

A major cost factor in the life cycle of a software system is program understand-
ing: trying to understand an existing software system for the purpose of planning,
designing, implementing, and testing changes. Estimates put the total cost of the
understanding phase at 50% of the total effort [125]. This suggests that paying atten-
tion to program comprehension issues in the software process could well pay off in
terms of higher quality, longer life time, fewer defects, lower costs, and higher job
satisfaction.



8 On the Interplay Between Software Testing and Evolution 177

This is especially true in the case of extreme programming since the need for
people to understand pieces of code is at the very core of XP.

Based upon a thorough analysis of (1) literature on XP [50, 254, 48]; (2) on-
line discussion covering XP subjects3; and (3) our own experiences made during an
ongoing (industrial) extreme programming project4, we made the following obser-
vation:

Observation 1 An extensive test suite can stimulate the program compre-
hension process, especially in the light of continuously evolving software.
For our study, we specifically focus on how program comprehension and unit

tests interact in the XP software process. We analyze risks and opportunities, look
at the effect on the team (whether and how the team gets a better understanding
of the code) as well as on the source code (whether and how the code gets more
understandable).

8.3.1 Program Understanding

We define program understanding (comprehension) as the task of building mental
models of an underlying software system at various abstraction levels, ranging from
models of the code itself to ones of the underlying application domain, for software
maintenance, evolution, and re-engineering purposes [383].

An important research area in program understanding deals with the cognitive
processes involved in constructing a mental model of the software system (see,
e.g., [530]). A common element of such cognitive models is generating hypotheses
about code and investigating whether they hold or must be rejected. Several strate-
gies can be used to arrive at relevant hypotheses, such as bottom up (starting from
code), top down (starting from a high-level goal and expectations), and opportunistic
combinations of the two [125]. Strategies guide two understanding mechanisms that
produce information: chunking creates new, higher level abstraction structures from
lower level structures, and cross referencing relates different abstraction levels [530].
We will see how the XP practices relate to these program understanding theories.

The construction of mental models at different levels of abstraction can be sup-
ported by so called software exploration tools [378]. These tools use reverse engi-
neering techniques to (1) identify a system’s components and interrelationships; and
(2) create representations of a system in other forms or at higher levels of abstrac-
tion [112].

8.3.2 Unit Testing and XP

Unit testing is at the heart of XP. Unit tests are written by the developers, using
the same programming language used to build the system itself. Tests are small,
take a white box view on the code, and include a check on the correctness of the

3 Most notably, the C2 wiki at http://www.c2.com/cgi/wiki and http://groups.
yahoo.com/group/extremeprogramming/. Last visited January, 2007.

4 Program understanding tools by the Software Improvement Group: http://www.
software-improvers.com/.



178 L. Moonen et al.

results obtained, comparing actual results with expected ones. Tests are an explicit
part of the code, they are put under revision control, and all tests are shared by the
development team (any one can invoke any test). A unit test is required to run in
almost zero time. This makes it possible (and recommended) to run all tests before
and after any change, however minor the change may be.

Testing is typically done using a testing framework such as JUnit developed by
Beck and Gamma [49, 262]. The framework caters for invoking all test methods of
a test class automatically, and for collecting test cases into test suites. Test results can
be checked by invoking any of the assert methods of the framework with which ex-
pected values can be compared to actual values. Testing success is visualized through
a graphical user interface showing a growing green bar as the tests progress: as soon
as a test fails, the bar becomes red.

The XP process encourages writing a test class for every class in the system. The
test code/production code ratio may vary from project to project and in practice we
have seen ratios as high as 1:1. Moreover, XP encourages programmers to use tests
for documentation purposes, in particular if an interface or method is unclear, if the
implementation of a method is complicated, if there are circumstances in which the
code should work in a special way, and if a bug report is received [50]. In each of
these situations, the test is written before the corresponding method is written (or
modified) [52].

Also, tests can be added while understanding existing code. In particular, when-
ever a programmer is tempted to type something into a print statement or debugger
instruction, XP advises to write a test instead and add it to the system’s test suite [49].

8.3.3 Comprehension Benefits

This section discusses a number of benefits that an automated unit testing regime has
for program comprehension.

First, XP’s testing policy encourages programmers to explain their code using
test cases. Rather than explaining the behavior of a function using prose in com-
ments or documentation, the extreme programmer adds a test that explicitly shows
the behavior.

Second, the requirement that all tests must run 100% at all times, ensures that the
documentation via unit tests is kept up-to-date. With regular technical documentation
and comments, nothing is more difficult than keeping them consistent with the source
code. In XP, all tests must pass before and after every change, ensuring that what the
developer writing the tests intended to communicate remains valid.

Third, adding unit tests provides a repeatable program comprehension strategy.
If a programmer needs to change a piece of code that he is not familiar with, he
will try to understand the code by inspecting the test cases. If these do not provide
enough understanding, the programmer will try to understand the nature of the code
by developing and testing a series of hypotheses, as we have seen in Section 8.3.1.
The advise to write tests instead of using print statements or debugger commands
applies here as well: program understanding hypotheses can be translated into unit
tests, which then can be run in order to confirm or refute the hypotheses.



8 On the Interplay Between Software Testing and Evolution 179

Fourth, a comprehensive set of unit tests reduces the comprehension space when
modifying source code. To a certain extent a programmer can just try a change and
see whether the tests still run. This reduces the risks and complexity of conducting
a painstakingly difficult impact analysis. Thus, the XP process attempts to minimize
the size of the mental model that needs to be build and maintained since the tests
help the programmer to see what parts are not affected by the current modifications.

Last but not least, systematic unit testing helps build team confidence. In the XP
literature, it is said that the tests help the team to develop courage to change the
code [344].

The XP testing process not only affects the way the team works, it also has a di-
rect effect on the understandability of the production code written [254, p.199]. Writ-
ing unit tests requires that the code tested is split into many small methods each
responsible for a clear and testable task.

In addition, if the tests are written after the production code, it is likely that the
production code is difficult to test. For that reason, XP requires that the unit tests are
written before the code (the “test-driven” approach) [52]. In this way, testing code
and production code are written hand-in-hand, ensuring that the production code is
set up in a testable manner.

8.3.4 Comprehension Risks

Using tests for documentation leads to the somewhat paradoxical situation that in
order to understand a given piece of code a programmer has to read another piece of
code. Thus, to support program comprehension, XP increases the code base and this
code needs to be maintained as well. We experienced that maintaining such test code
requires special skills and refactorings, which we describe in Section 8.5.

Also of importance is that tests are automated (with the possible exception of
exploratory tests), as non-automated tests probably require knowledge or skill to
activate the tests. Knowledge which is possibly not available during (initial) program
comprehension [131].

Another concern is that XP uses the tests (in combination with oral communica-
tion and code written to display intent) as a replacement for technical documentation.
The word “documentation” is mentioned once in Beck’s book, where he explains
why he decided not to write documentation [50, p. 156]. For addressing subjects not
easily expressed in the tests or code of the system under development, a technical
memorandum can be written [134]. These are short (one or two pages) papers ex-
pressing key ideas and motivations of the design. However, if the general tendency is
not to write documentation, it is unlikely that the technical memoranda actually get
written, leaving important decisions undocumented.

A final concern is that some types of code are inherently hard to test, the best
known examples being user interfaces and database code. Writing tests for such code
requires skill, experience, and determination. This will not be always available, leav-
ing the hardest code without tests and thus without documentation.

A possible solution for these cases can be the use of so called mock objects which
are “simulated” objects that can mimic the behavior of complex objects in a con-



180 L. Moonen et al.

trolled way (often using a form of capture and replay) [336]. Setting up such a mock
object can then serve as documentation of the interaction with the real object.

8.4 Test Smells and Refactorings

Continuous refactoring, one of the key practices of extreme programming and most
other agile methods, is advocated for bringing the code into the simplest state possi-
ble. To aid in the refactoring process a catalog of “code smells” and a wide range of
refactorings is available, varying from simple modifications up to ways to systemat-
ically introduce design patterns in existing code [273].

From our own experiences we know however that test code is different from
production code and this has led us to the following observations:

Observation 2 Test code has a distinct set of smells, dealing with the ways
in which test cases are organized, how they are implemented, and how they
interact with each other.

Observation 3 Improving test code involves a mixture of applying refac-
torings as identified by Fowler [183] specialized to test code improvements,
as well as a set of additional refactorings, involving the modification of test
classes and the way of grouping test cases.

In this section we describe a set of test smells indicating trouble in test code, and
a collection of test refactorings explaining how to overcome some of these problems
through a simple program modification.

For the remainder of this chapter, we assume some familiarity with the xUnit
framework [49] and refactorings as described by Fowler [183]. We will refer to
refactorings described in this book using Name (F:page#) and to our test specific
refactorings described in Section 8.4.2 using Name (#).

8.4.1 Test Code Smells

This section gives an overview of bad code smells that are specific for test code.

Smell 1: Mystery Guest.
When a test uses external resources, such as a file containing test data, the test is no
longer self contained. Consequently, there is not enough information to understand
the tested functionality, making it hard to use that test as documentation.

Moreover, using external resources introduces hidden dependencies: if some
force changes or deletes such a resource, tests start failing. Chances for this increase
when more tests use the same resource.

The use of external resources can be eliminated using the refactoring Inline Re-
source (1). If external resources are needed, you can apply Setup External Resource
(2) to remove hidden dependencies.



8 On the Interplay Between Software Testing and Evolution 181

Smell 2: Resource Optimism.
Test code that makes optimistic assumptions about the existence (or absence) and
state of external resources (such as particular directories or database tables) can cause
non-deterministic behavior in test outcomes. Situations where tests run fine at one
time and fail miserably the next time are not where you want to find yourself in. Use
Setup External Resource (2) to allocate and/or initialize all resources that are used.

Smell 3: Test Run War.
Such wars arise when the tests run fine as long as you are the only one testing but
fail when more programmers run them. This is most likely caused by resource inter-
ference: some tests in your suite allocate resources such as temporary files that are
also used by others. Apply Make Resource Unique (3) to overcome interference.

Smell 4: General Fixture.
In the JUnit framework a programmer can write a setUp method that will be exe-
cuted before each test method to create a fixture for the tests to run in.

Things start to smell when the setUp fixture is too general and different tests
only access part of the fixture. Such set-ups are harder to read and understand and
may make tests run more slowly (because they do unnecessary work). The danger
of having tests that take too much time to complete is that testing starts interfering
with the rest of the programming process and programmers eventually may not run
the tests at all.

The solution is to use setUp only for that part of the fixture that is shared by
all tests using Fowler’s Extract Method (F:110) and put the rest of the fixture in the
method that uses it using Inline Method (F:117). If, for example, two different groups
of tests require different fixtures, consider setting these up in separate methods that
are explicitly invoked for each test, or spin off two separate test classes using Extract
Class (F:149).

Smell 5: Eager Test.
When a test method checks several methods of the object to be tested, it is hard to
read and understand, and therefore more difficult to use as documentation. Moreover,
it makes tests more dependent on each other and harder to maintain.

The solution is simple: separate the test code into test methods that test only one
method using Fowler’s Extract Method (F:110), using a meaningful name highlight-
ing the purpose of the test. Note that splitting into smaller methods can slow down
the tests due to increased setup/teardown overhead.

Smell 6: Lazy Test.
This occurs when several test methods check the same method using the same fixture
(but for example check the values of different instance variables). Such tests often
only have meaning when considering them together so they are easier to use when
joined using Inline Method (F:117).

Smell 7: Assertion Roulette.
You know something is wrong because your tests fail but it is unclear what. This
smell comes from having a number of assertions in a single test method that do not



182 L. Moonen et al.

have a distinct explanation. If one of the assertions fails, you do not know which one
it is. Use Add Assertion Explanation (5) to remove this smell.

Smell 8: Indirect Testing.
A test class is supposed to test its counterpart in the production code. It starts to
smell when a test class contains methods that actually perform tests on other objects
(for example because there are references to them in the class-to-be-tested). Such
indirection can be moved to the appropriate test class by applying Extract Method
(F:110) followed by Move Method (F:142) on that part of the test. The fact that
this smell arises also indicates that there might be problems with data hiding in the
production code.

Note that opinions differ on indirect testing. Some people do not consider it
a smell but a way to guard tests against changes in the “lower” classes. We feel that
there are more losses than gains to this approach: it is much harder to test anything
that can break in an object from a higher level and understanding and debugging
indirect tests is much harder.

Smell 9: For Testers Only.
When a production class contains methods that are only used by test methods, these
methods either (1) are not needed and can be removed, or (2) are only needed to
set up a fixture for testing. Depending on functionality of those methods, you may
not want them in production code where others can use them. If this is the case,
apply Extract Subclass (F:330) to move these methods in the testcode and use that
subclass to perform the tests on. You will often find that these methods have names
or comments stressing that they should only be used for testing.

Fear of this smell may lead to another undesirable situation: a class without cor-
responding test class. The reason then is that the developer (1) does not know how
to test the class without adding methods that are specifically needed for the test and
(2) does not want to pollute his production class with test code. Creating a separate
subclass helps to deal with this problem.

Smell 10: Sensitive Equality.
It is fast and easy to write equality checks using the toString method. A typical way
is to compute an actual result, map it to a string, which is then compared to a string lit-
eral representing the expected value. Such tests, however may depend on many irrele-
vant details such as commas, quotes, spaces, etc. Whenever the toString method for
an object is changed, tests start failing. The solution is to replace toString equality
checks by real equality checks using Introduce Equality Method (6).

Smell 11: Test Code Duplication.
Test code may contain undesirable duplication. In particular the parts that set up test
fixtures are susceptible to this problem. Solutions are similar to those for normal code
duplication as described by Fowler [183, p. 76]. The most common case for test code
will be duplication of code in the same test class. This can be removed using Extract
Method (F:110). For duplication across test classes, it may be helpful to mirror the
class hierarchy of the production code into the test class hierarchy. A word of caution



8 On the Interplay Between Software Testing and Evolution 183

however: moving duplicated code from two separate classes to a common class can
introduce (unwanted) dependencies between tests.

A special case of code duplication is test implication: test A and B cover the same
production code, and A fails if and only if B fails. A typical example occurs when the
production code gets refactored: before this refactoring, A and B covered different
code, but afterwards they deal with the same code and it is not necessary anymore
to maintain both tests. Because it fails to distinguish between the various cases, test
implication impedes comprehension and documentation.

8.4.2 Test Refactorings

Bad smells seem to arise more often in production code than in test code. The main
reason for this is that production code is adapted and refactored more frequently,
allowing these smells to escape.

One should not, however, underestimate the importance of having fresh test code.
Especially when new programmers are added to the team or when complex refactor-
ings need to be performed, clear test code is invaluable. To maintain this freshness,
test code also needs to be refactored.

We define test refactorings as changes (transformations) of test code that: (1) do
not add or remove test cases, and (2) make test code better understandable/readable
and/or maintainable [518].

The remainder of this section presents refactorings that we encountered while
working on test code. Not all of these refactorings are directly linked with the elimi-
nation of the test smells of Section 8.4.1, but when a link is there, it is described.

Refactoring 1: Inline Resource.
To remove the dependency between a test method and some external resource, we
incorporate that resource in the test code. This is done by setting up a fixture in
the test code that holds the same contents as the resource. This fixture is then used
instead of the resource to run the test. A simple example of this refactoring is putting
the contents of a file that is used into some string in the test code.

If the contents of the resource are large, chances are high that you are also suf-
fering from Eager Test (5) smell. Consider conducting Extract Method (F:110) or
Reduce Data (4) refactorings.

Refactoring 2: Setup External Resource.
If it is necessary for a test to rely on external resources, such as directories, databases,
or files, make sure the test that uses them explicitly creates or allocates these re-
sources before testing, and releases them when done (take precautions to ensure the
resource is also released when tests fail).

Refactoring 3: Make Resource Unique.
A lot of problems originate from the use of overlapping resource names, either be-
tween different tests run done by the same user or between simultaneous test runs
done by different users.

Such problems can easily be prevented (or repaired) by using unique identifiers
for all resources that are allocated, e.g. by including a time-stamp. When you also



184 L. Moonen et al.

include the name of the test responsible for allocating the resource in this identifier,
you will have less problems finding tests that do not properly release their resources.

Refactoring 4: Reduce Data.
Minimize the data that is setup in fixtures to the bare essentials. This will have two
advantages: (1) it makes them better suitable as documentation, and (2) your tests
will be less sensitive to changes.

Refactoring 5: Add Assertion Explanation.
Assertions in the JUnit framework have an optional first argument to give an ex-
planatory message to the user when the assertion fails. Testing becomes much easier
when you use this message to distinguish between different assertions that occur in
the same test. Maybe this argument should not have been optional. . .

Refactoring 6: Introduce Equality Method.
If an object structure needs to be checked for equality in tests, add an implementation
for the “equals” method for the object’s class. You then can rewrite the tests that use
string equality to use this method. If an expected test value is only represented as
a string, explicitly construct an object containing the expected value, and use the
new equals method to compare it to the actually computed object.

8.4.3 Other Test Smells and Refactorings

Fowler [183] presents a large set of bad smells and refactorings that can be used
to remove them. Our work focuses on smells and refactorings that are typical for
test code, whereas Fowler focuses more on production code. The role of unit tests
in [183] is also more geared towards proving that a refactoring did not break anything
than to be used as documentation of the production code.

Instead of focusing on cleaning test code which already has bad smells, Schnei-
der [454] describes how to prevent these smells right from the start by discussing
a number of best practices for writing tests with JUnit.

The C2 Wiki contains some discussion on the decay of unit test quality and prac-
tice as time proceeds [98], and on the maintenance of broken unit tests [542]. Opin-
ions vary between repairing broken unit tests, deleting them completely, and moving
them to another class in order to make them less exposed to changes (which may
lead to our Indirect Testing (8) smell).

Van Rompaey et al. present an approach in which test smells are detected and
then ranked according to their relative significance [521]. For this, they rely on
a metric-based heuristic approach. They focus on the “General Fixture” and “Eager
Test” test smells (Smell 4 & 5 in Section 8.4.1).

Besides the test smells we described earlier, Meszaros [372] discusses an addi-
tional set of process-oriented test smells and their refactorings.

8.5 How Refactoring Can Invalidate Its Safety Net

When evolving a piece of software, the change activities can roughly be divided into
two categories. The first category consists of those operations that preserve behavior,



8 On the Interplay Between Software Testing and Evolution 185

i.e. refactorings, while the second category contains those changes that do not nec-
essarily preserve behavior. Intuitively, when non-behavior-preserving changes are
applied to production code, one would expect that the associated test code would
need to evolve as well, as the end-result of the computation is bound to be different.

When thinking of refactorings of production code however, the picture is not that
clear whether the associated unit tests need to evolve as well. Refactoring, which
aims to improve the internal structure of the code, happens e.g. through the removal
of duplication, simplification, making code easier to understand, adding flexibil-
ity, . . . Fowler describes it as: “Without refactoring, the design of software will decay.
Regular refactoring helps code retain its shape.” [183, p.55].

One of the dangers of refactoring is that a programmer unintentionally changes
the system’s behavior. Ideally, it can be verified that this did not happen by checking
that all the tests pass after refactoring. In practice, however, we have noticed that
there are refactorings that will invalidate tests, as tests often rely, to a certain extent,
on the code structure, which may have been affected by the refactoring (e.g., when
a method is moved to another class and the test still expects it in the original class).

From this perspective, we observed the following:

Observation 4 The refactorings as proposed by Fowler [183] can be clas-
sified based on the type of change they make to the code, and therefore on
the possible change they require in the test code.

Observation 5 In parallel to test-driven design, test-driven refactoring
can improve the design of production code by focusing on the desired way
of organizing test code to drive refactoring of production code (i.e., refactor
for testing).

To explore the relationship between unit testing and refactorings, we take the
following path: we first set up a classification of the refactorings described by
Fowler [183], identifying exactly which of the refactorings affect class interfaces,
and which therefore require changes in the test code as well (see Section 8.5.1).
Subsequently, we look at the video store example from [183], and assess the impli-
cations of each refactoring on the test code (Section 8.5.2). We explore test-driven
refactoring, which analyzes the test code in order to arrive at code level refactorings
(Section 8.5.3), before we discuss the relationship between code-level refactorings
and test-level refactorings (Section 8.5.4). We then integrate our results via the no-
tion of a refactoring session which is a coherent set of steps resulting in refactoring
of both the code and the tests (Section 8.5.5).

8.5.1 Types of Refactoring

Refactoring a system should not change its observable behavior. Ideally, this is veri-
fied by ensuring that all the tests pass before and after a refactoring [50, 183].

In practice, it turns out that such verification is not always possible: some refac-
torings restructure the code in such a way that tests only can pass after the refactor-
ing if they are modified. For example, refactoring can move a method to a new class



186 L. Moonen et al.

while some tests expect it in the original class (in that case, the code will probably
not even compile).

This unfortunate behavior was also noted by Fowler: “Something that is disturb-
ing about refactoring is that many of the refactorings do change an interface.” [183,
p.64]. Nevertheless, we do not want to change the tests together with a refactoring
since that will make them less trustworthy for validating correct behavior afterwards.

In the remainder of this section, we will look in more detail at the refactorings
described by Fowler [183] to analyze in which cases problems might arise because
the original tests need to be modified.

Taxonomy

If we start with the assumption that refactoring does not change the behavior of the
system, then there is only one reason why a refactoring can break a test: because the
refactoring changes the interface that the test expects. Note that the interface extends
to all visible aspects of a class (fields, methods, and exceptions). This implies that
one has to be careful with tests that directly inspect the fields of a class since these
will more easily change during a refactoring5.

So, initially, we distinguish two types of refactoring: refactorings that do not
change any interface of the classes in the system and refactorings that do change an
interface. The first type of refactorings has no consequences for the tests: since the
interfaces are kept the same, tests that succeeded before refactoring will also succeed
after refactoring (if the refactoring indeed preserves the tested behavior).

The second type of refactorings can have consequences for the tests since there
might be tests that expect the old interface. Again, we can distinguish two situations:

Incompatible: the refactoring destroys the original interface. All tests that rely on
the old interface must be adjusted.

Backwards Compatible: the refactoring extends the original interface. In this case
the tests keep running via the original interface and will pass if the refactoring
preserves tested behavior. Depending on the refactoring, we might need to add
more tests covering the extensions.

A number of incompatible refactorings that normally would destroy the original in-
terface can be made into backwards compatible refactorings. This is done by extend-
ing the refactoring so it will retain the old interface, for example, using the Adapter
pattern or simply via delegation. As a side-effect, the new interface will already
partly be tested. Note that this is common practice when refactoring a published
interface to prevent breaking dependent systems. A disadvantage is that a larger in-
terface has to be maintained but when delegation or wrapping was used, that should
not be too much work. Furthermore, language features like deprecation can be used
to signal that this part of the interface is outdated.

5 In fact, direct inspection of fields of a class is a test smell that could better be removed
beforehand [518].



8 On the Interplay Between Software Testing and Evolution 187

Fig. 8.1. Classes before refactoring

Classification

We have analyzed the refactorings in [183] and divided them into the following
classes:
A. Composite: The four big refactorings Convert Procedural Design to Objects,

Separate Domain from Presentation, Tease Apart Inheritance, and Extract Hi-
erarchy will change the original interface, but we will not consider them in more
detail since they are performed as series of smaller refactorings.

B. Compatible: Refactorings that do not change the original interface. Refactorings
in this class are listed in Table 8.1.

C. Backwards Compatible: Refactorings that change the original interface and are
inherently backwards compatible since they extend the interface. Refactorings
in this class are listed in Table 8.2.

D. Make Backwards Compatible: Refactorings that change the original interface
and can be made backwards compatible by adapting the new interface to the
new one. Refactorings in this class are listed in Table 8.3.

E. Incompatible: Refactorings that change the original interface and are not back-
wards compatible (for example, because they change the types of classes that are
involved). Refactorings in this class are listed in Table 8.4.

Note that the refactorings Replace Inheritance with Delegation and Replace Delega-
tion with Inheritance are listed both in the Compatible and Backwards Compatible
tables since they can be of either category, depending on the actual case.

8.5.2 Revisiting the Video Store

In this section, we study the relationship between testing and refactoring using a well-
known example of refactoring. We revisit the video store code used by Fowler [183,
Chapter 1], extending it with an analysis of what should be going on in the accom-
panying video store test code.

The video store class structure before refactoring is shown in Figure 8.1. It con-
sists of a Customer, who is associated with a series of Rentals, each consisting of
a Movie and an integer indicating the number of days the movie was rented. The
key functionality is in the Customer’s statement method printing a customer’s total
rental cost. Before refactoring, this statement is printed by a single long method.
After refactoring, the statement functionality is moved into appropriate classes, re-
sulting in the structure of Figure 8.2 taken from [183, p. 51].

Fowler emphasizes the need to conduct refactorings as a sequence of small steps.
At each step, you must run the tests in order to verify that nothing essential has



188 L. Moonen et al.

Table 8.1. Compatible refactorings (type B)

Change Bidirectional Association to Unidirectional Replace Exception with Test
Replace Nested Conditional with Guard Clauses Change Reference to Value
Replace Magic Number with Symbolic Constant Split Temporary Variable

Consolidate Duplicate Conditional Fragments Decompose Conditional
Replace Conditional with Polymorphism Introduce Null Object

Replace Inheritance with Delegation Preserve Whole Object
Replace Delegation with Inheritance Remove Control Flag
Replace Method with Method Object Substitute Algorithm
Remove Assignments to Parameters Introduce Assertion

Replace Data Value with Object Extract Class
Introduce Explaining Variable Inline Temp

Table 8.2. Backwards compatible refactorings (type C)

Replace Inheritance with Delegation Replace Temp with Query Push Down Method
Replace Delegation with Inheritance Duplicate Observed Data Push Down Field
Consolidate Conditional Expression Self Encapsulate Field Pull Up Method

Replace Record with Data Class Form Template Method Extract Method
Introduce Foreign Method Extract Superclass Pull Up Field
Pull Up Constructor Body Extract Interface

Table 8.3. Refactorings that can be made backwards compatible (type D)

Change Unidirectional Association to Bidirectional Remove Middle Man
Replace Parameter with Explicit Methods Remove Parameter

Replace Parameter with Method Add Parameter
Separate Query from Modifier Rename Method

Introduce Parameter Object Move Method
Parameterize Method

Table 8.4. Incompatible refactorings (type E)

Replace Constructor with Factory Method Remove Setting Method
Replace Type Code with State/Strategy Encapsulate Downcast

Replace Type Code with Subclasses Collapse Hierarchy
Replace Error Code with Exception Encapsulate Field

Replace Subclass with Fields Extract Subclass
Replace Type Code with Class Hide Delegate

Change Value to Reference Inline Method
Introduce Local Extension Inline Class
Replace Array with Object Hide Method

Encapsulate Collection Move Field



8 On the Interplay Between Software Testing and Evolution 189

Fig. 8.2. Class structure after refactoring

changed. His testing approach is the following: “I create a few customers, give each
customer a few rentals of various kinds of films, and generate the statement strings.
I then do a string comparison between the new string and some reference strings that
I have hand checked” [183, p. 8]. Although Fowler does not list his test classes, this
typically should look like the code in Figure 8.3.

Studying this string-based testing method, we make the following observations:
• The setup is complicated, involving the creation of many different objects.
• The documentation value of the test is limited: it is hard to relate the computation

of the charge of 4.5 for movie m1 to the way in which charges are computed for
the actual movies rented (in this case a children’s and a regular movie, each with
their own price computation).

• The tests are brittle. All test cases include a full statement string. When the
format changes in just a very small way, all existing tests (!) must be adjusted,
an error prone activity we would like to avoid.

Unfortunately, there is no other way to write tests for the given code. The poor struc-
ture of the long method necessarily leads to an equally poor structure of the test cases.
From a testing perspective, we would like to be able to separate computations from
report writing. The long statement method prohibits this: it needs to be refactored in
order to be able to improve the testability of the code.

This way of reasoning naturally leads to the application of the Extract Method
refactoring to the statement method. Fowler comes to the same conclusion, based
on the need to write a new method printing a statement in HTML format. Thus, we



190 L. Moonen et al.

Movie m1 = new Movie("m1",Movie.CHILDRENS);
Movie m2 = new Movie("m2", Movie.REGULAR);
Movie m3 = new Movie("m3", Movie.NEW_RELEASE);
Rental r1 = new Rental(m1, 5);
Rental r2 = new Rental(m2, 7);
Rental r3 = new Rental(m3, 1);
Customer c1 = new Customer("c1");
Customer c2 = new Customer("c2");

public void setUp() {
c1.addRental(r1);
c1.addRental(r2);
c2.addRental(r3);

}

public void testStatement1() {
String expected =
"Rental Record for c1\n" +
"\tm1\t4.5\n" +
"\tm2\t9.5\n" +
"Amount owed is 14.0\n" +
"You earned 2 frequent renter points";

assertEquals(expected, c1.statement());
}

Fig. 8.3. Initial sample test code

extract getCharge for computing the charge of a rental, and getPoints for computing
the “frequent renter points”.

Extract Method is of type C, the backwards compatible refactorings, so we can
use our existing tests to check the refactoring. However, we have created new meth-
ods, for which we might like to add tests that document and verify their specific
behavior. To create such tests, we can reuse the setup of movies, rentals, and cus-
tomers used for testing the statement method. We end up with a number of smaller
test cases specifically addressing either the charge or rental point computations.

Since the correspondence between test code and actual code is now much clearer
and better focused, we can apply white box testing, and use our knowledge of the
structure of the code to determine the test cases needed. Thus, we see that the
getCharge method to be tested distinguishes between 5 cases, and we make sure
our tests cover these cases.

This has solved some of the problems. The tests are better understandable, more
complete, much shorter, and less brittle. Unfortunately, we still have the complicated
setup method. What we see is that the setup mostly involves rentals and movies,
while the tests themselves are in the customer testing class. This is because the ex-
tracted method is in the wrong class: applying Move Method to Rental simplifies the
set up for new test cases. Again we use our analysis of the test code to find refactor-
ings in the production code.



8 On the Interplay Between Software Testing and Evolution 191

The Move Method is of type D, refactorings that can be made backwards com-
patible by adding a wrapper method to retain the old interface. We add this wrapper
so we can check the refactoring with our original tests. However, since the docu-
mentation of the method is in the test, and this documentation should be as close as
possible to the method documented, we want to move the tests to the method’s new
location. Since there is no test class for Rental yet, we create it, and move the test
methods for getCharge to it. Depending on whether the method was part of a pub-
lished interface, we might want to keep the wrapper (for some time), or remove it
together with the original test.

Fowler discusses several other refactorings, moving the charge and point calcula-
tions further down to the Movie class, replacing conditional logic by polymorphism
in order to make it easier to add new movie types, and introducing the state design
pattern in order to be able to change movie type during the life time of a movie.

When considering the impact on test cases of these remaining video store refac-
torings, we start to recognize a pattern:

• Studying the test code and the smells contained in it may help to identify refac-
torings to be applied at the production code;

• Many refactorings involve a change to the structure of the unit tests as well:
in order to maintain the documenting value of these unit tests, they should be
changed to reflect the structure of the code being tested.

In the next two sections, we take a closer look at these issues.

8.5.3 Test-Driven Refactoring

In test-driven refactoring, we try to use the existing test cases in order to determine
the code-level refactorings. Thus, we study test code in order to find improvements
to the production code.

This calls for a set of code smells that helps to find such refactorings. A first cat-
egory is the set of existing code smells discussed in Fowler’s book [183]. Several of
them, such as long method, duplicated code, long parameter list, and so on, apply to
test code as well as they do to production code. In many cases solving them involves
not just a change on the test code, but first of all a refactoring of the production code.

A second category of smells is the collection of test smells discussed in Sec-
tion 8.4 (also see [518]). In fact, in our movie example we encountered several of
them already. Our uneasy feeling with the test case of Figure 8.3 is captured by the
Sensitive Equality smell [518, Smell 10]: comparing computed values to a string lit-
eral representing the expected value. Such tests depend on many irrelevant details,
such as commas, quotes, tabs, . . . This is exactly why the customer tests of Figure 8.3
become brittle.

Another test smell we encountered is called Indirect Testing [518, Smell 8]:
a test class contains methods that actually perform tests on other objects. Indirect
tests make it harder to understand the relationship between test and production code.
While moving the getCharge and getPoints methods in the class hierarchy (using
Move Method), we also moved the corresponding test cases, in order to avoid Indi-
rect Testing.



192 L. Moonen et al.

The test-driven perspective may lead to the formulation of additional test smells.
For example, we observed that setting up the fixture for the CustomerTest was com-
plicated. This indicates that the tests are in the wrong class, or that the underlying
business logic is not well isolated. Another smell appears when there are many test
cases for a single method, indicating that the method is too complex.

Test-driven refactoring is a natural consequence of test-driven design. Test-driven
design is a way to get a good design by thinking about test cases first when adding
functionality. Test-driven refactoring is a way to improve your design by rethinking
the way you structured your tests.

In fact, Beck’s work on test-driven design [51, 52] contains an interesting ex-
ample that can be transferred to the refactoring domain. It involves testing the con-
struction of a mortality table. His first attempt requires a complicated setup, involv-
ing separate “person” objects. He then rejects this solution as being overly complex
for testing purposes, and proposes the construction of a mortality table with just an
age as input. His example illustrates how test case construction guides design when
building new code; likewise, test case refactoring guides the improvement of design
during refactoring.

8.5.4 Refactoring Test Code

In our study of the video store example, we saw that many refactorings on the code
level can be completed by applying a corresponding refactoring on the test case level.
For example, to avoid Indirect Testing, the refactoring Move Method should be fol-
lowed by “Move Test”. Likewise, in many cases Extract Method should be followed
by “Extract Test”. To retain the documentation value of the unit tests, their structure
should be in sync with the structure of the source code.

In our opinion, it makes sense to extend the existing descriptions of refactorings
with suggestions on what to do with the corresponding unit tests, for example in the
“mechanics” part.

The topic of refactoring test code is discussed extensively in Section 8.4. An
issue of concern when changing test code is that we may “lose” test cases. When
refactoring production code, the availability of tests forms a safety net that guards us
from accidentally losing code, but such a safety net is not in place when modifying
test code. A solution is to measure coverage [346] before and after changing the
tests, e.g. with the help of Clover [108] or Emma [469]. One step further is mutation
testing, using a tool such as Jester [379, 470]. Jester automatically makes changes to
conditions and literals in Java source code. If the code is well-tested, such changes
should lead to failing tests. Running Jester before and after test case refactorings
helps to verify that the changes did not affect test coverage.

8.5.5 Refactoring Sessions

The meaningful unit of refactoring is a sequence of steps involving changes to both
the code base and the test base. We propose the notion of a refactoring session to
capture such a sequence. It consists of the following steps:



8 On the Interplay Between Software Testing and Evolution 193

1. Detect smells in the code or test code that need to be fixed. In test-driven refac-
toring, the test set is the starting point for finding such smells.

2. Identify candidate refactorings addressing the smell.
3. Ensure that all existing tests run.
4. Apply the selected refactoring to the code. Provide a backwards compatible in-

terface if the refactoring falls in category D. Only change the associated test
classes when the refactoring falls in category E.

5. Ensure that all existing tests run. Consider applying mutation testing to assess
the coverage of the test cases.

6. Apply the testing counterpart of the selected refactoring.
7. Ensure that the modified tests still run. Check that the coverage has not changed.
8. Extend the test cases now that the underlying code has become easier to test.
9. Ensure the new tests run.

The integrity of the code is ensured since (1) all tests are run between each step; (2)
each step changes either code or tests, but never both at the same time (unless this is
impossible).

8.6 Measuring Code and Test Code

In the previous sections we have seen how test suites affect program comprehension,
how test suites themselves can be subjected to refactoring, and how refactoring of the
production code is reflected in the test code. The last thing we investigate is whether
there is a relation (correlation) between certain properties of the production code and
those of the test code. We look at one property in particular, namely the testability
of production code, based on our earlier work on finding testability metrics for Java
systems [89].

For our investigation, we take advantage of the popularity of the JUnit frame-
work [262]. JUnit’s typical usage scenario is to test each Java class C by means of
a dedicated test class CT , generating pairs of the form 〈C,CT 〉. The route then that we
pursue is to use these pairs to find source code metrics on C that are good predictors
of test-related metrics on CT .

To elaborate this route, we first define the notion of testability that we address,
then describe the experimental design that can be used to explore the hypothesis,
followed by a discussion of initial experimental results.

8.6.1 Testability

The ISO defines testability as “attributes of software that bear on the effort needed
to validate the software product” [240]. Binder [65] offers an analysis of the var-
ious factors that contribute to a system’s testability, which he visualizes using the
fish bone diagram as shown in Figure 8.4. The major factors determining test ef-
fort that Binder distinguishes include the test adequacy criterion that is required, the
usefulness of the documentation, the quality of the implementation, the reusability



194 L. Moonen et al.

and structure of the test suite, the suitability of the test tools used, and the process
capabilities.

Of these factors, we are concerned with the structure of the implementation, and
with source code factors in particular. One group of factors we distinguish are test
case generation factors, which influence the number of test cases required. An exam-
ple is the testing criterion (test all branches, test all inherited methods), but directly
related are characteristics of the code itself (use of if-then-else statements, use of
inheritance). The other group of factors we distinguish are test case construction
factors, which are related to the effort needed to create a particular test case. Such
factors include the complexity of creating instances for a given class, or the number
of fields that need to be initialized.

Fig. 8.4. The testability fish-bone [65, 89]



8 On the Interplay Between Software Testing and Evolution 195

8.6.2 Experimental Design

Our goal is to assess the capability of a suite of object-oriented metrics to predict
testing effort. We assess this capability from a class level perspective, i.e., we assess
whether or not the values of object-oriented metrics for a given class can predict
the required amount of effort needed for unit testing that class. The particular envi-
ronment in which we conduct the experiments consists of Java systems that are unit
tested at the class level using the JUnit testing framework.

To help us translate the goal into measurements, we pose questions that pertain
to the goal:

Question 1: Are the values of the object-oriented metrics for a class associ-
ated with the required testing effort for that class?

To answer this question, we must first quantify “testing effort.” To indicate the testing
effort required for a class we use the size of the corresponding test suite. Well-known
cost models such as Boehm’s COCOMO [72] and Putnam’s SLIM model [421] relate
development cost and effort to software size. Test suites are software in their own
right; they have to be developed and maintained just like ‘normal’ software. Below
we will see which metrics we use to measure the size of a test suite.

Next, we can refine our original question, and obtain the following new question:

Question 2: Are the values of the object-oriented metrics for a class associ-
ated with the size of the corresponding test suite?

From these questions we can derive a hypothesis that our experiments test:

H0(m,n): There is no association between object-oriented metric m and test suite
metric n,

H1(m,n): There is an association between object-oriented metric m and test suite
metric n,

where m ranges over our set of object-oriented metrics, and n over our set of test-suite
based metrics.

As a candidate set of object-oriented metrics, we use the suite proposed by
Binder [65] as a starting point. Binder is interested in testability as well, and uses
a model distinguishing “complexity” and “scope” factors, which are similar to our
test case construction and generation factors. The metrics used by Binder are based
on the well known metrics suite provided by Chidamber and Kemerer [111], who for
some of their metrics (such as the Coupling Between Objects and the Response for
Class) already suggested that they would have a bearing on test effort. The metrics
that we have used in our experiments are listed in Table 8.5.

For our experiments we propose the dLOCC (Lines Of Code for Class) and
dNOTC (Number of Test Cases) metrics to indicate the size of a test suite. The ‘d’
prepended to the names of these metrics denotes that they are the dependent vari-
ables of our experiment, i.e., the variables we want to predict. The dLOCC metric is
defined like the LOCC metric.



196 L. Moonen et al.

Table 8.5. Metrics suite used for assessing testability of a class c

Metric Description

DIT Depth of inheritance tree
FOUT Fan out, nr of classes used by c
LCOM Lack of cohesion in methods—which measures how fields are used in methods
LOCC Lines of code per class
NOC Number of children
NOF Number of fields
NOM Number of methods
RFC Response for class—Methods in c plus the number of methods invoked by c.
WMC Weighted methods per class—sum of McCabe’s cyclomatic complexity number of

all methods.

The dNOTC metric provides a different perspective on the size of a test suite. It
is calculated by counting the number of invocations of JUnit ‘assert’ methods that
occur in the code of a test class. JUnit provides the tester with a number of different
‘assert’ methods, for example ‘assertTrue’, ‘assertFalse’ or ‘assertEqual’. The opera-
tion of these methods is the same; the parameters passed to the method are tested for
compliance to some condition, depending on the specific variant. For example, ‘as-
sertTrue’ tests whether or not its parameter evaluates to ‘true’. If the parameters do
not satisfy the condition, the framework generates an exception that indicates a test
has failed. Thus, the tester uses the set of JUnit ‘assert’ methods to compare the ex-
pected behavior of the class-under-test to its current behavior. Counting the number
of invocations of ‘assert’ methods, gives the number of comparisons between ex-
pected and current behavior which we consider an appropriate definition of a test
case.

Conducting the measurements yields a series of values 〈m,n〉 of object-oriented
metric m and test suite metric n for a series of pairs 〈C,CT 〉 of a class C and its
corresponding test class CT . To test the hypotheses, we calculate Spearman’s rank-
order correlation (which does not require a normal distribution of the data), yielding
values rs(m,n) for metrics m and n. The significance (related to the number of ob-
servations made) of the value of rs found is subsequently determined by calculating
the t-statistic, yielding a value p indicating the chance that the observed value is the
result of a chance event, allowing us to accept H1(m,n) with confidence level 1− p.

8.6.3 Experimental Results

Experiments were conducted on five software systems, of which four were closed
source software products developed at the Software Improvement Group (SIG)6.
Additionally, we included Apache Ant [18], an open source automation tool for soft-
ware development. All systems are written in Java and the systems totaled over 290
KLOC.

6 http://www.sig.nl.



8 On the Interplay Between Software Testing and Evolution 197

The key results for the Ant case study are shown in Table 8.6; similar results were
obtained for the other case studies. The experiment shows that there is a significant
correlation between test level metrics dLOCC (Lines of Code for Class) and dNOT
(Number of Testcases) and various class level metrics:

• There are several metrics related to size, in particular LOCC, NOM, and WMC.
Since size can be considered a test case generation (we need more test cases) as
well as a test case construction factor (larger classes become harder to test), it is
natural that these metrics are correlated with test effort.

• The inheritance related metrics DIT (depth of inheritance tree) and NOC (num-
ber of subclasses) are not correlated with test metrics. In principle, test strategies
in which, for example, extra subclasses lead to more intensive testing of the su-
perclass, could cause NOC or DIT to be predictors of test effort. Apparently in
the case studies these strategies were not adopted.

• Two metrics measuring external dependencies are Fan Out (FOUT) and Re-
sponse-for-Class (RFC). Both are clearly correlated with both test suite metrics.

• The metrics LCOM (Lack of Cohesion of Methods) and NOF (Number of
Fields) are correlated with the test metrics for the Ant case as well, but not for
the four commercial case studies. One can expect NOF to be an indicator for test
effort, for example, for initializing fields in a class. In cases where NOF is not an
indicator, this may be due to the fact that the NOF metric only measures fields
introduced in a particular class, and not fields inherited from superclasses.

Based on these findings, we conclude with the following observation:

Observation 6 Traditional object-oriented source code metrics applied to
production code can indicate the effort needed for developing unit tests.

We refer to Bruntink and Van Deursen for a full account of the experiments
described above [89].

Table 8.6. Correlation values and confidence levels found for Ant

rs dLOCC dNOTC

DIT -.0456 -.201
FOUT .465 .307
LCOM .437 .382
LOCC .500 .325
NOC .0537 -.0262
NOF .455 .294
NOM .532 .369
RFC .526 .341
WMC .531 .348

p dLOCC dNOTC

DIT .634 .0344
FOUT < .01 < .01
LCOM < .01 < .01
LOCC < .01 < .01
NOC .575 .785
NOF < .01 < .01
NOM < .01 < .01
RFC < .01 < .01
WMC < .01 < .01



198 L. Moonen et al.

8.7 Concluding Remarks

In this section we first look back on the interplay between software testing and evo-
lution. We then present a research agenda with a number of future research tracks,
which are currently left unexplored.

8.7.1 Retrospective

Based upon Observation 1 (see page 177), which states that an extensive test suite
can stimulate the program comprehension process in the light of continuously evolv-
ing software, we have investigated the interactions between software evolution, soft-
ware testing and program comprehension that exist in extreme programming in Sec-
tion 8.3. Naturally, some (or all) of these elements are used in other development
processes as well. For example, Humphrey stresses the importance of inspections,
software quality assurance, and testing [236]. The Rational Unified Process empha-
sizes short iterations, architecture centric software development, and use cases [299].
Key publications on extreme programming [50, 254, 48] cover many issues related
to comprehension, such as code expressing intent, feedback from the system, and
tests to document code.

From our observation that test code has a distinct set of smells (see Observa-
tion 2, page 180), we looked at test code from the perspective of refactoring. Our
own experiences are that the quality of test code is not as high as the quality of the
production code. Test code was not refactored as mercilessly as production code,
following Fowler’s advice that it is acceptable to copy and edit test code, trusting our
ability to refactor out truly common items later [183, p. 102]. When at a later stage
we started refactoring test code more intensively, we discovered that test code has its
own set of problems (which we translated into smells) as well as its own repertoire
of solutions (which we formulated as test refactorings).

For each test smell that we identified, we have provided a solution, using ei-
ther a potentially specialized variant of an existing refactoring from Fowler [183]
or a dedicated test refactoring. We believe that the resulting smells and refactorings
provide a valuable starting point for a larger collection based on a broader set of
projects. This is in line with our Observation 3 (see page 180).

Observation 4 (see page 185) states that when applying the refactorings as pro-
posed by Fowler [183] on production code, a classification can be made based on
whether these refactorings necessitate refactoring the test code as well. In Section 8.5
we have analyzed which of the documented refactorings affect the test code. It turns
out that the majority of the refactorings are in category D (requiring explicit actions
to keep the interface compatible) and E (necessarily requiring a change to the test
code). We have shown the implications of refactoring tests with the help of Fowler’s
video store example. We then proposed the notion of test-driven refactoring, which
uses the existing test cases as the starting point for finding suitable code level refac-
torings.

We have argued for the need to extend the descriptions of refactorings with a sec-
tion on their implications on the corresponding test code. If the tests are to maintain



8 On the Interplay Between Software Testing and Evolution 199

their documentation value, they should be kept in sync with the structure of the code.
As outlined in Observation 5 (see page 185), we propose, as a first step, the notion of
a refactoring session, capturing a coherent series of separate steps involving changes
to both the production and the test code.

The impact of program structure on test structure is further illustrated through
Observation 6 (page 197), which suggests that traditional object-oriented metrics can
be used to estimate test effort. We described an experiment to assess which metrics
can be used for this purpose. Note that some of the metrics identified (such as fan-
out or response-for-class) are also indicators for class complexity. This suggests that
high values for such metrics may call for refactorings, which in turn may help to
reduce the test effort required for unit testing these classes.

From our studies we have learned that the interplay between software evolution
and software testing is often more complex than meets the eye. The interplay that
we witnessed works in two directions: software evolution is hindered by the fact that
when evolving a system, the tests often need to co-evolve, making the evolution more
difficult and time-intensive. On the other hand, many software evolution operations
cannot safely take place without adequate tests being present to enable a safety net.
This leads to an almost paradoxical situation where tests are essential for evolving
software, yet at the same time, they are obstructing that very evolution.

Another important factor in this interplay is program comprehension, or the pro-
cess of building up knowledge about a system under study, which is of critical im-
portance during software evolution. In this context, having a test suite available can
be a blessing, as the tests provide documentation about how the software works. At
the same time, when no tests are available, writing tests to understand the software
is a good way of building up comprehension.

We have seen that software evolution and testing are intertwined at the very core
of (re)engineering software systems and continue to provide interesting and chal-
lenging research topics.

8.7.2 Research Agenda

During our study we came across a number of research ideas in the area of software
testing and software evolution that are as yet still unexplored. The topics we propose
can be seen as an addition or refinement to the topics that were addressed by Harrold
in her “Testing: A Roadmap” [224].

Model Driven Engineering

MDE [453] is a modeling activity, whereby the traditional activity of writing code
manually is replaced by modeling specifications for the application. Code generation
techniques then use these models to generate (partial) code models of the application.
This setup ensures the alignment between the models and the executable implemen-
tation. A similar approach can be followed when it comes to testing the application:
modeling both the application and the tests through specifications. Muccini et al.
consider this as the next logical step [381]. Recently, Pickin et al. have picked up on
this research topic in the context of distributed systems [415].



200 L. Moonen et al.

Aspect Oriented Programming

AOP [276] is a programming paradigm that aims to offer an added layer of abstrac-
tion that can modularize system-level concerns (also see Chapter 9). However, when
these aspects are woven into the base code, some unexpected effects can occur that
are difficult to oversee. This can happen (1) when the pointcut is not defined precisely
enough, resulting in an aspect being woven in at an unexpected place in the base pro-
gram, or (2) because of unexpected results because of aspect composition, when the
advice of two separate aspects is woven in. McEachen et al. describe a number of
possible fault scenarios that can occur [357], but further research into this area is
certainly warranted to prevent such fault scenarios through testing.

Test Case Isomorphism

Various sources indicate that test cases should be independent of each other because
this decreases testing time, increases test output comprehensibility and having con-
cise and focused tests increases their benefit as documentation of a specific aspect of
the code [149, 131].

As said, having concise and focused tests decreases the testing time, which partly
alleviates the problem of having to do selective regression testing [444, 445]. Another
problem situation that is overcome, is the one described by Gaelli et al., whereby
broken unit tests are ordered, so that the most specific unit test can be dealt with
first [189].

Research questions of interest are how we can characterize and measure this
isomorphism and what refactorings can be used to improve this isomorphism. These
are related to detecting and removing the test implication smell described earlier.

Service-Orientation

The current trend is to build software systems from loosely coupled components or
services (see Chapter 7). These services have mostly not been designed to co-exist
with each other from their phase of inception and their “integration” often depends on
the configuration of parameters at run-time. Although the components (or services)
themselves will probably be of a higher quality, due to the fact that these are shared
by many different projects (this can e.g. be in the case of Commercial Off The Shelf
(COTS) components), testing the integration of these components or services is all
the more important.

Although work related to testing components [212, 539] is readily available, not
so much can be found on testing service-orientation. Although it is probable that
many existing testing techniques can be adapted to work in this context, additional
research is warranted. One of the first attempts at tool support for testing services
is Coyote [507]. Commercial tool-support comes from SOAPSonar and Ikto’s LISA
and also Apache’s Jakarta JMeter is useful when testing services [467].



8 On the Interplay Between Software Testing and Evolution 201

Empirical Studies

Although many testing techniques are currently in circulation, there are few aca-
demic publications documenting how these testing techniques are exactly used and
combined in industrial projects. Performing empirical studies that involve profes-
sional software developers and testers can lead to a better understanding of how
software testing techniques or strategies are used (e.g., the study of Erdogmus et
al. [161]). The results from this research can be used to build the next generation of
testing techniques and test tools. An added benefit of this line of research is that by
providing cutting-edge testing techniques to the industrial partners helps with knowl-
edge and technology transfer about testing from academia to industry.

Repository Mining

The a posteriori analysis of software evolution, through the mining of e.g. versioning
systems, provides a view on how the software has evolved and on how the software
might evolve in the future (also see Chapter 3).

Up until recently however, no specific research has been carried out in this con-
text that looks at the co-evolution of the software system and its associated test suite.
Zaidman et al. performed an initial study on how this co-evolution happens in open
source software systems [562]. They offer three separate views that show (1) the
commit behavior of the developers, (2) the growth evolution of the system and (3)
the coverage through time. The major observation that was made is that testing is
mostly a phased activity, whereas development is more continuous.

In the same context, further research might provide answers to questions such as:
• Is every change to the production code backed up by a change to the test suite?

Are there specific reasons why this should or should not happen?
• Can IDE’s provide warnings when adaptations to the production code lead to

reduced quality of the test suite?

Test Coverage

Even when continuous testing is becoming more and more commonplace in the de-
velopment process [448], determining the test coverage [346, Chapter 7] is often
not part of the fixed testing routine. In combination with the findings of Elbaum et
al. [159], who have determined that even minor changes to production code can have
a serious impact on the test coverage, this might lead to situations where the test-
ing effort might prove to be insufficient. As such, the development of features in
integrated developments environments that preemptively warn against drops in test
coverage will lead to a more efficient and thorough test process.

Regression Testing

Regression testing provides you with a safety net when letting software evolve, be-
cause it guards against introducing bugs into functionality that previously worked
fine. Ideally, these tests should be run after each modification, but regression testing



202 L. Moonen et al.

is often very expensive. Rothermel and Harrold provide a detailed survey of research
in regression testing techniques, particularly in the domain of selective regression
testing [445], where only that part of the regression test pertaining to the modifica-
tion is re-run. Although selective regression testing can save costs, the process of
determining which tests should be re-run is still expensive and the ultimate gain is
thus relatively small. Further research into this topic is certainly warranted.




