
7

Architectural Transformations:
From Legacy to Three-Tier and Services

Reiko Heckel1, Rui Correia1,2, Carlos Matos1,2, Mohammad El-Ramly3, Georgios
Koutsoukos1, and Luís Andrade2

1 Department of Computer Science, University of Leicester, United Kingdom
2 ATX Software, Lisboa, Portugal
3 Computer Science Department, Cairo University, Egypt

Summary. With frequent advances in technology, the need to evolve software arises. Given
that in most cases it is not desirable to develop everything from scratch, existing software
systems end up being reengineered. New software architectures and paradigms are responsible
for major changes in the way software is built.

The importance of Service Oriented Architectures (SOAs) has been widely growing over
the last years. These present difficult challenges to the reengineering of legacy applications.
In this chapter, we present a new methodology to address these challenges. Additionally, we
discuss issues of the implementation of the approach based on existing program and model
transformation tools and report on an example, the migration of an application from two-tier
to three-tier architecture.

7.1 Introduction

As business and technology evolve and software becomes more complex, researchers
and tool vendors in reengineering are constantly challenged to come up with new
techniques, methods, and solutions to effectively support the transition of legacy sys-
tems to modern architectural and technological paradigms. Such pressure has been
witnessed repeatedly over the past decades. Examples include the adoption of object-
oriented programming languages [380, 149] and more recently the advent of Web
technologies [463] and in particular Service-Oriented Architectures (SOAs).

The adoption of SOAs, as well as their enabling technology of Web Services [7],
has been steadily growing over the last years. According to Gartner [194], a leading
technology market research and analysis firm, “mainstream status for SOA is not far
off” and “by 2008, SOA will be a prevailing software engineering practice” [355].
However, practice indicates that Service-Oriented Architecture initiatives rarely start
from scratch. Gartner projects that “through 2008, at least 65 percent of custom-
developed services for new SOA projects will be implemented via wrapping or re-
engineering of established applications (0.8 probability)”. In other words, most SOA
projects are being implemented on top of existing legacy systems. That being the

T. Mens, S. Demeyer (eds.), Software Evolution.
DOI 10.1007/978-3-540-76440-3, © Springer 2008



140 R. Heckel et al.

context, the goal of this work is to present a methodology for reengineering legacy
systems towards new architectural styles in general and SOA in particular.

We will argue that, starting from a (monolithic) legacy application, such a transi-
tion involves several steps of decomposition, along both technological and functional
dimensions. The technological decomposition will lead, for example, to a 3-tiered ar-
chitecture, separating application logic, data, and user interface (UI). The functional
decomposition separates components providing different functions which, when re-
moving their UI tiers, represent candidate services.

The technical contribution of this chapter concentrates on the iterated decomposi-
tion, regarding each cycle as an instance of the reengineering Horseshoe Model [271].
This is a conceptual model that distinguishes different levels of reengineering while
providing a foundation for transformations at each level, with a focus on transfor-
mations to the architectural level. We support it by providing automation through
graph-based architectural transformation. This allows us to

• abstract (in large parts of the process) from the specific languages involved, as
long as they are based on similar underlying concepts

• describe transformations in a more intuitive and “semantic” way (compared to
code level transformations), making them easier to adapt to different architec-
tural styles and technological paradigms

With this in mind the remainder of this chapter is organised as follows: Section 7.2
discusses the impact of service-oriented computing on legacy systems, as well as
the issues for reengineering. Section 7.3 presents our methodology for architec-
tural transformation including a formalisation based on typed graph transformation
system. The implementation of our approach and an example are discussed in Sec-
tion 7.4. We review related work in Section 7.5 and discuss conclusions and further
work in Section 7.6.

7.2 From Legacy Systems to Three-Tier Applications
and Services

The authors’ experience with customers from the finance, telecommunications, and
public administration sectors as well as IT partners indicates that adoption of SOA
in industry is inevitable and that such adoption is typically gradual, evolving through
various stages in which different organisational and technical goals and challenges
are addressed. A typical first stage, the transition from legacy to web-based systems,
consists in the technological separation of GUI from logic and database code, and
subsequent replacement of the GUI code by HTML forms. Even if the details are
highly dependent on the languages and platforms involved, the perception that or-
ganisations have of the overall aim, the transition towards SOA, is largely congruent,
and in line with what has also been described by several authors [349, 393, 162] and
major technology providers [407, 472, 543, 483].

In Table 7.1 we outline six of the basic SOA principles that constitute important
properties of SOA from an industry perspective. It should be noted that our goal is



7 Architectural Transformations: From Legacy to Three-Tier and Services 141

Table 7.1. Industry View of SOA

SOA Property Definition

Well-defined interfaces A well specified description of the service that permits con-
sumers to invoke it in a standard way

Loose coupling Service consumer is independent of the implementation
specifics of service provider

Logical and physical sep-
aration of business logic
from presentation logic

Service functionality is independent of user interface aspects

Highly reusable services Services are designed in such a way that they are consumable
by multiple applications

Coarse-grained granu-
larity

Services are business-centric, i.e., reflect a meaningful business
service not implementation internals

Multi-party & business
process orientation

Service orientation involves more than one party (at least one
provider and one consumer), each with varying roles, and must
provide the capacity to support seamless end-to-end business
processes, that may span long periods of time, between such
parties

not to provide a comprehensive analysis of how industry views SOA, but, instead, to
provide a basis that will help us to explain the impact of service-orientation to legacy
systems.

The first two properties in Table 7.1 (Well-defined interfaces, Loose coupling)
are typically, at least at the technology level, provided by the underlying SOA im-
plementation infrastructures such as Web Services. The last four properties however,
have considerable impact on legacy systems and their reengineering. Such impact is
analysed in the next three subsections. The first addresses the “Logical and physical
separation of business logic from presentation logic” property, the second analyses
the “Highly reusable services” property and the last addresses both “Coarse-grained
granularity” and “Multi-party & business process orientation” properties.

7.2.1 Technological Decomposition

It is a common practice in legacy applications to mix together, in a kind of “architec-
tural spaghetti”, code that is concerned with database access, business logic, inter-
action with the user, presentation aspects, presentation flow, validations and excep-
tion handling, among others. For example, consider interactive COBOL programs:
Typically these are state-machine programs that interleave the dialog with the user
(menus, options, etc.) with the logic of the transactions triggered by their inputs.
Similar coding practices are found in client-server applications like Oracle Forms,
Java-Swing, VB applications, etc. The code listing in Figure 7.1 presents a simple
Java example that partially illustrates this issue. In this code fragment, if data ac-
cess and data processing code fails or no data is found, a message dialog appears to
the user prompting for subsequent actions. The PL/SQL code of Figure 7.2 refers



142 R. Heckel et al.

public void Transaction () {
try {

//Data access-processing code
fis = new FileInputStream ("Bank.dat");
... //fetch some data from file

}
catch (Exception ex) {
total = rows;
//Validations and respective UI actions
if (total == 0) {
JOptionPane.showMessageDialog (null, "Records File is Empty.\nEnter

Records First to Display.", "BankSystem - EmptyFile",
JOptionPane.PLAIN_MESSAGE);

btnEnable ();
}
else {
try {

//Data access-processing code
fis.close();

}
catch (Exception exp) {

...
}

}
}

}

Fig. 7.1. A simple “spaghetti” code example in Java. (We use spaghetti here in the sense of
tangling different concerns, not in the sense of having many goto statements)

PROCEDURE Confirm()

DECLARE

alert_button NUMBER;

BEGIN

alert_button := SHOW_ALERT(’alert_name’); IF alert_button =
ALERT_BUTTON1 THEN

program statements after clicking first button (OK button);
ELSE

program statements after clicking second button (Cancel button);
END IF;

END;

(a) Alert dialog code mixed with business processing

(b) Oracle Forms Alert dialog for
confirmation

Fig. 7.2. PL/SQL example



7 Architectural Transformations: From Legacy to Three-Tier and Services 143

to a similar scenario in Oracle Forms: The whole business processing code (in bold
in Figure 7.2a), which may concern complex calculations and updates of database
tables, is placed together with the code that manages the interaction with the user
via a simple alert dialog (Figure 7.2b) prompting for confirmation for performing
such a transaction. In such cases, since the business logic is tightly coupled with
the presentation logic, it is impossible to derive services directly. Therefore, what
is required is an appropriate decoupling of the code, such that “pure” business pro-
cesses are isolated as candidate services or service constituents. This technological
dimension of reengineering towards SOA amounts to an architectural transformation
towards a multi-tiered architecture.

7.2.2 Reusable Services

For an SOA initiative to realise its full potential a significant number of implemented
and deployed services should be actually invoked by more than one application. Ser-
vice repositories facilitate such reuse, but only a posteriori, i.e., after the reusable
services have been identified. From a reengineering perspective what is needed is
support for the a priori identification of reusable services across multiple functional
domains. Unfortunately, many legacy systems can be characterised as “silos”, i.e.,
consisting of independent applications where lots of functionality is redundant or
duplicated (cf. Chapter 2). Even worse, in many cases such redundancy and dupli-
cation also exists within the same application. Take, for instance, the example of
financial systems, where the interest calculation functionality is very often imple-
mented multiple times in different applications only to accommodate the needs of
the various departments that those applications are designed to serve. But even within
single applications such redundancy is a common practice, for instance between in-
teractive and batch parts. The ability to identify such redundant functionality and its
appropriate refactoring to reusable services is vital for the success of service-oriented
computing initiatives.

7.2.3 Functional Decomposition

Most legacy applications were developed with different architectural paradigms in
mind and typically consist of elements that are of a fine-grained nature, for instance
components with operations that represent logical units of work, like reading individ-
ual items of data. OO class methods are an example of such fine-grained operations.
The notion of service, however, is of a different, more coarse-grained nature. Ser-
vices represent logical groupings of, possibly fine-grained, operations, work on top
of larger data sets, and in general expose a greater range of functionality. In par-
ticular, services that are deployed and consumed over a network must exhibit such
a property in order to limit the number of remote consumer-to-provider roundtrips
and the corresponding processing cycles. In general, finding the right balance of
service granularity is a challenging design task that is also related with the service
reusability issue above. A good discussion on the granularity of services in systems
that follow the SOA paradigm can be found in [543], from where Figure 7.3 has been



144 R. Heckel et al.

Fig. 7.3. Service granularity across application tiers

adapted to show the various levels of service granularity. In general, it is clear that
the granularity of services has major implications for what concerns legacy reengi-
neering. As already mentioned at the beginning of the paragraph, most of the systems
currently in use were not built with service orientation in mind. Hence, existing ser-
vices at levels B and C of Figure 7.3 are not at the level of granularity required for
SOA.

The granularity problem is also associated with the fact that service-orientation
involves more than one party (at least one provider and one consumer), each with
varying roles and, if designed properly, must provide the capacity to support seam-
less end-to-end business processes (spanning long periods of time) between such
parties. This is a fundamental shift from previous architectural paradigms in which
the business processes workflow and rules are typically defined by one party only
and executed entirely on the IT system of this same party (e.g., a customer self-
service system). Legacy systems are not prepared for such a shift in paradigm: For
example, a legacy function that returns information from a single transaction was
not intended to be called several times in succession in order to obtain the larger
set of data that a service consumer may require. Even more recent systems, built on
top of web services technologies that expose services at level A in Figure 7.3 suf-
fer from poor granularity decisions and are unable to support the desired end-to-end
multi-party business processes. Hence, software reengineering solutions with respect
to service orientation are concerned with all 3 levels (A,B,C) of services depicted in
Figure 7.3. In particular, we are convinced that methods and tools are needed that
allow service designers to discover the allocation of domain functionalities into the
code structure so that legacy logical units of work can be appropriately composed
and reengineered in order to form services of desired granularity and of adequate
support for multi-party business processes.

In the following sections we are going to concentrate on the technical aspect
of the decomposition, rather than on questions of granularity and reusability. While



7 Architectural Transformations: From Legacy to Three-Tier and Services 145

the techniques described below are applicable to both technological and functional
decomposition we will use an example of technological decomposition to illustrate
them.

7.3 The Approach to Architectural Transformation

In this section we discuss methodological as well as formal aspects of the approach
to architectural redesign. Methodologically we are following the Horseshoe Model,
refining it to support automation and traceability. Formally our models are repre-
sented as graphs conforming to a metamodel with constraints while transformations
are specified by graph transformation rules.

7.3.1 Methodology

Our methodology consists of the three steps of reverse engineering, redesign, and
forward engineering, preceded by a preparatory step of code annotation. The sepa-
ration between code annotation and reverse engineering is made in order to distin-
guish the three fully automated steps of the methodology from the first one, which
involves input from the developer, making it semi-automatic. The steps are illustrated
in Figure 7.4.

1. Code Annotation

The source code is annotated by code categories, distinguishing its constituents
(packages, classes, methods, or fragments thereof) with respect to their foreseen as-
sociation to architectural elements of the target system, e.g., as GUI, Application
Logic, or Data.

Fig. 7.4. Methodology for transformation-based reengineering



146 R. Heckel et al.

The annotation is based on input by the developer, propagated through the code
by categorisation rules defined at the level of abstract syntax trees, and taking into
account information obtained through control and data flow analysis. The results may
have to be revised and the propagation repeated in several iterations, leading to an
interleaving of automatic and manual annotations.

The code categories to be used depend on the target architecture, which depends
on the technology paradigm but also on the intended functional decomposition of
the target system. Thus, depending on the type of decomposition to be performed,
we consider either technological categories, like user interface, application logic, and
data management, or functional ones, like the contribution to particular services for
managing accounts, customers, employees, etc.

2. Reverse Engineering

From the annotated source code, a graph model is created, whose level of detail
depends on the annotation. For example, a method wholly annotated with the same
code category is represented as a single node, but if the method is fragmented into
several categories, each of these fragments has to have a separate representation in
the model. The relation R1 between the original (annotated) source code and the
graph model is kept to support traceability. This step is a straightforward translation
of the relevant part of the abstract syntax tree representation of the code into its
graph-based representation.

The AST representation is more adequate, both from a performance point of view
and because of the amount of information present, to the annotation process. How-
ever, for the redesign step, the graph representation allows us to abstract from the
specific programming languages involved and to describe transformations in a more
intuitive way. Additionally, given that we only represent in graphs the elements that
we need according to the annotation, as explained in the previous paragraph, the
model to be transformed is simpler and the performance needs are not so demand-
ing.

The graph model is based on a metamodel which is general enough to accom-
modate both the source and the target system, but also all intermediate stages of the
redesign transformation. Additionally, this metamodel contains the code categories
that were available in the code annotation step. An example of graph model and
metamodel (type graph) is presented in Figure 7.5.

3. Redesign

The source graph model is restructured to reflect the association between code frag-
ments and target architectural elements. The intended result is expressed by an extra
set of constraints over the metamodel, which are satisfied when the transformation
is complete. During the transformation, the relation with the original source code is
kept as R2 in order to support the code generation in the next step.

This code category-driven transformation is specified by graph transformation
rules, conceptually extending those suggested by Mens et al. [365] to formalise refac-
toring by graph transformation. Indeed, in our approach, code categories provide the



7 Architectural Transformations: From Legacy to Three-Tier and Services 147

Fig. 7.5. Type and instance graph (top) and transformation rule (bottom)

control required to automate the transformation process, focussing user input on the
annotation phase. An example of graph transformation rule can be seen in Figure 7.5.

Rules as well as source, target and intermediate graphs are instances of the meta-
model. Additional target constraints are given to specify the success criteria of the
transformation.

4. Forward Engineering

The target code is either generated from the target graph model and the original
source code or obtained through the use of refactorings at code level. The result of
this step, the annotated code in relation with a graph model, has the same structure
as the input to Step 1. Hence the process can be iterated.

This is particularly relevant if the reengineering is directed towards service-
oriented systems. In this case the transformation has to address both the technological
and functional dimensions, e.g., transformation into a three-tier architecture should
be followed up by a decomposition into functional components (cf. Section 7.2). For
example, if the first iteration separates application logic and data from user interface
code, the latter can be removed (and substituted with the appropriate service infra-
structure) in a second round of transformation, thus exposing basic functionality as
a service.



148 R. Heckel et al.

7.3.2 Redesign by Graph Transformation

Next we detail the formalism used to specify redesign transformations and discuss
potential proof obligations for well-definedness of transformations in terms of their
relevance, consequences, and support for verification.

Metamodelling with Typed Graphs

Graphs are often used as abstract representations of models. For example in the UML
specification [398] a collection of object graphs is defined by means of a metamodel
as abstract syntax of UML models.

Formally, a graph consists of a set of vertices V and a set of edges E such that
each edge e in E has a source and a target vertex s(e) and t(e) in V , respectively.
Advanced graph models use attributed graphs [332] whose vertices and edges are
decorated with textual or numerical information, as well as inheritance between node
types [157, 365, 370].

In metamodelling, graphs occur at two levels: the type level (representing the
metamodel) and the instance level (given by all valid object graphs). This concept
can be described more generally by the concept of typed graphs [129], where a fixed
type graph TG serves as abstract representation of the metamodel. Its instances are
graphs equipped with a structure-preserving mapping to the type graph, formally
expressed as a graph homomorphism. For example, the graph in the top right of
Figure 7.5 is an instance of the type graph in the top left, with the mapping defined
by type(o) = C for each instance node o : C.

In order to define more precisely the class of instance graphs, constraints can
be added to the type graph expressing, for example, cardinalities for in- or outgoing
edges, acyclicity, etc. Formalising this in a generic way, we assume for each type
graph T G a class of constraints Constr(TG) that could be imposed on its instances.
A metamodel is thus represented by a type graph T G plus a set C ⊆Constr(TG) of
constraints over TG. The class of instance graphs over T G is denoted by Inst(TG)
while we write Inst(TG,C) for the subclass satisfying the constraints C. Thus,
if (T G,C) represents a metamodel with constraints, an instance is an element of
Inst(TG,C).

The transformations described in this paper implement a mapping from a general
class of (potentially unstructured) systems into a more specific one of three-tier ap-
plications. This restriction is captured by two levels of constraints, global constraints
Cg interpreted as requirements for the larger class of all input graphs, also serving as
invariants throughout the transformation, and target constraints Ct that are required
to hold for the output graphs only. Global constraints express basic well-formedness
properties, like that every code fragment is labelled by exactly one code category and
part of exactly one component. The corresponding target constraint would require
that the component containing the fragment is consistent with the code category.

Rule-Based Model Transformations

After having defined the objects of our transformation as instances of type graphs sat-
isfying constraints, model transformations can be specified in terms of graph trans-



7 Architectural Transformations: From Legacy to Three-Tier and Services 149

formation. A graph transformation rule p : L→ R consists of a pair of T G-typed
instance graphs L,R such that the union L∪R is defined. (This means that, e.g., edges
which appear in both L and R are connected to the same vertices in both graphs, or
that vertices with the same name have to have the same type, etc.) The left-hand side
L represents the pre-conditions of the rule while the right-hand side R describes the
post-conditions. Their intersection L∩R represents the elements that are needed for
the transformation to take place, but are not deleted or modified.

A graph transformation from a pre-state G to a post-state H, denoted by G
p(o)
=⇒ H,

is given by a graph homomorphism o : L∪R→ G∪H, called occurrence, such that

• o(L) ⊆ G and o(R)⊆ H, i.e., the left-hand side of the rule is embedded into the
pre-state and the right-hand side into the post-state, and

• o(L \R) = G \H and o(R \ L) = H \G, i.e., precisely that part of G is deleted
which is matched by elements of L not belonging to R and, symmetrically, that
part of H is added which is matched by elements new in R.

Rule moveCode in the lower part of Figure 7.5 specifies the relocation of a code
fragment (package, class, method, etc.) from one component to another one based
on its code category. Operationally, the application of a graph transformation rule
is performed in three steps. First, find an occurrence of the left-hand side L in the
current object graph. Second, remove all the vertices and edges which are matched
by L\R. In our example this applies to the composition edge from c0:Component to
f:CodeFragment. Third, extend the resulting graph with R \L to obtain the derived
graph, in our case adding a composition edge from c1:Component to f:CodeFragment.

Altogether, a transformation system is specified by a four-tuple

T = (T G,Cg,Ct ,P)

consisting of a type graph with global and target constraints, and a set of rules P.
A sequence like s is consistent if all graphs Gi satisfy the global constraints Cg.

We write G
√

=⇒H for a complete and consistent transformation sequence from G to
H in T .

Well-Definedness and Correctness of Transformations

Besides offering a high level of abstraction and a visual notation for model transfor-
mations, one advantage of graph transformations is their mathematical theory, which
can be used to formulate and verify properties of specifications. Given a transforma-
tion system T = (T G,Cg,Ct ,P) the following properties provide the ingredients for
the familiar notions of partial and total correctness.

Global Consistency. All rule applications preserve the global invariants Cg, i.e.,

for every graph G ∈ Inst(TG,Cg) and rule p ∈ P, G
p(o)
=⇒ H implies that H ∈

Inst(TG,Cg).
Typical examples of global consistency conditions are cardinalities like each

Code Fragment is part of exactly one Structural Feature. While such basic condi-
tions can be verified statically [227], more complex ones like the (non-)existence of



150 R. Heckel et al.

certain paths or cycles may have to be checked at runtime. This is only realistic if,
like in the graph transformation language PROGRES [456], database technology can
be employed to monitor the validity of constraints in an incremental fashion. Oth-
erwise runtime monitoring can be used during testing and debugging to identify the
causes of failures.

Partial Correctness. Terminating transformation sequences starting out from graphs
satisfying the global constraints should end in graphs satisfying the target constraints.

A transformation sequence s = (G0
p1(o1)=⇒ ··· pn(on)

=⇒ Gn) in T is terminating if there is

no transformation Gn
p(o)
=⇒ X extending it any further. The system is partially correct

if, for all Gs ∈ Inst(TG,Cg), Gs
∗=⇒Gt terminating implies that Gt ∈ Inst(TG,Ct).

To verify partial correctness we have to show that the target constraints are sat-
isfied when none of the rules is applicable anymore. In other words, the conjunction
of the negated preconditions of all rules in P and the global constraints imply the
target constraints Ct . The obvious target constraint with respect to our single rule
in Figure 7.5 should state that every Code Fragment is part of a Component of the
same Code Category as the Fragment, which is obviously true if the rule is no longer
applicable.

To verify such a requirement, theorem proving techniques are required which are
hard to automate and computationally expensive. On the other hand, since it is only
required on the target graphs of transformations, the condition can be checked on
a case-by-case basis.

Total Correctness. Assuming partial correctness, it remains to show termination, i.e.,

that that there are no infinite sequences G0
p1(o1)=⇒ G1

p2(o2)
=⇒ G2) · · · starting out from

graphs G0 ∈ Inst(TG,Cg) satisfying the global constraints.
Verifying termination typically requires to define a mapping of graphs into some

well-founded ordered set (like the natural numbers), so that the mapping can be
shown to be monotonously decreasing with the application of rules. Such a progress
measure is difficult to determine automatically. In our simple example, it could be
the number of Code Fragments in the graph not being part of Components with the
same Code Category. This number is obviously decreasing with the application of
rule moveCode, so that it would eventually reach a minimum (zero in our case) where
the rule is not applicable anymore.

Uniqueness. Terminating and globally consistent transformation sequences starting

from the same graph produce the same result, that is, for all G∈ Inst(T G,Cg), G
√

=⇒
H1 and Gs

√
=⇒ H2 implies that H1 and H2 are equal up to renaming of elements.

This is a property known by the name of confluence, which has been extensively
studied in term rewriting [60]. It is decidable under the condition that the transfor-
mation systems is terminating. The algorithm has been transferred to graph trans-
formation systems [419] and prototypical tool support is available for part of this
verification problem [487].

It is worth noting that, like with all verification problems, a major part of the ef-
fort is in the complete formal specification of the desirable properties, in our case the



7 Architectural Transformations: From Legacy to Three-Tier and Services 151

set of global constraints Cg and the target constraints Ct . Relying on existing editors
or parsers it may not always be necessary (for the execution of transformations) to
check such conditions on input and output graphs, so the full specification of such
constraints may represent an additional burden on the developer. On the other hand
they provide an important and more declarative specification of the requirements for
model transformations, which need to be understood (if not formalised) in order to
implement them correctly and can play a role in testing model transformations.

7.4 Implementation and Example

In this section we describe an implementation of our methodology, demonstrating
it on an example. This implementation addresses the technological decomposition
(cf. Section 7.2) that is one of the steps to achieve SOA. The four-step methodology
presented and formalised in Section 7.3 is instantiated for transforming Java 2-tier
applications to comply with a 3-tier architecture.

We present the metamodel definition and the four steps as applied to a simple
example, a Java client-server application composed of twenty one classes and over
three thousand lines of code (LOC). The example was chosen to illustrate the kind of
entanglement between different concerns that is typically found in the source code of
legacy applications. For presentation purposes, in this chapter we will focus on a cou-
ple of methods of one of the classes only. Both categorisation and transformation are
based on a metamodel describing the source and target architectural paradigms.

7.4.1 Metamodel

The metamodel is composed of two parts, detailing code categories and the architec-
tural and technology paradigms used. Its definition is a metalevel activity, preceding
the actual reengineering process. The same metamodel (or after slight changes) can
be used in different projects where the source and target architectural and technology
paradigms are similar.

Code Categories

As stated in Section 7.3, code categories are derived from the target architectural
and technology paradigm. Different models can be used for the categories. We have
opted for the one presented in Figure 7.6 and explained next, together with our in-
stantiation.

In the chosen model, code categories can be divided in two types:

• components consisting of a concern
• connectors representing links between components

Concerns are conceptual classifications of code fragments that derive from their
purpose, i.e., the tiers found in 3-tier architectures:

• User Interface (UI)



152 R. Heckel et al.

Fig. 7.6. Code categories model for 3-tier

• Business Logic (BL)
• Data

The connectors are one-way (non-commutative) links between different concerns
and include:

• Control: UI to BL
• Control: BL to UI
• Control: BL to Data
• Control: Data to BL

This model is detailed enough to capture the distinctions required by the target ar-
chitecture; other architectural paradigms might require different categories and more
complex ways to represent them. It may be even desirable in some situations to allow
multiple categories for the same element. In Figure 7.6, components and connectors
are represented by “ComponentType” and “ConnectorType”, respectively, in order
not to use the names attributed to architectural concepts. We have both “Compo-
nentType” and “Concern” for reusability issues given that the first is likely to be
extended for certain types of target architectures. For instance, if our goal was to
achieve a rich-client 2-tier architecture, then “ComponentType” would contain also
a “Role” concept whose values would be “Definition”, “Action” and “Validation”.

Architectural and Technology Paradigm

The next metalevel activity consists in the definition of a model for program repre-
sentation which, like the categories, may be shared with other instantiations of the
methodology, either as source or target. As we are going to take advantage of graph
transformation rules in the transformation specification, we developed the model in
the form of a type graph.

The model shown in Figure 7.7 has the goal of being flexible enough so it can be
instantiated by any OO application regardless of the specific technology. This way
there is a better chance that it can be reused for different instantiations of our method-
ology. The type graph is an extension of the one presented by Mens et al. in [368]
in order to introduce classification attributes and the notion of code blocks, needed
because the code categorisation requires a granularity lower than that of methods.



7 Architectural Transformations: From Legacy to Three-Tier and Services 153

CodeFragment elements are physical pieces of code which implies that they belong
only to one StructuralElement (component or connector). Additionally, we have in-
cluded the concepts of Component and Connector that allow us to represent the map-
ping between the programming language elements and the architecture level. Note
that the names for nodes ClassType and PackageType were defined as such, instead
of Class and Package, to avoid collisions with Java reserved keywords, since we
generate Java code from the model in this implementation.

During a transformation, we may have components and connectors that belong
either to the source or the target architecture. For instance, after some transformation
rules have been applied components of the source and target architectures may co-
exist in the model. The concept of Stage was added to cope with those intermediate
phases.

Fig. 7.7. Type graph for the OO paradigm



154 R. Heckel et al.

Since it is necessary to keep traceability to the code in order to facilitate the
transformation/generation process, a way to associate it to the type graph had to be
considered. Given that we want to be as language-independent as possible we did
not link the type graph directly to the source code. Instead, we used an attribute
(ASTNodeID) to associate some of its elements to the Abstract Syntax Tree (AST)
of the program. ASTs are very common representations of source code and, in our
case, allow for a loose integration between the model and the programming language.

7.4.2 Code Annotation

The annotated source code is obtained through an iteration of manual input and the
application of categorisation rules, based on the categories defined in the metamodel.

Categorisation Rules

The rules used in the categorisation process are applied over the AST rather than
based on the graph-based presentation. The following examples are presented infor-
mally.

1. Statements that consist of variable/attribute declarations for a type that is known
to belong to a certain concern, will be categorised as belonging to the same con-
cern.
Example: the Java statement ’private JLabel lbNo;’ is categorised as UI
Definition because it is known that JLabel belongs to the UI concern;

2. Assignments to variables/attributes that are known to belong to a certain concern
and whose right-hand side only includes the use of elements (e.g. variables or
method invocations) that belong to the same concern, will have that concern.
Example: the Java statement ’lbNo = new JLabel ("Account No:");’ is cat-
egorised as UI Definition because it is known that the attribute lbNo and the
JLabel method/constructor invocation belong to the UI concern;

3. Variables/attributes/parameters definition/assignment that are used to store val-
ues directly from Data Action methods/functions belong to the Data Action cat-
egory.
Example: the Java statement ’records[rows][i] = dis.readUTF();’ be-
longs to the Data Action because the readUTF operation is known to belong
to that category.

The same rule might have to be applied multiple times. The reason for this is that
the application of a rule can enable the application of another. An example for this
can be given using rule number 2: if a method invocation that exists in the right-hand
side of the assignment is not yet categorised, the rule will not be applied. However,
after some other rule categorises the method, rule number 2 can be applied. The
transformation stops if no more rules are applicable or the code is completely cate-
gorised. Given that our rules do not delete previous categorisations nor change them,
the transformation is guaranteed to terminate. For pattern matching and rule applica-
tion over ASTs we can use the L-CARE tool, which provides a scalable solution to
program transformation problems.



7 Architectural Transformations: From Legacy to Three-Tier and Services 155

Example

As mentioned above, the original source code is categorised considering the intended
target architecture. In Figure 7.8 we present the code that has been previously used to
explain the implementation of our methodology. The code is annotated using simple
comments.

In this paragraph we explain how the categorisation was achieved for some of
the statements of this example. The first three attribute declarations are categorised
as UI Definition based on the first categorisation rule previously presented, since
it is known that JLabel, JTextField and JButton belong to the UI concern in Java.
The assignment to array records is categorised as Data Action based on rule num-
ber 3 which states that variables assignments used to store values from Data Action
functions belong to the same category, and the readUTF() operation belongs to this
category. This enables the categorisation of the assignment of dis as Data Definition
through rule 2 since this variable is used next in Data Action code.

The need of several iterations of the categorisation process is now clear. In the
first iteration the assignment of dis could not be categorised, but after categorising
some of the following statements as Data Action, a second iteration is able to identify
this statement as Data Definition.

7.4.3 Reverse Engineering

After having annotated the code, the process of transforming it into a graph model is
straightforward. Its level of granularity is controlled by the results of the categorisa-
tion and the needs of the transformation process.

Program Representation

The graph model together with its traceability relation to the original code constitutes
the program representation. This is an instance of the type graph previously defined
and shown in Figure 7.7, where the code is categorised and its dependencies are
defined. An example can be seen in Figure 7.10. The value “*” for the attribute
“name” of the “concern” means that the element contains more than one concern.
For example, the “populateArray” method contains three code blocks that include
the concerns “UI” and “Data”. This graph is obtained from the AST presented in
Figure 7.9b. The corresponding source code can be seen in Figure 7.9a.

In this section only some of the elements of the Class “DepositMoney” are be-
ing presented, namely the attribute “lbNo” and the methods “txtClear” and “popu-
lateArray”. The attribute “lbNo” corresponds to a label that exists in the UI—it is
the label that states ’Account No:’ before the text box that prompts for the customer
account number to which the deposit money operation is being done. The method
“txtClear” has the goal of clearing all the input fields for the deposit money window.
The “populateArray” method is called each time it is necessary to refresh the data in
the window.



156 R. Heckel et al.

\\concern = *
package General;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Deposit Money extends JInternalFrame implements ActionListener {
\\concern = UI
private JLabel lbNo, lbName, lbDate, lbDeposit;
private JTextField txtNo, txtName, txtDeposit;
private JButton btnSave, btnCancel;
\\concern = *
void populateArray () {
\\connectorType = Control UI -> BL

try {
\\concern = Data

fis = new FileInputStream ("Bank.dat");
dis = new DataInputStream (fis);

\\concern = Data
while (true) {

for (int i = 0; i < 6; i++) {
records[rows][i] = dis.readUTF();

}
rows++;

}
\\connectorType = Control UI -> BL

}
catch (Exception ex) {

total = rows;
if (total == 0) {

\\concern = UI
JOptionPane.showMessageDialog (null, "Records File is Empty.

\nEnter Records First to Display.", "BankSystem
- EmptyFile", JOptionPane.PLAIN_MESSAGE);

btnEnable ();
\\connectorType = Control UI -> BL

}
else {

\\concern = Data
try {

dis.close();
fis.close();

}
catch (Exception exp) { }

\\connectorType = Control UI -> BL
}

}
\\concern = *
}
\\concern = UI
void txtClear() {

txtNo.setText("");
txtName.setText("");
txtDeposit.setText("");
txtNo.requestFocus();

}

Fig. 7.8. Source code categorised

Example

The annotated source code previously presented is translated, in a straight-forward
way, into the source graph model (cf. Figure 7.10). Naturally this graph has to con-
form to the type graph in Figure 7.7 in order for the transformation to be possible.



7 Architectural Transformations: From Legacy to Three-Tier and Services 157

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
// ASTNode0001
public class DepositMoney

extends JInternalFrame
implements ActionListener {

private JLabel lbNo /* ASTNode0002 */,
lbName, lbDate,
lbDeposit; // ASTNode0010

private JTextField txtNo, txtName,
txtDeposit;

private JButton btnSave, btnCancel;
// (...)
// ASTNode0003
void populateArray () {
// ASTNode0005
try {
fis = new FileInputStream ("Bank.dat");
dis = new DataInputStream (fis);
//Loop to Populate the Array.
while (true) {

for (int i = 0; i < 6; i++) {
records[rows][i] = dis.readUTF();

}
rows++;

}
}
catch (Exception ex) {
// ASTNode0006
total = rows;
if (total == 0) {

JOptionPane.showMessageDialog (null,
"Records File is Empty.\nEnter

Records First to Display.",
"BankSystem - EmptyFile",

JOptionPane.PLAIN_MESSAGE);
btnEnable ();

}
// ASTNode0007
else {

try {
dis.close();
fis.close();

}
catch (Exception exp) { }

}
}

}
//(...)
// ASTNode0004
void txtClear() {
txtNo.setText("");
txtName.setText("");
txtDeposit.setText("");
txtNo.requestFocus();

}
//(...)
public void editRec () {
//(...)

}
//(...)

}

(a) Example source code

PACKAGE: null
IMPORTS(3)
TYPES(1)
TypeDeclaration
ASTNode0001
type binding: DepositMoney
BODY_DECLARATIONS(6)
FieldDeclaration
ASTNode0010
TYPE
SimpleType
type binding:
javax.swing.JLabel

FRAGMENTS(4)
VariableDeclarationFragment
ASTNode0002
variable binding:
DepositMoney.lbNo

(...)
MethodDeclaration
ASTNode0003
method binding:
DepositMoney.populateArray()
BODY
TryCatchStatement
ASTNode0005
TryStatement
EXPRESSION
EXPRESSION
WhileStatement
CatchStatement
ASTNode0006
EXPRESSION
IfStatement
THEN_STATEMENT
ASTNode0007
ELSE_STATEMENT
TryCatchStatement
(...)

MethodDeclaration
ASTNode0004
method binding:
DepositMoney.txtClear()
(...)

(b) Example AST

Fig. 7.9. Source code and AST extracts from a Java sample application



158 R. Heckel et al.

Fig. 7.10. Graph representing a subset of a Java sample application

For this translation one can parse the annotated AST and create the correspond-
ing instance of the type graph, which will next be used as the start graph for the
architectural redesign.

7.4.4 Redesign

For transforming the graph model we create transformation rules that, applied to the
source model, yield a model complying to the target constraints.

Transformation Specification

A sample transformation rule is given in Figure 7.11.
Its specification, according to the graph transformation rules fundaments pre-

viously formalised and explained, is defined visually in Tiger EMF Transforma-
tion [488]. This is an Eclipse plugin for model transformation that allows to design
rules and apply them to an instance graph.



7 Architectural Transformations: From Legacy to Three-Tier and Services 159

(a) Left-Hand Side

(b) Right-Hand Side

Fig. 7.11. Move Method UI transformation rule

The approach is similar to refactoring by graph transformation [370], except for
the use of code categories for controlling the application. More generally, refactor-
ing rules may not be enough for all redesign transformations because sometimes it
is necessary to apply changes that are not behaviour preserving. An example is the
transformation of a legacy client-server system into a web-based application. The UI
has to be changed because of the differences in the user communication paradigm
between these different architectural styles. For instance, in the legacy application
we may have a feature that performs a database query and then asks a question to



160 R. Heckel et al.

the user, waits synchronously for the answer and then, based on the user input, up-
dates a row in the database. To transform this code into a web-based system, it is
not enough to separate the UI from the data access layer. Due to the way that re-
quests are processed on the web, we have to transform the UI in such a way that the
communication will be asynchronous.

In order to ensure that the target model complies with the desired architecture, it
is possible to define constraints over the metamodel that correctly reflect the archi-
tectural paradigm. For instance, in 3-tier applications:

• there should be no UI and Business Logic methods in the same class
• no direct links from UI to Data allowed
• ...

Transformation Execution

The example graph for the BankSystem application seen previously (Figure 7.10) is
a candidate for the application of the Move Method UI transformation. This trans-
formation is an example of a rule that contributes to the technological layering of the
application.

As we can see from the transformation rule, this graph has an occurrence of the
LHS. As a result, we can apply the rule, obtaining the graph shown in Figure 7.12.

The method “txtClear” was moved from the class “DepositMoney” to “Deposit-
MoneyUI”, a class belonging to the UI concern.

The execution of transformation rules can either be based on a tool that interprets
the transformation specification, or a manually developed transformation program
using the set of rules as requirement specification. We are presently using the code
generation facility of the Tiger tool.

Example

At this stage we have a graphical representation of the categorised source code con-
forming to the type graph. Having designed the transformation rules in Tiger EMF
we can generate the transformation code automatically.

As an example, when we apply the transformation rule Move Method UI illus-
trated in Figure 7.11 to the start graph of Figure 7.10, we obtain the representation
shown in Figure 7.12.

If we keep applying appropriate transformation rules, this graph will be trans-
formed until the representation achieved complies to the intended target model. The
rule Move Variable UI can transfer variable lbNo to the class DepositMoneyUI. Ap-
plying the rules Move Code Block Data, followed by Move Code Block UI and
finally Move Code Block Data again, we can completely transform the source graph
into one that conforms to the constraints defined for the target model. This graph
is presented in Figures 7.13 and 7.14. The size of this graph made us divide it into
two figures to render it readable. The ellipses show the connections between the two
Figures. The first shows the architecture level and includes packages. The second in-
cludes all the information from the code block level until class level. For transform-
ing the whole application from 2-Tier to 3-Tier, 26 transformation rules are needed.



7 Architectural Transformations: From Legacy to Three-Tier and Services 161

Fig. 7.12. Graph representing a subset of the BankSystem sample application after the exe-
cution of rule Move Method UI. {} represents new AST nodes identifiers created during the
transformation process

Some of these rules, namely the ones that move code blocks, are quite more complex
than Move Method UI, which was selected to be presented for readability purposes.

7.4.5 Forward Engineering

The target code can be achieved using two alternative strategies discussed below.
However, we are still exploring both of them to see their practicality, challenges and
limitations.

1. During transformation execution, a log of the applied rules is kept, to be repli-
cated at the code level using a standard refactoring tool. This requires to asso-
ciate each graph transformation rule to one or more standard code refactorings.
Depending on the complexity of the rules or the specificities of the situation, tra-
ditional refactorings may not be enough, in which case it is necessary to develop
more complex code level transformations.



162 R. Heckel et al.

Fig. 7.13. Graph representing a subset of the BankSystem sample application after being trans-
formed (Architecture and packages). The ellipses show the connections with Figure 7.14

2. Alternatively we can generate the code directly, using the target program repre-
sentation and the links to the original AST. The code can be generated top-down,
copying most of it from the original source code to the new structure and gen-
erating the necessary “extra code”. This “extra code” can be, for example, the
code that changes method invocations when the called method has moved to
a new class.

Example

Finally the code complying to the desired architecture can be generated. For this
purpose, we use the target model previously generated as well as the traceability
relation with the original source code. In this process the code is refactored to be
coherent with the model and glue code vital for the preservation of the application’s
functionality is created.

A sample of the code transformed is presented in Figures 7.15, 7.16, 7.17 and
7.18. The code is not integrally presented for simplicity reasons.

7.5 Related Work

Three areas of research constitute relevant work related to the approach presented
in this chapter: program representation/reverse engineering, program transformation
and code generation. However, the work in these areas is evolving mostly indepen-
dently, i.e., not as part of an integrated reengineering methodology as in our case.
We also present recent work that addresses specifically reengineering to SOA.



7 Architectural Transformations: From Legacy to Three-Tier and Services 163

Fig. 7.14. Graph representing a subset of the BankSystem sample application after being trans-
formed (from code block level until class level). The ellipses show the connections with Figure
7.13

Regarding the area of source code representation and reverse engineering, we
briefly describe a few examples that show how this issue is dealt with in different
contexts.

The Dagstuhl Middle Model (DMM) [325] was developed to solve interoper-
ability issues of reverse engineering tools. Like our approach, it keeps traceability to
the source code. The DMM is composed by sub-hierarchies that include an abstract
view of the program and a source code model. The chosen way to relate these two is
via a direct link. The Fujaba (From UML to Java And Back Again) tool suite [395]
provides design pattern [190] recognition. The source code representation used for
that process is based on an Abstract Syntax Graph (ASG). Another representation is
put forward with the Columbus Schema for C++ [173]. Here an AST conforming to
the C++ model/schema is built, and a higher level semantic information is derived
from types. The work of Ramalingam et al., from IBM research, in [426], addresses



164 R. Heckel et al.

package SoftwareEvolutionBookChapter.ControlUIBL;

import SoftwareEvolutionBookChapter.UI.DepositMoneyUI;
import SoftwareEvolutionBookChapter.BL.DepositMoneyBL;

public class DepositMoneyUIBL {

private int rows = 0;
private int total = 0;

DepositMoneyUI depositMoneyUI = new DepositMoneyUI();
DepositMoneyBL depositMoneyBL = new DepositMoneyBL();

void populateArrayUIBL() {
try {

depositMoneyBL.populateArrayBL1(rows);
} catch (Exception e) {

rows = depositMoneyBL.getRows();
total = rows;
if (total == 0) {

depositMoneyUI.populateArrayUI();
} else {

depositMoneyBL.populateArrayBL3();
}

}
}

}

Fig. 7.15. Code Transformed (Package ControlUIBL)

the reverse engineering of OO data models from programs written in weakly-typed
languages like Cobol. In their work, the links between the model and the code are
represented in a reference table. This table establishes the link between each model
element and the line of code having no intermediate representation. One major dif-
ference between our methodology and the above approaches is that ours uses a cate-
gorisation step that will make possible the automated transformation to a new archi-
tectural style.

The ARTISAn framework, described by Jakobac, Egyed and Medvidovic in [250],
like our approach, categorises source code. It uses an iterative user-guided method
to achieve this. The code categories used are: “processing”, “data” and “communi-
cation”. The approach differs from ours in several aspects. Firstly, the goal of the
framework is program understanding and not the creation of a representation that is
aimed to be used as input for the transformation part of a reengineering methodology.
Another important difference is that in ARTISAn the categorisation process (called
“labeling”) is based in clues that result in the categorisation of classes only. In our
approach we need, and support, the method and code block granularity levels.

The next related area is program transformation, which can occur in different
levels of abstraction. The source-to-source level of transformation is the most es-
tablished one, both in research and in industrial implementations. There are several
research ideas that led to successful industrial tools. Examples from research include
TXL [126] and ASF+SDF [513]. DMS from Semantic Designs [46] and Forms2Net
from ATX Software [12] are program transformation tools being successfully applied
in the industry. Transformations at the detailed design level, due to its applications as



7 Architectural Transformations: From Legacy to Three-Tier and Services 165

package SoftwareEvolutionBookChapter.UI;

import javax.swing.JOptionPane;
import javax.swing.JTextField;

public class DepositMoneyUI {

private JTextField txtNo, txtName, txtDeposit;
private int rows = 0;

public int getRows() { return rows; }

public void populateArrayUI() {
JOptionPane.showMessageDialog (null, "Records File is Empty.\n

Enter Records First to Display.",
"BankSystem - EmptyFile", JOptionPane.PLAIN_MESSAGE);

btnEnable ();

}

//Function use to Clear all TextFields of Window.
void txtClear () {

txtNo.setText ("");
txtName.setText ("");
txtDeposit.setText ("");
txtNo.requestFocus ();

}

void btnEnable() {
// ...

}

}

Fig. 7.16. Code Transformed (Package UI)

maintenance techniques, have an increasing interest that is following the same path.
Practices such as refactoring [183] are driving the implementation of functionalities
that automate detailed design level transformations. These are mainly integrated in
development environments as is the case of Eclipse [494] and IntelliJ [255]. How-
ever, there is still a lot of ongoing research in this area, for instance, in the determi-
nation of dependencies between transformations [368].

Work in the area of architecture transformation is broad and diverse. It includes
a few works based on model transformation, automated code transformation, or
graph transformation and re-writing, which are closely related to the work in this
chapter. The approaches found in the literature vary in three main things: first, the
levels of abstraction used for describing the system (architecture models only or in-
terlinked architecture and implementation models), second, the way the architecture
models are represented and third, the method and tools used for representing and ex-
ecuting architecture transformation rules. Available case studies are either only con-
cerned with the transformation of high level architecture representations or limited
to very specific source and target architectures and programming languages combi-
nations.

Kong et al. [288] developed an approach for software architecture verification
and transformation based on graph grammar. First, the approach requires translating



166 R. Heckel et al.

package SoftwareEvolutionBookChapter.BL;

import SoftwareEvolutionBookChapter.Data.DepositMoneyData;

public class DepositMoneyBL {

DepositMoneyData depositMoneyData = new DepositMoneyData();

public int getRows() { return depositMoneyData.getRows(); }

public void populateArrayBL1(int rows) throws Exception {
depositMoneyData.populateArrayData1(rows);

}

public void populateArrayBL3() {
depositMoneyData.populateArrayData3();

}

}

Fig. 7.17. Code Transformed (Package ControlBLData)

package SoftwareEvolutionBookChapter.Data;

import java.io.DataInputStream;
import java.io.FileInputStream;

public class DepositMoneyData {

private FileInputStream fis;
private DataInputStream dis;

private String records[][] = new String [500][6];
private int rows = 0;

public int getRows() { return rows; }

public void populateArrayData1(int p_rows) throws Exception {
rows = p_rows;
fis = new FileInputStream ("Bank.dat");
dis = new DataInputStream (fis);
while (true) {

for (int i = 0; i < 6; i++) {
records[rows][i] = dis.readUTF();

}
rows++;

}
}

public void populateArrayData3() {
try {

dis.close();
fis.close();

}
catch (Exception exp) { }

}

}

Fig. 7.18. Code Transformed (Package ControlData)



7 Architectural Transformations: From Legacy to Three-Tier and Services 167

UML diagrams describing the system architecture (or acquiring a description for
it) to reserved graph grammar formalism (RGG). Then, the properties of the RGG
description can be checked automatically. Also, automatic transformation can also be
applied but only at the architecture description level and not at the implementation
level.

Ivkovic and Kontogiannis [244] proposed a framework for quality-driven soft-
ware architecture refactoring using model transformations and semantic annotations.
In this method, first, conceptual architecture view is represented as a UML 2.0 profile
with corresponding stereotypes. Second, instantiated architecture models are anno-
tated using elements of the refactoring context, including soft-goals, metrics, and
constraints. A generic refactoring context is defined using UML 2.0 profiles that
includes “semanticHead” stereotype for denoting the semantic annotations. These
semantic annotations are related to system quality improvements. Finally, the ac-
tions that are most suitable for the given refactoring context are applied after being
selected from a set of possible refactorings. Transformations in this method occur at
the conceptual architecture view level using Fowler [183] refactorings.

Fahmy et al. [165] used graph rewriting to specify architectural transformations.
They used PROGRES tool [70] to formulate executable graph-rewriting specifica-
tions for various architectural transformations. They represent architecture using di-
rected typed graphs that represent system hierarchy and component interaction. The
assumption is that the architecture is extracted using some extraction tool. Their work
is at the architecture description level and no actual transformation is performed on
the code.

Unlike the three previous works, the approach of Carrière et al. [106] implements
architectural transformations at the code level using automated code transformation.
Their first step is reconstructing the existing software architecture by extracting ar-
chitecturally important features from the code and aggregating the extracted (low-
level) information into an architectural representation. The next step is defining the
required transformations. In this work, they were interested in transforming the con-
nectors of a client-server application to separate the client and server sides as much
as possible and reduce their mutual dependence. Next, the Reasoning SDK (formerly
Refine/C), which provides an environment for language definition, parsing and syn-
tax tree querying and transformation, is used to implement the required connector
transformations at code level on the AST of the source system. The major difference
from our work relies on the fact that we use code categorisation to relate the original
source code with the intended target architecture. We also transform at model level
while this approach does it at code level.

Regarding code generation, there is a significant number of research work and
tools available. A comprehensive list is already too long to specify in the context of
this chapter so we only name a few. The already mentioned Fujaba tool suite supports
the generation of Java sourcecode from the design in UML resulting in an executable
prototype. The Eclipse Modeling Framework (EMF) [495] can generate Java code
from models defined using the Ecore meta-model. This has a number of possible
uses such as to help develop an editor for a specific type of models. UModel [8],
from Altova, can generate C# and Java source code from UML class or component



168 R. Heckel et al.

diagrams. In the Code Generation Network website there is a very extensive list of
available tools [120].

Work in the area of reengineering to SOA is new. It primarily focuses on iden-
tifying and extracting services from legacy code bases and then wrapping them for
deployment on a SOA. A key assumption in this area is that an evaluation of the
legacy system will be conducted to assess if there are valuable reusable and reli-
able functionalities embedded that are meaningful and useful to be exposed in the
service-oriented environment and that are fairly maintainable. Sneed [465] presents
a tool supported method for wrapping legacy PL/I, COBOL, and C/C++ code behind
an XML shell which allows individual functions within the programs, to be offered
as web services to any external user. The first step is identifying candidate func-
tionality for wrapping as a web service. The second step is locating the code of the
functionality, with the aid of reverse engineering tools. The third step is extracting
that code and reassembling it as a separate module with its own interface. This is
done by copying the impacted code units into a common framework and by placing
all of the data objects they refer to into a common data interface. The fourth step is
wrapping the component extracted with a WSDL interface. The last step is linking
the web service to overlying business processes by means of a proxy component.

A lighter code-independent approach was developed by Canfora et al. [100],
which wraps only the presentation layer of legacy form-based user interfaces (and
not the code) as services. In form-based user interfaces, the flow of data between
the system and the user is described by a sequence of query/response interactions or
forms with fixed screen organisation. There wrappers interacts with the legacy sys-
tem as though it were a user, with the help of a Finite State Automata (FSA) that
describes the interaction between the user and the legacy system. Each use case of
the legacy system is described by a FSA and is reengineered to a web service. The
FSA states correspond to the legacy screens and the transitions correspond to the
user actions performed on the screen to move to another screen. The wrapper derives
the execution of the uses cases on the legacy system by providing it with the needed
flow of data and commands using the FSA of the relevant use case. Of particular rel-
evance to our work is the service identification and extraction task, which is closely
related to the vertical dimension mentioned earlier in this chapter, but not reported
here. This task is essential for any code-wrapping approach to reengineering to SOA.
Some works focus primarily on this aspect. For example, Del Grosso et al. [145] pro-
posed an approach to identify, from database-oriented applications, pieces of func-
tionality to be potentially exported as services. The identification is performed by
clustering, through formal concept analysis, queries dynamically extracted by ob-
serving interactions between the application and the database. Zhang et al. [565]
proposed an approach for extracting reusable object-oriented legacy code segments
with combined formal concept analysis and slicing techniques for service integration.
Firstly, an evaluation of legacy systems is performed to confirm the applicability of
this approach and to determine other re-engineering activities. Secondly, the legacy
system is decomposed into component candidates via formal concept analysis. Static
program slicing is applied to further understand these component candidates. Then,
component candidates are extracted, refined and encapsulated.



7 Architectural Transformations: From Legacy to Three-Tier and Services 169

7.6 Conclusion

Most of the ongoing research in the context of automated software transformation, as
well as existing industrial tools, focus on textual and structural transformation tech-
niques that intend to solve very specific problems within well defined domains (e.g.
program restructuring, program renovation, language-platform migration). Our ex-
perience indicates that such techniques fall short of addressing, in a systematic way,
the complexity of the architecture-based transformation problem. In practice, when
such a problem arises, these approaches have to be combined in a trial and error fash-
ion, the success of which often depends on the experience of the reengineering team
and on the specific problem at hand. On the other hand, there exist techniques and
tools that work well at the architectural level, but with the main goal of document-
ing and visualising the architecture of applications rather than supporting increased
levels of automation in architecture-based transformations. Although such tools can
provide a very good starting point and facilitate the subsequent effort, in industry
projects a reengineering approach that starts with redocumenting architectures is of-
ten limited given the time and budget constraints.

SOA is becoming a prevailing software engineering practice and presents chal-
lenges that add to the difficulty of the architectural transformation process. In this
work we have presented a systematic approach in order to explicitly address these
issues. This chapter has reported in detail our approach: the code annotation pro-
cess, code representation, architectural transformation using graph transformation
techniques.

While in this chapter we presented an instantiation of the technique to transform
Java 2-tier applications to 3-tier to address the technological dimension of SOA,
the general technique can be used in a variety of contexts, tailored to the specific
requirements of a particular redesign problem by adapting the code annotation and
transformation rules. Possible instantiations include, for example, the migration of
monolithic applications into thin-client 2-tier architectures or of 3-tier applications
into SOA. Our current implementation serves as a demonstration of the methodology
and is incomplete in the sense that more categorisation rules may have to be added
to allow a more complete automation of the step 1 of the methodology, and that code
generation is not yet automated. However, from our experiments, we can see the
potential of using this methodology in industry.

Presently we are in the process of completing the tools in order to apply them
to a large real-world scenario. Another branch of work is to develop an instantiation
of the methodology to address the functional dimension of SOA. By applying it
in sequence in both dimensions it will be possible to transform legacy systems to
Service-Oriented Architectures.

Acknowledgement. R. Correia and C. Matos are Marie-Curie Fellows seconded to the Univer-
sity of Leicester as part of the Transfer of Knowledge, Industry Academia Partnership Leg2Net
(MTK1-CT-2004-003169). This work has also been supported by the IST-FET IP SENSORIA
(IST-2005-16004).



170 R. Heckel et al.

G. Koutsoukos participated in the development of the presented reengineering method-
ology while at ATX Software. M. El-Ramly contributed to this work while lecturer at the
University of Leicester.




