
6

Migration of Legacy Information Systems

Jean-Luc Hainaut1, Anthony Cleve1, Jean Henrard2, and Jean-Marc Hick2

1 PReCISE Research Centre, University of Namur, Belgium
2 REVER s.a., Charleroi, Belgium

Summary. This chapter addresses the problem of platform migration of large business ap-
plications, that is, complex software systems built around a database and comprising thou-
sands of programs. More specifically, it studies the substitution of a modern data management
technology for a legacy one. Platform migration raises two major issues. The first one is the
conversion of the database to a new data management paradigm. Recent results have shown
that automated lossless database migration can be achieved, both at the schema and data lev-
els. The second problem concerns the adaptation of the application programs to the migrated
database schema and to the target data management system. This chapter first poses the prob-
lem and describes the State of the Art in information system migration. Then, it develops
a two-dimensional reference framework that identifies six representative migration strategies.
The latter are further analysed in order to identify methodological requirements. In particu-
lar, it appears that transformational techniques are particularly suited to drive the whole mi-
gration process. We describe the database migration process, which is a variant of database
reengineering. Then, the problem of program conversion is studied. Some migration strate-
gies appear to minimise the program understanding effort, and therefore are sound candidates
to develop practical methodologies. Finally, the chapter describes a tool that supports such
methodologies and discusses some real-size case studies.

6.1 Introduction

Business applications are designed as informational and behavioural models of an
organization, such as an enterprise or an administration, and are developed to effi-
ciently support its main business processes. The term information system is often
used to designate large-scale business applications. Though this term has been given
several interpretations, we will limit its scope in this chapter to a complex software
and information system comprising one or several databases and programs, whatever
their technologies, that support the organization’s business processes. In particular,
we will ignore other important components such as user interfaces as well as dis-
tribution and cooperation frameworks. The information system relies on a techno-
logical platform, made up of such components as operating systems, programming
languages and database management systems.

T. Mens, S. Demeyer (eds.), Software Evolution.
DOI 10.1007/978-3-540-76440-3, © Springer 2008

106 J.-L. Hainaut et al.

6.1.1 Information System Evolution

Since every organization naturally evolves over time, its information system has to
change accordingly. This evolution is often driven by the business environment, that
forces the organization to change its business processes, and, transitively, the infor-
mation system that supports them. Practically, the integration of new concepts and
new business rules generally translates into the introduction of new data structures
and new program components, or into the updating of existing ones.

On the other hand, the rapid technological evolution also induces a strong pres-
sure to modify the information system in order to make it apt to support new re-
quirements that the legacy technological platform was unable to meet. Two common
motivations are worth being mentioned, namely flexibility and vanishing skills.

Flexibility. As summarised by Brodie and Stonebraker [84], a legacy Informa-
tion System is any Information System that significantly resists modifications and
change. One of the most challenging instances of this problem comes from the
increasing requirement to answer, almost in real time, unplanned questions by ex-
tracting data from the database. COBOL file managers, as well as most legacy data
management technologies, are efficient for batch and (to some extent) transaction
processing. However, answering a new query requires either extending an existing
program or writing a new one, an expensive task that may need several days. On the
contrary, such a query can be formulated in SQL on a relational database in minutes,
most often by non-expert users.

Skill shortage. Many core technologies enjoy a surprisingly long life, often en-
compassing several decades. Hiring experts that master them has become more and
more difficult, so that companies may be forced to abandon otherwise satisfying
technologies due to lack of available skills.

The business and technological dimensions of evolution can be, to a large extent,
studied independently. In this chapter, we address the issue of adapting an informa-
tion system to technological changes, a process generally called migration. More
precisely we will study the substitution of a modern data management system for
a legacy technology.

6.1.2 Information System Reengineering and Migration

As defined by Chikofsky and Cross [112], reengineering, also known as [...] reno-
vation [...], is the examination and alteration of a subject system to reconstitute it
in a new form and the subsequent implementation of the new form. Reengineering
generally includes some form of reverse engineering (to achieve a more abstract de-
scription) followed by some more form of forward engineering or restructuring. Mi-
gration is a variant of reengineering in which the transformation is driven by a major
technology change.

Replacing a DBMS with another one should, in an ideal world, only impact the
database component of the information system. Unfortunately, the database most of-
ten has a deep influence on other components, such as the application programs.

6 Migration of Legacy Information Systems 107

Two reasons can be identified. First, the programs invoke data management ser-
vices through an API that generally relies on complex and highly specific proto-
cols. Changing the DBMS, and therefore its protocols, involves the rewriting of the
invocation code sections. Second, the database schema is the technical translation
of its conceptual schema through a set of rules that is dependent on the DBMS
data model. Porting the database to another DBMS, and therefore to another data
model, generally requires another set of rules, that produces a significantly different
database schema. Consequently, the code of the programs often has to be adapted to
this new schema. Clearly, the renovation of an information system by replacing an
obsolete DBMS with a modern data management system leads to non trivial database
(schemas and data) and programs modifications.

6.1.3 System Migration: State of the Art

Technically, a legacy information system is made up of large and ageing programs re-
lying on legacy database systems (like IMS or CODASYL) or using primitive DMSs3

(a.o., COBOL file system, ISAM). Legacy information systems often are isolated in
that they do not easily interface with other applications. Moreover, they have proved
critical to the business of organizations. To keep being competitive, organizations
must improve their information system and invest in advanced technologies, spe-
cially through system evolution. In this context, the claimed 75% cost of legacy sys-
tems maintenance (w.r.t. total cost) is considered prohibitive [541].

Migration is an expensive and complex process, but it greatly increases the in-
formation system control and evolution to meet future business requirements. The
scientific and technical literature ([69, 84]) mainly identifies two migration strate-
gies, namely rewriting the legacy information system from scratch or migrating by
small incremental steps. The incremental strategy allows the migration projects to be
more controllable and predictable in terms of calendar and budget. The difficulty lies
in the determination of the migration steps.

Legacy IS migration is a major research domain that has yielded some general
migration methods. For example, Tilley and Smith [500] discuss current issues and
trends in legacy system reengineering from several perspectives (engineering, sys-
tem, software, managerial, evolutionary, and maintenance). They propose a frame-
work to place reengineering in the context of evolutionary systems. The butterfly
methodology proposed by Wu et al. [546] provides a migration methodology and
a generic toolkit to aid engineers in the process of migrating legacy systems. This
methodology, that does not rely on an incremental strategy, eliminates the need of
interoperability between the legacy and target systems.

Below, we gather the major migration approaches proposed in the literature ac-
cording to the various dimensions of the migration process as a whole.

3 DMS: Data Management System.

108 J.-L. Hainaut et al.

Language Dimension

Language conversion consists in translating (parts of) an existing program from
a source programming language to a target programming language. Ideally, the tar-
get program should show the same behaviour as the source program. Malton [342]
identifies three kinds of language conversion scenarios, with their own difficulties
and risks:

• Dialect conversion is the conversion of a program written in one dialect of a pro-
gramming language to another dialect of the same programming language.

• API migration is the adaptation of a program due to the replacement of external
APIs. In particular, API migration is required when changing the data manage-
ment system.

• Language migration is the conversion from one programming language to a dif-
ferent one. It may include dialect conversion and API migration.

Two main language conversion approaches can be found in the literature. The first
one [535], that might be called abstraction-reimplementation, is a two-step method.
First, the source program is analysed in order to produce a high-level, language-
independent description. Second, the reimplementation process transforms the ab-
stract description obtained in the first step into a program in the target language. The
second conversion approach [493, 342] does not include any abstraction step. It is
a three-phase conversion process: (1) normalization, that prepares the source pro-
gram to make the translation step easier; (2) translation, that produces an equivalent
program that correctly runs in the target language; (3) optimization: that improves
the maintainability of the target source code.

Terekhov and Verhoef [493] show that the language conversion process is far
from trivial. This is especially true when the source and the target languages come
from different paradigms. A lot of research has been carried out on specific cases of
language conversion, among which PL/I to C++ [290], Smalltalk to C [558], C to
Java [350] and Java to C# [158].

User Interface Dimension

Migrating user interfaces to modern platforms is another popular migration scenario.
Such a process may often benefit from an initial reverse engineering phase, as the
one suggested by Stroulia et al. [478]. This method starts from a recorded trace of
the user interaction with the legacy interface, and produces a corresponding state-
transition model. The states represent the unique legacy interface screens while the
transitions correspond to the user action sequences enabling transitions from one
screen to another. De Lucia et al. [333] propose a practical approach to migrating
legacy systems to multi-tier, web-based architectures. They present an Eclipse-based
plugin to support the migration of the graphical user interface and the restructuring
and wrapping of the original legacy code.

6 Migration of Legacy Information Systems 109

Platform and Architecture Dimensions

Other researches, that we briefly discuss below, examine the problem of migrating
legacy systems towards new architectural and technological platforms.

Towards distributed architectures. The Renaissance project [534] develops
a systematic method for system evolution and re-engineering and provides tech-
nical guidelines for the migration of legacy systems (e.g., COBOL) to distributed
client/server architectures. A generic approach to reengineering legacy code for dis-
tributed environments is presented by Serrano et al. [458]. The methodology com-
bines techniques such as data mining, metrics, clustering, object identification and
wrapping. Canfora et al. [101] propose a framework supporting the development of
thin-client applications for limited mobile devices. This framework allows Java AWT
applications to be executed on a server while the graphical interfaces are displayed
on a remote client.

Towards object-oriented platforms. Migrating legacy systems towards object-
oriented structures is another research domain that has led to a lot of mature results,
especially on object identification approaches ([560, 99, 517, 201, 449]). Regarding
the migration process itself, the approach suggested by De Lucia et al. [144] consists
of several steps combining reverse engineering and reengineering techniques. More
recently, Zou and Kontogiannis [569] have presented an incremental and iterative
migration framework for reengineering legacy procedural source code into an object-
oriented system.

Towards aspect-orientation. System migration towards aspect-oriented pro-
gramming (AOP) still is at its infancy. Several authors have addressed the initial
reverse engineering phase of the process, called aspect mining, which aims at identi-
fying crosscutting concern code in existing systems. Among the various aspect min-
ing techniques that have been proposed, we mention fan-in analysis [348], formal
concept analysis [506], dynamic analysis [503] and clone detection [93]. Regard-
ing clone detection, Chapter 2 provides an overview of techniques to identify and
remove software redundancies. We also refer to Chapter 9 for a more complete dis-
cussion about current issues as well as future challenges in the area of aspect mining,
extraction and evolution.

Towards service-oriented architectures. Migrating legacy systems towards
service-oriented architectures (SOA) appears as one of the next challenges of the
maintenance community. Sneed [465] presents a wrapping-based approach accord-
ing to which legacy program functions are offered as web services to external users.
O’Brien et al. [400] propose the use of architecture reconstruction to support migra-
tion to SOA. Chapter 7 presents a tool-supported methodology for migrating legacy
systems towards three-tier and service-oriented architectures. This approach is based
on graph transformation technology.

Database Dimension

Closer to our data-centred approach, the Varlet project [249] adopts a typical two
phase reengineering process comprising a reverse engineering process phase fol-
lowed by a standard database implementation. The approach of Jeusfeld [256] is

110 J.-L. Hainaut et al.

divided into three parts: mapping of the original schema into a meta model, rear-
rangement of the intermediate representation and production of the target schema.
Some works also address the migration between two specific systems. Among those,
Menhoudj and Ou-Halima [361] present a method to migrate the data of COBOL
legacy system into a relational database management system. The hierarchical to re-
lational database migration is discussed in [360, 359]. General approaches to migrate
relational database to object-oriented technology are proposed by Behm et al. [53]
and Missaoui et al. [373]. More recently, Bianchi et al. [62] propose an iterative
approach to database reengineering. This approach aims at eliminating the ageing
symptoms of the legacy database [527] when incrementally migrating the latter to-
wards a modern platform.

Related Work Limitations

Though the current literature on data-intensive systems migration sometimes recom-
mend a semantics-based approach, relying on reverse engineering techniques, most
technical solutions adopted in the industry are based on the so-called one-to-one mi-
gration of the data structures and contents, through a fully-automated process. As we
will see below, these approaches lead to poor quality results. Secondly, while most
papers provide ad hoc solutions for particular combinations of source/target DB plat-
forms, there is still a lack of generic and systematic studies encompassing database
migration strategies and techniques. Thirdly, the conversion of application programs
in the context of database migration still remains an open problem. Although some
work (e.g., [62]) suggests the use of wrapping techniques, very little attention is de-
voted to the way database wrappers are built or generated. In addition, the impact
of the different conversion techniques on target source code maintainability has not
been discussed.

6.1.4 About This Chapter

This chapter presents a practical approach to data-intensive application reengineer-
ing based on two independent dimensions, namely the data and the programs. We
first propose a reference model that allows us to describe and compare the main mi-
gration approaches that are based on DBMS substitution (Section 6.2). This model
identifies six representative strategies [228]. Section 6.3 develops a transformational
framework that forms a sound basis to formalise database and program evolution,
including migration. Then, the conversion of three main components of the infor-
mation system, namely database schemas, database contents and programs, are de-
scribed and discussed in Sections 6.4, 6.5 and 6.6 respectively. Section 6.7 describes
a prototype CASE environment for information system migration while Section 6.8
discusses some experimental results. The six reference migration strategies are com-
pared in Section 6.9. Finally, Section 6.10 draws some conclusions and suggests
paths for future work.

To make the discussion more concrete, we base it on one of the most popular
problem patterns, that is, the conversion of a legacy COBOL program, using standard

6 Migration of Legacy Information Systems 111

indexed files, into an equivalent COBOL program working on a relational database.
The principles of the discussion are of course independent of the language and of the
DMS.

6.2 Migration Reference Model

There is more than one way to migrate a data-intensive software system. Some ap-
proaches are quite straightforward and inexpensive, but lead to poorly structured
results that are difficult to maintain. Others, on the contrary, produce good quality
data structures and code, but at the expense of substantial intelligent (and therefore
difficult to automate) code restructuring. We have built a reference model based on
two dimensions, namely data and programs. Each of them defines a series of change
strategies, ranging from the simplest to the most sophisticated. This model outlines
a solution space in which we identify six typical strategies that will be described be-
low and discussed in the remainder of the chapter. This model relies on a frequently
used scenario, called database-first [545], according to which the database is trans-
formed before program conversion. This approach allows developers to cleanly build
new applications on the new database while incrementally migrating the legacy pro-
grams.

Information system migration consists in deriving a new database from a legacy
database and in further adapting the software components accordingly [84]. Con-
sidering that a database is made up of two main components, namely its schema(s)
and its contents (the data), the migration comprises three main steps: (1) schema
conversion, (2) data conversion and (3) program conversion. Figure 6.1 depicts the
organization of the database-first migration process, that is made up of subprocesses
that implement these three steps. Schema conversion produces a formal description
of the mapping between the objects of the legacy (S) and renovated (S’) schemas.
This mapping is then used to convert the data and the programs. Practical method-
ologies differ in the extent to which these processes are automated.

Fig. 6.1. Overall view of the database-first information system migration process

112 J.-L. Hainaut et al.

• Schema conversion is the translation of the legacy database structure, or schema,
into an equivalent database structure expressed in the new technology. Both
schemas must convey the same semantics, i.e., all the source data should be loss-
lessly stored into the target database. Most generally, the conversion of a source
schema into a target schema is made up of two processes. The first one, called
database reverse engineering [215], aims at recovering the conceptual schema
that expresses the semantics of the source data structure. The second process is
standard and consists in deriving the target physical schema from this conceptual
specification. Each of these processes can be modelled by a chain of semantics-
preserving schema transformations.

• Data conversion is the migration of the data instance from the legacy database
to the new one. This migration involves data transformations that derive from
the schema transformations described above.

• Program conversion, in the context of database migration, is the modification
of the program so that it now accesses the migrated database instead of the legacy
data. The functionalities of the program are left unchanged, as well as its pro-
gramming language and its user interface (they can migrate too, but this is an-
other problem). Program conversion can be a complex process in that it relies on
the rules used to transform the legacy schema into the target schema.

6.2.1 Strategies

We consider two dimensions, namely database conversion and program conversion,
from which we will derive migration strategies.

The Database dimension (D)

We consider two extreme database conversion strategies leading to different levels
of quality of the transformed database. The first strategy (Physical conversion or
D1) consists in translating each construct of the source database into the closest
constructs of the target DMS without attempting any semantic interpretation. The
process is quite cheap, but it leads to poor quality databases with no added value.
The second strategy (Conceptual conversion or D2) consists in recovering the pre-
cise semantic description (i.e., its conceptual schema) of the source database first,
through reverse engineering techniques, then in developing the target database from
this schema through a standard database methodology. The target database is of high
quality according to the expressiveness of the new DMS model and is fully docu-
mented, but, as expected, the process is more expensive.

The program dimension (P)

Once the database has been converted, several approaches to application programs
adaptation can be followed. We identify three reference strategies. The first one
(Wrappers or P1) relies on wrappers that encapsulate the new database to provide
the application programs with the legacy data access logic, so that these programs
keep reading and writing records in (now fictive) indexed files or CODASYL/IMS

6 Migration of Legacy Information Systems 113

Fig. 6.2. The six reference IS migration strategies

databases, generally through program calls instead of through native I/O file state-
ments. The second strategy (Statement rewriting or P2) consists in rewriting the ac-
cess statements in order to make them process the new data through the new DMS-
DML4. For instance, a READ COBOL statement is replaced with a select-from-
where (SFW) or a fetch SQL statement. In these two first strategies, the program
logic is neither elicited nor changed. According to the third strategy (Logic rewriting
or P3), the program is rewritten in order to use the new DMS-DML at its full power.
It requires a deep understanding of the program logic, since the latter will generally
be changed due to, for instance, the change in database paradigm. These dimensions
define six reference information system migration strategies (Figure 6.2).

6.2.2 Running Example

The strategies developed in this chapter will be illustrated by a small case study in
which the legacy system comprises a standalone COBOL program and three files.
Despite its small size, the files and the program exhibit representative instances of
the most problematic patterns. This program records and displays information about
customers that place orders. The objective of the case study is to convert the legacy
files into a new relational database and to transform the application program into
a new COBOL program, with the same business functions, but that accesses the new
database.

6.3 The Transformational Approach

Any process that consists in deriving artefacts from other artefacts relies on such
techniques as renaming, translating, restructuring, replacing, refining and abstract-
ing, which basically are transformations. Most database engineering processes can
be formalised as chains of elementary schema and data transformations that preserve
some of their aspects, such as its information contents [217]. Information system
evolution, and more particularly system migration as defined in this chapter, consists

4 DML: Data Manipulation Language.

114 J.-L. Hainaut et al.

of the transformation of the legacy database and of its programs into a new system
comprising the renovated database and the renovated programs. As far as programs
are concerned, the transformations must preserve the behaviour of the interface with
the database management system, though the syntax of this interface may undergo
some changes. Due to the specific scope of the concept of migration developed here,
only simple program transformations will be needed.

6.3.1 Schema Transformation

Roughly speaking, an elementary schema transformation consists in deriving a target
schema S′ from a source schema S by replacing construct C (possibly empty) in S
with a new construct C′ (possibly empty). Adding an attribute to an entity type,
replacing a relationship type by an equivalent entity type or by a foreign key and
replacing an attribute by an entity type (Figure 6.3) are some examples of schema
transformations.

More formally, a transformation Σ is defined as a couple of mappings <T, t> such
that, C′ = T (C) and c′ = t(c), where c is any instance of C and c′ the corresponding
instance of C′. Structural mapping T is a rewriting rule that specifies how to modify
the schema while instance mapping t states how to compute the instance set of C′
from the instances of C.

There are several ways to express mapping T . For example, T can be defined
(1) as a couple of predicates defining the minimal source precondition and the maxi-
mal target postcondition, (2) as a couple of source and target patterns or (3) through
a procedure made up of removing, adding, and renaming operators acting on elemen-
tary schema objects. Mapping t will be specified by an algebraic formula, a calculus
expression or even through an explicit procedure.

Any transformation Σ can be given an inverse transformation Σ′ =<T ′,t ′> such
that T ′(T (C)) = C. If, in addition, we also have: t ′(t(c)) = c, then Σ (and Σ′) are
called semantics-preserving5. Figure 6.3 shows a popular way to convert an attribute
into an entity type (structural mapping T), and back (structural mapping T ′). The
instance mapping, that is not shown, would describe how each instance of source
attribute A2 is converted into an EA2 entity and an R relationship.

Fig. 6.3. Pattern-based representation of the structural mapping of ATTRIBUTE-to-ET trans-
formation that replaces a multivalued attribute (A2) by an entity type (EA2) and a relationship
type (R)

5 The concept of semantics (or information contents) preservation is more complex, but
this definition is sufficient in this context. A more comprehensive definition can be found
in [217].

6 Migration of Legacy Information Systems 115

Practically, the application of a transformation will be specified by its signature,
that identifies the source objects and provides the names of the new target objects.
For example, the signatures of the transformations of Figure 6.3 are:

T : (EA2,R)← ATTRIBUTE-to-ET(A,A2)
T ′ : (A2) ← ET-to-ATTRIBUTE(EA2)

Transformations such as those in Figure 6.3 include names (A, A1, R, EA2, etc.)
that actually are variable names. Substituting names of objects of an actual schema
for these abstract names provides fully or partially instantiated transformations. For
example, (’PHONE’,’has’) ← ATTRIBUTE-to-ET(’CUSTOMER’,’Phone’) speci-
fies the transformation of attribute Phone of entity type CUSTOMER, while (EA2,R)
← ATTRIBUTE-to-ET(’CUSTOMER’,A2) specifies the family of transformations
of any attribute of CUSTOMER entity type.

The concept of transformation is valid whatever the granularity of the object it
applies to. For instance, transforming conceptual schema CS into equivalent physical
schema PS can be modelled as a (complex) semantics-preserving transformation CS-
to-PS = <CS-to-PS, cs-to-ps> in such a way that PS = CS-to-PS(CS). This transfor-
mation has an inverse, PS-to-CS = <PS-to-CS, ps-to-cs> so that CS = PS-to-CS(PS).

6.3.2 Compound Schema Transformation

A compound transformation Σ = Σ2 ◦Σ1 is obtained by applying Σ2 on the database
(schema and data) that results from the application of Σ1 [216]. Most complex
database engineering processes, particularly database design and reverse engineer-
ing, can be modelled as compound semantics-preserving transformations. For in-
stance, transformation CS-to-PS referred to here above actually is a compound trans-
formation, since it comprises logical design, that transforms a conceptual schema
into a logical schema, followed by physical design, that transforms the logical
schema into a physical schema [43]. So, the database design process can be modelled
by transformation CS-to-PS = LS-to-PS ◦ CS-to-LS, while the reverse engineering
process is modelled by PS-to-CS = LS-to-CS ◦ PS-to-LS.

6.3.3 Transformation History and Schema Mapping

The history of an engineering process is the formal trace of the transformations that
were carried out during its execution. Each transformation is entirely specified by
its signature. The sequence of these signatures reflects the order in which the trans-
formations were carried out. The history of a process provides the basis for such
operations as undoing and replaying parts of the process. It also supports the trace-
ability of the source and target artefacts.

In particular, it formally and completely defines the mapping between a source
schema and its target counterpart when the latter was produced by means of a trans-
formational process. Indeed, the chain of transformations that originates from any
definite source object precisely designates the resulting objects in the target schema,
as well as the way they were produced. However, the history approach to mapping

116 J.-L. Hainaut et al.

specification has proved complex, essentially for three reasons [218]. First, a history
includes information that is useless for schema migration. In particular, the signa-
tures often include additional information for undoing and inverting transformations.
Second, making histories evolve consistently over time is far from trivial. Third, real
histories are not linear, due to the exploratory nature of engineering processes. There-
fore, simpler mappings are often preferred, even though they are less powerful. For
instance, we proposed the use of the following lighweight technique based on stamp
propagation [232]. Each source object receives a unique stamp that is propagated
to all objects resulting from the successive transformations. When comparing the
source and target schemas, the objects that have the same stamp exhibit a pattern that
uniquely identifies the transformation that was applied on the source object. This ap-
proach is valid provided that (1) only a limited set of transformations is used and (2)
the transformation chain from each source object is short (one or two operations).
Fortunately, these conditions are almost always met in real database design.

6.3.4 Program Transformation

Program transformation is a modification or a sequence of modifications applied
to a program. Converting a program generally involves basic transformation steps
that can be specified by means of rewrite rules. Term rewriting is the exhaustive
application of a set of rewrite rules to an input term (e.g., a program) until no rule
can be applied anywhere in the term. Each rewrite rule uses pattern matching to
recognise a subterm to be transformed and replaces it with a target pattern instance.

Program transformations form a sound basis for application program conversion
in the context of database migration. Indeed, the legacy I/O statements have to be
rewritten with two concerns in mind, namely making the program comply with the
new DMS API, and, more important, adapting the program logic to the new schema.
The latter adaptation obviously depends on the way the legacy database schema was
transformed into the new schema. This issue has already been addressed in previ-
ous work [116]. We have proposed a general approach, based on coupled transfor-
mations [306], according to which program rewrite rules are associated to schema
transformations in a DML-independent manner.

For instance, Figure 6.4 shows an abstract rewrite rule that propagates the schema
transformation depicted in Figure 6.3 to primitives that create an instance of entity
type A from the values of variables a1, a21, ..., a2N, a3. Since attribute A2 has been
converted into an entity type, the way instances of A are created has to be changed.
Creating an instance of entity type A now involves the creation of N instances of
entity type EA2 within an extra loop. Created instances of EA2 are connected to
instance a of A through relationship type R.

6.4 Schema Conversion

The schema conversion strategies mainly differ in the way they cope with the explicit
and implicit constructs (that is, the data structures and the integrity constraints) of the

6 Migration of Legacy Information Systems 117

create a := A((: A1 = a1) create a := A((: A1 = a1)
and (: A2[1] = a21) and (: A3 = a3))
and (: A2[2] = a22) tc f or i in 1..N do
· · · → create ea2 := EA2((: A2 = a2i)

and (: A2[N] = a2N) and (R : a))
and (: A3 = a3)) end f or

Fig. 6.4. Create mapping tc associated with structural mapping T of Fig. 6.3

source schema. An explicit construct is declared in the DDL code 6 of the schema and
can be identified through examination or parsing of this code. An implicit construct
has not been declared, but, rather, is controlled and managed by external means, such
as decoding and validating code fragments scattered throughout the application code.
Such construct can only be identified by sophisticated analysis methods exploring the
application code, the data, the user interfaces, to mention the most important sources.

The schema conversion process analyses the legacy application to extract the
source physical schema (SPS) of the underlying database and transforms it into a tar-
get physical schema (TPS) for the target DMS. The TPS is used to generate the DDL
code of the new database. In this section, we present two transformation strategies.
The first strategy, called the physical schema conversion, merely simulates the ex-
plicit constructs of the legacy database into the target DMS. According to the sec-
ond one, the conceptual schema conversion, the complete semantics of the legacy
database is retrieved and represented into the technology-neutral conceptual schema
(CS), which is then used to develop the new database.

6.4.1 Physical Conversion Strategy (D1)

Principle

According to this strategy (Figure 6.5) each explicit construct of the legacy database
is directly translated into its closest equivalent in the target DMS. For instance, con-
sidering a standard file to SQL conversion, each record type is translated into a table,
each top-level field becomes a column and each record/alternate key is translated into
a primary/secondary key. No conceptual schema is built, so that the semantics of the
data is ignored.

Fig. 6.5. Physical schema conversion strategy (D1)

6 DDL: Data Description Language.

118 J.-L. Hainaut et al.

Fig. 6.6. Example of COBOL/SQL physical schema conversion

Methodology

The DDL parsing process analyses the DDL code to retrieve the physical schema of
the source database (SPS). This schema includes explicit constructs only. It is then
converted into its target DMS equivalent (TPS) through a straightforward one-to-one
mapping and finally coded into the target DDL. The schema conversion process also
produces the source to target schema mapping.

Illustration

The analysis of the file and record declarations produces the SPS (Figure 6.6/left).
Each COBOL record type is translated into an SQL table, each field is converted
into a column and object names are made compliant with the SQL syntax (Fig-
ure 6.6/right). In this schema, a box represents a physical entity type (record type,
table, segment, etc.). The first compartment specifies its name, the second one gives
its components (fields, columns, attributes) and the third one declares secondary con-
structs such as keys and constraints (id stands for primary identifier/key, acc stands
for access key, or index, and re f stands for foreign key). A cylinder represents a data
repository, commonly called a file.

6.4.2 Conceptual Conversion Strategy (D2)

Principle

This strategy aims at producing a target schema in which all the semantics of the
source database are made explicit, even those conveyed by implicit source con-
structs. In most cases, there is no complete and up to date documentation of the
information system, and in particular of the database. Therefore, its logical and con-
ceptual schemas must be recovered before generating the target schema. The phys-
ical schema of the legacy database (SPS) is extracted and transformed into a con-
ceptual schema (CS) through reverse engineering. The conceptual schema is then
transformed into the physical schema of the target system (TPS) through standard
database development techniques.

6 Migration of Legacy Information Systems 119

Methodology

The left part of Figure 6.7 depicts the three steps of a simplified database reverse
engineering methodology used to recover the logical and conceptual schemas of the
source database.

• As in the first strategy, the first step is the parsing of the DDL code to extract the
physical schema (SPS), which only includes the explicit constructs.

• The schema refinement step consists in refining the SPS by adding the im-
plicit constructs that are identified through the analysis of additional information
sources, such as the source code of the application programs and the database
contents, to mention the most common ones. Program code analysis performs
an in-depth inspection of the way the programs use and manage the data. Data
validation, data modification and data access programming clichés are searched
for in particular, since they concentrate the procedural logic strongly linked with
data properties. The existing data are also analysed through data mining tech-
niques, either to detect constraints, or to confirm or discard hypotheses on the
existence of constraints. This step results in the source logical schema (SLS),
that includes the explicit representation of such constructs as record and field de-
composition, uniqueness constraints, foreign keys or enumerated domains that
were absent in SPS. The history SPS-to-SLS of the refinement process forms the
first part of the source-to-target mapping.

• The final step is schema conceptualisation that semantically interprets the logical
schema. The result is expressed by the conceptual schema (CS). This schema is
technology independent, and therefore independent of both the legacy and new
DMSs. The history SLS-to-CS of this process is appended to the source-to-target
mapping.

Fig. 6.7. Conceptual schema conversion strategy (D2)

120 J.-L. Hainaut et al.

A complete presentation of this reverse engineering methodology can be found
in [215] and [214], together with a fairly comprehensive bibliography on database
reverse engineering.

The conceptual schema is then transformed into an equivalent logical schema
(TLS), which in turn is transformed into the physical schema (TPS). TPS is then
used to generate the DDL code of the target database. These processes are quite
standard and are represented in the right part of Figure 6.7. The histories CS-to-TLS
and TLS-to-TPS are added to the source-to-target mapping. The mapping SPS-to-
TPS is now complete, and is defined as SPS-to-SLS ◦ SLS-to-CS ◦ CS-to-TLS ◦
TLS-to-TPS.

Illustration

The details of this reverse engineering case study have been described in [219]. We
sketch its main steps in the following. The legacy physical schema SPS is extracted
as in the first approach (Figure 6.8/top-left).

The Refinement process enriches this schema with the following implicit con-
structs:

(1) Field O-DETAIL appears to be compound and multivalued, thanks to program
analysis techniques based on variable dependency graphs and program slicing.

Fig. 6.8. Example of COBOL/SQL conceptual schema conversion

6 Migration of Legacy Information Systems 121

(2) The implicit foreign keys O-CUST and REF-DET-PRO are identified by schema
names and structure patterns analysis, program code analysis and data analysis.

(3) The multivalued identifier (uniqueness constraint) REF-DET-PRO of O-DETAIL
can be recovered through the same techniques.

The resulting logical schema SLS is depicted in Figure 6.8/top-right.
During the data structure conceptualisation, the implementation objects (record

types, fields, foreign keys, arrays,...) are transformed into their conceptual equivalent
to produce the conceptual schema CS (Figure 6.8/bottom-left).

Then, the database design process transforms the entity types, the attributes and
the relationship types into relational constructs such as tables, columns, keys and
constraints. Finally physical constructs (indexes and storage spaces) are defined (Fig-
ure 6.8.bottom-right) and the code of the new database is generated.

6.5 Data Conversion

6.5.1 Principle

Data conversion is handled by a so-called Extract-Transform-Load (ETL) processor
(Figure 6.9), which transforms the data from the data source to the format defined
by the target schema. Data conversion requires three steps. First, it performs the
extraction of the data from the legacy database. Then, it transforms these data in
such a way that their structures match the target format. Finally, it writes these data
in the target database.

Data conversion relies on the mapping that holds between the source and target
physical schemas. This mapping is derived from the instance mappings (t) of the
source-to-target transformations stored in the history.

Deriving data conversion from the physical schema conversion (D1) is straight-
forward. Indeed, both physical schemas are as similar as their DMS models permit,
so that the transformation step most often consists in data format conversion.

The conceptual schema conversion strategy (D2) recovers the conceptual schema
(CS) and the target physical schema (TPS) implements all the constraints of this
schema. Generally, both CS and TPS include constraints that are missing in SPS,
and that the source data may violate. Thus data migration must include a preliminary
data cleaning step that fixes or discards the data that cannot be loaded in the target
database [423]. This step cannot always be automated. However, the schema refine-
ment step identifies all the implicit constraints and produces a formal specification

Fig. 6.9. Data migration architecture: converter and schema transformation

122 J.-L. Hainaut et al.

for the data cleaning process. It must be noted that the physical schema conversion
strategy (D1) makes such data cleaning useless. Indeed, both SPS and TPS express
the same constraints that the source data are guaranteed to satisfy.

6.5.2 Methodology

Data conversion involves three main tasks. Firstly, the target physical schema (TPS)
must be implemented in the new DMS. Secondly, the mapping between the source
and target physical schemas must be defined as sequences of schema transformations
according to one of the two strategies described in Section 3. Finally, these mappings
must be implemented in the converter for translating the legacy data according to the
format defined in TPS.

Since each transformation is formally defined by <T, t>, the instance mapping
sps-to-tps is automatically derived from the compound transformation SPS-to-TPS
built in the schema conversion process. The converter is based on the structural map-
pings SPS-to-TPS to write the extraction and insertion requests and on the corre-
sponding instance mappings sps-to-tps for data transformation.

6.6 Program Conversion

The program conversion process aims at re-establishing the consistency that holds
between application programs and the migrated database. The nature of this con-
sistency is twofold. First, the programs have to comply with the API of the DMS,
by using the right data manipulation language and interaction protocols. Second, the
programs have to manipulate the data in their correct format, i.e., the format declared
in the database schema.

This section analyses the three program modification strategies specified in Fig-
ure 6.2. The first one relies on wrapper technology (P1) to map the access primitives
onto the new database through wrapper invocations that replace the DML statements
of the legacy DMS. The second strategy (P2) replaces each statement with its equiva-
lent in the new DMS-DML. According to the P3 strategy, the access logic is rewritten
to comply with the DML of the new DMS. In strategies P2 and P3, access statements
are expressed in the DML of the new DMS.

In order to compare the three program conversion strategies, we will apply them
successively on the same legacy COBOL fragment, given in Figure 6.10. This code
fragment deletes all the orders placed by a given customer.

6.6.1 Wrapper Strategy (P1)

Principle

In migration and interoperability architectures, wrappers are popular components
that convert legacy interfaces into modern ones. Such wrappers allow the reuse of
legacy components [464] (e.g., allow Java programs to access COBOL files). The

6 Migration of Legacy Information Systems 123

DELETE-CUS-ORD.
MOVE C-CODE TO O-CUST.
MOVE 0 TO END-FILE.
READ ORDERS KEY IS O-CUST

INVALID KEY MOVE 1 TO END-FILE.
PERFORM DELETE-ORDER UNTIL END-FILE = 1.

DELETE-ORDER.
DELETE ORDERS.
READ ORDERS NEXT

AT END MOVE 1 TO END-FILE
NOT AT END

IF O-CUST NOT = C-CODE
MOVE 1 TO END-FILE.

Fig. 6.10. A legacy COBOL code fragment that deletes the orders corresponding to a given
customer

wrappers discussed in this chapter are of a different nature, in that they simulate the
legacy data interface on top of the new database. For instance, they allow COBOL
programs to read, write, rewrite records that are built from rows extracted from a re-
lational database. In a certain sense, they could be called backward wrappers. An
in-depth analysis of both kinds of wrappers can be found in [497].

The wrapper conversion strategy attempts to preserve the logic of the legacy
programs and to map it on the new DMS technology [84]. A data wrapper is a data
model conversion component that is called by the application program to carry out
operations on the database. In this way, the application program invokes the wrapper
instead of the legacy DMS. If the wrapper simulates the modelling paradigm of the
legacy DMS and its interface, the alteration of the legacy code is minimal. It mainly
consists in replacing DML statements with wrapper invocations.

The wrapper converts all legacy DMS requests from legacy applications into
requests against the new DMS that now manages the data. Conversely, it captures
results from the new DMS, converts them to the appropriate legacy format [409]
(Figure 6.11) and delivers them to the application program.

Fig. 6.11. Wrapper-based migration architec-
ture: a wrapper allows the data managed by
a new DMS to be accessed by the legacy pro-
grams

124 J.-L. Hainaut et al.

Methodology

Schemas SPS and TPS, as well as the mapping between them (SPS-to-TPS) pro-
vide the necessary information to derive the procedural code of the wrappers. For
each COBOL source record type, a wrapper is built that simulates the COBOL file
handling statements. The simulated behaviour must also include the management of
currency indicators (internal dynamic pointers to current records) as well as error
handling.

Once the wrappers have been built, they have to be interfaced with the legacy pro-
grams. This can be done by replacing, in the latter, original data access operations
with wrapper invocations. Such a transformation is straightforward, each instruction
being replaced with a call to the corresponding wrapper and, in some cases, an ad-
ditional test. In the case of COBOL file handling, the test checks the value of the
wrapper status in order to simulate invalid key and at end clauses.

Legacy code adaptation also requires other minor reorganizations like modifying
the environment division and the data division of the programs. The declaration of
files in the environment division can be discarded. The declaration of record types
has to be moved from the input-output section to the working storage section. The
declarations of new variables used to call the wrapper (action, option and status) are
added to the working storage section. Finally, new code sections are introduced into
the program (e.g., database connection code).

Some legacy DMS, such as MicroFocus COBOL, provide an elegant way to
interface wrappers with legacy programs. They allow programmers to replace the
standard file management library with a customised library (the wrapper). In this
case, the legacy code does not need to be modified at all.

The <D1,P1> and <D2,P1> strategies only differ in the complexity of the wrap-
pers that have to be generated. The program transformation is the same in both strate-
gies since each legacy DML instruction is replaced with a wrapper invocation. The
code of the wrappers for the <D1,P1> strategy is trivial because each explicit data
structure of the legacy database is directly translated into a similar structure of the
target database. In the <D2,P1> strategy the conceptual schema is recovered and the
new physical schema can be very different from the legacy one. For instance, a record
can be split into two or more tables, a table may contain data from more than one
record, new constraints might be implemented into the new DMS, etc. In this strat-
egy, translating a READ command may require to access more than one table and to
perform additional tests and loops.

Illustration

To illustrate the way data wrappers are used, let us consider the legacy COBOL
fragment of Figure 6.10, which comprises READ and DELETE primitives. As shown in
Figure 6.12, each primitive is simply replaced with a corresponding wrapper invoca-
tion. From the program side, the wrapper is a black box that simulates the behaviour
of the COBOL file handling primitives on top of the SQL database. Note that the
P1 program adaptation strategy does not depend on the schema conversion strategy.

6 Migration of Legacy Information Systems 125

DELETE-CUS-ORD.
MOVE C-CODE TO O-CUST.
MOVE 0 TO END-FILE.
SET WR-ACTION-READ TO TRUE.
MOVE "KEY IS O-CUST" TO WR-OPTION.
CALL WR-ORDERS USING WR-ACTION, ORD, WR-OPTION, WR-STATUS
IF WR-STATUS-INVALID-KEY MOVE 1 TO END-FILE.
PERFORM DELETE-ORDER UNTIL END-FILE = 1.

DELETE-ORDER.
SET WR-ACTION-DELETE TO TRUE.
CALL WR-ORDERS USING WR-ACTION, ORD, WR-OPTION, WR-STATUS.
SET WR-ACTION-READ TO TRUE.
MOVE "NEXT" TO WR-OPTION.
CALL WR-ORDERS USING WR-ACTION, ORD, WR-OPTION, WR-STATUS.
IF WR-STATUS-AT-END

MOVE 1 TO END-FILE
ELSE

IF O-CUST NOT = C-CODE
MOVE 1 TO END -FILE.

Fig. 6.12. Code fragment of Fig. 6.10 converted using the Wrapper strategy (P1)

This choice only affects the complexity of the wrapper code, since the latter is di-
rectly derived from the mapping that holds between the legacy and new database
schemas.

6.6.2 Statement Rewriting (P2)

Principle

This program modification technique depends on the schema conversion strategy. It
consists in replacing legacy DMS-DML statements with native DML statements of
the new DMS. For example, every file access statement in a COBOL program has to
be replaced with an equivalent sequence of relational statements. As for the wrapper
strategy, program data structures are left unchanged. Consequently, the relational
data must be stored into the legacy COBOL variables.

In the case of the physical schema conversion strategy (D1), the conversion
process can be easily automated, thanks to the simple SPS-to-TPS mapping. The con-
ceptual schema conversion strategy (D2) typically flattens complex COBOL struc-
tures in the target relational schema. This makes the use of additional loops necessary
when retrieving the value of a compound multivalued COBOL variable. Although
the substitution process is more complex than in the D1 strategy, it can also be fully
automated.

Methodology

The program modification process may be technically complex, but does not need
sophisticated methodology. Each DML statement has to be located, its parameters
have to be identified and the new sequence of DML statements has to be defined

126 J.-L. Hainaut et al.

and inserted in the code. The main point is how to translate iterative accesses in
a systematic way. For instance, in the most popular COBOL-to-SQL conversion,
there exist several techniques to express the typical START/READ NEXT loop with SQL
statements. The task may be complex due to loosely structured programs and the use
of dynamic DML statements. For instance, a COBOL READ NEXT statement can
follow a statically unidentified START or READ KEY IS initial statement, making
it impossible to identify the record key used. A description of a specific technique
that solves this problem is provided below.

Illustration

The change of paradigm when moving from standard files to relational database
raises such problems as the identification of the sequence scan. COBOL allows the
programmer to start a sequence based on an indexed key (START/READ KEY IS),
then to go on in this sequence through READ NEXT primitives. The most obvious
SQL translation is performed with a cursor-based loop. However, since READ NEXT
statements may be scattered throughout the program, the identification of the initiat-
ing START or READ KEY IS statement may require complex static analysis of the
program data and control flows.

The technique illustrated in Figure 6.13 solves this problem. This technique is
based on state registers, such as ORD-SEQ, that specify the current key of each record
type, and consequently the matching SQL cursor. A cursor is declared for each kind
of record key usage (equal, greater, not less) in the program. For instance, the table
ORD gives at most six cursors (combination of two record keys and three key usages).

The example of Figure 6.13 shows the <D2,P2> conversion the COBOL code
fragment of Figure 6.10. During the schema conversion process, the O-DETAIL
compound multivalued field has been converted into the DETAIL SQL table. So,
rebuilding the value of O-DETAIL requires the execution of a loop and a new
FILL-ORD-DETAIL procedure. This new loop retrieves the details corresponding
to the current ORD record, using a dedicated SQL cursor.

6.6.3 Logic Rewriting (P3)

Principle

The program is rewritten to explicitly access the new data structures and take advan-
tage of the new data system features. This rewriting task is a complex conversion
process that requires an in-depth understanding of the program logic. For example,
the processing code of a COBOL record type may be replaced with a code section
that copes with several SQL tables or a COBOL loop may be replaced with a single
SQL join.

The complexity of the problem prevents the complete automation of the conver-
sion process. Tools can be developed to find the statements that should be modified
by the programmer and to give hints on how to rewrite them. However, modifying
the code is still up to the programmer.

6 Migration of Legacy Information Systems 127

EXEC SQL DECLARE CURSOR ORD_GE_K1 FOR
SELECT CODE , CUS_CODE
FROM ORDERS WHERE CUS_CODE >= :O-CUST
ORDER BY CUS_CODE

END-EXEC.
...
EXEC SQL DECLARE CURSOR ORD_DETAIL FOR

SELECT PROD_CODE , QUANTITY
FROM DETAIL WHERE ORD_CODE = :O-CODE

END-EXEC.
...
DELETE-CUS-ORD.

MOVE C-CODE TO O-CUST.
MOVE 0 TO END-FILE.
EXEC SQL

SELECT COUNT(*) INTO :COUNTER
FROM ORDERS WHERE CUS_CODE = :O-CUST

END-EXEC.
IF COUNTER = 0

MOVE 1 TO END-FILE
ELSE

EXEC SQL OPEN ORD_GE_K1 END-EXEC
MOVE "ORD_GE_K1" TO ORD-SEQ
EXEC SQL

FETCH ORD_GE_K1
INTO :O-CODE , :O-CUST

END-EXEC
IF SQLCODE NOT = 0

MOVE 1 TO END-FILE
ELSE

EXEC SQL OPEN ORD_DETAIL END-EXEC
SET IND-DET TO 1
MOVE 0 TO END-DETAIL
PERFORM FILL -ORD-DETAIL UNTIL END-DETAIL = 1

END-IF
END-IF.
PERFORM DELETE-ORDER UNTIL END-FILE = 1.

DELETE-ORDER.
EXEC SQL

DELETE FROM ORDERS
WHERE CODE = :O-CODE

END-EXEC.
IF ORD-SEQ = "ORD_GE_K1"

EXEC SQL
FETCH ORD_GE_K1 INTO :O-CODE ,:O-CUST

END-EXEC
ELSE IF ...

...
END-IF.
IF SQLCODE NOT = 0

MOVE 1 TO END-FILE
ELSE

IF O-CUST NOT = C-CODE
MOVE 1 TO END-FILE.

...
FIlL -ORD-DETAIL SECTION.

EXEC SQL
FETCH ORD_DETAIL
INTO :REF-DET-PRO(IND-DET),:ORD-QTY(IND-DET)

END-EXEC.
SET IND-DET UP BY 1.
IF SQLCODE NOT = 0

MOVE 1 TO END-DETAIL.

Fig. 6.13. Code fragment of Fig. 6.10 converted using the Statement Rewriting strategy (P2)

128 J.-L. Hainaut et al.

This strategy can be justified if the whole system, that is database and programs,
has be renovated in the long term (strategy <D2,P3>). After the reengineering, the
new database and the new programs take advantage of the expressiveness of the new
technology. When the new database is just a one-to-one translation of the legacy
database (<D1,P3>), this strategy can be very expensive for a poor result. The new
database just simulates the old one and takes no advantage of the new DMS. Worse,
it inherits all the flaws of the old database (bad design, design deteriorated by main-
tenance, poor expressiveness, etc.). Thus, we only address the <D2,P3> strategy in
the remaining of this section.

Methodology

The P3 strategy is much more complex than the previous ones since every part of the
program may be influenced by the schema transformation. The most obvious method
consists in (1) identifying the file access statements, (2) identifying and understand-
ing the statements and the data objects that depend on these access statements and
(3) rewriting these statements as a whole and redefining these data objects.

Illustration

Figure 6.14 shows the code fragment of Figure 6.10 converted using the Logic
Rewriting strategy. The resulting code benefits from the full power of SQL. The
two-step position then delete pattern, which is typical of navigational DMS, can be
replaced with a single predicate-based delete statement.

DELETE-CUS-ORD.
EXEC SQL

DELETE FROM ORDERS
WHERE CUS_CODE = :C-CODE

END-EXEC.
IF SQLCODE NOT = 0 THEN GO TO ERR-DEL-ORD.

Fig. 6.14. Code fragment of Fig. 6.10 converted using the Logic Rewriting strategy (P3)

6.7 Tool Support

Some of the information system migration strategies we developed in this chapter
have been implemented using two complementary transformational technologies,
namely DB-MAIN and the ASF+SDF Meta-Environment.

6 Migration of Legacy Information Systems 129

6.7.1 The Tools

The DB-MAIN CASE Environment

DB-MAIN [143] is a data-oriented CASE environment developed by the Laboratory
of Database Application Engineering (LIBD) of the University of Namur. Its purpose
is to help the analyst in the design, reverse engineering, reengineering, maintenance
and evolution of database applications.

DB-MAIN offers general functions and components that allow the development
of sophisticated processors supporting data-centred application renovation:

• A generic model of schema representation based on the GER (Generic Enti-
ty/Relationship) model to describe data structures in all abstraction levels and
according to all popular modelling paradigms.

• A graphical interface to view the repository and apply operations.
• A transformational toolbox rich enough to encompass most database engineering

and reverse engineering processes.
• Customizable assistants (e.g., transformation, reverse engineering, conformity

analysis) to help solve complex and repetitive problems.
• A history processor to record, replay, save or invert history.

DB-MAIN also includes several processors specific to the reverse engineering
process [229], such as DDL parsers for most popular DMSs, a foreign key discov-
ery assistant, and program analysis tools (pattern matching, variable dependency
analysis and program slicing). Experience of actual reverse engineering taught us
that there are no two reengineering projects are the same. Hence the need for pro-
grammable, extensible and customisable tools. DB-MAIN (and more specifically its
meta functions) includes features to extend its repository and develop new functions.
It includes in particular a 4GL (Voyager2) as well as a Java API that allow analysts
to quickly develop their own customised processors [215].

The ASF+SDF Meta-Environment

The ASF+SDF Meta-Environment [515] is an interactive development environment
for the automatic generation of interactive systems for manipulating programs, spec-
ifications, or other texts written in a formal language. It is developed by the SEN1
research group of the CWI in Amsterdam. In the context of system migration, the
ASF+SDF Meta-Environment provides tool generators to support the program con-
version step. It allows both defining the syntax of programming languages and spec-
ifying transformations of programs written in such programming languages [514].

The next sections describe the tool support in the different steps of the method-
ologies described in this chapter for schema, data and program conversion.

6.7.2 Schema Conversion

The physical schema conversion strategy uses simple tools only, such as a DDL
parser to extract SPS, an elementary schema converter to transform SPS into TPS
and a DDL generator. Complex analysers are not required.

130 J.-L. Hainaut et al.

In the conceptual schema conversion strategy, extracting SPS and storing it in
the CASE tool repository is done through a DDL parser (SQL, COBOL, IMS, CO-
DASYL, RPG, XML) from the parser library. Schema refinement requires schema,
data and program analysers. Data structure conceptualization and database design
are based on schema transformations. Code generators produce the DDL code of the
new database according to the specifications of TPS.

6.7.3 Mapping Definition

We use the transformation toolkit of DB-MAIN to carry out the chain of schema
transformations needed during the schema conversion phase. DB-MAIN automati-
cally generates and maintains a history log of all the transformations that are applied
to the legacy DB schema (SPS) to obtain the target DB schema (TPS). This history
log is formalised in such a way that it can be analysed and transformed. Particularly,
it can be used to derive both the mappings between SPS and TPS. A visual map-
ping assistant has been developed to support the definition, the visualization and the
validation of inter-schema mappings. This tool is based on the stamping technique
described in Section 6.3.3.

6.7.4 Data Conversion

Writing data converters manually is an expensive task, particularly for complex map-
pings (for simple mappings parametric ETL converters are quite sufficient). The DB-
MAIN CASE tool includes specific history analysers and converter generators that
have been described in [146].

6.7.5 Program Conversion

Wrapper Generation

So far, wrapper generators for COBOL-to-SQL and IDS/II7-to-SQL have been de-
veloped. These generators are implemented through Java plug-ins of DB-MAIN, and
require the following inputs:

• the legacy database schema
• an optional intermediate schema
• the target database schema
• the mapping between these two (three) schemas

The generators produce the code that provides the application programs with a legacy
interface to the new database. In practice, we generate one wrapper per legacy record
type. Each generated wrapper is a COBOL program with embedded SQL primitives.
The generated wrappers simulate the legacy DMS on top on the renovated database.
Note that the same tools can be used for supporting both P1 and P2 program con-
version strategies, which mainly differ from the target location of the generated code
(wrapper or new program section).

7 IDS/II is the BULL implementation of CODASYL.

6 Migration of Legacy Information Systems 131

Legacy Code Transformation

The adaptation of the legacy application programs relies on the ASF+SDF Meta-
Environment. We use an SDF version of the IBM VS COBOL II grammar, which was
obtained by Lämmel and Verhoef [304]. We specify a set of rewrite rules (ASF equa-
tions) on top of this grammar to obtain two similar program transformation tools. The
first tool is used in the context of COBOL-to-SQL migration, while the second one
supports IDS/II-to-SQL conversion.

The main input arguments of the program transformers are automatically gener-
ated. These parameters include:

• the list of the migrated record types
• additional variable declarations
• additional program code sections
• owner and members of each set (IDS/II)
• list of the declared record keys (IDS/II)

The program transformation tools are suitable in case of partial migration, i.e., when
only some legacy record types actually are migrated to the new database platform.
In that case, only the DML instructions manipulating migrated data are adapted. The
other DML instructions, which still access the legacy data, are left unchanged.

6.8 Industrial Application

We have been involved in several industrial reverse engineering and reengineering
projects during the last three years. In this section, we particularly report on an on-
going IDS/II-to-SQL database migration project.

6.8.1 Project Overview

The project aims at migrating a large COBOL system towards a relational (DB2)
database platform. The legacy system runs on a Bull mainframe and is made of nearly
2300 programs, totalling more than 2 million lines of COBOL code. The information
system makes use of an IDS/II database. The source physical DB schema comprises
231 record types, 213 sets and 648 fields. The migration strategy chosen is based
on the combination of a conceptual database conversion (D2) and a wrapper-based
program conversion (P1).

6.8.2 Process Followed

The project started with a prototyping phase, during which a consistent subset of
the data and programs has been fully migrated. This initial phase aims at verifying
the correctness of the overall migration through a systematic testing process. The
database subset includes 26 IDS/II record types and 31 sets. The legacy programs
selected for conversion comprise 51 KLOC and make use of almost every possible

132 J.-L. Hainaut et al.

IDS/II statement (find, get, erase, store, modify, connect, disconnect, etc.). The tests,
performed with the help of IDS/II experts from the customer side, have shown the
correctness of the automated program conversion.

Below, we describe the main phases that we followed to migrate the complete
legacy system.

Inventory

The purpose of the inventory process is twofold. First, it aims at checking that we
have received a complete and consistent set of source code files from the customer.
Second, it allows us to get a rapid overview of the application architecture in order
to evaluate the complexity of the migration task, as well as the part of the work that
cannot be automated. In this project, the inventory phase produced the following
results :

• complete statistics about the IDS/II statements (number, type, location);
• the program call graph, specifying which program calls which program;
• the database usage graph, specifying which program uses which IDS/II record

type;
• a classification of the legacy source code files based on their database usage (no

access, indirect access or direct access).

Schema Conversion Through DBRE

During the database reverse engineering process, program analysis techniques have
been used in order to retrieve different kinds of information about the legacy
database. In particular, dataflow analysis allowed us to find which program vari-
ables are used to manipulate the records, in order to deduce a more precise record
decomposition. Dataflow analysis was also used to elicit implicit data dependencies
that exist between database fields, among which potential foreign keys. Our dataflow
analysis approach is inspired by the interprocedural slicing algorithm proposed by
Horwitz et al. [235], based on the system dependency graph (SDG). We refer to [117]
for more details on the use of SDGs in database reverse engineering.

Among others, the DBRE process allowed us to:

• recover finer-grained structural decompositions for record types and attributes;
• retrieve implicit data dependencies, including 89 foreign keys, 37 computed for-

eign keys, and 60 other redundancies.

Table 6.1 gives a comparison of the successive versions of the database schema. The
physical IDS/II schema is the initial schema extracted from the DDL code (here we
consider the subset of the schema actually migrated). The refined IDS/II schema is
the physical schema with a finer-grained structure. It was obtained by resolving nu-
merous copybooks in which structural decompositions of physical attributes are de-
clared. In the refined IDS schema, most attributes are declared several times through
redefines clauses, hence the huge total number of attributes. The conceptual schema

6 Migration of Legacy Information Systems 133

Table 6.1. Comparison of successive versions of the complete database schema

Physical IDS/II Refined IDS/II Conceptual Relational DB2

entity types 159 159 156 171
relationship types 148 148 90 0
attributes 458 9 027 2 176 2 118
max # att./entity type 8 104 61 94

is the result of the conceptualization phase. It comprises only one declaration per
attribute. When a conflict occurs, the chosen attribute decomposition is the one the
analyst considers to be the most expressive. In addition, the number of entity type
is different since some technical record types were discarded while other ones were
split (sub-types). Finally, the relational schema shows an increase in the number of
entity types, due to the decomposition of arrays, as well as a reduction of the number
of attributes due to the aggregation of compound fields.

Data Validation and Migration

During the schema conversion phase, the mapping of the various components is
recorded between the successive schemas, such that we know precisely how each
concept is represented in each schema. From such mappings we can generate two
kinds of programs:

• Data validators, which check if the legacy data comply with all recovered im-
plicit constraints;

• Data migrators, that actually migrate the legacy data to the relational database.

The data validation step revealed that many implicit referential constraints were ac-
tually violated by the legacy data. This is explained by the fact that most rules are
simply encoding rules which are not always checked again when data are updated,
and by the fact that users find tricks to bypass some rules.

Wrapper-Based Program Conversion

The wrapper generation phase produced 159 database wrappers. Each generated
wrapper is a COBOL program containing embedded SQL primitives. The total wrap-
per code size is about 450 KLOC.

The results obtained during the legacy code adaptation are summarised in
Table 6.2. A total of 669 programs and 3 917 copybooks were converted. We no-
tice that about 92% of the IDS/II verbs were transformed automatically, while the
manual work concerned 85 distinct source code files only.

134 J.-L. Hainaut et al.

Table 6.2. Program transformation results

Migrated Manually
transformed

programs 669 17
copybooks 3 917 68
IDS/II verbs 5 314 420

6.8.3 Lessons Learned

Methodology

As in previous projects, the initial inventory step proved to be critical. It required
several iterations since we discovered missing copybooks and programs, as well as
code fragments containing syntax errors. The prototyping phase also proved valu-
able, since it allowed us to detect problems early in the process and to better confront
our results with the customer requirements. Another conclusion is that the database
reverse engineering process may benefit from the data validation phase. Indeed, ana-
lysing database contents does not only allow to detect errors, it may also serve as
a basis for formulating new hypotheses about potential implicit constraints.

Automation

Although large-scale system conversion needs to be supported by scalable tools, the
full automation of the process is clearly unrealistic. Indeed, such a project typically
requires several iterations as well as multiple human decisions. In particular, while
previous smaller projects allowed us to automate the schema design process with mi-
nor manual corrections, assisted manual conversion becomes necessary when deal-
ing with larger schemas. For instance, translating a compound attribute into SQL
columns can be done either by disaggregation, by extraction or by aggregation. In
this project, the chosen technique depended on the nature of the compound attribute
(e.g., each compound attribute representing a date has been translated as a single col-
umn). The database design must respect various other constraints like the type and
naming conventions of the customer.

Wrapper development

Writing correct wrapper generators requires a very good knowledge of the legacy
DMS. In this project, the difficulties of wrapper generation were due to the paradigm
mismatch between network and relational database systems. Simulating IDS/II verbs
on top of a native relational database appeared much more complicated than ex-
pected. The generated wrappers must precisely simulate the IDS/II primitives be-
haviour, which includes the synchronised management of multiple currency indica-
tors, reading sequence orders and returning status codes. Another challenge, as for
the data extractors, was to correctly manage IDS/II records that have been split into
several SQL tables.

6 Migration of Legacy Information Systems 135

6.9 Strategies Comparison

Six representative strategies of information system migration have been identified. In
this section, we compare them according to each dimension and we suggest possible
applications for each system migration strategy.

6.9.1 Database Conversion Strategies

The physical schema conversion (D1) does not recover the semantics of the database
but blindly translates in the target technology the design flaws as well as the techni-
cal structures peculiar to the source technology. This strategy can be fully automated,
and can be performed manually, at least for small to medium size databases. Further
attempts to modify the structure of the database (e.g., adding some fields or chang-
ing constraints) will force the analyst to think in terms of the legacy data structures,
and therefore to recover their semantics. The source database was optimised for the
legacy DMS, and translating it in the new technology most often leads to poor per-
formance and limited capabilities. For example, a COBOL record that includes an
array will be transformed into a table in which the array is translated into an unstruc-
tured column, making it impossible to query its contents. Doing so would require
writing specific programs that recover the implicit structure of the column. Clearly,
this strategy is very cheap (and therefore very popular), but leads to poor results that
will make future maintenance expensive and unsafe. In particular, developing new
applications is almost impossible.

Nevertheless, we must mention an infrequent situation for which this strategy can
be valuable, that is, when the legacy database has been designed and implemented in
a disciplined way according to the database theory. For instance, a database made up
of a collection of 3NF 8 record types can be migrated in a straightforward way to an
equivalent relational database of good quality.

The conceptual schema conversion (D2) produces a high quality conceptual
schema that explicitly represents all the semantics of the data, but from which tech-
nology and performance dependent constructs have been discarded. It has also been
cleaned from the design flaws introduced by inexperienced designers and by decades
of incremental maintenance. This conceptual schema is used to produce the TPS that
can use all the expressiveness of the new DMS model and can be optimised for
this DMS. Since the new database schema is normalised and fully documented, its
maintenance and evolution is particularly easy and safe. In addition, making im-
plicit constraints explicit automatically induces drastic data validation during data
migration, and increases the quality of these data. However, this strategy requires
a complex reverse engineering process that can prove expensive. For example, the
complete reverse engineering of a medium size database typically costs two to four
man-months.

8 3NF stands for third normal form.

136 J.-L. Hainaut et al.

6.9.2 Program Conversion Strategies

The wrapper strategy (P1) does not alter the logic of the legacy application pro-
gram. When working on the external data, the transformed program simply invokes
the wrapper instead of the legacy DMS primitives. The transformation of the pro-
gram is quite straightforward: each legacy DMS-DML is replaced with a call to the
wrapper. So, this transformation can easily be automated. The resulting program has
almost the same code as the source program, so a programmer who has mastered
the latter can still maintain the new version without any additional effort or docu-
mentation. When the structure of the database evolves, only the wrapper need be
modified, while the application program can be left unchanged. The complexity of
the wrapper depends on the strategy used to migrate the database. In the D1 strategy,
the wrapper is quite simple: it reads one line of the table, converts the column values
and produces a record. In the D2 strategy, the wrapper can be very complex, since
reading one record may require complex joins and loops to retrieve all the data. De-
spite the potentially complex mapping between SPS and TPS, which is completely
encapsulated into the wrapper, the latter can be produced automatically, as shown in
[16]. A wrapper may induce computing and I/O overhead compared to P2 and P3
strategies.

The statement rewriting strategy (P2) also preserves the logic of the legacy pro-
gram but it replaces each legacy DMS-DML primitive statement with its equivalent
in the target DMS-DML. Each legacy DMS-DML instruction is replaced with sev-
eral lines of code that may comprise tests, loops and procedure calls. In our case
study the number of lines increased from 390 to almost 1000 when we applied the
<D1,P2> strategy. The transformed program becomes difficult to read and to main-
tain because the legacy code is obscured by the newly added code. If the code must
be modified, the programmer must understand how the program was transformed to
write correct code to access the database. When the structure of the database is modi-
fied, the entire program must be walked through to change the database manipulation
statements. In summary, this technique is inexpensive but degrades the quality of the
code. In addition, it is fairly easy to automate. As expected, this migration technique
is widely used, most often in the <D1,P2> combination.

The logic rewriting strategy (P3) changes the logic of the legacy program to ex-
plicitly access the new database and to use the expressiveness of the new DMS-DML.
This rewriting task is complex and cannot be automated easily. The programmer that
performs it must have an in-depth understanding of the legacy database, of the new
database and of the legacy program. This strategy produces a completely renovated
program that will be easy to maintain at least as far as database logic is concerned.

6.9.3 System Migration Strategies

By combining both dimensions, we describe below typical applications for each of
the strategies that have been described.

• <D1,P1>: This approach produces a (generally) badly structured database that
will suffer from poor performance but preserves the program logic, notably

6 Migration of Legacy Information Systems 137

because the database interface is encapsulated in the wrapper. It can be rec-
ommended when the migration must be completed in a very short time, e.g.,
when the legacy environment is no longer available. Developing new applica-
tions should be delayed until the correct database is available. This approach can
be a nice first step to a better architecture such as that produced by <D2,P1>.
However, if the legacy database already is in 3NF, the result is close to that of
strategy <D2,P1>.

• <D2,P1>: This strategy produces a good quality database while preserving the
program logic. New quality applications can be developed on this database.
The legacy programs can be renovated later on, step by step. Depending on the
impedance mismatch between the legacy and target technologies, performance
penalty can be experienced. For instance, wrappers that simulate CODASYL
DML on top of a relational database have to synchronise two different data ma-
nipulation paradigms, a process that may lead to significant data access over-
head.

• <D1,P2>: Despite its popularity, due to its low cost, this approach clearly is the
worst one. It produces a database structure that is more obscure than the source
one, and that provides poorer performance. The programs are inflated with ob-
scure data management code that makes them complex and more difficult to
read, understand and maintain. Such a renovated system cannot evolve at sus-
tainable cost, and therefore has no future. If the legacy database already is in
3NF, the result may be similar to that of strategy <D2,P2>.

• <D2,P2>: Produces a good quality database, but the programs can be unreadable
and difficult to maintain. It can be considered if no maintenance of the applica-
tion is planned and the programs are to be rewritten in the near future. If the
wrapper overhead is acceptable, the<D2,P1> strategy should be preferred.

• <D1,P3>: Data migration produces a very poor quality database that simulates
the legacy database. Adapting, at high cost, the program to these awkward struc-
tures is meaningless, so that we can consider this strategy not pertinent

• <D2,P3>: This strategy provides both a database and a set of renovated programs
of high quality, at least as far as database logic is concerned. Its cost also is the
highest. This is a good solution if the legacy program language is kept and if the
programs have a clean and clear structure.

6.10 Conclusions

The variety in corporate requirements, as far as system reengineering is concerned,
naturally leads to a wide spectrum of migration strategies. This chapter has identi-
fied two main independent lines of decision, the first one related to the precision of
database conversion (schema and contents) and the second one related to program
conversion. From them, we were able to identify and analyse six reference system
migration strategies. The thorough development of these technical aspects is the ma-
jor contribution of this chapter since most of these aspects have only been sketched
in the literature [84].

138 J.-L. Hainaut et al.

Despite the fact that a supporting technology has been developed, and therefore
makes some sophisticated strategies realistic at an industrial level, we still lack suffi-
cient experience to suggest application rules according to the global corporate strat-
egy and to intrinsic properties of the legacy system. As is now widely accepted in
maintenance, specific metrics must be identified to score the system against typical
reference patterns. Such criteria as the complexity of the database schema, the pro-
portion of implicit constructs, the underlying technology, the normalisation level or
the redundancy rate, to mention only a few, should certainly affect the feasibility of
each migration strategy. Corporate requirements like performance, early availability
of components of the renovated system, program independence against the database
structure, evolvability, skill of the development team, or availability of human re-
sources are all aspects that could make some strategies more valuable than others.

Though some conclusions could seem obvious at first glance, such as, strategy
<D2,P3> yields better quality results than strategy <D1,P2>, we have resisted pro-
viding any kind of decision table that would have been scientifically questionable. In-
deed, each strategy has its privileged application domains, the identification of which
would require much more analysis than we have provided in this chapter. One impor-
tant lesson we learned in this study is that the quality of the target database is central
in a renovated system, and is a major factor in the quality of the programs, whatever
the program transformation strategy adopted. For instance, renovated program per-
formance, maintenance costs and the readability of the programs to be developed are
strongly dependent on the quality of the database schema.

So far, we have developed a solid methodology and a sophisticated CASE en-
vironment for database reverse engineering, wrapper development and automated
program conversion (according to P1 and P2 strategies). We have also built a toolset
of code analysers, such as a pattern matching engine, a dependency and data flow
diagram analyser and a program slicer. They allow us to find code sections that meet
structural criteria such as data access sections or the statement streams that influence
the state of objects at some point of a program aka program slice).

At present time, we are exploring the automation of the P3 program conversion
strategy (Logic Rewriting). This strategy aims at adapting the logic of the legacy
program to explicitly access the new database and to use the expressiveness of the
new DMS-DML. This rewriting task is complex and could not be fully automated.
Only the identification of the file access statements and the statements and data ob-
jects that depend on them can be automated. These identification tasks relate to the
program understanding realm, where such techniques as searching for clichés, vari-
able dependency analysis and program slicing (see [538, 229]) are often favourite
weapons.

Acknowledgement. Anthony Cleve received support from the Belgian Région Wallonne and
the European Social Fund via the RISTART project.

