
1

Introduction and Roadmap:
History and Challenges of Software Evolution

Tom Mens

University of Mons-Hainaut, Belgium

Summary. The ability to evolve software rapidly and reliably is a major challenge for soft-
ware engineering. In this introductory chapter we start with a historic overview of the research
domain of software evolution. Next, we briefly introduce the important research themes in
software evolution, and identify research challenges for the years to come. Finally, we provide
a roadmap of the topics treated in this book, and explain how the various chapters are related.

1.1 The History of Software Evolution

In early 1967, there was an awareness of the rapidly increasing importance and im-
pact of software systems in many activities of society. In addition, as a result of
the many problems faced in software manufacturing, there was a general belief that
available techniques should become less ad hoc, and instead based on theoretical
foundations and practical disciplines that are established in traditional branches of
engineering. These became the main driving factors for organising the first confer-
ence on Software Engineering in 1968 [391]. The goal of this conference, organised
by the NATO Science Committee, was “the establishment and use of sound engineer-
ing principles in order to obtain reliable, efficient and economically viable software”.
Among the many activities of software engineering, maintenance was considered as
a post-production activity, i.e., after the delivery and deployment of the software
product.

This view was shared by Royce, who proposed in 1970 the well-known waterfall
life-cycle process for software development [446]. In this process model, that was
inspired by established engineering principles, the maintenance phase is the final
phase of the life-cycle of a software system, after its deployment. Only bug fixes and
minor adjustments to the software are supposed to take place during that phase. This
classical view on software engineering has long governed the industrial practice in
software development and is still in use today by several companies. It even became
a part of the IEEE 1219 Standard for Software Maintenance [239], which defines
software maintenance as “the modification of a software product after delivery to

T. Mens, S. Demeyer (eds.), Software Evolution.
DOI 10.1007/978-3-540-76440-3, © Springer 2008



2 T. Mens

correct faults, to improve performance or other attributes, or to adapt the product to
a modified environment.”

It took a while before software engineers became aware of the inherent limita-
tions of this software process model, namely the fact that the separation in phases
was too strict and inflexible, and that it is often unrealistic to assume that the re-
quirements are known before starting the software design phase. In many cases, the
requirements continue to change during the entire lifetime of the software project. In
addition, knowledge gained during the later phases may need to be fed back to the
earlier phases.

Therefore, in the late seventies, a first attempt towards a more evolutionary pro-
cess model was proposed by Yau with the so-called change mini-cycle [559] (see
Fig. 1.1). In this process, important new activities, such as change impact analy-
sis and change propagation were identified to accommodate the fact that software
changes are rarely isolated.

Also in the seventies, Manny Lehman started to formulate his, now famous, laws
of software evolution. The postulated laws were based on earlier work carried out by
Lehman to understand the change process being applied to IBM’s OS 360 operating
system [317, 318]. His original findings were confirmed in later studies involving
other software systems [320].

This was probably the first time that the term software evolution (or program
evolution) was deliberately used the stress the difference with the post-deployment
activity of software maintenance. To stress this difference even more, Lehman coined
the term E-type software to denote programs that must be evolved because they “op-
erate in or address a problem or activity of the real world”. As such, changes in the
real world will affect the software and require adaptations to it.

Nevertheless, it took until the nineties until the term software evolution gained
widespread acceptance, and the research on software evolution started to become
popular [24, 403]. This also lead to the acceptance of so-called evolutionary pro-
cesses such as Gilb’s evolutionary development [200], Boehm’s spiral model [71]
and Bennett and Rajlich’s staged model [57].

The staged process model, visualised in Fig. 1.2, is interesting in that it explicitly
takes into account the inevitable problem of software aging [410]. After the initial
stage of development of a first running version, the evolution stage allows for any
kind of modification to the software, as long as the architectural integrity remains

Fig. 1.1. The staged process model for evolution (adapted from [559] ©[1978] IEEE)



1 Introduction and Roadmap: History and Challenges of Software Evolution 3

Fig. 1.2. The staged process model for evolution (adapted from [57] ©[2000] ACM)

preserved. If this is no longer the case, there is a loss of evolvability (also referred to
as decay) and the servicing stage starts. During this stage, only small patches can be
applied to keep the software up and running. If even such small patches become too
costly to carry out, the phase-out stage starts, leading to ultimate close down of the
system. If the system, despite of its degraded quality, is still valuable to its various
stakeholders, it is called a legacy system. In that case, it may be wise to migrate to
a new system that offers the similar or extended functionality, without exhibiting the
poor quality of the legacy system. The planning to migrate to such a new system
should be done as soon as possible, preferably during the servicing stage.

Software evolution is also a crucial ingredient of so-called agile software devel-
opment [119, 351] processes, of which extreme programming (XP) [50] is probably
the most famous proponent. In brief, agile software development is a lightweight
iterative and incremental (evolutionary) approach to software development that is
performed in a highly collaborative manner and explicitly accommodates the chang-
ing needs of its stakeholders, even late in the development cycle, because this offers
a considerable competitive advantage for the customer. In many ways, agile methods
constitute a return to iterative and incremental development as practiced early in the
history of software development, before the widespread use of the waterfall model
[312].

Nowadays, software evolution has become a very active and well-respected field
of research in software engineering, and the terms software evolution and software
maintenance are often used as synonyms. For example, the international ISO/IEC
14764 standard for software maintenance [242], acknowledges the importance of
pre-delivery aspects of maintenance such as planning. Similarly, the Software Engi-
neering Body of Knowledge (SWEBOK) [2] acknowledges the need for supporting
maintenance in the pre-delivery as well as the post-delivery stages, and considers the
following evolution-related research themes as being crucial activities in software
maintenance: software comprehension, reverse engineering, testing, impact analysis,
cost estimation, software quality, software measurement, process models, software
configuration management, and re-engineering. These activities will be discussed in
more detail in Section 1.2.

In this book, we will continue to use the term software evolution as opposed to
maintenance, because of the negative connotation of the latter term. Maintenance
seems to indicate that the software itself is deteriorating, which is not the case. It is
changes in the environment or user needs that make it necessary to adapt the soft-
ware.



4 T. Mens

1.2 Research Themes in Software Evolution

In this Section we provide an overview of some of the important research themes
in software evolution. The various chapters of this book will explore some of these
themes in more depth. Of course, it is not the aim of the book to provide complete
and detailed coverage of all these themes. Instead, we have tried to offer a selection
of important issues that are actively pursued by the research community. They have
been identified, among others in the visionary articles by Bennett and Rajlich [57]
and Mens et al. [371]. Therefore, in this section, we summarise some of the most
important challenges and future research directions in software evolution, as reported
in these articles.

1.2.1 Dimensions of Software Evolution

There are two prevalent views on software evolution, often referred to as the what
and why versus the how perspectives [322].

The what and why view focuses on software evolution as a scientific discipline. It
studies the nature of the software evolution phenomenon, and seeks to understand its
driving factor, its impact, and so on. This is the view that is primarily taken in [338].
An important insight that has been gained in this line of research is that the evo-
lution process is a multi-loop, multi-level, multi-agent feedback system that cannot
be treated in isolation. It requires interdisciplinary research involving non-technical
aspects such as human psychology, social interaction, complexity theory, organisa-
tional aspects, legislation and many more.

The how view focuses on software evolution as an engineering discipline. It stud-
ies the more pragmatic aspects that aid the software developer or project manager in
his day-to-day tasks. Hence, this view primarily focuses on technology, methods,
tools and activities that provide the means to direct, implement and control software
evolution.

It is the latter view that is followed throughout most of the chapters in this book.
Nevertheless, it remains necessary to develop new theories and mathematical models,
and to carry out empirical research to increase understanding of software evolution,
and to invest in research that tries to bridge the gap between the what and the how of
software evolution.

As another “dimension” of software evolution, we can consider the types of
changes that are being performed. Based on earlier studies by Lientz and Swanson
[329], the ISO/IEC standard for software maintenance [242] proposes four categories
of maintenance:

• Perfective maintenance is any modification of a software product after delivery
to improve performance or maintainability.

• Corrective maintenance is the reactive modification of a software product per-
formed after delivery to correct discovered faults.

• Adaptive maintenance is the modification of a software product performed after
delivery to keep a computer program usable in a changed or changing environ-
ment.



1 Introduction and Roadmap: History and Challenges of Software Evolution 5

• Preventive maintenance refers to software modifications performed for the pur-
pose of preventing problems before they occur.

For completeness, we also mention the work of Chapin et al. [109], who further
extended this classification, based on objective evidence of maintainers’ activities
ascertainable from observation, and including non-technical issues such as documen-
tation, consulting, training and so on. A related article that is worthwhile mentioning
is the work by Buckley et al. [94], in which a taxonomy of software change is pre-
sented based on various dimensions that characterise or influence the mechanisms of
change.

1.2.2 Reverse and Re-Engineering

An important theme within the research domain of software evolution is reverse en-
gineering [112]. This activity is needed when trying to understand the architecture
or behaviour of a large software system, while the only reliable information is the
source code. This may be the case because documentation and design documents
are unavailable, or have become inconsistent with respect to the code because they
have not been updated. Reverse engineering aims at building higher-level, more ab-
stract, software models from the source code. Program comprehension or program
understanding are activities that try to make sense of the wealth of information that
reverse engineering produces, by building mental models of the overall software ar-
chitecture, structure and behaviour. Program comprehension also includes activities
such as task modelling, user interface issues, and many others.

Reverse engineering can also be regarded as the initial phase in the process of
software reengineering [23]. Reengineering is necessary when we are confronted
with legacy systems. These are systems that are still valuable, but are notoriously
difficult to maintain [149]. Following the terminology used in the staged life cycle
model of Fig. 1.2, we consider these systems to be in the servicing stage.

The goal of reengineering is thus to come to a new software system that is more
evolvable, and possibly has more functionality, than the original software system.
The reeengineering process is typically composed of three activities, as captured by
the so-called horseshoe model visualised in Fig. 1.3 [271]. First, reverse engineering
may be necessary when the technological platform of the software system (language,
tools, machines, operating system) is outdated, or when the original developers are
no longer available. This activity is typically followed by a phase of software re-
structuring [22] in which we try to improve crucial aspects of the system. Finally,
in a forward engineering phase we build a new running system based on the new,
restructured, model.

The topic of reengineering is very important and relevant to industry, and there-
fore the second part of this book will be entirely devoted to it. Chapter 5 will focus
on the reengineering of object-oriented software systems. Chapter 6 will address the
need for, and means to, migrate data when reengineering large information systems.
Chapter 7 discusses how to reengineer legacy systems into service-oriented systems.

Another very important research topic in reengineering research is the quest for
new and better visualisation techniques that aid in a better program comprehension,



6 T. Mens

Fig. 1.3. The horseshoe process
model for reengineering

as well as a better understanding of the evolution of software. Such visualisation
techniques are explored in Chapter 3.

1.2.3 Incremental Change Techniques

In the change mini-cycle proposed by Yau et al. [559], and visualised in Fig. 1.1,
a number of important activities related to the change process become apparent.

During the planning phase, program comprehension is of course essential to un-
derstand what parts of the software will be affected by a requested change. In addi-
tion, the extent or impact of the change needs to be assessed by resorting to change
impact analysis techniques [74]. By predicting all parts of the system that are likely
to be affected by a change, they give an estimation of how costly the change will be,
as well as the potential risk involved in making the change. This analysis is then used
to decide whether or not it is worthwhile to carry out the change.

Because of the fact that a change may have a non-local impact, support is needed
for what is referred to as change propagation [424, 425]. It is necessary when
a change to one part of a software system requires other system parts that depend
on it to be changed as well. These dependent system parts can on their turn require
changes in other system parts. In this way, a single change to one system part may
lead to a propagation of changes to be made throughout the entire software system.

During the implementation phase, it may turn out that the change cannot be im-
plemented directly, and that a restructuring or refactoring of the software is required
first in order to accommodate the requested change. The goal is thus to improve the
software structure or architecture without changing the behaviour [21, 183].

During the validation and verification phase, techniques to revalidate the software
after having performed changes are crucial in order to ensure that the system integrity
has not been compromised. Regression testing is one of those techniques [66]. Rather
than repeating all tests for each new software release (which would be too costly, take
too much time, and consume too many resources), a carefully selected subset of the
tests is executed to verify that the changes did not have inadvertent effects. Chapter 8



1 Introduction and Roadmap: History and Challenges of Software Evolution 7

of this book provides an excellent overview of software testing, and its interplay with
software evolution.

1.2.4 Managerial Issues

Managerial issues are equally crucial to software evolution. Despite this fact, it re-
mains a challenge to increase awareness among executives and project managers
about the importance and inevitability of software evolution. Indeed, various studies
and surveys indicate that over 80% of the total maintenance effort is used for non-
corrective actions [1, 416]. In addition, other studies indicate that software mainte-
nance accounts for at least 50% of the total software production cost, and sometimes
even exceeds 90% [329, 457, 296].

According to Lehman, software evolution problems start to appear when there
are at least two management levels involved in the software production process. This
is confirmed by Brooks [85], who calls this the large program problem. A very im-
portant managerial issue has to do with the economics of software evolution [72]. It
turns out that, in many cases, the reason for evolving software is non-technical. More
specifically, it is an economic decision, driven by marketing or other reasons.

The main challenge is therefore to develop better predictive models, based on
empirical studies, for measuring and estimating the cost and effort of software main-
tenance and evolution activities with a higher accuracy [261, 466, 427, 177]. Similar
techniques may also be useful to measure the cost-effectiveness of regression testing
[444].

Another point of attention for managers is the need for software quality assur-
ance. If proper support for measuring quality is available, this can provide crucial
information to determine whether the software quality is degrading, and to take cor-
rective actions if this turns out to be the case. Numerous software metrics have been
proposed, studied and validated as measures of software quality characteristics such
as complexity, cohesion, coupling, size and many others [83, 39, 171, 231].

Besides metrics, other more heuristic approaches may be used to detect “bad
smells” or other indicators of poor-quality software. For example, Chapter 2 of this
book studies techniques to detect and remove software redundancies and code clones,
which are generally considered to be an indication of poor quality. Chapter 4 analy-
ses software failures stored in a bug repository to predict and improve the software
quality over time.

1.2.5 The Software Process

An important area of research is to find the software process model that is most ap-
propriate to facilitate software evolution. In Section 1.1 we already introduced a num-
ber of such process models. The IEEE standard for software maintenance [239] and
the ISO/IEC standard for software maintenance [242] also propose such a mainte-
nance process model.

It is important to observe that, due to the fact that the activity of software evolu-
tion is a continuous feedback process [338], the chosen software process model itself



8 T. Mens

is likely to be subject to evolution. The research area of software process improve-
ment aims to reduce cost, effort and time-to-market, to increase productivity and
reliability, or to affect any other relevant properties. Software process improvement
can be based on theory or empirical industrial case studies [208].

As software systems become larger and more complex, and are being developed
in a collaborative and distributed way, it becomes inevitable to resort to dedicated
software configuration management tools. Among others, they provide automated
support for the change process, they allow for software versioning and merging, and
they offer procedures (verification, validation, certification) for ensuring the quality
of each software release. Even today, research in this area is continuing in order to
advance the state-of-the-art.

Another aspect of software process improvement is the exploration and introduc-
tion of novel development paradigms such as agile software development [119, 351],
aspect-oriented software development [247], model-driven software development
[474], service-oriented architectures [393], and many more. All of these development
paradigms claim to improve software development and to lead to higher productivity,
higher quality, and more adaptable and maintainable software. Some of these claims
are investigated in Chapter 9 for aspect-oriented development.

Of particular interest is the open source movement, which has provided a novel,
strongly collaborative way of developing and evolving software. The question arises
whether this style of software development is subject to the same laws that govern the
evolution of traditional software development approaches [318]. This topic is under
active study [206, 481, 461] and will be addressed in Chapter 11 of this book.

1.2.6 Model Evolution

One of the main difficulties of software evolution is that all artefacts produced and
used during the entire software life-cycle are subject to changes, ranging from early
requirements over analysis and design documents, to source code and executable
code. This fact automatically spawns many subdisciplines in the research domain of
software evolution, some of which are listed below:

Requirements evolution. The main objectives of requirements engineering are defin-
ing the purpose of a software system that needs to be implemented. Require-
ments evolve because requirements engineers and users cannot predict all possi-
ble uses of a system, because not all needs and (often mutually conflicting) goals
of the various stakeholders can be taken into account, and because the environ-
ment in which the software is deployed frequently changes as well. Because the
topic of requirements evolution is not covered in this book, we direct the reader
to [571, 570, 191] for more information.

Architecture evolution. Based on an (initial) description of the software require-
ments, the overall software architecture (or high-level design) and the corre-
sponding (low-level) technical design of the system can be specified. These are
inevitably subject to evolution as well. The topic of architectural evolution is ex-
plored in detail in Chapter 10. The related problem of evolving software product



1 Introduction and Roadmap: History and Challenges of Software Evolution 9

families is not covered in this book, but we refer to [253, 252] for an in-depth
treatment of this topic.

Data evolution. In information systems and other data-intensive software systems
it is essential to have a clear and precise description of the database schema.
Chapter 6 explores in detail how to evolve and migrate such schemas.

Runtime evolution. Many commercial software systems that are deployed by large
companies need to be constantly available. Halting the software system to make
changes cannot be afforded. Therefore, techniques are needed to change the
software while it keeps on running. This very challenging problem is known
under a variety of terms, including runtime evolution, runtime reconfiguration,
dynamic adaptation and dynamic upgrading [297, 284].

Service-oriented architectures (SOA) provide a new paradigm in which a user-
oriented approach to software is taken [162]. The software is developed in terms
of which services are needed by particular users, and these users should be able
to easily add, remove or adapt services to their needs. While this approach has
many similarities with the component-oriented approach [486], services are only
bound together at runtime, whereas components are statically (i.e., at design
time) composed together. A service-oriented approach thus promises to be in-
herently more flexible than what is available today. This is crucial, especially in
e-commerce applications, where rapid and frequent change is a necessity in or-
der to respond to, and survive in, a highly competitive market. Chapter 7 of this
book will be devoted to the migration towards service-oriented architectures.

Language evolution. When looking at languages (whether it be programming, mod-
elling of formal specification languages), a number of research directions come
to mind. The first one is the issue of co-evolution between software and the lan-
guage that is used to represent it. Both are subject to evolution, albeit at different
speed [167]. The second challenge is to provide more and better support for
evolution in the context of multi-language software systems. A third challenge
is to improve the design of languages to make them more robust to evolution
(e.g., traits [451]). This challenge has always been the main driver of research
in design of new computer languages. Unfortunately, every new programming
paradigm promises to improve the software development process but introduces
its own maintenance problems. This was the case for object-oriented program-
ming (where the inheritance hierarchy needs to be mastered and kept under con-
trol when evolving software), aspect-oriented programming (where aspects need
to be evolved next to the base code, see Chapter 9 for more details), component-
oriented programming, and so on. In general, every new language or technology
should always be evaluated in the light of its potential impact on the software’s
ability to evolve.

Interestingly, when starting to study evolution of software artefacts different from
source code, new challenges arise that need to be dealt with, regardless of the type of
software artefact under consideration. For example, we need techniques that ensure
a traceability link between software artefacts at all different levels of abstraction,
ranging from very high-level requirements documents to low-level source code [16].



10 T. Mens

In presence of many different types of software artefacts that co exist, we also
need inconsistency management and consistency maintenance techniques to control
the overall consistency of the software system [471], as well as techniques for co-
evolution and incremental synchronisation of all related software artefacts [363].

1.3 Roadmap

The remainder of the book is structured into three parts, each containing at least three
chapters. All chapters provide a detailed overview of relevant research literature.

Part I of the book, called Understanding and Improving Software Evolution is
about understanding software evolution by analysing version repositories and release
histories, and improving software evolution by removing software redundancies and
fixing bugs:

• In Chapter 2, Koschke discusses and compares various state-of-the-art tech-
niques that can be used to detect and remove software clones. In addition, he
describes techniques to remove clones through refactoring and summarises stud-
ies on the evolution of clones.

• In Chapter 3, D’Ambros et al. report on how information stored in version repos-
itories and bug archives can be exploited to derive useful information about the
evolution of software systems.

• In Chapter 4, Zimmermann et al. explore how information about software fail-
ures contained in a bug database can be mined to predict software properties
and to improve the software quality. Their results are validated on a number of
industrial case studies.

Part II of the book, called Reengineering of Legacy Systems contains three chapters
devoted to the topic of legacy software systems, and how one may migrate to, or
reengineer these systems into a system that is no longer outdated and more easy to
maintain and adapt:

• In Chapter 5, Demeyer discusses the state-of-the-art in object-oriented software
reengineering. In particular, he focuses on the techniques of refactoring and
reengineering patterns, and shows how these techniques can be used to capture
and document expert knowledge about reengineering.

• In Chapter 6, Hainaut et al. address the problem of platform migration of large
business applications and information systems. More specifically, they study the
substitution of a modern data management technology for a legacy one. They
develop a reference framework for migration strategies, and they focus on some
migration strategies that minimize program understanding effort.

• In Chapter 7, Heckel et al. discuss an important research trend, namely the mi-
gration of legacy software systems to web services and service-oriented architec-
tures by introducing architectural styles. In particular, they report on experience
with an industrial case study in the context of a European research project, rely-
ing on the technique of graph transformation.



1 Introduction and Roadmap: History and Challenges of Software Evolution 11

Part III of the book, called Novel Trends in Software Evolution addresses the relation
between software evolution and other essential areas of software engineering such as
software testing, software architectures, aspect-oriented software development, and
open source software.

• In Chapter 8, van Deursen et al. discuss the current state of research and practice
on the interplay between software evolution and software testing. In particular,
they discuss and compare approaches for regression testing, unit testing (and
the impact of refactoring on unit tests), test smells, and many more. They also
consider tool support for test comprehension.

• In Chapter 9, Mens and Tourwé highlight some evolution-related issues and
challenges that adopters of aspect-oriented software development approaches
encounter. They discuss state-of-the-art techniques addressing the issues of as-
pect mining, extraction and evolution, and point out some issues for which no
adequate solutions exist yet. This chapter can serve as a guideline for adopters of
aspect technology to get a better idea of the evolution issues they may confront
sooner or later, of the risks involved, and of the state-of-the-art in the techniques
currently available to help them in addressing these issues.

• In Chapter 10, Barais et al. provide a detailed treatment of state-of-the-art ap-
proaches to evolving software architectures. In addition, they discuss in more
detail TranSAT, one particular framework for software architecture evolution.
The proposed solution combines ideas from aspect-oriented software develop-
ment with architectural description languages.

• In Chapter 11, Fernandez-Ramil et al. discuss state-of-the-art techniques to study
characteristics of evolving open source systems and their processes based on em-
pirical studies. Results of the application of these techniques are given, includ-
ing growth patterns, productivity, complexity patterns, social networks, cloning,
processes and quality in open source systems, and so on.




