. Tom Mens

Serge Demeyer (Eds

»

III
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

| Software
Evolution

Software Evolution

Tom Mens - Serge Demeyer
Editors

Software Evolution

@ Springer

Tom Mens

Université de Mons-Hainaut
Institut d’Informatique
Avenue du champ de Mars 6
7000 Mons

Belgium

tom.mens @umbh.ac.be

ISBN 978-3-540-76439-7

DOI 10.1007/978-3-540-76440-3

Serge Demeyer

Universiteit Antwerpen

Dept. Mathematics and Computer Science
Middelheimlaan 1

2020 Antwerpen

Belgium

serge.demeyer @ua.ac.be

e-ISBN 978-3-540-76440-3

ACM Computing Classification (1998): D.2.7, D.2.9, K.6.3

Library of Congress Control Number: 2007938804

© Springer-Verlag Berlin Heidelberg 2008

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable for prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws

and regulations and therefore free for general use.

Typesetting and Production: LE-TgX Jelonek, Schmidt & Vockler GbR, Leipzig, Germany

Cover Design: KiinkelLopka, Heidelberg

Printed on acid-free paper
987654321

springer.com

To Inge, Sara and Paulien,
for being there — Tom Mens

To Ann, Sara, Niels and Jens,
for illustrating the value of life — Serge Demeyer

Foreword

by Mehdi Jazayeri

Faculty of Informatics, University of Lugano, Switzerland
Distributed Systems Group, Technical University of Vienna

The phenomenon of software evolution was observed back in the 1970s when the
first large software systems were being developed, and it attracted renewed attention
in the 1990s. Software evolution is now a common phrase and an accepted research
area in software engineering. There are conferences and workshops devoted to the
topic, and evolution papers appear frequently in the traditional software engineering
conferences and journals. The 2004 ACM/IEEE Software Engineering Curriculum
Guidelines list software evolution as one of ten key areas of software engineering
education. And there are several research groups and international networks working
on software evolution. As perhaps may be expected, there are diverging research
efforts in sub-areas of software evolution, spanning theoretical studies, empirical
studies, tools, visualization, and so on.

Since the classic and insightful work of Lehman and Belady [320], “software
evolution” has been accepted as a phenomenon worth studying and one that we ac-
knowledge poses serious problems to software projects. The problems are complex
because they involve many dimensions, affecting, among others, all phases of the
software process, managerial and economic aspects, and programming languages
and environments. Further, as software engineering advances and new technologies
(e.g., Web applications) and processes (e.g., open source) are introduced, software
evolution faces different problems and challenges. At the same time, some new ad-
vances (e.g. agile and model-driven processes) enable novel solutions to software
evolution.

Evolution in general parlance implies that something has changed for the bet-
ter. The Merriam-Webster Dictionary defines evolution as “a process of continuous
change from a lower, simpler, or worse to a higher, more complex, or better state,”
which captures our intuitive notion of something improving. With software, evolu-
tion is multi-faceted because certainly according to some metric the software gets
better, for example it acquires a new feature or its performance improves or it is
ported to a new platform. Unfortunately, most improvements come with some dete-
rioration in some other dimension, for example, size of software or its performance
or its structure.

VIII M. Jazayeri

In biology, the traditional area of evolution, evolution deals with species. Is there
something analogous to “species” when we talk about software? The answer is defi-
nitely yes. The species are the high-level models that we use to describe (aspects of)
software. An architectural description, in fact, describes a whole species of software
systems. The family architecture (or product line) approach to software development
makes this explicit by capturing a whole family (species) of systems in terms of their
commonalities and differences. If evolution does take place in software, we can hope
that it occurs at these meta-levels, where new architectures are created as improve-
ments to previous architectures, leading to evolved species. Individual elements in
the family certainly change over time but this change is hardly evolutionary in the
sense that it leads to long-term improvement. What we do know about software and
even Lehman’s laws of evolution is that any individual software system will eventu-
ally reach an old age when it is no longer cost-effective to modify it and it is better
to retire it. But even when we retire a software product, the associated knowledge
about that product, captured in higher level models such as requirements and specifi-
cations lives on and influences the evolution of the species. Thus, understanding and
capturing the way software evolves offers a fascinating and rich area of study.

With this wide range of issues involved in software evolution, where would a re-
searcher new to the field turn to for an introduction and comprehensive overview of
the state of the art? This book attempts to be that source. For example, this book
is a good starting point for a PhD student looking for a research topic. It can also
form the basis for a seminar course on software evolution. The book covers most
areas of software evolution and many current problems and representative research
approaches. I recommend the book to any researcher interested in software evolution.

The book, however, has value beyond the world of research. Because of the key
role that evolution plays in software engineering, knowledge of the problems, ap-
proaches and solutions in software evolution is useful to anyone involved in software
engineering. Thus, if you are a software engineer, or software engineering researcher,
interested or just curious about what happens to software once it is developed, or how
to develop software that is evolvable, this book offers you plenty of insights.

September 2007 Mehdi Jazayeri

Preface

In October 2002, on a cold wintery Monday in Antwerp, we kicked off the RELEASE
network, a research network aiming to establish “Research Links to Explore and Ad-
vance Software Evolution”. This research network (funded by the European Science
Foundation) was an attempt to intensify the collaboration between a number of Euro-
pean research groups active in the field of software evolution. At that time, software
evolution was steadily becoming a subject of serious academic study, because more
and more researchers started to recognise that building software that lasts is one of
the key challenges for our society in general and for the software engineering com-
munity in particular. The RELEASE network succeeded in fostering a community
of European researchers who continue to meet on a regular basis, despite ceasing of
funding in 2005. The book you are holding right now is one of the products of this
continued activity and we sincerely hope that it will inspire you to become part of
the active software evolution community as well.

What Is this Book About?

This book is a collection of chapters written and peer reviewed by renowned experts
in the field of software evolution. The book does not cover all research topics in soft-
ware evolution—given the wealth of information in this field that would be an im-
possible task. Instead, we focus on novel trends in software evolution research and its
relation with other emerging disciplines such as model-driven software engineering,
service-oriented software development, aspect-oriented software development. Also,
we do not restrict ourselves to the evolution of source code only, but address evolu-
tion of other equally important software artefacts such as databases and database
schemas, design models, software architectures, and so on. As such, this book pro-
vides a representative selection of the research topics under study in this field. Even
better, it also demonstrates the diverse ways on how to conduct research in this field,
so you will see various examples of tools, case studies (mainly open-source sys-
tems), empirical validation and formal models. All contributing authors did their

X Preface

very best to provide a broad overview of the related work, contribute to a compre-
hensive glossary and a list of acronyms used within the community, and—Iast but
not least—collect a list of books, journals, web-sites, standards and conferences that
together represent the community. So reading this book should give you a head start
when diving into the field of software evolution.

As such, we hope that this book will become a key reference in the field, provid-
ing a basis for the next generation of software evolution researchers.

Who Should Read this Book?

This book is of interest to everyone working in the field of software engineering
and wishing to acquire more knowledge on the state-of-the-art in software evolu-
tion, software maintenance and re-engineering. In particular, we target this book to
researchers, teachers, students and practitioners that need up-to-date information on
this very important research field.

So, whether you are a PhD researcher exploring a research topic, a student writ-
ing a master’s thesis, a teacher in need of an overview, a practitioner looking for the
state-of-the-art, or if you are simply curious about what the field of software evolu-
tion has to offer, this should be the book for you.

Why this Book?

Software has become omnipresent and indispensable in our information-based soci-
ety. Almost all devices, machines and artefacts surrounding us incorporate software
to some extent. The numerous organisations, businesses and enterprises we face on
a daily basis could not function without software. As such, software is vital to our
society and consequently we—the software engineering community—should take
up our responsibility to produce reliable software. For a long, long time, reliable
software was seen as software “without bugs”. As a result, most of the software
engineering research effort has concentrated on preventing, detecting and repairing
mistakes in various stages of software development. However, more and more, re-
liable software has come to mean “easy to adapt”. Indeed today’s global society,
with its extreme complexity and diversity imposes constant pressure to change ... to
adapt. Hence all the software that surrounds us is forced to keep pace or is bound to
be replaced by something else ... something new.

Software evolution is the subdomain of the software engineering discipline that
investigates ways to adapt software to the ever-changing user requirements and op-
erating environment (i.e., it addresses the How? question). However, software evo-
lution also studies the change process itself, analysing remnants of the software (for
instance in version repositories) to extract trends, make predictions or understand the
very nature of the software evolution phenomenon itself (i.e., it explores the What
and Why? questions). With the recent interest in agile software development, finding
good answers for the How? question is necessary. On the other hand, the emergence

Preface XI

of open-source software development with its sheer unlimited access to a wealth of
data has provided an extra opportunity to address the What and Why? questions in
a scientific way. Consequently, research in software evolution has seen a recent boost,
and this book provides an up-to-date view on the ideas emerging from our research
labs.

Acknowledgements

We would like to thank all persons that have contributed to this book, either directly
or indirectly. There are many people that we are indebted to:

The contributors of the chapters of this book;

The Springer staff (in particular, Ralf Gerstner and Ulrike Stricker);

Mehdi Jazayeri, who was so kind to write a very nice foreword for this book;
David Notkin, Michael Godfrey, Vaclav Rajlich and Anne Keller, who spent
their precious time to review this book in its entirety, and provided numerous
suggestions for improvement;

Joris Van Geet, Pieter Van Gorp, Filip Van Rysselberghe, Bart Van Rompaey,
Bart Du Bois, Matthias Rieger and Hans Schippers, who provided valuable feed-
back on several chapters of this book;

Last but not least, we would like to thank you, reader of this book.

Many of the results that are published in this book have been achieved in the con-
text of research projects or research collaborations. In particular we would like to
mention:

The Scientific Network “Research Links to Explore and Advance Software Evo-
lution” (RELEASE), financed by the European Science Foundation (ESF) from
July 2002 to December 2005.

The ongoing ERCIM Working Group on Software Evolution, a network of re-
search institutes from all over the world working on the topic of software evolu-
tion, supported by the European Research Consortium on Informatics and Math-
ematics (ERCIM) since December 2004.

The Interuniversity Attraction Poles Programme (IUAP) on “Modelling, Verifi-
cation and Evolution of Software” (MOVES), financed by the Belgian State -
Belgian Science Policy from January 2007 to December 2011.

The Belgian FRFC project “Research Centre on Structural Software Improve-
ment”, financed by the Fondation Nationale de Recherche Scientifique (FNRS -
Belgium) from January 2005 to December 2008.

The Swiss joint research project “Controlling Software Evolution” (COSE), fi-
nanced by the Swiss National Science Foundation from July 2005 to September
2007

The Swiss joint research project “Multi-dimensional Navigation Spaces for Soft-
ware Evolution” (EvoSpaces), financed by the Hasler Foundation from January
2006 to December 2007.

X1I Preface

* The German “Bauhaus” Project on Software Architecture, Software Reengineer-
ing, and Program Understanding (see www.bauhaus-stuttgart.de)

* The European Leg2Net project: “From Legacy Systems to Services in the Net”,
supported by Marie Curie Fellowships for the Transfer of Knowledge - Industry
Academia Partnership (MTK1-CT-2004-003169).

* The European SENSORIA project: “Software Engineering for Service-Oriented
Overlay Computers”, supported by the Information Society Technologies pro-
gramme - Future Emerging Technologies (IST-2005-16004).

* The Dutch “Reconstructor” project sponsored by the NWO Jacquard programme,
project number 638.001.408.

We hope you enjoy reading, and we welcome any comments you may have on the
contents, structure or quality of this book.

Mons and Antwerp, Tom Mens
September 2007 Serge Demeyer

Contents

Foreword
Mehdi Jazayeri VII

1 Introduction and Roadmap:
History and Challenges of Software Evolution
Tom Mens 1

Part I Understanding and Analysing Software Evolution

2 Identifying and Removing Software Clones
Rainer Koschke e 15

3 Analysing Software Repositories to Understand Software Evolution
Marco D’Ambros, Harald C. Gall, Michele Lanza, Martin Pinzger 37

4 Predicting Bugs from History
Thomas Zimmermann, Nachiappan Nagappan, Andreas Zeller 69

Part IT Reengineering of Legacy Systems

5 Object-Oriented Reengineering
Serge Demeyer 91

6 Migration of Legacy Information Systems
Jean-Luc Hainaut, Anthony Cleve, Jean Henrard, Jean-Marc Hick 105

7 Architectural Transformations:

From Legacy to Three-Tier and Services

Reiko Heckel, Rui Correia, Carlos Matos, Mohammad El-Ramly,

Georgios Koutsoukos, Luis Andrade 139

X1V Contents

Part III Novel Trends in Software Evolution

8 On the Interplay Between Software Testing and Evolution
and its Effect on Program Comprehension
Leon Moonen, Arie van Deursen, Andy Zaidman, Magiel Bruntink 173

9 Evolution Issues in Aspect-Oriented Programming
Kim Mens, Tom Tourwé e e 203

10 Software Architecture Evolution
Olivier Barais, Anne Francoise Le Meur, Laurence Duchien, Julia Lawall 233

11 Empirical Studies of Open Source Evolution
Juan Fernandez-Ramil, Angela Lozano, Michel Wermelinger,

Andrea Capiluppi 263
Appendices

Resources 291
Glossaryof Terms i 295
Listof Acronyms 307
References. 309

List of Contributors

Luis Andrade

ATX Software

Rua Saraiva de Carvalho 207C
1350-300 Lisboa

Portugal
luis.andrade@atxsoftware.com

Olivier Barais

Université de Rennes 1
IRIA/INRIA Triskell project
Campus de Beaulieu

35042 Rennes Cédex
France

barais@irisa.fr

Magiel Bruntink

CWI

P.O. Box 94079

1090 GB, Amsterdam
and

Software Engineering Research Group

Technische Universiteit Delft
Mekelweg 4, 2628 CD, Delft
The Netherlands

Magiel.Bruntink@cwi.nl

Andrea Capiluppi

Department of Computing

and Informatics

Faculty of Technology
University of Lincoln

Brayford Pool, Lincoln LN6 7TS
United Kingdom

acapiluppi@lincoln.ac.uk

Anthony Cleve

PReCISE Research Centre
Laboratory of Database Engineering
University of Namur

Rue Grandgagnage 21, 5000 Namur
Belgium

acl@info.fundp.ac.be

Rui Correia
Department of Computer Science
University of Leicester
University Road LE1 7RH
Leicester
United Kingdom

and
ATX Software
Rua Saraiva de Carvalho 207C
1350-300 Lisboa
Portugal
rmc20€mes.le.ac.uk

XVI List of Contributors

Marco D’Ambros

Faculty of Informatics
University of Lugano

Via G. Buffi 13, 6904 Lugano
Switzerland
marco.dambros@lu.unisi.ch

Serge Demeyer

Lab on Re-Engineering (LORE)
Department of Mathematics

and Computer Science

Universiteit Antwerpen
Middelheimlaan 1, 2020 Antwerpen
Belgium

serge.demeyer@ua.ac.be

Laurence Duchien

Université de Lille 1
LIFL/INRIA ADAM project
Cité Scientifique

59655 Villeneuve d’Ascq Cedex
France

duchien@lifl.fr

Mohammad El-Ramly
Computer Science Department
Cairo University

Egypt
m.elramly@fci-cu.edu.eg

Juan Fernandez-Ramil

Computing Department

and Centre for Research in Computing
The Open University

Walton Hall, Milton Keynes MK7 6AA
United Kingdom

j.f.ramil@open.ac.uk

Harald Gall

Software Engineering Group
Universitit Ziirich
Binzmiihlestrasse 14

8050 Ziirich

Switzerland
gall@ifi.unizh.ch

Jean-Luc Hainaut

PReCISE Research Centre
Laboratory of Database Engineering
University of Namur

Rue Grandgagnage 21, 5000 Namur
Belgium

jlh@info. fundp.ac.be

Reiko Heckel

Department of Computer Science
University of Leicester

University Road LE1 7RH, Leicester
United Kingdom

reiko@mcs.le.ac.uk

Jean Henrard

REVER s.a.

Boulevard Tirou 130, 6000 Charleroi
Belgium

jean.henrard@rever.eu

Jean-Marc Hick

REVER s.a.

Boulevard Tirou 130, 6000 Charleroi
Belgium

jean-marc.hick@rever.eu

Rainer Koschke

Fachbereich 03

Universitiat Bremen

Postfach 33 04 40, 28334 Bremen
Germany
koschke@informatik.uni-bremen.de

Georgios Koutsoukos

Department of Computer Science
University of Leicester

University Road LE1 7RH, Leicester
United Kingdom
georgios.koutsoukos@atxsoftware.com

Michele Lanza

Faculty of Informatics
University of Lugano

Via G. Buffi 13, 6904 Lugano
Switzerland
michele.lanza@unisi.ch

Julia Lawall

DIKU

University of Copenhagen
2100 Copenhagen
Denmark

julia@diku.dk

Anne Francoise Le Meur
Université de Lille 1
LIFL/INRIA ADAM project
Cité Scientifique

59655 Villeneuve d’ Ascq Cedex
France

lemeur@lifl.fr

Angela Lozano

Computing Department

and Centre for Research in Computing
The Open University

Walton Hall, Milton Keynes MK7 6AA
United Kingdom

a.lozano-rodriguez@open.ac.uk

Carlos Matos
Department of Computer Science
University of Leicester
University Road LE1 7RH, Leicester
United Kingdom

and
ATX Software
Rua Saraiva de Carvalho 207C
1350-300 Lisboa
Portugal
cmm22@mcs. le.ac.uk

Kim Mens

Département d’Ingénierie Informatique
Université catholique de Louvain

Place Sainte Barbe 2

1348 Louvain-la-Neuve

Belgium

kim.mens@uclouvain.be

List of Contributors ~ XVII

Tom Mens

Institut d’Informatique

Université de Mons-Hainaut

Av. du Champ de Mars 6, 7000 Mons
Belgium

tom.mens@umh.ac.be

Leon Moonen

Software Engineering Research Group
Technische Universiteit Delft
Mekelweg 4, 2628 CD, Delft

The Netherlands

leon.moonen@computer.org

Nachiappan Nagappan
Microsoft Research
Redmond, Washington
USA

nachin@microsoft.com

Martin Pinzger

Department of Informatics
Universitit Ziirich
Winterthurerstrasse 190, 8057 Ziirich
Switzerland

pinzger@ifi.unizh.ch

Tom Tourwé

Department of Software Engineering
and Technology

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven
The Netherlands

t.tourwe@tue.nl

Arie van Deursen
Software Engineering Research Group
Technische Universiteit Delft
Mekelweg 4, 2628 CD, Delft

and
CWI
P.O. Box 94079, 1090 GB, Amsterdam
The Netherlands

Arie.van.Deursen@cwi.nl

XVII List of Contributors

Michel Wermelinger

Computing Department

and Centre for Research in Computing
The Open University

Walton Hall, Milton Keynes MK7 6AA
United Kingdom

m.a.wermelinger@open.ac.uk

Andreas Zeller

Dept. of Informatics

Saarland University

Postfach 15 11 50, 66041 Saarbriicken
Germany

zeller@cs.uni-sb.de

Andy Zaidman

Software Engineering Research Group
Technische Universiteit Delft
Mekelweg 4, 2628 CD, Delft

The Netherlands
A.E.Zaidman@tudelft.nl

Thomas Zimmermann
Department of Computer Science
University of Calgary

2500 University Drive NW Calgary
Alberta, T2N 1N4 Canada

tz@acm.org

1

Introduction and Roadmap:
History and Challenges of Software Evolution

Tom Mens

University of Mons-Hainaut, Belgium

Summary. The ability to evolve software rapidly and reliably is a major challenge for soft-
ware engineering. In this introductory chapter we start with a historic overview of the research
domain of software evolution. Next, we briefly introduce the important research themes in
software evolution, and identify research challenges for the years to come. Finally, we provide
a roadmap of the topics treated in this book, and explain how the various chapters are related.

1.1 The History of Software Evolution

In early 1967, there was an awareness of the rapidly increasing importance and im-
pact of software systems in many activities of society. In addition, as a result of
the many problems faced in software manufacturing, there was a general belief that
available techniques should become less ad hoc, and instead based on theoretical
foundations and practical disciplines that are established in traditional branches of
engineering. These became the main driving factors for organising the first confer-
ence on Software Engineering in 1968 [391]. The goal of this conference, organised
by the NATO Science Committee, was “the establishment and use of sound engineer-
ing principles in order to obtain reliable, efficient and economically viable software”.
Among the many activities of software engineering, maintenance was considered as
a post-production activity, i.e., after the delivery and deployment of the software
product.

This view was shared by Royce, who proposed in 1970 the well-known waterfall
life-cycle process for software development [446]. In this process model, that was
inspired by established engineering principles, the maintenance phase is the final
phase of the life-cycle of a software system, after its deployment. Only bug fixes and
minor adjustments to the software are supposed to take place during that phase. This
classical view on software engineering has long governed the industrial practice in
software development and is still in use today by several companies. It even became
a part of the IEEE 1219 Standard for Software Maintenance [239], which defines
software maintenance as “the modification of a software product after delivery to

T. Mens, S. Demeyer (eds.), Software Evolution.
DOI 10.1007/978-3-540-76440-3, © Springer 2008

2 T. Mens

correct faults, to improve performance or other attributes, or to adapt the product to
a modified environment.”

It took a while before software engineers became aware of the inherent limita-
tions of this software process model, namely the fact that the separation in phases
was too strict and inflexible, and that it is often unrealistic to assume that the re-
quirements are known before starting the software design phase. In many cases, the
requirements continue to change during the entire lifetime of the software project. In
addition, knowledge gained during the later phases may need to be fed back to the
earlier phases.

Therefore, in the late seventies, a first attempt towards a more evolutionary pro-
cess model was proposed by Yau with the so-called change mini-cycle [559] (see
Fig. 1.1). In this process, important new activities, such as change impact analy-
sis and change propagation were identified to accommodate the fact that software
changes are rarely isolated.

Also in the seventies, Manny Lehman started to formulate his, now famous, laws
of software evolution. The postulated laws were based on earlier work carried out by
Lehman to understand the change process being applied to IBM’s OS 360 operating
system [317, 318]. His original findings were confirmed in later studies involving
other software systems [320].

This was probably the first time that the term software evolution (or program
evolution) was deliberately used the stress the difference with the post-deployment
activity of software maintenance. To stress this difference even more, Lehman coined
the term E-type software to denote programs that must be evolved because they “op-
erate in or address a problem or activity of the real world”. As such, changes in the
real world will affect the software and require adaptations to it.

Nevertheless, it took until the nineties until the term software evolution gained
widespread acceptance, and the research on software evolution started to become
popular [24, 403]. This also lead to the acceptance of so-called evolutionary pro-
cesses such as Gilb’s evolutionary development [200], Boehm’s spiral model [71]
and Bennett and Rajlich’s staged model [57].

The staged process model, visualised in Fig. 1.2, is interesting in that it explicitly
takes into account the inevitable problem of software aging [410]. After the initial
stage of development of a first running version, the evolution stage allows for any
kind of modification to the software, as long as the architectural integrity remains

Analyse and Plan Change
Request C Program comprehension)

Implement Change

Restructuring

Verify and
Validate

Change l
g C Change impact analysis) Change propagation
request rejected further changes required

Fig. 1.1. The staged process model for evolution (adapted from [559] ©[1978] IEEE)

1 Introduction and Roadmap: History and Challenges of Software Evolution 3

changes patches
initial . - phase close
evolution servicing
development out down
— T — — R

Fig. 1.2. The staged process model for evolution (adapted from [57] ©[2000] ACM)

preserved. If this is no longer the case, there is a loss of evolvability (also referred to
as decay) and the servicing stage starts. During this stage, only small patches can be
applied to keep the software up and running. If even such small patches become too
costly to carry out, the phase-out stage starts, leading to ultimate close down of the
system. If the system, despite of its degraded quality, is still valuable to its various
stakeholders, it is called a legacy system. In that case, it may be wise to migrate to
a new system that offers the similar or extended functionality, without exhibiting the
poor quality of the legacy system. The planning to migrate to such a new system
should be done as soon as possible, preferably during the servicing stage.

Software evolution is also a crucial ingredient of so-called agile software devel-
opment [119, 351] processes, of which extreme programming (XP) [50] is probably
the most famous proponent. In brief, agile software development is a lightweight
iterative and incremental (evolutionary) approach to software development that is
performed in a highly collaborative manner and explicitly accommodates the chang-
ing needs of its stakeholders, even late in the development cycle, because this offers
a considerable competitive advantage for the customer. In many ways, agile methods
constitute a return to iterative and incremental development as practiced early in the
history of software development, before the widespread use of the waterfall model
[312].

Nowadays, software evolution has become a very active and well-respected field
of research in software engineering, and the terms software evolution and software
maintenance are often used as synonyms. For example, the international ISO/IEC
14764 standard for software maintenance [242], acknowledges the importance of
pre-delivery aspects of maintenance such as planning. Similarly, the Software Engi-
neering Body of Knowledge (SWEBOK) [2] acknowledges the need for supporting
maintenance in the pre-delivery as well as the post-delivery stages, and considers the
following evolution-related research themes as being crucial activities in software
maintenance: software comprehension, reverse engineering, testing, impact analysis,
cost estimation, software quality, software measurement, process models, software
configuration management, and re-engineering. These activities will be discussed in
more detail in Section 1.2.

In this book, we will continue to use the term software evolution as opposed to
maintenance, because of the negative connotation of the latter term. Maintenance
seems to indicate that the software itself is deteriorating, which is not the case. It is
changes in the environment or user needs that make it necessary to adapt the soft-
ware.

4 T. Mens
1.2 Research Themes in Software Evolution

In this Section we provide an overview of some of the important research themes
in software evolution. The various chapters of this book will explore some of these
themes in more depth. Of course, it is not the aim of the book to provide complete
and detailed coverage of all these themes. Instead, we have tried to offer a selection
of important issues that are actively pursued by the research community. They have
been identified, among others in the visionary articles by Bennett and Rajlich [57]
and Mens et al. [371]. Therefore, in this section, we summarise some of the most
important challenges and future research directions in software evolution, as reported
in these articles.

1.2.1 Dimensions of Software Evolution

There are two prevalent views on software evolution, often referred to as the what
and why versus the how perspectives [322].

The what and why view focuses on software evolution as a scientific discipline. It
studies the nature of the software evolution phenomenon, and seeks to understand its
driving factor, its impact, and so on. This is the view that is primarily taken in [338].
An important insight that has been gained in this line of research is that the evo-
lution process is a multi-loop, multi-level, multi-agent feedback system that cannot
be treated in isolation. It requires interdisciplinary research involving non-technical
aspects such as human psychology, social interaction, complexity theory, organisa-
tional aspects, legislation and many more.

The how view focuses on software evolution as an engineering discipline. It stud-
ies the more pragmatic aspects that aid the software developer or project manager in
his day-to-day tasks. Hence, this view primarily focuses on technology, methods,
tools and activities that provide the means to direct, implement and control software
evolution.

It is the latter view that is followed throughout most of the chapters in this book.
Nevertheless, it remains necessary to develop new theories and mathematical models,
and to carry out empirical research to increase understanding of software evolution,
and to invest in research that tries to bridge the gap between the what and the how of
software evolution.

As another “dimension” of software evolution, we can consider the types of
changes that are being performed. Based on earlier studies by Lientz and Swanson
[329], the ISO/IEC standard for software maintenance [242] proposes four categories
of maintenance:

e Perfective maintenance is any modification of a software product after delivery
to improve performance or maintainability.

» Corrective maintenance is the reactive modification of a software product per-
formed after delivery to correct discovered faults.

* Adaptive maintenance is the modification of a software product performed after
delivery to keep a computer program usable in a changed or changing environ-
ment.

1 Introduction and Roadmap: History and Challenges of Software Evolution 5

* Preventive maintenance refers to software modifications performed for the pur-
pose of preventing problems before they occur.

For completeness, we also mention the work of Chapin et al. [109], who further
extended this classification, based on objective evidence of maintainers’ activities
ascertainable from observation, and including non-technical issues such as documen-
tation, consulting, training and so on. A related article that is worthwhile mentioning
is the work by Buckley et al. [94], in which a taxonomy of software change is pre-
sented based on various dimensions that characterise or influence the mechanisms of
change.

1.2.2 Reverse and Re-Engineering

An important theme within the research domain of software evolution is reverse en-
gineering [112]. This activity is needed when trying to understand the architecture
or behaviour of a large software system, while the only reliable information is the
source code. This may be the case because documentation and design documents
are unavailable, or have become inconsistent with respect to the code because they
have not been updated. Reverse engineering aims at building higher-level, more ab-
stract, software models from the source code. Program comprehension or program
understanding are activities that try to make sense of the wealth of information that
reverse engineering produces, by building mental models of the overall software ar-
chitecture, structure and behaviour. Program comprehension also includes activities
such as task modelling, user interface issues, and many others.

Reverse engineering can also be regarded as the initial phase in the process of
software reengineering [23]. Reengineering is necessary when we are confronted
with legacy systems. These are systems that are still valuable, but are notoriously
difficult to maintain [149]. Following the terminology used in the staged life cycle
model of Fig. 1.2, we consider these systems to be in the servicing stage.

The goal of reengineering is thus to come to a new software system that is more
evolvable, and possibly has more functionality, than the original software system.
The reeengineering process is typically composed of three activities, as captured by
the so-called horseshoe model visualised in Fig. 1.3 [271]. First, reverse engineering
may be necessary when the technological platform of the software system (language,
tools, machines, operating system) is outdated, or when the original developers are
no longer available. This activity is typically followed by a phase of software re-
structuring [22] in which we try to improve crucial aspects of the system. Finally,
in a forward engineering phase we build a new running system based on the new,
restructured, model.

The topic of reengineering is very important and relevant to industry, and there-
fore the second part of this book will be entirely devoted to it. Chapter 5 will focus
on the reengineering of object-oriented software systems. Chapter 6 will address the
need for, and means to, migrate data when reengineering large information systems.
Chapter 7 discusses how to reengineer legacy systems into service-oriented systems.

Another very important research topic in reengineering research is the quest for
new and better visualisation techniques that aid in a better program comprehension,

6 T. Mens
analyse Fig. 1.3. The horseshoe process
improve, model for reengineering
. restructure, ,
high-level extend improved
architectural —>| restructured
model model
understand,
extract, g erate
abstract
legacy
software nev; ssot:xare
system ¥

as well as a better understanding of the evolution of software. Such visualisation
techniques are explored in Chapter 3.

1.2.3 Incremental Change Techniques

In the change mini-cycle proposed by Yau et al. [559], and visualised in Fig. 1.1,
a number of important activities related to the change process become apparent.

During the planning phase, program comprehension is of course essential to un-
derstand what parts of the software will be affected by a requested change. In addi-
tion, the extent or impact of the change needs to be assessed by resorting to change
impact analysis techniques [74]. By predicting all parts of the system that are likely
to be affected by a change, they give an estimation of how costly the change will be,
as well as the potential risk involved in making the change. This analysis is then used
to decide whether or not it is worthwhile to carry out the change.

Because of the fact that a change may have a non-local impact, support is needed
for what is referred to as change propagation [424, 425]. It is necessary when
a change to one part of a software system requires other system parts that depend
on it to be changed as well. These dependent system parts can on their turn require
changes in other system parts. In this way, a single change to one system part may
lead to a propagation of changes to be made throughout the entire software system.

During the implementation phase, it may turn out that the change cannot be im-
plemented directly, and that a restructuring or refactoring of the software is required
first in order to accommodate the requested change. The goal is thus to improve the
software structure or architecture without changing the behaviour [21, 183].

During the validation and verification phase, techniques to revalidate the software
after having performed changes are crucial in order to ensure that the system integrity
has not been compromised. Regression testing is one of those techniques [66]. Rather
than repeating all tests for each new software release (which would be too costly, take
too much time, and consume too many resources), a carefully selected subset of the
tests is executed to verify that the changes did not have inadvertent effects. Chapter 8

1 Introduction and Roadmap: History and Challenges of Software Evolution 7

of this book provides an excellent overview of software testing, and its interplay with
software evolution.

1.2.4 Managerial Issues

Managerial issues are equally crucial to software evolution. Despite this fact, it re-
mains a challenge to increase awareness among executives and project managers
about the importance and inevitability of software evolution. Indeed, various studies
and surveys indicate that over 80% of the total maintenance effort is used for non-
corrective actions [1, 416]. In addition, other studies indicate that software mainte-
nance accounts for at least 50% of the total software production cost, and sometimes
even exceeds 90% [329, 457, 296].

According to Lehman, software evolution problems start to appear when there
are at least two management levels involved in the software production process. This
is confirmed by Brooks [85], who calls this the large program problem. A very im-
portant managerial issue has to do with the economics of software evolution [72]. It
turns out that, in many cases, the reason for evolving software is non-technical. More
specifically, it is an economic decision, driven by marketing or other reasons.

The main challenge is therefore to develop better predictive models, based on
empirical studies, for measuring and estimating the cost and effort of software main-
tenance and evolution activities with a higher accuracy [261, 466, 427, 177]. Similar
techniques may also be useful to measure the cost-effectiveness of regression testing
[444].

Another point of attention for managers is the need for software quality assur-
ance. If proper support for measuring quality is available, this can provide crucial
information to determine whether the software quality is degrading, and to take cor-
rective actions if this turns out to be the case. Numerous software metrics have been
proposed, studied and validated as measures of software quality characteristics such
as complexity, cohesion, coupling, size and many others [83, 39, 171, 231].

Besides metrics, other more heuristic approaches may be used to detect “bad
smells” or other indicators of poor-quality software. For example, Chapter 2 of this
book studies techniques to detect and remove software redundancies and code clones,
which are generally considered to be an indication of poor quality. Chapter 4 analy-
ses software failures stored in a bug repository to predict and improve the software
quality over time.

1.2.5 The Software Process

An important area of research is to find the software process model that is most ap-
propriate to facilitate software evolution. In Section 1.1 we already introduced a num-
ber of such process models. The IEEE standard for software maintenance [239] and
the ISO/IEC standard for software maintenance [242] also propose such a mainte-
nance process model.

It is important to observe that, due to the fact that the activity of software evolu-
tion is a continuous feedback process [338], the chosen software process model itself

8 T. Mens

is likely to be subject to evolution. The research area of software process improve-
ment aims to reduce cost, effort and time-to-market, to increase productivity and
reliability, or to affect any other relevant properties. Software process improvement
can be based on theory or empirical industrial case studies [208].

As software systems become larger and more complex, and are being developed
in a collaborative and distributed way, it becomes inevitable to resort to dedicated
software configuration management tools. Among others, they provide automated
support for the change process, they allow for software versioning and merging, and
they offer procedures (verification, validation, certification) for ensuring the quality
of each software release. Even today, research in this area is continuing in order to
advance the state-of-the-art.

Another aspect of software process improvement is the exploration and introduc-
tion of novel development paradigms such as agile software development [119, 351],
aspect-oriented software development [247], model-driven software development
[474], service-oriented architectures [393], and many more. All of these development
paradigms claim to improve software development and to lead to higher productivity,
higher quality, and more adaptable and maintainable software. Some of these claims
are investigated in Chapter 9 for aspect-oriented development.

Of particular interest is the open source movement, which has provided a novel,
strongly collaborative way of developing and evolving software. The question arises
whether this style of software development is subject to the same laws that govern the
evolution of traditional software development approaches [318]. This topic is under
active study [206, 481, 461] and will be addressed in Chapter 11 of this book.

1.2.6 Model Evolution

One of the main difficulties of software evolution is that all artefacts produced and
used during the entire software life-cycle are subject to changes, ranging from early
requirements over analysis and design documents, to source code and executable
code. This fact automatically spawns many subdisciplines in the research domain of
software evolution, some of which are listed below:

Requirements evolution. The main objectives of requirements engineering are defin-
ing the purpose of a software system that needs to be implemented. Require-
ments evolve because requirements engineers and users cannot predict all possi-
ble uses of a system, because not all needs and (often mutually conflicting) goals
of the various stakeholders can be taken into account, and because the environ-
ment in which the software is deployed frequently changes as well. Because the
topic of requirements evolution is not covered in this book, we direct the reader
to [571, 570, 191] for more information.

Architecture evolution. Based on an (initial) description of the software require-
ments, the overall software architecture (or high-level design) and the corre-
sponding (low-level) technical design of the system can be specified. These are
inevitably subject to evolution as well. The topic of architectural evolution is ex-
plored in detail in Chapter 10. The related problem of evolving software product

1 Introduction and Roadmap: History and Challenges of Software Evolution 9

families is not covered in this book, but we refer to [253, 252] for an in-depth
treatment of this topic.

Data evolution. In information systems and other data-intensive software systems
it is essential to have a clear and precise description of the database schema.
Chapter 6 explores in detail how to evolve and migrate such schemas.

Runtime evolution. Many commercial software systems that are deployed by large
companies need to be constantly available. Halting the software system to make
changes cannot be afforded. Therefore, techniques are needed to change the
software while it keeps on running. This very challenging problem is known
under a variety of terms, including runtime evolution, runtime reconfiguration,
dynamic adaptation and dynamic upgrading [297, 284].

Service-oriented architectures (SOA) provide a new paradigm in which a user-
oriented approach to software is taken [162]. The software is developed in terms
of which services are needed by particular users, and these users should be able
to easily add, remove or adapt services to their needs. While this approach has
many similarities with the component-oriented approach [486], services are only
bound together at runtime, whereas components are statically (i.e., at design
time) composed together. A service-oriented approach thus promises to be in-
herently more flexible than what is available today. This is crucial, especially in
e-commerce applications, where rapid and frequent change is a necessity in or-
der to respond to, and survive in, a highly competitive market. Chapter 7 of this
book will be devoted to the migration towards service-oriented architectures.

Language evolution. When looking at languages (whether it be programming, mod-
elling of formal specification languages), a number of research directions come
to mind. The first one is the issue of co-evolution between software and the lan-
guage that is used to represent it. Both are subject to evolution, albeit at different
speed [167]. The second challenge is to provide more and better support for
evolution in the context of multi-language software systems. A third challenge
is to improve the design of languages to make them more robust to evolution
(e.g., traits [451]). This challenge has always been the main driver of research
in design of new computer languages. Unfortunately, every new programming
paradigm promises to improve the software development process but introduces
its own maintenance problems. This was the case for object-oriented program-
ming (where the inheritance hierarchy needs to be mastered and kept under con-
trol when evolving software), aspect-oriented programming (where aspects need
to be evolved next to the base code, see Chapter 9 for more details), component-
oriented programming, and so on. In general, every new language or technology
should always be evaluated in the light of its potential impact on the software’s
ability to evolve.

Interestingly, when starting to study evolution of software artefacts different from
source code, new challenges arise that need to be dealt with, regardless of the type of
software artefact under consideration. For example, we need techniques that ensure
a traceability link between software artefacts at all different levels of abstraction,
ranging from very high-level requirements documents to low-level source code [16].

10 T. Mens

In presence of many different types of software artefacts that co exist, we also
need inconsistency management and consistency maintenance techniques to control
the overall consistency of the software system [471], as well as techniques for co-
evolution and incremental synchronisation of all related software artefacts [363].

1.3 Roadmap

The remainder of the book is structured into three parts, each containing at least three
chapters. All chapters provide a detailed overview of relevant research literature.

Part I of the book, called Understanding and Improving Software Evolution is
about understanding software evolution by analysing version repositories and release
histories, and improving software evolution by removing software redundancies and
fixing bugs:

e In Chapter 2, Koschke discusses and compares various state-of-the-art tech-
niques that can be used to detect and remove software clones. In addition, he
describes techniques to remove clones through refactoring and summarises stud-
ies on the evolution of clones.

* In Chapter 3, D’ Ambros et al. report on how information stored in version repos-
itories and bug archives can be exploited to derive useful information about the
evolution of software systems.

 In Chapter 4, Zimmermann et al. explore how information about software fail-
ures contained in a bug database can be mined to predict software properties
and to improve the software quality. Their results are validated on a number of
industrial case studies.

Part IT of the book, called Reengineering of Legacy Systems contains three chapters
devoted to the topic of legacy software systems, and how one may migrate to, or
reengineer these systems into a system that is no longer outdated and more easy to
maintain and adapt:

 In Chapter 5, Demeyer discusses the state-of-the-art in object-oriented software
reengineering. In particular, he focuses on the techniques of refactoring and
reengineering patterns, and shows how these techniques can be used to capture
and document expert knowledge about reengineering.

* In Chapter 6, Hainaut et al. address the problem of platform migration of large
business applications and information systems. More specifically, they study the
substitution of a modern data management technology for a legacy one. They
develop a reference framework for migration strategies, and they focus on some
migration strategies that minimize program understanding effort.

* In Chapter 7, Heckel et al. discuss an important research trend, namely the mi-
gration of legacy software systems to web services and service-oriented architec-
tures by introducing architectural styles. In particular, they report on experience
with an industrial case study in the context of a European research project, rely-
ing on the technique of graph transformation.

1 Introduction and Roadmap: History and Challenges of Software Evolution 11

Part III of the book, called Novel Trends in Software Evolution addresses the relation
between software evolution and other essential areas of software engineering such as
software testing, software architectures, aspect-oriented software development, and
open source software.

* In Chapter 8, van Deursen et al. discuss the current state of research and practice
on the interplay between software evolution and software testing. In particular,
they discuss and compare approaches for regression testing, unit testing (and
the impact of refactoring on unit tests), test smells, and many more. They also
consider tool support for test comprehension.

e In Chapter 9, Mens and Tourwé highlight some evolution-related issues and
challenges that adopters of aspect-oriented software development approaches
encounter. They discuss state-of-the-art techniques addressing the issues of as-
pect mining, extraction and evolution, and point out some issues for which no
adequate solutions exist yet. This chapter can serve as a guideline for adopters of
aspect technology to get a better idea of the evolution issues they may confront
sooner or later, of the risks involved, and of the state-of-the-art in the techniques
currently available to help them in addressing these issues.

* In Chapter 10, Barais et al. provide a detailed treatment of state-of-the-art ap-
proaches to evolving software architectures. In addition, they discuss in more
detail TranSAT, one particular framework for software architecture evolution.
The proposed solution combines ideas from aspect-oriented software develop-
ment with architectural description languages.

 In Chapter 11, Fernandez-Ramil et al. discuss state-of-the-art techniques to study
characteristics of evolving open source systems and their processes based on em-
pirical studies. Results of the application of these techniques are given, includ-
ing growth patterns, productivity, complexity patterns, social networks, cloning,
processes and quality in open source systems, and so on.

Part I

Understanding and Analysing Software Evolution

2

Identifying and Removing Software Clones

Rainer Koschke

Universitdt Bremen, Germany

Summary. Ad-hoc reuse through copy-and-paste occurs frequently in practice affecting the
evolvability of software. Researchers have investigated ways to locate and remove duplicated
code. Empirical studies have explored the root causes and effects of duplicated code and the
evolution of duplicated code. This chapter summarizes the state of the art in detecting, manag-
ing, and removing software redundancy. It describes consequences, pros and cons of copying
and pasting code.

2.1 Introduction

A venerable and long-standing goal and ideal in software development is to avoid
duplication and redundancy. Yet, in reality code duplication is a common habit. Sev-
eral authors report on 7-23% code duplication [29, 291, 303]; in one extreme case
even 59% [156].

Duplication and redundancy can increase the size of the code, make it hard to
understand the many code variants, and cause maintenance headaches. The goal of
avoiding redundancy has provided the impetus to investigations on software reuse,
software refactoring, modularization, and parameterization. Even in the face of the
ethic of avoiding redundancy, in practice software frequently contains many redun-
dancies and duplications. For instance the technique of “code scavenging” is fre-
quently used, and works by copying and then pasting code fragments, thereby creat-
ing so-called “clones” of duplicated or highly similar code. Redundancies can also
occur in various other ways, including because of missed reuse opportunities, pur-
poseful duplication because of efficiency concerns, and duplication through parallel
or forked development threads.

Because redundancies frequently exist in code, methods for detecting and re-
moving them from software are needed in many contexts. Over the past few decades,
research on clone detection have contributed towards addressing the issue. Tech-
niques for finding similar code and on removing duplication have been investigated
in several specific areas such as software reverse engineering, plagiarism in student
programs, copyright infringement investigation, software evolution analysis, code

T. Mens, S. Demeyer (eds.), Software Evolution.
DOI 10.1007/978-3-540-76440-3, © Springer 2008

16 R. Koschke

compaction (e.g., for mobile devices), and design pattern discovery and extraction.
Common to all these research areas are the problems involved in understanding the
redundancies and finding similar code, either within a software system, between ver-
sions of a system, or between different systems.

Although this research has progressed over decades, only recently has the pace
of activity in this area picked up such that significant research momentum could be
established. This chapter summarizes the state of the art in detecting, managing, and
removing software redundancy. It describes consequences, pros and cons of copying
and pasting code.

Software clones are important aspects in software evolution. If a systems is to be
evolved, its clones should be known in order to make consistent changes. Cloning
is often a strategic means for evolution. For instance, copies can be made to create
a playground for experimental feature evolution, where modifications are made in
cloned code of a mature feature reducing the risk to break stable code. Once stable,
the clone can replace its original. Often, cloning is the start of a new branch of evolu-
tion if the changes in the cloned code are not merged back to the main development
branch. Clone detection techniques play an important role in software evolution re-
search where attributes of the same code entity are observed over multiple versions.
Here, we need to identify for an entity in one version the corresponding entity in the
next version (known as origin analysis [568]). If refactoring (as for instance renam-
ing) is applied between versions, the relation between entities of different versions is
not always obvious. And last but not least, the evolution of clones can be studied to
better understand the nature of cloning in practice.

2.2 Software Redundancy, Code Cloning, and Code Duplication

There are different forms of redundancy in software. Software comprises both pro-
grams and data. In the data base community, there is a clear notion of redundancy
that has lead to various levels of normal forms. A similar theory does not yet exist
for computer programs.

In computer programs, we can also have different types of redundancy. We
should note that not every type of redundancy is harmful. For instance, programming
languages use redundant declarations so that a compiler is able to check consistency
between declarations and their uses. Also, at the architectural level, n-version pro-
gramming is a strategy in which redundancy is purposefully and consciously used to
implement reliable systems.

Sometimes redundant is used also in the sense of superfluous in the software
engineering literature. For instance, Xie and Engler show that superfluous (they
call them redundant) operations such as idempotent operations, assignments that
are never read, dead code, conditional branches that are never taken, and redundant
NULL-checks can pinpoint potential errors [550, 551].

Redundant code is also often misleadingly called cloned code in the literature—
although that implies that one piece of code is derived from the other one in the
original sense of this word. According to the Merriam-Webster dictionary, a clone

2 Identifying and Removing Software Clones 17

is one that appears to be a copy of an original form. It is a synonym to duplicate.
Although cloning leads to redundant code, not every redundant code is a clone. There
may be cases in which two code segments that are no copy of each other just happen
to be similar or even identical by accident. Also, there may be redundant code that is
semantically equivalent but has a completely different implementation.

There is no agreement in the research community on the exact notion of redun-
dancy and cloning. Ira Baxter’s definition of clones expresses this vagueness:

Clones are segments of code that are similar according to some definition of
similarity. —Ira Baxter, 2002

According to this definition, there can be different notions of similarity. They can
be based on text, lexical or syntactic structure, or semantics. They can even be similar
if they follow the same pattern, that is, the same building plan. Instances of design
patterns and idioms are similar in that they follow a similar structure to implement
a solution to a similar problem.

Semantic similarity relates to the observable behavior. A piece of code, A, is
semantically similar to another piece of code, B, if B subsumes the functionality of
A, in other words, they have “similar” pre and post conditions.

Unfortunately, detecting such semantic similarity is undecidable in general al-
though it would be worthwhile as you can often estimate the number of developers
of a large software system by the number of hash table or list implementations you
find.

Another definition of cloning considers the program text: Two code fragments
form a clone if their program text is similar. The two code fragments may or may not
be equivalent semantically. These pieces are redundant because one fragment may
need to be adjusted if the other one is changed. If the code fragments are executable
code, their behavior is not necessarily equivalent or subsumed at the concrete level,
but only at a more abstract level. For instance, two code pieces may be identical at the
textual level including all variable names that occur within but the variable names are
bound to different declarations in the different contexts. Then, the execution of the
code changes different variables. Figure 2.1 shows two textually identical segments
in the line range of 4-6 and 10-12, respectively. The semantic difference is that
the first segment sets a global variable whereas the second one a local variable. The
common abstract behavior of the two code segments is to iterate over a data structure
and to increase a variable in each step.

Program-text similarity is most often the result of copy&paste; that is, the pro-
grammer selects a code fragment and copies it to another location. Sometimes, these
programmers are forced to copy because of limitations of the programming lan-
guage. In other cases, they intend to reuse code. Sometimes these clones are modified
slightly to adapt them to their new environment or purpose.

Clearly, the definition of redundancy, similarity, and cloning in software is still
an open issue. There is little consensus in this matter. A study by Walenstein et al.
[532], for instance, reports on differences among different human raters for clone
candidates. In this study, clones were to be identified that ought to be removed and
Walenstein et al. gave guidelines towards clones worthwhile being removed. The

18 R. Koschke

1 int sum = O0;

2

3 void foo(Iterator iter){

4 for (item = first(iter); has_more(iter); item = next(iter)){
5 sum = sum + value (item);

6 }

7}

8 int bar(Iterator iter){

9 int sum = 0;

10 for (item = first(iter); has_more(iter); item = next(iter)){
11 sum = sum + value (item);

12 }

13}

Fig. 2.1. Example of code clones

human raters of the clones proposed by automated tools did rarely agree upon what
constitutes a clone worth to be removed. While the sources of inter-rater difference
could be the insufficient similarity among clones or the appraisal of the need for
removal, the study still highlights that there is no clear consensus yet, even for task-
specific definitions of clones.

Another small study was performed at the Dagstuhl seminar 06301 “Duplication,
Redundancy, and Similarity in Software” 2007. Cory Kapser elicited judgments and
discussions from world experts regarding what characteristics define a code clone.
Less than half of the clone candidates he presented to these experts had 80% agree-
ment amongst the judges. Judges appeared to differ primarily in their criteria for
judgment rather than their interpretation of the clone candidates.

2.3 Types of Clones

Program-text clones can be compared on the basis of the program text that has been
copied. We can distinguish the following types of clones accordingly:

* Type 1 is an exact copy without modifications (except for whitespace and com-
ments).

* Type 2 is a syntactically identical copy; only variable, type, or function identi-
fiers have been changed.

* Type 3 is a copy with further modifications; statements have been changed,
added, or removed.

Baker further distinguishes so called parameterized clones [28], which are a subset
of type-2 clones. Two code fragments A and B are a parameterized clone pair if there
is a bijective mapping from A’s identifiers onto B’s identifiers that allows an identifier
substitution in A resulting in A and A’ is a type-1 clone to B (and vice versa).

While type-1 and type-2 clones are precisely defined and form an equivalence re-
lation, the definition of type-3 clones is inherently vague. Some researchers consider

2 Identifying and Removing Software Clones 19

Table 2.1. Classification by Balazinska et al. [33] ©[1999] IEEE

« difference in method attributes (static, private, throws, etc.)
* single-token difference in function body

— further distinction into type of token:

— called method

— parameter type

— literal

* token-sequence difference in function body
— one unit (expression or statement) differs in token sequence
— two units
— more than two units

two consecutive type-1 or type-2 clones together forming a type-3 clone if the gap
in between is below a certain threshold of lines [29, 328]. Another precise definition
could be based on a threshold for the Levenshtein Distance, that is, the number of
deletions, insertions, or substitutions required to transform one string into another.
There is no consensus on a suitable similarity measure for type-3 clones yet.

The above simple classification is still very rough. Balazinska et al. introduced
a more refined classification for function clones [33] as described in Table 2.1. This
classification makes sense for selecting a suitable strategy for clone removal. For
instance, the design pattern TemplateMethod may be used to factor out differences in
the types used in different code fragments or the design pattern Strategy can be used
to factor out algorithmic differences [31, 32]. Furthermore Balazinska et al. argue
that each class is associated with a different risk in clone removal.

Kapser et al.’s classification is the most elaborated classification to date [267,
265, 264] (cf. Table 2.2). The first level is a hint about the distance of clones. An
argument can be made (although there is no empirical study on this hypothesis) that
it is likely that clones between files are more problematic than within the same file
as that it is more likely to overlook the former clones when it comes to consistent
changes. The second decision distinguishes which syntactic units are copied. The
third gives the degree of similarity and the fourth may be used to filter irrelevant or
spurious clones.

2.4 The Root Causes for Code Clones

A recent ethnographic study by Kim and Notkin [277] has shed some light on why
programmers copy and paste code. By observing programmers in their daily practice
they identified the following reasons.

Sometimes programmers are simply forced to duplicate code because of limita-
tions of the programming language being used. Analyzing these root causes in more
detail could help to improve the language design.

Furthermore, programmers often delay code restructuring until they have copied
and pasted several times. Only then, they are able to identify the variabilities of their

20 R. Koschke

Table 2.2. Classification by Kapser et al. [265, 264] ©[2003] IEEE

1. At first level, distinguish clones within the same or across different
files
2. then, according to type of region:
* functions
e declarations
* macros
¢ hybrids (in more than one of the above)
¢ otherwise (among typedefs, variable declarations, function signa-
tures)
. then, degree of overlap or containment
4. then, according to type of code sequence:
e initialization clones (first five lines)
e finalization clones (last five lines)
* loop clones (60% overlap of bodies)
¢ switch and if (60% overlap of branches)
» multiple conditions: several switch and if statements
e partial conditions: branches of switch/if are similar

w

code to be factored out. Creating abstract generic solutions in advance often leads
to unnecessarily flexible and hence needlessly complicated solutions. Moreover, the
exact variabilities may be difficult to foresee. Hence, programmers tend to follow
the idea of extreme programming in the small by not investing too much effort in
speculative planning and anticipation.

Systems are modularized based on principles such as information hiding, mini-
mizing coupling, and maximizing cohesion. In the end—at least for systems written
in ordinary programming languages—the system is composed of a fixed set of mod-
ules. Ideally, if the system needs to be changed, only a very small number of modules
must be adjusted. Yet, there are very different change scenarios and it is not unlikely
that the chosen modularization forces a change to be repeated for many modules. The
triggers for such changes are called cross-cutting concerns (see also Chapter 9). For
instance, logging is typically a feature that must be implemented by most modules.
Another example is parameter checking in defensive programming where every func-
tion must check its parameters before it fulfills its purpose [92]. Then copy&paste
dependencies reflect important underlying design decisions, namely, cross-cutting
concerns.

Another important root cause is that programmers often reuse the copied text as
a template and then customize the template in the pasted context.

Kapser et al. have investigated clones in large systems [266]. They found what
they call patterns of cloning where cloning is consciously used as an implementation
strategy. In their case study, they found the following cloning patterns:

Forking is cloning used to bootstrap development of similar solutions, with the ex-
pectation that evolution of the code will occur somewhat independently, at least
in the short term. The assumption is that the copied code takes a separate evolu-

2 Identifying and Removing Software Clones 21

tion path independent of the original. In such a case, changes in the copy may be
made that have no side effect on the original code.

Templating is used as a method to directly copy behavior of existing code but appro-
priate abstraction mechanisms are unavailable. It was also identified as a main
driver for cloning in Kim and Notkin’s case study [277]. Templating is often
found when a reused library has a relatively fixed protocol (that is, a required
order of using its interface items) which manifests as laying out the control flow
of the interface items as a fixed pattern. For instance, the code in Fig. 2.1 uses
a fixed iteration scheme for variable iter.

Customization occurs when currently existing code does not adequately meet a new
set of requirements. The existing code is cloned and tailored to solve this new
problem.

Very likely other more organizational aspects play a role, too. Time pressure, for in-
stance, does not leave much time to search for the best long-term solution. Unavail-
able information on the impact of code changes leads programmers to create copies
in which they make the required enhancement; such changes then are less likely to af-
fect the original code negatively. Inadequate performance measures of programmers’
productivity in the number of lines of code they produce neither invite programmers
to avoid duplicates.

2.5 Consequences of Cloning

There are plausible arguments that code cloning increases maintenance effort.
Changes must be made consistently multiple times if the code is redundant. Often
it is not documented where code has been copied. Manual search for copied code
is infeasible for large systems and automated clone detection is not perfect when
changes are made to the copies (see Section 2.8). Furthermore during analysis, the
same code must be read over and over again, then compared to the other code just
to find out that this code has already been analyzed. Only if you make a detailed
comparison, which can be difficult if there are subtle differences in the code or its
environment, you can be sure that the code is indeed the same. This comparison can
be fairly expensive. If the code would have been implemented only once in a func-
tion, this effort could have been avoided completely.

For these reasons, code cloning is number one on the stink parade of bad smells
by Beck and Fowler [183]. But there are also counter arguments. In Kapser and
Godfrey’s study [266], code cloning is a purposeful implementation strategy which
may make sense under certain circumstances (see Section 2.4).

Cordy makes a similar statement [128]. He argues that in the financial domain,
cloning is the way in which designs are reused. Data processing programs and
records across an organization often have very similar purposes, and, consequently,
the data structures and programs to carry out these tasks are therefore very similar.
Cloning becomes then a standard practice when authoring a new program. Oppo-
nents would argue that a better means would be to pursue systematic and organized
reuse through software product lines.

22 R. Koschke

Cordy also argues that the attempt to avoid cloning may lead to higher risks.
Making changes to central data structures bears the risk to break existing applica-
tions and requires to run expensive regression tests. Instead programmers tend to
copy the data structure if they want to restructure or add a different view and make
the necessary changes in the copy. Even the argument that errors must be fixed in
every copy does not count, he states. Errors would not necessarily be fixed in the
original data structure because the many running applications may already rely on
these errors, Cordy argues. On the other hand, repeated work, need for data migra-
tion, and risk of inconsistency of data are the price that needs to be paid following
this strategy. The Y2K problem has shown how expensive and difficult it is to rem-
edy systems that have suffered from massive decentralized use of data structures and
algorithms.

While it is difficult to find arguments for type-1 and type-2 clones, one can more
easily argue in favor of type-3 clones. It is not clear when you have type-3 clones
whether the unifying solution would be easier to maintain than several copies with
small changes. Generic solutions can become overly complicated. Maintainability
can only be defined in a certain context with controlled parameters. That is, a less
sophisticated programmer may be better off maintaining copied code than a highly
parameterized piece of code. Moreover, there is a risk associated with removing code
clones [128]. The removal requires deep semantic analyses and it is difficult to make
any guarantees that the removal does not introduce errors. There may be even orga-
nizational reasons to copy code. Code cloning could, for instance, be used to disen-
tangle development units [128].

The current debate lacks empirical studies on the costs and benefits of code
cloning. There are very few empirical studies that explore the interrelationship of
code cloning and maintainability. All of them focus on code cloning and errors as
one (out of many) maintainability aspect.

Monden et al. [374] analyzed a large system consisting of about 2,000 modules
written in 1 MLOC lines of Cobol code over a period of 20 years. They used a token-
based clone detector (cf. Section 2.8.2) to find clones that were at least 30 lines
long. They searched for correlations of maximal clone length with change frequency
and number of errors. They found that most errors were reported for modules with
clones of at least 200 lines. They also found many errors—although less than in those
with longer clones—in modules with shorter clones up to 50 lines. Yet, interestingly
enough, they found the lowest error rate for modules with clones of 50 to 100 lines.
Monden et al. have not further analyzed why these maintainability factors correlate
in such a way with code cloning.

Chou et al. [113] investigated the hypothesis that if a function, file, or directory
has one error, it is more likely that is has others. They found in their analysis of the
Linux and OpenBSD kernels that this phenomenon can be observed most often where
programmer ignorance of interface or system rules combines with copy-and-paste.
They explain the correlation of bugs and copy-and-paste primarily by programmer
ignorance, but they also note that—in addition to ignorance—the prevalence of copy-
and-paste error clustering among different device drivers and versions suggests that
programmers believe that “working” code is correct code. They note that if the copied

2 Identifying and Removing Software Clones 23

code is incorrect, or it is placed into a context it was not intended for, the assumption
of goodness is violated.

Li et al. [328] use clone detection to find bugs when programmers copy code but
rename identifiers in the pasted code inconsistently. On average, 13% of the clones
flagged as copy-and-paste bugs by their technique turned out to be real errors for the
systems Linux kernel, FreeBSD, Apache, and PostgreSQL. The false positive rate of
their technique is 73% on average, where on average 14% of the potential problems
are still under analysis by the developers of the analyzed systems.

2.6 Clone Evolution

There are a few empirical studies on the evolution of clones, which describe some
interesting observations. Antoniol et al. propose time series derived from clones over
several releases of a system to monitor and predict the evolution of clones [14]. Their
study for the data base system mSQL showed that their prediction of the average
number of clones per function is fairly reliable. In another case study for the Linux
kernel, they found that the scope of cloning is limited [15]. Only few clones can be
found across subsystems; most clones are completely contained within a subsystem.
In the subsystem arch, constituting the hardware architecture abstraction layer, newer
hardware architectures tend to exhibit slightly higher clone rates. The explanation for
this phenomenon is that newer modules are often derived from existing similar ones.
The relative number of clones seems to be rather stable, that is, cloning does not
occur in peaks. This last result was also reported by Godfrey and Tu who noticed
that cloning is common and steady practice in the Linux kernel [205]. However, the
cloning rate does increase steadily over time. Li et al. [328] observed for the Linux
kernel in the period of 1994 to 2004 that the redundancy rate has increased from
about 17% to about 22%. They observed a similar behavior for FreeBSD. Most of
the growth of redundancy rate comes from a few modules, including drivers and
arch in Linux and sys in FreeBSD. The percentage of copy-paste code increases
more rapidly in those modules than in the entire software suite. They explain this
observation by the fact that Linux supports more and more similar device drivers
during this period.

Kim et al. analyzed the clone genealogy for two open-source Java systems us-
ing historical data from a version control system [278]. A clone genealogy forms
a tree that shows how clones derive in time over multiple versions of a program
from common ancestors. Beyond that, the genealogy contains information about the
differences among siblings. Their study showed that many code clones exist in the
system for only a short time. Kim et al. conclude that extensive refactoring of such
short-lived clones may not be worthwhile if they likely diverge from one another
very soon. Moreover, many clones, in particular those with a long lifetime that have
changed consistently with other elements in the same group cannot easily be avoided
because of limitations of the programming language.

One subproblem in clone evolution research is to track clones between versions.
Duala-Ekoko and Robillard use a clone region descriptor [155] to discover a clone

24 R. Koschke

of version n in version n+ 1. A clone region descriptor is an approximate location
that is independent from specifications based on lines of source code, annotations, or
other similarly fragile markers. Clone region descriptors capture the syntactic block
nesting of code fragments. A block therein is characterized by its type (e.g., for or
while), a string describing a distinguishing identifier for the block (the anchor),
and a corroboration metric. The anchor of a loop, for instance, is the condition as
string. If two fragments are syntactic siblings, their nesting and anchor are not suffi-
cient to distinguish them. In such cases, the corroboration metric is used. It measures
characteristics of the block such as cyclomatic complexity and fan-out of the block.

2.7 Clone Management

Clone management aims at identifying and organizing existing clones, controlling
growth and dispersal of clones, and avoiding clones altogether. Lague et al. [303]
and Giesecke [199] distinguish three main lines of clone management:

e preventive clone management (also known as preventive control [303]) com-
prises activities to avoid new clones

e compensative clone management (also known as problem mining [303]) encom-
passes activities aimed at limiting the negative impact of existing clones that are
to be left in the system

* corrective clone management covers activities to remove clones from a system

This section describes research in these three areas.

2.7.1 Corrective Clone Management: Clone Removal

If you do want to remove clones, there are several way to do so. There are even
commercial tools such as CloneDr' by Semantic Designs to automatically detect
and remove clones. Cloning and automatic abstraction and removal could even be
a suitable implementation approach as hinted by Ira Baxter:

Cloning can be a good strategy if you have the right tools in place. Let
programmers copy and adjust, and then let tools factor out the differences
with appropriate mechanisms. —Ira Baxter, 2002

In simple cases, you can use functional abstraction to replace equivalent copied
code by a function call to a newly created function that encapsulates the copied code
[166, 287]. In more difficult cases, when the difference is not just in the variable
names that occur in the copied code, one may be able to replace by macros if the
programming languages comes with a preprocessor. A preprocessor offers textual
transformations to handle more complicated replacements. If a preprocessor is avail-
able, one can also use conditional compilation. As the excessive use of macros and

! Trademark of Semantic Designs, Inc.

2 Identifying and Removing Software Clones 25

conditional compilation may introduce many new problems, the solution to the re-
dundancy problem may be found at the design level. The use of design patterns is
an option to avoid clones by better design [31, 32]. Yet, this approach requires much
more human expertise and, hence, can be less automated. Last but not least, one can
develop code generators for highly repetitive code.

In all approaches, it is a challenge to cut out the right abstractions and to come up
with meaningful names of generated functions or macros. Moreover, it is usually dif-
ficult to check the preconditions for these proposed transformations—be they manual
or automated—in order to assure that the transformation is semantic preserving.

2.7.2 Preventive and Compensative Clone Management

Rather than removing clones after the offense, it may be better to avoid them right
from the beginning by integrating clone detection in the normal development process.
Lague et al. identify two ways to integrate clone detection in normal development
[303].

It can be used as preventive control where the code is checked continuously—for
instance, at each check-in in the version control system or even on the fly while the
code is edited—and the addition of a clone is reported for confirmation.

A complementary integration is problem mining where the code currently under
modification is searched in the rest of the system. The found segments of code can
then be checked whether the change must be repeated in this segment for consistency.

Preventive control aims at avoiding code clones when they occur first whereas
problem mining addresses circumstances in which cloning has been used for a while.

Lague et al. assessed the benefits of integrating clone detection in normal de-
velopment by analyzing the three-year version history of a very large procedural
telecommunication system [303]. In total, 89 millions of non-blank lines (including
comments) were analyzed, for an average size of 14.83 million lines per version. The
average number of functions per release was 187,000.

Problem mining is assessed by the number of functions changed that have clones
that were not changed; that is, how often a modification was missed potentially. Pre-
ventive control is assessed by the number of functions added that were similar to
existing functions; that is, the code that could have been saved.

Itis interesting to note, that—contrary to their expectations—they observed a low
rate of growth in the number of overall clones in the system, due to the fact that many
clones were actually removed from the system.

They conclude from their data that preventive control would help to lower the
number of clones. Many clones disappeared only long after the day they came into
existence. Early detection of clones could lead to taking this measure earlier.

They also found that problem mining could have provided programmers with
a significant number of opportunities for correcting problems before end-user expe-
rienced them. The study indicates a potential for improving the software quality and
customer satisfaction through an effective clone management strategy.

An alternative to clone removal is to live with clones consciously. Clones can
be managed, linked, and changed simultaneously using linked editing as proposed

26 R. Koschke

by Toomim et al. [504]. Linked editing is also used by Duala-Ekoko and Robillard.
Linked editing allows one to link two or more code clones persistently. The differ-
ences and similarities are then analyzed, visualized, and recorded. If a change needs
to be made, linked editing allows programmers to modify all linked elements si-
multaneously, or particular elements individually. That is, linked editing allows the
programmer to edit all instances of a given clone at once, as if they were a single
block of code. It overcomes some of the problems of duplicated code, namely, ver-
bosity, tedious editing, lost clones, and unobservable consistency without requiring
extra work from the programmer.

2.8 Clone Detection

While there is an ongoing debate as to whether remove clones, there is a consensus
about the importance to at least detect them. Clone avoidance during normal devel-
opment, as described in the previous section, as well as making sure that a change
can be made consistently in the presence of clones requires to know where the clones
are. Manual clone detection is infeasible for large systems, hence, automatic support
is necessary.

Automated software clone detection is an active field of research. This section
summarizes the research in this area. The techniques can be distinguished at the first
level in the type of information their analysis is based on and at the second level in
the used algorithm.

2.8.1 Textual Comparison

The approach by Rieger et al. compares whole lines to each other textually [156].
To increase performance, lines are partitioned using a hash function for strings. Only
lines in the same partition are compared. The result is visualized as a dotplot, where
each dot indicates a pair of cloned lines. Clones may be found as certain patterns
in those dotplots visually. Consecutive lines can be summarized to larger cloned se-
quences automatically as uninterrupted diagonals or displaced diagonals in the dot-
plot.

Johnson [258, 259] uses the efficient string matching by Karp and Rabin [268,
269] based on fingerprints, that is, a hash code characterizing a string is used in the
search.

Marcus et al. [345] compare only certain pieces of text, namely, identifiers using
latent semantic indexing, a technique from information retrieval. Latent semantic
analysis is a technique in natural language processing analyzing relationships be-
tween a set of documents and the terms they contain by producing a set of concepts
related to the documents and terms. The idea here is to identify fragments in which
similar names occur as potential clones.

2 Identifying and Removing Software Clones 27
2.8.2 Token Comparison

Baker’s technique is also a line-based comparison. Instead of a string comparison,
the token sequences of lines are compared efficiently through a suffix tree. A suffix
tree for a string S is a tree whose edges are labeled with substrings of S such that
each suffix of S corresponds to exactly one path from the tree’s root to a leaf.

First, Baker’s technique summarizes each token sequence for a whole line by
a so called functor that abstracts of concrete values of identifiers and literals [29]. The
functor characterizes this token sequence uniquely. Assigning functors can be viewed
as a perfect hash function. Concrete values of identifiers and literals are captured
as parameters to this functor. An encoding of these parameters abstracts from their
concrete values but not from their order so that code fragments may be detected that
differ only in systematic renaming of parameters. Two lines are clones if they match
in their functors and parameter encoding.

The functors and their parameters are summarized in a suffix tree, a tree that
represents all suffixes of the program in a compact fashion. A suffix tree can be built
in time and space linear to the input length [356, 30]. Every branch in the suffix tree
represents program suffixes with common beginnings, hence, cloned sequences.

Kamiya et al. increase recall for superficially different, yet equivalent sequences
by normalizing the token sequences [263]. For instance, each single statement after
the lexical patterns 1f(...), for(...), while(...), and do and else in C++ is
transformed to a compound block; e.g., if (a) b = 2; is transformed to i1f (a)
{b = 2;}. Using this normalization, the if statement can be matched with the equiv-
alent (with parameter replacement) code 1f (x) {y = 2;}.

Because syntax is not taken into account, the found clones may overlap different
syntactic units, which cannot be replaced through functional abstraction. Either in
a preprocessing [485, 127, 204] or post-processing [234] step, clones that completely
fall in syntactic blocks can be found if block delimiters are known. Preprocessing and
postprocessing both require some syntactic information—gathered either lightweight
by counting tokens opening and closing syntactic scopes or island grammars [377]
or a full-fledged syntax analysis [204].

2.8.3 Metric Comparison

Merlo et al. gather different metrics for code fragments and compare these metric
vectors instead of comparing code directly [303, 291, 353, 289]. An allowable dis-
tance (for instance, Euclidean distance) for these metric vectors can be used as a hint
for similar code. Specific metric-based techniques were also proposed for clones in
web sites [151, 307].

2.8.4 Comparison of Abstract Syntax Trees

Baxter et al. partition subtrees of the abstract syntax tree (AST) of a program based
on a hash function and then compare subtrees in the same partition through tree
matching (allowing for some divergences) [47]. A similar approach was proposed

28 R. Koschke

earlier by Yang [557] using dynamic programming to find differences between two
versions of the same file.

Suffix trees—central to token-based techniques following Baker’s idea—can also
be used to detect sequences of identical AST nodes. In the approach by Koschke et al.
[294], the AST nodes are serialized in preorder traversal, a suffix tree is created for
these serialized AST nodes, and the resulting maximally long AST node sequences
are then cut according to their syntactic region so that only syntactically closed se-
quences remain.

The idea of metrics to characterize code and to use these metrics to decide which
code segments to compare can be adopted for ASTs as well. Jian et al. [257] char-
acterize subtrees with numerical vectors in the Euclidean space R and an efficient
algorithm to cluster these vectors with respect to the Euclidean distance metric. Sub-
trees with vectors in one cluster are potential clones.

2.8.5 Comparison of Program Dependency Graphs

Textual as well as token-based techniques and syntax-based techniques depend upon
the textual order of the program. If the textual order is changed, the copied code will
not be found. Programmers modify the order of the statements in copied code, for
instance, to camouflage plagiarism. Or they use code cloning as in the templating
implementation strategy (see Section 2.4), where the basic skeleton of an algorithm
is reused and then certain pieces are adjusted to the new context.

Yet, the order cannot be changed arbitrarily without changing the meaning of the
program. All control and data dependencies must be maintained. A program depen-
dency graph [175] is a representation of a program that represents only the control
and data dependency among statements. This way program dependency graph ab-
stract from the textual order. Clones may then be identified as isomorphic subgraphs
in a program dependency graph [298, 286]. Because this problem is NP hard, the
algorithms use approximative solutions.

2.8.6 Other Techniques

Leitao [324] combines syntactic and semantic techniques through a combination
of specialized comparison functions that compare various aspects (similar call sub-
graphs, commutative operators, user-defined equivalences, transformations into
canonical syntactic forms). Each comparison function yields an evidence that is sum-
marized in an evidence-factor model yielding a clone likelihood. Walter et al. [531]
and Li et al. [327] cast the search for similar fragments as a data mining problem.
Statement sequences are summarized to item sets. An adapted data mining algorithm
searches for frequent item sets.

2.9 Comparison of Clone Detection Algorithms

The abundance of clone detection techniques calls for a thorough comparison so
that we know the strength and weaknesses of these techniques in order to make an

2 Identifying and Removing Software Clones 29

informed decision if we need to select a clone detection technique for a particular
purpose.

Clone detectors can be compared in terms of recall and precision of their findings
as well as suitability for a particular purpose. There are several evaluations along
these lines based on qualitative and quantitative data.

Bailey and Burd compared three clone and two plagiarism detectors [27]. Among
the clone detectors were three of the techniques later evaluated by a subsequent study
by Bellon and Koschke [55], namely, the techniques by Kamiya [263], Baxter [47],
and Merlo [353]. For the latter technique, Bailey used an own re-implementation;
the other tools were original. The plagiarism detectors were JPlag [420] and Moss
[452].

The clone candidates of the techniques were validated by Bailey, and the accepted
clone pairs formed an oracle against which the clone candidates were compared.
Several metrics were proposed to measure various aspects of the found clones, such
as scope (i.e., within the same file or across file boundaries), and the findings in terms
of recall and precision.

The syntax-based technique by Baxter had the highest precision (100%) and the
lowest recall (9%) in this experiment. Kamiya’s technique had the highest recall
and a precision comparable to the other techniques (72%). The re-implementation of
Merlo’s metric-based technique showed the least precision (63%).

Although the case study by Bailey and Burd showed interesting initial results, it
was conducted on only one relatively small system (16 KLOC). However, because
the size was limited, Bailey was able to validate all clone candidates.

A subsequent larger study was conducted by Bellon and Koschke [54, 55]. Their
likewise quantitative comparison of clone detectors was conducted for 4 Java and
4 C systems in the range of totaling almost 850 KLOC. The participants and their
clone detectors evaluated are listed in Table 2.3.

Table 2.4 summarizes the findings of Bellon and Koschke’s study. Row clone
type lists the type of clones the respective clone detector finds (for clone types, see
Section 2.3). The next two rows qualify the tools in terms of their time and space
consumption. The data is reported at an ordinal scale ——, —, +, + + where —— is
worst (the exact measures can be found in the paper to this study [54, 55]). Recall
and precision are determined as in Bailey and Burd’s study by comparing the clone

Table 2.3. Participating scientists

Participant Tool Comparison
Brenda S. Baker [29] Dup Token

Ira D. Baxter [47] CloneDr AST

Toshihiro Kamiya [263] CCFinder Token

Jens Krinke [298] Duplix PDG

Ettore Merlo [353] CLAN Function Metrics

Matthias Rieger [156] Duploc Text

30 R. Koschke

Table 2.4. Results from the Bellon and Koschke study. Adapted from [54, 55] ©[2007] IEEE
Baker Baxter Kamiya Krinke Merlo Rieger
Clone type 1,2 1,2 1,2,3 3 1,2,3 1,2,3

Speed ++ — + —— ++ ?
RAM + — + + ++ ?
Recall + — + — — +
Precision — + - - + —

detectors’ findings to a human oracle. The same ordinal scale is used to qualify the
results; exact data are reported in the paper [54, 55].

Interestingly, Merlo’s tool performed much better in this experiment than in the
experiment by Bailey and Burd. However, the difference in precision of Merlo’s
approach in this comparison to the study by Bailey and Burd can be explained by
the fact that Merlo compared not only metrics but also the tokens and their textual
images to identify type-1 and type-2 clones in the study by Bellon and Koschke.

While the Bailey/Burd and Bellon/Koschke studies focus on quantitative eval-
uation of clone detectors, other authors have evaluated clone detectors for the fit-
ness for a particular maintenance task. Rysselberghe and Demeyer [525] compared
text-based [156, 438], token-based [29], and metric-based [353] clone detectors for
refactoring. They compare these techniques in terms of suitability (can a candidate
be manipulated by a refactoring tool?), relevance (is there a priority which of the
matches should be refactored first?), confidence (can one solely rely on the results of
the code cloning tool, or is manual inspection necessary?), and focus (does one have
to concentrate on a single class or is it also possible to assess an entire project?).
They assess these criteria qualitatively based on the clone candidates produced by
the tools. Figure 2.2 summarizes their conclusions.

Bruntink et al. use clone detection to find cross-cutting concerns in C programs
with homogeneous implementations [93]. In their case study, they used CCFinder—
Kamiya’s [263] tool evaluated in other case studies, too—one of the Bauhaus?
clone detectors, namely ccdiml, which is a variation of Baxter’s technique [47], and
the PDG-based detector PDG-DUP by Komondoor [286]. The cross-cutting con-
cerns they looked for were error handling, tracing, pre and post condition checking,
and memory error handling. The study showed that the clone classes obtained by
Bauhaus’ ccdiml can provide the best match with the range checking, null-pointer

criterion most suitable technique

suitability ~metric-based
relevance no difference
confidence text-based

focus no difference

Fig. 2.2. Assessment by Rysselberghe and Demeyer. Adapted from [525] ©[2004] IEEE

2 http://www.axivion.com.

2 Identifying and Removing Software Clones 31

checking, and error handling concerns. Null-pointer checking and error handling can
be found by CCFinder almost equally well. Tracing and memory error handling can
best be found by PDG-DUP.

2.10 Clone Presentation

Because there is typically a huge amount of clones in large systems and these clones
differ in various attributes (type, degree of similarity, length, etc.), presentation issues
of clone information are critical. This huge information space must be made accessi-
ble to a human analyst. The analyst needs a holistic view that combines source code
views and architectural views.

There have been several proposals for clone visualization. Scatter plots—also
known as dot plots—are two-dimensional charts where all software units are listed
on both axes [114, 156, 512] (cf. Fig. 2.3). There is a dot if two software units are
similar. The granularity of software units may differ. It can range from single lines to
functions to classes and files to packages and subsystems. Visual patterns of cloning
may be observed by a human analyst. A problem with this approach is scalability for
many software units and the order of the listed software units as this has an impact
on the visual patterns. While there is a “natural” order for lines (i.e., lexical order)
within a file, it is not clear how to order more coarse-grained units such as functions,
files, and packages. Lexical order of their names is in most cases as arbitrary as
random order.

Johnson [260] proposes Hasse diagrams for clone representation between sets of
files so that one can better see whether code has been copied between files, which
is possibly more critical than cloning within a file (cf. Fig. 2.4). A Hasse diagram
(named after a German mathematician) is used to draw a partial order among sets as
an acyclic graph. Directed arcs connect nodes that are related by the order relation
and for which no other directed path exists.

file2.c filel.c file2.c

123 45ﬂf|351?C8 9101112 1 2 3 4 56 7 8 123 456789101112 12 3 4567 8
1@ [} : [] Pl 1@ o []
2| @)] [i 2l @ L) []
3 [] [] [] 3 [) [)
4 [] [L] 4 [] [] {]
o5 ® ® ° o5] ® °
=6) : =6 L)
27@ e () [27|@))
8| @ (B [) 8| @ L] []
9 [} [) [) 9 [)
10 []] [] 10 [] {] []
11 [) o o 11 [] {] []
12 {] 12 {]
1 e 1 L]
2|@ B o L 2|@ L] []
L3 @ ° [) .3 @ ® ®
o 4 [] [] L] o 4 [] (]
25 [} (o 25 [} (] {]
6 [) [} [] 6 [} [) [)
7 [] 7 [)
8 [) 8 ()
(a) Three clones (b) Three clones, one modified line

Fig. 2.3. Dot plots [114, 156, 512]

32 R. Koschke

a.c b.c d.c ec

Fig. 2.4. Hasse diagram
adapted from [260]

In Johnson’s context, each match of a block of text identifies a range of characters
(or lines) from two (or more) files. For each subset of files, one can total the number
of characters that the matching process has discovered to match between the given
set of files. A subset of files forms a node, if the files have non-zero matches. The
inclusion between subsets of files yields the edges.

Rieger et al. [437] propose to use Michele Lanza’s polymetric views[309] to
visualize various aspects of clones in one view (cf. Fig. 2.5). A polymetric view
is again based on the graph metaphor and representation where a node represents
a software unit and an edge a cloning relation. Visually, additional information can
be attached to the graph by the degrees of freedom for the position (X/Y in the
two-dimensional space), color of nodes and edges, thickness of edges, breadth and
width of nodes. Rieger et al. propose a fixed set of metric combinations to be mapped
onto graphical aspects to present the clone information from different perspective for
different tasks.

Beyond polymetric views, Rieger et al. [437] propose a variation of tree maps to
show the degree of cloning along with the system decomposition (cf. Fig. 2.6). Tree
maps display information about entities with a hierarchical relationship in a fixed
space (for instance, the whole system on one screen) where the leaves of the hierar-
chy contain a metric to be visualized. Each inner node aggregates the metric values
of its descendants. Each node is represented through a piece of the available space.
The space of a descendent node is completely contained in the space of its ancestor.

Fig. 2.5. Polymetric view adapted from [437]

2 Identifying and Removing Software Clones 33

Fig. 2.6. A system decomposition whose leaves are annotated with the number of cloned lines
of code and its corresponding tree map

There is no overlap in space for nodes that are not in an ancestor/descendant rela-
tion. This is how the hierarchy is presented. Essentially the hierarchy is projected
onto the two dimensional space seen from the root of the hierarchy. In order to show
the hierarchy clearly, the space of each node appears as rectangle where the direction
of subdivision of nested nodes is alternated horizontally and vertically at each level.
The space of each rectangle is proportional to the metric.

This visualization was originally proposed by Ben Shneiderman in the early
1990s to show space consumption of a hard disk with a hierarchical file system.
While space is used very efficiently, problems arise when the hierarchy is deeply
nested.

Another visualization was proposed by Wattenberg to highlight similar substrings
in a string. The arc diagram has an arc connecting two equal substrings in a string
where the breadth of the arc line covers all characters of the identical substrings. The
diagram shows the overlapping of strings but becomes quickly unreadable if many
arcs exist. Another disadvantage is that it shows only pairs but not classes of equal
strings.

Tairas et al. [489] have created an Eclipse plugin to present clone information.
One of their visualizations is the clone visualizer view, a window showing the dis-
tribution of clone classes among files (cf. Fig. 2.8). A bar in this view represents
a source file, a stripe within a bar a cloned code segment, and its colors the set of
clone classes the segment is member of.

hklABCDEFqWen]taABCDEFZUIOpOpgABCDEFanf Fig. 2.7. Arc diagram adapted from [537]

34 R. Koschke

i oove x G Y AN SE
- Clone Detection

Utilty java JEOSsche. .. Molecue... | Crossov... Edgelter...

& 28 ko 47 (19 bnes)
plicate(s) ak:
EOSschedulnglndividual. java (Line 26 to 38
PermutationIndividual.java {Line 25 to 35)
Graphindividual.java (Line 27 to 44

Fig. 2.8. Clones visualizer view in Eclipse adapted from [489]

2.11 Related Fields

Clone detection has applications in other fields and—vice versa—ideas from related
fields can be reused for clone detection.

Bruntink et al. for instance, use clone detectors to search for code that could
be factored out as aspects using an aspect-oriented language [92, 93]. They identify
error handling, tracing, pre and post condition checking, and memory error handling.
Although they used classic clone detectors that were not designed for this particular
purpose, the clone detectors appeared to be helpful. Classic clone detectors try to
find similar code—similar in terms of their program text. The implementations of
an aspect, on the other hand, are often very heterogeneous and are similar only at
a more semantic level. For instance, precondition checking tests each parameter of
a function for certain criteria. At the implementation level, functions differ in the
order and type of parameters so that checks are generally different in the program
text.

The code compaction community tries to minimize the memory footprint of pro-
grams for small devices. They use very similar algorithms to identify redundant code
that could be compressed [124].

The detection of plagiarism faces similar but even worse problems as clone de-
tection [452, 420, 180, 343, 251, 337, 210]. In plagiarism cases, people try to cam-
ouflage their copy in order to make it more difficult to detect the plagiarism. In order
to reuse classic clone detectors for plagiarism, we would need to reduce programs to
a normal form for comparison. This normalization, on the other hand, could lead to
false positives. Also in virus detection, code patterns significant for a particular hos-
tile code need to be quickly identified in large code bases, where virus programmers
try to vary the patterns.

Another application of clone detection is the comparison of versions or variants
of software systems. While versions derive from each other, variants have a common
ancestor. In both cases, they are very similar. In software evolution research, where
information on software units is observed over time or versions, respectively, it is
necessary to map the software entities of one version to those of the other version in
order to carry over the information. This problem is called the origin analysis [S08].
The same problem needs to be solved when two software variants are to be compared

2 Identifying and Removing Software Clones 35

or merged [237]. Relaying solely on names of these units for this analysis may be
misleading if a refactoring like renaming has taken place [183]. Also, the refactor-
ing extract method moves statements from one function to create a new function.
Clone detection can help to establish a mapping between two versions or variants of
a program. Several authors have used clone detection techniques or at least a code
similarity measure to determine this mapping [509, 568, 206, 205, 524, 552, 553].
The difference of comparing versions or variants to detecting clones is that the
task here is to map a code entity onto only one or at least a small set of candidates
in the other system, the comparison is only between systems (clones within the same
version or variant are irrelevant), cloning is the rule rather than the exception as the
two versions or variants overlap to a very high degree, the focus is on the differ-
ences rather than the similarities, and the comparison should tolerate renaming and
all refactorings that move entities around such as pull-up field, move method, etc.

2.12 Conclusions

This section summarizes the open issues of the subareas in software cloning pre-
sented in this chapter.

One fundamental issue is that there is no clear consensus on what is a software
clone. We should develop a general notion of redundancy, similarity, and cloning, and
then identify more task-oriented categorizations of clones. Other research areas have
similar difficulties in defining their fundamental terms. For instance, the architecture
community debates the notion of architecture and the community of object-oriented
programming the notion of object. To some extent, these fundamental terms define
the field. So it is important to clarify them. It is difficult, for instance, to create bench-
marks to evaluate automatic clone detectors if it is unclear what we consider a clone.
It were very helpful if we could establish a theory of redundancy similar to normal
forms in databases.

Concerning types of clones, we should look at alternative categorizations of
clones that make sense (e.g., semantics, origins, risks, etc.). On the empirical side
of clone categorizations, we should gather the statistical distribution of clone types
in practice and investigate whether there are correlations among apparently orthogo-
nal categories. Studying which strategies of removal and avoidance, risks of removal,
potential damages, root causes, and other factors are associated with these categories
would be worthwhile, too.

Although the two empirical studies by Kim and Notkin as well as Kapser
and Godfrey on the root causes and main drivers for code cloning are impor-
tant first contributions, this area certainly requires more similar studies. Other po-
tential reasons should be investigated, such as insufficient information on global
change impact, badly organized reuse and development processes, questionable
productivity measures (e.g., LOCs per day), time pressure, educational deficien-
cies, ignorance, or shortsightedness, intellectual challenges (e.g., generics), lack of
professionalism/end-user programming by non experts, and organizational issues,
e.g., distributed development and organizations.

36 R. Koschke

Identifying the root causes would help us to fight the reasons, not just the symp-
toms, for instance, by giving feedback for programming language design.

Clearly, more empirical studies are required. These studies should take industrial
systems into account, too, as it is unclear to which extent these current observa-
tions can be attributed to the nature of open-source development. It would also be
interesting to investigate what the degree of cloning tells about the organization or
development process. For instance, a study by Nickell and Smith reports that the ex-
treme programming projects in their organization produce significantly fewer clones
[394, 533].

In particular, empirical investigations of costs and benefits of clone removal are
needed so that informed refactoring decisions can be made. We currently do not have
a clear picture of the relation of clone types to quality attributes. Most of what we
report on the consequences of cloning is folklore rather than fact. We should expect
that there is a relevance ranking of clone types for removal, that is, some clones
should be removed, others are better left in certain circumstances. Moreover, we can
expect that different types of clones are associated with different removal techniques
in turn associated with different benefits, costs, and risks.

Unwanted clones should be avoided right from the start. But it is not yet clear
what is the best integration of clone detection in the normal development process. In
particular, what are the benefits and costs of such possible integrations and what are
reliable cloning indicators to trigger refactoring actions?

If it is too late to avoid cloning and if existing clones cannot be removed, we
should come up with methods and tools to manage these clones. This clone manage-
ment must stop further spread of clones and help to make changes consistently.

The most elaborated field in software cloning is the automatic detection of clones.
Yet, there is still room for improvement as identified in the quantitative and quali-
tative comparisons. Most helpful would be a ranking function that allows to present
clone candidates in an order of relevance. This ranking function can be based on mea-
sures such as type, frequency, and length of clones but should also take into account
the task driving the clone detection.

Although various types of visualization to present clones have been proposed
we have not fully explored all opportunities. There is a large body of research on
information visualization in general and software visualization in particular that we
have not yet explored for clone visualization. In order to understand which visual-
ization works best for which purpose, we need more systematic empirical research.
Clone representation is difficult due to the large and complex information space. We
have various aspects that we need to master: the large amount of data, clone class
membership, overlap and inclusion of clones, commonalities and differences among
clones in the same class, degree of similarity, and other attributes such as length,
type, frequency, and severity.

Clone detection overlaps with related fields, such as code compression or virus
detection. The interesting questions here are “What can clone detection learn from
other fields?” and “What can other fields learn from clone detection?”

3

Analysing Software Repositories
to Understand Software Evolution

Marco D’ Ambros!, Harald C. Gall?, Michele Lanza!, and Martin Pinzger2

! Faculty of Informatics, University of Lugano, Switzerland
2 Department of Informatics, University of Zurich, Switzerland

Summary. Software repositories such as versioning systems, defect tracking systems, and
archived communication between project personnel are used to help manage the progress of
software projects. Software practitioners and researchers increasingly recognize the potential
benefit of mining this information to support the maintenance of software systems, improve
software design or reuse, and empirically validate novel ideas and techniques. Research is
now proceeding to uncover ways in which mining these repositories can help to understand
software development, to support predictions about software development, and to plan various
evolutionary aspects of software projects.

This chapter presents several analysis and visualization techniques to understand software
evolution by exploiting the rich sources of artifacts that are available. Based on the data models
that need to be developed to cover sources such as modification and bug reports we describe
how to use a Release History Database for evolution analysis. For that we present approaches
to analyse developer effort for particular software entities. Further we present change coupling
analyses that can reveal hidden change dependencies among software entities. Finally, we
show how to investigate architectural shortcomings over many releases and to identify trends
in the evolution. Kiviat graphs can be effectively used to visualize such analysis results.

3.1 Introduction

Software evolution analysis is concerned with software changes, their causes, and
their effects. It uses all sources of a software system to perform a retrospective anal-
ysis. Such data comprises the release history with all the source code and the change
information, bug report data, and data that can be extracted from the running system.
In particular the analysis of release and bug reporting data has gained importance be-
cause they store valuable information for analysing the evolution of software. While
the recovery of the data residing in versioning systems such as CVS or Subversion
has become a well explored topic, the ultimate challenge lies in the recovered data
and its interpretation.

Some recent topics addressed in the field of analysing software repositories in-
clude the following:

T. Mens, S. Demeyer (eds.), Software Evolution.
DOI 10.1007/978-3-540-76440-3, © Springer 2008

38 M. D’ Ambros et al.

» Developer effort and social network analysis. One of the goals in this topic is
to find out the effort that team members are spending on maintaining and evolv-
ing software modules and how they communicate with each other. This allows
a project manager to plan resources and reason about shortcomings in develop-
ment processes and the team structure.

* Change impact and propagation. The main focus of this topic is to assess the im-
pact of a change, such as the addition of a new or change of an existing feature,
on the architecture, design and implementation of a software system. Being able
to assess the impact of changes allows one to estimate the effort for maintenance
and evolution tasks, to determine the impact of a change on the existing archi-
tecture and design of a system. Results are also used to provide guidelines for
programmers such as if changing method a the programmer should also change
method b and c.

* Trend and hotspot analysis. In this topic the trend of software entities is observed
to find out shortcomings in the current architecture, design and implementation
of software systems. Hotspots are the entities that frequently change and there-
fore are critical for the evolution of a system. One of the goals is to find heuristics
and warning mechanisms that alarm project managers and architects of negative
trends of software entities (and in particular of system hotspots) and provide
suggestions to return the system into a stable state.

e Fault and defect prediction. A wealth of information is provided by software
repositories that can be input to data mining and machine learning algorithms to
characterize current and predict future properties of software entities. One prop-
erty of software entities that is addressed by many approaches is the prediction
of the location and number of defects in software entities such as source files.
The result is a list of entities that will likely to be affected by defects which
allows the development team to plan preventive actions such as refactoring.

In this chapter we address the first three topics and present techniques such as our
Fractal Figures to analyse development effort, the Evolution Radar to analyse the
change impact on source files, and Kiviat diagrams to analyse metric trends and
to detect system hotspots. In the next section we present a general approach for
analysing software repositories to understand software evolution. Examples of how
to model and retrieve the data is presented in Section 3.3. The modeled data is the in-
put for the different software evolution analysis techniques we present in Section 3.4.

3.2 An Overview of Software Repository Analysis

When mining software repositories one can consider many software artifacts: Source
code from versioning systems, bugs from bug tracking systems, communication from
e-mail lists or any further software artifacts such as documentation. This diversity of
information is the foundation for many kinds of evolution analyses.

3 Analysing Software Repositories to Understand Software Evolution 39
3.2.1 A General Approach

Figure 3.1a shows a sketch of how to analyse software repositories for studying soft-
ware evolution. In the schema we identify three fundamental steps necessary for the
final analysis of the data:

1. Data modeling. The first step of mining consists of creating a data model of an

evolving software system. Various aspects of the system and its evolution can be
modeled: The last version of the source code, the history of files as recorded by
the versioning system, several versions of the source code (e.g., one per release),
documentation, bug reports, developers mailing list archives, etc.
While aspects such as source code or file histories have a direct mapping to the
system, for others like bug reports or mailing list archives the useful information
has to be filtered and linked to software artifacts. When designing the model it
is important to consider the tradeoff between the amount of data to deal with
(in the analysis phase) and the potential benefit this data can have, i.e., not all
aspects of a system’s evolution have to be considered, but only the ones which
can address a specific software evolution problem or set of problems.

2. Data retrieval and processing. Once the model is defined, a concrete instance
of it has to be created. For this, we need to retrieve and process the information
from the various data sources. The processing can include the parsing of the
data (e.g., source code, log files, bug report etc.), the application of matching

Evolution Radar

% g Kiviat Graph
> > \."|sua.llzer
[} Tools [} d .
= = A
< < £y
=] o
€ | Model of the software system =
o o
o ©
(=] o
E E
° ©
= =
(1] ©
— Documen —
o g Target Software System
(] (]
- L = Bu o
ﬁ Target Software System _E; trackigng Verm;)nmg
- Bug L system System
S tracking Versioning o
-] system system]
(=] (]

(a) General schema (b) Our approach

Fig. 3.1. The general approach and our customization to mining software repositories

40 M. D’ Ambros et al.

techniques to link different data sources (e.g., versioning system artifacts with
bug reports [179, 136]), the reconstruction of information not recorded (e.g.,
reconstruct commit information from CVS log files [566]) and the application
of other techniques such as data mining.

3. Data analysis. The analysis consists of using the modeled and retrieved data to
tackle a software evolution problem or set of problems by means of different
techniques and approaches.

3.2.2 Our Approach

Figure 3.1b sketches how we approach software evolution analysis through mining
software repositories. As data sources we consider versioning system log files to-
gether with bug report data. We define a data model describing an evolving software
system based on these two data sources (data modeling). Given a system to analyse,
versioning system log files and bug report data are parsed and a concrete instance
of the model is created (data retrieval). All the models are then stored in a Release
History Database (RHDB), which is the starting point for all the subsequent analy-
ses. For the analysis part we use different techniques and tools, aimed at addressing
specific software evolution problems.

In the remainder of this chapter we first introduce the RHDB, the data model
behind it and the way the database is populated. Then we present different types of
software evolution analyses built on top of the RHDB: Developers effort distribu-
tion, change coupling, trend analysis and hot-spot detection. For the RHDB and each
evolution analysis technique we also present related work in the field.

3.3 Release History

When we refer to the history of a software artifact, we mean the way it was devel-
oped, how it grew or shrank over time, how many developers worked on it and to
which extent. These kinds of information are recorded by versioning systems and
can be reconstructed by parsing their log files. However, when we analyse evolu-
tion our goal is to understand a system’s architecture, the dependencies among its
components and to detect evolutionary hot-spots. To support this kind of analysis,
additional information such as problem bug reports can be used. The problem is to
link this data to the software artifacts to answer specific questions, e.g., which files
were affected by a given bug?

In this section we present our approach for integrating versioning system infor-
mation and bug report data and populating a RHDB [179, 136]. We first introduce
the versioning system and the bug tracking system from which we retrieve the data.
Then we describe the model behind the RHDB, i.e., the model of an evolving soft-
ware system and we finally explain how we populate the database.

CVS and Bugzilla. CVS [135] has been the most used version control system
by the open source community over the last years. Currently it is being replaced by
Subversion [480] (SVN).

3 Analysing Software Repositories to Understand Software Evolution 41

Our approach for populating the RHDB is based on the versioning system log
files, thus it can be applied to both CVS and SVN. For each versioned file, the
log file contains the information recorded by the versioning system at commit-time:
The version number (or revision), the timestamp of the commit, the author who per-
formed the commit, the state (whether the file is still under development or removed),
the number of lines added and removed with respect to the previous commit, the
branches having the current version as root and the comments written by the author
during the commit. Listing 3.1 shows a chunk of a CVS log file.

RCS file: /cvsroot/mozilla/js/src/xpconnect /codelib/Attic/mozJSCodeLib .cpp,v
Working file: codelib/mozJSCodeLib .cpp
head: 1.1
branch :
locks: strict
access list:
symbolic names:
FORMS_20040722_XTF_MERGE: 1.1.4.1
XTF_20040312_BRANCH: 1.1.0.2
keyword substitution: kv
total revisions: 6; selected revisions: 6
description:
revision 1.1
date: 2004/04/19 10:53:08; author: alex.fritze%crocodile-clips.com; state: dead;
branches: 1.1.2; 1.1.4;
file mozJSCodeLib .cpp was initially added on branch XTF_20040312_BRANCH.
revision 1.1.4.2
date: 2004/07/28 09:12:21; author: bryner%brianryner .com; state: Exp; lines: +1 -0
Sync with current XTF branch work.

revision 1.1.2.1
date: 2004/04/19 10:53:08; author: alex.fritze%crocodile-clips.com; state: Exp; lines: +430 -0
Fixed bug 238324 (XTF javascript utilities).

Listing 3.1. A CVS log file chunk of mozJSCodeLib. cpp

Bugzilla [95] is a bug tracking system that is used heavily in the open source
community. Its core is a customizable database with a web interface which allows
developers, testers as well as normal users to report and keep track of issues detected
in the software system.

A typical bug report contains the following pieces of information: An id which
unequivocally identifies the bug, the bug status composed of status (new, assigned,
reopened, resolved, verified, closed) and resolution (fixed, invalid, wontfix, notyet,
remind, duplicate, worksforme), the location in the system identified by the product
and the component, the operating system and the platform on which the bug was
detected, a short description of the problem and a list of comments about it (long
description). Moreover, each bug refers to several people: The reporter who reported
the bug, a person who is in charge to fix it (assigned to), quality assurance people
who are responsible for ensuring that the software meets certain quality standards
(ga), and a list of people interested in being notified of the bug fixing progress (CC).

42 M. D’ Ambros et al.

. FileHistory
- resfile Alias
[Project |1 * ﬁ 1 * me[s)lrectory ! workingfile * *[name
modules files subdirectories 1 Iheid date
1 locks usagecount
« | revisions
1
q BugReport FileVersion
severity version
— shortDescription fileHistory
BugDescription 0s date
text 1 Horit * * | author * 1 Author
who Ero du¥:t state name
when component I!nesAdded
N linesRemoved
resolution branches
gaContact .- commitMessage
LongDescriptions

Fig. 3.2. The RHDB data model

3.3.1 The RHDB Model

Figure 3.2 shows the core of the RHDB model.

In the model a CVS commit corresponds to a file version, having all the commit-
related information: Version associated to the commit, date, author, state (exp or
dead), lines added and removed with respect to the previous commit, branches asso-
ciated with the version and the comment written by the author. A file history, which
corresponds to the actual file in the file system, is composed of a sequence of file
versions, one per commit. It has a filename with (rcsfile) and without (workingfile)
the entire path name. A file history can be associated to many aliases, used for tag-
ging system releases. A project is composed of modules which contain directories
and file histories. A directory can contain sub-directories and file histories. Finally,
a file version can be associated to one or more bug reports. The relationship between
bug reports and file versions is “many to many”’, meaning that a file version (and
therefore a file history) can be affected by many bugs and a bug can affect different
file versions and file histories.

3.3.2 Populating the RHDB

Figure 3.3 sketches the RHDB populating process. The user needs to enter the url
of the CVS repository and of the Bugzilla database, and then the populating task
(which depending on the size of the system can take several hours) is executed in
batch mode. The main steps of the process are:

1. The latest version of the system is retrieved by means of a CVS checkout com-
mand. Then, for each directory, the log file describing the history of the con-
tained files is retrieved and parsed.

2. For each file, the data about all its commits (its history) is stored in the database
as well as a link to the actual file.

3. Every time a reference to a bug is found in the commit message (the comment
written by the author at commit time), the corresponding bug report is retrieved

3 Analysing Software Repositories to Understand Software Evolution 43

Cvs
Repository

Parsing of

Fig. 3.3. The RHDB
populating process

Software System
Ccvs " Bugzilla
Download —| |ogs
I

Read Read Download

Looking for
bug

Parsing of

CVS logs bugs (XML)

references

Store Store

RHDB

from the Bugzilla database, parsed and stored in the database, together with the
link to the affected file. Since the link between CVS artifacts and Bugzilla prob-
lem report is not formally defined, we use regular expressions to detect bug ref-
erences.

3.3.3 Related Work

Several approaches were proposed to create and populate an underlying model of an
evolving software system. These approaches vary according to which information
they consider (e.g., only source code repository or also bug tracking system and mail
archives), which data sources they support (e.g., only CVS or also SVN, ClearCase
etc.) and how these sources are linked to each other.

The previously presented RHDB is based on the CVS versioning system and the
Bugzilla bug tracking system, where the links between the two sources are built as
presented in Section 3.3.2. The main contribution of the RHDB is that it was the first
to link CVS artifacts and Bugzilla problem reports.

Two other approaches similar to the RHDB, also based on CVS and Bugzilla,
but which also use other sources of information are Hipikat [133, 511, 510] by D.
Cubrani¢ et al. and softChange [196, 195] by D. German. Both techniques use infor-
mation from mail archives and, in addition, Hipikat also considers data from docu-
mentation on the analysed project website (if available).

In both approaches the links between different information sources are inferred
based either on conventions (e.g., in some projects there is a convention to include in
the commit comment a reference to the bug tracking system entry) or heuristics (e.g.,
it is likely that the author of a bug fix has committed a source code revision close to
the time that the problem report was closed in the bug tracking system).

A common problem encountered while linking mail archives with CVS reposi-
tory is that people tend to have multiple e-mail addresses, which might not be the
same as the ones recorded in the CVS log files [197].

44 M. D’ Ambros et al.

In the Hipikat model (see Figure 3.4), a message is a mail in the mail archive,
a file version corresponds to a CVS commit in the repository (a revision), a change
task is a Bugzilla problem report and a document is a design document retrieved, for
example, from the project web site.

In the softChange architecture (see Figure 3.5), we see two main components:
The Trail Extractor and the Fact Enhancer. The Trail Extractor retrieves the follow-
ing software trails: CVS logs, Bugzilla problem report, ChangeLogs and releases of
the system (tar files distributed by the software team). The Fact Enhancer uses the
retrieved software trails to generate/infer new facts. For example it reconstructs the
commit-set, since the commit operation in CVS is not atomic, it links CVS artifacts
with Bugzilla problem report or messages from the mail archives, etc.

The information stored by Hipikat forms an “implicit group memory” (where
group stands for group of developers) which is then used to facilitate the insertion of
newcomers in the group, by recommending relevant artifacts for specific tasks. The
data retrieved and processed by softChange is used for two types of software evolu-
tion analysis and visualization: (i) Statistics of the overall evolution of the project,
using histograms where the x axis usually represents the time dimension and (ii)
analysis of the relationships among files and authors, using graphs where authors
and/or files are represented as nodes and their relationships as edges.

Another approach similar to the RHDB is the Kenyon framework [58] by J. Be-
van et al. Kenyon provides an extensible infrastructure to retrieve the history of
a software project from a SCM repository or a set of releases and to process the
retrieved information. It also provides a common interface based on ORM (Object-
Relational Mapping) to access to processed data stored in a database.

check—in package

cvs

File
version

o implements e
similar to similar to reply to

www Bugzilla Usenet, Mail

Change
Document 9 Message
documents task about

Hipikat | works on

posts

writes

Person

writes

Fig. 3.4. The Hipikat model [511] ©[2005] IEEE

3 Analysing Software Repositories to Understand Software Evolution 45

Fig. 3.5. The softChange process
] [195]
— o —

repository

Mail
archives

CVS
repository

Trails
extractor

softChange Fact enhancer
repository

Figure 3.6 shows the high-level data flow architecture of Kenyon. The DataMan-
ager class is the execution entry point: It reads a configuration file and invokes the
other components, i.e., the Configuration Retrieval, the Fact Extractor and the Ob-
ject Data Storage. The SCMInterface class isolates Kenyon from the concrete im-
plementation of different SCM systems. The FactExtractor and MetricLoader ab-
stract classes are the API points for specific tool invocation extensions. This means
that users of Kenyon are free to attach their own external Fact Extractor and Met-
ric Loader tools (typically analysis-specific). Besides this extension, Kenyon offers
predefined fact extractor and metric loader tools. Kenyon saves the results from each

<invokes>
____________________ |-——-—---—-—-—-—----++ DataManager
| |
| |
|

|
|
v |
. A4
y Fact Extraction Obiect Data S
Configuration Retrieval ject Data Storage
<abstract>
FactExtractor 4 ORM
SCMuinterface (Hibernate)
<abstract>
MetricLoader

3
— 3

SCM
repository

Filesystem

5
A
@

Fig. 3.6. The high-level data flow architecture of Kenyon [58], ©ACM, 2005

46 M. D’ Ambros et al.

processed configuration to a database. An ORM mechanism is provided to help au-
tomate the storage to and retrieval of Java object from the database.

As depicted in Figure 3.6 Kenyon retrieves information from SCM only (or
filesystem, i.e., set of releases), without considering other sources, such as bug track-
ing system or mail archives. On the other hand Kenyon supports several SCMs,
namely: CVS, SVN, ClearCase and sets of releases in the filesystem.

A common aspect of Kenyon and the RDHB is that both store the data for later
evolution analyses, while for softChange and Hipikat the task for using the data is
already defined.

3.4 Software Evolution Analysis

The RHDB contains a concrete instance of our model of an evolving software sys-
tem. This is the starting point from which, with the support of tools and techniques,
we can do several types of analyses. Each technique we designed and each tool we
implemented considers a particular perspective on software evolution, and addresses
a particular goal. In the following, we present some software evolution analysis prob-
lems and describe our techniques to tackle them.

3.4.1 Analysing Developer Effort

The first software evolution problem we address concerns development effort. We
want to answer questions such as: How many developers worked on an entity? How
was the effort distributed among them? Is there an owner of the entity, based on the
code-ownership principle? Moreover, we also want to be able to categorize entities
in terms of “effort distribution”. For an analyst or a project manager, the answers
to these questions provide valuable information for a possible restructuring of the
development teams.

Version control systems record the information necessary to answer these ques-
tions, as each ach artifact has a list of versions corresponding to commits, and the
list of authors who performed the commits®. The problem is how to represent and
aggregate this large amount of low-level information* to get an insight into the team
structure and to understand who are the responsible/s of a software entity, scaling
from a module down to the individual file.

Our approach is based on the “Fractal Figure” [139, 136] visualization, which
encapsulates all the author-related information of a given software artifact. It gives
an immediate view of how, in terms of development effort and distribution among
authors, an artifact has been developed. We can easily figure out whether the de-
velopment was done mainly by one author or many people contributed to it and to

3 We only know who performed the commit, i.e., if a commit includes changes done by
several people, those are all mapped to a single developer.

4 As an example: The Mozilla system, on the first of September 2003, had 4656 source code
files with a total number of 326,000 file versions, corresponding to hundreds of thousands
of commit-related data to analyse.

3 Analysing Software Repositories to Understand Software Evolution 47

which extent. A fractal figure is composed of a set of rectangles with different sizes
and colors. Each rectangle, and thus each color, represents an author who worked on
the file. The area of the rectangle is proportional to the percentage of commits per-
formed by the author over the whole set of commits. For more details on the layout
algorithm and the expressive power of Fractal Figures see [139].

Fractal Figures allow software entities to be categorized in terms of effort dis-
tribution among developers following the gestalt principle. We defined four visual
patterns representing four development models, depicted in Figure 3.7: (a) One de-
veloper, (b) few balanced developers, (c) one major developer and (d) many balanced
developers.

Development patterns allow us to categorize entities according to the way they
were developed from an authors’ perspective. However, the visual nature of both the
patterns and the Fractal Figures themselves, is useful to get a qualitative impression
only of the development model. To provide also a quantitative measure, we intro-
duced the Fractal Value, which for a given software artifact is defined as:

2
Fractal Value =1 — M) , with NC= nc(a; 3.1

a,zelA (NC a,ZE‘A (l) ()
where A = {ay,ay,...,a,} is the set of authors and nc(a;) is the number of commits
performed by the author a; with respect to the given software artifact. The Fractal
Value measures how fragmented a Fractal Figure is, that is how much the work spent
on the corresponding entity is distributed among different developers. (3.1) is defined
such that the smaller the quantity "%?) is (always less than 1), the more it is reduced
by the square power, since the square equation is sub-linear between 0 and 1. There-
fore, the smaller a rectangle is, the less its negative contribution to the Fractal Value
is. The Fractal Value ranges from 0 to 1 (not reachable). It is O for entities developed
by one author only, while it tends to 1 for entities developed by a large number of
authors.

To exploit the expressive power of Fractal Figures we applied them in context of
polymetric views [309]. Figures represent RHDB entities, namely files, directories,
and modules. To apply them on a directory or a module, we sum up the commit infor-
mation of all the files belonging to the given directory or module. We map a metric
measurement of the size of the figure. The metric can be structural such as LOC

(a) One developer (b) Few balanced (c) One major deve- (d) Many balanced
developers loper developers

Fig. 3.7. Development patterns based on the gestalt of Fractal Figures [139] ©[2005] IEEE

48 M. D’ Ambros et al.

or evolutionary such as number of commits, number of bugs, number of lines added
etc.

In the following we present different example scenarios which show how to use
Fractal Figures to address the problem of understanding development effort distribu-
tion.

Detecting a Major Developer

Figure 3.8 shows the webshell directory hierarchy of Mozilla. Fractal Figures rep-
resent directories containing at least one file, while grey figures represent container
directories, i.e., directories containing only subdirectories. The size metric maps the
directory size in terms of number of contained files. We see that the webshell hierar-
chy of Mozilla includes all the four development patterns. The sub-hierarchy marked
as 1 has a major developer pattern (the blue author did most of the commits). The
reverse engineer knows whom to ask questions about the design and the code con-
tained in this sub-hierarchy. On the contrary, the directory marked as 2 shows that
many developers worked on it, and there is no main developer. Modifying code in
these directories will be more effort since there is not a single person to ask questions
about the code. The reverse engineer will need support of other tools such as Code-
Crawler [310] or BugCrawler [138]. This information is not complex or hard to get,
but the value of the Fractal Figure visualization is that it conveys this information in
a context (the hierarchy in this case), easy and fast to read, and with the same visual
principle for all the software entities to which it is applied.

Fig. 3.8. Fractal Figures applied
to the webshell hierarchy of
Mozilla [139] ©[2005] IEEE. The
size metric maps the directory size
in terms of number of contained
files

3 Analysing Software Repositories to Understand Software Evolution 49

n___ N
[B S R | n L. g
[] L] LT =] g "ll‘ [= [[s]=
| JR T e I g v
n E IE

Fig. 3.9. Fractal Figures applied to the network/protocol hierarchy of Mozilla. The size
metric maps the number of bug reports

Re-Assessing Development Team Formation

Figure 3.9 shows an example with the network protocol implementation of Mozilla.
Most of the directories which introduced bugs have a many balanced developer pat-
terns, but one which has a one major developer pattern: network/protocol/http/
src. This directory is responsible for most of the bugs generated in the network/
protocol hierarchy. Such a view can be valuable for a project manager or an an-
alyst. It shows that a re-assessment of the formation of the development team is
needed, given the high number of bugs and one major developer pattern of the
network/protocol/http/src directory.

Related Work

Many software evolution analysis techniques focus more on the developers and their
interaction with software artifacts than on software artifacts themselves. Liu et al
[330] applied the CVSChecker tool to analyse CVS log files with the aim of un-
derstanding author contributions and identifying patterns. They wanted to study the
open source development process and to understand what activities are carried out in
open source project and by whom. The CVSChecker tool supports the analysis of the
performance of an individual developer and the effort distribution patterns of teams.

CVSChecker has a set of parsers which extract information from the CVS source
code repository and store them in a relational database. The tool then uses this infor-
mation to produce four kinds of visualizations:

Temporal distribution of CVS activity, for each developer (see Figure 3.10a);
Distribution of CVS operation types, for each developer;

Distribution of CVS operation types, for each file;

Added and removed lines of code (LOC) by each developer, on each file (see an
example in Figure 3.10b).

b

50 M. D’ Ambros et al.

120 ANy
Member_|
. - Member 2
Mumber 1
== Moemboer 4
= Mumber_5
« Mumber_6
Ave Projecid
: b £ 1 I
1 il 101 151 200 251 301 351 401 451 501 351 a0l e51 TO1 751 #01 B3I
(a) Temporal distribution of CVS activity for each developer
2000