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Foreword

by Mehdi Jazayeri

Faculty of Informatics, University of Lugano, Switzerland
Distributed Systems Group, Technical University of Vienna

The phenomenon of software evolution was observed back in the 1970s when the
first large software systems were being developed, and it attracted renewed attention
in the 1990s. Software evolution is now a common phrase and an accepted research
area in software engineering. There are conferences and workshops devoted to the
topic, and evolution papers appear frequently in the traditional software engineering
conferences and journals. The 2004 ACM/IEEE Software Engineering Curriculum
Guidelines list software evolution as one of ten key areas of software engineering
education. And there are several research groups and international networks working
on software evolution. As perhaps may be expected, there are diverging research
efforts in sub-areas of software evolution, spanning theoretical studies, empirical
studies, tools, visualization, and so on.

Since the classic and insightful work of Lehman and Belady [320], “software
evolution” has been accepted as a phenomenon worth studying and one that we ac-
knowledge poses serious problems to software projects. The problems are complex
because they involve many dimensions, affecting, among others, all phases of the
software process, managerial and economic aspects, and programming languages
and environments. Further, as software engineering advances and new technologies
(e.g., Web applications) and processes (e.g., open source) are introduced, software
evolution faces different problems and challenges. At the same time, some new ad-
vances (e.g. agile and model-driven processes) enable novel solutions to software
evolution.

Evolution in general parlance implies that something has changed for the bet-
ter. The Merriam-Webster Dictionary defines evolution as “a process of continuous
change from a lower, simpler, or worse to a higher, more complex, or better state,”
which captures our intuitive notion of something improving. With software, evolu-
tion is multi-faceted because certainly according to some metric the software gets
better, for example it acquires a new feature or its performance improves or it is
ported to a new platform. Unfortunately, most improvements come with some dete-
rioration in some other dimension, for example, size of software or its performance
or its structure.
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In biology, the traditional area of evolution, evolution deals with species. Is there
something analogous to “species” when we talk about software? The answer is defi-
nitely yes. The species are the high-level models that we use to describe (aspects of)
software. An architectural description, in fact, describes a whole species of software
systems. The family architecture (or product line) approach to software development
makes this explicit by capturing a whole family (species) of systems in terms of their
commonalities and differences. If evolution does take place in software, we can hope
that it occurs at these meta-levels, where new architectures are created as improve-
ments to previous architectures, leading to evolved species. Individual elements in
the family certainly change over time but this change is hardly evolutionary in the
sense that it leads to long-term improvement. What we do know about software and
even Lehman’s laws of evolution is that any individual software system will eventu-
ally reach an old age when it is no longer cost-effective to modify it and it is better
to retire it. But even when we retire a software product, the associated knowledge
about that product, captured in higher level models such as requirements and specifi-
cations lives on and influences the evolution of the species. Thus, understanding and
capturing the way software evolves offers a fascinating and rich area of study.

With this wide range of issues involved in software evolution, where would a re-
searcher new to the field turn to for an introduction and comprehensive overview of
the state of the art? This book attempts to be that source. For example, this book
is a good starting point for a PhD student looking for a research topic. It can also
form the basis for a seminar course on software evolution. The book covers most
areas of software evolution and many current problems and representative research
approaches. I recommend the book to any researcher interested in software evolution.

The book, however, has value beyond the world of research. Because of the key
role that evolution plays in software engineering, knowledge of the problems, ap-
proaches and solutions in software evolution is useful to anyone involved in software
engineering. Thus, if you are a software engineer, or software engineering researcher,
interested or just curious about what happens to software once it is developed, or how
to develop software that is evolvable, this book offers you plenty of insights.

September 2007 Mehdi Jazayeri



Preface

In October 2002, on a cold wintery Monday in Antwerp, we kicked off the RELEASE
network, a research network aiming to establish “Research Links to Explore and Ad-
vance Software Evolution”. This research network (funded by the European Science
Foundation) was an attempt to intensify the collaboration between a number of Euro-
pean research groups active in the field of software evolution. At that time, software
evolution was steadily becoming a subject of serious academic study, because more
and more researchers started to recognise that building software that lasts is one of
the key challenges for our society in general and for the software engineering com-
munity in particular. The RELEASE network succeeded in fostering a community
of European researchers who continue to meet on a regular basis, despite ceasing of
funding in 2005. The book you are holding right now is one of the products of this
continued activity and we sincerely hope that it will inspire you to become part of
the active software evolution community as well.

What Is this Book About?

This book is a collection of chapters written and peer reviewed by renowned experts
in the field of software evolution. The book does not cover all research topics in soft-
ware evolution—given the wealth of information in this field that would be an im-
possible task. Instead, we focus on novel trends in software evolution research and its
relation with other emerging disciplines such as model-driven software engineering,
service-oriented software development, aspect-oriented software development. Also,
we do not restrict ourselves to the evolution of source code only, but address evolu-
tion of other equally important software artefacts such as databases and database
schemas, design models, software architectures, and so on. As such, this book pro-
vides a representative selection of the research topics under study in this field. Even
better, it also demonstrates the diverse ways on how to conduct research in this field,
so you will see various examples of tools, case studies (mainly open-source sys-
tems), empirical validation and formal models. All contributing authors did their
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very best to provide a broad overview of the related work, contribute to a compre-
hensive glossary and a list of acronyms used within the community, and—last but
not least—collect a list of books, journals, web-sites, standards and conferences that
together represent the community. So reading this book should give you a head start
when diving into the field of software evolution.

As such, we hope that this book will become a key reference in the field, provid-
ing a basis for the next generation of software evolution researchers.

Who Should Read this Book?

This book is of interest to everyone working in the field of software engineering
and wishing to acquire more knowledge on the state-of-the-art in software evolu-
tion, software maintenance and re-engineering. In particular, we target this book to
researchers, teachers, students and practitioners that need up-to-date information on
this very important research field.

So, whether you are a PhD researcher exploring a research topic, a student writ-
ing a master’s thesis, a teacher in need of an overview, a practitioner looking for the
state-of-the-art, or if you are simply curious about what the field of software evolu-
tion has to offer, this should be the book for you.

Why this Book?

Software has become omnipresent and indispensable in our information-based soci-
ety. Almost all devices, machines and artefacts surrounding us incorporate software
to some extent. The numerous organisations, businesses and enterprises we face on
a daily basis could not function without software. As such, software is vital to our
society and consequently we—the software engineering community—should take
up our responsibility to produce reliable software. For a long, long time, reliable
software was seen as software “without bugs”. As a result, most of the software
engineering research effort has concentrated on preventing, detecting and repairing
mistakes in various stages of software development. However, more and more, re-
liable software has come to mean “easy to adapt”. Indeed today’s global society,
with its extreme complexity and diversity imposes constant pressure to change . . . to
adapt. Hence all the software that surrounds us is forced to keep pace or is bound to
be replaced by something else . . . something new.

Software evolution is the subdomain of the software engineering discipline that
investigates ways to adapt software to the ever-changing user requirements and op-
erating environment (i.e., it addresses the How? question). However, software evo-
lution also studies the change process itself, analysing remnants of the software (for
instance in version repositories) to extract trends, make predictions or understand the
very nature of the software evolution phenomenon itself (i.e., it explores the What
and Why? questions). With the recent interest in agile software development, finding
good answers for the How? question is necessary. On the other hand, the emergence
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of open-source software development with its sheer unlimited access to a wealth of
data has provided an extra opportunity to address the What and Why? questions in
a scientific way. Consequently, research in software evolution has seen a recent boost,
and this book provides an up-to-date view on the ideas emerging from our research
labs.
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1

Introduction and Roadmap:
History and Challenges of Software Evolution

Tom Mens

University of Mons-Hainaut, Belgium

Summary. The ability to evolve software rapidly and reliably is a major challenge for soft-
ware engineering. In this introductory chapter we start with a historic overview of the research
domain of software evolution. Next, we briefly introduce the important research themes in
software evolution, and identify research challenges for the years to come. Finally, we provide
a roadmap of the topics treated in this book, and explain how the various chapters are related.

1.1 The History of Software Evolution

In early 1967, there was an awareness of the rapidly increasing importance and im-
pact of software systems in many activities of society. In addition, as a result of
the many problems faced in software manufacturing, there was a general belief that
available techniques should become less ad hoc, and instead based on theoretical
foundations and practical disciplines that are established in traditional branches of
engineering. These became the main driving factors for organising the first confer-
ence on Software Engineering in 1968 [391]. The goal of this conference, organised
by the NATO Science Committee, was “the establishment and use of sound engineer-
ing principles in order to obtain reliable, efficient and economically viable software”.
Among the many activities of software engineering, maintenance was considered as
a post-production activity, i.e., after the delivery and deployment of the software
product.

This view was shared by Royce, who proposed in 1970 the well-known waterfall
life-cycle process for software development [446]. In this process model, that was
inspired by established engineering principles, the maintenance phase is the final
phase of the life-cycle of a software system, after its deployment. Only bug fixes and
minor adjustments to the software are supposed to take place during that phase. This
classical view on software engineering has long governed the industrial practice in
software development and is still in use today by several companies. It even became
a part of the IEEE 1219 Standard for Software Maintenance [239], which defines
software maintenance as “the modification of a software product after delivery to

T. Mens, S. Demeyer (eds.), Software Evolution.
DOI 10.1007/978-3-540-76440-3, © Springer 2008
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correct faults, to improve performance or other attributes, or to adapt the product to
a modified environment.”

It took a while before software engineers became aware of the inherent limita-
tions of this software process model, namely the fact that the separation in phases
was too strict and inflexible, and that it is often unrealistic to assume that the re-
quirements are known before starting the software design phase. In many cases, the
requirements continue to change during the entire lifetime of the software project. In
addition, knowledge gained during the later phases may need to be fed back to the
earlier phases.

Therefore, in the late seventies, a first attempt towards a more evolutionary pro-
cess model was proposed by Yau with the so-called change mini-cycle [559] (see
Fig. 1.1). In this process, important new activities, such as change impact analy-
sis and change propagation were identified to accommodate the fact that software
changes are rarely isolated.

Also in the seventies, Manny Lehman started to formulate his, now famous, laws
of software evolution. The postulated laws were based on earlier work carried out by
Lehman to understand the change process being applied to IBM’s OS 360 operating
system [317, 318]. His original findings were confirmed in later studies involving
other software systems [320].

This was probably the first time that the term software evolution (or program
evolution) was deliberately used the stress the difference with the post-deployment
activity of software maintenance. To stress this difference even more, Lehman coined
the term E-type software to denote programs that must be evolved because they “op-
erate in or address a problem or activity of the real world”. As such, changes in the
real world will affect the software and require adaptations to it.

Nevertheless, it took until the nineties until the term software evolution gained
widespread acceptance, and the research on software evolution started to become
popular [24, 403]. This also lead to the acceptance of so-called evolutionary pro-
cesses such as Gilb’s evolutionary development [200], Boehm’s spiral model [71]
and Bennett and Rajlich’s staged model [57].

The staged process model, visualised in Fig. 1.2, is interesting in that it explicitly
takes into account the inevitable problem of software aging [410]. After the initial
stage of development of a first running version, the evolution stage allows for any
kind of modification to the software, as long as the architectural integrity remains

Fig. 1.1. The staged process model for evolution (adapted from [559] ©[1978] IEEE)
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Fig. 1.2. The staged process model for evolution (adapted from [57] ©[2000] ACM)

preserved. If this is no longer the case, there is a loss of evolvability (also referred to
as decay) and the servicing stage starts. During this stage, only small patches can be
applied to keep the software up and running. If even such small patches become too
costly to carry out, the phase-out stage starts, leading to ultimate close down of the
system. If the system, despite of its degraded quality, is still valuable to its various
stakeholders, it is called a legacy system. In that case, it may be wise to migrate to
a new system that offers the similar or extended functionality, without exhibiting the
poor quality of the legacy system. The planning to migrate to such a new system
should be done as soon as possible, preferably during the servicing stage.

Software evolution is also a crucial ingredient of so-called agile software devel-
opment [119, 351] processes, of which extreme programming (XP) [50] is probably
the most famous proponent. In brief, agile software development is a lightweight
iterative and incremental (evolutionary) approach to software development that is
performed in a highly collaborative manner and explicitly accommodates the chang-
ing needs of its stakeholders, even late in the development cycle, because this offers
a considerable competitive advantage for the customer. In many ways, agile methods
constitute a return to iterative and incremental development as practiced early in the
history of software development, before the widespread use of the waterfall model
[312].

Nowadays, software evolution has become a very active and well-respected field
of research in software engineering, and the terms software evolution and software
maintenance are often used as synonyms. For example, the international ISO/IEC
14764 standard for software maintenance [242], acknowledges the importance of
pre-delivery aspects of maintenance such as planning. Similarly, the Software Engi-
neering Body of Knowledge (SWEBOK) [2] acknowledges the need for supporting
maintenance in the pre-delivery as well as the post-delivery stages, and considers the
following evolution-related research themes as being crucial activities in software
maintenance: software comprehension, reverse engineering, testing, impact analysis,
cost estimation, software quality, software measurement, process models, software
configuration management, and re-engineering. These activities will be discussed in
more detail in Section 1.2.

In this book, we will continue to use the term software evolution as opposed to
maintenance, because of the negative connotation of the latter term. Maintenance
seems to indicate that the software itself is deteriorating, which is not the case. It is
changes in the environment or user needs that make it necessary to adapt the soft-
ware.
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1.2 Research Themes in Software Evolution

In this Section we provide an overview of some of the important research themes
in software evolution. The various chapters of this book will explore some of these
themes in more depth. Of course, it is not the aim of the book to provide complete
and detailed coverage of all these themes. Instead, we have tried to offer a selection
of important issues that are actively pursued by the research community. They have
been identified, among others in the visionary articles by Bennett and Rajlich [57]
and Mens et al. [371]. Therefore, in this section, we summarise some of the most
important challenges and future research directions in software evolution, as reported
in these articles.

1.2.1 Dimensions of Software Evolution

There are two prevalent views on software evolution, often referred to as the what
and why versus the how perspectives [322].

The what and why view focuses on software evolution as a scientific discipline. It
studies the nature of the software evolution phenomenon, and seeks to understand its
driving factor, its impact, and so on. This is the view that is primarily taken in [338].
An important insight that has been gained in this line of research is that the evo-
lution process is a multi-loop, multi-level, multi-agent feedback system that cannot
be treated in isolation. It requires interdisciplinary research involving non-technical
aspects such as human psychology, social interaction, complexity theory, organisa-
tional aspects, legislation and many more.

The how view focuses on software evolution as an engineering discipline. It stud-
ies the more pragmatic aspects that aid the software developer or project manager in
his day-to-day tasks. Hence, this view primarily focuses on technology, methods,
tools and activities that provide the means to direct, implement and control software
evolution.

It is the latter view that is followed throughout most of the chapters in this book.
Nevertheless, it remains necessary to develop new theories and mathematical models,
and to carry out empirical research to increase understanding of software evolution,
and to invest in research that tries to bridge the gap between the what and the how of
software evolution.

As another “dimension” of software evolution, we can consider the types of
changes that are being performed. Based on earlier studies by Lientz and Swanson
[329], the ISO/IEC standard for software maintenance [242] proposes four categories
of maintenance:

• Perfective maintenance is any modification of a software product after delivery
to improve performance or maintainability.

• Corrective maintenance is the reactive modification of a software product per-
formed after delivery to correct discovered faults.

• Adaptive maintenance is the modification of a software product performed after
delivery to keep a computer program usable in a changed or changing environ-
ment.
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• Preventive maintenance refers to software modifications performed for the pur-
pose of preventing problems before they occur.

For completeness, we also mention the work of Chapin et al. [109], who further
extended this classification, based on objective evidence of maintainers’ activities
ascertainable from observation, and including non-technical issues such as documen-
tation, consulting, training and so on. A related article that is worthwhile mentioning
is the work by Buckley et al. [94], in which a taxonomy of software change is pre-
sented based on various dimensions that characterise or influence the mechanisms of
change.

1.2.2 Reverse and Re-Engineering

An important theme within the research domain of software evolution is reverse en-
gineering [112]. This activity is needed when trying to understand the architecture
or behaviour of a large software system, while the only reliable information is the
source code. This may be the case because documentation and design documents
are unavailable, or have become inconsistent with respect to the code because they
have not been updated. Reverse engineering aims at building higher-level, more ab-
stract, software models from the source code. Program comprehension or program
understanding are activities that try to make sense of the wealth of information that
reverse engineering produces, by building mental models of the overall software ar-
chitecture, structure and behaviour. Program comprehension also includes activities
such as task modelling, user interface issues, and many others.

Reverse engineering can also be regarded as the initial phase in the process of
software reengineering [23]. Reengineering is necessary when we are confronted
with legacy systems. These are systems that are still valuable, but are notoriously
difficult to maintain [149]. Following the terminology used in the staged life cycle
model of Fig. 1.2, we consider these systems to be in the servicing stage.

The goal of reengineering is thus to come to a new software system that is more
evolvable, and possibly has more functionality, than the original software system.
The reeengineering process is typically composed of three activities, as captured by
the so-called horseshoe model visualised in Fig. 1.3 [271]. First, reverse engineering
may be necessary when the technological platform of the software system (language,
tools, machines, operating system) is outdated, or when the original developers are
no longer available. This activity is typically followed by a phase of software re-
structuring [22] in which we try to improve crucial aspects of the system. Finally,
in a forward engineering phase we build a new running system based on the new,
restructured, model.

The topic of reengineering is very important and relevant to industry, and there-
fore the second part of this book will be entirely devoted to it. Chapter 5 will focus
on the reengineering of object-oriented software systems. Chapter 6 will address the
need for, and means to, migrate data when reengineering large information systems.
Chapter 7 discusses how to reengineer legacy systems into service-oriented systems.

Another very important research topic in reengineering research is the quest for
new and better visualisation techniques that aid in a better program comprehension,
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Fig. 1.3. The horseshoe process
model for reengineering

as well as a better understanding of the evolution of software. Such visualisation
techniques are explored in Chapter 3.

1.2.3 Incremental Change Techniques

In the change mini-cycle proposed by Yau et al. [559], and visualised in Fig. 1.1,
a number of important activities related to the change process become apparent.

During the planning phase, program comprehension is of course essential to un-
derstand what parts of the software will be affected by a requested change. In addi-
tion, the extent or impact of the change needs to be assessed by resorting to change
impact analysis techniques [74]. By predicting all parts of the system that are likely
to be affected by a change, they give an estimation of how costly the change will be,
as well as the potential risk involved in making the change. This analysis is then used
to decide whether or not it is worthwhile to carry out the change.

Because of the fact that a change may have a non-local impact, support is needed
for what is referred to as change propagation [424, 425]. It is necessary when
a change to one part of a software system requires other system parts that depend
on it to be changed as well. These dependent system parts can on their turn require
changes in other system parts. In this way, a single change to one system part may
lead to a propagation of changes to be made throughout the entire software system.

During the implementation phase, it may turn out that the change cannot be im-
plemented directly, and that a restructuring or refactoring of the software is required
first in order to accommodate the requested change. The goal is thus to improve the
software structure or architecture without changing the behaviour [21, 183].

During the validation and verification phase, techniques to revalidate the software
after having performed changes are crucial in order to ensure that the system integrity
has not been compromised. Regression testing is one of those techniques [66]. Rather
than repeating all tests for each new software release (which would be too costly, take
too much time, and consume too many resources), a carefully selected subset of the
tests is executed to verify that the changes did not have inadvertent effects. Chapter 8
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of this book provides an excellent overview of software testing, and its interplay with
software evolution.

1.2.4 Managerial Issues

Managerial issues are equally crucial to software evolution. Despite this fact, it re-
mains a challenge to increase awareness among executives and project managers
about the importance and inevitability of software evolution. Indeed, various studies
and surveys indicate that over 80% of the total maintenance effort is used for non-
corrective actions [1, 416]. In addition, other studies indicate that software mainte-
nance accounts for at least 50% of the total software production cost, and sometimes
even exceeds 90% [329, 457, 296].

According to Lehman, software evolution problems start to appear when there
are at least two management levels involved in the software production process. This
is confirmed by Brooks [85], who calls this the large program problem. A very im-
portant managerial issue has to do with the economics of software evolution [72]. It
turns out that, in many cases, the reason for evolving software is non-technical. More
specifically, it is an economic decision, driven by marketing or other reasons.

The main challenge is therefore to develop better predictive models, based on
empirical studies, for measuring and estimating the cost and effort of software main-
tenance and evolution activities with a higher accuracy [261, 466, 427, 177]. Similar
techniques may also be useful to measure the cost-effectiveness of regression testing
[444].

Another point of attention for managers is the need for software quality assur-
ance. If proper support for measuring quality is available, this can provide crucial
information to determine whether the software quality is degrading, and to take cor-
rective actions if this turns out to be the case. Numerous software metrics have been
proposed, studied and validated as measures of software quality characteristics such
as complexity, cohesion, coupling, size and many others [83, 39, 171, 231].

Besides metrics, other more heuristic approaches may be used to detect “bad
smells” or other indicators of poor-quality software. For example, Chapter 2 of this
book studies techniques to detect and remove software redundancies and code clones,
which are generally considered to be an indication of poor quality. Chapter 4 analy-
ses software failures stored in a bug repository to predict and improve the software
quality over time.

1.2.5 The Software Process

An important area of research is to find the software process model that is most ap-
propriate to facilitate software evolution. In Section 1.1 we already introduced a num-
ber of such process models. The IEEE standard for software maintenance [239] and
the ISO/IEC standard for software maintenance [242] also propose such a mainte-
nance process model.

It is important to observe that, due to the fact that the activity of software evolu-
tion is a continuous feedback process [338], the chosen software process model itself
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is likely to be subject to evolution. The research area of software process improve-
ment aims to reduce cost, effort and time-to-market, to increase productivity and
reliability, or to affect any other relevant properties. Software process improvement
can be based on theory or empirical industrial case studies [208].

As software systems become larger and more complex, and are being developed
in a collaborative and distributed way, it becomes inevitable to resort to dedicated
software configuration management tools. Among others, they provide automated
support for the change process, they allow for software versioning and merging, and
they offer procedures (verification, validation, certification) for ensuring the quality
of each software release. Even today, research in this area is continuing in order to
advance the state-of-the-art.

Another aspect of software process improvement is the exploration and introduc-
tion of novel development paradigms such as agile software development [119, 351],
aspect-oriented software development [247], model-driven software development
[474], service-oriented architectures [393], and many more. All of these development
paradigms claim to improve software development and to lead to higher productivity,
higher quality, and more adaptable and maintainable software. Some of these claims
are investigated in Chapter 9 for aspect-oriented development.

Of particular interest is the open source movement, which has provided a novel,
strongly collaborative way of developing and evolving software. The question arises
whether this style of software development is subject to the same laws that govern the
evolution of traditional software development approaches [318]. This topic is under
active study [206, 481, 461] and will be addressed in Chapter 11 of this book.

1.2.6 Model Evolution

One of the main difficulties of software evolution is that all artefacts produced and
used during the entire software life-cycle are subject to changes, ranging from early
requirements over analysis and design documents, to source code and executable
code. This fact automatically spawns many subdisciplines in the research domain of
software evolution, some of which are listed below:

Requirements evolution. The main objectives of requirements engineering are defin-
ing the purpose of a software system that needs to be implemented. Require-
ments evolve because requirements engineers and users cannot predict all possi-
ble uses of a system, because not all needs and (often mutually conflicting) goals
of the various stakeholders can be taken into account, and because the environ-
ment in which the software is deployed frequently changes as well. Because the
topic of requirements evolution is not covered in this book, we direct the reader
to [571, 570, 191] for more information.

Architecture evolution. Based on an (initial) description of the software require-
ments, the overall software architecture (or high-level design) and the corre-
sponding (low-level) technical design of the system can be specified. These are
inevitably subject to evolution as well. The topic of architectural evolution is ex-
plored in detail in Chapter 10. The related problem of evolving software product
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families is not covered in this book, but we refer to [253, 252] for an in-depth
treatment of this topic.

Data evolution. In information systems and other data-intensive software systems
it is essential to have a clear and precise description of the database schema.
Chapter 6 explores in detail how to evolve and migrate such schemas.

Runtime evolution. Many commercial software systems that are deployed by large
companies need to be constantly available. Halting the software system to make
changes cannot be afforded. Therefore, techniques are needed to change the
software while it keeps on running. This very challenging problem is known
under a variety of terms, including runtime evolution, runtime reconfiguration,
dynamic adaptation and dynamic upgrading [297, 284].

Service-oriented architectures (SOA) provide a new paradigm in which a user-
oriented approach to software is taken [162]. The software is developed in terms
of which services are needed by particular users, and these users should be able
to easily add, remove or adapt services to their needs. While this approach has
many similarities with the component-oriented approach [486], services are only
bound together at runtime, whereas components are statically (i.e., at design
time) composed together. A service-oriented approach thus promises to be in-
herently more flexible than what is available today. This is crucial, especially in
e-commerce applications, where rapid and frequent change is a necessity in or-
der to respond to, and survive in, a highly competitive market. Chapter 7 of this
book will be devoted to the migration towards service-oriented architectures.

Language evolution. When looking at languages (whether it be programming, mod-
elling of formal specification languages), a number of research directions come
to mind. The first one is the issue of co-evolution between software and the lan-
guage that is used to represent it. Both are subject to evolution, albeit at different
speed [167]. The second challenge is to provide more and better support for
evolution in the context of multi-language software systems. A third challenge
is to improve the design of languages to make them more robust to evolution
(e.g., traits [451]). This challenge has always been the main driver of research
in design of new computer languages. Unfortunately, every new programming
paradigm promises to improve the software development process but introduces
its own maintenance problems. This was the case for object-oriented program-
ming (where the inheritance hierarchy needs to be mastered and kept under con-
trol when evolving software), aspect-oriented programming (where aspects need
to be evolved next to the base code, see Chapter 9 for more details), component-
oriented programming, and so on. In general, every new language or technology
should always be evaluated in the light of its potential impact on the software’s
ability to evolve.

Interestingly, when starting to study evolution of software artefacts different from
source code, new challenges arise that need to be dealt with, regardless of the type of
software artefact under consideration. For example, we need techniques that ensure
a traceability link between software artefacts at all different levels of abstraction,
ranging from very high-level requirements documents to low-level source code [16].
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In presence of many different types of software artefacts that co exist, we also
need inconsistency management and consistency maintenance techniques to control
the overall consistency of the software system [471], as well as techniques for co-
evolution and incremental synchronisation of all related software artefacts [363].

1.3 Roadmap

The remainder of the book is structured into three parts, each containing at least three
chapters. All chapters provide a detailed overview of relevant research literature.

Part I of the book, called Understanding and Improving Software Evolution is
about understanding software evolution by analysing version repositories and release
histories, and improving software evolution by removing software redundancies and
fixing bugs:

• In Chapter 2, Koschke discusses and compares various state-of-the-art tech-
niques that can be used to detect and remove software clones. In addition, he
describes techniques to remove clones through refactoring and summarises stud-
ies on the evolution of clones.

• In Chapter 3, D’Ambros et al. report on how information stored in version repos-
itories and bug archives can be exploited to derive useful information about the
evolution of software systems.

• In Chapter 4, Zimmermann et al. explore how information about software fail-
ures contained in a bug database can be mined to predict software properties
and to improve the software quality. Their results are validated on a number of
industrial case studies.

Part II of the book, called Reengineering of Legacy Systems contains three chapters
devoted to the topic of legacy software systems, and how one may migrate to, or
reengineer these systems into a system that is no longer outdated and more easy to
maintain and adapt:

• In Chapter 5, Demeyer discusses the state-of-the-art in object-oriented software
reengineering. In particular, he focuses on the techniques of refactoring and
reengineering patterns, and shows how these techniques can be used to capture
and document expert knowledge about reengineering.

• In Chapter 6, Hainaut et al. address the problem of platform migration of large
business applications and information systems. More specifically, they study the
substitution of a modern data management technology for a legacy one. They
develop a reference framework for migration strategies, and they focus on some
migration strategies that minimize program understanding effort.

• In Chapter 7, Heckel et al. discuss an important research trend, namely the mi-
gration of legacy software systems to web services and service-oriented architec-
tures by introducing architectural styles. In particular, they report on experience
with an industrial case study in the context of a European research project, rely-
ing on the technique of graph transformation.
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Part III of the book, called Novel Trends in Software Evolution addresses the relation
between software evolution and other essential areas of software engineering such as
software testing, software architectures, aspect-oriented software development, and
open source software.

• In Chapter 8, van Deursen et al. discuss the current state of research and practice
on the interplay between software evolution and software testing. In particular,
they discuss and compare approaches for regression testing, unit testing (and
the impact of refactoring on unit tests), test smells, and many more. They also
consider tool support for test comprehension.

• In Chapter 9, Mens and Tourwé highlight some evolution-related issues and
challenges that adopters of aspect-oriented software development approaches
encounter. They discuss state-of-the-art techniques addressing the issues of as-
pect mining, extraction and evolution, and point out some issues for which no
adequate solutions exist yet. This chapter can serve as a guideline for adopters of
aspect technology to get a better idea of the evolution issues they may confront
sooner or later, of the risks involved, and of the state-of-the-art in the techniques
currently available to help them in addressing these issues.

• In Chapter 10, Barais et al. provide a detailed treatment of state-of-the-art ap-
proaches to evolving software architectures. In addition, they discuss in more
detail TranSAT, one particular framework for software architecture evolution.
The proposed solution combines ideas from aspect-oriented software develop-
ment with architectural description languages.

• In Chapter 11, Fernandez-Ramil et al. discuss state-of-the-art techniques to study
characteristics of evolving open source systems and their processes based on em-
pirical studies. Results of the application of these techniques are given, includ-
ing growth patterns, productivity, complexity patterns, social networks, cloning,
processes and quality in open source systems, and so on.
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Understanding and Analysing Software Evolution
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Identifying and Removing Software Clones

Rainer Koschke

Universität Bremen, Germany

Summary. Ad-hoc reuse through copy-and-paste occurs frequently in practice affecting the
evolvability of software. Researchers have investigated ways to locate and remove duplicated
code. Empirical studies have explored the root causes and effects of duplicated code and the
evolution of duplicated code. This chapter summarizes the state of the art in detecting, manag-
ing, and removing software redundancy. It describes consequences, pros and cons of copying
and pasting code.

2.1 Introduction

A venerable and long-standing goal and ideal in software development is to avoid
duplication and redundancy. Yet, in reality code duplication is a common habit. Sev-
eral authors report on 7–23% code duplication [29, 291, 303]; in one extreme case
even 59% [156].

Duplication and redundancy can increase the size of the code, make it hard to
understand the many code variants, and cause maintenance headaches. The goal of
avoiding redundancy has provided the impetus to investigations on software reuse,
software refactoring, modularization, and parameterization. Even in the face of the
ethic of avoiding redundancy, in practice software frequently contains many redun-
dancies and duplications. For instance the technique of “code scavenging” is fre-
quently used, and works by copying and then pasting code fragments, thereby creat-
ing so-called “clones” of duplicated or highly similar code. Redundancies can also
occur in various other ways, including because of missed reuse opportunities, pur-
poseful duplication because of efficiency concerns, and duplication through parallel
or forked development threads.

Because redundancies frequently exist in code, methods for detecting and re-
moving them from software are needed in many contexts. Over the past few decades,
research on clone detection have contributed towards addressing the issue. Tech-
niques for finding similar code and on removing duplication have been investigated
in several specific areas such as software reverse engineering, plagiarism in student
programs, copyright infringement investigation, software evolution analysis, code
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compaction (e.g., for mobile devices), and design pattern discovery and extraction.
Common to all these research areas are the problems involved in understanding the
redundancies and finding similar code, either within a software system, between ver-
sions of a system, or between different systems.

Although this research has progressed over decades, only recently has the pace
of activity in this area picked up such that significant research momentum could be
established. This chapter summarizes the state of the art in detecting, managing, and
removing software redundancy. It describes consequences, pros and cons of copying
and pasting code.

Software clones are important aspects in software evolution. If a systems is to be
evolved, its clones should be known in order to make consistent changes. Cloning
is often a strategic means for evolution. For instance, copies can be made to create
a playground for experimental feature evolution, where modifications are made in
cloned code of a mature feature reducing the risk to break stable code. Once stable,
the clone can replace its original. Often, cloning is the start of a new branch of evolu-
tion if the changes in the cloned code are not merged back to the main development
branch. Clone detection techniques play an important role in software evolution re-
search where attributes of the same code entity are observed over multiple versions.
Here, we need to identify for an entity in one version the corresponding entity in the
next version (known as origin analysis [568]). If refactoring (as for instance renam-
ing) is applied between versions, the relation between entities of different versions is
not always obvious. And last but not least, the evolution of clones can be studied to
better understand the nature of cloning in practice.

2.2 Software Redundancy, Code Cloning, and Code Duplication

There are different forms of redundancy in software. Software comprises both pro-
grams and data. In the data base community, there is a clear notion of redundancy
that has lead to various levels of normal forms. A similar theory does not yet exist
for computer programs.

In computer programs, we can also have different types of redundancy. We
should note that not every type of redundancy is harmful. For instance, programming
languages use redundant declarations so that a compiler is able to check consistency
between declarations and their uses. Also, at the architectural level, n-version pro-
gramming is a strategy in which redundancy is purposefully and consciously used to
implement reliable systems.

Sometimes redundant is used also in the sense of superfluous in the software
engineering literature. For instance, Xie and Engler show that superfluous (they
call them redundant) operations such as idempotent operations, assignments that
are never read, dead code, conditional branches that are never taken, and redundant
NULL-checks can pinpoint potential errors [550, 551].

Redundant code is also often misleadingly called cloned code in the literature—
although that implies that one piece of code is derived from the other one in the
original sense of this word. According to the Merriam-Webster dictionary, a clone
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is one that appears to be a copy of an original form. It is a synonym to duplicate.
Although cloning leads to redundant code, not every redundant code is a clone. There
may be cases in which two code segments that are no copy of each other just happen
to be similar or even identical by accident. Also, there may be redundant code that is
semantically equivalent but has a completely different implementation.

There is no agreement in the research community on the exact notion of redun-
dancy and cloning. Ira Baxter’s definition of clones expresses this vagueness:

Clones are segments of code that are similar according to some definition of
similarity. —Ira Baxter, 2002

According to this definition, there can be different notions of similarity. They can
be based on text, lexical or syntactic structure, or semantics. They can even be similar
if they follow the same pattern, that is, the same building plan. Instances of design
patterns and idioms are similar in that they follow a similar structure to implement
a solution to a similar problem.

Semantic similarity relates to the observable behavior. A piece of code, A, is
semantically similar to another piece of code, B, if B subsumes the functionality of
A, in other words, they have “similar” pre and post conditions.

Unfortunately, detecting such semantic similarity is undecidable in general al-
though it would be worthwhile as you can often estimate the number of developers
of a large software system by the number of hash table or list implementations you
find.

Another definition of cloning considers the program text: Two code fragments
form a clone if their program text is similar. The two code fragments may or may not
be equivalent semantically. These pieces are redundant because one fragment may
need to be adjusted if the other one is changed. If the code fragments are executable
code, their behavior is not necessarily equivalent or subsumed at the concrete level,
but only at a more abstract level. For instance, two code pieces may be identical at the
textual level including all variable names that occur within but the variable names are
bound to different declarations in the different contexts. Then, the execution of the
code changes different variables. Figure 2.1 shows two textually identical segments
in the line range of 4–6 and 10–12, respectively. The semantic difference is that
the first segment sets a global variable whereas the second one a local variable. The
common abstract behavior of the two code segments is to iterate over a data structure
and to increase a variable in each step.

Program-text similarity is most often the result of copy&paste; that is, the pro-
grammer selects a code fragment and copies it to another location. Sometimes, these
programmers are forced to copy because of limitations of the programming lan-
guage. In other cases, they intend to reuse code. Sometimes these clones are modified
slightly to adapt them to their new environment or purpose.

Clearly, the definition of redundancy, similarity, and cloning in software is still
an open issue. There is little consensus in this matter. A study by Walenstein et al.
[532], for instance, reports on differences among different human raters for clone
candidates. In this study, clones were to be identified that ought to be removed and
Walenstein et al. gave guidelines towards clones worthwhile being removed. The
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1 i n t sum = 0 ;
2
3 void foo ( I t e r a t o r i t e r ){
4 for ( i t em = f i r s t ( i t e r ) ; has_more ( i t e r ) ; i t em = n e x t ( i t e r ) ) {
5 sum = sum + v a l u e ( i t em ) ;
6 }
7 }
8 i n t ba r ( I t e r a t o r i t e r ){
9 i n t sum = 0 ;

10 for ( i t em = f i r s t ( i t e r ) ; has_more ( i t e r ) ; i t em = n e x t ( i t e r ) ) {
11 sum = sum + v a l u e ( i t em ) ;
12 }
13 }

Fig. 2.1. Example of code clones

human raters of the clones proposed by automated tools did rarely agree upon what
constitutes a clone worth to be removed. While the sources of inter-rater difference
could be the insufficient similarity among clones or the appraisal of the need for
removal, the study still highlights that there is no clear consensus yet, even for task-
specific definitions of clones.

Another small study was performed at the Dagstuhl seminar 06301 “Duplication,
Redundancy, and Similarity in Software” 2007. Cory Kapser elicited judgments and
discussions from world experts regarding what characteristics define a code clone.
Less than half of the clone candidates he presented to these experts had 80% agree-
ment amongst the judges. Judges appeared to differ primarily in their criteria for
judgment rather than their interpretation of the clone candidates.

2.3 Types of Clones

Program-text clones can be compared on the basis of the program text that has been
copied. We can distinguish the following types of clones accordingly:

• Type 1 is an exact copy without modifications (except for whitespace and com-
ments).

• Type 2 is a syntactically identical copy; only variable, type, or function identi-
fiers have been changed.

• Type 3 is a copy with further modifications; statements have been changed,
added, or removed.

Baker further distinguishes so called parameterized clones [28], which are a subset
of type-2 clones. Two code fragments A and B are a parameterized clone pair if there
is a bijective mapping from A’s identifiers onto B’s identifiers that allows an identifier
substitution in A resulting in A′ and A′ is a type-1 clone to B (and vice versa).

While type-1 and type-2 clones are precisely defined and form an equivalence re-
lation, the definition of type-3 clones is inherently vague. Some researchers consider
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Table 2.1. Classification by Balazinska et al. [33] ©[1999] IEEE

• difference in method attributes (static, private, throws, etc.)
• single-token difference in function body

– further distinction into type of token:
– called method
– parameter type
– literal
– . . .

• token-sequence difference in function body
– one unit (expression or statement) differs in token sequence
– two units
– more than two units

two consecutive type-1 or type-2 clones together forming a type-3 clone if the gap
in between is below a certain threshold of lines [29, 328]. Another precise definition
could be based on a threshold for the Levenshtein Distance, that is, the number of
deletions, insertions, or substitutions required to transform one string into another.
There is no consensus on a suitable similarity measure for type-3 clones yet.

The above simple classification is still very rough. Balazinska et al. introduced
a more refined classification for function clones [33] as described in Table 2.1. This
classification makes sense for selecting a suitable strategy for clone removal. For
instance, the design pattern TemplateMethod may be used to factor out differences in
the types used in different code fragments or the design pattern Strategy can be used
to factor out algorithmic differences [31, 32]. Furthermore Balazinska et al. argue
that each class is associated with a different risk in clone removal.

Kapser et al.’s classification is the most elaborated classification to date [267,
265, 264] (cf. Table 2.2). The first level is a hint about the distance of clones. An
argument can be made (although there is no empirical study on this hypothesis) that
it is likely that clones between files are more problematic than within the same file
as that it is more likely to overlook the former clones when it comes to consistent
changes. The second decision distinguishes which syntactic units are copied. The
third gives the degree of similarity and the fourth may be used to filter irrelevant or
spurious clones.

2.4 The Root Causes for Code Clones

A recent ethnographic study by Kim and Notkin [277] has shed some light on why
programmers copy and paste code. By observing programmers in their daily practice
they identified the following reasons.

Sometimes programmers are simply forced to duplicate code because of limita-
tions of the programming language being used. Analyzing these root causes in more
detail could help to improve the language design.

Furthermore, programmers often delay code restructuring until they have copied
and pasted several times. Only then, they are able to identify the variabilities of their
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Table 2.2. Classification by Kapser et al. [265, 264] ©[2003] IEEE

1. At first level, distinguish clones within the same or across different
files

2. then, according to type of region:
• functions
• declarations
• macros
• hybrids (in more than one of the above)
• otherwise (among typedefs, variable declarations, function signa-

tures)
3. then, degree of overlap or containment
4. then, according to type of code sequence:

• initialization clones (first five lines)
• finalization clones (last five lines)
• loop clones (60% overlap of bodies)
• switch and if (60% overlap of branches)
• multiple conditions: several switch and if statements
• partial conditions: branches of switch/if are similar

code to be factored out. Creating abstract generic solutions in advance often leads
to unnecessarily flexible and hence needlessly complicated solutions. Moreover, the
exact variabilities may be difficult to foresee. Hence, programmers tend to follow
the idea of extreme programming in the small by not investing too much effort in
speculative planning and anticipation.

Systems are modularized based on principles such as information hiding, mini-
mizing coupling, and maximizing cohesion. In the end—at least for systems written
in ordinary programming languages—the system is composed of a fixed set of mod-
ules. Ideally, if the system needs to be changed, only a very small number of modules
must be adjusted. Yet, there are very different change scenarios and it is not unlikely
that the chosen modularization forces a change to be repeated for many modules. The
triggers for such changes are called cross-cutting concerns (see also Chapter 9). For
instance, logging is typically a feature that must be implemented by most modules.
Another example is parameter checking in defensive programming where every func-
tion must check its parameters before it fulfills its purpose [92]. Then copy&paste
dependencies reflect important underlying design decisions, namely, cross-cutting
concerns.

Another important root cause is that programmers often reuse the copied text as
a template and then customize the template in the pasted context.

Kapser et al. have investigated clones in large systems [266]. They found what
they call patterns of cloning where cloning is consciously used as an implementation
strategy. In their case study, they found the following cloning patterns:

Forking is cloning used to bootstrap development of similar solutions, with the ex-
pectation that evolution of the code will occur somewhat independently, at least
in the short term. The assumption is that the copied code takes a separate evolu-
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tion path independent of the original. In such a case, changes in the copy may be
made that have no side effect on the original code.

Templating is used as a method to directly copy behavior of existing code but appro-
priate abstraction mechanisms are unavailable. It was also identified as a main
driver for cloning in Kim and Notkin’s case study [277]. Templating is often
found when a reused library has a relatively fixed protocol (that is, a required
order of using its interface items) which manifests as laying out the control flow
of the interface items as a fixed pattern. For instance, the code in Fig. 2.1 uses
a fixed iteration scheme for variable iter.

Customization occurs when currently existing code does not adequately meet a new
set of requirements. The existing code is cloned and tailored to solve this new
problem.

Very likely other more organizational aspects play a role, too. Time pressure, for in-
stance, does not leave much time to search for the best long-term solution. Unavail-
able information on the impact of code changes leads programmers to create copies
in which they make the required enhancement; such changes then are less likely to af-
fect the original code negatively. Inadequate performance measures of programmers’
productivity in the number of lines of code they produce neither invite programmers
to avoid duplicates.

2.5 Consequences of Cloning

There are plausible arguments that code cloning increases maintenance effort.
Changes must be made consistently multiple times if the code is redundant. Often
it is not documented where code has been copied. Manual search for copied code
is infeasible for large systems and automated clone detection is not perfect when
changes are made to the copies (see Section 2.8). Furthermore during analysis, the
same code must be read over and over again, then compared to the other code just
to find out that this code has already been analyzed. Only if you make a detailed
comparison, which can be difficult if there are subtle differences in the code or its
environment, you can be sure that the code is indeed the same. This comparison can
be fairly expensive. If the code would have been implemented only once in a func-
tion, this effort could have been avoided completely.

For these reasons, code cloning is number one on the stink parade of bad smells
by Beck and Fowler [183]. But there are also counter arguments. In Kapser and
Godfrey’s study [266], code cloning is a purposeful implementation strategy which
may make sense under certain circumstances (see Section 2.4).

Cordy makes a similar statement [128]. He argues that in the financial domain,
cloning is the way in which designs are reused. Data processing programs and
records across an organization often have very similar purposes, and, consequently,
the data structures and programs to carry out these tasks are therefore very similar.
Cloning becomes then a standard practice when authoring a new program. Oppo-
nents would argue that a better means would be to pursue systematic and organized
reuse through software product lines.
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Cordy also argues that the attempt to avoid cloning may lead to higher risks.
Making changes to central data structures bears the risk to break existing applica-
tions and requires to run expensive regression tests. Instead programmers tend to
copy the data structure if they want to restructure or add a different view and make
the necessary changes in the copy. Even the argument that errors must be fixed in
every copy does not count, he states. Errors would not necessarily be fixed in the
original data structure because the many running applications may already rely on
these errors, Cordy argues. On the other hand, repeated work, need for data migra-
tion, and risk of inconsistency of data are the price that needs to be paid following
this strategy. The Y2K problem has shown how expensive and difficult it is to rem-
edy systems that have suffered from massive decentralized use of data structures and
algorithms.

While it is difficult to find arguments for type-1 and type-2 clones, one can more
easily argue in favor of type-3 clones. It is not clear when you have type-3 clones
whether the unifying solution would be easier to maintain than several copies with
small changes. Generic solutions can become overly complicated. Maintainability
can only be defined in a certain context with controlled parameters. That is, a less
sophisticated programmer may be better off maintaining copied code than a highly
parameterized piece of code. Moreover, there is a risk associated with removing code
clones [128]. The removal requires deep semantic analyses and it is difficult to make
any guarantees that the removal does not introduce errors. There may be even orga-
nizational reasons to copy code. Code cloning could, for instance, be used to disen-
tangle development units [128].

The current debate lacks empirical studies on the costs and benefits of code
cloning. There are very few empirical studies that explore the interrelationship of
code cloning and maintainability. All of them focus on code cloning and errors as
one (out of many) maintainability aspect.

Monden et al. [374] analyzed a large system consisting of about 2,000 modules
written in 1 MLOC lines of Cobol code over a period of 20 years. They used a token-
based clone detector (cf. Section 2.8.2) to find clones that were at least 30 lines
long. They searched for correlations of maximal clone length with change frequency
and number of errors. They found that most errors were reported for modules with
clones of at least 200 lines. They also found many errors—although less than in those
with longer clones—in modules with shorter clones up to 50 lines. Yet, interestingly
enough, they found the lowest error rate for modules with clones of 50 to 100 lines.
Monden et al. have not further analyzed why these maintainability factors correlate
in such a way with code cloning.

Chou et al. [113] investigated the hypothesis that if a function, file, or directory
has one error, it is more likely that is has others. They found in their analysis of the
Linux and OpenBSD kernels that this phenomenon can be observed most often where
programmer ignorance of interface or system rules combines with copy-and-paste.
They explain the correlation of bugs and copy-and-paste primarily by programmer
ignorance, but they also note that—in addition to ignorance—the prevalence of copy-
and-paste error clustering among different device drivers and versions suggests that
programmers believe that “working” code is correct code. They note that if the copied
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code is incorrect, or it is placed into a context it was not intended for, the assumption
of goodness is violated.

Li et al. [328] use clone detection to find bugs when programmers copy code but
rename identifiers in the pasted code inconsistently. On average, 13% of the clones
flagged as copy-and-paste bugs by their technique turned out to be real errors for the
systems Linux kernel, FreeBSD, Apache, and PostgreSQL. The false positive rate of
their technique is 73% on average, where on average 14% of the potential problems
are still under analysis by the developers of the analyzed systems.

2.6 Clone Evolution

There are a few empirical studies on the evolution of clones, which describe some
interesting observations. Antoniol et al. propose time series derived from clones over
several releases of a system to monitor and predict the evolution of clones [14]. Their
study for the data base system mSQL showed that their prediction of the average
number of clones per function is fairly reliable. In another case study for the Linux
kernel, they found that the scope of cloning is limited [15]. Only few clones can be
found across subsystems; most clones are completely contained within a subsystem.
In the subsystem arch, constituting the hardware architecture abstraction layer, newer
hardware architectures tend to exhibit slightly higher clone rates. The explanation for
this phenomenon is that newer modules are often derived from existing similar ones.
The relative number of clones seems to be rather stable, that is, cloning does not
occur in peaks. This last result was also reported by Godfrey and Tu who noticed
that cloning is common and steady practice in the Linux kernel [205]. However, the
cloning rate does increase steadily over time. Li et al. [328] observed for the Linux
kernel in the period of 1994 to 2004 that the redundancy rate has increased from
about 17% to about 22%. They observed a similar behavior for FreeBSD. Most of
the growth of redundancy rate comes from a few modules, including drivers and
arch in Linux and sys in FreeBSD. The percentage of copy-paste code increases
more rapidly in those modules than in the entire software suite. They explain this
observation by the fact that Linux supports more and more similar device drivers
during this period.

Kim et al. analyzed the clone genealogy for two open-source Java systems us-
ing historical data from a version control system [278]. A clone genealogy forms
a tree that shows how clones derive in time over multiple versions of a program
from common ancestors. Beyond that, the genealogy contains information about the
differences among siblings. Their study showed that many code clones exist in the
system for only a short time. Kim et al. conclude that extensive refactoring of such
short-lived clones may not be worthwhile if they likely diverge from one another
very soon. Moreover, many clones, in particular those with a long lifetime that have
changed consistently with other elements in the same group cannot easily be avoided
because of limitations of the programming language.

One subproblem in clone evolution research is to track clones between versions.
Duala-Ekoko and Robillard use a clone region descriptor [155] to discover a clone
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of version n in version n + 1. A clone region descriptor is an approximate location
that is independent from specifications based on lines of source code, annotations, or
other similarly fragile markers. Clone region descriptors capture the syntactic block
nesting of code fragments. A block therein is characterized by its type (e.g., for or
while), a string describing a distinguishing identifier for the block (the anchor),
and a corroboration metric. The anchor of a loop, for instance, is the condition as
string. If two fragments are syntactic siblings, their nesting and anchor are not suffi-
cient to distinguish them. In such cases, the corroboration metric is used. It measures
characteristics of the block such as cyclomatic complexity and fan-out of the block.

2.7 Clone Management

Clone management aims at identifying and organizing existing clones, controlling
growth and dispersal of clones, and avoiding clones altogether. Lague et al. [303]
and Giesecke [199] distinguish three main lines of clone management:

• preventive clone management (also known as preventive control [303]) com-
prises activities to avoid new clones

• compensative clone management (also known as problem mining [303]) encom-
passes activities aimed at limiting the negative impact of existing clones that are
to be left in the system

• corrective clone management covers activities to remove clones from a system

This section describes research in these three areas.

2.7.1 Corrective Clone Management: Clone Removal

If you do want to remove clones, there are several way to do so. There are even
commercial tools such as CloneDr1 by Semantic Designs to automatically detect
and remove clones. Cloning and automatic abstraction and removal could even be
a suitable implementation approach as hinted by Ira Baxter:

Cloning can be a good strategy if you have the right tools in place. Let
programmers copy and adjust, and then let tools factor out the differences
with appropriate mechanisms. —Ira Baxter, 2002

In simple cases, you can use functional abstraction to replace equivalent copied
code by a function call to a newly created function that encapsulates the copied code
[166, 287]. In more difficult cases, when the difference is not just in the variable
names that occur in the copied code, one may be able to replace by macros if the
programming languages comes with a preprocessor. A preprocessor offers textual
transformations to handle more complicated replacements. If a preprocessor is avail-
able, one can also use conditional compilation. As the excessive use of macros and

1 Trademark of Semantic Designs, Inc.
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conditional compilation may introduce many new problems, the solution to the re-
dundancy problem may be found at the design level. The use of design patterns is
an option to avoid clones by better design [31, 32]. Yet, this approach requires much
more human expertise and, hence, can be less automated. Last but not least, one can
develop code generators for highly repetitive code.

In all approaches, it is a challenge to cut out the right abstractions and to come up
with meaningful names of generated functions or macros. Moreover, it is usually dif-
ficult to check the preconditions for these proposed transformations—be they manual
or automated–in order to assure that the transformation is semantic preserving.

2.7.2 Preventive and Compensative Clone Management

Rather than removing clones after the offense, it may be better to avoid them right
from the beginning by integrating clone detection in the normal development process.
Lague et al. identify two ways to integrate clone detection in normal development
[303].

It can be used as preventive control where the code is checked continuously—for
instance, at each check-in in the version control system or even on the fly while the
code is edited—and the addition of a clone is reported for confirmation.

A complementary integration is problem mining where the code currently under
modification is searched in the rest of the system. The found segments of code can
then be checked whether the change must be repeated in this segment for consistency.

Preventive control aims at avoiding code clones when they occur first whereas
problem mining addresses circumstances in which cloning has been used for a while.

Lague et al. assessed the benefits of integrating clone detection in normal de-
velopment by analyzing the three-year version history of a very large procedural
telecommunication system [303]. In total, 89 millions of non-blank lines (including
comments) were analyzed, for an average size of 14.83 million lines per version. The
average number of functions per release was 187,000.

Problem mining is assessed by the number of functions changed that have clones
that were not changed; that is, how often a modification was missed potentially. Pre-
ventive control is assessed by the number of functions added that were similar to
existing functions; that is, the code that could have been saved.

It is interesting to note, that—contrary to their expectations—they observed a low
rate of growth in the number of overall clones in the system, due to the fact that many
clones were actually removed from the system.

They conclude from their data that preventive control would help to lower the
number of clones. Many clones disappeared only long after the day they came into
existence. Early detection of clones could lead to taking this measure earlier.

They also found that problem mining could have provided programmers with
a significant number of opportunities for correcting problems before end-user expe-
rienced them. The study indicates a potential for improving the software quality and
customer satisfaction through an effective clone management strategy.

An alternative to clone removal is to live with clones consciously. Clones can
be managed, linked, and changed simultaneously using linked editing as proposed
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by Toomim et al. [504]. Linked editing is also used by Duala-Ekoko and Robillard.
Linked editing allows one to link two or more code clones persistently. The differ-
ences and similarities are then analyzed, visualized, and recorded. If a change needs
to be made, linked editing allows programmers to modify all linked elements si-
multaneously, or particular elements individually. That is, linked editing allows the
programmer to edit all instances of a given clone at once, as if they were a single
block of code. It overcomes some of the problems of duplicated code, namely, ver-
bosity, tedious editing, lost clones, and unobservable consistency without requiring
extra work from the programmer.

2.8 Clone Detection

While there is an ongoing debate as to whether remove clones, there is a consensus
about the importance to at least detect them. Clone avoidance during normal devel-
opment, as described in the previous section, as well as making sure that a change
can be made consistently in the presence of clones requires to know where the clones
are. Manual clone detection is infeasible for large systems, hence, automatic support
is necessary.

Automated software clone detection is an active field of research. This section
summarizes the research in this area. The techniques can be distinguished at the first
level in the type of information their analysis is based on and at the second level in
the used algorithm.

2.8.1 Textual Comparison

The approach by Rieger et al. compares whole lines to each other textually [156].
To increase performance, lines are partitioned using a hash function for strings. Only
lines in the same partition are compared. The result is visualized as a dotplot, where
each dot indicates a pair of cloned lines. Clones may be found as certain patterns
in those dotplots visually. Consecutive lines can be summarized to larger cloned se-
quences automatically as uninterrupted diagonals or displaced diagonals in the dot-
plot.

Johnson [258, 259] uses the efficient string matching by Karp and Rabin [268,
269] based on fingerprints, that is, a hash code characterizing a string is used in the
search.

Marcus et al. [345] compare only certain pieces of text, namely, identifiers using
latent semantic indexing, a technique from information retrieval. Latent semantic
analysis is a technique in natural language processing analyzing relationships be-
tween a set of documents and the terms they contain by producing a set of concepts
related to the documents and terms. The idea here is to identify fragments in which
similar names occur as potential clones.
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2.8.2 Token Comparison

Baker’s technique is also a line-based comparison. Instead of a string comparison,
the token sequences of lines are compared efficiently through a suffix tree. A suffix
tree for a string S is a tree whose edges are labeled with substrings of S such that
each suffix of S corresponds to exactly one path from the tree’s root to a leaf.

First, Baker’s technique summarizes each token sequence for a whole line by
a so called functor that abstracts of concrete values of identifiers and literals [29]. The
functor characterizes this token sequence uniquely. Assigning functors can be viewed
as a perfect hash function. Concrete values of identifiers and literals are captured
as parameters to this functor. An encoding of these parameters abstracts from their
concrete values but not from their order so that code fragments may be detected that
differ only in systematic renaming of parameters. Two lines are clones if they match
in their functors and parameter encoding.

The functors and their parameters are summarized in a suffix tree, a tree that
represents all suffixes of the program in a compact fashion. A suffix tree can be built
in time and space linear to the input length [356, 30]. Every branch in the suffix tree
represents program suffixes with common beginnings, hence, cloned sequences.

Kamiya et al. increase recall for superficially different, yet equivalent sequences
by normalizing the token sequences [263]. For instance, each single statement after
the lexical patterns if(...), for(...), while(...), and do and else in C++ is
transformed to a compound block; e.g., if (a) b = 2; is transformed to if (a)
{b = 2;}. Using this normalization, the if statement can be matched with the equiv-
alent (with parameter replacement) code if (x) {y = 2;}.

Because syntax is not taken into account, the found clones may overlap different
syntactic units, which cannot be replaced through functional abstraction. Either in
a preprocessing [485, 127, 204] or post-processing [234] step, clones that completely
fall in syntactic blocks can be found if block delimiters are known. Preprocessing and
postprocessing both require some syntactic information—gathered either lightweight
by counting tokens opening and closing syntactic scopes or island grammars [377]
or a full-fledged syntax analysis [204].

2.8.3 Metric Comparison

Merlo et al. gather different metrics for code fragments and compare these metric
vectors instead of comparing code directly [303, 291, 353, 289]. An allowable dis-
tance (for instance, Euclidean distance) for these metric vectors can be used as a hint
for similar code. Specific metric-based techniques were also proposed for clones in
web sites [151, 307].

2.8.4 Comparison of Abstract Syntax Trees

Baxter et al. partition subtrees of the abstract syntax tree (AST) of a program based
on a hash function and then compare subtrees in the same partition through tree
matching (allowing for some divergences) [47]. A similar approach was proposed
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earlier by Yang [557] using dynamic programming to find differences between two
versions of the same file.

Suffix trees—central to token-based techniques following Baker’s idea—can also
be used to detect sequences of identical AST nodes. In the approach by Koschke et al.
[294], the AST nodes are serialized in preorder traversal, a suffix tree is created for
these serialized AST nodes, and the resulting maximally long AST node sequences
are then cut according to their syntactic region so that only syntactically closed se-
quences remain.

The idea of metrics to characterize code and to use these metrics to decide which
code segments to compare can be adopted for ASTs as well. Jian et al. [257] char-
acterize subtrees with numerical vectors in the Euclidean space ℜ and an efficient
algorithm to cluster these vectors with respect to the Euclidean distance metric. Sub-
trees with vectors in one cluster are potential clones.

2.8.5 Comparison of Program Dependency Graphs

Textual as well as token-based techniques and syntax-based techniques depend upon
the textual order of the program. If the textual order is changed, the copied code will
not be found. Programmers modify the order of the statements in copied code, for
instance, to camouflage plagiarism. Or they use code cloning as in the templating
implementation strategy (see Section 2.4), where the basic skeleton of an algorithm
is reused and then certain pieces are adjusted to the new context.

Yet, the order cannot be changed arbitrarily without changing the meaning of the
program. All control and data dependencies must be maintained. A program depen-
dency graph [175] is a representation of a program that represents only the control
and data dependency among statements. This way program dependency graph ab-
stract from the textual order. Clones may then be identified as isomorphic subgraphs
in a program dependency graph [298, 286]. Because this problem is NP hard, the
algorithms use approximative solutions.

2.8.6 Other Techniques

Leitao [324] combines syntactic and semantic techniques through a combination
of specialized comparison functions that compare various aspects (similar call sub-
graphs, commutative operators, user-defined equivalences, transformations into
canonical syntactic forms). Each comparison function yields an evidence that is sum-
marized in an evidence-factor model yielding a clone likelihood. Walter et al. [531]
and Li et al. [327] cast the search for similar fragments as a data mining problem.
Statement sequences are summarized to item sets. An adapted data mining algorithm
searches for frequent item sets.

2.9 Comparison of Clone Detection Algorithms

The abundance of clone detection techniques calls for a thorough comparison so
that we know the strength and weaknesses of these techniques in order to make an
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informed decision if we need to select a clone detection technique for a particular
purpose.

Clone detectors can be compared in terms of recall and precision of their findings
as well as suitability for a particular purpose. There are several evaluations along
these lines based on qualitative and quantitative data.

Bailey and Burd compared three clone and two plagiarism detectors [27]. Among
the clone detectors were three of the techniques later evaluated by a subsequent study
by Bellon and Koschke [55], namely, the techniques by Kamiya [263], Baxter [47],
and Merlo [353]. For the latter technique, Bailey used an own re-implementation;
the other tools were original. The plagiarism detectors were JPlag [420] and Moss
[452].

The clone candidates of the techniques were validated by Bailey, and the accepted
clone pairs formed an oracle against which the clone candidates were compared.
Several metrics were proposed to measure various aspects of the found clones, such
as scope (i.e., within the same file or across file boundaries), and the findings in terms
of recall and precision.

The syntax-based technique by Baxter had the highest precision (100%) and the
lowest recall (9%) in this experiment. Kamiya’s technique had the highest recall
and a precision comparable to the other techniques (72%). The re-implementation of
Merlo’s metric-based technique showed the least precision (63%).

Although the case study by Bailey and Burd showed interesting initial results, it
was conducted on only one relatively small system (16 KLOC). However, because
the size was limited, Bailey was able to validate all clone candidates.

A subsequent larger study was conducted by Bellon and Koschke [54, 55]. Their
likewise quantitative comparison of clone detectors was conducted for 4 Java and
4 C systems in the range of totaling almost 850 KLOC. The participants and their
clone detectors evaluated are listed in Table 2.3.

Table 2.4 summarizes the findings of Bellon and Koschke’s study. Row clone
type lists the type of clones the respective clone detector finds (for clone types, see
Section 2.3). The next two rows qualify the tools in terms of their time and space
consumption. The data is reported at an ordinal scale −−, −, +, + + where −− is
worst (the exact measures can be found in the paper to this study [54, 55]). Recall
and precision are determined as in Bailey and Burd’s study by comparing the clone

Table 2.3. Participating scientists

Participant Tool Comparison

Brenda S. Baker [29] Dup Token
Ira D. Baxter [47] CloneDr AST
Toshihiro Kamiya [263] CCFinder Token
Jens Krinke [298] Duplix PDG
Ettore Merlo [353] CLAN Function Metrics
Matthias Rieger [156] Duploc Text
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Table 2.4. Results from the Bellon and Koschke study. Adapted from [54, 55] ©[2007] IEEE

Baker Baxter Kamiya Krinke Merlo Rieger

Clone type 1, 2 1, 2 1, 2, 3 3 1, 2, 3 1, 2, 3
Speed + + − + −− + + ?
RAM + − + + + + ?
Recall + − + − − +
Precision − + − − + −

detectors’ findings to a human oracle. The same ordinal scale is used to qualify the
results; exact data are reported in the paper [54, 55].

Interestingly, Merlo’s tool performed much better in this experiment than in the
experiment by Bailey and Burd. However, the difference in precision of Merlo’s
approach in this comparison to the study by Bailey and Burd can be explained by
the fact that Merlo compared not only metrics but also the tokens and their textual
images to identify type-1 and type-2 clones in the study by Bellon and Koschke.

While the Bailey/Burd and Bellon/Koschke studies focus on quantitative eval-
uation of clone detectors, other authors have evaluated clone detectors for the fit-
ness for a particular maintenance task. Rysselberghe and Demeyer [525] compared
text-based [156, 438], token-based [29], and metric-based [353] clone detectors for
refactoring. They compare these techniques in terms of suitability (can a candidate
be manipulated by a refactoring tool?), relevance (is there a priority which of the
matches should be refactored first?), confidence (can one solely rely on the results of
the code cloning tool, or is manual inspection necessary?), and focus (does one have
to concentrate on a single class or is it also possible to assess an entire project?).
They assess these criteria qualitatively based on the clone candidates produced by
the tools. Figure 2.2 summarizes their conclusions.

Bruntink et al. use clone detection to find cross-cutting concerns in C programs
with homogeneous implementations [93]. In their case study, they used CCFinder—
Kamiya’s [263] tool evaluated in other case studies, too—one of the Bauhaus2

clone detectors, namely ccdiml, which is a variation of Baxter’s technique [47], and
the PDG-based detector PDG-DUP by Komondoor [286]. The cross-cutting con-
cerns they looked for were error handling, tracing, pre and post condition checking,
and memory error handling. The study showed that the clone classes obtained by
Bauhaus’ ccdiml can provide the best match with the range checking, null-pointer

criterion most suitable technique

suitability metric-based
relevance no difference
confidence text-based
focus no difference

Fig. 2.2. Assessment by Rysselberghe and Demeyer. Adapted from [525] ©[2004] IEEE

2 http://www.axivion.com.
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checking, and error handling concerns. Null-pointer checking and error handling can
be found by CCFinder almost equally well. Tracing and memory error handling can
best be found by PDG-DUP.

2.10 Clone Presentation

Because there is typically a huge amount of clones in large systems and these clones
differ in various attributes (type, degree of similarity, length, etc.), presentation issues
of clone information are critical. This huge information space must be made accessi-
ble to a human analyst. The analyst needs a holistic view that combines source code
views and architectural views.

There have been several proposals for clone visualization. Scatter plots—also
known as dot plots—are two-dimensional charts where all software units are listed
on both axes [114, 156, 512] (cf. Fig. 2.3). There is a dot if two software units are
similar. The granularity of software units may differ. It can range from single lines to
functions to classes and files to packages and subsystems. Visual patterns of cloning
may be observed by a human analyst. A problem with this approach is scalability for
many software units and the order of the listed software units as this has an impact
on the visual patterns. While there is a “natural” order for lines (i.e., lexical order)
within a file, it is not clear how to order more coarse-grained units such as functions,
files, and packages. Lexical order of their names is in most cases as arbitrary as
random order.

Johnson [260] proposes Hasse diagrams for clone representation between sets of
files so that one can better see whether code has been copied between files, which
is possibly more critical than cloning within a file (cf. Fig. 2.4). A Hasse diagram
(named after a German mathematician) is used to draw a partial order among sets as
an acyclic graph. Directed arcs connect nodes that are related by the order relation
and for which no other directed path exists.

(a) Three clones (b) Three clones, one modified line

Fig. 2.3. Dot plots [114, 156, 512]
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Fig. 2.4. Hasse diagram
adapted from [260]

In Johnson’s context, each match of a block of text identifies a range of characters
(or lines) from two (or more) files. For each subset of files, one can total the number
of characters that the matching process has discovered to match between the given
set of files. A subset of files forms a node, if the files have non-zero matches. The
inclusion between subsets of files yields the edges.

Rieger et al. [437] propose to use Michele Lanza’s polymetric views[309] to
visualize various aspects of clones in one view (cf. Fig. 2.5). A polymetric view
is again based on the graph metaphor and representation where a node represents
a software unit and an edge a cloning relation. Visually, additional information can
be attached to the graph by the degrees of freedom for the position (X/Y in the
two-dimensional space), color of nodes and edges, thickness of edges, breadth and
width of nodes. Rieger et al. propose a fixed set of metric combinations to be mapped
onto graphical aspects to present the clone information from different perspective for
different tasks.

Beyond polymetric views, Rieger et al. [437] propose a variation of tree maps to
show the degree of cloning along with the system decomposition (cf. Fig. 2.6). Tree
maps display information about entities with a hierarchical relationship in a fixed
space (for instance, the whole system on one screen) where the leaves of the hierar-
chy contain a metric to be visualized. Each inner node aggregates the metric values
of its descendants. Each node is represented through a piece of the available space.
The space of a descendent node is completely contained in the space of its ancestor.

Fig. 2.5. Polymetric view adapted from [437]
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Fig. 2.6. A system decomposition whose leaves are annotated with the number of cloned lines
of code and its corresponding tree map

There is no overlap in space for nodes that are not in an ancestor/descendant rela-
tion. This is how the hierarchy is presented. Essentially the hierarchy is projected
onto the two dimensional space seen from the root of the hierarchy. In order to show
the hierarchy clearly, the space of each node appears as rectangle where the direction
of subdivision of nested nodes is alternated horizontally and vertically at each level.
The space of each rectangle is proportional to the metric.

This visualization was originally proposed by Ben Shneiderman in the early
1990s to show space consumption of a hard disk with a hierarchical file system.
While space is used very efficiently, problems arise when the hierarchy is deeply
nested.

Another visualization was proposed by Wattenberg to highlight similar substrings
in a string. The arc diagram has an arc connecting two equal substrings in a string
where the breadth of the arc line covers all characters of the identical substrings. The
diagram shows the overlapping of strings but becomes quickly unreadable if many
arcs exist. Another disadvantage is that it shows only pairs but not classes of equal
strings.

Tairas et al. [489] have created an Eclipse plugin to present clone information.
One of their visualizations is the clone visualizer view, a window showing the dis-
tribution of clone classes among files (cf. Fig. 2.8). A bar in this view represents
a source file, a stripe within a bar a cloned code segment, and its colors the set of
clone classes the segment is member of.

Fig. 2.7. Arc diagram adapted from [537]
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Fig. 2.8. Clones visualizer view in Eclipse adapted from [489]

2.11 Related Fields

Clone detection has applications in other fields and—vice versa—ideas from related
fields can be reused for clone detection.

Bruntink et al. for instance, use clone detectors to search for code that could
be factored out as aspects using an aspect-oriented language [92, 93]. They identify
error handling, tracing, pre and post condition checking, and memory error handling.
Although they used classic clone detectors that were not designed for this particular
purpose, the clone detectors appeared to be helpful. Classic clone detectors try to
find similar code—similar in terms of their program text. The implementations of
an aspect, on the other hand, are often very heterogeneous and are similar only at
a more semantic level. For instance, precondition checking tests each parameter of
a function for certain criteria. At the implementation level, functions differ in the
order and type of parameters so that checks are generally different in the program
text.

The code compaction community tries to minimize the memory footprint of pro-
grams for small devices. They use very similar algorithms to identify redundant code
that could be compressed [124].

The detection of plagiarism faces similar but even worse problems as clone de-
tection [452, 420, 180, 343, 251, 337, 210]. In plagiarism cases, people try to cam-
ouflage their copy in order to make it more difficult to detect the plagiarism. In order
to reuse classic clone detectors for plagiarism, we would need to reduce programs to
a normal form for comparison. This normalization, on the other hand, could lead to
false positives. Also in virus detection, code patterns significant for a particular hos-
tile code need to be quickly identified in large code bases, where virus programmers
try to vary the patterns.

Another application of clone detection is the comparison of versions or variants
of software systems. While versions derive from each other, variants have a common
ancestor. In both cases, they are very similar. In software evolution research, where
information on software units is observed over time or versions, respectively, it is
necessary to map the software entities of one version to those of the other version in
order to carry over the information. This problem is called the origin analysis [508].
The same problem needs to be solved when two software variants are to be compared
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or merged [237]. Relaying solely on names of these units for this analysis may be
misleading if a refactoring like renaming has taken place [183]. Also, the refactor-
ing extract method moves statements from one function to create a new function.
Clone detection can help to establish a mapping between two versions or variants of
a program. Several authors have used clone detection techniques or at least a code
similarity measure to determine this mapping [509, 568, 206, 205, 524, 552, 553].

The difference of comparing versions or variants to detecting clones is that the
task here is to map a code entity onto only one or at least a small set of candidates
in the other system, the comparison is only between systems (clones within the same
version or variant are irrelevant), cloning is the rule rather than the exception as the
two versions or variants overlap to a very high degree, the focus is on the differ-
ences rather than the similarities, and the comparison should tolerate renaming and
all refactorings that move entities around such as pull-up field, move method, etc.

2.12 Conclusions

This section summarizes the open issues of the subareas in software cloning pre-
sented in this chapter.

One fundamental issue is that there is no clear consensus on what is a software
clone. We should develop a general notion of redundancy, similarity, and cloning, and
then identify more task-oriented categorizations of clones. Other research areas have
similar difficulties in defining their fundamental terms. For instance, the architecture
community debates the notion of architecture and the community of object-oriented
programming the notion of object. To some extent, these fundamental terms define
the field. So it is important to clarify them. It is difficult, for instance, to create bench-
marks to evaluate automatic clone detectors if it is unclear what we consider a clone.
It were very helpful if we could establish a theory of redundancy similar to normal
forms in databases.

Concerning types of clones, we should look at alternative categorizations of
clones that make sense (e.g., semantics, origins, risks, etc.). On the empirical side
of clone categorizations, we should gather the statistical distribution of clone types
in practice and investigate whether there are correlations among apparently orthogo-
nal categories. Studying which strategies of removal and avoidance, risks of removal,
potential damages, root causes, and other factors are associated with these categories
would be worthwhile, too.

Although the two empirical studies by Kim and Notkin as well as Kapser
and Godfrey on the root causes and main drivers for code cloning are impor-
tant first contributions, this area certainly requires more similar studies. Other po-
tential reasons should be investigated, such as insufficient information on global
change impact, badly organized reuse and development processes, questionable
productivity measures (e.g., LOCs per day), time pressure, educational deficien-
cies, ignorance, or shortsightedness, intellectual challenges (e.g., generics), lack of
professionalism/end-user programming by non experts, and organizational issues,
e.g., distributed development and organizations.
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Identifying the root causes would help us to fight the reasons, not just the symp-
toms, for instance, by giving feedback for programming language design.

Clearly, more empirical studies are required. These studies should take industrial
systems into account, too, as it is unclear to which extent these current observa-
tions can be attributed to the nature of open-source development. It would also be
interesting to investigate what the degree of cloning tells about the organization or
development process. For instance, a study by Nickell and Smith reports that the ex-
treme programming projects in their organization produce significantly fewer clones
[394, 533].

In particular, empirical investigations of costs and benefits of clone removal are
needed so that informed refactoring decisions can be made. We currently do not have
a clear picture of the relation of clone types to quality attributes. Most of what we
report on the consequences of cloning is folklore rather than fact. We should expect
that there is a relevance ranking of clone types for removal, that is, some clones
should be removed, others are better left in certain circumstances. Moreover, we can
expect that different types of clones are associated with different removal techniques
in turn associated with different benefits, costs, and risks.

Unwanted clones should be avoided right from the start. But it is not yet clear
what is the best integration of clone detection in the normal development process. In
particular, what are the benefits and costs of such possible integrations and what are
reliable cloning indicators to trigger refactoring actions?

If it is too late to avoid cloning and if existing clones cannot be removed, we
should come up with methods and tools to manage these clones. This clone manage-
ment must stop further spread of clones and help to make changes consistently.

The most elaborated field in software cloning is the automatic detection of clones.
Yet, there is still room for improvement as identified in the quantitative and quali-
tative comparisons. Most helpful would be a ranking function that allows to present
clone candidates in an order of relevance. This ranking function can be based on mea-
sures such as type, frequency, and length of clones but should also take into account
the task driving the clone detection.

Although various types of visualization to present clones have been proposed
we have not fully explored all opportunities. There is a large body of research on
information visualization in general and software visualization in particular that we
have not yet explored for clone visualization. In order to understand which visual-
ization works best for which purpose, we need more systematic empirical research.
Clone representation is difficult due to the large and complex information space. We
have various aspects that we need to master: the large amount of data, clone class
membership, overlap and inclusion of clones, commonalities and differences among
clones in the same class, degree of similarity, and other attributes such as length,
type, frequency, and severity.

Clone detection overlaps with related fields, such as code compression or virus
detection. The interesting questions here are “What can clone detection learn from
other fields?” and “What can other fields learn from clone detection?”
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Summary. Software repositories such as versioning systems, defect tracking systems, and
archived communication between project personnel are used to help manage the progress of
software projects. Software practitioners and researchers increasingly recognize the potential
benefit of mining this information to support the maintenance of software systems, improve
software design or reuse, and empirically validate novel ideas and techniques. Research is
now proceeding to uncover ways in which mining these repositories can help to understand
software development, to support predictions about software development, and to plan various
evolutionary aspects of software projects.

This chapter presents several analysis and visualization techniques to understand software
evolution by exploiting the rich sources of artifacts that are available. Based on the data models
that need to be developed to cover sources such as modification and bug reports we describe
how to use a Release History Database for evolution analysis. For that we present approaches
to analyse developer effort for particular software entities. Further we present change coupling
analyses that can reveal hidden change dependencies among software entities. Finally, we
show how to investigate architectural shortcomings over many releases and to identify trends
in the evolution. Kiviat graphs can be effectively used to visualize such analysis results.

3.1 Introduction

Software evolution analysis is concerned with software changes, their causes, and
their effects. It uses all sources of a software system to perform a retrospective anal-
ysis. Such data comprises the release history with all the source code and the change
information, bug report data, and data that can be extracted from the running system.
In particular the analysis of release and bug reporting data has gained importance be-
cause they store valuable information for analysing the evolution of software. While
the recovery of the data residing in versioning systems such as CVS or Subversion
has become a well explored topic, the ultimate challenge lies in the recovered data
and its interpretation.

Some recent topics addressed in the field of analysing software repositories in-
clude the following:

T. Mens, S. Demeyer (eds.), Software Evolution.
DOI 10.1007/978-3-540-76440-3, © Springer 2008
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• Developer effort and social network analysis. One of the goals in this topic is
to find out the effort that team members are spending on maintaining and evolv-
ing software modules and how they communicate with each other. This allows
a project manager to plan resources and reason about shortcomings in develop-
ment processes and the team structure.

• Change impact and propagation. The main focus of this topic is to assess the im-
pact of a change, such as the addition of a new or change of an existing feature,
on the architecture, design and implementation of a software system. Being able
to assess the impact of changes allows one to estimate the effort for maintenance
and evolution tasks, to determine the impact of a change on the existing archi-
tecture and design of a system. Results are also used to provide guidelines for
programmers such as if changing method a the programmer should also change
method b and c.

• Trend and hotspot analysis. In this topic the trend of software entities is observed
to find out shortcomings in the current architecture, design and implementation
of software systems. Hotspots are the entities that frequently change and there-
fore are critical for the evolution of a system. One of the goals is to find heuristics
and warning mechanisms that alarm project managers and architects of negative
trends of software entities (and in particular of system hotspots) and provide
suggestions to return the system into a stable state.

• Fault and defect prediction. A wealth of information is provided by software
repositories that can be input to data mining and machine learning algorithms to
characterize current and predict future properties of software entities. One prop-
erty of software entities that is addressed by many approaches is the prediction
of the location and number of defects in software entities such as source files.
The result is a list of entities that will likely to be affected by defects which
allows the development team to plan preventive actions such as refactoring.

In this chapter we address the first three topics and present techniques such as our
Fractal Figures to analyse development effort, the Evolution Radar to analyse the
change impact on source files, and Kiviat diagrams to analyse metric trends and
to detect system hotspots. In the next section we present a general approach for
analysing software repositories to understand software evolution. Examples of how
to model and retrieve the data is presented in Section 3.3. The modeled data is the in-
put for the different software evolution analysis techniques we present in Section 3.4.

3.2 An Overview of Software Repository Analysis

When mining software repositories one can consider many software artifacts: Source
code from versioning systems, bugs from bug tracking systems, communication from
e-mail lists or any further software artifacts such as documentation. This diversity of
information is the foundation for many kinds of evolution analyses.
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3.2.1 A General Approach

Figure 3.1a shows a sketch of how to analyse software repositories for studying soft-
ware evolution. In the schema we identify three fundamental steps necessary for the
final analysis of the data:

1. Data modeling. The first step of mining consists of creating a data model of an
evolving software system. Various aspects of the system and its evolution can be
modeled: The last version of the source code, the history of files as recorded by
the versioning system, several versions of the source code (e.g., one per release),
documentation, bug reports, developers mailing list archives, etc.
While aspects such as source code or file histories have a direct mapping to the
system, for others like bug reports or mailing list archives the useful information
has to be filtered and linked to software artifacts. When designing the model it
is important to consider the tradeoff between the amount of data to deal with
(in the analysis phase) and the potential benefit this data can have, i.e., not all
aspects of a system’s evolution have to be considered, but only the ones which
can address a specific software evolution problem or set of problems.

2. Data retrieval and processing. Once the model is defined, a concrete instance
of it has to be created. For this, we need to retrieve and process the information
from the various data sources. The processing can include the parsing of the
data (e.g., source code, log files, bug report etc.), the application of matching

(a) General schema (b) Our approach

Fig. 3.1. The general approach and our customization to mining software repositories
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techniques to link different data sources (e.g., versioning system artifacts with
bug reports [179, 136]), the reconstruction of information not recorded (e.g.,
reconstruct commit information from CVS log files [566]) and the application
of other techniques such as data mining.

3. Data analysis. The analysis consists of using the modeled and retrieved data to
tackle a software evolution problem or set of problems by means of different
techniques and approaches.

3.2.2 Our Approach

Figure 3.1b sketches how we approach software evolution analysis through mining
software repositories. As data sources we consider versioning system log files to-
gether with bug report data. We define a data model describing an evolving software
system based on these two data sources (data modeling). Given a system to analyse,
versioning system log files and bug report data are parsed and a concrete instance
of the model is created (data retrieval). All the models are then stored in a Release
History Database (RHDB), which is the starting point for all the subsequent analy-
ses. For the analysis part we use different techniques and tools, aimed at addressing
specific software evolution problems.

In the remainder of this chapter we first introduce the RHDB, the data model
behind it and the way the database is populated. Then we present different types of
software evolution analyses built on top of the RHDB: Developers effort distribu-
tion, change coupling, trend analysis and hot-spot detection. For the RHDB and each
evolution analysis technique we also present related work in the field.

3.3 Release History

When we refer to the history of a software artifact, we mean the way it was devel-
oped, how it grew or shrank over time, how many developers worked on it and to
which extent. These kinds of information are recorded by versioning systems and
can be reconstructed by parsing their log files. However, when we analyse evolu-
tion our goal is to understand a system’s architecture, the dependencies among its
components and to detect evolutionary hot-spots. To support this kind of analysis,
additional information such as problem bug reports can be used. The problem is to
link this data to the software artifacts to answer specific questions, e.g., which files
were affected by a given bug?

In this section we present our approach for integrating versioning system infor-
mation and bug report data and populating a RHDB [179, 136]. We first introduce
the versioning system and the bug tracking system from which we retrieve the data.
Then we describe the model behind the RHDB, i.e., the model of an evolving soft-
ware system and we finally explain how we populate the database.

CVS and Bugzilla. CVS [135] has been the most used version control system
by the open source community over the last years. Currently it is being replaced by
Subversion [480] (SVN).
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Our approach for populating the RHDB is based on the versioning system log
files, thus it can be applied to both CVS and SVN. For each versioned file, the
log file contains the information recorded by the versioning system at commit-time:
The version number (or revision), the timestamp of the commit, the author who per-
formed the commit, the state (whether the file is still under development or removed),
the number of lines added and removed with respect to the previous commit, the
branches having the current version as root and the comments written by the author
during the commit. Listing 3.1 shows a chunk of a CVS log file.

RCS file: /cvsroot /mozilla /js/src/xpconnect /codelib /Attic /mozJSCodeLib .cpp ,v
Working file: codelib /mozJSCodeLib .cpp
head: 1.1
branch :
locks : strict
access list:
symbolic names :

FORMS_20040722_XTF_MERGE: 1.1.4.1
XTF_20040312_BRANCH: 1.1.0.2

keyword substitution : kv
total revisions : 6; selected revisions : 6
description :
----------------------------
revision 1.1
date: 2004/04/19 10:53:08; author : alex.fritze %crocodile -clips.com; state: dead;
branches : 1.1.2; 1.1.4;
file mozJSCodeLib .cpp was initially added on branch XTF_20040312_BRANCH.
----------------------------
revision 1.1.4.2
date: 2004/07/28 09:12:21; author : bryner %brianryner .com; state: Exp; lines: +1 -0
Sync with current XTF branch work.
----------------------------
...
----------------------------
revision 1.1.2.1
date: 2004/04/19 10:53:08; author : alex.fritze %crocodile -clips.com; state: Exp; lines: +430 -0
Fixed bug 238324 (XTF javascript utilities ).
===============================================================================================

Listing 3.1. A CVS log file chunk of mozJSCodeLib.cpp

Bugzilla [95] is a bug tracking system that is used heavily in the open source
community. Its core is a customizable database with a web interface which allows
developers, testers as well as normal users to report and keep track of issues detected
in the software system.

A typical bug report contains the following pieces of information: An id which
unequivocally identifies the bug, the bug status composed of status (new, assigned,
reopened, resolved, verified, closed) and resolution (fixed, invalid, wontfix, notyet,
remind, duplicate, worksforme), the location in the system identified by the product
and the component, the operating system and the platform on which the bug was
detected, a short description of the problem and a list of comments about it (long
description). Moreover, each bug refers to several people: The reporter who reported
the bug, a person who is in charge to fix it (assigned to), quality assurance people
who are responsible for ensuring that the software meets certain quality standards
(qa), and a list of people interested in being notified of the bug fixing progress (CC).



42 M. D’Ambros et al.

Fig. 3.2. The RHDB data model

3.3.1 The RHDB Model

Figure 3.2 shows the core of the RHDB model.
In the model a CVS commit corresponds to a file version, having all the commit-

related information: Version associated to the commit, date, author, state (exp or
dead), lines added and removed with respect to the previous commit, branches asso-
ciated with the version and the comment written by the author. A file history, which
corresponds to the actual file in the file system, is composed of a sequence of file
versions, one per commit. It has a filename with (rcsfile) and without (workingfile)
the entire path name. A file history can be associated to many aliases, used for tag-
ging system releases. A project is composed of modules which contain directories
and file histories. A directory can contain sub-directories and file histories. Finally,
a file version can be associated to one or more bug reports. The relationship between
bug reports and file versions is “many to many”, meaning that a file version (and
therefore a file history) can be affected by many bugs and a bug can affect different
file versions and file histories.

3.3.2 Populating the RHDB

Figure 3.3 sketches the RHDB populating process. The user needs to enter the url
of the CVS repository and of the Bugzilla database, and then the populating task
(which depending on the size of the system can take several hours) is executed in
batch mode. The main steps of the process are:

1. The latest version of the system is retrieved by means of a CVS checkout com-
mand. Then, for each directory, the log file describing the history of the con-
tained files is retrieved and parsed.

2. For each file, the data about all its commits (its history) is stored in the database
as well as a link to the actual file.

3. Every time a reference to a bug is found in the commit message (the comment
written by the author at commit time), the corresponding bug report is retrieved
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Fig. 3.3. The RHDB
populating process

from the Bugzilla database, parsed and stored in the database, together with the
link to the affected file. Since the link between CVS artifacts and Bugzilla prob-
lem report is not formally defined, we use regular expressions to detect bug ref-
erences.

3.3.3 Related Work

Several approaches were proposed to create and populate an underlying model of an
evolving software system. These approaches vary according to which information
they consider (e.g., only source code repository or also bug tracking system and mail
archives), which data sources they support (e.g., only CVS or also SVN, ClearCase
etc.) and how these sources are linked to each other.

The previously presented RHDB is based on the CVS versioning system and the
Bugzilla bug tracking system, where the links between the two sources are built as
presented in Section 3.3.2. The main contribution of the RHDB is that it was the first
to link CVS artifacts and Bugzilla problem reports.

Two other approaches similar to the RHDB, also based on CVS and Bugzilla,
but which also use other sources of information are Hipikat [133, 511, 510] by D.
C̆ubranić et al. and softChange [196, 195] by D. German. Both techniques use infor-
mation from mail archives and, in addition, Hipikat also considers data from docu-
mentation on the analysed project website (if available).

In both approaches the links between different information sources are inferred
based either on conventions (e.g., in some projects there is a convention to include in
the commit comment a reference to the bug tracking system entry) or heuristics (e.g.,
it is likely that the author of a bug fix has committed a source code revision close to
the time that the problem report was closed in the bug tracking system).

A common problem encountered while linking mail archives with CVS reposi-
tory is that people tend to have multiple e-mail addresses, which might not be the
same as the ones recorded in the CVS log files [197].
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In the Hipikat model (see Figure 3.4), a message is a mail in the mail archive,
a file version corresponds to a CVS commit in the repository (a revision), a change
task is a Bugzilla problem report and a document is a design document retrieved, for
example, from the project web site.

In the softChange architecture (see Figure 3.5), we see two main components:
The Trail Extractor and the Fact Enhancer. The Trail Extractor retrieves the follow-
ing software trails: CVS logs, Bugzilla problem report, ChangeLogs and releases of
the system (tar files distributed by the software team). The Fact Enhancer uses the
retrieved software trails to generate/infer new facts. For example it reconstructs the
commit-set, since the commit operation in CVS is not atomic, it links CVS artifacts
with Bugzilla problem report or messages from the mail archives, etc.

The information stored by Hipikat forms an “implicit group memory” (where
group stands for group of developers) which is then used to facilitate the insertion of
newcomers in the group, by recommending relevant artifacts for specific tasks. The
data retrieved and processed by softChange is used for two types of software evolu-
tion analysis and visualization: (i) Statistics of the overall evolution of the project,
using histograms where the x axis usually represents the time dimension and (ii)
analysis of the relationships among files and authors, using graphs where authors
and/or files are represented as nodes and their relationships as edges.

Another approach similar to the RHDB is the Kenyon framework [58] by J. Be-
van et al. Kenyon provides an extensible infrastructure to retrieve the history of
a software project from a SCM repository or a set of releases and to process the
retrieved information. It also provides a common interface based on ORM (Object-
Relational Mapping) to access to processed data stored in a database.

Fig. 3.4. The Hipikat model [511] ©[2005] IEEE
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Fig. 3.5. The softChange process
[195]

Figure 3.6 shows the high-level data flow architecture of Kenyon. The DataMan-
ager class is the execution entry point: It reads a configuration file and invokes the
other components, i.e., the Configuration Retrieval, the Fact Extractor and the Ob-
ject Data Storage. The SCMInterface class isolates Kenyon from the concrete im-
plementation of different SCM systems. The FactExtractor and MetricLoader ab-
stract classes are the API points for specific tool invocation extensions. This means
that users of Kenyon are free to attach their own external Fact Extractor and Met-
ric Loader tools (typically analysis-specific). Besides this extension, Kenyon offers
predefined fact extractor and metric loader tools. Kenyon saves the results from each

Fig. 3.6. The high-level data flow architecture of Kenyon [58], ©ACM, 2005
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processed configuration to a database. An ORM mechanism is provided to help au-
tomate the storage to and retrieval of Java object from the database.

As depicted in Figure 3.6 Kenyon retrieves information from SCM only (or
filesystem, i.e., set of releases), without considering other sources, such as bug track-
ing system or mail archives. On the other hand Kenyon supports several SCMs,
namely: CVS, SVN, ClearCase and sets of releases in the filesystem.

A common aspect of Kenyon and the RDHB is that both store the data for later
evolution analyses, while for softChange and Hipikat the task for using the data is
already defined.

3.4 Software Evolution Analysis

The RHDB contains a concrete instance of our model of an evolving software sys-
tem. This is the starting point from which, with the support of tools and techniques,
we can do several types of analyses. Each technique we designed and each tool we
implemented considers a particular perspective on software evolution, and addresses
a particular goal. In the following, we present some software evolution analysis prob-
lems and describe our techniques to tackle them.

3.4.1 Analysing Developer Effort

The first software evolution problem we address concerns development effort. We
want to answer questions such as: How many developers worked on an entity? How
was the effort distributed among them? Is there an owner of the entity, based on the
code-ownership principle? Moreover, we also want to be able to categorize entities
in terms of “effort distribution”. For an analyst or a project manager, the answers
to these questions provide valuable information for a possible restructuring of the
development teams.

Version control systems record the information necessary to answer these ques-
tions, as each ach artifact has a list of versions corresponding to commits, and the
list of authors who performed the commits3. The problem is how to represent and
aggregate this large amount of low-level information4 to get an insight into the team
structure and to understand who are the responsible/s of a software entity, scaling
from a module down to the individual file.

Our approach is based on the “Fractal Figure” [139, 136] visualization, which
encapsulates all the author-related information of a given software artifact. It gives
an immediate view of how, in terms of development effort and distribution among
authors, an artifact has been developed. We can easily figure out whether the de-
velopment was done mainly by one author or many people contributed to it and to

3 We only know who performed the commit, i.e., if a commit includes changes done by
several people, those are all mapped to a single developer.

4 As an example: The Mozilla system, on the first of September 2005, had 4656 source code
files with a total number of 326,000 file versions, corresponding to hundreds of thousands
of commit-related data to analyse.
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which extent. A fractal figure is composed of a set of rectangles with different sizes
and colors. Each rectangle, and thus each color, represents an author who worked on
the file. The area of the rectangle is proportional to the percentage of commits per-
formed by the author over the whole set of commits. For more details on the layout
algorithm and the expressive power of Fractal Figures see [139].

Fractal Figures allow software entities to be categorized in terms of effort dis-
tribution among developers following the gestalt principle. We defined four visual
patterns representing four development models, depicted in Figure 3.7: (a) One de-
veloper, (b) few balanced developers, (c) one major developer and (d) many balanced
developers.

Development patterns allow us to categorize entities according to the way they
were developed from an authors’ perspective. However, the visual nature of both the
patterns and the Fractal Figures themselves, is useful to get a qualitative impression
only of the development model. To provide also a quantitative measure, we intro-
duced the Fractal Value, which for a given software artifact is defined as:

Fractal Value = 1− ∑
ai∈A

(
nc(ai)

NC

)2

, with NC = ∑
ai∈A

nc(ai) (3.1)

where A = {a1,a2, . . . ,an} is the set of authors and nc(ai) is the number of commits
performed by the author ai with respect to the given software artifact. The Fractal
Value measures how fragmented a Fractal Figure is, that is how much the work spent
on the corresponding entity is distributed among different developers. (3.1) is defined
such that the smaller the quantity nc(ai)

NC is (always less than 1), the more it is reduced
by the square power, since the square equation is sub-linear between 0 and 1. There-
fore, the smaller a rectangle is, the less its negative contribution to the Fractal Value
is. The Fractal Value ranges from 0 to 1 (not reachable). It is 0 for entities developed
by one author only, while it tends to 1 for entities developed by a large number of
authors.

To exploit the expressive power of Fractal Figures we applied them in context of
polymetric views [309]. Figures represent RHDB entities, namely files, directories,
and modules. To apply them on a directory or a module, we sum up the commit infor-
mation of all the files belonging to the given directory or module. We map a metric
measurement of the size of the figure. The metric can be structural such as LOC

(a) One developer (b) Few balanced
developers

(c) One major deve-
loper

(d) Many balanced
developers

Fig. 3.7. Development patterns based on the gestalt of Fractal Figures [139] ©[2005] IEEE
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or evolutionary such as number of commits, number of bugs, number of lines added
etc.

In the following we present different example scenarios which show how to use
Fractal Figures to address the problem of understanding development effort distribu-
tion.

Detecting a Major Developer

Figure 3.8 shows the webshell directory hierarchy of Mozilla. Fractal Figures rep-
resent directories containing at least one file, while grey figures represent container
directories, i.e., directories containing only subdirectories. The size metric maps the
directory size in terms of number of contained files. We see that the webshell hierar-
chy of Mozilla includes all the four development patterns. The sub-hierarchy marked
as 1 has a major developer pattern (the blue author did most of the commits). The
reverse engineer knows whom to ask questions about the design and the code con-
tained in this sub-hierarchy. On the contrary, the directory marked as 2 shows that
many developers worked on it, and there is no main developer. Modifying code in
these directories will be more effort since there is not a single person to ask questions
about the code. The reverse engineer will need support of other tools such as Code-
Crawler [310] or BugCrawler [138]. This information is not complex or hard to get,
but the value of the Fractal Figure visualization is that it conveys this information in
a context (the hierarchy in this case), easy and fast to read, and with the same visual
principle for all the software entities to which it is applied.

Fig. 3.8. Fractal Figures applied
to the webshell hierarchy of
Mozilla [139] ©[2005] IEEE. The
size metric maps the directory size
in terms of number of contained
files
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Fig. 3.9. Fractal Figures applied to the network/protocol hierarchy of Mozilla. The size
metric maps the number of bug reports

Re-Assessing Development Team Formation

Figure 3.9 shows an example with the network protocol implementation of Mozilla.
Most of the directories which introduced bugs have a many balanced developer pat-
terns, but one which has a one major developer pattern: network/protocol/http/
src. This directory is responsible for most of the bugs generated in the network/
protocol hierarchy. Such a view can be valuable for a project manager or an an-
alyst. It shows that a re-assessment of the formation of the development team is
needed, given the high number of bugs and one major developer pattern of the
network/protocol/http/src directory.

Related Work

Many software evolution analysis techniques focus more on the developers and their
interaction with software artifacts than on software artifacts themselves. Liu et al
[330] applied the CVSChecker tool to analyse CVS log files with the aim of un-
derstanding author contributions and identifying patterns. They wanted to study the
open source development process and to understand what activities are carried out in
open source project and by whom. The CVSChecker tool supports the analysis of the
performance of an individual developer and the effort distribution patterns of teams.

CVSChecker has a set of parsers which extract information from the CVS source
code repository and store them in a relational database. The tool then uses this infor-
mation to produce four kinds of visualizations:

1. Temporal distribution of CVS activity, for each developer (see Figure 3.10a);
2. Distribution of CVS operation types, for each developer;
3. Distribution of CVS operation types, for each file;
4. Added and removed lines of code (LOC) by each developer, on each file (see an

example in Figure 3.10b).
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(a) Temporal distribution of CVS activity for each developer

(b) Added and removed LOC for each developer, for each file

Fig. 3.10. CVSChecker example visualizations [330]

The visualizations are used in [330] to extract development patterns to characterize
the open source development process.

Gîrba et al. [203] defined a measurement for the notion of code ownership in
CVS repositories. They defined that a developer is the owner of a file if he/she owns
the major part of it in terms of lines. He/she owns a line of code if he/she was the
last one that committed a change to that line in the repository. Based on that princi-
ple, they introduced the Ownership Map visualization, which shows the evolution of
a software project, according to the following rules (summarized in Figure 3.11):

• Each file is represented as a colored line;
• The x axis represents the time dimension, from left to right;
• Each commit of a file in the repository is represented as a colored circle on the

corresponding line;
• Each developer is represented by a color;
• Commits (circles) are colored according to the developer who did them, while

pieces of histories of files (corresponding to pieces of lines) are colored accord-
ing to the owner of the file, during the considered time interval.

In [203] the authors used the Ownership Map visualization to define development
patterns such as monologue (a period where all the changes and most files belong to
the same author), takeover (a developer takes over a large amount of code in a short
amount of time), team work (two or more developers commit a quick succession of
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Fig. 3.11. The princi-
ples of the Ownership
Map visualization [203]
©[2005] IEEE

changes to multiple files) etc. The patterns were defined with the aim of characteriz-
ing different developer behaviors.

In [528], Voinea and Telea presented a similar visualization, in which CVS files
are represented as colored lines and the color represents the developer. The visual-
ization is implemented in CVSgrab, a tool which also supports the visualization and
analysis of activities in the repository. In [528] the authors applied a cluster algo-
rithm on the visualizations to put files (lines) with similar development (with respect
to either the authors or the activity) close to each other. The aim of their work was to
allow developers and project managers to visually explore the evolution of a software
project in a way that facilitates the system and process understanding.

Voinea et al. also presented the CVSscan tool [529], based on CVSgrab for ex-
tracting the data from the CVS repository. The tool can visualize the evolution of
CVS files by visualizing the evolution of individual lines. CVSscan provides three
types of color encoding to associate the color of each code line to its author. This vi-
sualization is used in [529] to understand who performed modifications on the code
and where, thus facilitating the development process understanding.

Author information stored in CVS repositories was also used in the context of
social networks. In [68] Bird et al. created social networks or email correspondents
from OSS email archives. They linked emails with CVS accounts to analyse the
relationship of email activity and commit activity and the relationship of social status
with commit activity. The case study they conducted on the Apache HTTP server
project indicated a strong relationship between the level of activity in the source code,
and a less strong relationship with document change activity. They also found out
that developers (people with email and CVS accounts) play a much more significant
social role than other participants in the mail archives.

3.4.2 Change Coupling Analysis

Change coupling is the implicit dependency between two or more software artifacts
that have been observed to frequently change together during the evolution of a sys-
tem. This co-change information can either be present in the versioning system, or
must be inferred by analysis. For example SVN marks co-changing files at commit
time as belonging to the same change set while in CVS the files which are change
(i.e., logically) coupled must be inferred from the modification time of each individ-
ual file.
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The Evolution Radar [137, 140] is an interactive visualization technique for
analysing change couplings to detect architecture decay and coupled components
in a given software system. It addresses the following questions: What are the com-
ponents (e.g., modules) with the strongest coupling? Which low level entities (e.g.,
files) are responsible for these couplings?

Figure 3.12 shows the structural principles of the Evolution Radar. It visualizes
dependencies between groups of entities, in this specific case dependencies between
modules (groups) as group of files (entities). The module in focus is visualized as
a circle and placed in the center of a pie chart. All the other system modules are rep-
resented as sectors. The size of the sectors is proportional to the number of files con-
tained in the corresponding module. The sectors are sorted according to this size met-
ric, i.e., the smallest is placed at 0 radian and all others clockwise (see Figure 3.12).
Within each sector files are represented as colored circles and positioned using polar
coordinates where the angle and the radius are computed according to the following
rules:

• Radius d (or distance from the center). It is inversely proportional to the change
coupling the file has with the module in focus, i.e., the more they are coupled,
the closer the circle (representing the file) is to the center circle (representing the
module in focus).

• Angle θ. The files of each module are alphabetically sorted considering the entire
directory path, and the circles representing them are then uniformly distributed
in the sectors with respect to the angle coordinates.

Arbitrary metrics can be mapped on the color and the size of the circle figures. In the
Evolution Radar files are placed according to the change coupling they have with the
module in focus. To compute this metric value we use the following formula:

CC(M, f ) = max
fi∈M

CC( fi, f ) (3.2)

Fig. 3.12. The structural principles of the
Evolution Radar [137] ©[2006] IEEE
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CC(M, f ) is the change coupling between the module M in focus and a given file
f and CC( fi, f ) is the change coupling between the files fi and f . It is also possible to
use other group operators instead of the maximum such as the average or the median.
We use the maximum because it points us to the files with the strongest coupling, i.e.,
the main responsible for the change dependencies.

The value of the coupling between two files is equal to the number of transactions
which include both files. Since change transactions are not recorded by CVS we
reconstruct them using the sliding time window approach proposed by Zimmermann
and Weißgerber in [566], which is an improvement of the simpler fixed time window
approach. For further details about the sliding and the fixed time window approach
we refer the readers to [137, 566].

The Evolution Radar is implemented as an interactive visualization. It is possible
to inspect all the entities visualized, i.e., files and modules, to see commit-related
information like author, timestamp lines added and removed etc. Moreover, it is also
possible to see the source code of selected files. Three important features for per-
forming analyses with the Evolution Radar are (1) moving through time, (2) tracking
and (3) spawning.

(1) Moving through Time. The change coupling measure is time dependent.
If we compute it for the whole history of the system we would obtain misleading
results. Figure 3.13 shows an example of such a situation.

Figure 3.13 shows the history, in terms of commit, of two files, where the time
is on the horizontal axis from left to right and commits are represented as circles. If
we compute the change coupling measure according to the entire history we obtain 9
shared commits on a total of 17, which is an high value because it means that the files
changed together more than fifty percent of the time. Although this result is correct,
it is misleading because it brings us to the conclusion that file1 and file2 are strongly
coupled, but they were so only in the past and they are not coupled at all during the
last year of the system. Since we analyse change coupling information for detect-
ing architecture decay and design issues in the current version of the system, recent
change couplings are more important than old ones [202]. In other words, if two
files were strongly coupled at the early phases of a system, but they are not coupled
in recent times (perhaps because the coupling was removed during a reengineering
phase), we do not consider them as a potential problem.

Fig. 3.13. An example of misleading results obtained by considering the entire history of
artifacts to compute the change coupling value: We obtain a strong change coupling, while
file1 and file2 are not coupled at all during the last year
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For these reasons the Evolution Radar is time dependent, i.e., it can be com-
puted either considering the entire history of files or with respect to a given time
window. When creating the radar the user can divide the lifetime of the system into
time intervals. For each interval a different radar is created, and the change coupling
is computed with respect to the given time interval. The radius coordinate has the
same scale in all the radars, i.e., the same distance in different radars represents the
same value of the coupling. This makes it possible to compare radars and to analyse
the evolution of the coupling over time. In our tool implementation the user “moves
through time” by using a slider, which causes the corresponding radar to be dis-
played. This feature introduced also a problem: How do we keep track of the same
entity over time, i.e., on different radars? To answer this question we introduced
a second feature called tracking.

(2) Tracking. It allows the user to keep track of files over time. When a file
is selected for tracking in a visualization related to a particular time interval, it is
highlighted in all the radars (with respect to all the other time intervals) in which
the file exists. The highlighting consists in using a yellow border for the tracked
files and in showing a text label with the name of the file. Like this it is possible to
detect files with a strong change coupling with respect to the latest period of time
and then move backward in time and analyse the coupling in the past. This allows
the distinction between persistent change coupling, i.e., always present, and recent
change coupling, i.e., present during the last time intervals only.

(3) Spawning. The spawn feature is aimed at inspecting the change coupling de-
tails. Outliers indicate that the corresponding files have a strong coupling with certain
files of the module in focus, but we ignore which ones. To uncover this dependency
between files we spawn a secondary Evolution Radar as follows: The outliers are
grouped to form a temporary module Mt represented by a circle figure. The module
in focus (M) is then expanded, i.e., a circle figure is created for each file composing
it. Finally, a new Evolution Radar is created. The temporary module Mt is placed in
the center of the new radar. The files belonging to the module previously in focus
(M) are placed around the center. The radius coordinate, i.e., the distance from the
center, is inversely proportional to the change coupling they have with the module
in the center Mt . For the angle coordinate alphabetical sorting is used. Since all the
files belong to the same module there is only one sector.

We use the Evolution Radar to answer the questions mentioned at the beginning
of this section: Which are the modules with the strongest coupling in a given soft-
ware system? Which files are responsible for these evolutionary dependencies? In
the following we apply the radar on ArgoUML, a large and long-lived open source
software system. We first present example scenarios of how to study change coupling
at different levels of abstraction, detecting architecture decay and design problems
and performing impact analysis. We finally use the radar to analyse the evolution of
couplings and to identify phases in the history of the system.
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Detecting Design Issues and Architecture Decay

From the documentation of ArgoUML we know the system decomposition in mod-
ules5 We focused our analysis on the three largest modules Model, Explorer and
Diagram. From the documentation we know that Model is the central module that all
the others rely and depend on. Explorer and Diagram do not depend on each other.

We created a radar for every six months of the system’s history. We started the
study from the most recent one, since we are interested in problems in the current
version of the system. Using a relatively short time interval (six months) ensures that
the coupling is due to recent changes and is not “polluted” by commits far in the
past. As metrics we used the change coupling for both the position and the color of
the figures. The size (the area) is proportional to the total number of lines modified
in all the commits performed during the considered time interval.

Figure 3.14b shows the Evolution Radar for the last six months of history of the
Explorer module. From the visualization we see that the coupling with Diagram is
much stronger than the one with Model, although the documentation states that the
dependency is with Model and not with Diagram. The most coupled files in Diagram
are FigActionState.java, FigAssociationEnd.java, FigAssociation.java.
Using the tracking feature, we found out that these files have only been recently cou-
pled with the Explorer module. In Figure 3.14a showing the previous six months,
they are not close to the center. This implies that the dependency is due to recent
changes only.

To inspect the change coupling details, we used the spawning feature: We
grouped the three files and generated another radar, shown in Figure 3.15 having
this group as the center. We now see that the dependency is mainly due to Explo-
rerTree.java. The high-level dependency between two modules is thus reduced to
a dependency between four files. These four files represent a problem in the system,
because modifying one of them may break the others. The fact that they belong to
different modules buries this hidden dependency.

The visualization in Figure 3.14b shows that the file GeneratorJava.java
is an outlier, since its coupling is much stronger with respect to all the other
files in the same module (CodeGeneration). By spawning the group composed
of GeneratorJava.java we obtained a visualization very similar to Figure 3.15,
in which the main responsible for the dependency is again ExplorerTree.java.
Reading the code revealed that the ExplorerTree class is responsible for managing
mouse listeners and generating names for figures. This explains the dependencies
with FigActionState, FigAssociationEnd and FigAssociation in the Diagram
module, but not the dependency with GeneratorJava.

The past (see Figure 3.14a and Figure 3.16a) reveals that GeneratorJava.java
is an outlier since January 2003. This long-lasting dependency indicates design prob-
lems.

5 We did not consider some modules for which the documentation says “They are all in-
significant enough not to be mentioned when listing dependencies.” [19].
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(a) January to June 2005.

(b) June to December 2005.

Fig. 3.14. Evolution Radars for the Explorer module of ArgoUML in 2005 [137] ©[2006]
IEEE

A further inspection is required for the ExplorerTree.java file in the Explorer
module, since it is the main responsible for the coupling with the modules Diagram
and CodeGeneration.

The radars in Figure 3.14b and Figure 3.14a show that during 2005 the file
NSUMLModelFacade.java in the Model module had the strongest coupling with
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Fig. 3.15. Details of the change coupling between the Explorer module and the
files FigActionState.java, FigAssociationEnd.java and FigAssociation.java [137]
©[2006] IEEE

Explorer (module in the center). Going six months back in time, from June to De-
cember 2004 (see Figure 3.16a), we see that the coupling with NSUMLModelFacade
.java was weak, while there was a very strong dependency with ModelFacade.
java. This file was also heavily modified during that time interval, given its dimen-
sion with respect to the other figures (the area is proportional to the total number
of lines modified). ModelFacade.java was also strongly coupled with the Diagram
module (see Figure 3.16b). By looking at its source code we found out that this
was a God class [439] with thousands of lines of code, 444 public and 9 private
methods, all static. The ModelFacade class is not present in the other radars (Fig-
ure 3.14b and Figure 3.14a) because it was removed from the system in January
2005. By reading the source code of the most coupled files in these two radars,
i.e.,NSUMLModelFacade.java, we discovered that it is also a very large class with
317 public methods. Moreover, we found out that 292 of these methods have the
same signature of methods in the ModelFacade class6, with more that 75% of the
code duplicated. ModelFacade represented a problem in the system and thus was
removed. Since many methods were copied to NSUMLModelFacade, the problem has
just been relocated.

This example shows how historical information can reveal problems, which are
difficult to detect with only one version of the system. Knowing the evolution of
ModelFacade helped us in understanding the role of NSUMLModelFacade in the cur-
rent version of the system.

We showed examples of how to use the Evolution Radar to detect problematic
parts of the ArgoUML system, which represent good candidates for reengineering.
The main findings of the discussed example scenario are:

• The Diagram and Explorer modules are the most coupled. Since this depen-
dency is not mentioned in the module relationships page in the documentation,

6 With the difference that in NSUMLModelFacade the methods are not static and that it con-
tains only two attributes, while ModelFacade has 114 attributes.
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(a) Explorer module

(b) Diagram module

Fig. 3.16. Evolution Radars of the Explorer and Diagram modules of ArgoUML from June
to December 2004 [137] ©[2006] IEEE

either the modules should be restructured to decrease the coupling or at least the
documentation should be updated. We identified the four files mainly responsible
for this hidden dependency.
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• The files GeneratorJava.java in the CodeGeneration module and Explo-
rerTree.java in the Explorer module should be further analysed and, if
possible, refactored. GeneratorJava.java has a persistent coupling with the
Explorer module, while ExplorerTree.java is coupled with both CodeGene-
ration and Diagram.

• Two problematic classes were detected: ModelFacade and NSUMLModelFacade.
Most of the methods of the first class were copied to the second one, and then
ModelFacade was removed from the system.

Related Work

The concept of change (i.e., logical) coupling was first introduced by Gall et al. [185]
to detect implicit relationships between modules. They used logical coupling to anal-
yse the dependencies between the different modules of a large telecommunications
software system and showed that the approach can be used to derive useful insights
on the architecture of the system. Later the same authors revisited the technique to
work at a lower abstraction level. They detected logical couplings at the class level
[187] and validated it on 28 releases of an industrial software system. The authors
showed through a case study that architectural weaknesses such as poorly designed
interfaces and inheritance hierarchies could be detected based on logical coupling
information.

Ratzinger et al. [433] used the same technique to analyse the logical coupling
at the class level with the aim of learning about, and improving the quality of the
system. To accomplish this, they defined code smells based on the logical coupling
between classes of the system.

Other work has been performed at finer granularity levels. Zimmermann et al.
[567] used the information about changes that are occurring together to predict en-
tities (classes, methods, fields etc.) that are likely to be modified when one is being
modified. Breu and Zimmermann [80] applied data mining techniques on co-changed
entities to identify and rank cross-cutting concerns in software systems. Ying et al.
applied data mining techniques to the change history of the code base to identify
change patterns to recommend potentially relevant source code for a particular mod-
ification task [561] Bouktif et al. [77] improved precision and recall of co-chancing
files detection with respect to previous approaches. They introduced the concept
of change patterns in general and the particular Synchrony change-pattern for co-
changing files. They proposed an approach to detect such change-patterns in CVS
repositories based on dynamic time warping.

Similar to the Evolution Radar the EvoLens visualization technique can be used
to analyse the change coupling relationships between source files and software mod-
ules. Instead of radar views it uses a graph-based visualization that allows the user
to navigate the change coupling information from the level of modules down to the
source files. It allows the user to reveal detailed change couplings to the cost of
always having a radar view of the whole system. The basic ideas and underlying
concepts of the EvoLens Views have been developed by Ratzinger et al. [432].
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Beyer and Hassan in [59] presented the Evolution Storyboards, a visualization
technique for software evolution that offers dynamic views. The storyboards empha-
sizes the history of a project using a sequence of panels, each representing a partic-
ular time period in the life of the project. To create each panel they compute a co-
change graph and use a layout in which the stronger the coupling between two files
is, the closer they are placed, thus revealing clusters of frequently co-changed files.
They showed two main applications of the tool: First they analysed how the structure
of a software system decayed or remained stable over time, by comparing the clus-
ters of co-changed files with the authoritative system decomposition. In the second
application, they detected files which implement cross-cutting concerns, by detect-
ing the files which are always moving from panel to panel, meaning that these files
are coupled (close in the layout) with many others during the life of the project.

In [178] Fischer and Gall presented EvoGraph, a lightweight approach based on
the RHDB data to evolutionary and structural analysis of software systems. They
compounded change history and source code information spaces in a single ap-
proach, to support the comprehension about the interaction between evolving re-
quirements and system development. The EvoGraph technique is composed of five
phases: (1) File selection: Source files which exhibit an extraordinary logical cou-
pling with respect to cross-cutting change transactions are selected. (2) Co-change
visualization. (3) Fact extraction: For the selected files in the preceding step, the
detailed change transaction information is collected from the RHDB and as result
change vectors are created for every file within a transaction. (4) Mining: The change
vectors are the input to mining of change transaction data step; The output is a de-
scription of the longitudinal evolution of structural dependencies of selected files.
(5) Visualization: The structural dependencies are visualized in an electrocardiogram
style diagram.

3.4.3 Trend Analysis and Hot-Spots Detection

In this section we present the ArchView approach used to create different higher-level
views on the source code. Views visualize the software modules which stem from the
decomposition of a system into manageable implementation units. Such units, for ex-
ample, are packages, source code directories, classes, or source files. The objective of
ArchView is to point out implementation specific aspects of one and multiple source
code releases. For instance, highlighting modules that are exceptionally large, com-
plex, and exhibit strong dependency relationships to other modules. They are the
so called hot-spots in the system. Furthermore, modules with a strong increase in
size and complexity, or modules that have become unstable are highlighted. Such
views can be used by software engineers, for instance to (1) get a clue of the im-
plemented design and its evolution; (2) to spot the important modules implementing
the key-functionality of a software system; (3) to spot the heavily coupled modules;
(4) to identify critical evolution trends. The basic ideas and underlying concepts of
ArchView have been developed in the work of Pinzger et.al [417].

ArchView obtains metric values of each module and dependency relationship
from the RHDB and assigns them to a feature vector m. Feature vectors are tracked
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(a) One release. (b) Two releases.

Fig. 3.17. Kiviat diagram of moduleA representing measures of six source code metrics
M1,M2, ....,M6 of one release

over the selected n releases and composed to the evolution matrix E . The values in
the matrix quantify the evolution of a software module:

Ei×n =

⎛
⎜⎜⎜⎜⎝

m′1 m′′1 .. mn
1

m′2 m′′2 .. mn
2

. . ... .

. . ... .
m′i m′′i .. mn

i

⎞
⎟⎟⎟⎟⎠

The matrix contains n feature vectors with measures of i metrics. Evolution ma-
trices are computed for each module. They form the basic input to our ArchView
visualization approach that we will present next.

The ArchView approach uses the Polymetric Views visualization technique pre-
sented by Lanza et al. [309]. Instead of using rectangles to present modules and met-
ric values ArchView uses Kiviat diagrams which are also known as Radar diagrams.
These diagrams are suited to present multiple metric values available for a module
as described next.

Figure 3.17 (a) shows an example of a Kiviat diagram representing measures of
six metrics M1,M2, ....,M6 of one release of the module moduleA. The underlying
data is from the following evolution matrix E:

E6×1 =

⎛
⎜⎜⎝

m′1
.
.

m′6

⎞
⎟⎟⎠

In a Kiviat diagram the metric values are arranged in a circle. For each metric
there is a straight line originating in the center of the diagram. The length of this line
is fixed for all metrics and each metric value is normalized according to it. In the
examples presented in this section we use the following normalization:

l
(

m
′
i

)
=

m
′
i ∗ cl

max(m′i)
(3.3)
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where cl denotes the constant length of the straight line, and max(m
′
i) the maximum

value for a metric m
′
i across all modules to be visualized. With the normalized value

and the angle of the straight line denoting the metric the drawing position of the point
on the line is computed. To make the metric values visible in the diagram adjacent
metric values are connected forming a polygon such as the one shown in Figure 3.17.

When visualizing the metric values for a number of subsequent releases our main
focus is on highlighting the change between metric values. Typically, increases in
metric values indicate the addition and decreases the removal of functionality. The
addition of functionality is a usual sign of evolving software systems so it repre-
sents no particular problem. In contrast, the removal of functionality often indicates
changes in the design. For instance, methods are moved to a different class to re-
solve a (bidirectional) dependency relationship and improve separation of concerns
or methods are deleted because of removal of dead code (i.e., code that is not used
anymore).

To highlight the changes in metric values we use the Kiviat diagrams as described
before. The n values of each metric obtained from the multiple releases are drawn on
the same line. Again the adjacent metric values of the same release are connected by
a line forming a polygon for each release. Then the emerging area between two poly-
gons of two subsequent releases are filled with different colors. Each color indicates
and highlights the change between the metric values of two releases. The larger the
change the larger the polygon.

Figure 3.17 (b) depicts the same set of measure for moduleA but this time of
two releases. By filling the area between the releases the change of metric values are
highlighted. To distinguish the changes between different source code releases we
use gray tones. This allows the user to spot trends in metric values as we will show
in the following two analysis scenarios.

Analysing the Size and Complexity of Software Modules

The first scenario concerns an analysis of the growth in size and program complexity
of software modules. We demonstrate this by visualizing typical size and program
complexity metrics taken from three releases 0.92, 1.3a, and 1.7 of Mozilla con-
tent and layout modules. We configure ArchView with the following set of metrics:
Halstead intelligent content (HALCONT), Halstead mental effort (HALEFF), Halstead
program difficulty (HALDIFF), McCabe Cyclomatic Complexity (CYCL), and lines of
code (LOC). The resulting view is depicted in Figure 3.18.

The interesting modules are represented by Kiviat diagrams with large, filled,
gray polygons. They indicate strong increase and decrease in the size and program
complexity of software modules whereas small polygons represent more stable mod-
ules. Following this guideline we can easily see that NewLayoutEngine and DOM
(Document Object Model) are the two largest and most complex modules in the
Mozilla content and layout implementation. For instance, in release 1.7 DOM com-
prises 197.498 and NewLayoutEngine 156.438 lines of C/C++ code. In contrast, the
XML module comprises 23.471 lines of code.
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Fig. 3.18. Kiviat graph of six Mozilla content and layout modules showing the growth in
program size and complexity. Light gray polygons indicate changes between releases 0.92
and 1.3a. Dark gray polygons show changes between 1.3a and 1.7

Large gray polygons are contained by the Kiviat diagrams of the modules DOM,
NewHTMLStyleSystem, and XML indicating that the implementation of these three
modules changed the most. Looking at the selected size and program complexity
metric values we found out that the values of the three modules first increased from
release 0.92 to 1.3a and then decreased from release 1.3a to 1.7. For instance, the
HALCONT metric of the DOM module from release 0.92 to release 1.3a increased from
15.167 to 18.228 followed by a decrease to 14.714 in release 1.7. Apparently, from
release 0.92 to 1.3a functionality was added to these three modules which during
the implementation of the last release then was refactored or removed. In compar-
ison to these three modules the metric values of the other modules indicate only
minor changes in size and program complexity hence they are stable. Based on the
assumption that modules that changed in a past release will be likely to change in
future releases the three modules DOM, NewHTMLStyleSystem, and XML are the can-
didates who are critical for the evolution of the content and layout implementation
of Mozilla.

Detecting System Hot-Spots

System hot-spots are modules with high activity indicated by different measures such
as the number of problems affecting a module or the number of changes in a mod-
ule. In this scenario of analysing system hot-spots we focus on providing answers
to the following three questions: Which are the modules with frequent bugs? Which
are the most critical modules? Which modules became stable? The answers to these
questions can be found in the RHDB in particular in the Bugzilla data. We quan-
tify the criticality and stability of a software module by the number of source code
modifications (i.e., CVS log entries) performed for fixing bugs that were reported
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Fig. 3.19. Kiviat graph of six Mozilla content and layout modules showing criticality and
stability. Light gray polygons indicate changes between releases 0.92 and 1.3a. Dark gray
polygons show changes between 1.3a and 1.7

during a given observation period such as the time between two releases. To fur-
ther detail criticality and stability we take the different severity levels of bugs rang-
ing from blockers, to minor and trivial bugs into account (severity levels are taken
from the Bugzilla repository). This leads to the following set of measures: number of
modifications for bugs with unspecified severity (UNSPEC), number of modifications
for blocker bugs (BLOCKER), number of modifications for critical bugs (CRITICAL),
number of modifications for major bugs (MAJOR), number of modifications for minor
bugs (MINOR), number of modifications for normal bugs (NORMAL), number of mod-
ifications for trivial bugs (TRIVIAL), and number of modifications for suggested en-
hancements (ENHANCE). We configured ArchView with these measures and selected
six Mozilla content and layout modules from release 0.92, 1.3a, and 1.7. The result-
ing system hot-spot view is depicted by Figure 3.19.

The large gray polygons of the DOM and NewLayoutEngine indicate that these
two modules got the highest number of CVS log entries for fixing bugs. For instance,
up to release 1.7 DOM got 254 modifications from 130 bugs rated as blocker and 904
modifications from 487 bugs rated as critical. NewLayoutEngine got 309 CVS log
entries from 121 blocker and 1.097 log entries from critical bug reports. Interestingly,
most of the modifications in the implementation of these two modules were due to
bugs of high severity and only few due to trivial bugs. This fact is indicated by the cut
of the TRIVIAL measure occurring in both Kiviat diagrams. Compared with these two
modules the other content and layout modules needed less modifications to fix bugs.
For instance, XSLT got 7 modifications due to 3 blocker bugs and 48 modifications
due to 12 critical bugs. Interestingly, the Kiviat of XSLT shows a peak in the number
of trivial bugs (TRIVIAL). 123 modifications due to 3 trivial bugs were performed
which is more than twice as much as the values of the other five modules (e.g., DOM
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got 55 and NewLayoutEngine 43 modifications). Apparently, a large number of files
had to be touched to fix the three trivial bugs. For instance, 56 files were modified
to fix bug #88623. This raises the question about how “trivial” this bug was when
modifications had to be done in 56 source files.

Concerning the criticality and stability of software modules we investigated the
trend of these measures. More specifically, stable modules are indicated by small
dark gray polygons meaning less bugs and modifications during the development of
release 1.7. According to Figure 3.19 the modules NewHTMLStyleSystem and XML
were affected by almost zero changes. They represent the most stable content and
layout modules. The other four modules seem to be more critical as indicated by
larger light and dark gray polygons whereas the light gray polygons dominate the
diagrams. This means that a large amount of bug fixing took place in the time period
from release 0.92 to 1.3a which then decreased in the time of developing release 1.7.
For instance, the number of modifications for fixing blocker bugs decreased from 65
between the releases 0.92 and 1.3a to 8 modifications between 1.3a and 1.7. That
is a clear indicator that the other four modules were critical in previous releases but
became stable in release 1.7.

Related Work

A number of approaches have been developed that address the visualization of data of
several software releases. For instance, Riva et al. use 2D and 3D graphs to visualize
and navigate the release history of a software system [188]. Time is visualized on
the z coordinate expressed in release sequence numbers (RSN). The structure of
each software release is visualized using 3D graphs with a tree layout. Each graph is
spatially positioned along the z-coordinate showing the sequence of releases. A cube
denotes a subsystem or a software module. Edges indicate the decomposition of each
release into subsystems and modules. One measure can be mapped to the 3D-graphs
using the color attribute. For instance, they mapped the version number of a module
such that a module that is not present in a release is represented by a black cube,
a module in version 1 is represented by a red cube, in version 2 by a blue cube, etc.

An approach similar to the approach of Riva et al. is presented by Collberg et al.
in [121]. They developed GEVOL, a graph-based system for visualizing the evolu-
tion of software systems. Each state of a system is represented by a graph. Colors
are applied to indicate change over time such as when particular parts of the program
were first created and modified, which programmer modified which parts, or which
parts have grown in complexity. All nodes start out being red, then grow paler for
every time they have remained unchanged. When a node changes again it return to
red. When a user notices an interesting event, such as a code segment changes fre-
quently, he can click on a node to examine the set of authors who have affected these
changes.

Lanza developed an approach called the Evolution Matrix [308]. Instead of using
a tree layout Lanza uses a matrix layout. The Evolution Matrix displays the evolution
of the classes of a software system. Each column of the matrix represents a version of
the software, while each row represents the different versions of a class. Figure 3.20
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Fig. 3.20. Evolution Matrix with four typical characteristics of an evolving software sys-
tem [308], ©ACM, 2001

shows an example of an Evolution Matrix with typical characteristics of a system
such as the classes of the first version, removed classes, a major leap in the evolution,
and the last version of the system.

Following the Polymetric View principle a number of measures can be mapped
to the width, height, and color of rectangles that represent classes. Recurring pat-
terns in the matrix arise that led to a categorization of the evolution of classes. For
instance, a class that is alternately growing and shrinking in size is called Pulsar.
Pulsar classes can be seen as hot-spots in the system: for every new version of the
system changes on a pulsar class must be performed. Other categories of classes,
for instance, are Supernova (class suddenly explodes in size) or Dayfly (class with
a short life-time).

In [548] Wu et al. present Evolution Spectographs, a visualization technique that
combines metrics and gradient colors to portray the evolution of software systems.
A spectograph is shown as a matrix similar to the Evolution Matrix in which time is
presented on the X axis and the dimension of files is presented on the Y axis. A row
in the matrix represents the change history of a file and a column stores change
metrics for all the files during a particular time period. Each cell represents a file
in a particular period. After a file is changed its color becomes lighter and lighter as
long as there is no change made to that file. In other words, the file starts to cool down
if no future change occurs to it. Using this color function Evolution Spectographs can
be used to highlight system growth and dependency change in one chart.

3.5 Conclusion

Mining software repositories is a fairly recent research topic that has been embraced
by both the software evolution and the empirical software engineering community.
As we have seen in this chapter there are two major challenges:
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• Technical challenge. The challenge resides in modeling and handling various
kinds of informations. The sheer amount of information available in source
repositories also poses scalability problems that have however been tackled to
a large extent. As we have seen, in most cases researchers have chosen to use
relational databases to handle the data as they allow for easy querying.

• Conceptual challenge. Once the data is retrieved and modeled, a major challenge
resides in doing something meaningful with the available data. As we have seen
in the various approaches, at the beginning there is always a number of research
questions that need to be answered, and subsequently researchers develop the
necessary mechanisms to answer those questions. A heavily used technique in
this case is visualization, as it allows (if well chosen) to detect patterns in the sea
of data that one has to navigate.

As a major future challenge we see the current dichotomy between forward engineer-
ing and software evolution. We believe that software repositories, currently mostly
used for retrospective analyses, need to become an integral part of any software
project, and as such should not be separated from the most recent version, which
is usually the focus of all maintenance efforts.



4

Predicting Bugs from History

Thomas Zimmermann1, Nachiappan Nagappan2, and Andreas Zeller1

1 University of Calgary, Alberta, Canada
2 Microsoft Research, Redmond, Washington, USA
3 Saarland University, Saarbrücken, Germany

Summary. Version and bug databases contain a wealth of information about software fail-
ures—how the failure occurred, who was affected, and how it was fixed. Such defect infor-
mation can be automatically mined from software archives; and it frequently turns out that
some modules are far more defect-prone than others. How do these differences come to be?
We research how code properties like (a) code complexity, (b) the problem domain, (c) past
history, or (d) process quality affect software defects, and how their correlation with defects
in the past can be used to predict future software properties—where the defects are, how to fix
them, as well as the associated cost.

4.1 Introduction

Suppose you are the manager of a large software project. Your product is almost
ready to be released—where “almost ready” means that you suspect that a number
of defects remain. To find these defects, you can spend some resources for quality
assurance. Since these resources are limited, you want to spend them in the most
effective way, getting the best quality and the lowest risk of failure. Therefore, you
want to spend the most quality assurance resources on those modules that need it
most—those modules which have the highest risk of producing failures.

Allocating quality assurance resources wisely is a risky task. If some non-
defective module is tested for months and months, this is a waste of resources. If
a defective module is not tested enough, a defect might escape into the field, caus-
ing a failure and potential subsequent damage. Therefore, identifying defect-prone
modules is a crucial task for management.

During the lifetime of a project, developers remember failures as well as suc-
cesses, and this experience tells them which modules in a system are most frequently
associated with problems. A good manager will exploit this expertise and allocate re-
sources appropriately. Unfortunately, human memory is limited, selective, and some-
times inaccurate. Therefore, it may be useful to complement it with findings from
actual facts—facts on software defects as found after release.

In most quality-aware teams, accessing these facts requires no more than a sim-
ple database query. This is so because bug databases collect every problem reported
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Fig. 4.1. Michael Ogawa’s visualisation of the Eclipse Bug Data [401], inspired by Martin
Wattenberg’s “Map of the Market” [536]. Each rectangle stands for a package; the brighter the
rectangle, the more post-release defects it has

about a software product. For a system that already has a large user community, bug
databases are central to the development process: new bugs are entered into the sys-
tem, unresolved issues are tracked, and tasks are assigned to individual developers.
However, as a bug database grows, it can also be used to learn which modules are
prone to defects and failures. This is so because as the problems are fixed, the fixes
apply to individual modules—and therefore, one can actually compute how many de-
fects (or reported failures) some module is associated with. (How to establish these
mappings between bug reports, fixes, and locations is described in Chapter 3 of the
present book.)

Figure 4.1 visualises defect data in the modules of the Eclipse programming en-
vironment. As the picture shows, the distribution of defects across modules is very
uneven. For instance, compiler components in Eclipse have shown 4–5 times as many
defects as user interface components [455]. Such an uneven distribution is not at all
uncommon; Pareto’s law [160, p. 132], for instance, already stated in 1975 that ap-
proximately 80 % of the defects are found in 20 % of the modules. Still, this uneven
distribution calls for our first research question:

Why are some modules more defect-prone than others?

Answering this question helps in understanding the nature of defects—starting
with the symptoms, and then following the cause-effect chain back to a root cause—
and will help avoiding defects in the future.
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Unfortunately, at the present time, we have no universal answer for this question.
It appears that every project has its own individual factors that make specific mod-
ules prone to defects and others unlikely to fail. However, we can at least try to cap-
ture these project-specific properties—for instance, by examining and summarising
the common symptoms of defect-prone modules. Coming back to our original set-
ting, knowing these common properties will also help in allocating quality assurance
resources. This will answer the second, more opportunistic, but no less important
question:

Can we predict how defect-prone a component will be?

At first glance, this question may seem absurd. Did we not just discuss how to mea-
sure defect-proneness in the past? Unfortunately, the number of defects in the past
may not be a good indicator of the future:

• Software evolves, with substantial refactorings and additions being made all the
time. Over time, this invalidates earlier measurements about defects.

• The defects we measure from history can only be mapped to components be-
cause they have been fixed. Given that we consider defects that occur after re-
lease, by definition, any measurement of defect-prone components applies to an
already obsolete revision.

For these reasons, we need to devise with predictive methods that can be applied
to new as well as evolved components—predictions that rely on invariants in peo-
ple, process, or structure that allow predicting defects although the code itself has
changed. In the next section, we discuss how to find some of such invariants, and
how they may impact the likelihood of defects.

4.2 What Makes a Module Defect-Prone?

If software needs to be fixed, it needs to be fixed because it does not satisfy a require-
ment. This means that between the initial requirement and the actual deployment of
the software system, some mistake has been made. This mistake manifests itself as
an error in some development artefact, be it requirements, specification, or a design
document. Ultimately, it is the source code that matters most, since it is the realisa-
tion of the software system; errors in source code are called defects. If an error in
some earlier stage does not become a defect, we are lucky; if it becomes a defect, it
may cause a failure and needs to be fixed.

The defect likelihood of some module thus depends on its history—not only its
code history, but the entire history of activities that led to its creation and mainte-
nance. As the code evolves, this earlier history still stays unchanged, and the history
may well apply to other modules as well. Therefore, when trying to predict the error-
proneness of modules, we must look for invariants in their history, and how these
invariants might manifest themselves in modules. In this chapter, we discuss the fol-
lowing invariants:
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Complexity. In general, we assume that the likelihood of making mistakes in some
artefact increases with
1. the number of details, and
2. the extent of how these details interact and interfere with each other.

This is generally known as complexity, and there are many ways complexity
manifests itself in code. More specifically, complexity metrics attempt to mea-
sure the complexity of code, and therefore, it may be useful to check whether
it is possible to predict defect-proneness based on complexity metrics. This is
discussed in Section 4.3.

Problem domain. As stated initially, software fixes come to be because require-
ments are unsatisfied. This implies that the more likely it is to violate a require-
ment, the higher the chances of making a mistake. Of course, a large number
of interfering requirements results in a higher problem complexity—and should
thus manifest itself in complex code, as described above. However, we assume
that specific problem domains imply their own set of requirements. Therefore,
one should be able to predict defect-proneness based on the domain alone. How
does one determine the problem domain? By examining the modules another
module interacts with, as shown in Section 4.4.

Evolution. Requirements can be unsatisfied for a simple reason: They may be
changing frequently. Modified requirements result in changed code—and there-
fore, code that is frequently changed indicates frequently changing requirements.
The same applies for imprecise requirements or requirements that are not well
understood, where trial-and-error approaches may also cause frequent fixes. Fi-
nally, since changes may introduce new defects [160], a high change rate implies
a higher defect likelihood. Relying on the change rate to predict defects is dis-
cussed in Section 4.5.

Process. Every defect that escapes into the field implies a failure of quality assur-
ance—the defect simply should have been caught during checking, testing, or
reviewing. A good software process can compensate many of the risks described
above; and therefore, the quality of the development process should also be con-
sidered when it comes to predicting defects. We discuss these open issues in
Section 4.6.

The role of these invariants in software development has been analysed before, and
a large body of knowledge is available that relates complexity, the problem domain,
or evolution data to defects. What we see today, however, is the automation of these
approaches. By having bug and change databases available for automated analysis,
we can build tools that automatically relate defects to possible causes. Such tools
allow for product- and project-specific approaches, which may be far more valuable
than general (and therefore vague) recommendations found in software engineering
textbooks. Our results, discussed in the following sections, all highlight the necessity
of such goal-oriented approaches.

Related to this is the notion of software reliability. Software reliability is defined
as the probability that the software will work without failure under specified con-
ditions and for a specified period of time [388]. A number of software reliability
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models are available. They range from the simple Nelson model [392] to more so-
phisticated models using hyper-geometric coverage [248] and Markov chains [540].

4.3 Metrics

A common belief is that the more complex code is, the more defects it has. But is
this really true? In order to investigate this hypothesis, we first must come up with
a measure of complexity—or, in other words, a complexity metric. A metric is defined
as quantitative measure of the degree to which a system, component or process pos-
sesses a given attribute [238]; the name stems from the Greek work metron (µέτρoν),
meaning “measure”. Applied to software, a metric becomes a software metric.

Software metrics play an essential part in understanding and controlling the over-
all software engineering process. Unfortunately, metrics can be easily misinterpreted
leading to making poor decisions. In this section, we investigate the relationships
between metrics and quality, in particular defects:

Do complexity metrics correlate with defect density?

4.3.1 Background

We begin this section by quickly summarising some of the more commonly used
complexity metrics in software engineering in Table 4.1. These metrics can be ex-
tracted from the source code information of projects.

Software engineering research on metrics has examined a wide variety of topics
related to quality, productivity, communication, social aspects, etc. We briefly survey
studies investigating the relationship between metrics and software quality.

Studies have been performed on the distribution of faults during development
and their relationship with metrics like size, complexity metrics, etc. [172].

From a design metrics perspective, there have been studies involving the Chi-
damber/Kemerer (CK) metric suite [111]. These metrics can be a useful early internal
indicator of externally-visible product quality [39, 479]. The CK metric suite consist
of six metrics (designed primarily as object oriented design measures):

• weighted methods per class (WMC),
• coupling between objects (CBO),
• depth of inheritance (DIT),
• number of children (NOC),
• response for a class (RFC), and
• lack of cohesion among methods (LCOM).

The CK metrics have also been investigated in the context of fault-proneness.
Basili et al. [39] studied the fault-proneness in software programs using eight stu-
dent projects. They observed that the WMC, CBO, DIT, NOC and RFC metrics were
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Table 4.1. Commonly used complexity metrics

Metric Description

Lines of code The number of non-commented lines of code
Global variables The number of global variables in a module
Cyclomatic complexity The Cyclomatic complexity metric [479] measures the

number of linearly-independent paths through a program
unit

Read coupling The number of global variables read by a function. (The
function is thus coupled to the global variable through the
read operation)

Write coupling The number of global variables written by a function. (The
function is thus coupled to the global variable through the
write operation)

Address coupling The number of global variables whose address is taken by
a function and is not read/write coupling. (The function is
coupled to the global variable as it takes the address of the
variable)

Fan-in The number of other functions calling a given function in
a module

Fan-out The number of other functions being called from a given
function in a module

Weighted methods per class The number of methods in a class including public, private
and protected methods

Depth of inheritance For a given class the maximum class inheritance depth
Class coupling Coupling to other classes through (a) class member vari-

ables, (b) function parameters, (c) classes defined locally in
class member function bodies. (d) Coupling through imme-
diate base classes. (e) Coupling through return type

Number of subclasses The number of classes directly inheriting from a given par-
ent class in a module

correlated with defects while the LCOM metric was not correlated with defects. Fur-
ther, Briand et al. [82] performed an industrial case study and observed the CBO,
RFC, and LCOM metrics to be associated with the fault-proneness of a class.

Structure metrics take into account the interactions between modules in a prod-
uct or system and quantify such interactions. The information-flow metric defined
by Henry and Kafura [230], uses fan-in (the number of modules that call a given
module) and fan-out (the number of modules that are called by a given module) to
calculate a complexity metric, Cp = (fan-in× fan-out)2. Components with a large
fan-in and large fan-out may indicate poor design. Such modules have to be decom-
posed correctly.
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4.3.2 Case Study: Five Microsoft Projects

Together with Thomas Ball we performed a large scale study at Microsoft to inves-
tigate the relation between complexity metrics and defects [390]. We addressed the
following questions:

1. Do metrics correlate with defect density?
2. Do metrics correlate universally with defect density, i.e., across projects?
3. Can we predict defect density with regression models?
4. Can we transfer (i.e., reuse) regression models across projects?

For our study, we collected code complexity metrics and post-release defect data
for five components in the Windows operating system:

• the HTML rendering module of Internet Explorer 6 (IE6)
• the application loader for Internet Information Services (IIS)
• Process Messaging Component—a Microsoft technology that enables applica-

tions running at different times to communicate across heterogeneous networks
and systems that may be temporarily offline.

• Microsoft DirectX—a Windows technology that enables higher performance in
graphics and sound when users are playing games or watching video on their
PC.

• Microsoft NetMeeting—a component for voice and messaging between different
locations.

To protect proprietary information, we have anonymised the components and refer
to them as projects A, B, C, D, and E.

In our study, we observed significant correlations between complexity metrics
(both object oriented (OO) and non-OO metrics) and post-release defects. The met-
rics that had the highest correlations are listed in Table 4.2. The interesting part
of this result is that across projects, different complexity metrics correlated signifi-
cantly with post-release defects. This indicates that none of the metrics we researched
would qualify as universal predictor, even in our closed context of only Windows op-
erating system components.

When there is no universal metric, can we build one by combining existing met-
rics? We tried by building regression models [282] using complexity metrics. In or-
der to avoid inter-correlations between the metrics, we applied principal component

Table 4.2. Metrics with high correlations

Project Correlated Metrics

A Number of classes and five derivations
B Almost all metrics
C All except depth of inheritance
D Only lines of code
E Number of functions, number of arcs, McCabe complexity
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Table 4.3. Transferring predictors across projects

Project predicted for
Project learned from A B C D E

A – no no no no
B no – yes no no
C no yes – no yes
D no no no – no
E no no yes no –

analysis [246] first. For our regression models, we used the principal components as
independent variables. As a result of this experiment, we obtained for every project
a predictor that was capable of accurately predicting defect-prone components of the
project [390].

Next, we applied these predictors across projects. The results in Table 4.3 show
that in most cases, predictors could not be transferred. The only exceptions are be-
tween projects B and C and between C and E, where predictors are interchange-
able. When comparing these projects, we observed that they had similar development
processes.

A central consequence of this result would be to reuse only predictors that were
generated in similar environments. Put another way: Always evaluate with history be-
fore you use a metric to make decisions. Or even shorter: Never blindly trust a metric.

Key Points

✏ Complexity metrics indeed correlate with defects.
✏ There is no universal metric and no universal prediction model.
✏ Before relying on a metric to make predictions, evaluate it with a true defect

history.

4.4 Problem Domain

The chances of making mistakes depend strongly on the number and complexity of
the requirements that some piece of code has to satisfy. As discussed in the Sec-
tion 4.3, a large number of interfering requirements can result in a higher code com-
plexity. However, this may not necessarily be so: an algorithm may have a very sim-
ple structure, but still may be difficult to get right. Therefore, we expect that specific
requirements, or more generally, specific problem domains, to impact how defect-
prone program code is going to be:

How does the problem domain impact defect likelihood?
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Table 4.4. Good and bad imports (packages) in Eclipse 2.0 (taken from [455], ©ACM, 2006)

Packages imported into a component C Defects Total p(Defect |C)

org.eclipse.jdt.internal.compiler.lookup.* 170 197 0.8629
org.eclipse.jdt.internal.compiler.* 119 138 0.8623
org.eclipse.jdt.internal.compiler.ast.* 111 132 0.8409
org.eclipse.jdt.internal.compiler.util.* 121 148 0.8175
org.eclipse.jdt.internal.ui.preferences.* 48 63 0.7619
org.eclipse.jdt.core.compiler.* 76 106 0.7169
org.eclipse.jdt.internal.ui.actions.* 37 55 0.6727
org.eclipse.jdt.internal.ui.viewsupport.* 28 42 0.6666
org.eclipse.swt.internal.photon.* 33 50 0.6600
. . .
org.eclipse.ui.model.* 23 128 0.1797
org.eclipse.swt.custom.* 41 233 0.1760
org.eclipse.pde.internal.ui.* 35 211 0.1659
org.eclipse.jface.resource.* 64 387 0.1654
org.eclipse.pde.core.* 18 112 0.1608
org.eclipse.jface.wizard.* 36 230 0.1566
org.eclipse.ui.* 141 948 0.1488

4.4.1 Imports and Defects

To demonstrate the impact of the problem domain on defect likelihood, let us come
back to the distribution of defects in Eclipse, as shown in Figure 4.1. Let us assume
we want to extend the existing code by two new components from different problem
domains: user interfaces and compiler internals. Which component is more likely to
be defect-prone?

Adding a new dialog box to a GUI has rather simple requirements, in most cases
you only have to extend a certain class. However, assembling the elements of the
dialog box takes lots of additional complicated code. In contrast, using a parser to
build an abstract syntax tree requires only a few lines of code, but has many rather
complicated requirements such as picking the correct parameters. So which domain
more likely leads to defects?

In the context of Eclipse, this question has been answered. Together with Adrian
Schröter, we examined the components that are used as an implicit expression of the
component’s domain [455]. When building an Eclipse plug-in that works on Java
files, one has to import JDT classes; if the plug-in comes with a user interface, GUI
classes are mandatory. Therefore, what a component imports determines its problem
domain.

Once one knows what is imported, one can again relate this data to measured de-
fect densities. Table 4.4 shows how the usage of specific packages in Eclipse impacts
defect probability. A component which uses compiler internals has a 86% chance to
have a defect that needs to be fixed in the first six months after release. However,
a component using user interface packages has only a 15% defect chance.
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This observation raises the question whether we can predict defect-proneness by
just using the names of imported components? In other words: “Tell me what you
import, and I’ll tell you how many defects you will have.”

4.4.2 Case Study: Eclipse Imports

Can one actually predict defect likelihood by considering imports alone? We built
statistical models with linear regression, ridge regression, regression trees, and sup-
port vector machines. In particular, we addressed the following questions:

Classification. Can we predict whether a component will have defects?
Ranking. Can we predict which components will have the most defects?

For our experiments, we used random splits: we randomly chose one third of the
52 plug-ins of Eclipse version 2.0 as our training set, which we used to build our
models. We validated our models in versions 2.0 and 2.1 of Eclipse. Both times we
used the complement of the training set as the validation set. We generated a total of
40 random splits and averaged the results for computing three values:

• The precision measures how many of the components predicted as defect-prone
actually have been shown to have defects. A high precision means a low number
of false positives.

• The recall measures how many of the defect-prone components are actually pre-
dicted as such. A high recall means a low number of false negatives.

• The Spearman correlation measures the strength and direction of the relation-
ship between predicted and observed ranking. A high correlation means a high
predictive power.

In this section, we discuss our results for support vector machines [132] (which per-
formed best in our evaluation).

Precision and Recall

For the validation sets in version 2.0 of Eclipse, the support vector machines obtained
a precision of 0.67 (see Table 4.5). That is, two out of three components predicted
as defect-prone were observed to have defects. For a random guess instead, the pre-
cision would be the percentage of defect-prone packages, which is only 0.37. The
recall of 0.69 for the validation sets in version 2.0 indicates that two third of the
observed defect-prone components were actually predicted as defect-prone. Again,
a random guess yields only a recall of 0.37.

In practice, this means that import relationships provide a good predictor for
defect-prone components. This is an important result since relationships between
components are typically defined in the design phase. Thus, defect-prone compo-
nents can be identified early, and designers can easily explore and assess design
alternatives in terms of predicted defect risk.
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Table 4.5. Predicting defect-proneness of Eclipse packages with Support Vector Machines and
import relations (taken from [455], ©ACM, 2006)

Precision Recall Spearman Correlation

training in Eclipse v2.0 0.8770 0.8933 0.5961

validation in Eclipse v2.0 0.6671 0.6940 0.3002

—top 5% 0.7861
—top 10% 0.7875
—top 15% 0.7957
—top 20% 0.8000

validation in Eclipse v2.1 0.5917 0.7205 0.2842
—top 5% 0.8958
—top 10% 0.8399
—top 15% 0.7784
—top 20% 0.7668

Ranking vs. Classification

The low values for the Spearman rank correlation coefficient in Table 4.5 indicate
that the predicted rankings correlate only little with the observed rankings. However,
the precision values for the top 5% are higher than the overall values. This means that
the chances of finding defect-prone components increase for highly ranked compo-
nents.

In practice, this means that quality assurance is best spent on those components
ranked as the most defect-prone. It is therefore a good idea to analyse imports and
bug history to establish appropriate rankings.

Applying Models Across Versions

The results for the validation sets of Eclipse version 2.1 are comparable to the ones
of version 2.0; for the top 5% and 10% of the rankings, the precision values are even
higher. This indicates that our models are robust over time.

For our dataset, this means that one can learn a model for one version and apply it
to a later version without losing predictive power. In other words, the imports actually
act as invariants, as discussed in Section 4.2.

4.4.3 Case Study: Windows Server 2003

At Microsoft, we repeated the study by Schröter et al. [455] on the defect data of
Windows Server 2003. Instead of import relationships, we used dependencies to de-
scribe the problem domain between the 2252 binaries. A dependency is a directed
relationship between two pieces of code such as expressions or methods. For our ex-
periments, we use the MaX tool [473] that tracks dependency information at the func-
tion level and looks for calls, imports, exports, RPC, and Registry accesses. Again,
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the problem domain was a suitable predictor for defects and performed substan-
tially better than random (precision 0.67, recall 0.69, Spearman correlations between
0.50 and 0.60).

In addition to the replication of the earlier study (and its results), we also ob-
served a domino effect in Windows Server 2003. The domino effect was stated
in 1975 by Randell [430]:

Given an arbitrary set of interacting processes, each with its own private
recovery structure, a single error on the part of just one process could cause
all the processes to use up many or even all of their recovery points, through
a sort of uncontrolled domino effect.

Applying the domino effect on dependencies, this would mean that defects in
one component can increase the likelihood of defects in dependent components. Fig-
ure 4.2 illustrates this phenomenon on a defect-prone binary B. Out of the three
binaries that directly depend on B (distance d = 1), two have defects, resulting in
a defect likelihood of 0.67. When we increase the distance, say to d = 2, out of the
four binaries depending on B (indirectly), only two have defects, thus the likelihood
decreases to 0.50. In other words, the extent of the domino effect decreases with
distance—just like with real domino pieces.

In Figure 4.3 we show the distribution of the defect likelihood, as introduced
above, when the target of the dependency is defect-prone (d = 1). We also report
results for indirect dependencies (d = 2, d = 3). The higher the likelihood, the more
dependent binaries are defect-prone.

To protect proprietary information, we anonymised the y-axis which reports the
frequencies; the x-axis is relative to the highest observed defect likelihood which was

Fig. 4.2. Example of a domino
effect for a binary B
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Fig. 4.3. The domino effect in
Windows Server 2003

greater than 0.50 and is reported as X . The likelihood X and the scale of the x-axis
are constant for all bar charts. Having the highest bar on the left (at 0.00), means that
for most binaries the dependent binaries had no defects; the highest bar on the right
(at X), shows that for most binaries, their dependent binaries had defects, too.

As Figure 4.3 shows, directly depending on binaries with defects, causes most
binaries to have defects, too (d = 1). This effect decreases when the distance d in-
creases (trend towards the left). In other words, the domino effect is present for most
defect-prone binaries in Windows Server 2003. As the distance d increases, the im-
pact of the domino effect decreases. This trend is demonstrated by the shifting of the
median from right to left with respect to the defect likelihood.

Key Points

✏ The set of used components is a good predictor for defect proneness.
✏ The problem domain is a suitable predictor for future defects.
✏ Defect proneness is likely to propagate through software in a domino effect.
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4.5 Code Churn

Code is not static; it evolves over time to meet new requirements. The way code
evolved in the past can be used to predict its evolution in the future. In particular,
there is an often accepted notion that code that changes a lot is of lower quality—
and thus more defect-prone than unchanged code.

How does one measure the amount of change? Lehman and Belady [320] intro-
duced the concept of code churn as the rate of growth of the size of the software. But
measuring the changes in the size of the software does not necessarily capture all
changes that have occurred during the software development, this is especially true
if the software has been re-architected. More generally, code churn can be defined
as a measure of the amount of code change taking place within a software unit over
time. [389]. The primary question we address in this section is:

Does code churn correlate with defects?

4.5.1 Background

Several researchers have investigated how evolution relates to defects. Ostrand et
al. [408] use information of file status such as new, changed, unchanged files along
with other explanatory variables such as lines of code, age, prior faults etc. to pre-
dict the number of faults in multiple releases of an industrial software system. The
predictions made using binomial regression model were of a high accuracy for faults
found in both early and later stages of development.

Munson et al. [384] studied a 300 KLOC (thousand lines of code) embedded real
time system with 3700 modules programmed in C. Code churn metrics were found
to be among the most highly correlated with problem reports.

Graves et al. [209] predicted fault incidences using software change history. The
most successful model they built computed the fault potential by summing contribu-
tions from changes to the module, where large and/or recent changes contribute the
most to fault potential.

4.5.2 Case Study: Windows Server 2003

In addition to the above research results, we now summarise in detail the results of
a case study performed on Windows Server 2003 [389]. We analysed the code churn
between the release of Windows Server 2003 and the release of the Windows Server
2003 Service Pack 1 (Windows Server 2003-SP1) to predict the defect density in
Windows Server 2003-SP1.

As discussed in Section 4.5.1, there are several measures that can be used to
explain code churn. In our study, we used the following churn measures [389]:

• Total LOC is the number of lines of non-commented executable lines in the files
comprising the new version of a binary.
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• Churned LOC is the sum of the added and changed lines of code between a base-
line version and a new version of the files comprising a binary.

• Deleted LOC is the number of lines of code deleted between the baseline version
and the new version of a binary.

• File count is the number of files compiled to create a binary.
• Weeks of churn is the cumulative time that a file was opened for editing from the

version control system.
• Churn count is the number of changes made to the files comprising a binary

between the two versions (Windows Server 2003 and Windows Server 2003-
SP1).

• Files churned is the number of files within the binary that churned.

The overall size of the analysed code base was around 40 million lines of code from
more than 2000 binaries. Using the above extracted metrics from the version control
system, we use a relative approach (as shown in Figure 4.4) to build our statistical
regression models to predict system defect density. Our rationale for relative metrics
is that in an evolving system, it is highly beneficial to use a relative approach to
quantify the change in a system. A more detailed discussion of the experiment is
available in [389].

Using random splitting techniques we used the above “relative” code churn mea-
sures as predictor variables in our statistical models. We selected two-thirds of the
binaries to build our statistical prediction models (multiple regression, logistic re-
gression) to predict overall system defect density/fault-proneness. Based on our sta-

Fig. 4.4. Relative churn measures (taken from [389], ©ACM, 2005)
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Fig. 4.5. Plot of actual versus estimated defect density (taken from [389], ©ACM, 2005)

tistical analysis we were able to predict system defect density/fault-proneness at high
levels of statistical significance. Figure 4.5, for example, shows the results of the one
of the random split experiments to predict the actual system defect density.

Key Points

✏ The more a component has changed (churned), the more likely it is to have
defects.

✏ Code churn measures can be used to predict defect-prone components.

4.6 Open Issues

We have seen how complexity, the problem domain, or the change rate can be used to
learn from history and to predict the defect density of new and evolved components.
We can thus indeed predict bugs from history, and even do so in a fully automatic
way. This is a clear benefit of having a well-kept track of earlier defects: avoiding
future defects by directing quality assurance efforts.

The examples in this chapter all rely on code features to predict defects. By no
means have we analysed all possible code features that might turn out to be good
defect predictors. We expect future research to come up with much better predictors;
Table 4.6 lists several data sets that are publicly available such that anyone can test
her or his favourite idea.
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Table 4.6. Datasets for empirical studies

Promise Data Repository The Promise Data Repository contains data sets for effort estima-
tion, defect prediction, and text mining. Currently, it comprises 23
datasets, but this number is constantly growing (free).
http://promisedata.org/

NASA Metrics Data The repository of the NASA IV&V Facility Metrics Data Program
contains software metrics (such as McCabe and Halstead) and the
associated error data at the function/method level for 13 projects
(free).
http://mdp.ivv.nasa.gov/

Eclipse Bug Data This data contains the pre-release and post-release defects for three
versions of the Eclipse IDE (free).
http://www.st.cs.uni-sb.de/softevo/

ISBSG The repository of ISBSG contains empirical data for software esti-
mation, productivity, risk analysis, and cost information (commer-
cial).
http://www.isbsg.org/

Finnish Data Set This dataset is collected by STTF to support benchmarks of
software costs, development productivity, and software processes
(commercial).
http://www.sttf.fi/

FLOSSmole FLOSSmole is a “collaborative collection and analysis of free/li-
bre/open source project data.”
http://ossmole.sourceforge.net/

Another common feature of the approaches discussed so far is that they all predict
the number of defects. In general, though, managers not only want to minimise the
number of defects, but minimise the overall damage, which involves the impact of
each defect—that is, the number of actual failures, and the damage caused by each
failure.

Finally, all the predictions discussed in this chapter require a history of defects to
learn from. Over history, we can learn which features of the code or the development
process are most likely to correlate with defects—and these very features can thus be
used to predict defect-prone components. Of course, the more detailed this history of
failures is, the more accurate our predictions will be. However, having a long history
of failures is something we would like to avoid altogether. At least, we would like to
learn enough from one project history to avoid repeating it in the next project:

• Is there a way to make predictions for new products with no known history yet?
• How can we leverage and abstract our knowledge about defects from one project

to another one?
• Are there any universal properties of programs and processes that invariably

result in a higher defect density?

We believe that such universal properties indeed do exist. However, it is very unlikely
that these properties are code properties alone. Remember that we focus on defects
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that occur after release, that is, at a time where people already have taken care of
quality assurance. It is reasonable to assume that the more (and better) quality as-
surance is applied, the fewer defects will remain. However, none of our predictor
models takes the extent or effectiveness of quality assurance into account—simply
because code does not tell how it has been tested, checked, reviewed, or verified.

The effectiveness of quality assurance is a feature of the software process, not
the software itself. There are ways to characterise and evaluate quality assurance
techniques—for instance, one can check the coverage of a test suite or its effective-
ness in uncovering mutations. These are important features of the software process
that may help predicting defects.

Besides quality assurance, there are further process features to look into. The
qualification of the programmer, combined with the time taken to write a compo-
nent; the quality of the specification; the quality of the design; the competence of
management; continuity of work flow—all these, and many more, are factors which
contribute to people making mistakes (or avoiding them). In some way, looking for
universal properties that cause defects is like looking for a universal way to write
software. As an intermediate goal, it may already be helpful to choose between mul-
tiple “good” ways.

Whatever features future predictors will be based upon—there is one invariant
that remains: Any predictor will eventually turn out to be wrong. This is because if
a predictor predicts a higher number of defects (or failures, or damage, for that mat-
ter), the component will be checked more carefully—which will, of course, reduce
density. Any defect predictor will thus produce self-defeating prophecies—and this
is a good thing.

Key Points

✏ So far, all defect predictors require a history of earlier defects.
✏ Automated predictors do not yet directly leverage process data.
✏ The quest for universal (e.g. history-less) defect predictors is still open.

4.7 Threats to Validity

As with all empirical studies drawing general conclusions from case studies in soft-
ware engineering is difficult because any process depends to a large degree on a po-
tentially large number of relevant context variables. For this reason, we cannot as-
sume a priori that the results of a study generalise beyond the specific environment
in which it was conducted [40]. Some of the threats to validity of our studies are
discussed below.

• There could have been errors in measurement. In general, all the measurement
of software data in our studies was done using automated tools. This alleviates to
a certain degree errors in measurement. But it is possible that these tools could
have had design errors that could have led to errors in measurement
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• Our case studies were performed for two large systems namely Windows Server
2003 and Eclipse. It is possible that these results may not be observed for smaller
or other systems. Further these systems have possibly several million users.
Hence it is possible that other systems which do not have such an active usage
profile may not have most of its field defects found equally.

• At least one of the three authors were part of each case study described in this
chapter. Unknowingly it would have been possible to introduce experimenter
bias into the case studies.

• All the analysis in our studies was done after-the-fact, i.e., all the field defects
had been reported back and we had used it for our prediction models. It is diffi-
cult for us to gauge how our prediction made before hand would have influenced
the development team behaviour effectively benefiting them to identify problem-
prone components early.

• The statistical models built for the software systems may apply only for the
particular family of systems for which they are built for [61]. For example it
may not be useful to use a model built on Eclipse to predict bugs in small toy
programs.

• Though our case studies predict defects significantly other information such as
severity, impact of failure information etc. are missing from our predictions. This
type of predictions would be part of future investigations in this research area.

Basili et al. state that researchers become more confident in a theory when similar
findings emerge in different contexts [40]. Towards this end we hope that our case
study contributes towards building the already existing empirical body of knowledge
in this field [275, 274, 384, 402, 172, 209, 408, 326].

4.8 Conclusion and Consequences

Learning from history means learning from successes and failures—and how to make
the right decisions in the future. In our case, the history of successes and failures is
provided by the bug database: systematic mining uncovers which modules are most
prone to defects and failures. Correlating defects with complexity metrics or the
problem domain is useful in predicting problems for new or evolved components.
Likewise, code that changes a lot is more prone to failures than code that is un-
changed.

Learning from history has one big advantage: one can focus on the aspect of
history that is most relevant for the current situation. In our case, this means that
predictions will always be best if history is taken from the product or project at
hand. But while we can come up with accurate predictors, we need more work in
understanding the root causes for software defects—and this work should take into
account the roles of quality assurance and the general software process.

In this light, we feel that our work has just scratched the surface of what is possi-
ble, and of what is needed. Our future work will concentrate on the following topics:
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More process data. As stated above, code features are just one factor in producing
software defects; process features may be helpful in finding out why defects
are not caught. We plan to tap and mine further data sources, notably quality
assurance information, to cover more process data.

Better metrics and models. Right now, the metrics we use as input for predictors
are still very simple. We plan to leverage the failure data from several projects
to evaluate more sophisticated metrics and models that again result in better
predictors.

Combined approaches. So far, the approaches described in this chapter all have
examined specific features in isolation. Combining them, as in “I have a complex
module importing internal.compiler, which has had no defects so far” should
yield even better predictions.

Increased granularity. Rather than just examining features at the component level,
one may go for more fine-grained approaches, such as caller-callee relationships.
Such fine-grained relationships may also allow predictions of defect density for
individual classes or even individual methods or functions.

Overall, these steps should help us not only to predict where defects will be, but
also to understand their causes, such that we can avoid them in the future. Version
archives play a key role in telling which hypotheses apply, and which do not—for
the project at hand, or universally.
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Summary. Reengineering has long been considered a loathsome activity, commonly associ-
ated with “legacy” software technology and programming languages. The simplistic way to
avoid reengineering switches to “modern” software technology (objects, models, aspects, . . . )
and assumes that the legacy problem will soon disappear. Unfortunately, practice shows that
this “modern” technology is just as vulnerable to ageing symptoms and—due to rapid turn-
around cycles—becomes legacy even faster. This chapter examines two recent approaches
(namely refactoring and reengineering patterns) that provide a possible way out. This way, we
want to help future researchers, practitioners and educators to build upon existing knowledge
and make progress in our field.

5.1 Introduction

legacy: A sum of money, or a specified article, given to another by will;
anything handed down by an ancestor or predecessor.

[Oxford English Dictionary]

If you consider the traditional meaning of the word “legacy”, you see that it has
a positive connotation. Legacy is something handed down by an ancestor; hence it is
deemed worth passing on to the next generation. True, it is old and because of that
may be a bit awkward for daily use, but still people would rarely throw it away—it
has value after all. In software engineering however, the word “legacy” has received
quite a negative undertone. In our field a legacy system is defined as “a system which
significantly resists modification and evolution” [84]. “Legacy” in software is typi-
cally associated with systems developed using long forgotten methods, running on
outdated platforms and written in archaic programming languages. Because of that,
there is a strong urge to get rid of this legacy as soon as possible and start with some-
thing shiny and new. Unfortunately, practice shows that once in the field, this shiny
and new system will soon resist modification and evolution as well, and probably
faster than the legacy system it was bound to replace.

Why is it that these newer systems become legacy much faster? Was the 40 years
of software engineering research a waste of time? Is all this new technology not
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capable to deal with change? On the contrary: software engineering research has been
very successful in making software more flexible. On the one hand, requirements
engineering has improved a lot so that today we have the techniques in place into
separate requirements in stable and volatile parts (consider techniques like use-cases,
CRC-Cards, feature modelling, . . . ). This way we can design systems to anticipate
likely changes. On the other hand, today’s development technology allows to deploy
changes much later in the life-cycle (database schema-updates are performed on-the
fly, system components get installed over the internet at run-time, . . . ). This way, it
becomes way easier to modify systems in the field.

Unfortunately, our users have learned to exploit this flexibility and today the de-
mand for changes far exceeds our capacity to deploy them. Indeed, in the 70’s we
were building monolithic systems where the context adapts itself to make optimal
use of the software system. Today this situation is reversed: users expect that soft-
ware adapts itself to match the context it is being used in. Thus, newer systems will
be changed more often and consequently they will erode much faster. Put in other
words: “it is not age that turns a piece of software into a legacy system, but the rate
at which it has been developed and adapted without being reengineered” [149].

In the same vein, object-oriented programming (and follow-up technology like
components and aspects) have made it easier to design software that anticipates cer-
tain changes. Software objects use the metaphor of lego-blocks; i.e., changing a soft-
ware system should be as simple as replacing one object (= lego-block) with another.
However, objects are not as robust as there plastic counterparts: while lego-blocks
can be assembled and disassembled forever, objects are more brittle. That is, re-
placing one object with another typically involves patching a bit of code in another
object. In the beginning, this is not so bad, but after a few replacements objects rely
so much on each other that they appear to be glued together.

Therefore, to ensure the flexibility of a software system, one should not only
invest in a good initial design, but—more importantly—one should continue that in-
vestment to sustain the quality of that design. Luckily, this issue has been addressed
and the community has developed techniques to maintain the quality of a software
design. This chapter will investigate two recent approaches (namely refactoring and
reengineering patterns) that help software engineers sustain the long term maintain-
ability of their system. Note that while these approaches were developed with object-
oriented systems in mind, many principles apply to other systems as well. We will
provide an overview of the research topics that have been investigated in the past and
afterwards define an agenda of research issues that need to be tackled in the future.
The list of research topics and research agendas are necessarily incomplete, yet do
provide a good starting point for any researcher starting in the field.

5.2 Refactoring

Refactoring (the verb) is defined as “the process of changing a software system in
such a way that it does not alter the external behaviour of the code, yet improves
its internal structure” [183]. The refactoring process supposedly consists of several
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smaller steps, where each of these steps is also called “refactoring” (a noun); now
defined as “a behaviour preserving source-to-source program transformation” [440].
Refactoring is widely recognised as one of the principal techniques applied when
evolving object-oriented software systems. The key idea is to redistribute instance
variables and methods across the class hierarchy in order to prepare the software
for future extensions [404, 405]. If applied well, refactoring is said to improve the
design of software, make software easier to understand, help to find bugs, and help to
program faster [183]. As such, refactoring has received widespread attention within
both academic [502] and industrial circles [50], and is mentioned as a recommended
practice in the software engineering body of knowledge (SWEBOK) [2].

Although it is possible to refactor manually, tool support is considered crucial.
Tools such as the Refactoring Browser support a semi-automatic approach [440],
which has also been adopted by industrial strength software development environ-
ments (see http://www.refactoring.com/ for an overview of refactoring tools). Other
researchers demonstrated the feasibility of fully automated tools [107], studied ways
to make refactoring tools less dependent on the implementation language being
used [499, 305] and investigated refactoring in the context of UML [73, 184].

Already from its inception, refactoring research focussed on defining a list of
so-called primitive refactorings which can be combined to form arbitrary chains
of composite refactorings [404]. The initial list of primitive refactorings contained
transformations on object-oriented code, such as (i) adding a class, method or at-
tribute (verifying that the new name does not exist); (ii) renaming a class, method or
attribute (patching all references to the old name); (iii) moving an attribute or method
up and down the hierarchy (and removing duplicates in case the inheritance hierar-
chy allows); (iv) removing a class, method or attribute (verifying that nobody uses
it anymore); (v) extracting chunks of code in separate methods (again sometimes
removing duplicates by inserting appropriate method calls). These primitive refac-
torings are then combined into a larger composite refactorings. Note that it is only in
rare cases that the sequence contains purely primitive refactorings. In practice, most
complex refactoring scenarios require some small code massaging in order for the
refactoring to work smoothly. As an example, consider a “split class” refactoring,
which consists out of the following steps:

1. Create new superclass with a name that did not occur before, and which is a su-
perclass of the class to be split.

2. Extract pieces of code that should be moved onto the new class into separate
methods. This will most likely entail some real code editing.

3. Move the attributes that logically belong to the superclass up in the hierarchy.
4. Move the methods that logically belong to the superclass up in the hierarchy.
5. Rename the methods and attributes in the new superclass to create a consistent

interface.
6. Add abstract methods to the new superclass to suggest which ones should be

overridden in the subclass.
7. Declare items in the new and old class public/private/protected/...
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The success of refactoring implies that the topic has been approached from various
angles. This has as the unfortunate consequence that refactoring research is scat-
tered over different software engineering fields, among others object-orientation,
language engineering, modelling, formal methods, software evolution and reengi-
neering (see [369] for a thorough overview of refactoring research). Therefore, it has
been very difficult to assess current research and see where more work is necessary.
In the following paragraphs we give an overview of research issues which have been
dealt with and those that need further work. The overview takes a pragmatic stance,
trying to see which research may actually influence how practitioners use refactoring
in the field.

5.2.1 Current Research Issues

Behaviour Preserving. A crucial aspect of the definition of refactoring is the fact
that refactoring must preserve the “external behaviour”. In principle, this is a suffi-
ciently precise criterion as the external behaviour is known and regression testing can
be used to verify that the system did not regress during refactoring. However, for the-
oretical purposes it is not precise enough as one needs precise formal specifications
in order to guarantee that the refactored system still meets it specification.

Consequently, researchers have looked for formal models which can be used to
express preservation of behaviour. The most natural candidate is algebraic models
with pre- and postconditions, first expressed in natural language [404, 499], later via
assertions on the abstract syntax tree of Smalltalk programs [441] or constraints on
the type graph [501]. A more operational formalism is graph rewriting, where refac-
torings then correspond with graph rewriting rules [365, 519, 76] (see also Chap-
ter 7). Among others, the use of such rules could prove that a refactoring preserves
certain structural properties, such as the access to attributes, or the calling of meth-
ods [370].

While such formalisms are helpful to improve our understanding of how refactor-
ings affect the behaviour of programs, all of them fall short compared to actual lan-
guage semantics. Indeed, all industrial-strength programming languages have special
mechanisms in place that escape formal models. Features such as procedure-pointers,
reflection, dynamic load-libraries are necessary to build full-fledged systems, yet
make it unfeasible to predict the precise effect of a refactoring transformation. As
such, regression tests will remain the pragmatic approach to ensure that the refac-
tored program still functions as it used to. Researchers seeking for ways to help
practitioners should consider coverage of (regression) tests as a viable research topic.

Language Independence. An important implication of formal verification of
preserving behaviour is that all formalisms restrict themselves to a language-inde-
pendent meta-model typically consisting of classes, methods, attributes and the rela-
tionships between them (inheritance, invocation, access). Sometimes, explicit exten-
sions are made to deal with language specific issues [499].

Classes, methods and attributes are arguably a representative subset of the ma-
jority of class-based object-oriented languages in use today. However, they do not



5 Object-Oriented Reengineering 95

include other language constructs (most notably exceptions) which play an impor-
tant role in the semantics of languages and which are heavily used in practice. More
importantly, they do not cover language specific idioms which are little details from
a theoretical point of view, but which are crucially important to make a refactoring
tool fit seamlessly into the rest of the toolchain. Consider for instance the “rename
class” refactoring in Java; this should not only patch all old instances of the class
name in the source code, but also rename the file the class resides in (Java has the
convention of a 1-on-1 mapping between classes and files), all the makefiles referring
to that file, and all the javadoc references referring to that classname. Researchers
worrying whether practicioners will adopt their results, should be aware of these
issues.

Composite Refactorings. The combination of primitive refactorings into more
complex refactorings spawned at least two research topics. First, several researchers
used logic reasoning on the pre- and postcondition to verify properties of complex
refactorings. Roberts showed that some of the pre-conditions of a primitive refac-
toring automatically follow from the post-condition of another refactoring [441].
Kniesel could logically deduce which refactoring sequences were valid chains of
pre- and postconditions [285]. Second, it made it easier to “transpose” the refactor-
ings outside of the traditional programming language medium. For instance, when
defining refactorings for UML class models Sunyé started with the basic categories
for refactoring primitives, namely add-rename-move-remove [184]. These basic cat-
egories more or less worked for state-charts and activity diagrams as well, where both
Sunyé and Boger also defined operations that correspond to the same add-rename-
move-remove classification [73, 184].

Metaphorically speaking, the primitive refactorings resemble the twelve musi-
cal notes which can be combined to form an infinite number of melodies. However,
one shouldn’t forget that these twelve notes represent certain well-defined tone fre-
quencies which are known to form pleasant combinations for the human ear. Simi-
larly, one should not forget that the original list of primitive refactorings was cho-
sen because the authors knew from experience that these were used time and time
again in various refactoring scenarios. Rather than specifying all possible behaviour
preserving program transformations, the original list of primitive refactorings fo-
cussed on the 20% transformations that occurred in 80% of the cases, and that is the
main reason why refactoring is well received in practice. So to find new refactor-
ings, researchers should not only look for primitive transformations with nice pre-
and postconditions that seem to combine well. Much more importantly they should
demonstrate that these primitive refactorings indeed support a wide variety of realis-
tic refactoring scenarios.

Learn from the past. Several researchers have tried to mine version reposito-
ries to learn which refactorings are applied in practice (see among others [148, 207,
523, 522]; see also Chapter 3 to learn more about mining software repositories).
These resulted in some nice observations. For instance, in a comparison of three
pairs of major releases of a large open source software system (Eclipse), Xing and
Stroulia [554] found that as much as 70% of the detected structural modifications
(excluding extensions of functionality) are refactorings similar to those proposed by
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Fowler [183]. These findings confirm previous research by Dig and Johnson [152],
noting that as much as 80% of the changes applied in the context of Application Pro-
grammer Interface (API) evolution are refactorings. In an attempt to identify those
refactorings that were most commonly used across the development of seven open
source Java systems, Counsell et al. [130] found that six of the 15 preselected refac-
torings were used most often. Classified according to Fowler’s refactoring categories
[183], the objective of two of these is Move Features between Objects, of two oth-
ers is Making Method Calls Simpler, and of one is Dealing with Generalisation. In
a refinement of this work, Advani et al. [3] noticed a tendency towards the frequent
application of simple refactorings (i.e., rename and move operations).

These papers illustrate that refactoring is indeed used in practice. But much more
importantly, they show how it is used. That is, not only does it help us to identify
which refactorings are heavily used (the 80%-20% rule mentioned above) and how
they are combined with others (the composite refactorings). But much more im-
portantly it can help us to reverse engineer refactoring strategies: when are which
refactorings used and how did it help to solve certain quality problems. Such infor-
mation is very valuable to demonstrate to practicioners how refactorings can be used
to solve the problems they are facing in their systems.

5.2.2 Future Research Issues

Model Refactoring. Due to the success of refactoring for programming languages,
several authors studied how to apply refactorings in a model-driven engineering con-
text as well [184, 73, 26]. However, this raises a number of questions which are far
from resolved [367]. First of all, there is the question of behaviour preservation: how
can you specify the behaviour of a UML model? And once you done that: how can
you guarantee that it is preserved? We might find some answers in the model test-
ing community as testing is the usual means to demonstrate that the system (model)
did not regress. Secondly, there is the question of synchronisation. In a model-driven
reengineering context, one model is typically built up from different views, using dif-
ferent types of diagrams that all need to be kept consistent. Moreover, these models
are used to generate code which is afterwards changed to include manual additions.
Thus one “refactoring” applied in a single view (say “rename class”) should ripple
through all related views and code. To some degree this is similar to programs which
must be kept synchronised with related software artefacts (databases, user interfaces,
test suites), however the problem is typically much bigger because there are more
views in place and some of them are necessarily incomplete. Fortunately, many tools
offer some kind of traceability links which specify which model elements rely upon
another.

Given the interest in both refactoring and model-driven engineering one may
expect lots of work in this area in the near future. For the moment it remains unclear
which avenues will be able to answer the questions of behaviour preservation and
model synchronisation, which makes it a fruitful area for future research.

Refactoring in the Large. Refactoring is by definition performed on a local
level. However, the intent of refactoring is to influence quality characteristics of
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a software system, thus to have global effect. In that sense, one could imagine refac-
toring at architectural level as this is the abstraction level that is expected to deal with
non-functional requirements such as maintainability or performance.

Much of the refactoring vocabulary could be transferred to the architectural level.
A code smell would become a design smell, the elements moved around would be-
come components and connectors, . . . . What will become much more difficult though
is (again) the notion of preserving behaviour. After all, it is the very idea of architec-
tural refactoring to change the non-functional behaviour.

Refactoring Economics. Refactoring is applied to improve the internal struc-
ture of a software system, which is believed to increase its long-term maintainability.
However, this belief is based mainly on anecdotal evidence and has yet to be val-
idated empirically. The few experiments conducted on that subject so far were in-
conclusive at best. Indeed, both Arisholm [20] and Du Bois [154] reported that the
maintainability of an object-oriented system depends much less on the programming
style (delegated versus centralised control style) and much more on the expertise of
the maintainer.

In that sense more empirical work is needed to demonstrate that refactoring—
if applied well—truly improves the maintainability. Controlled experiments like the
ones mentioned above may certainly help, however an economic perspective may be
worthwhile as well. Indeed, given the many software organisations that are at CM-
MMI level three our higher, obtaining data about the cost per new feature shouldn’t
be too difficult. If we then project how the cost per feature changes over time, we ex-
pect to see an increasing cost growth, while after a refactoring period the cost growth
should decrease again. If this expectation proves realistic, what then remains to be
done is verifying whether the refactoring investment pays off. Thus, whether the ef-
fort spent on refactoring plus the effort spent on adding new features to the refactored
system is less than the effort that would be spent when adding features to the base
system.

Education. Refactoring has received widespread attention, and is listed as a rec-
ommended practice in the software engineering body of knowledge [2]. Unfor-
tunately, the diversity in the field implies a lack of standardisation which goes
against the very idea of a standard body of knowledge. This problem has been
recognised by a number of European Universities and research institutes which
have founded a network—named RELEASE—addressing this problem. During four
years they have exchanged tools and cases in order to identify a typical refactor-
ing scenario to be used for both teaching and research. In the end this resulted
in a small but realistic software system (a simulation of a Local Area Network;
the so-called LAN-simulation) which suffers from some typical code smells that
could be refactored away. To demonstrate that the refactoring indeed preserves be-
haviour, the system includes a few unit tests which serve as regression tests. A pa-
per reporting about the use of this demonstrator as a research vehicle has been
presented at the International Workshop on Principles of Software Evolution (IW-
PSE) [150] and during the first refactoring tools workshop [147]. The code—both in
C++ and Java— and accompanying teacher and student instructions can be found at
http://www.lore.ua.ac.be/Research/Artefacts/.
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The LAN-simulation is but one example of concrete teaching material freely
available on the web that can be used both in class room settings as well as on self-
learning basis. It demonstrates that reengineering skills in general and refactoring
skills in particular can be taught. However, to raise awareness and to train the current
and future generation of software engineers, more such material will be needed.

5.3 Reengineering Patterns

Patterns have emerged in recent years as a literary form used to document expert
knowledge in solving certain kinds of software problems, most notably design [190],
but also analysis [182], architecture [97] and testing [66]. First of all, they address
recurring problems which are very similar, yet never exactly alike. That is why most
patterns explicitly describe the context in which the problem occurs and a solution
which might be applicable. Secondly, these problems entail a number of conflict-
ing forces and the solution entails a number of trade-offs. Good patterns therefore
help to convey the complex decision process that experts use to determine whether
a solution really applies to a given problem. Thirdly, patterns are solutions that have
proven their value in real problem situations. That is why patterns are not invented
but discovered; that is also why typical patterns list known uses of that solution.
Fourthly, patterns teach the essence of a solution to a complex problem in a form
which is accessible to an apprentice. A critical section of a pattern is therefore the
choice of a good example, as examples are one of the best teaching vehicles avail-
able to mankind. Fifthly, complex problems cannot be solved in a single shot. That
is why most patterns refer to one another, and are often organised in pattern systems
as a way to convey the different viewpoints one may take to tackle a complex prob-
lem. Last but not least, patterns carry a name, thus introducing a certain vocabulary.
Such a vocabulary is important since it enables experts to discuss alternative solu-
tions at a higher level of abstraction where technical approaches and their tradeoffs
are implicitly captured by their names.

Patterns are a form of documentation, so they are naturally presented using writ-
ten text. Yet, to avoid forcing readers to wade through pages and pages of text to
identify the essence of a pattern, patterns typically follow some kind of template (the
so-called pattern form) which provides quick access to key information. Most pattern
templates therefore include separate sections for the problem (in context), the solu-
tion, the forces and trade-offs, an example, the known uses and any related patterns.
Figure 5.1 shows an example of such a template for reengineering patterns, adapted
from [149].

Since reengineering is an important but very complex endeavour—entailing both
technical and personal skills—designers need help. Patterns have proven to be a form
that is very well adapted to describe best practices in reengineering. Stevens was one
of the first to advocate the development of reengineering patterns [475]. However,
at that time several authors were already documenting reengineering expertise in
patterns form; among others Foote about the lack of architecture [181] and Brown
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Name Speculate About Design
Intent Progressively refine your model of the system by checking hypotheses about

the design against the source code.
Problem How do you recover the way design concepts are represented in the source

code?
Solution Use your development expertise to conceive a hypothetical class diagram

representing the design. Refine that model by verifying whether the names
in the class diagram occur in the source code and by adapting the model
accordingly. Repeat the process until your class diagram stabilises.

Hints True learning occurs when the hypothetical class diagram does not match
the source code, because then you have to come-up with alternatives and you
will better understand the thought process involved by the original designers.

Tradeoffs Pro: (a) Scales well; (b) quite cheap in terms of resources and tools.
Con: (a) requires expertise; (b) consumes much time.
Difficulties: You should plan to keep the class diagram up to date.

Example (Description of a typical trial-and-error process ...)
Rationale In order to gain a true understanding of the legacy problem, you must go

through a learning process. Speculate about Design is intended to stimulate
such a learning process.

Known Uses The reflection model [386, 385], the concept assignment problem [64, 63] or
the DALI tool [41, 270] are all examples of this pattern in action.

What Next After this pattern, you will have a class diagram representing a part of the
design. You may want to Study the Exceptional Entities to get an impression
of the design quality.

Fig. 5.1. A condensed representation of the reengineering pattern “Speculate About Design”
(adapted from [149] ©Morgan Kaufmann)

on anti-patterns [86]. It was Demeyer et al. who then assembled the first catalogue
with reengineering patterns [149].

In what follows, we give an overview of the various patterns, pattern catalogues
and pattern systems that document expert knowledge about reengineering in gen-
eral and object-oriented reengineering in particular. We organise the overview by
showing how reengineering patterns are similar to other patterns, by showing how
they differ, and finally by pointing out some difficulties. Again, we hope to stimulate
researchers to build upon existing knowledge.

5.3.1 Reengineering Patterns Are Just Like Patterns

Since reengineering patterns are patterns they have some obvious resemblances, for
instance the use of a template, the forces and trade-offs. However, there are deeper
parallels which illustrate quite well the kind of skills required for reengineering large
software projects, be it object-oriented ones are not.

Keep it Simple. Patterns address complex problems, hence one might expect the
solutions to be complex too. However, most patterns adhere to the “keep it stupidly
simple" principle and reengineering patterns are no exception.
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To see an example of a lightweight approach in patterns, have a look at Specu-

late About Design [149] summarised in Figure 5.1. The pattern explains a top-down
approach for extracting a coarse-grained design view (we hesitate to use the term
“Architecture”) from the source code. Basically, the pattern argues to design an ini-
tial model and afterwards verify that model against the source code. When the model
matches the code, that’s fine because then you have found a valid design view. When
it doesn’t, it is even better, because then the reverse engineering is forced to consider
alternatives, which enhances the inevitable learning experience that every reverse
engineer must go through when taxing a new system.

Pattern System. Obviously, the “keep it stupidly simple" principle cannot solve
everything. When dealing with real problems we must somehow divide the problem
into manageable chunks and devise an overall solution out of several smaller solu-
tions. That is why most pattern catalogues (and here as well reengineering patterns
are no exception) are organised as a so-called “Pattern System". They help experts to
divide a complex problem into pieces, show how each of these pieces can be solved,
and afterwards explain how these solutions may be combined into a greater whole.

A good example of a pattern system is the catalogue written by Michael Feath-
ers [169]. There he argues that legacy systems resist change because they lack (unit)
tests or regression tests. He then explains how to gradually develop a regression
test suite, first by doing the quick and dirty work (Sprout Method), then by introducing
mock objects (The Case of the Irritating Parameter) and gradually moving towards refac-
toring a system so that it becomes easier to write the unit tests (Varieties of Monsters).

Pattern Language. Pattern languages assemble a tightly-knit group of patterns,
going beyond a simple catalogue of patterns. The ultimate goal for a pattern lan-
guage is to create a collection whose whole becomes more than the sum of its parts.
Thus, each individual pattern makes sense when applied on its own, yet the different
patterns work together to fulfil a shared objective.

An initial attempt at a pattern language tackling the program comprehension
problem can be found in Temporal Details [387]. The authors have observed that most
humans understand program code via a multitude of intermediate representations
which are refined and revised as the understanding improves. This implies that the
order in which humans create those representations affects their understanding, or, in
the authors’ words, “[. . . ] you create representations over time, and your dynamic
interactions contain meaning". They go on and explain how several Snapshots can
be combined over time into a Long View and how it is necessary to rearrange this
network to Retain Meaning. The authors include numerous examples of program tools
that partly support these program understanding patterns. As such, this pattern lan-
guage is a nice example of a vocabulary for discussing features of reverse engineering
tools.

The Human in the Loop. While there exists quite a lot of tools to support various
reengineering tasks, in the end the people must do the job. Patterns will mention tools
and refer to code in the examples and known uses, however the bulk of the content
is technology neutral. In contrast, patterns will include various tips and tricks that
directly address the human in the loop.
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To see an example of how patterns put people in the centre, consider the refac-
toring catalogue by Fowler [183]. Today, various refactoring tools automatically per-
form certain tedious tasks, such as renaming all occurrences of a method or checking
whether a method may be removed. However, the descriptions in the refactoring cat-
alogue emphasise that it is possible to refactor without a tool; in fact they contain
various tips on how to relax preconditions that are required to ensure that the refac-
toring preserves behaviour. For instance, the Pull Up Method explains how you can
move methods with similar behaviour (duplicated code) into a common superclass.
One of the hairy issues for any refactoring tool is how to determine whether two
method bodies are indeed similar, and most tools take a very strict view to ensure that
the refactoring does not break anything. The refactoring catalogue however, takes
a much more liberal view and even explains how to transform the bodies of methods
when “they look like they do the same thing but are not identical” [183]—p.323.

5.3.2 Reengineering Patterns Are Quite Different from Patterns

Despite their similarities, reengineering patterns differ from patterns in general and
design patterns in particular. Below we list the most striking differences and again
document them with examples drawn from the literature.

Process Oriented. Reengineering patterns are mainly process-oriented, explain-
ing something you should do rather than something that you should produce. There-
fore, reengineering patterns typically describe the situation before and after, and the
steps needed to make the transition. To emphasise the necessity to act, reengineering
patterns are often named with verb phrases instead of noun phrases.

There are splendid examples of such transformation steps in the “Refactoring to
Patterns” book [273]. The patterns in this book illustrate how to recognise certain
code smells as symptoms for design problems which can be solved by applying a de-
sign pattern. Thus rather than explaining the end result (the design pattern), the book
explains you how to recognise where you could apply a design pattern (the situa-
tion before), gives a stepwise instruction on how to refactor the code (the transition)
and provides a concrete example of the resulting design (the situation after). For in-
stance, the authors nicely explain subtle differences of the Adapter by explaining two
different motivations and ways to introduce them. An Unify Interface with Adapter is
used to create a unified interface for two similar classes that you can’t change for
some reason (e.g., they are part of a 3rd party library). The goal is to simplify client
code which accesses both of these classes by routing calls through an adapter. Ex-

tract Adapter, however is used to factor out conditional logic or state-variables used
to switch between different versions of a component, library or API. In that case,
we have an adapter class which is taking too many responsibilities (i.e., adapting
between too many parties) and which is resolved by creating different adapters for
each version.

Intermediate Solutions. Reengineering patterns must address what may happen
long after the solution has been applied. This is partly because reengineering projects
take considerable time, hence must introduce temporary solutions. From a “Design



102 S. Demeyer

the Perfect System” perspective such temporary steps are of course suboptimal, but
from a pragmatic point of view they are a necessary evil.

A good example of dealing with time is Deprecation [475]; which explains how
to deal with clients depending on interfaces that have been refactored. Rather than
forcing all clients to adapt to the new interface immediately, the old interface is kept
along as well. But the interface is documented as “Deprecated”, which implies that it
might removed in the near future. This gives clients time to implement the necessary
changes.

Bad Examples. Reengineering patterns must distinguish the good from the bad
and motivate that distinction. From an aesthetic point of view, showing the nega-
tive example might have its disadvantages. However, for learning purposes, negative
examples have proven to be valuable.

The pattern system Big Ball of Mud is an example of concentrating on poor de-
sign since it explains why the de-facto standard software architecture is in fact the
total lack of structure [181]. The authors argue that in order to clean up the mess in
such systems, one should understand why—despite obvious disadvantages—these
haphazardly structured systems remain so popular. Using the metaphor of urbanism,
they show that such systems are a consequence of organic growth; the lack of struc-
ture then just reflects a poorly understood problem domain.

However, the most extreme case of negative examples are the so-called anti-
patterns. Anti-patterns describe a solution which—on the surface—looks appealing,
but once applied have very negative consequences. Some anti-patterns stop after ex-
plaining why the naive solution does not work, but the good anti-patterns also rec-
ommend ways to remedy the situation, or even prevent it from reoccurring.

The most visible collection of anti-patterns is written by Brown at. al. [86].
Among others, these authors listed a number of anti-patterns commonly applied by
programmers not experienced with object-oriented thinking. The Blob (also known
as a “God Class” [439, 149]) is an example of a design where one class monopo-
lises control and the other classes primarily encapsulate data. However, good object-
oriented designs try to distribute the responsibilities evenly. Blobs can be refactored
by moving behaviour from the blob (the god class) to the surrounding classes. The
Functional Decomposition on the other hand is procedural thinking disguised as objects
and classes. Instead of writing subroutines that call subroutines, such functional de-
compositions involve classes calling other classes ignoring the concept of inheritance
and polymorphism altogether. The refactored solution basically involves redesigning
the class hierarchy from scratch based on the functionality provided in the original
set of classes. Finally, the Poltergeists are controller classes with limited responsibil-
ities and roles to play in the system, which have quite a short life-cycle and appear
only to invoke methods of other classes and then disappear again. The refactored
solution involves moving behaviour from the poltergeists to the related classes and
then get rid the poltergeists.

Politics. Reengineering is not only about the technical solutions applicable when
redesigning a system. It is also about convincing others of the viability of a given so-
lution and the social interaction surrounding a project. You risk offending colleagues
when pointing out problematic areas in a given system, so special care must be taken
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when criticizing the work of others. Therefore, many reengineering patterns also ad-
dress “political” issues.

This is illustrated in the forces of First Contact [. . . ] Typically, your new colleagues
will fall into three categories. The first category are the faithful, the people who be-
lieve that reengineering is necessary and who trust that you are able to (help them)
do it. The second is the category of the sceptical, who believe this whole reengineer-
ing business is just a waste of time either because they want to protect their jobs
or either because they think the whole project should start again from scratch. The
third category is the category of the fence sitters, who do not have a strong opinion
on whether this reengineering will pay off, so they just wait and see what happens.
Consequently, in order to make the project a success, you must keep convincing the
faithful, gain credit with the fence sitters and be wary of the sceptics. [149]—p. 29.

5.3.3 Difficulties

Reengineering patterns also have some particular characteristics which makes them
difficult to write. In this section we show a number of successful reengineering pat-
terns to demonstrate how to overcome these difficulties.

Lack of Experience Reports. Software designers don’t advertise that they once
wrote poor code that needed to be reengineered. And even if they want to publish
their stories, they are often bound by non-disclosure agreements which forbid them
from divulging details of the design (be they good or bad). The fact that so few
stories from the trenches make it into press is quite unfortunate, since the pattern
community agrees that a pattern needs three known uses before we can consider it to
be a recurring solution. However, when pattern writers get hold on a known use, they
provide an amount of credibility to the solution that cannot be obtained otherwise.

As an example, consider the Design disharmonies listed in [311]. A design dishar-
mony explains how to detect certain code smells using metrics and visualisation.
Nevertheless, most software designers are very sceptical about using metrics to as-
sess the quality of a design, because they rightfully claim that one cannot capture the
beauty of a design in a mere number. However, through the use of many examples
of ArgoUML (an open source system), the authors demonstrate that it is feasible
to identify potential design problems. They proceed how to confirm this suspicion
through manual inspection of the code.

Lack of Experts. Reengineering is all too often considered second class work,
akin to cleaning up someone else’s trash. It bears repeating that there are few systems
that start off with bad code; most of the time bad code is the unfortunate result of
making extensive changes and patches without allotting the time needed to clean
up. Hence, we should identify the expert reengineers and convince them that they
should be proud of the knowledge and skills they possess. Indeed, reengineering is
more difficult than forward engineering, as reengineering requires all the skills of the
latter plus a number of additional ones.

An example to illustrate that industrial sponsorship may provide the necessary
reengineering expertise can be found in Gold Mining [313]. This pattern deals with
the reconstruction and re-documentation of the requirements captured in the code of
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a legacy system. In there, the authors argue that according to their experience, most
of the knowledge about a system is tacit, hidden in the heads of the people using
the system. The authors describe a workshop approach, involving intensive code-
inspections alongside the maintainers of the legacy system as a way to make this
tacit knowledge explicit.

Lack of Forces. Purists might argue that some of the patterns referenced here
are not really patterns because they do not list the forces and tradeoffs explicitly.
Fowler [183], Feathers [169] and Lanza [311] certainly did not claim they wrote
(reengineering) patterns. We included them in this overview anyway, because these
texts resemble patterns both in spirit and in form. That is, they convey expert knowl-
edge about a complex subject, and they do so by following some kind of template.
Most importantly, they give designers the vocabulary they need to discuss how to
tackle their redesign. In our own experience, we have found the vocabulary provided
by patterns to be the most important, hence our pragmatic stance.

5.4 Conclusion

During the last two decades, the software engineering field saw an enormous amount
of new methods, tools and languages. Most of these are aimed at making software
easier to change; it is software after all. Unfortunately, we have become victims of
our success. Software systems today live longer, are changed more frequently, and
as such erode much faster. As a consequence, the ability to change software in fact
nullifies itself over time—the more we change a software system, the more difficult
it becomes to apply changes in the future, thus the faster it becomes a legacy system.

Legacy systems have a bad reputation in the software engineering field, because
of the many problems associated with operating them. Instead, we argue that legacy
systems represent an opportunity: you have loyal customers who firmly believe in
the value of the system and who are willing to invest time and money to continue
operation. This is good, but means that reengineering becomes more important. It
also means that we as software engineers should change our attitude. Rather than
seeing design as an upfront phase in the development life-cycle, we should see it as
a continuous learning activity where we redesign and reengineer to reflect a better
understanding of the problem domain.

The bad news is that such continuous reengineering is very difficult and requires
skilled software engineers; skills which are rarely taught at our universities and col-
leges. The good news is that these skills can be learned and that there is a growing
body of material available to aid software engineers willing to learn. In this chapter,
we provide an overview of the refactoring techniques and reengineering patterns that
document expert knowledge about reengineering. This way, we invite researchers to
test potential solutions in practice and expand the material; we invite practicioners to
consult that material and apply it in their projects and—last but not least— we invite
educators to refer to that material and teach it to the future generation.
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Summary. This chapter addresses the problem of platform migration of large business ap-
plications, that is, complex software systems built around a database and comprising thou-
sands of programs. More specifically, it studies the substitution of a modern data management
technology for a legacy one. Platform migration raises two major issues. The first one is the
conversion of the database to a new data management paradigm. Recent results have shown
that automated lossless database migration can be achieved, both at the schema and data lev-
els. The second problem concerns the adaptation of the application programs to the migrated
database schema and to the target data management system. This chapter first poses the prob-
lem and describes the State of the Art in information system migration. Then, it develops
a two-dimensional reference framework that identifies six representative migration strategies.
The latter are further analysed in order to identify methodological requirements. In particu-
lar, it appears that transformational techniques are particularly suited to drive the whole mi-
gration process. We describe the database migration process, which is a variant of database
reengineering. Then, the problem of program conversion is studied. Some migration strate-
gies appear to minimise the program understanding effort, and therefore are sound candidates
to develop practical methodologies. Finally, the chapter describes a tool that supports such
methodologies and discusses some real-size case studies.

6.1 Introduction

Business applications are designed as informational and behavioural models of an
organization, such as an enterprise or an administration, and are developed to effi-
ciently support its main business processes. The term information system is often
used to designate large-scale business applications. Though this term has been given
several interpretations, we will limit its scope in this chapter to a complex software
and information system comprising one or several databases and programs, whatever
their technologies, that support the organization’s business processes. In particular,
we will ignore other important components such as user interfaces as well as dis-
tribution and cooperation frameworks. The information system relies on a techno-
logical platform, made up of such components as operating systems, programming
languages and database management systems.

T. Mens, S. Demeyer (eds.), Software Evolution.
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6.1.1 Information System Evolution

Since every organization naturally evolves over time, its information system has to
change accordingly. This evolution is often driven by the business environment, that
forces the organization to change its business processes, and, transitively, the infor-
mation system that supports them. Practically, the integration of new concepts and
new business rules generally translates into the introduction of new data structures
and new program components, or into the updating of existing ones.

On the other hand, the rapid technological evolution also induces a strong pres-
sure to modify the information system in order to make it apt to support new re-
quirements that the legacy technological platform was unable to meet. Two common
motivations are worth being mentioned, namely flexibility and vanishing skills.

Flexibility. As summarised by Brodie and Stonebraker [84], a legacy Informa-
tion System is any Information System that significantly resists modifications and
change. One of the most challenging instances of this problem comes from the
increasing requirement to answer, almost in real time, unplanned questions by ex-
tracting data from the database. COBOL file managers, as well as most legacy data
management technologies, are efficient for batch and (to some extent) transaction
processing. However, answering a new query requires either extending an existing
program or writing a new one, an expensive task that may need several days. On the
contrary, such a query can be formulated in SQL on a relational database in minutes,
most often by non-expert users.

Skill shortage. Many core technologies enjoy a surprisingly long life, often en-
compassing several decades. Hiring experts that master them has become more and
more difficult, so that companies may be forced to abandon otherwise satisfying
technologies due to lack of available skills.

The business and technological dimensions of evolution can be, to a large extent,
studied independently. In this chapter, we address the issue of adapting an informa-
tion system to technological changes, a process generally called migration. More
precisely we will study the substitution of a modern data management system for
a legacy technology.

6.1.2 Information System Reengineering and Migration

As defined by Chikofsky and Cross [112], reengineering, also known as [...] reno-
vation [...], is the examination and alteration of a subject system to reconstitute it
in a new form and the subsequent implementation of the new form. Reengineering
generally includes some form of reverse engineering (to achieve a more abstract de-
scription) followed by some more form of forward engineering or restructuring. Mi-
gration is a variant of reengineering in which the transformation is driven by a major
technology change.

Replacing a DBMS with another one should, in an ideal world, only impact the
database component of the information system. Unfortunately, the database most of-
ten has a deep influence on other components, such as the application programs.
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Two reasons can be identified. First, the programs invoke data management ser-
vices through an API that generally relies on complex and highly specific proto-
cols. Changing the DBMS, and therefore its protocols, involves the rewriting of the
invocation code sections. Second, the database schema is the technical translation
of its conceptual schema through a set of rules that is dependent on the DBMS
data model. Porting the database to another DBMS, and therefore to another data
model, generally requires another set of rules, that produces a significantly different
database schema. Consequently, the code of the programs often has to be adapted to
this new schema. Clearly, the renovation of an information system by replacing an
obsolete DBMS with a modern data management system leads to non trivial database
(schemas and data) and programs modifications.

6.1.3 System Migration: State of the Art

Technically, a legacy information system is made up of large and ageing programs re-
lying on legacy database systems (like IMS or CODASYL) or using primitive DMSs3

(a.o., COBOL file system, ISAM). Legacy information systems often are isolated in
that they do not easily interface with other applications. Moreover, they have proved
critical to the business of organizations. To keep being competitive, organizations
must improve their information system and invest in advanced technologies, spe-
cially through system evolution. In this context, the claimed 75% cost of legacy sys-
tems maintenance (w.r.t. total cost) is considered prohibitive [541].

Migration is an expensive and complex process, but it greatly increases the in-
formation system control and evolution to meet future business requirements. The
scientific and technical literature ([69, 84]) mainly identifies two migration strate-
gies, namely rewriting the legacy information system from scratch or migrating by
small incremental steps. The incremental strategy allows the migration projects to be
more controllable and predictable in terms of calendar and budget. The difficulty lies
in the determination of the migration steps.

Legacy IS migration is a major research domain that has yielded some general
migration methods. For example, Tilley and Smith [500] discuss current issues and
trends in legacy system reengineering from several perspectives (engineering, sys-
tem, software, managerial, evolutionary, and maintenance). They propose a frame-
work to place reengineering in the context of evolutionary systems. The butterfly
methodology proposed by Wu et al. [546] provides a migration methodology and
a generic toolkit to aid engineers in the process of migrating legacy systems. This
methodology, that does not rely on an incremental strategy, eliminates the need of
interoperability between the legacy and target systems.

Below, we gather the major migration approaches proposed in the literature ac-
cording to the various dimensions of the migration process as a whole.

3 DMS: Data Management System.
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Language Dimension

Language conversion consists in translating (parts of) an existing program from
a source programming language to a target programming language. Ideally, the tar-
get program should show the same behaviour as the source program. Malton [342]
identifies three kinds of language conversion scenarios, with their own difficulties
and risks:

• Dialect conversion is the conversion of a program written in one dialect of a pro-
gramming language to another dialect of the same programming language.

• API migration is the adaptation of a program due to the replacement of external
APIs. In particular, API migration is required when changing the data manage-
ment system.

• Language migration is the conversion from one programming language to a dif-
ferent one. It may include dialect conversion and API migration.

Two main language conversion approaches can be found in the literature. The first
one [535], that might be called abstraction-reimplementation, is a two-step method.
First, the source program is analysed in order to produce a high-level, language-
independent description. Second, the reimplementation process transforms the ab-
stract description obtained in the first step into a program in the target language. The
second conversion approach [493, 342] does not include any abstraction step. It is
a three-phase conversion process: (1) normalization, that prepares the source pro-
gram to make the translation step easier; (2) translation, that produces an equivalent
program that correctly runs in the target language; (3) optimization: that improves
the maintainability of the target source code.

Terekhov and Verhoef [493] show that the language conversion process is far
from trivial. This is especially true when the source and the target languages come
from different paradigms. A lot of research has been carried out on specific cases of
language conversion, among which PL/I to C++ [290], Smalltalk to C [558], C to
Java [350] and Java to C# [158].

User Interface Dimension

Migrating user interfaces to modern platforms is another popular migration scenario.
Such a process may often benefit from an initial reverse engineering phase, as the
one suggested by Stroulia et al. [478]. This method starts from a recorded trace of
the user interaction with the legacy interface, and produces a corresponding state-
transition model. The states represent the unique legacy interface screens while the
transitions correspond to the user action sequences enabling transitions from one
screen to another. De Lucia et al. [333] propose a practical approach to migrating
legacy systems to multi-tier, web-based architectures. They present an Eclipse-based
plugin to support the migration of the graphical user interface and the restructuring
and wrapping of the original legacy code.
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Platform and Architecture Dimensions

Other researches, that we briefly discuss below, examine the problem of migrating
legacy systems towards new architectural and technological platforms.

Towards distributed architectures. The Renaissance project [534] develops
a systematic method for system evolution and re-engineering and provides tech-
nical guidelines for the migration of legacy systems (e.g., COBOL) to distributed
client/server architectures. A generic approach to reengineering legacy code for dis-
tributed environments is presented by Serrano et al. [458]. The methodology com-
bines techniques such as data mining, metrics, clustering, object identification and
wrapping. Canfora et al. [101] propose a framework supporting the development of
thin-client applications for limited mobile devices. This framework allows Java AWT
applications to be executed on a server while the graphical interfaces are displayed
on a remote client.

Towards object-oriented platforms. Migrating legacy systems towards object-
oriented structures is another research domain that has led to a lot of mature results,
especially on object identification approaches ([560, 99, 517, 201, 449]). Regarding
the migration process itself, the approach suggested by De Lucia et al. [144] consists
of several steps combining reverse engineering and reengineering techniques. More
recently, Zou and Kontogiannis [569] have presented an incremental and iterative
migration framework for reengineering legacy procedural source code into an object-
oriented system.

Towards aspect-orientation. System migration towards aspect-oriented pro-
gramming (AOP) still is at its infancy. Several authors have addressed the initial
reverse engineering phase of the process, called aspect mining, which aims at identi-
fying crosscutting concern code in existing systems. Among the various aspect min-
ing techniques that have been proposed, we mention fan-in analysis [348], formal
concept analysis [506], dynamic analysis [503] and clone detection [93]. Regard-
ing clone detection, Chapter 2 provides an overview of techniques to identify and
remove software redundancies. We also refer to Chapter 9 for a more complete dis-
cussion about current issues as well as future challenges in the area of aspect mining,
extraction and evolution.

Towards service-oriented architectures. Migrating legacy systems towards
service-oriented architectures (SOA) appears as one of the next challenges of the
maintenance community. Sneed [465] presents a wrapping-based approach accord-
ing to which legacy program functions are offered as web services to external users.
O’Brien et al. [400] propose the use of architecture reconstruction to support migra-
tion to SOA. Chapter 7 presents a tool-supported methodology for migrating legacy
systems towards three-tier and service-oriented architectures. This approach is based
on graph transformation technology.

Database Dimension

Closer to our data-centred approach, the Varlet project [249] adopts a typical two
phase reengineering process comprising a reverse engineering process phase fol-
lowed by a standard database implementation. The approach of Jeusfeld [256] is
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divided into three parts: mapping of the original schema into a meta model, rear-
rangement of the intermediate representation and production of the target schema.
Some works also address the migration between two specific systems. Among those,
Menhoudj and Ou-Halima [361] present a method to migrate the data of COBOL
legacy system into a relational database management system. The hierarchical to re-
lational database migration is discussed in [360, 359]. General approaches to migrate
relational database to object-oriented technology are proposed by Behm et al. [53]
and Missaoui et al. [373]. More recently, Bianchi et al. [62] propose an iterative
approach to database reengineering. This approach aims at eliminating the ageing
symptoms of the legacy database [527] when incrementally migrating the latter to-
wards a modern platform.

Related Work Limitations

Though the current literature on data-intensive systems migration sometimes recom-
mend a semantics-based approach, relying on reverse engineering techniques, most
technical solutions adopted in the industry are based on the so-called one-to-one mi-
gration of the data structures and contents, through a fully-automated process. As we
will see below, these approaches lead to poor quality results. Secondly, while most
papers provide ad hoc solutions for particular combinations of source/target DB plat-
forms, there is still a lack of generic and systematic studies encompassing database
migration strategies and techniques. Thirdly, the conversion of application programs
in the context of database migration still remains an open problem. Although some
work (e.g., [62]) suggests the use of wrapping techniques, very little attention is de-
voted to the way database wrappers are built or generated. In addition, the impact
of the different conversion techniques on target source code maintainability has not
been discussed.

6.1.4 About This Chapter

This chapter presents a practical approach to data-intensive application reengineer-
ing based on two independent dimensions, namely the data and the programs. We
first propose a reference model that allows us to describe and compare the main mi-
gration approaches that are based on DBMS substitution (Section 6.2). This model
identifies six representative strategies [228]. Section 6.3 develops a transformational
framework that forms a sound basis to formalise database and program evolution,
including migration. Then, the conversion of three main components of the infor-
mation system, namely database schemas, database contents and programs, are de-
scribed and discussed in Sections 6.4, 6.5 and 6.6 respectively. Section 6.7 describes
a prototype CASE environment for information system migration while Section 6.8
discusses some experimental results. The six reference migration strategies are com-
pared in Section 6.9. Finally, Section 6.10 draws some conclusions and suggests
paths for future work.

To make the discussion more concrete, we base it on one of the most popular
problem patterns, that is, the conversion of a legacy COBOL program, using standard
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indexed files, into an equivalent COBOL program working on a relational database.
The principles of the discussion are of course independent of the language and of the
DMS.

6.2 Migration Reference Model

There is more than one way to migrate a data-intensive software system. Some ap-
proaches are quite straightforward and inexpensive, but lead to poorly structured
results that are difficult to maintain. Others, on the contrary, produce good quality
data structures and code, but at the expense of substantial intelligent (and therefore
difficult to automate) code restructuring. We have built a reference model based on
two dimensions, namely data and programs. Each of them defines a series of change
strategies, ranging from the simplest to the most sophisticated. This model outlines
a solution space in which we identify six typical strategies that will be described be-
low and discussed in the remainder of the chapter. This model relies on a frequently
used scenario, called database-first [545], according to which the database is trans-
formed before program conversion. This approach allows developers to cleanly build
new applications on the new database while incrementally migrating the legacy pro-
grams.

Information system migration consists in deriving a new database from a legacy
database and in further adapting the software components accordingly [84]. Con-
sidering that a database is made up of two main components, namely its schema(s)
and its contents (the data), the migration comprises three main steps: (1) schema
conversion, (2) data conversion and (3) program conversion. Figure 6.1 depicts the
organization of the database-first migration process, that is made up of subprocesses
that implement these three steps. Schema conversion produces a formal description
of the mapping between the objects of the legacy (S) and renovated (S’) schemas.
This mapping is then used to convert the data and the programs. Practical method-
ologies differ in the extent to which these processes are automated.

Fig. 6.1. Overall view of the database-first information system migration process
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• Schema conversion is the translation of the legacy database structure, or schema,
into an equivalent database structure expressed in the new technology. Both
schemas must convey the same semantics, i.e., all the source data should be loss-
lessly stored into the target database. Most generally, the conversion of a source
schema into a target schema is made up of two processes. The first one, called
database reverse engineering [215], aims at recovering the conceptual schema
that expresses the semantics of the source data structure. The second process is
standard and consists in deriving the target physical schema from this conceptual
specification. Each of these processes can be modelled by a chain of semantics-
preserving schema transformations.

• Data conversion is the migration of the data instance from the legacy database
to the new one. This migration involves data transformations that derive from
the schema transformations described above.

• Program conversion, in the context of database migration, is the modification
of the program so that it now accesses the migrated database instead of the legacy
data. The functionalities of the program are left unchanged, as well as its pro-
gramming language and its user interface (they can migrate too, but this is an-
other problem). Program conversion can be a complex process in that it relies on
the rules used to transform the legacy schema into the target schema.

6.2.1 Strategies

We consider two dimensions, namely database conversion and program conversion,
from which we will derive migration strategies.

The Database dimension (D)

We consider two extreme database conversion strategies leading to different levels
of quality of the transformed database. The first strategy (Physical conversion or
D1) consists in translating each construct of the source database into the closest
constructs of the target DMS without attempting any semantic interpretation. The
process is quite cheap, but it leads to poor quality databases with no added value.
The second strategy (Conceptual conversion or D2) consists in recovering the pre-
cise semantic description (i.e., its conceptual schema) of the source database first,
through reverse engineering techniques, then in developing the target database from
this schema through a standard database methodology. The target database is of high
quality according to the expressiveness of the new DMS model and is fully docu-
mented, but, as expected, the process is more expensive.

The program dimension (P)

Once the database has been converted, several approaches to application programs
adaptation can be followed. We identify three reference strategies. The first one
(Wrappers or P1) relies on wrappers that encapsulate the new database to provide
the application programs with the legacy data access logic, so that these programs
keep reading and writing records in (now fictive) indexed files or CODASYL/IMS
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Fig. 6.2. The six reference IS migration strategies

databases, generally through program calls instead of through native I/O file state-
ments. The second strategy (Statement rewriting or P2) consists in rewriting the ac-
cess statements in order to make them process the new data through the new DMS-
DML4. For instance, a READ COBOL statement is replaced with a select-from-
where (SFW) or a fetch SQL statement. In these two first strategies, the program
logic is neither elicited nor changed. According to the third strategy (Logic rewriting
or P3), the program is rewritten in order to use the new DMS-DML at its full power.
It requires a deep understanding of the program logic, since the latter will generally
be changed due to, for instance, the change in database paradigm. These dimensions
define six reference information system migration strategies (Figure 6.2).

6.2.2 Running Example

The strategies developed in this chapter will be illustrated by a small case study in
which the legacy system comprises a standalone COBOL program and three files.
Despite its small size, the files and the program exhibit representative instances of
the most problematic patterns. This program records and displays information about
customers that place orders. The objective of the case study is to convert the legacy
files into a new relational database and to transform the application program into
a new COBOL program, with the same business functions, but that accesses the new
database.

6.3 The Transformational Approach

Any process that consists in deriving artefacts from other artefacts relies on such
techniques as renaming, translating, restructuring, replacing, refining and abstract-
ing, which basically are transformations. Most database engineering processes can
be formalised as chains of elementary schema and data transformations that preserve
some of their aspects, such as its information contents [217]. Information system
evolution, and more particularly system migration as defined in this chapter, consists

4 DML: Data Manipulation Language.
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of the transformation of the legacy database and of its programs into a new system
comprising the renovated database and the renovated programs. As far as programs
are concerned, the transformations must preserve the behaviour of the interface with
the database management system, though the syntax of this interface may undergo
some changes. Due to the specific scope of the concept of migration developed here,
only simple program transformations will be needed.

6.3.1 Schema Transformation

Roughly speaking, an elementary schema transformation consists in deriving a target
schema S′ from a source schema S by replacing construct C (possibly empty) in S
with a new construct C′ (possibly empty). Adding an attribute to an entity type,
replacing a relationship type by an equivalent entity type or by a foreign key and
replacing an attribute by an entity type (Figure 6.3) are some examples of schema
transformations.

More formally, a transformation Σ is defined as a couple of mappings <T, t> such
that, C′ = T (C) and c′ = t(c), where c is any instance of C and c′ the corresponding
instance of C′. Structural mapping T is a rewriting rule that specifies how to modify
the schema while instance mapping t states how to compute the instance set of C′
from the instances of C.

There are several ways to express mapping T . For example, T can be defined
(1) as a couple of predicates defining the minimal source precondition and the maxi-
mal target postcondition, (2) as a couple of source and target patterns or (3) through
a procedure made up of removing, adding, and renaming operators acting on elemen-
tary schema objects. Mapping t will be specified by an algebraic formula, a calculus
expression or even through an explicit procedure.

Any transformation Σ can be given an inverse transformation Σ′ =<T ′,t ′> such
that T ′(T (C)) = C. If, in addition, we also have: t ′(t(c)) = c, then Σ (and Σ′) are
called semantics-preserving5. Figure 6.3 shows a popular way to convert an attribute
into an entity type (structural mapping T ), and back (structural mapping T ′). The
instance mapping, that is not shown, would describe how each instance of source
attribute A2 is converted into an EA2 entity and an R relationship.

Fig. 6.3. Pattern-based representation of the structural mapping of ATTRIBUTE-to-ET trans-
formation that replaces a multivalued attribute (A2) by an entity type (EA2) and a relationship
type (R)

5 The concept of semantics (or information contents) preservation is more complex, but
this definition is sufficient in this context. A more comprehensive definition can be found
in [217].
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Practically, the application of a transformation will be specified by its signature,
that identifies the source objects and provides the names of the new target objects.
For example, the signatures of the transformations of Figure 6.3 are:

T : (EA2,R)← ATTRIBUTE-to-ET(A,A2)
T ′ : (A2) ← ET-to-ATTRIBUTE(EA2)

Transformations such as those in Figure 6.3 include names (A, A1, R, EA2, etc.)
that actually are variable names. Substituting names of objects of an actual schema
for these abstract names provides fully or partially instantiated transformations. For
example, (’PHONE’,’has’) ← ATTRIBUTE-to-ET(’CUSTOMER’,’Phone’) speci-
fies the transformation of attribute Phone of entity type CUSTOMER, while (EA2,R)
← ATTRIBUTE-to-ET(’CUSTOMER’,A2) specifies the family of transformations
of any attribute of CUSTOMER entity type.

The concept of transformation is valid whatever the granularity of the object it
applies to. For instance, transforming conceptual schema CS into equivalent physical
schema PS can be modelled as a (complex) semantics-preserving transformation CS-
to-PS = <CS-to-PS, cs-to-ps> in such a way that PS = CS-to-PS(CS). This transfor-
mation has an inverse, PS-to-CS = <PS-to-CS, ps-to-cs> so that CS = PS-to-CS(PS).

6.3.2 Compound Schema Transformation

A compound transformation Σ = Σ2 ◦Σ1 is obtained by applying Σ2 on the database
(schema and data) that results from the application of Σ1 [216]. Most complex
database engineering processes, particularly database design and reverse engineer-
ing, can be modelled as compound semantics-preserving transformations. For in-
stance, transformation CS-to-PS referred to here above actually is a compound trans-
formation, since it comprises logical design, that transforms a conceptual schema
into a logical schema, followed by physical design, that transforms the logical
schema into a physical schema [43]. So, the database design process can be modelled
by transformation CS-to-PS = LS-to-PS ◦ CS-to-LS, while the reverse engineering
process is modelled by PS-to-CS = LS-to-CS ◦ PS-to-LS.

6.3.3 Transformation History and Schema Mapping

The history of an engineering process is the formal trace of the transformations that
were carried out during its execution. Each transformation is entirely specified by
its signature. The sequence of these signatures reflects the order in which the trans-
formations were carried out. The history of a process provides the basis for such
operations as undoing and replaying parts of the process. It also supports the trace-
ability of the source and target artefacts.

In particular, it formally and completely defines the mapping between a source
schema and its target counterpart when the latter was produced by means of a trans-
formational process. Indeed, the chain of transformations that originates from any
definite source object precisely designates the resulting objects in the target schema,
as well as the way they were produced. However, the history approach to mapping
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specification has proved complex, essentially for three reasons [218]. First, a history
includes information that is useless for schema migration. In particular, the signa-
tures often include additional information for undoing and inverting transformations.
Second, making histories evolve consistently over time is far from trivial. Third, real
histories are not linear, due to the exploratory nature of engineering processes. There-
fore, simpler mappings are often preferred, even though they are less powerful. For
instance, we proposed the use of the following lighweight technique based on stamp
propagation [232]. Each source object receives a unique stamp that is propagated
to all objects resulting from the successive transformations. When comparing the
source and target schemas, the objects that have the same stamp exhibit a pattern that
uniquely identifies the transformation that was applied on the source object. This ap-
proach is valid provided that (1) only a limited set of transformations is used and (2)
the transformation chain from each source object is short (one or two operations).
Fortunately, these conditions are almost always met in real database design.

6.3.4 Program Transformation

Program transformation is a modification or a sequence of modifications applied
to a program. Converting a program generally involves basic transformation steps
that can be specified by means of rewrite rules. Term rewriting is the exhaustive
application of a set of rewrite rules to an input term (e.g., a program) until no rule
can be applied anywhere in the term. Each rewrite rule uses pattern matching to
recognise a subterm to be transformed and replaces it with a target pattern instance.

Program transformations form a sound basis for application program conversion
in the context of database migration. Indeed, the legacy I/O statements have to be
rewritten with two concerns in mind, namely making the program comply with the
new DMS API, and, more important, adapting the program logic to the new schema.
The latter adaptation obviously depends on the way the legacy database schema was
transformed into the new schema. This issue has already been addressed in previ-
ous work [116]. We have proposed a general approach, based on coupled transfor-
mations [306], according to which program rewrite rules are associated to schema
transformations in a DML-independent manner.

For instance, Figure 6.4 shows an abstract rewrite rule that propagates the schema
transformation depicted in Figure 6.3 to primitives that create an instance of entity
type A from the values of variables a1, a21, ..., a2N, a3. Since attribute A2 has been
converted into an entity type, the way instances of A are created has to be changed.
Creating an instance of entity type A now involves the creation of N instances of
entity type EA2 within an extra loop. Created instances of EA2 are connected to
instance a of A through relationship type R.

6.4 Schema Conversion

The schema conversion strategies mainly differ in the way they cope with the explicit
and implicit constructs (that is, the data structures and the integrity constraints) of the
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create a := A((: A1 = a1) create a := A((: A1 = a1)
and (: A2[1] = a21) and (: A3 = a3))
and (: A2[2] = a22) tc f or i in 1..N do
· · · → create ea2 := EA2((: A2 = a2i)

and (: A2[N] = a2N ) and (R : a))
and (: A3 = a3)) end f or

Fig. 6.4. Create mapping tc associated with structural mapping T of Fig. 6.3

source schema. An explicit construct is declared in the DDL code 6 of the schema and
can be identified through examination or parsing of this code. An implicit construct
has not been declared, but, rather, is controlled and managed by external means, such
as decoding and validating code fragments scattered throughout the application code.
Such construct can only be identified by sophisticated analysis methods exploring the
application code, the data, the user interfaces, to mention the most important sources.

The schema conversion process analyses the legacy application to extract the
source physical schema (SPS) of the underlying database and transforms it into a tar-
get physical schema (TPS) for the target DMS. The TPS is used to generate the DDL
code of the new database. In this section, we present two transformation strategies.
The first strategy, called the physical schema conversion, merely simulates the ex-
plicit constructs of the legacy database into the target DMS. According to the sec-
ond one, the conceptual schema conversion, the complete semantics of the legacy
database is retrieved and represented into the technology-neutral conceptual schema
(CS), which is then used to develop the new database.

6.4.1 Physical Conversion Strategy (D1)

Principle

According to this strategy (Figure 6.5) each explicit construct of the legacy database
is directly translated into its closest equivalent in the target DMS. For instance, con-
sidering a standard file to SQL conversion, each record type is translated into a table,
each top-level field becomes a column and each record/alternate key is translated into
a primary/secondary key. No conceptual schema is built, so that the semantics of the
data is ignored.

Fig. 6.5. Physical schema conversion strategy (D1)

6 DDL: Data Description Language.
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Fig. 6.6. Example of COBOL/SQL physical schema conversion

Methodology

The DDL parsing process analyses the DDL code to retrieve the physical schema of
the source database (SPS). This schema includes explicit constructs only. It is then
converted into its target DMS equivalent (TPS) through a straightforward one-to-one
mapping and finally coded into the target DDL. The schema conversion process also
produces the source to target schema mapping.

Illustration

The analysis of the file and record declarations produces the SPS (Figure 6.6/left).
Each COBOL record type is translated into an SQL table, each field is converted
into a column and object names are made compliant with the SQL syntax (Fig-
ure 6.6/right). In this schema, a box represents a physical entity type (record type,
table, segment, etc.). The first compartment specifies its name, the second one gives
its components (fields, columns, attributes) and the third one declares secondary con-
structs such as keys and constraints (id stands for primary identifier/key, acc stands
for access key, or index, and re f stands for foreign key). A cylinder represents a data
repository, commonly called a file.

6.4.2 Conceptual Conversion Strategy (D2)

Principle

This strategy aims at producing a target schema in which all the semantics of the
source database are made explicit, even those conveyed by implicit source con-
structs. In most cases, there is no complete and up to date documentation of the
information system, and in particular of the database. Therefore, its logical and con-
ceptual schemas must be recovered before generating the target schema. The phys-
ical schema of the legacy database (SPS) is extracted and transformed into a con-
ceptual schema (CS) through reverse engineering. The conceptual schema is then
transformed into the physical schema of the target system (TPS) through standard
database development techniques.
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Methodology

The left part of Figure 6.7 depicts the three steps of a simplified database reverse
engineering methodology used to recover the logical and conceptual schemas of the
source database.

• As in the first strategy, the first step is the parsing of the DDL code to extract the
physical schema (SPS), which only includes the explicit constructs.

• The schema refinement step consists in refining the SPS by adding the im-
plicit constructs that are identified through the analysis of additional information
sources, such as the source code of the application programs and the database
contents, to mention the most common ones. Program code analysis performs
an in-depth inspection of the way the programs use and manage the data. Data
validation, data modification and data access programming clichés are searched
for in particular, since they concentrate the procedural logic strongly linked with
data properties. The existing data are also analysed through data mining tech-
niques, either to detect constraints, or to confirm or discard hypotheses on the
existence of constraints. This step results in the source logical schema (SLS),
that includes the explicit representation of such constructs as record and field de-
composition, uniqueness constraints, foreign keys or enumerated domains that
were absent in SPS. The history SPS-to-SLS of the refinement process forms the
first part of the source-to-target mapping.

• The final step is schema conceptualisation that semantically interprets the logical
schema. The result is expressed by the conceptual schema (CS). This schema is
technology independent, and therefore independent of both the legacy and new
DMSs. The history SLS-to-CS of this process is appended to the source-to-target
mapping.

Fig. 6.7. Conceptual schema conversion strategy (D2)
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A complete presentation of this reverse engineering methodology can be found
in [215] and [214], together with a fairly comprehensive bibliography on database
reverse engineering.

The conceptual schema is then transformed into an equivalent logical schema
(TLS), which in turn is transformed into the physical schema (TPS). TPS is then
used to generate the DDL code of the target database. These processes are quite
standard and are represented in the right part of Figure 6.7. The histories CS-to-TLS
and TLS-to-TPS are added to the source-to-target mapping. The mapping SPS-to-
TPS is now complete, and is defined as SPS-to-SLS ◦ SLS-to-CS ◦ CS-to-TLS ◦
TLS-to-TPS.

Illustration

The details of this reverse engineering case study have been described in [219]. We
sketch its main steps in the following. The legacy physical schema SPS is extracted
as in the first approach (Figure 6.8/top-left).

The Refinement process enriches this schema with the following implicit con-
structs:

(1) Field O-DETAIL appears to be compound and multivalued, thanks to program
analysis techniques based on variable dependency graphs and program slicing.

Fig. 6.8. Example of COBOL/SQL conceptual schema conversion
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(2) The implicit foreign keys O-CUST and REF-DET-PRO are identified by schema
names and structure patterns analysis, program code analysis and data analysis.

(3) The multivalued identifier (uniqueness constraint) REF-DET-PRO of O-DETAIL
can be recovered through the same techniques.

The resulting logical schema SLS is depicted in Figure 6.8/top-right.
During the data structure conceptualisation, the implementation objects (record

types, fields, foreign keys, arrays,...) are transformed into their conceptual equivalent
to produce the conceptual schema CS (Figure 6.8/bottom-left).

Then, the database design process transforms the entity types, the attributes and
the relationship types into relational constructs such as tables, columns, keys and
constraints. Finally physical constructs (indexes and storage spaces) are defined (Fig-
ure 6.8.bottom-right) and the code of the new database is generated.

6.5 Data Conversion

6.5.1 Principle

Data conversion is handled by a so-called Extract-Transform-Load (ETL) processor
(Figure 6.9), which transforms the data from the data source to the format defined
by the target schema. Data conversion requires three steps. First, it performs the
extraction of the data from the legacy database. Then, it transforms these data in
such a way that their structures match the target format. Finally, it writes these data
in the target database.

Data conversion relies on the mapping that holds between the source and target
physical schemas. This mapping is derived from the instance mappings (t) of the
source-to-target transformations stored in the history.

Deriving data conversion from the physical schema conversion (D1) is straight-
forward. Indeed, both physical schemas are as similar as their DMS models permit,
so that the transformation step most often consists in data format conversion.

The conceptual schema conversion strategy (D2) recovers the conceptual schema
(CS) and the target physical schema (TPS) implements all the constraints of this
schema. Generally, both CS and TPS include constraints that are missing in SPS,
and that the source data may violate. Thus data migration must include a preliminary
data cleaning step that fixes or discards the data that cannot be loaded in the target
database [423]. This step cannot always be automated. However, the schema refine-
ment step identifies all the implicit constraints and produces a formal specification

Fig. 6.9. Data migration architecture: converter and schema transformation
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for the data cleaning process. It must be noted that the physical schema conversion
strategy (D1) makes such data cleaning useless. Indeed, both SPS and TPS express
the same constraints that the source data are guaranteed to satisfy.

6.5.2 Methodology

Data conversion involves three main tasks. Firstly, the target physical schema (TPS)
must be implemented in the new DMS. Secondly, the mapping between the source
and target physical schemas must be defined as sequences of schema transformations
according to one of the two strategies described in Section 3. Finally, these mappings
must be implemented in the converter for translating the legacy data according to the
format defined in TPS.

Since each transformation is formally defined by <T, t>, the instance mapping
sps-to-tps is automatically derived from the compound transformation SPS-to-TPS
built in the schema conversion process. The converter is based on the structural map-
pings SPS-to-TPS to write the extraction and insertion requests and on the corre-
sponding instance mappings sps-to-tps for data transformation.

6.6 Program Conversion

The program conversion process aims at re-establishing the consistency that holds
between application programs and the migrated database. The nature of this con-
sistency is twofold. First, the programs have to comply with the API of the DMS,
by using the right data manipulation language and interaction protocols. Second, the
programs have to manipulate the data in their correct format, i.e., the format declared
in the database schema.

This section analyses the three program modification strategies specified in Fig-
ure 6.2. The first one relies on wrapper technology (P1) to map the access primitives
onto the new database through wrapper invocations that replace the DML statements
of the legacy DMS. The second strategy (P2) replaces each statement with its equiva-
lent in the new DMS-DML. According to the P3 strategy, the access logic is rewritten
to comply with the DML of the new DMS. In strategies P2 and P3, access statements
are expressed in the DML of the new DMS.

In order to compare the three program conversion strategies, we will apply them
successively on the same legacy COBOL fragment, given in Figure 6.10. This code
fragment deletes all the orders placed by a given customer.

6.6.1 Wrapper Strategy (P1)

Principle

In migration and interoperability architectures, wrappers are popular components
that convert legacy interfaces into modern ones. Such wrappers allow the reuse of
legacy components [464] (e.g., allow Java programs to access COBOL files). The
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DELETE-CUS-ORD.
MOVE C-CODE TO O-CUST.
MOVE 0 TO END-FILE.
READ ORDERS KEY IS O-CUST

INVALID KEY MOVE 1 TO END-FILE.
PERFORM DELETE-ORDER UNTIL END-FILE = 1.

DELETE-ORDER.
DELETE ORDERS.
READ ORDERS NEXT

AT END MOVE 1 TO END-FILE
NOT AT END

IF O-CUST NOT = C-CODE
MOVE 1 TO END-FILE.

Fig. 6.10. A legacy COBOL code fragment that deletes the orders corresponding to a given
customer

wrappers discussed in this chapter are of a different nature, in that they simulate the
legacy data interface on top of the new database. For instance, they allow COBOL
programs to read, write, rewrite records that are built from rows extracted from a re-
lational database. In a certain sense, they could be called backward wrappers. An
in-depth analysis of both kinds of wrappers can be found in [497].

The wrapper conversion strategy attempts to preserve the logic of the legacy
programs and to map it on the new DMS technology [84]. A data wrapper is a data
model conversion component that is called by the application program to carry out
operations on the database. In this way, the application program invokes the wrapper
instead of the legacy DMS. If the wrapper simulates the modelling paradigm of the
legacy DMS and its interface, the alteration of the legacy code is minimal. It mainly
consists in replacing DML statements with wrapper invocations.

The wrapper converts all legacy DMS requests from legacy applications into
requests against the new DMS that now manages the data. Conversely, it captures
results from the new DMS, converts them to the appropriate legacy format [409]
(Figure 6.11) and delivers them to the application program.

Fig. 6.11. Wrapper-based migration architec-
ture: a wrapper allows the data managed by
a new DMS to be accessed by the legacy pro-
grams
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Methodology

Schemas SPS and TPS, as well as the mapping between them (SPS-to-TPS) pro-
vide the necessary information to derive the procedural code of the wrappers. For
each COBOL source record type, a wrapper is built that simulates the COBOL file
handling statements. The simulated behaviour must also include the management of
currency indicators (internal dynamic pointers to current records) as well as error
handling.

Once the wrappers have been built, they have to be interfaced with the legacy pro-
grams. This can be done by replacing, in the latter, original data access operations
with wrapper invocations. Such a transformation is straightforward, each instruction
being replaced with a call to the corresponding wrapper and, in some cases, an ad-
ditional test. In the case of COBOL file handling, the test checks the value of the
wrapper status in order to simulate invalid key and at end clauses.

Legacy code adaptation also requires other minor reorganizations like modifying
the environment division and the data division of the programs. The declaration of
files in the environment division can be discarded. The declaration of record types
has to be moved from the input-output section to the working storage section. The
declarations of new variables used to call the wrapper (action, option and status) are
added to the working storage section. Finally, new code sections are introduced into
the program (e.g., database connection code).

Some legacy DMS, such as MicroFocus COBOL, provide an elegant way to
interface wrappers with legacy programs. They allow programmers to replace the
standard file management library with a customised library (the wrapper). In this
case, the legacy code does not need to be modified at all.

The <D1,P1> and <D2,P1> strategies only differ in the complexity of the wrap-
pers that have to be generated. The program transformation is the same in both strate-
gies since each legacy DML instruction is replaced with a wrapper invocation. The
code of the wrappers for the <D1,P1> strategy is trivial because each explicit data
structure of the legacy database is directly translated into a similar structure of the
target database. In the <D2,P1> strategy the conceptual schema is recovered and the
new physical schema can be very different from the legacy one. For instance, a record
can be split into two or more tables, a table may contain data from more than one
record, new constraints might be implemented into the new DMS, etc. In this strat-
egy, translating a READ command may require to access more than one table and to
perform additional tests and loops.

Illustration

To illustrate the way data wrappers are used, let us consider the legacy COBOL
fragment of Figure 6.10, which comprises READ and DELETE primitives. As shown in
Figure 6.12, each primitive is simply replaced with a corresponding wrapper invoca-
tion. From the program side, the wrapper is a black box that simulates the behaviour
of the COBOL file handling primitives on top of the SQL database. Note that the
P1 program adaptation strategy does not depend on the schema conversion strategy.
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DELETE-CUS-ORD.
MOVE C-CODE TO O-CUST.
MOVE 0 TO END-FILE.
SET WR-ACTION-READ TO TRUE.
MOVE "KEY IS O-CUST" TO WR-OPTION.
CALL WR-ORDERS USING WR-ACTION, ORD, WR-OPTION, WR-STATUS
IF WR-STATUS-INVALID-KEY MOVE 1 TO END-FILE.
PERFORM DELETE-ORDER UNTIL END-FILE = 1.

DELETE-ORDER.
SET WR-ACTION-DELETE TO TRUE.
CALL WR-ORDERS USING WR-ACTION, ORD, WR-OPTION, WR-STATUS.
SET WR-ACTION-READ TO TRUE.
MOVE "NEXT" TO WR-OPTION.
CALL WR-ORDERS USING WR-ACTION, ORD, WR-OPTION, WR-STATUS.
IF WR-STATUS-AT-END

MOVE 1 TO END-FILE
ELSE

IF O-CUST NOT = C-CODE
MOVE 1 TO END -FILE.

Fig. 6.12. Code fragment of Fig. 6.10 converted using the Wrapper strategy (P1)

This choice only affects the complexity of the wrapper code, since the latter is di-
rectly derived from the mapping that holds between the legacy and new database
schemas.

6.6.2 Statement Rewriting (P2)

Principle

This program modification technique depends on the schema conversion strategy. It
consists in replacing legacy DMS-DML statements with native DML statements of
the new DMS. For example, every file access statement in a COBOL program has to
be replaced with an equivalent sequence of relational statements. As for the wrapper
strategy, program data structures are left unchanged. Consequently, the relational
data must be stored into the legacy COBOL variables.

In the case of the physical schema conversion strategy (D1), the conversion
process can be easily automated, thanks to the simple SPS-to-TPS mapping. The con-
ceptual schema conversion strategy (D2) typically flattens complex COBOL struc-
tures in the target relational schema. This makes the use of additional loops necessary
when retrieving the value of a compound multivalued COBOL variable. Although
the substitution process is more complex than in the D1 strategy, it can also be fully
automated.

Methodology

The program modification process may be technically complex, but does not need
sophisticated methodology. Each DML statement has to be located, its parameters
have to be identified and the new sequence of DML statements has to be defined



126 J.-L. Hainaut et al.

and inserted in the code. The main point is how to translate iterative accesses in
a systematic way. For instance, in the most popular COBOL-to-SQL conversion,
there exist several techniques to express the typical START/READ NEXT loop with SQL
statements. The task may be complex due to loosely structured programs and the use
of dynamic DML statements. For instance, a COBOL READ NEXT statement can
follow a statically unidentified START or READ KEY IS initial statement, making
it impossible to identify the record key used. A description of a specific technique
that solves this problem is provided below.

Illustration

The change of paradigm when moving from standard files to relational database
raises such problems as the identification of the sequence scan. COBOL allows the
programmer to start a sequence based on an indexed key (START/READ KEY IS),
then to go on in this sequence through READ NEXT primitives. The most obvious
SQL translation is performed with a cursor-based loop. However, since READ NEXT
statements may be scattered throughout the program, the identification of the initiat-
ing START or READ KEY IS statement may require complex static analysis of the
program data and control flows.

The technique illustrated in Figure 6.13 solves this problem. This technique is
based on state registers, such as ORD-SEQ, that specify the current key of each record
type, and consequently the matching SQL cursor. A cursor is declared for each kind
of record key usage (equal, greater, not less) in the program. For instance, the table
ORD gives at most six cursors (combination of two record keys and three key usages).

The example of Figure 6.13 shows the <D2,P2> conversion the COBOL code
fragment of Figure 6.10. During the schema conversion process, the O-DETAIL
compound multivalued field has been converted into the DETAIL SQL table. So,
rebuilding the value of O-DETAIL requires the execution of a loop and a new
FILL-ORD-DETAIL procedure. This new loop retrieves the details corresponding
to the current ORD record, using a dedicated SQL cursor.

6.6.3 Logic Rewriting (P3)

Principle

The program is rewritten to explicitly access the new data structures and take advan-
tage of the new data system features. This rewriting task is a complex conversion
process that requires an in-depth understanding of the program logic. For example,
the processing code of a COBOL record type may be replaced with a code section
that copes with several SQL tables or a COBOL loop may be replaced with a single
SQL join.

The complexity of the problem prevents the complete automation of the conver-
sion process. Tools can be developed to find the statements that should be modified
by the programmer and to give hints on how to rewrite them. However, modifying
the code is still up to the programmer.
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EXEC SQL DECLARE CURSOR ORD_GE_K1 FOR
SELECT CODE , CUS_CODE
FROM ORDERS WHERE CUS_CODE >= :O-CUST
ORDER BY CUS_CODE

END-EXEC.
...
EXEC SQL DECLARE CURSOR ORD_DETAIL FOR

SELECT PROD_CODE , QUANTITY
FROM DETAIL WHERE ORD_CODE = :O-CODE

END-EXEC.
...
DELETE-CUS-ORD.

MOVE C-CODE TO O-CUST.
MOVE 0 TO END-FILE.
EXEC SQL

SELECT COUNT(*) INTO :COUNTER
FROM ORDERS WHERE CUS_CODE = :O-CUST

END-EXEC.
IF COUNTER = 0

MOVE 1 TO END-FILE
ELSE

EXEC SQL OPEN ORD_GE_K1 END-EXEC
MOVE "ORD_GE_K1" TO ORD-SEQ
EXEC SQL

FETCH ORD_GE_K1
INTO :O-CODE , :O-CUST

END-EXEC
IF SQLCODE NOT = 0

MOVE 1 TO END-FILE
ELSE

EXEC SQL OPEN ORD_DETAIL END-EXEC
SET IND-DET TO 1
MOVE 0 TO END-DETAIL
PERFORM FILL -ORD-DETAIL UNTIL END-DETAIL = 1

END-IF
END-IF.
PERFORM DELETE-ORDER UNTIL END-FILE = 1.

DELETE-ORDER.
EXEC SQL

DELETE FROM ORDERS
WHERE CODE = :O-CODE

END-EXEC.
IF ORD-SEQ = "ORD_GE_K1"

EXEC SQL
FETCH ORD_GE_K1 INTO :O-CODE ,:O-CUST

END-EXEC
ELSE IF ...

...
END-IF.
IF SQLCODE NOT = 0

MOVE 1 TO END-FILE
ELSE

IF O-CUST NOT = C-CODE
MOVE 1 TO END-FILE.

...
FIlL -ORD-DETAIL SECTION.

EXEC SQL
FETCH ORD_DETAIL
INTO :REF-DET-PRO(IND-DET),:ORD-QTY(IND-DET)

END-EXEC.
SET IND-DET UP BY 1.
IF SQLCODE NOT = 0

MOVE 1 TO END-DETAIL.

Fig. 6.13. Code fragment of Fig. 6.10 converted using the Statement Rewriting strategy (P2)
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This strategy can be justified if the whole system, that is database and programs,
has be renovated in the long term (strategy <D2,P3>). After the reengineering, the
new database and the new programs take advantage of the expressiveness of the new
technology. When the new database is just a one-to-one translation of the legacy
database (<D1,P3>), this strategy can be very expensive for a poor result. The new
database just simulates the old one and takes no advantage of the new DMS. Worse,
it inherits all the flaws of the old database (bad design, design deteriorated by main-
tenance, poor expressiveness, etc.). Thus, we only address the <D2,P3> strategy in
the remaining of this section.

Methodology

The P3 strategy is much more complex than the previous ones since every part of the
program may be influenced by the schema transformation. The most obvious method
consists in (1) identifying the file access statements, (2) identifying and understand-
ing the statements and the data objects that depend on these access statements and
(3) rewriting these statements as a whole and redefining these data objects.

Illustration

Figure 6.14 shows the code fragment of Figure 6.10 converted using the Logic
Rewriting strategy. The resulting code benefits from the full power of SQL. The
two-step position then delete pattern, which is typical of navigational DMS, can be
replaced with a single predicate-based delete statement.

DELETE-CUS-ORD.
EXEC SQL

DELETE FROM ORDERS
WHERE CUS_CODE = :C-CODE

END-EXEC.
IF SQLCODE NOT = 0 THEN GO TO ERR-DEL-ORD.

Fig. 6.14. Code fragment of Fig. 6.10 converted using the Logic Rewriting strategy (P3)

6.7 Tool Support

Some of the information system migration strategies we developed in this chapter
have been implemented using two complementary transformational technologies,
namely DB-MAIN and the ASF+SDF Meta-Environment.
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6.7.1 The Tools

The DB-MAIN CASE Environment

DB-MAIN [143] is a data-oriented CASE environment developed by the Laboratory
of Database Application Engineering (LIBD) of the University of Namur. Its purpose
is to help the analyst in the design, reverse engineering, reengineering, maintenance
and evolution of database applications.

DB-MAIN offers general functions and components that allow the development
of sophisticated processors supporting data-centred application renovation:

• A generic model of schema representation based on the GER (Generic Enti-
ty/Relationship) model to describe data structures in all abstraction levels and
according to all popular modelling paradigms.

• A graphical interface to view the repository and apply operations.
• A transformational toolbox rich enough to encompass most database engineering

and reverse engineering processes.
• Customizable assistants (e.g., transformation, reverse engineering, conformity

analysis) to help solve complex and repetitive problems.
• A history processor to record, replay, save or invert history.

DB-MAIN also includes several processors specific to the reverse engineering
process [229], such as DDL parsers for most popular DMSs, a foreign key discov-
ery assistant, and program analysis tools (pattern matching, variable dependency
analysis and program slicing). Experience of actual reverse engineering taught us
that there are no two reengineering projects are the same. Hence the need for pro-
grammable, extensible and customisable tools. DB-MAIN (and more specifically its
meta functions) includes features to extend its repository and develop new functions.
It includes in particular a 4GL (Voyager2) as well as a Java API that allow analysts
to quickly develop their own customised processors [215].

The ASF+SDF Meta-Environment

The ASF+SDF Meta-Environment [515] is an interactive development environment
for the automatic generation of interactive systems for manipulating programs, spec-
ifications, or other texts written in a formal language. It is developed by the SEN1
research group of the CWI in Amsterdam. In the context of system migration, the
ASF+SDF Meta-Environment provides tool generators to support the program con-
version step. It allows both defining the syntax of programming languages and spec-
ifying transformations of programs written in such programming languages [514].

The next sections describe the tool support in the different steps of the method-
ologies described in this chapter for schema, data and program conversion.

6.7.2 Schema Conversion

The physical schema conversion strategy uses simple tools only, such as a DDL
parser to extract SPS, an elementary schema converter to transform SPS into TPS
and a DDL generator. Complex analysers are not required.
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In the conceptual schema conversion strategy, extracting SPS and storing it in
the CASE tool repository is done through a DDL parser (SQL, COBOL, IMS, CO-
DASYL, RPG, XML) from the parser library. Schema refinement requires schema,
data and program analysers. Data structure conceptualization and database design
are based on schema transformations. Code generators produce the DDL code of the
new database according to the specifications of TPS.

6.7.3 Mapping Definition

We use the transformation toolkit of DB-MAIN to carry out the chain of schema
transformations needed during the schema conversion phase. DB-MAIN automati-
cally generates and maintains a history log of all the transformations that are applied
to the legacy DB schema (SPS) to obtain the target DB schema (TPS). This history
log is formalised in such a way that it can be analysed and transformed. Particularly,
it can be used to derive both the mappings between SPS and TPS. A visual map-
ping assistant has been developed to support the definition, the visualization and the
validation of inter-schema mappings. This tool is based on the stamping technique
described in Section 6.3.3.

6.7.4 Data Conversion

Writing data converters manually is an expensive task, particularly for complex map-
pings (for simple mappings parametric ETL converters are quite sufficient). The DB-
MAIN CASE tool includes specific history analysers and converter generators that
have been described in [146].

6.7.5 Program Conversion

Wrapper Generation

So far, wrapper generators for COBOL-to-SQL and IDS/II7-to-SQL have been de-
veloped. These generators are implemented through Java plug-ins of DB-MAIN, and
require the following inputs:

• the legacy database schema
• an optional intermediate schema
• the target database schema
• the mapping between these two (three) schemas

The generators produce the code that provides the application programs with a legacy
interface to the new database. In practice, we generate one wrapper per legacy record
type. Each generated wrapper is a COBOL program with embedded SQL primitives.
The generated wrappers simulate the legacy DMS on top on the renovated database.
Note that the same tools can be used for supporting both P1 and P2 program con-
version strategies, which mainly differ from the target location of the generated code
(wrapper or new program section).

7 IDS/II is the BULL implementation of CODASYL.
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Legacy Code Transformation

The adaptation of the legacy application programs relies on the ASF+SDF Meta-
Environment. We use an SDF version of the IBM VS COBOL II grammar, which was
obtained by Lämmel and Verhoef [304]. We specify a set of rewrite rules (ASF equa-
tions) on top of this grammar to obtain two similar program transformation tools. The
first tool is used in the context of COBOL-to-SQL migration, while the second one
supports IDS/II-to-SQL conversion.

The main input arguments of the program transformers are automatically gener-
ated. These parameters include:

• the list of the migrated record types
• additional variable declarations
• additional program code sections
• owner and members of each set (IDS/II)
• list of the declared record keys (IDS/II)

The program transformation tools are suitable in case of partial migration, i.e., when
only some legacy record types actually are migrated to the new database platform.
In that case, only the DML instructions manipulating migrated data are adapted. The
other DML instructions, which still access the legacy data, are left unchanged.

6.8 Industrial Application

We have been involved in several industrial reverse engineering and reengineering
projects during the last three years. In this section, we particularly report on an on-
going IDS/II-to-SQL database migration project.

6.8.1 Project Overview

The project aims at migrating a large COBOL system towards a relational (DB2)
database platform. The legacy system runs on a Bull mainframe and is made of nearly
2300 programs, totalling more than 2 million lines of COBOL code. The information
system makes use of an IDS/II database. The source physical DB schema comprises
231 record types, 213 sets and 648 fields. The migration strategy chosen is based
on the combination of a conceptual database conversion (D2) and a wrapper-based
program conversion (P1).

6.8.2 Process Followed

The project started with a prototyping phase, during which a consistent subset of
the data and programs has been fully migrated. This initial phase aims at verifying
the correctness of the overall migration through a systematic testing process. The
database subset includes 26 IDS/II record types and 31 sets. The legacy programs
selected for conversion comprise 51 KLOC and make use of almost every possible
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IDS/II statement (find, get, erase, store, modify, connect, disconnect, etc.). The tests,
performed with the help of IDS/II experts from the customer side, have shown the
correctness of the automated program conversion.

Below, we describe the main phases that we followed to migrate the complete
legacy system.

Inventory

The purpose of the inventory process is twofold. First, it aims at checking that we
have received a complete and consistent set of source code files from the customer.
Second, it allows us to get a rapid overview of the application architecture in order
to evaluate the complexity of the migration task, as well as the part of the work that
cannot be automated. In this project, the inventory phase produced the following
results :

• complete statistics about the IDS/II statements (number, type, location);
• the program call graph, specifying which program calls which program;
• the database usage graph, specifying which program uses which IDS/II record

type;
• a classification of the legacy source code files based on their database usage (no

access, indirect access or direct access).

Schema Conversion Through DBRE

During the database reverse engineering process, program analysis techniques have
been used in order to retrieve different kinds of information about the legacy
database. In particular, dataflow analysis allowed us to find which program vari-
ables are used to manipulate the records, in order to deduce a more precise record
decomposition. Dataflow analysis was also used to elicit implicit data dependencies
that exist between database fields, among which potential foreign keys. Our dataflow
analysis approach is inspired by the interprocedural slicing algorithm proposed by
Horwitz et al. [235], based on the system dependency graph (SDG). We refer to [117]
for more details on the use of SDGs in database reverse engineering.

Among others, the DBRE process allowed us to:

• recover finer-grained structural decompositions for record types and attributes;
• retrieve implicit data dependencies, including 89 foreign keys, 37 computed for-

eign keys, and 60 other redundancies.

Table 6.1 gives a comparison of the successive versions of the database schema. The
physical IDS/II schema is the initial schema extracted from the DDL code (here we
consider the subset of the schema actually migrated). The refined IDS/II schema is
the physical schema with a finer-grained structure. It was obtained by resolving nu-
merous copybooks in which structural decompositions of physical attributes are de-
clared. In the refined IDS schema, most attributes are declared several times through
redefines clauses, hence the huge total number of attributes. The conceptual schema
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Table 6.1. Comparison of successive versions of the complete database schema

Physical IDS/II Refined IDS/II Conceptual Relational DB2

# entity types 159 159 156 171
# relationship types 148 148 90 0
# attributes 458 9 027 2 176 2 118
max # att./entity type 8 104 61 94

is the result of the conceptualization phase. It comprises only one declaration per
attribute. When a conflict occurs, the chosen attribute decomposition is the one the
analyst considers to be the most expressive. In addition, the number of entity type
is different since some technical record types were discarded while other ones were
split (sub-types). Finally, the relational schema shows an increase in the number of
entity types, due to the decomposition of arrays, as well as a reduction of the number
of attributes due to the aggregation of compound fields.

Data Validation and Migration

During the schema conversion phase, the mapping of the various components is
recorded between the successive schemas, such that we know precisely how each
concept is represented in each schema. From such mappings we can generate two
kinds of programs:

• Data validators, which check if the legacy data comply with all recovered im-
plicit constraints;

• Data migrators, that actually migrate the legacy data to the relational database.

The data validation step revealed that many implicit referential constraints were ac-
tually violated by the legacy data. This is explained by the fact that most rules are
simply encoding rules which are not always checked again when data are updated,
and by the fact that users find tricks to bypass some rules.

Wrapper-Based Program Conversion

The wrapper generation phase produced 159 database wrappers. Each generated
wrapper is a COBOL program containing embedded SQL primitives. The total wrap-
per code size is about 450 KLOC.

The results obtained during the legacy code adaptation are summarised in
Table 6.2. A total of 669 programs and 3 917 copybooks were converted. We no-
tice that about 92% of the IDS/II verbs were transformed automatically, while the
manual work concerned 85 distinct source code files only.
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Table 6.2. Program transformation results

Migrated Manually
transformed

# programs 669 17
# copybooks 3 917 68
# IDS/II verbs 5 314 420

6.8.3 Lessons Learned

Methodology

As in previous projects, the initial inventory step proved to be critical. It required
several iterations since we discovered missing copybooks and programs, as well as
code fragments containing syntax errors. The prototyping phase also proved valu-
able, since it allowed us to detect problems early in the process and to better confront
our results with the customer requirements. Another conclusion is that the database
reverse engineering process may benefit from the data validation phase. Indeed, ana-
lysing database contents does not only allow to detect errors, it may also serve as
a basis for formulating new hypotheses about potential implicit constraints.

Automation

Although large-scale system conversion needs to be supported by scalable tools, the
full automation of the process is clearly unrealistic. Indeed, such a project typically
requires several iterations as well as multiple human decisions. In particular, while
previous smaller projects allowed us to automate the schema design process with mi-
nor manual corrections, assisted manual conversion becomes necessary when deal-
ing with larger schemas. For instance, translating a compound attribute into SQL
columns can be done either by disaggregation, by extraction or by aggregation. In
this project, the chosen technique depended on the nature of the compound attribute
(e.g., each compound attribute representing a date has been translated as a single col-
umn). The database design must respect various other constraints like the type and
naming conventions of the customer.

Wrapper development

Writing correct wrapper generators requires a very good knowledge of the legacy
DMS. In this project, the difficulties of wrapper generation were due to the paradigm
mismatch between network and relational database systems. Simulating IDS/II verbs
on top of a native relational database appeared much more complicated than ex-
pected. The generated wrappers must precisely simulate the IDS/II primitives be-
haviour, which includes the synchronised management of multiple currency indica-
tors, reading sequence orders and returning status codes. Another challenge, as for
the data extractors, was to correctly manage IDS/II records that have been split into
several SQL tables.



6 Migration of Legacy Information Systems 135

6.9 Strategies Comparison

Six representative strategies of information system migration have been identified. In
this section, we compare them according to each dimension and we suggest possible
applications for each system migration strategy.

6.9.1 Database Conversion Strategies

The physical schema conversion (D1) does not recover the semantics of the database
but blindly translates in the target technology the design flaws as well as the techni-
cal structures peculiar to the source technology. This strategy can be fully automated,
and can be performed manually, at least for small to medium size databases. Further
attempts to modify the structure of the database (e.g., adding some fields or chang-
ing constraints) will force the analyst to think in terms of the legacy data structures,
and therefore to recover their semantics. The source database was optimised for the
legacy DMS, and translating it in the new technology most often leads to poor per-
formance and limited capabilities. For example, a COBOL record that includes an
array will be transformed into a table in which the array is translated into an unstruc-
tured column, making it impossible to query its contents. Doing so would require
writing specific programs that recover the implicit structure of the column. Clearly,
this strategy is very cheap (and therefore very popular), but leads to poor results that
will make future maintenance expensive and unsafe. In particular, developing new
applications is almost impossible.

Nevertheless, we must mention an infrequent situation for which this strategy can
be valuable, that is, when the legacy database has been designed and implemented in
a disciplined way according to the database theory. For instance, a database made up
of a collection of 3NF 8 record types can be migrated in a straightforward way to an
equivalent relational database of good quality.

The conceptual schema conversion (D2) produces a high quality conceptual
schema that explicitly represents all the semantics of the data, but from which tech-
nology and performance dependent constructs have been discarded. It has also been
cleaned from the design flaws introduced by inexperienced designers and by decades
of incremental maintenance. This conceptual schema is used to produce the TPS that
can use all the expressiveness of the new DMS model and can be optimised for
this DMS. Since the new database schema is normalised and fully documented, its
maintenance and evolution is particularly easy and safe. In addition, making im-
plicit constraints explicit automatically induces drastic data validation during data
migration, and increases the quality of these data. However, this strategy requires
a complex reverse engineering process that can prove expensive. For example, the
complete reverse engineering of a medium size database typically costs two to four
man-months.

8 3NF stands for third normal form.
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6.9.2 Program Conversion Strategies

The wrapper strategy (P1) does not alter the logic of the legacy application pro-
gram. When working on the external data, the transformed program simply invokes
the wrapper instead of the legacy DMS primitives. The transformation of the pro-
gram is quite straightforward: each legacy DMS-DML is replaced with a call to the
wrapper. So, this transformation can easily be automated. The resulting program has
almost the same code as the source program, so a programmer who has mastered
the latter can still maintain the new version without any additional effort or docu-
mentation. When the structure of the database evolves, only the wrapper need be
modified, while the application program can be left unchanged. The complexity of
the wrapper depends on the strategy used to migrate the database. In the D1 strategy,
the wrapper is quite simple: it reads one line of the table, converts the column values
and produces a record. In the D2 strategy, the wrapper can be very complex, since
reading one record may require complex joins and loops to retrieve all the data. De-
spite the potentially complex mapping between SPS and TPS, which is completely
encapsulated into the wrapper, the latter can be produced automatically, as shown in
[16]. A wrapper may induce computing and I/O overhead compared to P2 and P3
strategies.

The statement rewriting strategy (P2) also preserves the logic of the legacy pro-
gram but it replaces each legacy DMS-DML primitive statement with its equivalent
in the target DMS-DML. Each legacy DMS-DML instruction is replaced with sev-
eral lines of code that may comprise tests, loops and procedure calls. In our case
study the number of lines increased from 390 to almost 1000 when we applied the
<D1,P2> strategy. The transformed program becomes difficult to read and to main-
tain because the legacy code is obscured by the newly added code. If the code must
be modified, the programmer must understand how the program was transformed to
write correct code to access the database. When the structure of the database is modi-
fied, the entire program must be walked through to change the database manipulation
statements. In summary, this technique is inexpensive but degrades the quality of the
code. In addition, it is fairly easy to automate. As expected, this migration technique
is widely used, most often in the <D1,P2> combination.

The logic rewriting strategy (P3) changes the logic of the legacy program to ex-
plicitly access the new database and to use the expressiveness of the new DMS-DML.
This rewriting task is complex and cannot be automated easily. The programmer that
performs it must have an in-depth understanding of the legacy database, of the new
database and of the legacy program. This strategy produces a completely renovated
program that will be easy to maintain at least as far as database logic is concerned.

6.9.3 System Migration Strategies

By combining both dimensions, we describe below typical applications for each of
the strategies that have been described.

• <D1,P1>: This approach produces a (generally) badly structured database that
will suffer from poor performance but preserves the program logic, notably
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because the database interface is encapsulated in the wrapper. It can be rec-
ommended when the migration must be completed in a very short time, e.g.,
when the legacy environment is no longer available. Developing new applica-
tions should be delayed until the correct database is available. This approach can
be a nice first step to a better architecture such as that produced by <D2,P1>.
However, if the legacy database already is in 3NF, the result is close to that of
strategy <D2,P1>.

• <D2,P1>: This strategy produces a good quality database while preserving the
program logic. New quality applications can be developed on this database.
The legacy programs can be renovated later on, step by step. Depending on the
impedance mismatch between the legacy and target technologies, performance
penalty can be experienced. For instance, wrappers that simulate CODASYL
DML on top of a relational database have to synchronise two different data ma-
nipulation paradigms, a process that may lead to significant data access over-
head.

• <D1,P2>: Despite its popularity, due to its low cost, this approach clearly is the
worst one. It produces a database structure that is more obscure than the source
one, and that provides poorer performance. The programs are inflated with ob-
scure data management code that makes them complex and more difficult to
read, understand and maintain. Such a renovated system cannot evolve at sus-
tainable cost, and therefore has no future. If the legacy database already is in
3NF, the result may be similar to that of strategy <D2,P2>.

• <D2,P2>: Produces a good quality database, but the programs can be unreadable
and difficult to maintain. It can be considered if no maintenance of the applica-
tion is planned and the programs are to be rewritten in the near future. If the
wrapper overhead is acceptable, the<D2,P1> strategy should be preferred.

• <D1,P3>: Data migration produces a very poor quality database that simulates
the legacy database. Adapting, at high cost, the program to these awkward struc-
tures is meaningless, so that we can consider this strategy not pertinent

• <D2,P3>: This strategy provides both a database and a set of renovated programs
of high quality, at least as far as database logic is concerned. Its cost also is the
highest. This is a good solution if the legacy program language is kept and if the
programs have a clean and clear structure.

6.10 Conclusions

The variety in corporate requirements, as far as system reengineering is concerned,
naturally leads to a wide spectrum of migration strategies. This chapter has identi-
fied two main independent lines of decision, the first one related to the precision of
database conversion (schema and contents) and the second one related to program
conversion. From them, we were able to identify and analyse six reference system
migration strategies. The thorough development of these technical aspects is the ma-
jor contribution of this chapter since most of these aspects have only been sketched
in the literature [84].
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Despite the fact that a supporting technology has been developed, and therefore
makes some sophisticated strategies realistic at an industrial level, we still lack suffi-
cient experience to suggest application rules according to the global corporate strat-
egy and to intrinsic properties of the legacy system. As is now widely accepted in
maintenance, specific metrics must be identified to score the system against typical
reference patterns. Such criteria as the complexity of the database schema, the pro-
portion of implicit constructs, the underlying technology, the normalisation level or
the redundancy rate, to mention only a few, should certainly affect the feasibility of
each migration strategy. Corporate requirements like performance, early availability
of components of the renovated system, program independence against the database
structure, evolvability, skill of the development team, or availability of human re-
sources are all aspects that could make some strategies more valuable than others.

Though some conclusions could seem obvious at first glance, such as, strategy
<D2,P3> yields better quality results than strategy <D1,P2>, we have resisted pro-
viding any kind of decision table that would have been scientifically questionable. In-
deed, each strategy has its privileged application domains, the identification of which
would require much more analysis than we have provided in this chapter. One impor-
tant lesson we learned in this study is that the quality of the target database is central
in a renovated system, and is a major factor in the quality of the programs, whatever
the program transformation strategy adopted. For instance, renovated program per-
formance, maintenance costs and the readability of the programs to be developed are
strongly dependent on the quality of the database schema.

So far, we have developed a solid methodology and a sophisticated CASE en-
vironment for database reverse engineering, wrapper development and automated
program conversion (according to P1 and P2 strategies). We have also built a toolset
of code analysers, such as a pattern matching engine, a dependency and data flow
diagram analyser and a program slicer. They allow us to find code sections that meet
structural criteria such as data access sections or the statement streams that influence
the state of objects at some point of a program aka program slice).

At present time, we are exploring the automation of the P3 program conversion
strategy (Logic Rewriting). This strategy aims at adapting the logic of the legacy
program to explicitly access the new database and to use the expressiveness of the
new DMS-DML. This rewriting task is complex and could not be fully automated.
Only the identification of the file access statements and the statements and data ob-
jects that depend on them can be automated. These identification tasks relate to the
program understanding realm, where such techniques as searching for clichés, vari-
able dependency analysis and program slicing (see [538, 229]) are often favourite
weapons.

Acknowledgement. Anthony Cleve received support from the Belgian Région Wallonne and
the European Social Fund via the RISTART project.



7

Architectural Transformations:
From Legacy to Three-Tier and Services

Reiko Heckel1, Rui Correia1,2, Carlos Matos1,2, Mohammad El-Ramly3, Georgios
Koutsoukos1, and Luís Andrade2

1 Department of Computer Science, University of Leicester, United Kingdom
2 ATX Software, Lisboa, Portugal
3 Computer Science Department, Cairo University, Egypt

Summary. With frequent advances in technology, the need to evolve software arises. Given
that in most cases it is not desirable to develop everything from scratch, existing software
systems end up being reengineered. New software architectures and paradigms are responsible
for major changes in the way software is built.

The importance of Service Oriented Architectures (SOAs) has been widely growing over
the last years. These present difficult challenges to the reengineering of legacy applications.
In this chapter, we present a new methodology to address these challenges. Additionally, we
discuss issues of the implementation of the approach based on existing program and model
transformation tools and report on an example, the migration of an application from two-tier
to three-tier architecture.

7.1 Introduction

As business and technology evolve and software becomes more complex, researchers
and tool vendors in reengineering are constantly challenged to come up with new
techniques, methods, and solutions to effectively support the transition of legacy sys-
tems to modern architectural and technological paradigms. Such pressure has been
witnessed repeatedly over the past decades. Examples include the adoption of object-
oriented programming languages [380, 149] and more recently the advent of Web
technologies [463] and in particular Service-Oriented Architectures (SOAs).

The adoption of SOAs, as well as their enabling technology of Web Services [7],
has been steadily growing over the last years. According to Gartner [194], a leading
technology market research and analysis firm, “mainstream status for SOA is not far
off” and “by 2008, SOA will be a prevailing software engineering practice” [355].
However, practice indicates that Service-Oriented Architecture initiatives rarely start
from scratch. Gartner projects that “through 2008, at least 65 percent of custom-
developed services for new SOA projects will be implemented via wrapping or re-
engineering of established applications (0.8 probability)”. In other words, most SOA
projects are being implemented on top of existing legacy systems. That being the
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context, the goal of this work is to present a methodology for reengineering legacy
systems towards new architectural styles in general and SOA in particular.

We will argue that, starting from a (monolithic) legacy application, such a transi-
tion involves several steps of decomposition, along both technological and functional
dimensions. The technological decomposition will lead, for example, to a 3-tiered ar-
chitecture, separating application logic, data, and user interface (UI). The functional
decomposition separates components providing different functions which, when re-
moving their UI tiers, represent candidate services.

The technical contribution of this chapter concentrates on the iterated decomposi-
tion, regarding each cycle as an instance of the reengineering Horseshoe Model [271].
This is a conceptual model that distinguishes different levels of reengineering while
providing a foundation for transformations at each level, with a focus on transfor-
mations to the architectural level. We support it by providing automation through
graph-based architectural transformation. This allows us to

• abstract (in large parts of the process) from the specific languages involved, as
long as they are based on similar underlying concepts

• describe transformations in a more intuitive and “semantic” way (compared to
code level transformations), making them easier to adapt to different architec-
tural styles and technological paradigms

With this in mind the remainder of this chapter is organised as follows: Section 7.2
discusses the impact of service-oriented computing on legacy systems, as well as
the issues for reengineering. Section 7.3 presents our methodology for architec-
tural transformation including a formalisation based on typed graph transformation
system. The implementation of our approach and an example are discussed in Sec-
tion 7.4. We review related work in Section 7.5 and discuss conclusions and further
work in Section 7.6.

7.2 From Legacy Systems to Three-Tier Applications
and Services

The authors’ experience with customers from the finance, telecommunications, and
public administration sectors as well as IT partners indicates that adoption of SOA
in industry is inevitable and that such adoption is typically gradual, evolving through
various stages in which different organisational and technical goals and challenges
are addressed. A typical first stage, the transition from legacy to web-based systems,
consists in the technological separation of GUI from logic and database code, and
subsequent replacement of the GUI code by HTML forms. Even if the details are
highly dependent on the languages and platforms involved, the perception that or-
ganisations have of the overall aim, the transition towards SOA, is largely congruent,
and in line with what has also been described by several authors [349, 393, 162] and
major technology providers [407, 472, 543, 483].

In Table 7.1 we outline six of the basic SOA principles that constitute important
properties of SOA from an industry perspective. It should be noted that our goal is
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Table 7.1. Industry View of SOA

SOA Property Definition

Well-defined interfaces A well specified description of the service that permits con-
sumers to invoke it in a standard way

Loose coupling Service consumer is independent of the implementation
specifics of service provider

Logical and physical sep-
aration of business logic
from presentation logic

Service functionality is independent of user interface aspects

Highly reusable services Services are designed in such a way that they are consumable
by multiple applications

Coarse-grained granu-
larity

Services are business-centric, i.e., reflect a meaningful business
service not implementation internals

Multi-party & business
process orientation

Service orientation involves more than one party (at least one
provider and one consumer), each with varying roles, and must
provide the capacity to support seamless end-to-end business
processes, that may span long periods of time, between such
parties

not to provide a comprehensive analysis of how industry views SOA, but, instead, to
provide a basis that will help us to explain the impact of service-orientation to legacy
systems.

The first two properties in Table 7.1 (Well-defined interfaces, Loose coupling)
are typically, at least at the technology level, provided by the underlying SOA im-
plementation infrastructures such as Web Services. The last four properties however,
have considerable impact on legacy systems and their reengineering. Such impact is
analysed in the next three subsections. The first addresses the “Logical and physical
separation of business logic from presentation logic” property, the second analyses
the “Highly reusable services” property and the last addresses both “Coarse-grained
granularity” and “Multi-party & business process orientation” properties.

7.2.1 Technological Decomposition

It is a common practice in legacy applications to mix together, in a kind of “architec-
tural spaghetti”, code that is concerned with database access, business logic, inter-
action with the user, presentation aspects, presentation flow, validations and excep-
tion handling, among others. For example, consider interactive COBOL programs:
Typically these are state-machine programs that interleave the dialog with the user
(menus, options, etc.) with the logic of the transactions triggered by their inputs.
Similar coding practices are found in client-server applications like Oracle Forms,
Java-Swing, VB applications, etc. The code listing in Figure 7.1 presents a simple
Java example that partially illustrates this issue. In this code fragment, if data ac-
cess and data processing code fails or no data is found, a message dialog appears to
the user prompting for subsequent actions. The PL/SQL code of Figure 7.2 refers
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public void Transaction () {
try {

//Data access-processing code
fis = new FileInputStream ("Bank.dat");
... //fetch some data from file

}
catch (Exception ex) {
total = rows;
//Validations and respective UI actions
if (total == 0) {
JOptionPane.showMessageDialog (null, "Records File is Empty.\nEnter

Records First to Display.", "BankSystem - EmptyFile",
JOptionPane.PLAIN_MESSAGE);

btnEnable ();
}
else {
try {

//Data access-processing code
fis.close();

}
catch (Exception exp) {

...
}

}
}

}

Fig. 7.1. A simple “spaghetti” code example in Java. (We use spaghetti here in the sense of
tangling different concerns, not in the sense of having many goto statements)

PROCEDURE Confirm()

DECLARE

alert_button NUMBER;

BEGIN

alert_button := SHOW_ALERT(’alert_name’); IF alert_button =
ALERT_BUTTON1 THEN

program statements after clicking first button (OK button);
ELSE

program statements after clicking second button (Cancel button);
END IF;

END;

(a) Alert dialog code mixed with business processing

(b) Oracle Forms Alert dialog for
confirmation

Fig. 7.2. PL/SQL example
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to a similar scenario in Oracle Forms: The whole business processing code (in bold
in Figure 7.2a), which may concern complex calculations and updates of database
tables, is placed together with the code that manages the interaction with the user
via a simple alert dialog (Figure 7.2b) prompting for confirmation for performing
such a transaction. In such cases, since the business logic is tightly coupled with
the presentation logic, it is impossible to derive services directly. Therefore, what
is required is an appropriate decoupling of the code, such that “pure” business pro-
cesses are isolated as candidate services or service constituents. This technological
dimension of reengineering towards SOA amounts to an architectural transformation
towards a multi-tiered architecture.

7.2.2 Reusable Services

For an SOA initiative to realise its full potential a significant number of implemented
and deployed services should be actually invoked by more than one application. Ser-
vice repositories facilitate such reuse, but only a posteriori, i.e., after the reusable
services have been identified. From a reengineering perspective what is needed is
support for the a priori identification of reusable services across multiple functional
domains. Unfortunately, many legacy systems can be characterised as “silos”, i.e.,
consisting of independent applications where lots of functionality is redundant or
duplicated (cf. Chapter 2). Even worse, in many cases such redundancy and dupli-
cation also exists within the same application. Take, for instance, the example of
financial systems, where the interest calculation functionality is very often imple-
mented multiple times in different applications only to accommodate the needs of
the various departments that those applications are designed to serve. But even within
single applications such redundancy is a common practice, for instance between in-
teractive and batch parts. The ability to identify such redundant functionality and its
appropriate refactoring to reusable services is vital for the success of service-oriented
computing initiatives.

7.2.3 Functional Decomposition

Most legacy applications were developed with different architectural paradigms in
mind and typically consist of elements that are of a fine-grained nature, for instance
components with operations that represent logical units of work, like reading individ-
ual items of data. OO class methods are an example of such fine-grained operations.
The notion of service, however, is of a different, more coarse-grained nature. Ser-
vices represent logical groupings of, possibly fine-grained, operations, work on top
of larger data sets, and in general expose a greater range of functionality. In par-
ticular, services that are deployed and consumed over a network must exhibit such
a property in order to limit the number of remote consumer-to-provider roundtrips
and the corresponding processing cycles. In general, finding the right balance of
service granularity is a challenging design task that is also related with the service
reusability issue above. A good discussion on the granularity of services in systems
that follow the SOA paradigm can be found in [543], from where Figure 7.3 has been
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Fig. 7.3. Service granularity across application tiers

adapted to show the various levels of service granularity. In general, it is clear that
the granularity of services has major implications for what concerns legacy reengi-
neering. As already mentioned at the beginning of the paragraph, most of the systems
currently in use were not built with service orientation in mind. Hence, existing ser-
vices at levels B and C of Figure 7.3 are not at the level of granularity required for
SOA.

The granularity problem is also associated with the fact that service-orientation
involves more than one party (at least one provider and one consumer), each with
varying roles and, if designed properly, must provide the capacity to support seam-
less end-to-end business processes (spanning long periods of time) between such
parties. This is a fundamental shift from previous architectural paradigms in which
the business processes workflow and rules are typically defined by one party only
and executed entirely on the IT system of this same party (e.g., a customer self-
service system). Legacy systems are not prepared for such a shift in paradigm: For
example, a legacy function that returns information from a single transaction was
not intended to be called several times in succession in order to obtain the larger
set of data that a service consumer may require. Even more recent systems, built on
top of web services technologies that expose services at level A in Figure 7.3 suf-
fer from poor granularity decisions and are unable to support the desired end-to-end
multi-party business processes. Hence, software reengineering solutions with respect
to service orientation are concerned with all 3 levels (A,B,C) of services depicted in
Figure 7.3. In particular, we are convinced that methods and tools are needed that
allow service designers to discover the allocation of domain functionalities into the
code structure so that legacy logical units of work can be appropriately composed
and reengineered in order to form services of desired granularity and of adequate
support for multi-party business processes.

In the following sections we are going to concentrate on the technical aspect
of the decomposition, rather than on questions of granularity and reusability. While
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the techniques described below are applicable to both technological and functional
decomposition we will use an example of technological decomposition to illustrate
them.

7.3 The Approach to Architectural Transformation

In this section we discuss methodological as well as formal aspects of the approach
to architectural redesign. Methodologically we are following the Horseshoe Model,
refining it to support automation and traceability. Formally our models are repre-
sented as graphs conforming to a metamodel with constraints while transformations
are specified by graph transformation rules.

7.3.1 Methodology

Our methodology consists of the three steps of reverse engineering, redesign, and
forward engineering, preceded by a preparatory step of code annotation. The sepa-
ration between code annotation and reverse engineering is made in order to distin-
guish the three fully automated steps of the methodology from the first one, which
involves input from the developer, making it semi-automatic. The steps are illustrated
in Figure 7.4.

1. Code Annotation

The source code is annotated by code categories, distinguishing its constituents
(packages, classes, methods, or fragments thereof) with respect to their foreseen as-
sociation to architectural elements of the target system, e.g., as GUI, Application
Logic, or Data.

Fig. 7.4. Methodology for transformation-based reengineering
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The annotation is based on input by the developer, propagated through the code
by categorisation rules defined at the level of abstract syntax trees, and taking into
account information obtained through control and data flow analysis. The results may
have to be revised and the propagation repeated in several iterations, leading to an
interleaving of automatic and manual annotations.

The code categories to be used depend on the target architecture, which depends
on the technology paradigm but also on the intended functional decomposition of
the target system. Thus, depending on the type of decomposition to be performed,
we consider either technological categories, like user interface, application logic, and
data management, or functional ones, like the contribution to particular services for
managing accounts, customers, employees, etc.

2. Reverse Engineering

From the annotated source code, a graph model is created, whose level of detail
depends on the annotation. For example, a method wholly annotated with the same
code category is represented as a single node, but if the method is fragmented into
several categories, each of these fragments has to have a separate representation in
the model. The relation R1 between the original (annotated) source code and the
graph model is kept to support traceability. This step is a straightforward translation
of the relevant part of the abstract syntax tree representation of the code into its
graph-based representation.

The AST representation is more adequate, both from a performance point of view
and because of the amount of information present, to the annotation process. How-
ever, for the redesign step, the graph representation allows us to abstract from the
specific programming languages involved and to describe transformations in a more
intuitive way. Additionally, given that we only represent in graphs the elements that
we need according to the annotation, as explained in the previous paragraph, the
model to be transformed is simpler and the performance needs are not so demand-
ing.

The graph model is based on a metamodel which is general enough to accom-
modate both the source and the target system, but also all intermediate stages of the
redesign transformation. Additionally, this metamodel contains the code categories
that were available in the code annotation step. An example of graph model and
metamodel (type graph) is presented in Figure 7.5.

3. Redesign

The source graph model is restructured to reflect the association between code frag-
ments and target architectural elements. The intended result is expressed by an extra
set of constraints over the metamodel, which are satisfied when the transformation
is complete. During the transformation, the relation with the original source code is
kept as R2 in order to support the code generation in the next step.

This code category-driven transformation is specified by graph transformation
rules, conceptually extending those suggested by Mens et al. [365] to formalise refac-
toring by graph transformation. Indeed, in our approach, code categories provide the
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Fig. 7.5. Type and instance graph (top) and transformation rule (bottom)

control required to automate the transformation process, focussing user input on the
annotation phase. An example of graph transformation rule can be seen in Figure 7.5.

Rules as well as source, target and intermediate graphs are instances of the meta-
model. Additional target constraints are given to specify the success criteria of the
transformation.

4. Forward Engineering

The target code is either generated from the target graph model and the original
source code or obtained through the use of refactorings at code level. The result of
this step, the annotated code in relation with a graph model, has the same structure
as the input to Step 1. Hence the process can be iterated.

This is particularly relevant if the reengineering is directed towards service-
oriented systems. In this case the transformation has to address both the technological
and functional dimensions, e.g., transformation into a three-tier architecture should
be followed up by a decomposition into functional components (cf. Section 7.2). For
example, if the first iteration separates application logic and data from user interface
code, the latter can be removed (and substituted with the appropriate service infra-
structure) in a second round of transformation, thus exposing basic functionality as
a service.
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7.3.2 Redesign by Graph Transformation

Next we detail the formalism used to specify redesign transformations and discuss
potential proof obligations for well-definedness of transformations in terms of their
relevance, consequences, and support for verification.

Metamodelling with Typed Graphs

Graphs are often used as abstract representations of models. For example in the UML
specification [398] a collection of object graphs is defined by means of a metamodel
as abstract syntax of UML models.

Formally, a graph consists of a set of vertices V and a set of edges E such that
each edge e in E has a source and a target vertex s(e) and t(e) in V , respectively.
Advanced graph models use attributed graphs [332] whose vertices and edges are
decorated with textual or numerical information, as well as inheritance between node
types [157, 365, 370].

In metamodelling, graphs occur at two levels: the type level (representing the
metamodel) and the instance level (given by all valid object graphs). This concept
can be described more generally by the concept of typed graphs [129], where a fixed
type graph TG serves as abstract representation of the metamodel. Its instances are
graphs equipped with a structure-preserving mapping to the type graph, formally
expressed as a graph homomorphism. For example, the graph in the top right of
Figure 7.5 is an instance of the type graph in the top left, with the mapping defined
by type(o) = C for each instance node o : C.

In order to define more precisely the class of instance graphs, constraints can
be added to the type graph expressing, for example, cardinalities for in- or outgoing
edges, acyclicity, etc. Formalising this in a generic way, we assume for each type
graph T G a class of constraints Constr(TG) that could be imposed on its instances.
A metamodel is thus represented by a type graph T G plus a set C ⊆Constr(TG) of
constraints over TG. The class of instance graphs over T G is denoted by Inst(TG)
while we write Inst(TG,C) for the subclass satisfying the constraints C. Thus,
if (T G,C) represents a metamodel with constraints, an instance is an element of
Inst(TG,C).

The transformations described in this paper implement a mapping from a general
class of (potentially unstructured) systems into a more specific one of three-tier ap-
plications. This restriction is captured by two levels of constraints, global constraints
Cg interpreted as requirements for the larger class of all input graphs, also serving as
invariants throughout the transformation, and target constraints Ct that are required
to hold for the output graphs only. Global constraints express basic well-formedness
properties, like that every code fragment is labelled by exactly one code category and
part of exactly one component. The corresponding target constraint would require
that the component containing the fragment is consistent with the code category.

Rule-Based Model Transformations

After having defined the objects of our transformation as instances of type graphs sat-
isfying constraints, model transformations can be specified in terms of graph trans-
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formation. A graph transformation rule p : L→ R consists of a pair of T G-typed
instance graphs L,R such that the union L∪R is defined. (This means that, e.g., edges
which appear in both L and R are connected to the same vertices in both graphs, or
that vertices with the same name have to have the same type, etc.) The left-hand side
L represents the pre-conditions of the rule while the right-hand side R describes the
post-conditions. Their intersection L∩R represents the elements that are needed for
the transformation to take place, but are not deleted or modified.

A graph transformation from a pre-state G to a post-state H, denoted by G
p(o)
=⇒ H,

is given by a graph homomorphism o : L∪R→ G∪H, called occurrence, such that

• o(L) ⊆ G and o(R)⊆ H, i.e., the left-hand side of the rule is embedded into the
pre-state and the right-hand side into the post-state, and

• o(L \R) = G \H and o(R \ L) = H \G, i.e., precisely that part of G is deleted
which is matched by elements of L not belonging to R and, symmetrically, that
part of H is added which is matched by elements new in R.

Rule moveCode in the lower part of Figure 7.5 specifies the relocation of a code
fragment (package, class, method, etc.) from one component to another one based
on its code category. Operationally, the application of a graph transformation rule
is performed in three steps. First, find an occurrence of the left-hand side L in the
current object graph. Second, remove all the vertices and edges which are matched
by L\R. In our example this applies to the composition edge from c0:Component to
f:CodeFragment. Third, extend the resulting graph with R \L to obtain the derived
graph, in our case adding a composition edge from c1:Component to f:CodeFragment.

Altogether, a transformation system is specified by a four-tuple

T = (T G,Cg,Ct ,P)

consisting of a type graph with global and target constraints, and a set of rules P.
A sequence like s is consistent if all graphs Gi satisfy the global constraints Cg.

We write G
√

=⇒H for a complete and consistent transformation sequence from G to
H in T .

Well-Definedness and Correctness of Transformations

Besides offering a high level of abstraction and a visual notation for model transfor-
mations, one advantage of graph transformations is their mathematical theory, which
can be used to formulate and verify properties of specifications. Given a transforma-
tion system T = (T G,Cg,Ct ,P) the following properties provide the ingredients for
the familiar notions of partial and total correctness.

Global Consistency. All rule applications preserve the global invariants Cg, i.e.,

for every graph G ∈ Inst(TG,Cg) and rule p ∈ P, G
p(o)
=⇒ H implies that H ∈

Inst(TG,Cg).
Typical examples of global consistency conditions are cardinalities like each

Code Fragment is part of exactly one Structural Feature. While such basic condi-
tions can be verified statically [227], more complex ones like the (non-)existence of
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certain paths or cycles may have to be checked at runtime. This is only realistic if,
like in the graph transformation language PROGRES [456], database technology can
be employed to monitor the validity of constraints in an incremental fashion. Oth-
erwise runtime monitoring can be used during testing and debugging to identify the
causes of failures.

Partial Correctness. Terminating transformation sequences starting out from graphs
satisfying the global constraints should end in graphs satisfying the target constraints.

A transformation sequence s = (G0
p1(o1)=⇒ ··· pn(on)

=⇒ Gn) in T is terminating if there is

no transformation Gn
p(o)
=⇒ X extending it any further. The system is partially correct

if, for all Gs ∈ Inst(TG,Cg), Gs
∗=⇒Gt terminating implies that Gt ∈ Inst(TG,Ct).

To verify partial correctness we have to show that the target constraints are sat-
isfied when none of the rules is applicable anymore. In other words, the conjunction
of the negated preconditions of all rules in P and the global constraints imply the
target constraints Ct . The obvious target constraint with respect to our single rule
in Figure 7.5 should state that every Code Fragment is part of a Component of the
same Code Category as the Fragment, which is obviously true if the rule is no longer
applicable.

To verify such a requirement, theorem proving techniques are required which are
hard to automate and computationally expensive. On the other hand, since it is only
required on the target graphs of transformations, the condition can be checked on
a case-by-case basis.

Total Correctness. Assuming partial correctness, it remains to show termination, i.e.,

that that there are no infinite sequences G0
p1(o1)=⇒ G1

p2(o2)
=⇒ G2) · · · starting out from

graphs G0 ∈ Inst(TG,Cg) satisfying the global constraints.
Verifying termination typically requires to define a mapping of graphs into some

well-founded ordered set (like the natural numbers), so that the mapping can be
shown to be monotonously decreasing with the application of rules. Such a progress
measure is difficult to determine automatically. In our simple example, it could be
the number of Code Fragments in the graph not being part of Components with the
same Code Category. This number is obviously decreasing with the application of
rule moveCode, so that it would eventually reach a minimum (zero in our case) where
the rule is not applicable anymore.

Uniqueness. Terminating and globally consistent transformation sequences starting

from the same graph produce the same result, that is, for all G∈ Inst(T G,Cg), G
√

=⇒
H1 and Gs

√
=⇒ H2 implies that H1 and H2 are equal up to renaming of elements.

This is a property known by the name of confluence, which has been extensively
studied in term rewriting [60]. It is decidable under the condition that the transfor-
mation systems is terminating. The algorithm has been transferred to graph trans-
formation systems [419] and prototypical tool support is available for part of this
verification problem [487].

It is worth noting that, like with all verification problems, a major part of the ef-
fort is in the complete formal specification of the desirable properties, in our case the
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set of global constraints Cg and the target constraints Ct . Relying on existing editors
or parsers it may not always be necessary (for the execution of transformations) to
check such conditions on input and output graphs, so the full specification of such
constraints may represent an additional burden on the developer. On the other hand
they provide an important and more declarative specification of the requirements for
model transformations, which need to be understood (if not formalised) in order to
implement them correctly and can play a role in testing model transformations.

7.4 Implementation and Example

In this section we describe an implementation of our methodology, demonstrating
it on an example. This implementation addresses the technological decomposition
(cf. Section 7.2) that is one of the steps to achieve SOA. The four-step methodology
presented and formalised in Section 7.3 is instantiated for transforming Java 2-tier
applications to comply with a 3-tier architecture.

We present the metamodel definition and the four steps as applied to a simple
example, a Java client-server application composed of twenty one classes and over
three thousand lines of code (LOC). The example was chosen to illustrate the kind of
entanglement between different concerns that is typically found in the source code of
legacy applications. For presentation purposes, in this chapter we will focus on a cou-
ple of methods of one of the classes only. Both categorisation and transformation are
based on a metamodel describing the source and target architectural paradigms.

7.4.1 Metamodel

The metamodel is composed of two parts, detailing code categories and the architec-
tural and technology paradigms used. Its definition is a metalevel activity, preceding
the actual reengineering process. The same metamodel (or after slight changes) can
be used in different projects where the source and target architectural and technology
paradigms are similar.

Code Categories

As stated in Section 7.3, code categories are derived from the target architectural
and technology paradigm. Different models can be used for the categories. We have
opted for the one presented in Figure 7.6 and explained next, together with our in-
stantiation.

In the chosen model, code categories can be divided in two types:

• components consisting of a concern
• connectors representing links between components

Concerns are conceptual classifications of code fragments that derive from their
purpose, i.e., the tiers found in 3-tier architectures:

• User Interface (UI)
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Fig. 7.6. Code categories model for 3-tier

• Business Logic (BL)
• Data

The connectors are one-way (non-commutative) links between different concerns
and include:

• Control: UI to BL
• Control: BL to UI
• Control: BL to Data
• Control: Data to BL

This model is detailed enough to capture the distinctions required by the target ar-
chitecture; other architectural paradigms might require different categories and more
complex ways to represent them. It may be even desirable in some situations to allow
multiple categories for the same element. In Figure 7.6, components and connectors
are represented by “ComponentType” and “ConnectorType”, respectively, in order
not to use the names attributed to architectural concepts. We have both “Compo-
nentType” and “Concern” for reusability issues given that the first is likely to be
extended for certain types of target architectures. For instance, if our goal was to
achieve a rich-client 2-tier architecture, then “ComponentType” would contain also
a “Role” concept whose values would be “Definition”, “Action” and “Validation”.

Architectural and Technology Paradigm

The next metalevel activity consists in the definition of a model for program repre-
sentation which, like the categories, may be shared with other instantiations of the
methodology, either as source or target. As we are going to take advantage of graph
transformation rules in the transformation specification, we developed the model in
the form of a type graph.

The model shown in Figure 7.7 has the goal of being flexible enough so it can be
instantiated by any OO application regardless of the specific technology. This way
there is a better chance that it can be reused for different instantiations of our method-
ology. The type graph is an extension of the one presented by Mens et al. in [368]
in order to introduce classification attributes and the notion of code blocks, needed
because the code categorisation requires a granularity lower than that of methods.
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CodeFragment elements are physical pieces of code which implies that they belong
only to one StructuralElement (component or connector). Additionally, we have in-
cluded the concepts of Component and Connector that allow us to represent the map-
ping between the programming language elements and the architecture level. Note
that the names for nodes ClassType and PackageType were defined as such, instead
of Class and Package, to avoid collisions with Java reserved keywords, since we
generate Java code from the model in this implementation.

During a transformation, we may have components and connectors that belong
either to the source or the target architecture. For instance, after some transformation
rules have been applied components of the source and target architectures may co-
exist in the model. The concept of Stage was added to cope with those intermediate
phases.

Fig. 7.7. Type graph for the OO paradigm
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Since it is necessary to keep traceability to the code in order to facilitate the
transformation/generation process, a way to associate it to the type graph had to be
considered. Given that we want to be as language-independent as possible we did
not link the type graph directly to the source code. Instead, we used an attribute
(ASTNodeID) to associate some of its elements to the Abstract Syntax Tree (AST)
of the program. ASTs are very common representations of source code and, in our
case, allow for a loose integration between the model and the programming language.

7.4.2 Code Annotation

The annotated source code is obtained through an iteration of manual input and the
application of categorisation rules, based on the categories defined in the metamodel.

Categorisation Rules

The rules used in the categorisation process are applied over the AST rather than
based on the graph-based presentation. The following examples are presented infor-
mally.

1. Statements that consist of variable/attribute declarations for a type that is known
to belong to a certain concern, will be categorised as belonging to the same con-
cern.
Example: the Java statement ’private JLabel lbNo;’ is categorised as UI
Definition because it is known that JLabel belongs to the UI concern;

2. Assignments to variables/attributes that are known to belong to a certain concern
and whose right-hand side only includes the use of elements (e.g. variables or
method invocations) that belong to the same concern, will have that concern.
Example: the Java statement ’lbNo = new JLabel ("Account No:");’ is cat-
egorised as UI Definition because it is known that the attribute lbNo and the
JLabel method/constructor invocation belong to the UI concern;

3. Variables/attributes/parameters definition/assignment that are used to store val-
ues directly from Data Action methods/functions belong to the Data Action cat-
egory.
Example: the Java statement ’records[rows][i] = dis.readUTF();’ be-
longs to the Data Action because the readUTF operation is known to belong
to that category.

The same rule might have to be applied multiple times. The reason for this is that
the application of a rule can enable the application of another. An example for this
can be given using rule number 2: if a method invocation that exists in the right-hand
side of the assignment is not yet categorised, the rule will not be applied. However,
after some other rule categorises the method, rule number 2 can be applied. The
transformation stops if no more rules are applicable or the code is completely cate-
gorised. Given that our rules do not delete previous categorisations nor change them,
the transformation is guaranteed to terminate. For pattern matching and rule applica-
tion over ASTs we can use the L-CARE tool, which provides a scalable solution to
program transformation problems.
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Example

As mentioned above, the original source code is categorised considering the intended
target architecture. In Figure 7.8 we present the code that has been previously used to
explain the implementation of our methodology. The code is annotated using simple
comments.

In this paragraph we explain how the categorisation was achieved for some of
the statements of this example. The first three attribute declarations are categorised
as UI Definition based on the first categorisation rule previously presented, since
it is known that JLabel, JTextField and JButton belong to the UI concern in Java.
The assignment to array records is categorised as Data Action based on rule num-
ber 3 which states that variables assignments used to store values from Data Action
functions belong to the same category, and the readUTF() operation belongs to this
category. This enables the categorisation of the assignment of dis as Data Definition
through rule 2 since this variable is used next in Data Action code.

The need of several iterations of the categorisation process is now clear. In the
first iteration the assignment of dis could not be categorised, but after categorising
some of the following statements as Data Action, a second iteration is able to identify
this statement as Data Definition.

7.4.3 Reverse Engineering

After having annotated the code, the process of transforming it into a graph model is
straightforward. Its level of granularity is controlled by the results of the categorisa-
tion and the needs of the transformation process.

Program Representation

The graph model together with its traceability relation to the original code constitutes
the program representation. This is an instance of the type graph previously defined
and shown in Figure 7.7, where the code is categorised and its dependencies are
defined. An example can be seen in Figure 7.10. The value “*” for the attribute
“name” of the “concern” means that the element contains more than one concern.
For example, the “populateArray” method contains three code blocks that include
the concerns “UI” and “Data”. This graph is obtained from the AST presented in
Figure 7.9b. The corresponding source code can be seen in Figure 7.9a.

In this section only some of the elements of the Class “DepositMoney” are be-
ing presented, namely the attribute “lbNo” and the methods “txtClear” and “popu-
lateArray”. The attribute “lbNo” corresponds to a label that exists in the UI—it is
the label that states ’Account No:’ before the text box that prompts for the customer
account number to which the deposit money operation is being done. The method
“txtClear” has the goal of clearing all the input fields for the deposit money window.
The “populateArray” method is called each time it is necessary to refresh the data in
the window.
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\\concern = *
package General;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Deposit Money extends JInternalFrame implements ActionListener {
\\concern = UI
private JLabel lbNo, lbName, lbDate, lbDeposit;
private JTextField txtNo, txtName, txtDeposit;
private JButton btnSave, btnCancel;
\\concern = *
void populateArray () {
\\connectorType = Control UI -> BL

try {
\\concern = Data

fis = new FileInputStream ("Bank.dat");
dis = new DataInputStream (fis);

\\concern = Data
while (true) {

for (int i = 0; i < 6; i++) {
records[rows][i] = dis.readUTF();

}
rows++;

}
\\connectorType = Control UI -> BL

}
catch (Exception ex) {

total = rows;
if (total == 0) {

\\concern = UI
JOptionPane.showMessageDialog (null, "Records File is Empty.

\nEnter Records First to Display.", "BankSystem
- EmptyFile", JOptionPane.PLAIN_MESSAGE);

btnEnable ();
\\connectorType = Control UI -> BL

}
else {

\\concern = Data
try {

dis.close();
fis.close();

}
catch (Exception exp) { }

\\connectorType = Control UI -> BL
}

}
\\concern = *
}
\\concern = UI
void txtClear() {

txtNo.setText("");
txtName.setText("");
txtDeposit.setText("");
txtNo.requestFocus();

}

Fig. 7.8. Source code categorised

Example

The annotated source code previously presented is translated, in a straight-forward
way, into the source graph model (cf. Figure 7.10). Naturally this graph has to con-
form to the type graph in Figure 7.7 in order for the transformation to be possible.
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import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
// ASTNode0001
public class DepositMoney

extends JInternalFrame
implements ActionListener {

private JLabel lbNo /* ASTNode0002 */,
lbName, lbDate,
lbDeposit; // ASTNode0010

private JTextField txtNo, txtName,
txtDeposit;

private JButton btnSave, btnCancel;
// (...)
// ASTNode0003
void populateArray () {
// ASTNode0005
try {
fis = new FileInputStream ("Bank.dat");
dis = new DataInputStream (fis);
//Loop to Populate the Array.
while (true) {

for (int i = 0; i < 6; i++) {
records[rows][i] = dis.readUTF();

}
rows++;

}
}
catch (Exception ex) {
// ASTNode0006
total = rows;
if (total == 0) {

JOptionPane.showMessageDialog (null,
"Records File is Empty.\nEnter

Records First to Display.",
"BankSystem - EmptyFile",

JOptionPane.PLAIN_MESSAGE);
btnEnable ();

}
// ASTNode0007
else {

try {
dis.close();
fis.close();

}
catch (Exception exp) { }

}
}

}
//(...)
// ASTNode0004
void txtClear() {
txtNo.setText("");
txtName.setText("");
txtDeposit.setText("");
txtNo.requestFocus();

}
//(...)
public void editRec () {
//(...)

}
//(...)

}

(a) Example source code

PACKAGE: null
IMPORTS(3)
TYPES(1)
TypeDeclaration
ASTNode0001
type binding: DepositMoney
BODY_DECLARATIONS(6)
FieldDeclaration
ASTNode0010
TYPE
SimpleType
type binding:
javax.swing.JLabel

FRAGMENTS(4)
VariableDeclarationFragment
ASTNode0002
variable binding:
DepositMoney.lbNo

(...)
MethodDeclaration
ASTNode0003
method binding:
DepositMoney.populateArray()
BODY
TryCatchStatement
ASTNode0005
TryStatement
EXPRESSION
EXPRESSION
WhileStatement
CatchStatement
ASTNode0006
EXPRESSION
IfStatement
THEN_STATEMENT
ASTNode0007
ELSE_STATEMENT
TryCatchStatement
(...)

MethodDeclaration
ASTNode0004
method binding:
DepositMoney.txtClear()
(...)

(b) Example AST

Fig. 7.9. Source code and AST extracts from a Java sample application
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Fig. 7.10. Graph representing a subset of a Java sample application

For this translation one can parse the annotated AST and create the correspond-
ing instance of the type graph, which will next be used as the start graph for the
architectural redesign.

7.4.4 Redesign

For transforming the graph model we create transformation rules that, applied to the
source model, yield a model complying to the target constraints.

Transformation Specification

A sample transformation rule is given in Figure 7.11.
Its specification, according to the graph transformation rules fundaments pre-

viously formalised and explained, is defined visually in Tiger EMF Transforma-
tion [488]. This is an Eclipse plugin for model transformation that allows to design
rules and apply them to an instance graph.
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(a) Left-Hand Side

(b) Right-Hand Side

Fig. 7.11. Move Method UI transformation rule

The approach is similar to refactoring by graph transformation [370], except for
the use of code categories for controlling the application. More generally, refactor-
ing rules may not be enough for all redesign transformations because sometimes it
is necessary to apply changes that are not behaviour preserving. An example is the
transformation of a legacy client-server system into a web-based application. The UI
has to be changed because of the differences in the user communication paradigm
between these different architectural styles. For instance, in the legacy application
we may have a feature that performs a database query and then asks a question to
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the user, waits synchronously for the answer and then, based on the user input, up-
dates a row in the database. To transform this code into a web-based system, it is
not enough to separate the UI from the data access layer. Due to the way that re-
quests are processed on the web, we have to transform the UI in such a way that the
communication will be asynchronous.

In order to ensure that the target model complies with the desired architecture, it
is possible to define constraints over the metamodel that correctly reflect the archi-
tectural paradigm. For instance, in 3-tier applications:

• there should be no UI and Business Logic methods in the same class
• no direct links from UI to Data allowed
• ...

Transformation Execution

The example graph for the BankSystem application seen previously (Figure 7.10) is
a candidate for the application of the Move Method UI transformation. This trans-
formation is an example of a rule that contributes to the technological layering of the
application.

As we can see from the transformation rule, this graph has an occurrence of the
LHS. As a result, we can apply the rule, obtaining the graph shown in Figure 7.12.

The method “txtClear” was moved from the class “DepositMoney” to “Deposit-
MoneyUI”, a class belonging to the UI concern.

The execution of transformation rules can either be based on a tool that interprets
the transformation specification, or a manually developed transformation program
using the set of rules as requirement specification. We are presently using the code
generation facility of the Tiger tool.

Example

At this stage we have a graphical representation of the categorised source code con-
forming to the type graph. Having designed the transformation rules in Tiger EMF
we can generate the transformation code automatically.

As an example, when we apply the transformation rule Move Method UI illus-
trated in Figure 7.11 to the start graph of Figure 7.10, we obtain the representation
shown in Figure 7.12.

If we keep applying appropriate transformation rules, this graph will be trans-
formed until the representation achieved complies to the intended target model. The
rule Move Variable UI can transfer variable lbNo to the class DepositMoneyUI. Ap-
plying the rules Move Code Block Data, followed by Move Code Block UI and
finally Move Code Block Data again, we can completely transform the source graph
into one that conforms to the constraints defined for the target model. This graph
is presented in Figures 7.13 and 7.14. The size of this graph made us divide it into
two figures to render it readable. The ellipses show the connections between the two
Figures. The first shows the architecture level and includes packages. The second in-
cludes all the information from the code block level until class level. For transform-
ing the whole application from 2-Tier to 3-Tier, 26 transformation rules are needed.
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Fig. 7.12. Graph representing a subset of the BankSystem sample application after the exe-
cution of rule Move Method UI. {} represents new AST nodes identifiers created during the
transformation process

Some of these rules, namely the ones that move code blocks, are quite more complex
than Move Method UI, which was selected to be presented for readability purposes.

7.4.5 Forward Engineering

The target code can be achieved using two alternative strategies discussed below.
However, we are still exploring both of them to see their practicality, challenges and
limitations.

1. During transformation execution, a log of the applied rules is kept, to be repli-
cated at the code level using a standard refactoring tool. This requires to asso-
ciate each graph transformation rule to one or more standard code refactorings.
Depending on the complexity of the rules or the specificities of the situation, tra-
ditional refactorings may not be enough, in which case it is necessary to develop
more complex code level transformations.
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Fig. 7.13. Graph representing a subset of the BankSystem sample application after being trans-
formed (Architecture and packages). The ellipses show the connections with Figure 7.14

2. Alternatively we can generate the code directly, using the target program repre-
sentation and the links to the original AST. The code can be generated top-down,
copying most of it from the original source code to the new structure and gen-
erating the necessary “extra code”. This “extra code” can be, for example, the
code that changes method invocations when the called method has moved to
a new class.

Example

Finally the code complying to the desired architecture can be generated. For this
purpose, we use the target model previously generated as well as the traceability
relation with the original source code. In this process the code is refactored to be
coherent with the model and glue code vital for the preservation of the application’s
functionality is created.

A sample of the code transformed is presented in Figures 7.15, 7.16, 7.17 and
7.18. The code is not integrally presented for simplicity reasons.

7.5 Related Work

Three areas of research constitute relevant work related to the approach presented
in this chapter: program representation/reverse engineering, program transformation
and code generation. However, the work in these areas is evolving mostly indepen-
dently, i.e., not as part of an integrated reengineering methodology as in our case.
We also present recent work that addresses specifically reengineering to SOA.
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Fig. 7.14. Graph representing a subset of the BankSystem sample application after being trans-
formed (from code block level until class level). The ellipses show the connections with Figure
7.13

Regarding the area of source code representation and reverse engineering, we
briefly describe a few examples that show how this issue is dealt with in different
contexts.

The Dagstuhl Middle Model (DMM) [325] was developed to solve interoper-
ability issues of reverse engineering tools. Like our approach, it keeps traceability to
the source code. The DMM is composed by sub-hierarchies that include an abstract
view of the program and a source code model. The chosen way to relate these two is
via a direct link. The Fujaba (From UML to Java And Back Again) tool suite [395]
provides design pattern [190] recognition. The source code representation used for
that process is based on an Abstract Syntax Graph (ASG). Another representation is
put forward with the Columbus Schema for C++ [173]. Here an AST conforming to
the C++ model/schema is built, and a higher level semantic information is derived
from types. The work of Ramalingam et al., from IBM research, in [426], addresses
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package SoftwareEvolutionBookChapter.ControlUIBL;

import SoftwareEvolutionBookChapter.UI.DepositMoneyUI;
import SoftwareEvolutionBookChapter.BL.DepositMoneyBL;

public class DepositMoneyUIBL {

private int rows = 0;
private int total = 0;

DepositMoneyUI depositMoneyUI = new DepositMoneyUI();
DepositMoneyBL depositMoneyBL = new DepositMoneyBL();

void populateArrayUIBL() {
try {

depositMoneyBL.populateArrayBL1(rows);
} catch (Exception e) {

rows = depositMoneyBL.getRows();
total = rows;
if (total == 0) {

depositMoneyUI.populateArrayUI();
} else {

depositMoneyBL.populateArrayBL3();
}

}
}

}

Fig. 7.15. Code Transformed (Package ControlUIBL)

the reverse engineering of OO data models from programs written in weakly-typed
languages like Cobol. In their work, the links between the model and the code are
represented in a reference table. This table establishes the link between each model
element and the line of code having no intermediate representation. One major dif-
ference between our methodology and the above approaches is that ours uses a cate-
gorisation step that will make possible the automated transformation to a new archi-
tectural style.

The ARTISAn framework, described by Jakobac, Egyed and Medvidovic in [250],
like our approach, categorises source code. It uses an iterative user-guided method
to achieve this. The code categories used are: “processing”, “data” and “communi-
cation”. The approach differs from ours in several aspects. Firstly, the goal of the
framework is program understanding and not the creation of a representation that is
aimed to be used as input for the transformation part of a reengineering methodology.
Another important difference is that in ARTISAn the categorisation process (called
“labeling”) is based in clues that result in the categorisation of classes only. In our
approach we need, and support, the method and code block granularity levels.

The next related area is program transformation, which can occur in different
levels of abstraction. The source-to-source level of transformation is the most es-
tablished one, both in research and in industrial implementations. There are several
research ideas that led to successful industrial tools. Examples from research include
TXL [126] and ASF+SDF [513]. DMS from Semantic Designs [46] and Forms2Net
from ATX Software [12] are program transformation tools being successfully applied
in the industry. Transformations at the detailed design level, due to its applications as
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package SoftwareEvolutionBookChapter.UI;

import javax.swing.JOptionPane;
import javax.swing.JTextField;

public class DepositMoneyUI {

private JTextField txtNo, txtName, txtDeposit;
private int rows = 0;

public int getRows() { return rows; }

public void populateArrayUI() {
JOptionPane.showMessageDialog (null, "Records File is Empty.\n

Enter Records First to Display.",
"BankSystem - EmptyFile", JOptionPane.PLAIN_MESSAGE);

btnEnable ();

}

//Function use to Clear all TextFields of Window.
void txtClear () {

txtNo.setText ("");
txtName.setText ("");
txtDeposit.setText ("");
txtNo.requestFocus ();

}

void btnEnable() {
// ...

}

}

Fig. 7.16. Code Transformed (Package UI)

maintenance techniques, have an increasing interest that is following the same path.
Practices such as refactoring [183] are driving the implementation of functionalities
that automate detailed design level transformations. These are mainly integrated in
development environments as is the case of Eclipse [494] and IntelliJ [255]. How-
ever, there is still a lot of ongoing research in this area, for instance, in the determi-
nation of dependencies between transformations [368].

Work in the area of architecture transformation is broad and diverse. It includes
a few works based on model transformation, automated code transformation, or
graph transformation and re-writing, which are closely related to the work in this
chapter. The approaches found in the literature vary in three main things: first, the
levels of abstraction used for describing the system (architecture models only or in-
terlinked architecture and implementation models), second, the way the architecture
models are represented and third, the method and tools used for representing and ex-
ecuting architecture transformation rules. Available case studies are either only con-
cerned with the transformation of high level architecture representations or limited
to very specific source and target architectures and programming languages combi-
nations.

Kong et al. [288] developed an approach for software architecture verification
and transformation based on graph grammar. First, the approach requires translating
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package SoftwareEvolutionBookChapter.BL;

import SoftwareEvolutionBookChapter.Data.DepositMoneyData;

public class DepositMoneyBL {

DepositMoneyData depositMoneyData = new DepositMoneyData();

public int getRows() { return depositMoneyData.getRows(); }

public void populateArrayBL1(int rows) throws Exception {
depositMoneyData.populateArrayData1(rows);

}

public void populateArrayBL3() {
depositMoneyData.populateArrayData3();

}

}

Fig. 7.17. Code Transformed (Package ControlBLData)

package SoftwareEvolutionBookChapter.Data;

import java.io.DataInputStream;
import java.io.FileInputStream;

public class DepositMoneyData {

private FileInputStream fis;
private DataInputStream dis;

private String records[][] = new String [500][6];
private int rows = 0;

public int getRows() { return rows; }

public void populateArrayData1(int p_rows) throws Exception {
rows = p_rows;
fis = new FileInputStream ("Bank.dat");
dis = new DataInputStream (fis);
while (true) {

for (int i = 0; i < 6; i++) {
records[rows][i] = dis.readUTF();

}
rows++;

}
}

public void populateArrayData3() {
try {

dis.close();
fis.close();

}
catch (Exception exp) { }

}

}

Fig. 7.18. Code Transformed (Package ControlData)
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UML diagrams describing the system architecture (or acquiring a description for
it) to reserved graph grammar formalism (RGG). Then, the properties of the RGG
description can be checked automatically. Also, automatic transformation can also be
applied but only at the architecture description level and not at the implementation
level.

Ivkovic and Kontogiannis [244] proposed a framework for quality-driven soft-
ware architecture refactoring using model transformations and semantic annotations.
In this method, first, conceptual architecture view is represented as a UML 2.0 profile
with corresponding stereotypes. Second, instantiated architecture models are anno-
tated using elements of the refactoring context, including soft-goals, metrics, and
constraints. A generic refactoring context is defined using UML 2.0 profiles that
includes “semanticHead” stereotype for denoting the semantic annotations. These
semantic annotations are related to system quality improvements. Finally, the ac-
tions that are most suitable for the given refactoring context are applied after being
selected from a set of possible refactorings. Transformations in this method occur at
the conceptual architecture view level using Fowler [183] refactorings.

Fahmy et al. [165] used graph rewriting to specify architectural transformations.
They used PROGRES tool [70] to formulate executable graph-rewriting specifica-
tions for various architectural transformations. They represent architecture using di-
rected typed graphs that represent system hierarchy and component interaction. The
assumption is that the architecture is extracted using some extraction tool. Their work
is at the architecture description level and no actual transformation is performed on
the code.

Unlike the three previous works, the approach of Carrière et al. [106] implements
architectural transformations at the code level using automated code transformation.
Their first step is reconstructing the existing software architecture by extracting ar-
chitecturally important features from the code and aggregating the extracted (low-
level) information into an architectural representation. The next step is defining the
required transformations. In this work, they were interested in transforming the con-
nectors of a client-server application to separate the client and server sides as much
as possible and reduce their mutual dependence. Next, the Reasoning SDK (formerly
Refine/C), which provides an environment for language definition, parsing and syn-
tax tree querying and transformation, is used to implement the required connector
transformations at code level on the AST of the source system. The major difference
from our work relies on the fact that we use code categorisation to relate the original
source code with the intended target architecture. We also transform at model level
while this approach does it at code level.

Regarding code generation, there is a significant number of research work and
tools available. A comprehensive list is already too long to specify in the context of
this chapter so we only name a few. The already mentioned Fujaba tool suite supports
the generation of Java sourcecode from the design in UML resulting in an executable
prototype. The Eclipse Modeling Framework (EMF) [495] can generate Java code
from models defined using the Ecore meta-model. This has a number of possible
uses such as to help develop an editor for a specific type of models. UModel [8],
from Altova, can generate C# and Java source code from UML class or component
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diagrams. In the Code Generation Network website there is a very extensive list of
available tools [120].

Work in the area of reengineering to SOA is new. It primarily focuses on iden-
tifying and extracting services from legacy code bases and then wrapping them for
deployment on a SOA. A key assumption in this area is that an evaluation of the
legacy system will be conducted to assess if there are valuable reusable and reli-
able functionalities embedded that are meaningful and useful to be exposed in the
service-oriented environment and that are fairly maintainable. Sneed [465] presents
a tool supported method for wrapping legacy PL/I, COBOL, and C/C++ code behind
an XML shell which allows individual functions within the programs, to be offered
as web services to any external user. The first step is identifying candidate func-
tionality for wrapping as a web service. The second step is locating the code of the
functionality, with the aid of reverse engineering tools. The third step is extracting
that code and reassembling it as a separate module with its own interface. This is
done by copying the impacted code units into a common framework and by placing
all of the data objects they refer to into a common data interface. The fourth step is
wrapping the component extracted with a WSDL interface. The last step is linking
the web service to overlying business processes by means of a proxy component.

A lighter code-independent approach was developed by Canfora et al. [100],
which wraps only the presentation layer of legacy form-based user interfaces (and
not the code) as services. In form-based user interfaces, the flow of data between
the system and the user is described by a sequence of query/response interactions or
forms with fixed screen organisation. There wrappers interacts with the legacy sys-
tem as though it were a user, with the help of a Finite State Automata (FSA) that
describes the interaction between the user and the legacy system. Each use case of
the legacy system is described by a FSA and is reengineered to a web service. The
FSA states correspond to the legacy screens and the transitions correspond to the
user actions performed on the screen to move to another screen. The wrapper derives
the execution of the uses cases on the legacy system by providing it with the needed
flow of data and commands using the FSA of the relevant use case. Of particular rel-
evance to our work is the service identification and extraction task, which is closely
related to the vertical dimension mentioned earlier in this chapter, but not reported
here. This task is essential for any code-wrapping approach to reengineering to SOA.
Some works focus primarily on this aspect. For example, Del Grosso et al. [145] pro-
posed an approach to identify, from database-oriented applications, pieces of func-
tionality to be potentially exported as services. The identification is performed by
clustering, through formal concept analysis, queries dynamically extracted by ob-
serving interactions between the application and the database. Zhang et al. [565]
proposed an approach for extracting reusable object-oriented legacy code segments
with combined formal concept analysis and slicing techniques for service integration.
Firstly, an evaluation of legacy systems is performed to confirm the applicability of
this approach and to determine other re-engineering activities. Secondly, the legacy
system is decomposed into component candidates via formal concept analysis. Static
program slicing is applied to further understand these component candidates. Then,
component candidates are extracted, refined and encapsulated.
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7.6 Conclusion

Most of the ongoing research in the context of automated software transformation, as
well as existing industrial tools, focus on textual and structural transformation tech-
niques that intend to solve very specific problems within well defined domains (e.g.
program restructuring, program renovation, language-platform migration). Our ex-
perience indicates that such techniques fall short of addressing, in a systematic way,
the complexity of the architecture-based transformation problem. In practice, when
such a problem arises, these approaches have to be combined in a trial and error fash-
ion, the success of which often depends on the experience of the reengineering team
and on the specific problem at hand. On the other hand, there exist techniques and
tools that work well at the architectural level, but with the main goal of document-
ing and visualising the architecture of applications rather than supporting increased
levels of automation in architecture-based transformations. Although such tools can
provide a very good starting point and facilitate the subsequent effort, in industry
projects a reengineering approach that starts with redocumenting architectures is of-
ten limited given the time and budget constraints.

SOA is becoming a prevailing software engineering practice and presents chal-
lenges that add to the difficulty of the architectural transformation process. In this
work we have presented a systematic approach in order to explicitly address these
issues. This chapter has reported in detail our approach: the code annotation pro-
cess, code representation, architectural transformation using graph transformation
techniques.

While in this chapter we presented an instantiation of the technique to transform
Java 2-tier applications to 3-tier to address the technological dimension of SOA,
the general technique can be used in a variety of contexts, tailored to the specific
requirements of a particular redesign problem by adapting the code annotation and
transformation rules. Possible instantiations include, for example, the migration of
monolithic applications into thin-client 2-tier architectures or of 3-tier applications
into SOA. Our current implementation serves as a demonstration of the methodology
and is incomplete in the sense that more categorisation rules may have to be added
to allow a more complete automation of the step 1 of the methodology, and that code
generation is not yet automated. However, from our experiments, we can see the
potential of using this methodology in industry.

Presently we are in the process of completing the tools in order to apply them
to a large real-world scenario. Another branch of work is to develop an instantiation
of the methodology to address the functional dimension of SOA. By applying it
in sequence in both dimensions it will be possible to transform legacy systems to
Service-Oriented Architectures.
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Summary. We know software evolution to be inevitable if the system is to survive in the
long-term. Equally well-understood is the necessity of having a good test suite available in
order to (1) ensure the quality of the current state of the software system and (2) to ease future
change. In that light, this chapter explores the interplay that exists between software testing
and software evolution, because as tests ease software evolution by offering a safety net against
unwanted change, they can equally be experienced as a burden because they are subject to the
very same forces of software evolution themselves.

In particular, in this chapter, we describe how typical refactorings of production code
can invalidate tests, how test code can (structurally) be improved by applying specialized test
refactorings. Building upon these concepts, we introduce “test-driven refactoring”, or refac-
torings of production code that are induced by the (re)structuring of the tests. We also report
on typical source code design metrics that can serve as indicators for testability. To conclude,
we present a research agenda that contains pointers to—as yet—unexplored research topics in
the domain of testing.

8.1 Introduction

Lehman has taught us that a software system must evolve, or it becomes progres-
sively less satisfactory [317, 321]. We also know that due to ever changing surround-
ings, new business needs, new regulations and also due to the people working with
the system, the software is in a semi-permanent state of flux [319]. Combined with
the increasing life-span of most software systems [56], this leads to a situation where
an ever higher fraction of the total budget of a software system is spent during the
maintenance or evolution phase of a software system, considerably outweighing the
initial development costs of a system [329].

For many people, evolving a software system has become a synonym for adapt-
ing the source code as this concept stands central when thinking of software. Soft-
ware, however, is multidimensional, and so is the development process behind it.
This multidimensionality lies in the fact that to develop high-quality source code,
other artifacts are needed. Examples of these are: specifications, which are needed
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to know what should be developed, constraints, which are defined so that the soft-
ware has to adhere to them, documentation, which needs to be written to ease future
evolution, and tests, which need to be set up and exercised to ensure quality [436].
The central question then is how evolution should happen: in a unidimensional way,
where only the source code is changed, or in a multidimensional way, where (all) the
other artifacts are also evolved?

Within this chapter we will explore two dimensions of the multidimensional soft-
ware evolution space, as we will focus on how the production software evolves with
regard to the accompanying tests of the software system. To characterize why tests
are so important during evolution, we first discuss some general focal points of tests:

Quality assurance Tests are typically engineered and run to ensure the quality of
a software system [131]. Other facets that are frequently tested are the robustness
and stress-resistance of a software system.

Documentation In agile software development methods such as extreme program-
ming (XP), tests are explicitly used as a form of documentation, and as such, the
tests serve as a means of communication between developers [516, 149].

Confidence At a more psychological level, test code can help the software (re-) en-
gineer become more confident, because of the safety net that is provided by
the tests. Furthermore, the confidence within the development team can be im-
proved when they see that the system they are trying to deliver, is working cor-
rectly [119, 149].

An aspect of testing that cannot be neglected is the impact on the software develop-
ment process: testing is known to be very time-intensive, thus driving up the total
costs of the software system. Estimates by Brooks put the total time devoted to test-
ing at 50% of the total allocated time [85, 447], while Kung et al. suggest that 40 to
80% of the development costs of building software is spent in the testing phase [301].

Several types of testing activities can be distinguished. The focus of this chapter
is on developer testing (often also called unit testing), i.e., testing as conducted by
the development team in order to assess that the system that is being built is work-
ing properly. In some cases, such tests will be set up with knowledge of the inner
workings of the system (white box testing)—in others the test case will be based
on component requirements, (design) models or public interfaces (black box test-
ing) [66, 346].

One of the alternatives to developer testing is acceptance testing, i.e., testing
as conducted by end user representatives in order to determine whether the system
meets the stated criteria. Although acceptance testing is not the primary focus of this
chapter, it has many techniques in common with developer testing (as observed by
Binder [66]), which is why we believe that the results that we discuss will to a large
extent be valid for acceptance testing as well.

Having discussed the necessity of a software system’s evolution and also the
importance of having a test suite available for a system, we can turn our attention to
the interactions that occur between tests and the system under evolution. To this end,
we define a number of research questions that we will investigate in the remainder of
this chapter:
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1. How does a system’s test suite influence the program comprehension process of
a software engineer trying to understand a given system? What are the possible
side effects with regard to evolving the software system?

2. Are there typical code characteristics that indicate which test code resists evolu-
tion? And if so, how can we help alleviate these, so called, test smells?

3. Given that production code evolves through e.g. refactorings—behavior preserv-
ing changes—, what is the influence of these refactorings on the associated test
code? Does that test code need to be refactored as well or can it remain in place
unadapted? And what will happen to its role as safety net against errors?

4. Can we use metrics to understand the relation between test code and production
code? In particular, can object-oriented metrics on the production code be used
to predict key properties of the test code?

In order to find answers to the above questions, we have studied how the test suites
of a number of applications evolve through time. We have specifically looked at
software developed using agile software development methods since these meth-
ods explicitly include a number of evolutionary steps in their development process.
Furthermore, such projects typically make use of testing frameworks, such as JUnit
[49, 262]. To sketch this context, we give a short introduction to agile methods in
Section 8.2.

The four research questions introduced above, are discussed in Sections 8.3
through 8.6: we investigate the effects of test suites on comprehension in Section 8.3.
We present a catalogue of test smells and test refactorings in Section 8.4. In Sec-
tion 8.5 we make a classification of classical refactorings [183] into categories, so
that one can easily see which refactorings (possibly) break a test. Finally, we discuss
a study that shows how certain object-oriented metrics correlate to testing effort in
Section 8.6.

In our concluding remarks (Section 8.7) we present a retrospective and touch
upon a number of unexplored research tracks.

8.2 Agile Software Development Methods

Agile software development methods (or Agile methods in short) refer to a collec-
tion of “lightweight” software development methodologies that adhere to the ideas
in the Agile Manifesto [233]. Agile methods aim at minimizing risk and achieving
customer satisfaction through a short (development) feedback loop.

Agile methods recognize that continuous change of software systems is natural,
inevitable and actually a desirable aspect of successful software systems. Agile soft-
ware development is typically done in short iterations, lasting only a few weeks. Each
iteration includes all software engineering activities, such as planning, design, cod-
ing, and testing, that are needed to add a (small) piece of functionality to the system.
Agile methods aim at having a working product (albeit not functionally complete)
deliverable to the customer after each iteration.

Agile software development builds upon various existing and common sense
practices and principles, such as code reviewing, testing, designing and refactoring.
However, these practices are done continuously rather than at dedicated phases of
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the software process only. On the other hand, the need for extensive documentation
on an agile project is reduced by several of its practices: test-driven development
and a focus on acceptance testing ensures that there is always a test suite that shows
that your system works and fulfills the requirements implemented to that point. For
the developers, these tests act as significant documentation because it shows how the
code actually works [9], and how it should be invoked.

A particular agile method that is studied in more detail in this chapter is Extreme
Programming (XP). XP is one of the initial and most prominent of the agile meth-
ods and applies many of the agile practices to “extreme levels”. It is a lightweight
methodology for small teams of approximately 10 people developing software in the
face of vague or rapidly changing requirements [50]. XP is performed in short it-
erations, which are grouped into larger releases. The planning process is depicted
as a game in which business and development determine the scope of releases and
iterations. The customer describes features via user stories, informal use cases that
fit on an index card. The developers estimate each of the user stories. User stories
are the starting point for the planning, design, implementation, and acceptance test
activities conducted in XP.

Two key practices of XP play an important role within the scope of our study,
namely testing and refactoring. In XP (and most other agile methods) tests are written
in parallel with (or even before) the production code by the programmers. The tests
are collected and they must all pass at any time. Customers write acceptance tests
for the stories in an iteration, if needed supported by the development team. Tests
are typically fully automatic, making it cheap to run them frequently. To write tests,
testing frameworks such as JUnit [49] are used (see the next section).

The second key practice of interest is refactoring: improving the design of ex-
isting code without changing functionality. The guiding design principle is “do the
simplest thing that could possibly work”. In XP, continuous refactoring during cod-
ing replaces the traditional (big) up front design effort.

Note that although this chapter uses agile software development methods and XP
to discuss the interaction between software evolution and software testing, this does
not mean that the issues observed only apply to agile methods; they are just as likely
to come up in any other development process where developer testing and refactoring
plays an important role. We choose agile methods as showcase because of its explicit
focus on testing and inclusion of evolutionary steps in the development cycle.

8.3 Program Comprehension

A major cost factor in the life cycle of a software system is program understand-
ing: trying to understand an existing software system for the purpose of planning,
designing, implementing, and testing changes. Estimates put the total cost of the
understanding phase at 50% of the total effort [125]. This suggests that paying atten-
tion to program comprehension issues in the software process could well pay off in
terms of higher quality, longer life time, fewer defects, lower costs, and higher job
satisfaction.
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This is especially true in the case of extreme programming since the need for
people to understand pieces of code is at the very core of XP.

Based upon a thorough analysis of (1) literature on XP [50, 254, 48]; (2) on-
line discussion covering XP subjects3; and (3) our own experiences made during an
ongoing (industrial) extreme programming project4, we made the following obser-
vation:

Observation 1 An extensive test suite can stimulate the program compre-
hension process, especially in the light of continuously evolving software.
For our study, we specifically focus on how program comprehension and unit

tests interact in the XP software process. We analyze risks and opportunities, look
at the effect on the team (whether and how the team gets a better understanding
of the code) as well as on the source code (whether and how the code gets more
understandable).

8.3.1 Program Understanding

We define program understanding (comprehension) as the task of building mental
models of an underlying software system at various abstraction levels, ranging from
models of the code itself to ones of the underlying application domain, for software
maintenance, evolution, and re-engineering purposes [383].

An important research area in program understanding deals with the cognitive
processes involved in constructing a mental model of the software system (see,
e.g., [530]). A common element of such cognitive models is generating hypotheses
about code and investigating whether they hold or must be rejected. Several strate-
gies can be used to arrive at relevant hypotheses, such as bottom up (starting from
code), top down (starting from a high-level goal and expectations), and opportunistic
combinations of the two [125]. Strategies guide two understanding mechanisms that
produce information: chunking creates new, higher level abstraction structures from
lower level structures, and cross referencing relates different abstraction levels [530].
We will see how the XP practices relate to these program understanding theories.

The construction of mental models at different levels of abstraction can be sup-
ported by so called software exploration tools [378]. These tools use reverse engi-
neering techniques to (1) identify a system’s components and interrelationships; and
(2) create representations of a system in other forms or at higher levels of abstrac-
tion [112].

8.3.2 Unit Testing and XP

Unit testing is at the heart of XP. Unit tests are written by the developers, using
the same programming language used to build the system itself. Tests are small,
take a white box view on the code, and include a check on the correctness of the

3 Most notably, the C2 wiki at http://www.c2.com/cgi/wiki and http://groups.
yahoo.com/group/extremeprogramming/. Last visited January, 2007.

4 Program understanding tools by the Software Improvement Group: http://www.
software-improvers.com/.
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results obtained, comparing actual results with expected ones. Tests are an explicit
part of the code, they are put under revision control, and all tests are shared by the
development team (any one can invoke any test). A unit test is required to run in
almost zero time. This makes it possible (and recommended) to run all tests before
and after any change, however minor the change may be.

Testing is typically done using a testing framework such as JUnit developed by
Beck and Gamma [49, 262]. The framework caters for invoking all test methods of
a test class automatically, and for collecting test cases into test suites. Test results can
be checked by invoking any of the assert methods of the framework with which ex-
pected values can be compared to actual values. Testing success is visualized through
a graphical user interface showing a growing green bar as the tests progress: as soon
as a test fails, the bar becomes red.

The XP process encourages writing a test class for every class in the system. The
test code/production code ratio may vary from project to project and in practice we
have seen ratios as high as 1:1. Moreover, XP encourages programmers to use tests
for documentation purposes, in particular if an interface or method is unclear, if the
implementation of a method is complicated, if there are circumstances in which the
code should work in a special way, and if a bug report is received [50]. In each of
these situations, the test is written before the corresponding method is written (or
modified) [52].

Also, tests can be added while understanding existing code. In particular, when-
ever a programmer is tempted to type something into a print statement or debugger
instruction, XP advises to write a test instead and add it to the system’s test suite [49].

8.3.3 Comprehension Benefits

This section discusses a number of benefits that an automated unit testing regime has
for program comprehension.

First, XP’s testing policy encourages programmers to explain their code using
test cases. Rather than explaining the behavior of a function using prose in com-
ments or documentation, the extreme programmer adds a test that explicitly shows
the behavior.

Second, the requirement that all tests must run 100% at all times, ensures that the
documentation via unit tests is kept up-to-date. With regular technical documentation
and comments, nothing is more difficult than keeping them consistent with the source
code. In XP, all tests must pass before and after every change, ensuring that what the
developer writing the tests intended to communicate remains valid.

Third, adding unit tests provides a repeatable program comprehension strategy.
If a programmer needs to change a piece of code that he is not familiar with, he
will try to understand the code by inspecting the test cases. If these do not provide
enough understanding, the programmer will try to understand the nature of the code
by developing and testing a series of hypotheses, as we have seen in Section 8.3.1.
The advise to write tests instead of using print statements or debugger commands
applies here as well: program understanding hypotheses can be translated into unit
tests, which then can be run in order to confirm or refute the hypotheses.
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Fourth, a comprehensive set of unit tests reduces the comprehension space when
modifying source code. To a certain extent a programmer can just try a change and
see whether the tests still run. This reduces the risks and complexity of conducting
a painstakingly difficult impact analysis. Thus, the XP process attempts to minimize
the size of the mental model that needs to be build and maintained since the tests
help the programmer to see what parts are not affected by the current modifications.

Last but not least, systematic unit testing helps build team confidence. In the XP
literature, it is said that the tests help the team to develop courage to change the
code [344].

The XP testing process not only affects the way the team works, it also has a di-
rect effect on the understandability of the production code written [254, p.199]. Writ-
ing unit tests requires that the code tested is split into many small methods each
responsible for a clear and testable task.

In addition, if the tests are written after the production code, it is likely that the
production code is difficult to test. For that reason, XP requires that the unit tests are
written before the code (the “test-driven” approach) [52]. In this way, testing code
and production code are written hand-in-hand, ensuring that the production code is
set up in a testable manner.

8.3.4 Comprehension Risks

Using tests for documentation leads to the somewhat paradoxical situation that in
order to understand a given piece of code a programmer has to read another piece of
code. Thus, to support program comprehension, XP increases the code base and this
code needs to be maintained as well. We experienced that maintaining such test code
requires special skills and refactorings, which we describe in Section 8.5.

Also of importance is that tests are automated (with the possible exception of
exploratory tests), as non-automated tests probably require knowledge or skill to
activate the tests. Knowledge which is possibly not available during (initial) program
comprehension [131].

Another concern is that XP uses the tests (in combination with oral communica-
tion and code written to display intent) as a replacement for technical documentation.
The word “documentation” is mentioned once in Beck’s book, where he explains
why he decided not to write documentation [50, p. 156]. For addressing subjects not
easily expressed in the tests or code of the system under development, a technical
memorandum can be written [134]. These are short (one or two pages) papers ex-
pressing key ideas and motivations of the design. However, if the general tendency is
not to write documentation, it is unlikely that the technical memoranda actually get
written, leaving important decisions undocumented.

A final concern is that some types of code are inherently hard to test, the best
known examples being user interfaces and database code. Writing tests for such code
requires skill, experience, and determination. This will not be always available, leav-
ing the hardest code without tests and thus without documentation.

A possible solution for these cases can be the use of so called mock objects which
are “simulated” objects that can mimic the behavior of complex objects in a con-
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trolled way (often using a form of capture and replay) [336]. Setting up such a mock
object can then serve as documentation of the interaction with the real object.

8.4 Test Smells and Refactorings

Continuous refactoring, one of the key practices of extreme programming and most
other agile methods, is advocated for bringing the code into the simplest state possi-
ble. To aid in the refactoring process a catalog of “code smells” and a wide range of
refactorings is available, varying from simple modifications up to ways to systemat-
ically introduce design patterns in existing code [273].

From our own experiences we know however that test code is different from
production code and this has led us to the following observations:

Observation 2 Test code has a distinct set of smells, dealing with the ways
in which test cases are organized, how they are implemented, and how they
interact with each other.

Observation 3 Improving test code involves a mixture of applying refac-
torings as identified by Fowler [183] specialized to test code improvements,
as well as a set of additional refactorings, involving the modification of test
classes and the way of grouping test cases.

In this section we describe a set of test smells indicating trouble in test code, and
a collection of test refactorings explaining how to overcome some of these problems
through a simple program modification.

For the remainder of this chapter, we assume some familiarity with the xUnit
framework [49] and refactorings as described by Fowler [183]. We will refer to
refactorings described in this book using Name (F:page#) and to our test specific
refactorings described in Section 8.4.2 using Name (#).

8.4.1 Test Code Smells

This section gives an overview of bad code smells that are specific for test code.

Smell 1: Mystery Guest.
When a test uses external resources, such as a file containing test data, the test is no
longer self contained. Consequently, there is not enough information to understand
the tested functionality, making it hard to use that test as documentation.

Moreover, using external resources introduces hidden dependencies: if some
force changes or deletes such a resource, tests start failing. Chances for this increase
when more tests use the same resource.

The use of external resources can be eliminated using the refactoring Inline Re-
source (1). If external resources are needed, you can apply Setup External Resource
(2) to remove hidden dependencies.
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Smell 2: Resource Optimism.
Test code that makes optimistic assumptions about the existence (or absence) and
state of external resources (such as particular directories or database tables) can cause
non-deterministic behavior in test outcomes. Situations where tests run fine at one
time and fail miserably the next time are not where you want to find yourself in. Use
Setup External Resource (2) to allocate and/or initialize all resources that are used.

Smell 3: Test Run War.
Such wars arise when the tests run fine as long as you are the only one testing but
fail when more programmers run them. This is most likely caused by resource inter-
ference: some tests in your suite allocate resources such as temporary files that are
also used by others. Apply Make Resource Unique (3) to overcome interference.

Smell 4: General Fixture.
In the JUnit framework a programmer can write a setUp method that will be exe-
cuted before each test method to create a fixture for the tests to run in.

Things start to smell when the setUp fixture is too general and different tests
only access part of the fixture. Such set-ups are harder to read and understand and
may make tests run more slowly (because they do unnecessary work). The danger
of having tests that take too much time to complete is that testing starts interfering
with the rest of the programming process and programmers eventually may not run
the tests at all.

The solution is to use setUp only for that part of the fixture that is shared by
all tests using Fowler’s Extract Method (F:110) and put the rest of the fixture in the
method that uses it using Inline Method (F:117). If, for example, two different groups
of tests require different fixtures, consider setting these up in separate methods that
are explicitly invoked for each test, or spin off two separate test classes using Extract
Class (F:149).

Smell 5: Eager Test.
When a test method checks several methods of the object to be tested, it is hard to
read and understand, and therefore more difficult to use as documentation. Moreover,
it makes tests more dependent on each other and harder to maintain.

The solution is simple: separate the test code into test methods that test only one
method using Fowler’s Extract Method (F:110), using a meaningful name highlight-
ing the purpose of the test. Note that splitting into smaller methods can slow down
the tests due to increased setup/teardown overhead.

Smell 6: Lazy Test.
This occurs when several test methods check the same method using the same fixture
(but for example check the values of different instance variables). Such tests often
only have meaning when considering them together so they are easier to use when
joined using Inline Method (F:117).

Smell 7: Assertion Roulette.
You know something is wrong because your tests fail but it is unclear what. This
smell comes from having a number of assertions in a single test method that do not
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have a distinct explanation. If one of the assertions fails, you do not know which one
it is. Use Add Assertion Explanation (5) to remove this smell.

Smell 8: Indirect Testing.
A test class is supposed to test its counterpart in the production code. It starts to
smell when a test class contains methods that actually perform tests on other objects
(for example because there are references to them in the class-to-be-tested). Such
indirection can be moved to the appropriate test class by applying Extract Method
(F:110) followed by Move Method (F:142) on that part of the test. The fact that
this smell arises also indicates that there might be problems with data hiding in the
production code.

Note that opinions differ on indirect testing. Some people do not consider it
a smell but a way to guard tests against changes in the “lower” classes. We feel that
there are more losses than gains to this approach: it is much harder to test anything
that can break in an object from a higher level and understanding and debugging
indirect tests is much harder.

Smell 9: For Testers Only.
When a production class contains methods that are only used by test methods, these
methods either (1) are not needed and can be removed, or (2) are only needed to
set up a fixture for testing. Depending on functionality of those methods, you may
not want them in production code where others can use them. If this is the case,
apply Extract Subclass (F:330) to move these methods in the testcode and use that
subclass to perform the tests on. You will often find that these methods have names
or comments stressing that they should only be used for testing.

Fear of this smell may lead to another undesirable situation: a class without cor-
responding test class. The reason then is that the developer (1) does not know how
to test the class without adding methods that are specifically needed for the test and
(2) does not want to pollute his production class with test code. Creating a separate
subclass helps to deal with this problem.

Smell 10: Sensitive Equality.
It is fast and easy to write equality checks using the toString method. A typical way
is to compute an actual result, map it to a string, which is then compared to a string lit-
eral representing the expected value. Such tests, however may depend on many irrele-
vant details such as commas, quotes, spaces, etc. Whenever the toString method for
an object is changed, tests start failing. The solution is to replace toString equality
checks by real equality checks using Introduce Equality Method (6).

Smell 11: Test Code Duplication.
Test code may contain undesirable duplication. In particular the parts that set up test
fixtures are susceptible to this problem. Solutions are similar to those for normal code
duplication as described by Fowler [183, p. 76]. The most common case for test code
will be duplication of code in the same test class. This can be removed using Extract
Method (F:110). For duplication across test classes, it may be helpful to mirror the
class hierarchy of the production code into the test class hierarchy. A word of caution
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however: moving duplicated code from two separate classes to a common class can
introduce (unwanted) dependencies between tests.

A special case of code duplication is test implication: test A and B cover the same
production code, and A fails if and only if B fails. A typical example occurs when the
production code gets refactored: before this refactoring, A and B covered different
code, but afterwards they deal with the same code and it is not necessary anymore
to maintain both tests. Because it fails to distinguish between the various cases, test
implication impedes comprehension and documentation.

8.4.2 Test Refactorings

Bad smells seem to arise more often in production code than in test code. The main
reason for this is that production code is adapted and refactored more frequently,
allowing these smells to escape.

One should not, however, underestimate the importance of having fresh test code.
Especially when new programmers are added to the team or when complex refactor-
ings need to be performed, clear test code is invaluable. To maintain this freshness,
test code also needs to be refactored.

We define test refactorings as changes (transformations) of test code that: (1) do
not add or remove test cases, and (2) make test code better understandable/readable
and/or maintainable [518].

The remainder of this section presents refactorings that we encountered while
working on test code. Not all of these refactorings are directly linked with the elimi-
nation of the test smells of Section 8.4.1, but when a link is there, it is described.

Refactoring 1: Inline Resource.
To remove the dependency between a test method and some external resource, we
incorporate that resource in the test code. This is done by setting up a fixture in
the test code that holds the same contents as the resource. This fixture is then used
instead of the resource to run the test. A simple example of this refactoring is putting
the contents of a file that is used into some string in the test code.

If the contents of the resource are large, chances are high that you are also suf-
fering from Eager Test (5) smell. Consider conducting Extract Method (F:110) or
Reduce Data (4) refactorings.

Refactoring 2: Setup External Resource.
If it is necessary for a test to rely on external resources, such as directories, databases,
or files, make sure the test that uses them explicitly creates or allocates these re-
sources before testing, and releases them when done (take precautions to ensure the
resource is also released when tests fail).

Refactoring 3: Make Resource Unique.
A lot of problems originate from the use of overlapping resource names, either be-
tween different tests run done by the same user or between simultaneous test runs
done by different users.

Such problems can easily be prevented (or repaired) by using unique identifiers
for all resources that are allocated, e.g. by including a time-stamp. When you also
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include the name of the test responsible for allocating the resource in this identifier,
you will have less problems finding tests that do not properly release their resources.

Refactoring 4: Reduce Data.
Minimize the data that is setup in fixtures to the bare essentials. This will have two
advantages: (1) it makes them better suitable as documentation, and (2) your tests
will be less sensitive to changes.

Refactoring 5: Add Assertion Explanation.
Assertions in the JUnit framework have an optional first argument to give an ex-
planatory message to the user when the assertion fails. Testing becomes much easier
when you use this message to distinguish between different assertions that occur in
the same test. Maybe this argument should not have been optional. . .

Refactoring 6: Introduce Equality Method.
If an object structure needs to be checked for equality in tests, add an implementation
for the “equals” method for the object’s class. You then can rewrite the tests that use
string equality to use this method. If an expected test value is only represented as
a string, explicitly construct an object containing the expected value, and use the
new equals method to compare it to the actually computed object.

8.4.3 Other Test Smells and Refactorings

Fowler [183] presents a large set of bad smells and refactorings that can be used
to remove them. Our work focuses on smells and refactorings that are typical for
test code, whereas Fowler focuses more on production code. The role of unit tests
in [183] is also more geared towards proving that a refactoring did not break anything
than to be used as documentation of the production code.

Instead of focusing on cleaning test code which already has bad smells, Schnei-
der [454] describes how to prevent these smells right from the start by discussing
a number of best practices for writing tests with JUnit.

The C2 Wiki contains some discussion on the decay of unit test quality and prac-
tice as time proceeds [98], and on the maintenance of broken unit tests [542]. Opin-
ions vary between repairing broken unit tests, deleting them completely, and moving
them to another class in order to make them less exposed to changes (which may
lead to our Indirect Testing (8) smell).

Van Rompaey et al. present an approach in which test smells are detected and
then ranked according to their relative significance [521]. For this, they rely on
a metric-based heuristic approach. They focus on the “General Fixture” and “Eager
Test” test smells (Smell 4 & 5 in Section 8.4.1).

Besides the test smells we described earlier, Meszaros [372] discusses an addi-
tional set of process-oriented test smells and their refactorings.

8.5 How Refactoring Can Invalidate Its Safety Net

When evolving a piece of software, the change activities can roughly be divided into
two categories. The first category consists of those operations that preserve behavior,
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i.e. refactorings, while the second category contains those changes that do not nec-
essarily preserve behavior. Intuitively, when non-behavior-preserving changes are
applied to production code, one would expect that the associated test code would
need to evolve as well, as the end-result of the computation is bound to be different.

When thinking of refactorings of production code however, the picture is not that
clear whether the associated unit tests need to evolve as well. Refactoring, which
aims to improve the internal structure of the code, happens e.g. through the removal
of duplication, simplification, making code easier to understand, adding flexibil-
ity, . . . Fowler describes it as: “Without refactoring, the design of software will decay.
Regular refactoring helps code retain its shape.” [183, p.55].

One of the dangers of refactoring is that a programmer unintentionally changes
the system’s behavior. Ideally, it can be verified that this did not happen by checking
that all the tests pass after refactoring. In practice, however, we have noticed that
there are refactorings that will invalidate tests, as tests often rely, to a certain extent,
on the code structure, which may have been affected by the refactoring (e.g., when
a method is moved to another class and the test still expects it in the original class).

From this perspective, we observed the following:

Observation 4 The refactorings as proposed by Fowler [183] can be clas-
sified based on the type of change they make to the code, and therefore on
the possible change they require in the test code.

Observation 5 In parallel to test-driven design, test-driven refactoring
can improve the design of production code by focusing on the desired way
of organizing test code to drive refactoring of production code (i.e., refactor
for testing).

To explore the relationship between unit testing and refactorings, we take the
following path: we first set up a classification of the refactorings described by
Fowler [183], identifying exactly which of the refactorings affect class interfaces,
and which therefore require changes in the test code as well (see Section 8.5.1).
Subsequently, we look at the video store example from [183], and assess the impli-
cations of each refactoring on the test code (Section 8.5.2). We explore test-driven
refactoring, which analyzes the test code in order to arrive at code level refactorings
(Section 8.5.3), before we discuss the relationship between code-level refactorings
and test-level refactorings (Section 8.5.4). We then integrate our results via the no-
tion of a refactoring session which is a coherent set of steps resulting in refactoring
of both the code and the tests (Section 8.5.5).

8.5.1 Types of Refactoring

Refactoring a system should not change its observable behavior. Ideally, this is veri-
fied by ensuring that all the tests pass before and after a refactoring [50, 183].

In practice, it turns out that such verification is not always possible: some refac-
torings restructure the code in such a way that tests only can pass after the refactor-
ing if they are modified. For example, refactoring can move a method to a new class
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while some tests expect it in the original class (in that case, the code will probably
not even compile).

This unfortunate behavior was also noted by Fowler: “Something that is disturb-
ing about refactoring is that many of the refactorings do change an interface.” [183,
p.64]. Nevertheless, we do not want to change the tests together with a refactoring
since that will make them less trustworthy for validating correct behavior afterwards.

In the remainder of this section, we will look in more detail at the refactorings
described by Fowler [183] to analyze in which cases problems might arise because
the original tests need to be modified.

Taxonomy

If we start with the assumption that refactoring does not change the behavior of the
system, then there is only one reason why a refactoring can break a test: because the
refactoring changes the interface that the test expects. Note that the interface extends
to all visible aspects of a class (fields, methods, and exceptions). This implies that
one has to be careful with tests that directly inspect the fields of a class since these
will more easily change during a refactoring5.

So, initially, we distinguish two types of refactoring: refactorings that do not
change any interface of the classes in the system and refactorings that do change an
interface. The first type of refactorings has no consequences for the tests: since the
interfaces are kept the same, tests that succeeded before refactoring will also succeed
after refactoring (if the refactoring indeed preserves the tested behavior).

The second type of refactorings can have consequences for the tests since there
might be tests that expect the old interface. Again, we can distinguish two situations:

Incompatible: the refactoring destroys the original interface. All tests that rely on
the old interface must be adjusted.

Backwards Compatible: the refactoring extends the original interface. In this case
the tests keep running via the original interface and will pass if the refactoring
preserves tested behavior. Depending on the refactoring, we might need to add
more tests covering the extensions.

A number of incompatible refactorings that normally would destroy the original in-
terface can be made into backwards compatible refactorings. This is done by extend-
ing the refactoring so it will retain the old interface, for example, using the Adapter
pattern or simply via delegation. As a side-effect, the new interface will already
partly be tested. Note that this is common practice when refactoring a published
interface to prevent breaking dependent systems. A disadvantage is that a larger in-
terface has to be maintained but when delegation or wrapping was used, that should
not be too much work. Furthermore, language features like deprecation can be used
to signal that this part of the interface is outdated.

5 In fact, direct inspection of fields of a class is a test smell that could better be removed
beforehand [518].
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Fig. 8.1. Classes before refactoring

Classification

We have analyzed the refactorings in [183] and divided them into the following
classes:
A. Composite: The four big refactorings Convert Procedural Design to Objects,

Separate Domain from Presentation, Tease Apart Inheritance, and Extract Hi-
erarchy will change the original interface, but we will not consider them in more
detail since they are performed as series of smaller refactorings.

B. Compatible: Refactorings that do not change the original interface. Refactorings
in this class are listed in Table 8.1.

C. Backwards Compatible: Refactorings that change the original interface and are
inherently backwards compatible since they extend the interface. Refactorings
in this class are listed in Table 8.2.

D. Make Backwards Compatible: Refactorings that change the original interface
and can be made backwards compatible by adapting the new interface to the
new one. Refactorings in this class are listed in Table 8.3.

E. Incompatible: Refactorings that change the original interface and are not back-
wards compatible (for example, because they change the types of classes that are
involved). Refactorings in this class are listed in Table 8.4.

Note that the refactorings Replace Inheritance with Delegation and Replace Delega-
tion with Inheritance are listed both in the Compatible and Backwards Compatible
tables since they can be of either category, depending on the actual case.

8.5.2 Revisiting the Video Store

In this section, we study the relationship between testing and refactoring using a well-
known example of refactoring. We revisit the video store code used by Fowler [183,
Chapter 1], extending it with an analysis of what should be going on in the accom-
panying video store test code.

The video store class structure before refactoring is shown in Figure 8.1. It con-
sists of a Customer, who is associated with a series of Rentals, each consisting of
a Movie and an integer indicating the number of days the movie was rented. The
key functionality is in the Customer’s statement method printing a customer’s total
rental cost. Before refactoring, this statement is printed by a single long method.
After refactoring, the statement functionality is moved into appropriate classes, re-
sulting in the structure of Figure 8.2 taken from [183, p. 51].

Fowler emphasizes the need to conduct refactorings as a sequence of small steps.
At each step, you must run the tests in order to verify that nothing essential has
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Table 8.1. Compatible refactorings (type B)

Change Bidirectional Association to Unidirectional Replace Exception with Test
Replace Nested Conditional with Guard Clauses Change Reference to Value
Replace Magic Number with Symbolic Constant Split Temporary Variable

Consolidate Duplicate Conditional Fragments Decompose Conditional
Replace Conditional with Polymorphism Introduce Null Object

Replace Inheritance with Delegation Preserve Whole Object
Replace Delegation with Inheritance Remove Control Flag
Replace Method with Method Object Substitute Algorithm
Remove Assignments to Parameters Introduce Assertion

Replace Data Value with Object Extract Class
Introduce Explaining Variable Inline Temp

Table 8.2. Backwards compatible refactorings (type C)

Replace Inheritance with Delegation Replace Temp with Query Push Down Method
Replace Delegation with Inheritance Duplicate Observed Data Push Down Field
Consolidate Conditional Expression Self Encapsulate Field Pull Up Method

Replace Record with Data Class Form Template Method Extract Method
Introduce Foreign Method Extract Superclass Pull Up Field
Pull Up Constructor Body Extract Interface

Table 8.3. Refactorings that can be made backwards compatible (type D)

Change Unidirectional Association to Bidirectional Remove Middle Man
Replace Parameter with Explicit Methods Remove Parameter

Replace Parameter with Method Add Parameter
Separate Query from Modifier Rename Method

Introduce Parameter Object Move Method
Parameterize Method

Table 8.4. Incompatible refactorings (type E)

Replace Constructor with Factory Method Remove Setting Method
Replace Type Code with State/Strategy Encapsulate Downcast

Replace Type Code with Subclasses Collapse Hierarchy
Replace Error Code with Exception Encapsulate Field

Replace Subclass with Fields Extract Subclass
Replace Type Code with Class Hide Delegate

Change Value to Reference Inline Method
Introduce Local Extension Inline Class
Replace Array with Object Hide Method

Encapsulate Collection Move Field
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Fig. 8.2. Class structure after refactoring

changed. His testing approach is the following: “I create a few customers, give each
customer a few rentals of various kinds of films, and generate the statement strings.
I then do a string comparison between the new string and some reference strings that
I have hand checked” [183, p. 8]. Although Fowler does not list his test classes, this
typically should look like the code in Figure 8.3.

Studying this string-based testing method, we make the following observations:
• The setup is complicated, involving the creation of many different objects.
• The documentation value of the test is limited: it is hard to relate the computation

of the charge of 4.5 for movie m1 to the way in which charges are computed for
the actual movies rented (in this case a children’s and a regular movie, each with
their own price computation).

• The tests are brittle. All test cases include a full statement string. When the
format changes in just a very small way, all existing tests (!) must be adjusted,
an error prone activity we would like to avoid.

Unfortunately, there is no other way to write tests for the given code. The poor struc-
ture of the long method necessarily leads to an equally poor structure of the test cases.
From a testing perspective, we would like to be able to separate computations from
report writing. The long statement method prohibits this: it needs to be refactored in
order to be able to improve the testability of the code.

This way of reasoning naturally leads to the application of the Extract Method
refactoring to the statement method. Fowler comes to the same conclusion, based
on the need to write a new method printing a statement in HTML format. Thus, we
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Movie m1 = new Movie("m1",Movie.CHILDRENS);
Movie m2 = new Movie("m2", Movie.REGULAR);
Movie m3 = new Movie("m3", Movie.NEW_RELEASE);
Rental r1 = new Rental(m1, 5);
Rental r2 = new Rental(m2, 7);
Rental r3 = new Rental(m3, 1);
Customer c1 = new Customer("c1");
Customer c2 = new Customer("c2");

public void setUp() {
c1.addRental(r1);
c1.addRental(r2);
c2.addRental(r3);

}

public void testStatement1() {
String expected =
"Rental Record for c1\n" +
"\tm1\t4.5\n" +
"\tm2\t9.5\n" +
"Amount owed is 14.0\n" +
"You earned 2 frequent renter points";

assertEquals(expected, c1.statement());
}

Fig. 8.3. Initial sample test code

extract getCharge for computing the charge of a rental, and getPoints for computing
the “frequent renter points”.

Extract Method is of type C, the backwards compatible refactorings, so we can
use our existing tests to check the refactoring. However, we have created new meth-
ods, for which we might like to add tests that document and verify their specific
behavior. To create such tests, we can reuse the setup of movies, rentals, and cus-
tomers used for testing the statement method. We end up with a number of smaller
test cases specifically addressing either the charge or rental point computations.

Since the correspondence between test code and actual code is now much clearer
and better focused, we can apply white box testing, and use our knowledge of the
structure of the code to determine the test cases needed. Thus, we see that the
getCharge method to be tested distinguishes between 5 cases, and we make sure
our tests cover these cases.

This has solved some of the problems. The tests are better understandable, more
complete, much shorter, and less brittle. Unfortunately, we still have the complicated
setup method. What we see is that the setup mostly involves rentals and movies,
while the tests themselves are in the customer testing class. This is because the ex-
tracted method is in the wrong class: applying Move Method to Rental simplifies the
set up for new test cases. Again we use our analysis of the test code to find refactor-
ings in the production code.
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The Move Method is of type D, refactorings that can be made backwards com-
patible by adding a wrapper method to retain the old interface. We add this wrapper
so we can check the refactoring with our original tests. However, since the docu-
mentation of the method is in the test, and this documentation should be as close as
possible to the method documented, we want to move the tests to the method’s new
location. Since there is no test class for Rental yet, we create it, and move the test
methods for getCharge to it. Depending on whether the method was part of a pub-
lished interface, we might want to keep the wrapper (for some time), or remove it
together with the original test.

Fowler discusses several other refactorings, moving the charge and point calcula-
tions further down to the Movie class, replacing conditional logic by polymorphism
in order to make it easier to add new movie types, and introducing the state design
pattern in order to be able to change movie type during the life time of a movie.

When considering the impact on test cases of these remaining video store refac-
torings, we start to recognize a pattern:

• Studying the test code and the smells contained in it may help to identify refac-
torings to be applied at the production code;

• Many refactorings involve a change to the structure of the unit tests as well:
in order to maintain the documenting value of these unit tests, they should be
changed to reflect the structure of the code being tested.

In the next two sections, we take a closer look at these issues.

8.5.3 Test-Driven Refactoring

In test-driven refactoring, we try to use the existing test cases in order to determine
the code-level refactorings. Thus, we study test code in order to find improvements
to the production code.

This calls for a set of code smells that helps to find such refactorings. A first cat-
egory is the set of existing code smells discussed in Fowler’s book [183]. Several of
them, such as long method, duplicated code, long parameter list, and so on, apply to
test code as well as they do to production code. In many cases solving them involves
not just a change on the test code, but first of all a refactoring of the production code.

A second category of smells is the collection of test smells discussed in Sec-
tion 8.4 (also see [518]). In fact, in our movie example we encountered several of
them already. Our uneasy feeling with the test case of Figure 8.3 is captured by the
Sensitive Equality smell [518, Smell 10]: comparing computed values to a string lit-
eral representing the expected value. Such tests depend on many irrelevant details,
such as commas, quotes, tabs, . . . This is exactly why the customer tests of Figure 8.3
become brittle.

Another test smell we encountered is called Indirect Testing [518, Smell 8]:
a test class contains methods that actually perform tests on other objects. Indirect
tests make it harder to understand the relationship between test and production code.
While moving the getCharge and getPoints methods in the class hierarchy (using
Move Method), we also moved the corresponding test cases, in order to avoid Indi-
rect Testing.
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The test-driven perspective may lead to the formulation of additional test smells.
For example, we observed that setting up the fixture for the CustomerTest was com-
plicated. This indicates that the tests are in the wrong class, or that the underlying
business logic is not well isolated. Another smell appears when there are many test
cases for a single method, indicating that the method is too complex.

Test-driven refactoring is a natural consequence of test-driven design. Test-driven
design is a way to get a good design by thinking about test cases first when adding
functionality. Test-driven refactoring is a way to improve your design by rethinking
the way you structured your tests.

In fact, Beck’s work on test-driven design [51, 52] contains an interesting ex-
ample that can be transferred to the refactoring domain. It involves testing the con-
struction of a mortality table. His first attempt requires a complicated setup, involv-
ing separate “person” objects. He then rejects this solution as being overly complex
for testing purposes, and proposes the construction of a mortality table with just an
age as input. His example illustrates how test case construction guides design when
building new code; likewise, test case refactoring guides the improvement of design
during refactoring.

8.5.4 Refactoring Test Code

In our study of the video store example, we saw that many refactorings on the code
level can be completed by applying a corresponding refactoring on the test case level.
For example, to avoid Indirect Testing, the refactoring Move Method should be fol-
lowed by “Move Test”. Likewise, in many cases Extract Method should be followed
by “Extract Test”. To retain the documentation value of the unit tests, their structure
should be in sync with the structure of the source code.

In our opinion, it makes sense to extend the existing descriptions of refactorings
with suggestions on what to do with the corresponding unit tests, for example in the
“mechanics” part.

The topic of refactoring test code is discussed extensively in Section 8.4. An
issue of concern when changing test code is that we may “lose” test cases. When
refactoring production code, the availability of tests forms a safety net that guards us
from accidentally losing code, but such a safety net is not in place when modifying
test code. A solution is to measure coverage [346] before and after changing the
tests, e.g. with the help of Clover [108] or Emma [469]. One step further is mutation
testing, using a tool such as Jester [379, 470]. Jester automatically makes changes to
conditions and literals in Java source code. If the code is well-tested, such changes
should lead to failing tests. Running Jester before and after test case refactorings
helps to verify that the changes did not affect test coverage.

8.5.5 Refactoring Sessions

The meaningful unit of refactoring is a sequence of steps involving changes to both
the code base and the test base. We propose the notion of a refactoring session to
capture such a sequence. It consists of the following steps:
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1. Detect smells in the code or test code that need to be fixed. In test-driven refac-
toring, the test set is the starting point for finding such smells.

2. Identify candidate refactorings addressing the smell.
3. Ensure that all existing tests run.
4. Apply the selected refactoring to the code. Provide a backwards compatible in-

terface if the refactoring falls in category D. Only change the associated test
classes when the refactoring falls in category E.

5. Ensure that all existing tests run. Consider applying mutation testing to assess
the coverage of the test cases.

6. Apply the testing counterpart of the selected refactoring.
7. Ensure that the modified tests still run. Check that the coverage has not changed.
8. Extend the test cases now that the underlying code has become easier to test.
9. Ensure the new tests run.

The integrity of the code is ensured since (1) all tests are run between each step; (2)
each step changes either code or tests, but never both at the same time (unless this is
impossible).

8.6 Measuring Code and Test Code

In the previous sections we have seen how test suites affect program comprehension,
how test suites themselves can be subjected to refactoring, and how refactoring of the
production code is reflected in the test code. The last thing we investigate is whether
there is a relation (correlation) between certain properties of the production code and
those of the test code. We look at one property in particular, namely the testability
of production code, based on our earlier work on finding testability metrics for Java
systems [89].

For our investigation, we take advantage of the popularity of the JUnit frame-
work [262]. JUnit’s typical usage scenario is to test each Java class C by means of
a dedicated test class CT , generating pairs of the form 〈C,CT 〉. The route then that we
pursue is to use these pairs to find source code metrics on C that are good predictors
of test-related metrics on CT .

To elaborate this route, we first define the notion of testability that we address,
then describe the experimental design that can be used to explore the hypothesis,
followed by a discussion of initial experimental results.

8.6.1 Testability

The ISO defines testability as “attributes of software that bear on the effort needed
to validate the software product” [240]. Binder [65] offers an analysis of the var-
ious factors that contribute to a system’s testability, which he visualizes using the
fish bone diagram as shown in Figure 8.4. The major factors determining test ef-
fort that Binder distinguishes include the test adequacy criterion that is required, the
usefulness of the documentation, the quality of the implementation, the reusability
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and structure of the test suite, the suitability of the test tools used, and the process
capabilities.

Of these factors, we are concerned with the structure of the implementation, and
with source code factors in particular. One group of factors we distinguish are test
case generation factors, which influence the number of test cases required. An exam-
ple is the testing criterion (test all branches, test all inherited methods), but directly
related are characteristics of the code itself (use of if-then-else statements, use of
inheritance). The other group of factors we distinguish are test case construction
factors, which are related to the effort needed to create a particular test case. Such
factors include the complexity of creating instances for a given class, or the number
of fields that need to be initialized.

Fig. 8.4. The testability fish-bone [65, 89]
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8.6.2 Experimental Design

Our goal is to assess the capability of a suite of object-oriented metrics to predict
testing effort. We assess this capability from a class level perspective, i.e., we assess
whether or not the values of object-oriented metrics for a given class can predict
the required amount of effort needed for unit testing that class. The particular envi-
ronment in which we conduct the experiments consists of Java systems that are unit
tested at the class level using the JUnit testing framework.

To help us translate the goal into measurements, we pose questions that pertain
to the goal:

Question 1: Are the values of the object-oriented metrics for a class associ-
ated with the required testing effort for that class?

To answer this question, we must first quantify “testing effort.” To indicate the testing
effort required for a class we use the size of the corresponding test suite. Well-known
cost models such as Boehm’s COCOMO [72] and Putnam’s SLIM model [421] relate
development cost and effort to software size. Test suites are software in their own
right; they have to be developed and maintained just like ‘normal’ software. Below
we will see which metrics we use to measure the size of a test suite.

Next, we can refine our original question, and obtain the following new question:

Question 2: Are the values of the object-oriented metrics for a class associ-
ated with the size of the corresponding test suite?

From these questions we can derive a hypothesis that our experiments test:

H0(m,n): There is no association between object-oriented metric m and test suite
metric n,

H1(m,n): There is an association between object-oriented metric m and test suite
metric n,

where m ranges over our set of object-oriented metrics, and n over our set of test-suite
based metrics.

As a candidate set of object-oriented metrics, we use the suite proposed by
Binder [65] as a starting point. Binder is interested in testability as well, and uses
a model distinguishing “complexity” and “scope” factors, which are similar to our
test case construction and generation factors. The metrics used by Binder are based
on the well known metrics suite provided by Chidamber and Kemerer [111], who for
some of their metrics (such as the Coupling Between Objects and the Response for
Class) already suggested that they would have a bearing on test effort. The metrics
that we have used in our experiments are listed in Table 8.5.

For our experiments we propose the dLOCC (Lines Of Code for Class) and
dNOTC (Number of Test Cases) metrics to indicate the size of a test suite. The ‘d’
prepended to the names of these metrics denotes that they are the dependent vari-
ables of our experiment, i.e., the variables we want to predict. The dLOCC metric is
defined like the LOCC metric.
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Table 8.5. Metrics suite used for assessing testability of a class c

Metric Description

DIT Depth of inheritance tree
FOUT Fan out, nr of classes used by c
LCOM Lack of cohesion in methods—which measures how fields are used in methods
LOCC Lines of code per class
NOC Number of children
NOF Number of fields
NOM Number of methods
RFC Response for class—Methods in c plus the number of methods invoked by c.
WMC Weighted methods per class—sum of McCabe’s cyclomatic complexity number of

all methods.

The dNOTC metric provides a different perspective on the size of a test suite. It
is calculated by counting the number of invocations of JUnit ‘assert’ methods that
occur in the code of a test class. JUnit provides the tester with a number of different
‘assert’ methods, for example ‘assertTrue’, ‘assertFalse’ or ‘assertEqual’. The opera-
tion of these methods is the same; the parameters passed to the method are tested for
compliance to some condition, depending on the specific variant. For example, ‘as-
sertTrue’ tests whether or not its parameter evaluates to ‘true’. If the parameters do
not satisfy the condition, the framework generates an exception that indicates a test
has failed. Thus, the tester uses the set of JUnit ‘assert’ methods to compare the ex-
pected behavior of the class-under-test to its current behavior. Counting the number
of invocations of ‘assert’ methods, gives the number of comparisons between ex-
pected and current behavior which we consider an appropriate definition of a test
case.

Conducting the measurements yields a series of values 〈m,n〉 of object-oriented
metric m and test suite metric n for a series of pairs 〈C,CT 〉 of a class C and its
corresponding test class CT . To test the hypotheses, we calculate Spearman’s rank-
order correlation (which does not require a normal distribution of the data), yielding
values rs(m,n) for metrics m and n. The significance (related to the number of ob-
servations made) of the value of rs found is subsequently determined by calculating
the t-statistic, yielding a value p indicating the chance that the observed value is the
result of a chance event, allowing us to accept H1(m,n) with confidence level 1− p.

8.6.3 Experimental Results

Experiments were conducted on five software systems, of which four were closed
source software products developed at the Software Improvement Group (SIG)6.
Additionally, we included Apache Ant [18], an open source automation tool for soft-
ware development. All systems are written in Java and the systems totaled over 290
KLOC.

6 http://www.sig.nl.
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The key results for the Ant case study are shown in Table 8.6; similar results were
obtained for the other case studies. The experiment shows that there is a significant
correlation between test level metrics dLOCC (Lines of Code for Class) and dNOT
(Number of Testcases) and various class level metrics:

• There are several metrics related to size, in particular LOCC, NOM, and WMC.
Since size can be considered a test case generation (we need more test cases) as
well as a test case construction factor (larger classes become harder to test), it is
natural that these metrics are correlated with test effort.

• The inheritance related metrics DIT (depth of inheritance tree) and NOC (num-
ber of subclasses) are not correlated with test metrics. In principle, test strategies
in which, for example, extra subclasses lead to more intensive testing of the su-
perclass, could cause NOC or DIT to be predictors of test effort. Apparently in
the case studies these strategies were not adopted.

• Two metrics measuring external dependencies are Fan Out (FOUT) and Re-
sponse-for-Class (RFC). Both are clearly correlated with both test suite metrics.

• The metrics LCOM (Lack of Cohesion of Methods) and NOF (Number of
Fields) are correlated with the test metrics for the Ant case as well, but not for
the four commercial case studies. One can expect NOF to be an indicator for test
effort, for example, for initializing fields in a class. In cases where NOF is not an
indicator, this may be due to the fact that the NOF metric only measures fields
introduced in a particular class, and not fields inherited from superclasses.

Based on these findings, we conclude with the following observation:

Observation 6 Traditional object-oriented source code metrics applied to
production code can indicate the effort needed for developing unit tests.

We refer to Bruntink and Van Deursen for a full account of the experiments
described above [89].

Table 8.6. Correlation values and confidence levels found for Ant

rs dLOCC dNOTC

DIT -.0456 -.201
FOUT .465 .307
LCOM .437 .382
LOCC .500 .325
NOC .0537 -.0262
NOF .455 .294
NOM .532 .369
RFC .526 .341
WMC .531 .348

p dLOCC dNOTC

DIT .634 .0344
FOUT < .01 < .01
LCOM < .01 < .01
LOCC < .01 < .01
NOC .575 .785
NOF < .01 < .01
NOM < .01 < .01
RFC < .01 < .01
WMC < .01 < .01
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8.7 Concluding Remarks

In this section we first look back on the interplay between software testing and evo-
lution. We then present a research agenda with a number of future research tracks,
which are currently left unexplored.

8.7.1 Retrospective

Based upon Observation 1 (see page 177), which states that an extensive test suite
can stimulate the program comprehension process in the light of continuously evolv-
ing software, we have investigated the interactions between software evolution, soft-
ware testing and program comprehension that exist in extreme programming in Sec-
tion 8.3. Naturally, some (or all) of these elements are used in other development
processes as well. For example, Humphrey stresses the importance of inspections,
software quality assurance, and testing [236]. The Rational Unified Process empha-
sizes short iterations, architecture centric software development, and use cases [299].
Key publications on extreme programming [50, 254, 48] cover many issues related
to comprehension, such as code expressing intent, feedback from the system, and
tests to document code.

From our observation that test code has a distinct set of smells (see Observa-
tion 2, page 180), we looked at test code from the perspective of refactoring. Our
own experiences are that the quality of test code is not as high as the quality of the
production code. Test code was not refactored as mercilessly as production code,
following Fowler’s advice that it is acceptable to copy and edit test code, trusting our
ability to refactor out truly common items later [183, p. 102]. When at a later stage
we started refactoring test code more intensively, we discovered that test code has its
own set of problems (which we translated into smells) as well as its own repertoire
of solutions (which we formulated as test refactorings).

For each test smell that we identified, we have provided a solution, using ei-
ther a potentially specialized variant of an existing refactoring from Fowler [183]
or a dedicated test refactoring. We believe that the resulting smells and refactorings
provide a valuable starting point for a larger collection based on a broader set of
projects. This is in line with our Observation 3 (see page 180).

Observation 4 (see page 185) states that when applying the refactorings as pro-
posed by Fowler [183] on production code, a classification can be made based on
whether these refactorings necessitate refactoring the test code as well. In Section 8.5
we have analyzed which of the documented refactorings affect the test code. It turns
out that the majority of the refactorings are in category D (requiring explicit actions
to keep the interface compatible) and E (necessarily requiring a change to the test
code). We have shown the implications of refactoring tests with the help of Fowler’s
video store example. We then proposed the notion of test-driven refactoring, which
uses the existing test cases as the starting point for finding suitable code level refac-
torings.

We have argued for the need to extend the descriptions of refactorings with a sec-
tion on their implications on the corresponding test code. If the tests are to maintain
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their documentation value, they should be kept in sync with the structure of the code.
As outlined in Observation 5 (see page 185), we propose, as a first step, the notion of
a refactoring session, capturing a coherent series of separate steps involving changes
to both the production and the test code.

The impact of program structure on test structure is further illustrated through
Observation 6 (page 197), which suggests that traditional object-oriented metrics can
be used to estimate test effort. We described an experiment to assess which metrics
can be used for this purpose. Note that some of the metrics identified (such as fan-
out or response-for-class) are also indicators for class complexity. This suggests that
high values for such metrics may call for refactorings, which in turn may help to
reduce the test effort required for unit testing these classes.

From our studies we have learned that the interplay between software evolution
and software testing is often more complex than meets the eye. The interplay that
we witnessed works in two directions: software evolution is hindered by the fact that
when evolving a system, the tests often need to co-evolve, making the evolution more
difficult and time-intensive. On the other hand, many software evolution operations
cannot safely take place without adequate tests being present to enable a safety net.
This leads to an almost paradoxical situation where tests are essential for evolving
software, yet at the same time, they are obstructing that very evolution.

Another important factor in this interplay is program comprehension, or the pro-
cess of building up knowledge about a system under study, which is of critical im-
portance during software evolution. In this context, having a test suite available can
be a blessing, as the tests provide documentation about how the software works. At
the same time, when no tests are available, writing tests to understand the software
is a good way of building up comprehension.

We have seen that software evolution and testing are intertwined at the very core
of (re)engineering software systems and continue to provide interesting and chal-
lenging research topics.

8.7.2 Research Agenda

During our study we came across a number of research ideas in the area of software
testing and software evolution that are as yet still unexplored. The topics we propose
can be seen as an addition or refinement to the topics that were addressed by Harrold
in her “Testing: A Roadmap” [224].

Model Driven Engineering

MDE [453] is a modeling activity, whereby the traditional activity of writing code
manually is replaced by modeling specifications for the application. Code generation
techniques then use these models to generate (partial) code models of the application.
This setup ensures the alignment between the models and the executable implemen-
tation. A similar approach can be followed when it comes to testing the application:
modeling both the application and the tests through specifications. Muccini et al.
consider this as the next logical step [381]. Recently, Pickin et al. have picked up on
this research topic in the context of distributed systems [415].
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Aspect Oriented Programming

AOP [276] is a programming paradigm that aims to offer an added layer of abstrac-
tion that can modularize system-level concerns (also see Chapter 9). However, when
these aspects are woven into the base code, some unexpected effects can occur that
are difficult to oversee. This can happen (1) when the pointcut is not defined precisely
enough, resulting in an aspect being woven in at an unexpected place in the base pro-
gram, or (2) because of unexpected results because of aspect composition, when the
advice of two separate aspects is woven in. McEachen et al. describe a number of
possible fault scenarios that can occur [357], but further research into this area is
certainly warranted to prevent such fault scenarios through testing.

Test Case Isomorphism

Various sources indicate that test cases should be independent of each other because
this decreases testing time, increases test output comprehensibility and having con-
cise and focused tests increases their benefit as documentation of a specific aspect of
the code [149, 131].

As said, having concise and focused tests decreases the testing time, which partly
alleviates the problem of having to do selective regression testing [444, 445]. Another
problem situation that is overcome, is the one described by Gaelli et al., whereby
broken unit tests are ordered, so that the most specific unit test can be dealt with
first [189].

Research questions of interest are how we can characterize and measure this
isomorphism and what refactorings can be used to improve this isomorphism. These
are related to detecting and removing the test implication smell described earlier.

Service-Orientation

The current trend is to build software systems from loosely coupled components or
services (see Chapter 7). These services have mostly not been designed to co-exist
with each other from their phase of inception and their “integration” often depends on
the configuration of parameters at run-time. Although the components (or services)
themselves will probably be of a higher quality, due to the fact that these are shared
by many different projects (this can e.g. be in the case of Commercial Off The Shelf
(COTS) components), testing the integration of these components or services is all
the more important.

Although work related to testing components [212, 539] is readily available, not
so much can be found on testing service-orientation. Although it is probable that
many existing testing techniques can be adapted to work in this context, additional
research is warranted. One of the first attempts at tool support for testing services
is Coyote [507]. Commercial tool-support comes from SOAPSonar and Ikto’s LISA
and also Apache’s Jakarta JMeter is useful when testing services [467].
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Empirical Studies

Although many testing techniques are currently in circulation, there are few aca-
demic publications documenting how these testing techniques are exactly used and
combined in industrial projects. Performing empirical studies that involve profes-
sional software developers and testers can lead to a better understanding of how
software testing techniques or strategies are used (e.g., the study of Erdogmus et
al. [161]). The results from this research can be used to build the next generation of
testing techniques and test tools. An added benefit of this line of research is that by
providing cutting-edge testing techniques to the industrial partners helps with knowl-
edge and technology transfer about testing from academia to industry.

Repository Mining

The a posteriori analysis of software evolution, through the mining of e.g. versioning
systems, provides a view on how the software has evolved and on how the software
might evolve in the future (also see Chapter 3).

Up until recently however, no specific research has been carried out in this con-
text that looks at the co-evolution of the software system and its associated test suite.
Zaidman et al. performed an initial study on how this co-evolution happens in open
source software systems [562]. They offer three separate views that show (1) the
commit behavior of the developers, (2) the growth evolution of the system and (3)
the coverage through time. The major observation that was made is that testing is
mostly a phased activity, whereas development is more continuous.

In the same context, further research might provide answers to questions such as:
• Is every change to the production code backed up by a change to the test suite?

Are there specific reasons why this should or should not happen?
• Can IDE’s provide warnings when adaptations to the production code lead to

reduced quality of the test suite?

Test Coverage

Even when continuous testing is becoming more and more commonplace in the de-
velopment process [448], determining the test coverage [346, Chapter 7] is often
not part of the fixed testing routine. In combination with the findings of Elbaum et
al. [159], who have determined that even minor changes to production code can have
a serious impact on the test coverage, this might lead to situations where the test-
ing effort might prove to be insufficient. As such, the development of features in
integrated developments environments that preemptively warn against drops in test
coverage will lead to a more efficient and thorough test process.

Regression Testing

Regression testing provides you with a safety net when letting software evolve, be-
cause it guards against introducing bugs into functionality that previously worked
fine. Ideally, these tests should be run after each modification, but regression testing
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is often very expensive. Rothermel and Harrold provide a detailed survey of research
in regression testing techniques, particularly in the domain of selective regression
testing [445], where only that part of the regression test pertaining to the modifica-
tion is re-run. Although selective regression testing can save costs, the process of
determining which tests should be re-run is still expensive and the ultimate gain is
thus relatively small. Further research into this topic is certainly warranted.
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Summary. This chapter identifies evolution-related issues and challenges in aspect-oriented
programming. It can serve as a guideline for adopters of aspect technology to get a better idea
of the evolution issues they may confront sooner or later, of the risks involved, and of the
state-of-the-art in the techniques currently available to help them in addressing these issues.
We focus in particular on the programming level, although some of the issues and challenges
addressed may apply to earlier software development life-cycle phases as well. The discussed
issues range from the exploration of crosscutting concerns in legacy code, via the migra-
tion of this code to an aspect-oriented solution, to the maintenance and evolution of the final
aspect-oriented program over time. We discuss state-of-the-art techniques which address the
issues of aspect exploration, extraction and evolution, and point out several issues for which
no adequate solutions exist yet. We conclude that, even though some promising techniques are
currently being investigated, due to the relative immaturity of the research domain many of
the techniques are not out of the lab as yet.

9.1 Introduction

Just like the industrial adoption of object orientation in the early nineties led to
a demand for migrating software systems to an object-oriented solution—triggering
a boost of research on software evolution, reverse engineering, reengineering and
restructuring—the same is currently happening for the aspect-oriented paradigm.
Aspect-oriented software development (AOSD) is a novel paradigm that addresses
the problem of the tyranny of the dominant decomposition [490]. This problem refers
to a software engineer’s inability to represent in a modular way certain concerns in
a given software system, when those concerns do not fit the chosen decomposition of
the software in modules. Such concerns are said to be crosscutting as they cut across
the dominant decomposition of the software. Consequently, the source code imple-
menting crosscutting concerns gets scattered across and tangled with the source code
of other concerns. Typical examples of crosscutting concerns are tracing [88], excep-
tion handling [91] or transaction management [164].

In absence of aspect-oriented programming techniques, crosscutting concerns of-
ten lead to duplicated code fragments throughout the software system. As argued by
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Koschke in Chapter 2, duplication tends to have a negative impact on software qual-
ity. Crosscutting concerns are thus believed to negatively affect evolvability, main-
tainability and understandability, because understanding and changing a crosscutting
concern requires touching many different places in the source code. Although the
few studies that have explored this negative relation between crosscutting concerns
and software quality do not contradict this claim (see Subsection 9.3.3), there is cur-
rently not enough empirical evidence of this claim yet. Nevertheless, aspect-oriented
programming (AOP) does propose a solution to this acclaimed problem by intro-
ducing the notion of aspects, which are designated language constructs that allow
a developer to localise a concern’s implementation, and thus improve modularity,
understandability, maintainability and evolvability of the code.

Adopting a new software development technology brings about particular risks,
however, and aspect-oriented programming forms no exception. In his article “AOP
myths and realities” [302], Laddad refutes 15 often-heard ‘myths’ that are said to
hinder the adoption of AOP, such as “debugging aspects is hard” and “aspects cannot
be unit tested”. As convincing as his arguments may be, they mainly focus on cur-
rently existing AOP technology, and try to prove it sufficiently mature for widespread
adoption.

However, a much larger opportunity and obstacle for adopting AOP technology is
the fact that it has to be introduced into existing software systems. Most software sys-
tems today are not developed from scratch, but rather are enhanced and maintained
legacy systems. Awareness is growing that aspects can and should be used not only
to modularise crosscutting concerns in newly developed software; the vast majority
of existing software systems suffers from the tyranny of the dominant decomposition
as well, making them hard to maintain and evolve. As such, legacy software systems
form an important range of applications which may benefit from the advantages that
AOP claims to offer. We predict that real widespread adoption of AOP will only
be achieved if the risks and consequences of adopting AOP in existing software are
studied, and if the necessary tools and techniques are available for dealing with those
risks.

This chapter addresses the issues and challenges related to such adoption of AOP
from a software evolution perspective. We present a series of questions and chal-
lenges that are relevant to new adopters of aspect technology in an evolutionary con-
text and summarise existing research that addresses some of these issues. In this
way, potential adopters are given an overview of the existing research efforts and can
assess the usefulness and maturity of existing tools and techniques. Additionally, fel-
low researchers are presented with an overview of the research domain, which can
help them in posing new research questions and tackling problems still left open.

As illustrated by Figure 9.1 we distinguish 3 different phases: aspect explo-
ration3, aspect extraction and aspect evolution.

3 As in the survey paper [272], we deliberately reserve the term aspect mining for the more
specific activity of (semi-)automatically identifying aspect candidates from the source code
of a software system. We propose the term aspect exploration as a more general term which
does not imply these restrictions and also encompasses manual approaches as well as tech-
niques that try to discover aspects from earlier software life-cycle artefacts.
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Fig. 9.1. Software evolution and AOSD

Aspect exploration. Before introducing aspects in existing software, one should ex-
plore whether that software actually exhibits any crosscutting concerns that are
worthwhile being extracted into aspects. The tyranny of the dominant decom-
position implies that large software is likely to contain crosscutting concerns.
During the aspect exploration phase we try to discover aspect candidates in the
software, i.e., we try to discover what the crosscutting concerns are, where and
how they are implemented, and what their impact on the software’s quality is.

Aspect extraction. Once the crosscutting concerns have been identified and their
impact on software quality has been assessed, we can consider migrating the
software to an aspect-oriented version. We refer to this activity as aspect extrac-
tion. If we do decide to migrate the software towards an aspect-oriented solution,
we need a way of turning the aspect candidates, i.e., the crosscutting concerns
that were identified in the exploration phase, into actual aspects. At the same
time, we need techniques for testing the migrated software to make sure that
the new version of the software still works as expected, as well as techniques to
manage the migration step, for example to ensure that we can still keep on using
the software during the transition phase.

Aspect evolution. According to Belady and Lehman’s first law of software evolu-
tion [320], every software system that is used will continuously undergo changes
or become useless after a period of time. There is no reason to believe that this
law does not hold for aspect-oriented software too. But to what extent is evo-
lution of aspect-oriented software different from evolution of traditional soft-
ware? Can the same techniques that are used to support evolution of traditional
software be applied to aspect-oriented software? Do the new abstraction mech-
anisms introduced by AOP give rise to new types of evolution problems that
require radically different solutions?

Before taking a closer look at each of these phases, in Section 9.2 we provide
a brief introduction to AOP for the non-initiated readers. In the subsequent three
sections we then discuss the challenges, risks and issues related to each of the three
phases of aspect exploration, extraction and evolution. Each section has the same
format:

1. Rationale: A more precise description and definition of the activity, and why it
is important and needed, from an end-user perspective.
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2. Challenges and risks: What are the challenges and risks that need to be dealt
with or will be encountered when conducting this activity?

3. Existing techniques: What existing techniques help in supporting the activity?
What challenges do these techniques address and to what extent?

4. Open issues: To what extent do available techniques address the aforementioned
risks and challenges? What challenges and risks are not addressed by any tech-
nique?

5. Case study: To obtain a better intuition of some of the issues, challenges and
risks pertaining to the activity, we discuss some of our experiences gained on
a realistic case.

9.2 Aspect-Oriented Programming

The goal of aspect-oriented programming is to provide an advanced modularisation
scheme to separate the core functionality of a software system from system-wide
concerns that cut across the implementation of this core functionality. To this ex-
tent, AOP introduces a new abstraction mechanism, called an aspect. An aspect is
a special kind of module that represents a crosscutting concern. Aspects are defined
independently from the core functionality of the system and integrated with that
base program by means of a dedicated aspect weaver, a dedicated tool similar to
a compiler that merges aspect code and base code in the appropriate way. Figure 9.2
illustrates this idea.

In most current-day aspect languages, of which AspectJ is the most well-known,
aspects are composed of pointcuts and advices. Whereas advices correspond to the

Fig. 9.2. The AOP idea
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class Point extends Shape {

public void setX ( int x ) throws IllegalArgumentException {
if ( x < MIN_X | | x > MAX_X )

throw new IllegalArgumentException ( "x is out of bounds ." ) ;
. . .

}
public void setY ( int y ) throws IllegalArgumentException {

if ( y < MIN_Y | | y > MAX_Y )
throw new IllegalArgumentException ( "y is out of bounds ." ) ;

. . .
}

}

class FigureElement extends Shape {

public void setXY ( int , int ) throws IllegalArgumentException {
if ( x < MIN_X | | x > MAX_X )

throw new IllegalArgumentException ( "x is out of bounds ." ) ;
if ( y < MIN_Y | | y > MAX_Y )

throw new IllegalArgumentException ( "y is out of bounds ." ) ;
. . .

}
}

Fig. 9.3. Bounds checking concern for moving points

code fragments that would crosscut an entire program, pointcuts correspond to the
locations in the source code of the program where the advice will be applied (i.e.,
where the crosscutting code will be woven). A pointcut essentially specifies a set
of joinpoints, which are well-defined locations in the structure or execution flow of
a program where an aspect can weave in its advice code. Typical AspectJ joinpoints
are method invocations or field accesses, for example.

To illustrate these notions, consider the Java code fragments in Figure 9.3 that
implement bounds checking for operations that move points in a graphical drawing
application. Because the application has been decomposed into classes and meth-
ods according to the different graphical elements that can be drawn, such as points
and figures, the bounds checking code cuts across this dominant decomposition
and does not align with these classes and methods. This results in scattering and
tangling: bounds checking code is implemented in different methods and classes,
which clutters and interferes with the other code implemented by those methods and
classes.

To modularise this bound checking concern, a PointBoundsChecking aspect can
be defined as in Figure 9.4. For didactic purposes, we kept the definition of this as-
pect very simple; a more intelligent definition is given further on. This code defines
two pointcuts: the setX pointcut captures all executions of methods that change the
x value, while the setY pointcut captures all executions of methods that change the
y value. In addition to these pointcuts, the advice code is defined: the first ‘before’
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aspect PointBoundsChecking {

pointcut setX ( int x ) :
( execution ( void FigureElement . setXY ( int , int ) ) && args ( x , * ) )
| | ( execution ( void Point . setX ( int ) ) && args ( x ) ) ;

before ( int x ) : setX ( x ) {
if ( x < MIN_X | | x > MAX_X )

throw new IllegalArgumentException ( "x is out of bounds ." ) ;
}

pointcut setY ( int y ) :
( execution ( void FigureElement . setXY ( int , int ) ) && args ( * , y ) )
| | ( execution ( void Point . setY ( int ) ) && args ( y ) ) ;

before ( int y ) : setY ( y ) {
if ( y < MIN_Y | | y > MAX_Y )

throw new IllegalArgumentException ( "y is out of bounds ." ) ;
}

}

Fig. 9.4. An extensional bounds checking aspect

advice specifies that before every execution of a method captured by the setX point-
cut, the appropriate bound needs to be checked. The advice for the setY pointcut is
defined analogously.

Note that the advice code references an actual parameter of the method it advices
in order to check its value, i.e., the x and y parameters. The pointcut exposes this
parameter to the advice code, by providing an appropriate name. Moreover, when
the method has more than one parameter, as is the case for the setXY method, the
pointcut needs to make sure that the appropriate parameter is exposed. All this is
achieved by using the args construct. For example, args(x, *) exposes the variable
x, which corresponds to the first argument of the method, to the advice code. Sim-
ilarly, args(*,y) exposes a variable y that corresponds to the last argument of the
method.

The setX and setY pointcuts defined in Figure 9.4 are examples of extensional
or enumeration-based pointcuts, since they explicitly enumerate the signatures of all
methods they need to capture. Such pointcuts are brittle and can break easily when
the base program evolves. More robust pointcut definitions can be obtained by men-
tioning explicitly only the information that is absolutely required and using wildcard
patterns to hide implementation details that do not matter. For instance, in Figure 9.5
we use the wildcard * to hide the exact return types of the method joinpoints and the
pattern Shape+ to hide the precise name of the implementing class while still requir-
ing that it belongs to the Shape class hierarchy. However, we do not use a wildcard
in the method names, but match against the exact names, because their intension-
revealing nature is likely to help us in capturing the correct pointcuts. Using more
abstract names might result in accidentally capturing the wrong joinpoints.
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pointcut setX ( int x ) :
( execution (* Shape + . setXY ( int , int ) ) && args ( x , * ) )

| | ( execution (* Shape + . setX ( int ) ) && args ( x ) ) ;

pointcut setY ( int y ) :
( execution (* Shape + . setXY ( int , int ) ) && args ( * , y ) )

| | ( execution (* Shape + . setY ( int ) ) && args ( y ) ) ;

Fig. 9.5. An intensional pointcut definition for the bounds checking aspect

Pointcuts that use wildcards patterns or other mechanisms to abstract over cer-
tain implementation details are called intensional or pattern-based pointcuts. They
are said to be more robust toward evolution, because of the abstractions they use.
For example, when a setXY method would be added to another class in the Shape

hierarchy, it will still be adviced and the bounds of its parameters will be checked.
Similarly, when the return type of such a method would change, it would still be
captured by the pointcut.

In summary, pointcuts, whether they are extensional or intensional, specify those
places in the code or its execution where the advice code needs to be woven. This
means that aspects are not explicitly invoked by the program. The base program (i.e.,
the program without the aspects) is not aware of the aspects that apply to it. Instead,
it is the aspects themselves that specify when and where they act on the program.
This has been referred to as the obliviousness property of aspect orientation [176],
and is one of the most essential characteristics of an aspect-oriented programming
language.

9.3 Aspect Exploration

Migrating a legacy software system into an aspect-oriented one is a non-trivial en-
deavour. The sheer size and complexity of many existing systems, combined with
the lack of documentation and knowledge of such systems render it practically in-
feasible to manually transform their crosscutting concerns into aspects. To alleviate
this problem, a growing body of research exists that proposes a number of tools and
techniques to assist software engineers in semi-automatically migrating crosscutting
concerns to aspects. Most of these approaches distinguish two phases in this mi-
gration process: aspect exploration and aspect extraction. Whereas Section 9.4 will
focus on the aspect extraction phase, the current section discusses issues and chal-
lenges related to aspect exploration, as well as existing techniques to address some
of those issues.

9.3.1 Rationale

We define aspect exploration as the activity of identifying and analysing the cross-
cutting concerns in a non aspect-oriented system. A distinction can be made between
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manual exploration supported by special-purpose browsers and source-code naviga-
tion tools, on the one hand, and aspect mining techniques that try to automate this
process of aspect discovery and propose their user one or more aspect candidates, on
the other hand.

9.3.2 Challenges and Risks

What (Kind of) Crosscutting Concerns Can Be Discovered?

Examples of crosscutting concerns that are often mentioned in literature, and exem-
plified by small-scale example projects, include simple and basic functionalities like
tracing, logging or precondition checking. Do such simple concerns actually occur
in industrial code? Is AOP only suited to implement such simple concerns? Do in-
dustrial software systems contain more complex crosscutting concerns? How good
is AOP at tackling those?

How Are Crosscutting Concerns Implemented in Absence of Aspects?

Since crosscutting concerns in a traditional software system are per definition not
well-localised, they need to be implemented over and over again. To minimise this
implementation overhead, developers tend to rely on a variety of programming id-
ioms and naming and coding conventions. What (kind of) crosscutting concerns are
implemented by which programming idioms and conventions?

(How) Do Crosscutting Concerns Affect Software Quality?

When crosscutting concerns occur in a software system, (how) do they affect the
quality of that software? How can we measure their impact on quality factors like
understandability, maintainability and adaptability? How can these measures help us
assess whether extracting the concerns into aspects is beneficial?

How to Find Where Crosscutting Concerns Are Located in the Code?

When we want to turn a crosscutting concern into an aspect, we need to know where
exactly it is located in the code. This knowledge is important to determine an appro-
priate pointcut for the extracted aspect. How can we be sure that we have found all
relevant crosscutting concerns, that we have covered them completely, that there are
no false positives or negatives?

9.3.3 Existing Research

Over the last few years, aspect exploration has become quite an active research do-
main and a whole range of different approaches, techniques and tools for supporting
or automating the activity of aspect exploration have been proposed.
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Crosscutting Concerns in Practice

In most research papers, tutorials and textbooks on AOP, the examples of crosscut-
ting concerns given show simple and basic concerns (like logging), implemented in
small-scale software systems or as illustrative examples only. Consequently, one may
wonder whether more complex concerns exist, whether such concerns actually occur
in industrial software systems, and whether AOP is only suited for addressing simple
small-scale crosscutting concerns.

Several examples of more complex crosscutting concerns occurring in real-world
software have been described in literature as well, however. Bruntink et al. [91] dis-
cuss how exception handling is a crosscutting concern in a large-scale embedded
software system, and show how its implementation is prone to errors. Colyer and
Clement [122] present a study in which they separated support for Enterprise Java-
Beans from the other functionality contained within an application server of several
millions of lines of code. Coady et al. [118] refactored the prefetching concern from
the FreeBSD UNIX operating system kernel.

This shows that complex crosscutting concerns do occur in practice, and that
large-scale industrial software systems also exhibit such concerns. Hence, when ex-
ploring a system for crosscutting concerns, one should not limit the search for well-
known concerns only, but one should look for scattered and tangled code of any
nature.

Implementing Crosscutting Concerns

Since crosscutting concerns are not well-modularised, to reduce the effort of imple-
menting, maintaining and evolving them developers rely on structural regularities
like naming and coding conventions, programming idioms and design patterns.

Bruntink et al. [88, 91, 90] discuss an industrial software system that implements
crosscutting concerns by means of programming idioms. Idioms are simple code
templates for the implementation of a concern, that are prescribed in architecture
manuals and that a developer can copy-paste and then adapt to his particular needs
and wishes. The bounds checking concern presented in the previous section is an ex-
ample of such an idiom: all methods that move points need to test the new value first,
and need to raise the appropriate exception whenever the value is not within a spec-
ified range. As the authors observed, such an approach leads to code duplication, is
prone to errors and is time- and effort-consuming.

In [364], we observed that, when implementing crosscutting concerns, develop-
ers often rely on naming conventions and thus provide valuable hints about the loca-
tions of such crosscutting concerns. We studied the JHotDraw application framework
and grouped classes and methods that share identifiers in their name. This lightweight
approach turned out to be capable of detecting several interesting concerns, such as
for example an Undo and a Persistence concern. Shepherd et al [460] discuss a sim-
ilar approach based on lexical chaining, a natural language processing technique, to
identify crosscutting concerns in the PetStore application.
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Marin et al. [347] introduce crosscutting concern sorts, a classification system for
crosscutting functionality. For each sort of crosscutting concern they indicate how it
could be implemented by using traditional modularisation mechanisms. For example,
they define a role superimposition sort, a construction that implements a specific sec-
ondary role or responsibility for a class, and observed that this is often implemented
by using interfaces (in Java). Other examples of implementation techniques that are
used to implement sorts are several design patterns, such as the Observer, Decorator
and Adapter design pattern, and a design by contract approach in a language that
supports explicit pre- and postconditions.

Again, when exploring a software system for crosscutting concerns and reason-
ing about them, discovering such regularities helps. Additionally, such information
is also useful for program comprehension, as it provides interesting information on
how the software is structured.

Crosscutting Concerns and Software Quality

Few studies exist that explore the relation between crosscutting concerns and soft-
ware quality.

Bruntink et al. [91, 90] assessed the quality of the exception handling and param-
eter checking concerns, implemented by means of idioms in an industrial context.
They observed that the implementation of both concerns exhibited several faults, but
were unable to conclude whether these were due to the crosscutting nature of the
implementation or to the inherent complexity of the concern itself. Moreover, they
acknowledge that faults are not failures, and hence they are not sure about the sever-
ity of the discovered faults.

Kulesza et al. [300] performed a study in which they computed metrics for both
object-oriented and aspect-oriented versions of a medium-scale software system, and
compared them in order to quantify the difference. They observed that the aspect-
oriented versions resulted in fewer lines of code, improved separation of concerns,
weaker coupling and lower intra-component complexity. However, they also found
that the number of operations and components in the aspect-oriented version in-
creased, and observed a lower cohesion for the aspect-oriented components.

A number of authors have studied whether the implementation quality of popular
design patterns could be improved by using aspect-oriented programming [222, 193].
It turns out that such an improvement can be achieved, and comes primarily from
enhanced modularisation, which makes the implementation more localised, reusable,
composable and pluggable. However, these results have been observed in small and
illustrative cases only, and no evidence has yet been provided that these results can
be generalised to large-scale industrial software.

Gibbs et al. [198] conducted a broad case study where they compared the main-
tainability and evolvability of a version of a software system that was restructured
with traditional abstraction mechanisms against a version of that same system which
was restructured by means of aspects. They then considered a ‘big bang’ type of evo-
lution that implied many changes to the code being crosscut. Their conclusion was
that, in the particular case they studied, overall the aspect-oriented version performed
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either better or not worse than the other (non aspect-oriented) version at dealing with
those changes.

Locating Crosscutting Concerns

Kellens et al. [272] distinguish three main categories of techniques that can help in
locating the crosscutting concerns in a software system:

Early aspect discovery techniques: Research on ‘early aspects’ tries to discover as-
pects in the early phases of the software life-cycle [35] like requirements and do-
main analysis [34, 431, 492] and architecture design [42]. Although these tech-
niques can help to identify some of the crosscutting concerns in a software sys-
tem, early aspect discovery techniques may be less promising than approaches
that focus on source code, when applied to existing software systems where re-
quirements and architecture documents are often outdated, obsolete or no longer
available.

Dedicated browsers: A second class of approaches are the advanced special-pur-
pose code browsers that aid a developer in manually navigating the source code
of a system to explore crosscutting concerns. These techniques typically start
from a location in the code, a so-called “seed”, as point-of-entry from which
they guide their users by suggesting other places in the code which might be
part of the same concern. This way, the user iteratively constructs a model of
the different places in the code that make up a crosscutting concern. Examples
of such approaches are Concern Graphs [442], Intensional Views [363], Aspect
Browser [211], (Extended) Aspect Mining Tool [221, 563], SoQueT [347] and
Prism [564].

Aspect mining techniques: Complementary to dedicated browsers, a number of tech-
niques exist that have as goal to automate the aspect identification process and
that propose their user one or more aspect candidates. To this end, they reason
about the system’s source code or execution traces. All techniques seem to have
at least in common that they search for symptoms of crosscutting concerns, using
either techniques from data mining and data analysis like formal concept anal-
ysis and cluster analysis, or more classic code analysis techniques like program
slicing, software metrics and heuristics, clone detection and pattern matching
techniques, dynamic analysis, and so on. For an extensive survey and an initial
classification of aspect mining techniques which semi-automatically assist a de-
veloper in the activity of mining the crosscutting concerns from the source code
of an existing system, we refer to [272].

9.3.4 Open Issues

From the discussions in the previous subsection, it is clear that several researchers
have studied complex crosscutting concerns that occur in real-world industrial soft-
ware systems, and that they are starting to get an idea about how such concerns
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are implemented in the absence of aspect-oriented programming techniques. Never-
theless, more such studies on industrial-size software systems would be welcome.
Similarly, although preliminary research attempts have been undertaken for the re-
maining two challenges (i.e., how crosscutting concerns affect software quality and
how to locate them in the software), more research is needed in order to come up
with satisfying answers and solutions.

For example, more empirical work and quantitative studies are needed on how
crosscutting concerns affect software quality. The impact of crosscutting concerns on
software quality factors like evolvability is not yet clear, and has been investigated
mostly on small-scale example software only. Part of the problem stems from the
fact that AOP is a relatively young paradigm, and hence little historical information
(in the form of revision histories etc.) is available for study. Another problem is that,
more often than not, a traditional version and an AOP version of the same software
system are not available, making it hard to conduct objective comparisons.

As for the identification of crosscutting concerns, all known techniques are only
partly automated and still require a significant amount of user intervention. In ad-
dition, most aspect mining techniques are only academic prototypes and, with few
exceptions, have not been validated on industrial-size software yet. Although this
may hinder industrial adoption, the existence of such techniques is obviously a step
forward as opposed to having no tool support at all. Another issue with applying
automated aspect mining techniques is that preferably the user should have some
knowledge about the system being mined for aspects. Indeed, different aspect min-
ing techniques rely on different assumptions about how the crosscutting concerns are
implemented.

9.3.5 Exploration in Practice

As a concrete practical case study of aspect exploration, in this subsection we sum-
marise a larger experiment that was conducted by Bruntink et al. [92, 93] to evaluate
the suitability of clone detection techniques for automatically identifying crosscut-
ting concern code. They considered a single component of a large-scale, industrial
software system, consisting of 16,406 non-blank lines of code.

In a first phase, the programmer of this component manually marked five dif-
ferent concerns that occur in it, consisting of 4,182 lines of code, or 25,5% of the
total lines of code. The concerns that were considered were memory handling, null
pointer checking, range checking, exception handling and tracing. The details are in
the second column of Table 9.1.

In a second phase, three different clone detection techniques were applied to the
component: an AST-based, a token-based and a PDG-based one. In order to evaluate
how well each of the three techniques succeeded in finding the code that imple-
mented the five crosscutting concerns, the third phase then consisted of measuring
precision and recall of the results of each of these clone detection techniques with
respect to the manually marked occurrences of the different crosscutting concerns.
Recall was used to evaluate how much of the code of each crosscutting concern was
found by each clone detector, while precision was used to determine the ratio of
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Table 9.1. Line counts and average precision for the five concerns

Concern Line Count (%) AST-based Token-based PDG-based

Memory handling 750 (4.6%) .65 .63 .81
Null pointer checking 617 (3.8%) .99 .97 .80
Range checking 387 (2.4%) .71 .59 .42
Exception handling 927 (5.7%) .38 .36 .35
Tracing 1501 (9.1%) .62 .57 .68

crosscutting concern code to code unrelated to the crosscutting concern found. Ta-
ble 9.1 shows the average precision of the three clone detection techniques for each
of the five concerns considered, whereas Table 9.2 shows their recall.

The results of this experiment were rather disparate. For the null pointer check-
ing concern, which is somewhat similar to the bounds checking example presented
earlier, all clone detectors obtained excellent results, identifying all concern code
at near-perfect precision and recall, as can be seen from the corresponding rows in
Table 9.1 and 9.2.

For the other concerns, such as the exception handling concern, none of the clone
detectors achieve satisfying recall and precision, as can be seen from the correspond-
ing rows in Tables 9.1 and 9.2. It appeared that this was related to the amount of
tangling of the concerns. Clone detectors achieved higher precision and recall for
concerns that exhibited relatively low tangling with other concerns or with the base
code, than for concerns that exhibited high tangling.

This experiment illustrates several of the issues identified in subsection 9.3.2.
First of all, it shows that simple concerns, such as logging, as well as more complex
concerns, such as exception handling, are present in industrial software systems. Sec-
ond, the experiment shows a particular way of implementing crosscutting concerns in
the absence of an aspect-like language constructs: cloning small pieces of idiomatic
code. This knowledge was used to verify whether clone detection techniques can be
used to identify where crosscutting concerns are implemented. Last, the experiment
shows some of the effects of crosscutting concerns on software quality. In particu-
lar, it confirms the common belief that crosscutting concerns are, at least in some
cases, implemented by using similar pieces of code, that are scattered throughout
the software. It also shows that up to 25% of the code can be attributed to crosscut-

Table 9.2. Recall for the each of the clone detection techniques on the five concerns

Concern AST-based Token-based PDG-based

Memory handling .96 .95 .98
Null pointer checking 1.0 1.0 1.0
Range checking .89 .96 .92
Exception handling .79 .97 .95
Tracing .76 .85 .90
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ting concern code. The negative effect of code duplication on software quality, and
in particular on maintainability and evolvability, has already been investigated (see
Chapter 2).

9.4 Aspect Extraction

Once we have identified the crosscutting concerns and have obtained an idea of their
impact on code quality, a decision needs to be made whether or not to extract the con-
cern code into aspects. Concerns which occur in only a few places or with limited
scattering and tangling, may be less important to extract into aspects than concerns
that have a high impact on software quality factors like understandability, modular-
ity and maintainability. You should not feel compelled to migrate towards aspects if
there is no real need to. It may be that aspect exploration revealed that there are no
significant opportunities for introducing aspects, or that there is no clear evidence
that introducing them will improve the quality of your code. Also, even if during as-
pect exploration some interesting crosscutting concerns were discovered, maybe you
are happy with just documenting these crosscutting concerns, and keeping them in
sync with the code, using a dedicated environment based on multi-dimensional sepa-
ration of concerns [490], concern graphs [442] or intensional views [363]. However,
when you do decide that it would be useful to actually turn the identified crosscutting
concerns into aspects, then you enter the aspect extraction phase.

9.4.1 Rationale

Aspect extraction is the activity of separating the crosscutting concern code from the
original code, by moving it to one or more newly-defined aspects, and removing it
from the original code. Since an aspect is typically defined as a collection of pointcuts
and associated advice code, extraction entails the identification of suitable pointcuts
and the definition of the appropriate advice code corresponding to the crosscutting
concern code.

Although aspect extraction is often referred to as aspect refactoring in exist-
ing literature, we believe that term to be ambiguous. Indeed, Fowler [183] defined
refactoring as “the process of modifying source code without changing its exter-
nal behaviour”. When applying this definition to aspect-oriented programs, the term
“source code” could either refer to the code from which an aspect is extracted, or to
the code of an existing aspect that evolves. Therefore, we will use the term aspect
extraction for the activity of turning a traditional crosscutting concern into an as-
pect and reserve the term aspect refactoring for the activity of refactoring an already
existing aspect.

Research in aspect extraction thus focusses on how to automate the activity of ex-
tracting aspects from existing source code. Only with an automated approach, an ex-
traction that is both efficient and correct can be achieved. Existing software systems
often consist of millions of lines of code, and a real-world crosscutting concern thus
easily consists of thousands of lines of code. Manually extracting aspects from these
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crosscutting concerns, if feasible at all, would not only be very time-consuming, but
prone to errors as well. A correct aspect weaves the appropriate code at the appropri-
ate joinpoints, and hence requires correct advice code and correct pointcuts. These
are hard to construct, given the scattered and tangled nature of crosscutting concerns,
and the size of current-day software systems.

9.4.2 Challenges and Risks

In order to be able to extract crosscutting concerns code from the original code into
the appropriate aspects, the following questions need to be addressed:

How to Separate Crosscutting Concerns from Original Source Code?

Sophisticated program analysis and manipulation techniques are needed to separate
crosscutting concern code, since by definition such code is tangled with other code.
Depending on the kind and the amount of tangling, some code is easier to separate
than other code. Tracing code, for example, is often relatively independent of the
code surrounding it, whereas Bruntink et al.’s experiment [91] showed that exception
handling code exhibits significantly more tangling.

How to Determine Appropriate Joinpoint(s) for Extracted Aspects?

An aspect needs to specify the exact location where advice code needs to be woven,
by means of a (set of) pointcut(s) that select(s) the appropriate joinpoints. However,
aspect languages impose certain restrictions on the locations in the static or dynamic
software structure that can be made available as joinpoints. Hence, determining the
appropriate joinpoints requires significant attention.

How to Determine Appropriate Pointcut(s) for Extracted Aspects?

Assuming that appropriate joinpoints can be found, the next problem is that of deter-
mining the appropriate pointcut(s) that describes these joinpoints. Additionally, the
pointcuts need to expose the appropriate context information for the advice code.

How to Determine Appropriate Advice Code for Extracted Aspects?

The crosscutting concern code typically cannot be transformed “as is” into advice
code. Small modifications are often required, due to the code being defined in a dif-
ferent context, but also due to small variations in the scattered snippets of crosscut-
ting concern code.
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How to Ensure Correctness of Extracted Code?

The correctness requirement is of course related to behaviour preservation, i.e., ex-
tracting aspects from existing source code is expected to preserve the external be-
haviour of that code. Even for traditional refactorings this is already considered
a non-trivial problem [404]; when extracting aspects from traditional programs the
problem only becomes harder. Obviously, automating the transformations that are ap-
plied can help meeting this requirement, as automated transformations can be proven
correct by using preconditions [404]. Additionally, appropriate test suites are of great
value, but are not always present in (legacy) software. Furthermore, since the extrac-
tion process affects the original code structure, certain tests that rely on that structure
may need to be restructured as well. In particular, certain tests may need to be trans-
formed into their aspect-oriented equivalent.

9.4.3 Existing Techniques

Research on aspect extraction is still in its infancy, as most researchers focussed
primarily on aspect exploration first. Nonetheless, work exists that contributes to
the growing body of aspect extraction research [88, 375, 376, 163, 67, 223, 220].
Most of this work does not clearly distinguish between aspect extraction and aspect
evolution, however. In this section, we only consider those parts of this work that
deal with extraction.

Separating Crosscutting Concern Code

Separating the crosscutting concern code from the original code requires taking tan-
gling into account: the code might use local variables that are defined by the ordinary
code, or might modify variables that are used by the ordinary code. Hence, all sepa-
ration techniques need to include a way to deal with such local references.

Both Monteiro and Fernandes [375] and Hanenberg et al. [220] discuss an ex-
tract advice transformation, that is responsible for separating the concern code but
is not automated. Both mention that particular attention should be paid to local vari-
ables used in the crosscutting concern code. Hanenberg et al. take the position that
either the developer should check whether such variables are not referenced outside
the crosscutting code, in which case the variable declaration can be moved safely to
the advice code, or else the transformation cannot be applied. Monteiro and Fernan-
des suggest that the code fragment should be isolated first using Extract Method or
Replace Method with Method Object refactorings [183]. Binkley et al [67] present
automated transformations, but propose the same approach as Monteiro and Fer-
nandes. It is not clear, however, if this would work in practice, as these refactorings
themselves might not be applicable when dealing with the problem of local variables.

The work of Ettinger and Verbaere [163] is currently the only one proposing an
automated solution to the problems encountered when separating concern code from
the original code. They propose to use program slicing [538] to untangle concern
code and ordinary code. Program slicing is a technique that singles out those state-
ments that may have affected the value of a given variable and that outputs a set of
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statements, called a slice. The idea is that this slice contains all code that is related
to the concern, including references to local variables and how their values are com-
puted, and can be factored out by means of an extract slice transformation [352].
This transformation can either fully extract all statements from the original code, or
can leave some statements where they are, if they are relevant for the original code.
It is not clear whether such a transformation is feasible to implement, however.

Determining Appropriate Joinpoints

After having separated the crosscutting concern code from the original code, we need
to map those locations where that code was originally located to an appropriate set
of joinpoints. The possible joinpoint locations that can be specified by a given AOP
language are often limited: not every node in the structure or execution flow graph
can be selected by an aspect. Hence, the required mapping is not always possible.

A possible solution for this problem is to extend the pointcut language so that
more joinpoints can be exposed. However, a trade-off exists between the complete-
ness of the joinpoint model and the performance of the produced software. The exe-
cution of aspect-oriented software would slow down considerably if an aspect could
select any node in the structure or execution flow graph. Consequently, a complete
joinpoint model is considered impractical.

Another alternative is to restructure the code before extracting the crosscutting
concern code, to make it fit the joinpoint model offered by the AOP language. This
is the approach taken by both Binkley et al [67] and Monteiro and Fernandes [375],
who suggest to apply traditional refactorings first in order to make the code more “as-
pect friendly”. For example, concern code occurring in between a set of statements
is impossible to separate using most existing AOP languages. Hence, as depicted in
Figure 9.6, this concern code can be extracted first using an Extract Method refac-
toring, for example, producing additional joinpoints that an aspect can use. There is
considerable discussion in the AOSD community about this issue, as it interferes with
the obliviousness property of AOSD, as explained in Section 9.2: the ordinary code
should not “know” about the aspects that apply to it. Clearly, transforming the code
with the sole intent of making it “aspect friendly” breaks this assumption. However,
the experiments of Binkley et al. [67] suggest that only 20% of the cases requires
performing a traditional refactoring first. The authors acknowledge the fact that per-
forming such transformation should be seen as the “extreme recourse that solves
all problems”, since the transformation might reduce code familiarity and quality in
general.

Determining Appropriate Pointcuts

Having determined the appropriate joinpoints, we need to define the appropriate
pointcuts that capture those joinpoints. The simplistic solution is to use extensional
pointcuts which merely enumerate all joinpoints. However, as explained in Section
9.2, we prefer more intensional pointcut definitions which are more robust towards
evolution.
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Fig. 9.6. Making code
aspect friendly

Authors that propose non-automated extraction transformations generally do
not pay sufficient attention to the definition of appropriate pointcuts. Hanenberg et
al [220] consider extracting crosscutting concern code from a single method only,
and describe that “a pointcut that targets the relevant method” has to be defined.
Monteiro and Fernandes [375] provide a bit more sophistication, saying that a point-
cut “should capture the intended set of joinpoints”, and that if the intended pointcut
is already under construction, it should be extended so that it includes the joinpoint
related to the code fragment currently being extracted. The responsibility of defin-
ing a good pointcut thus rests completely with the developer, who needs detailed
knowledge of the structure and the behaviour of the software.

Binkley et al. [67] tackle the problem of determining “sensible” pointcuts auto-
matically, and describe 7 extraction transformations with the particular pointcuts they
generate. For example, they define an Extract Before Call transformation, depicted
in Figure 9.7, that extracts a block of code that always occurs before a particular
method call. In the aspect B, the pointcut p intercepts the call to h that occurs within
the execution of method f. A before-advice reintroduces the call to g at the proper
execution point.
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Fig. 9.7. The Extract Before Call transfor-
mation

Although not explained explicitly in the paper, it is clear that applying their
extraction transformations yield extensional pointcuts: when extracting code from
many different locations, the transformations extract the code from one location at
a time, and combine the pointcut of each individual location with the already existing
pointcut, in order to form a new pointcut.

Braem et al. [79] present an experiment where they use inductive logic pro-
gramming in order to uncover “patterns” in, and generate intensional pointcuts from,
a given set of joinpoints. Inductive logic programming is a machine-learning tech-
nique that requires positive as well as negative examples and background informa-
tion, so as to define a logic rule that captures all positive but none of the negative
examples. For this experiment, the authors use joinpoints corresponding to the cross-
cutting concern code as positive examples, all other joinpoints occurring in the pro-
gram as negative examples, and structural information about the program, such as
the classes in which methods are defined and which methods a particular method
calls, as background information. The resulting induced pointcuts look similar to
a pointcut that a developer would define when confronted with the same task.

Determining Appropriate Advice Code

The advice code of an aspect definition consists of the code that should be woven
at the joinpoints selected by the aspect’s pointcuts. Although we discuss the prob-
lem of how to determine that advice code separately here, it is strongly overlapping
with the problem of separating the crosscutting concern code from the original code,
which we discussed earlier on. The advice code corresponds to the crosscutting con-
cern code that was separated from the original source code, but cannot be used as
advice code as is. In general, the crosscutting concern code makes use of the context
in which it is implemented: it may contain references to local variables or use in-
stance variables or methods of a class. To determine the appropriate advice code, the
crosscutting concern code needs to be inspected for such context-specific references,
and the pointcut and advice code need to be adapted adequately to the new (aspect)
context.
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Most aspect languages provide dedicated constructs to allow aspects to expose
context information associated to the joinpoint at which the aspect applies, such that
this information can be used in the advice code. The args construct used in Figure
9.4 was an example of such a construct and allowed a method joinpoint to pass the
actual value of the method’s argument to the advice. Other examples are constructs
to expose the name of the method corresponding to the joinpoint, the names of its
formal parameters, or a reference to its defining class. In general, the pointcut defi-
nition that captures the appropriate joinpoints is extended with dedicated predicates
and parameters in order to be capable of exposing the necessary information to the
advice code.

This can be a quite complex undertaking, however, due to limitations in the con-
text information exposed by aspects. For example, the crosscutting concern code may
use temporary variables local to the method or function in which it is contained, and
most aspect languages do not provide constructs to expose such information. Addi-
tionally, in an object-oriented language, the crosscutting concern code may reference
private instance variables and/or methods, and visibility rules may prevent an aspect
from accessing or extracting such private information.

Hanenberg et al. [220] and Monteiro and Fernandes [375] touch upon the prob-
lem of references to (private) instance variables and methods when dealing with their
extract advice and extract introduction transformations. Their solution consists of
declaring an aspect privileged, meaning it can bypass visibility rules, and of using
additional this and target pointcuts in order to resolve self and super calls in the
advice code. Additionally, Monteiro and Fernandes [375] consider the problem of
crosscutting concern code that uses local variables, and propose to turn such vari-
ables into instance variables if necessary. The consequences of adapting the code in
this way with the sole intent of making it “aspect friendly” is not elaborated upon,
nor is made clear what its impact would be on large code bases or on the code quality,
and whether this solution is always feasible.

Binkley et al. [67] explicitly mention the context exposure problem when defin-
ing their extraction transformations, and provide a precise description of how these
transformations generate pointcuts that expose the necessary context. Because these
transformations are automated and reason about the crosscutting concern code, they
either generate a correct pointcut that exposes the necessary context, or are not ap-
plicable at all. Hence, the resulting aspect is always correct, which is not the case for
the other (manual) approaches.

9.4.4 Open Issues

The issues identified above and our overview of the current state of the research
show that the major issues and problems related to aspect extraction have been iden-
tified, but that no satisfactory solutions exist yet. Most existing techniques touch
upon a specific part of a particular problem, but no single technique provides a com-
plete solution to all problems identified. This is no surprise, as research on aspect
extraction is only just emerging.
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First of all, the level of automation of current extraction techniques is poor, and
all issues touched upon in the previous subsection could benefit significantly from
more automation. Clearly, more effort is needed in this area, since automated extrac-
tion techniques are indispensable when dealing with large-scale software, in order
to achieve efficiency and correctness. A technique such as the use of inductive logic
programming to automatically produce intensional pointcut definitions [79] is defi-
nitely a step forward. However, this technique was validated only on a single example
and it remains to be investigated how it performs on more complex cases.

Second, the issue of preserving the behaviour of the software after extraction has
not yet been tackled explicitly. Proving the correctness of aspects that were extracted
manually is practically impossible. Automated techniques, however, could be proven
correct. Given Opdyke’s experience in this matter [404], it is clear that constructing
formal proofs for the complex extraction transformations is far from trivial. However,
formally defining the necessary preconditions for such transformations should be
feasible, but has currently not yet been realised.

Related to testing behaviour-correctness of performing aspect extraction, the is-
sue of migrating the original test suites to the migrated software system remains.
Unfortunately, little work exists on testing aspect-oriented systems (notable excep-
tions are the works of Xu and Xu [555] and Xie and Zhao [549]), let al.one on the
migration of the original tests to their aspect-oriented equivalent. Chapter 8 of this
book also mentions this explicitly as a topic that warrants further investigation.

Finally, little or no empirical validation of the proposed techniques on large-
scale, real-world software systems has been performed. This makes it hard to assess
whether the techniques actually work in practice, what their advantages and disad-
vantages are, whether they scale to large industrial software, and whether the extrac-
tion actually improves the quality of the software.

9.4.5 Extraction in Practice

As is apparent from the previous subsections, most work on aspect extraction is fo-
cused on the technical level, i.e., it describes new transformations that extract cross-
cutting concerns into aspects. With the notable exception of the work by Binkley et
al. [67], none of these transformations have been applied extensively on real-world
systems. Binkley’s work does not present any concrete details of the case study ei-
ther, and focuses mainly on the transformations themselves.

In this subsection, we summarise an experiment by Bruntink et al. [88], where
they studied the tracing crosscutting concern in a 80.000 lines subset of an industrial
software system. The goal of their experiment was to study whether this concern was
implemented in a sufficiently systematic way, so that it could be expressed easily in
terms of appropriate pointcuts and advice. Such an investigation could be regarded
as a preliminary step before performing an actual extraction.

As an illustration of their approach, taken from [88], consider the idiomatic im-
plementation of the tracing concern in Figure 9.8. A developer needs to trace input
parameters of a function at the beginning, and output parameters at the end of that
function. The trace function implements tracing and is a variable-argument function.



224 K. Mens, T. Tourwé

int f ( chuck_id* a , scan_component b ) {
int result = OK ;
char* func_name = "f" ;
. . .
trace ( CC , TRACE_INT , func_name , "> (b = %s)" ,

SCAN_COMPONENT2STR ( b ) ) ;
. . .
trace ( CC , TRACE_INT , func_name , "< (a = %s) = %d" ,

CHUCK_ID_ENUM2STR ( a ) , result ) ;
return result ;

}

Fig. 9.8. Code fragment illustrating the tracing idiom in Bruntink et al..’s case study

Its first four arguments denote, respectively, the component in which the function to
be traced is defined, whether the tracing is internal or external to that component,
the name of the function for which the parameters are being traced, and a printf-
like format string that specifies the format in which the parameters should be traced.
Optional arguments specify the input or output parameters that need to be traced.
Parameters of a complex type (as opposed to a basic type like int or char) need to be
converted to a string representation. Typically, this is done by using a dedicated func-
tion or macro, such as SCAN_COMPONENT2STR and CHUCK_ID_ENUM2STR in the example
of Figure 9.8.

In order to study whether the concern was implemented consistently throughout
their case study, Bruntink et al. proposed a method based on formal concept analysis,
applied on typical attributes associated with the concern under study. For the tracing
concern, they studied both function-level and parameter-level variability, and tuned
the concept analysis algorithm so that it grouped all functions that invoked tracing in
a similar way, and all parameters that are converted in the same way, respectively.

Without going into all details, the results of running the experiment on four com-
ponents of the software system are described in Table 9.3. The most striking observa-
tion (second row) was that only 40 out of 704 (5.7%) of all functions invoke tracing in
the ‘standard’ way. The first row shows that 29 different tracing variants are used in
the four components. In addition, the authors observed that none of these 29 variants
could be considered as the ‘standard’ variant, with the other variants being simple
deviations from the general rule.

As for parameter-level variability (lower half of the table), the study showed that
37.7% of the parameter types (94 out of 249) were traced in an inconsistent way,
i.e. a single parameter type is converted into a string representation in more than one
way. Only 16% (40 out of 249) was traced consistently, and 115 parameter types were
not traced at all. Some inconsistency arises because not all functions need to trace,
however, and hence some parameter types are converted using one single converter
function in many different functions, while not traced in other functions. To take this
into account, those parameter types are excluded from the number of inconsistently-
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Table 9.3. Function-level and parameter-level variability results (taken from [88], ©ACM,
2007)

CC1 CC2 CC3 CC4 total global

Function-level variability

#tracing variants 6 4 19 2 31 29
#functions w. std. tracing 13 1 26 0 40 40
% of total functions 4 0.7 15 0 5.7

Parameter-level variability

#not traced 61 49 4 16 130 115
#consistently traced 15 5 16 19 55 40
#inconsistently traced 32 17 45 14 108 94
#w.o. not traced 11 6 39 8 64 57

traced parameter types. Hence, the fourth row shows the parameter types that are
converted using more than one converter function, and the authors concluded that
42.5% (57 out of 134) of all parameter types were not traced consistently, and 57.5%
(77 out of 134) were traced consistently.

An additional advantage of their method is that formal concept analysis produces
concept lattices that can be visually inspected. Figure 9.9, again taken from [88], il-
lustrates this: it clearly shows that the component uses three different ways to specify
the component name (CC, "CC2" and CC2_CC), and that there is one function that uses
both CC and "CC2", i.e. there are two trace statements in that function, and each state-
ment specifies the component name in a different way.

The most appealing result of this experiment was the observation that the im-
plementation of the tracing concern was not consistent at all, contained much more
variability than expected, and could thus not be expressed as one single aspect. This
came as a surprise, given the fact that tracing is a relatively simple concern, which
is often used as the prototypical example of a concern that can easily be turned into

Fig. 9.9. Function-level variability in the CC2
component
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an aspect. Since current aspect extraction tools and techniques that are proposed do
not take these observations into account, they are not yet ready to be used on real-
world systems. Granted, since a study of this kind was never conducted before, these
issues could not have been identified yet. But it clearly illustrates the complexity of
the activity of aspect extraction.

9.5 Aspect Evolution

Once the crosscutting concerns in the original software system have been explored
and the system has been migrated to a new aspect-oriented version, the system enters
a new phase in which it will need to be continuously maintained and evolved in order
to cope with changing requirements and environments. In this section, we highlight
some of the issues and problems related to such evolution of aspect-oriented systems.

9.5.1 Rationale

As was argued in the introductory section, AOSD overcomes some of the problems
related to software evolution, in particular the problems related to maintaining and
evolving independently the different (crosscutting) concerns in a system. But since
all software systems are subject to evolution (remember the first law of software
evolution), aspect-oriented systems themselves too will eventually need to evolve.
We define aspect evolution as the process of progressively modifying the elements
of an aspect-oriented software system in order to improve or maintain its quality over
time, under changing contexts and requirements.

9.5.2 Challenges and Risks

While research on aspect exploration is only starting to produce its first results and
research on aspect extraction is still gaining momentum, research on aspect evolution
is even younger. This is largely due to the fact that few large-scale aspect-oriented
software systems exist today. Even if they would exist, they would be too young in
order for them to be the subject of a rigorous scientific study regarding their long-
term evolution problems.

Despite the immaturity of the field, some initial research questions have been
raised, related to how the evolution of aspect-oriented software differs from evolv-
ing traditional software and whether techniques and tools, successful in supporting
traditional software evolution, can still be applied to the evolution of aspect-oriented
software. It seems that the very techniques that AOP provides to solve or limit some
of the evolution problems with traditional software, actually introduce a series of new
evolution problems. This phenomenon is sometimes called the evolution paradox of
AOP [505].
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9.5.3 Existing Techniques and Open Issues

Evolving aspect-oriented software differs in at least two ways from evolving tradi-
tional software:

1. First of all, evolving the base code in any way may impact the aspects that work
on that code (see Figure 9.10). Evolution normally involves adding and remov-
ing classes, methods and instance variables, or changing them in some way. By
doing so, the set of joinpoints associated to the program changes too: new join-
points are added and existing joinpoints are removed or changed. This clearly
affects the aspects which select joinpoints by means of pointcuts. Hence, when
evolving the base code, care has to be taken to assess the impact this evolution
has on the aspects.

2. Conversely, the aspects themselves can be subject to evolution too (Figure 9.11).
Since concerns are easier to evolve when they are separated into aspects instead
of being implemented by means of coding conventions and idioms, it seems
natural to assume that aspects may therefore evolve more often. However, like
any other software artefact, aspects evolve for a variety of different reasons.
For example, pointcuts could be generalised to make them less brittle, abstract
aspects could be introduced to make the aspect-oriented code more reusable, or
advice code could be restructured to make it more comprehensible. Hence, the
introduction of AOP introduces new types of evolution that where previously
impossible or difficult to achieve.

These issues were already identified by a number of authors. Hanenberg et al. [220]
introduce aspect-aware and aspect-oriented refactorings. The former are traditional
refactorings that are extended to take aspects into account, such as Rename method
and Extract method that need to make sure an aspect’s pointcuts are updated appro-
priately. Such refactorings tackle the first issue presented above. The latter refactor-
ings are newly-defined and refactor the aspect code instead of the base code. They

Fig. 9.10. Impact of base code evolution on the aspects
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Fig. 9.11. Impact of aspect evolution on the base code

thus tackle the second issue. An example is the Separate pointcut refactoring, that
extracts the common parts of several pointcuts into a new pointcut, so that it can be
reused properly.

Monteiro and Fernandes [376] follow an approach similar to Fowler [182] where
they identify several bad (aspect) smells, and define refactorings that alleviate these.
They divide the different refactorings into three categories, as shown in Table 9.4:
for extracting crosscutting concerns, for restructuring the internals of aspects, and for
dealing with generalisation. The first category of refactorings has been explained in
Section 9.4. The second category contains refactorings that are often applied after an
aspect has been extracted from a crosscutting concern, and needs tidying up, whereas
the third category contains refactorings that should make an aspect definition more
general and hence more reusable. The distinction between the last two categories
is rather arbitrary, and the refactorings presented are not automated. Since they are
rather high-level refactorings, they are probably difficult to automate at all.

Not only does AOP lead to new types of evolution, it also introduces new kinds
of evolution problems. In particular, several authors have identified and suggested
solutions for the fragile pointcut problem [293, 477, 482, 362]. This problem occurs
when pointcuts accidentally capture or miss particular joinpoints as a consequence
of their fragility with respect to seemingly safe modifications to the base program.
We will illustrate and discuss this problem in more detail in Subsection 9.5.4.

Another danger to evolution of aspect-oriented programs is what is sometimes
called the aspect composition problem [226]. When combining into the same ap-
plication two aspects that have been developed independently, they may interact in
undesired ways. For example, suppose we want to combine a simple logging and
synchronisation aspect. For those joinpoints that are captured by both aspects, do
we only want to log and synchronise the base code? Do we want the logging as-
pect to log the synchronisation code as well? Or do we want the synchronisation
aspect to synchronise the logging code? Languages like AspectJ propose language
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Table 9.4. Three categories of refactorings as defined by Monteiro and Fernandes (Adapted
from [376]), ©ACM, 2005

Restructuring aspect internals
Extend marker interface with signature

Generalise target type with marker interface
Introduce aspect protection

Replace inter-type field with aspect map
Replace inter-type method with aspect method

Tidy up internal aspect structure
Extracting crosscutting concerns Dealing with generalisation
Change abstract class to interface Extract superaspect

Extract feature into aspect Pull up advice
Extract fragment into advice Pull up declare parents

Extract inner class to standalone Pull up inter-type declaration
Inline class within aspect Pull up marker interface

Inline interface within aspect Pull up pointcut
Move field from class to inter-type Push down advice

Move method from class to inter-type Push down declare parents
Replace implements with declare parents Push down inter-type declaration

Split abstract class into aspect and interface Push down marker interface
Push down pointcut

constructs to define how to combine aspects, for example by providing priority rules
and permitting a developer to declare in what order to apply the aspects. However,
when combining more complex aspects, often these constructs do not suffice and
more intricate compositions are desired. Lopez-Herrejon et al. [331] and others pro-
pose alternative composition models, based on program transformations, that support
step-wise development, retain the power of AspectJ and simplify program reasoning
using aspects. Such composition models align aspect-oriented software development
with component-based software engineering in order to offer the best of both worlds.
Chapter 10 also briefly touches upon these issues.

To conclude, it is clear that aspect evolution is still an emerging research area, in
which not all important research questions have been identified, let al.one answered.
Nevertheless, it is important to mention that an awareness of the problem is growing
inside the AOSD community, and that more and more researchers in that community
are starting to investigate such problems.

9.5.4 Aspect Evolution in Practice: The Fragile Pointcut Problem

As a concrete example of an aspect evolution problem, this section touches upon the
fragile pointcut problem, proposes a possible solution, and discusses a small case
study on which an initial validation of this solution was conducted.

In Section 9.2 we already illustrated the distinction between extensional point-
cuts, which merely enumerate the joinpoints in the source code, and intensional
pointcuts that are defined in terms of more high-level structural or behavioural prop-
erties of the program entities to which they refer. The tight coupling of extensional
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pointcut definitions to the base program’s structure hampers evolvability of the soft-
ware [482] since it implies that all pointcuts of each aspect need to be checked and
possibly revised whenever the base program evolves. Due to changes to the base pro-
gram, the pointcuts may unanticipatedly capture joinpoints that were not supposed
to be captured, or may miss certain joinpoints that were supposed to be affected by
the aspect. This problem has been coined the fragile pointcut problem [293, 477].

Kellens et al. [362] address the fragile pointcut problem by replacing the intimate
dependency of pointcut definitions on the base program by a more stable dependency
on a conceptual model of the program. This is illustrated schematically in Figure
9.12. Their model-based pointcut definitions are less likely to break upon evolution,
because they are no longer defined in terms of how the program happens to be struc-
tured at a certain point in time, but rather in terms of a model of the program that is
more robust to evolution.

To validate their approach, they defined two simple aspects on an initial release
of the SmallWiki application. The ‘action logging’ aspect extended SmallWiki with
basic logging functionality for the different actions that occur in the wiki system.
A second ‘output’ aspect altered the way (font) in which text in wiki documents was
rendered. They implemented each of these two aspects once with aspects defined in
terms of traditional pointcuts and once in terms of model-based pointcuts defined
over a conceptual model of the application. Then they considered two more recent
versions of the SmallWiki application (a version one month and another about one
year after the initial release) and assessed the impact of the aspects in those versions.

Fig. 9.12. Managing the fragile pointcut problem with model-based pointcuts
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As it happened, some occurrences of the fragile pointcut problem appeared. In the
solution with traditional aspects this resulted in an erroneous behaviour of the aspec-
tualised application. More specifically, some actions that should have been logged
were not and some text outputting that should have been altered was not. With the
model-based pointcut approach, however, these fragile pointcut problems were de-
tected as mismatches between the evolved code and the conceptual model that was
defined on top of it. As such, the conflicts could be detected early and solved by the
aspect programmer before actually applying the aspects.

On the downside, the approach does not detect all occurrences of the fragile
pointcut problem: a lot depends on the level of detail of the conceptual model in
terms of which the pointcuts are defined. The more detailed the model, the more
mismatches can be detected. Also, since the approach has only been illustrated an
a relatively small case on two simple aspects, it remains to be investigated how well
it performs on real aspect-oriented systems.

9.6 Summary

In this chapter, we summarised important evolution-specific issues and challenges re-
lated to the adoption of aspect-oriented programming, and presented an overview of
the state-of-the-art research that addresses these. We identified three different stages
that adopters of AOP may need to go through: exploration, extraction and evolution.

The exploration stage is a preliminary phase that studies whether the software
actually exhibits important crosscutting concerns that can or should be extracted
into aspects. We showed that exploring a software system for crosscutting concerns
means looking for more than the well-known and simple crosscutting concerns of-
ten documented in the research literature. Moreover, particular coding conventions
and idioms can help in identifying important crosscutting concerns, as they are often
used to make up for the lack of aspects. Additionally, we described how some of
the existing exploration tools make use of the very same information in order to au-
tomatically mine a software system for crosscutting concerns. However, even those
automated tools typically require quite a lot of manual inspection of the produced
results, due to the relatively low precision and recall of the proposed techniques. Re-
garding crosscutting concerns and software quality, we discussed some preliminary
work that hints at a positive impact on the software quality of implementing cross-
cutting concerns by means of aspects, but no definitive conclusions can be drawn yet
and more experimental validation is clearly needed.

The extraction stage follows the exploration stage, and considers how crosscut-
ting concern code can be extracted from the ordinary code and defined into the ap-
propriate aspects. We identified the issues related to this extraction, in particular
separating the concern code from the base code and turning it into advice code, and
determining the appropriate joinpoints and pointcuts. Existing work that tackles (part
of) these issues was described, which showed that this area of research is still young
and needs significantly more work before it can be useful in an industrial context.
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Nonetheless, these techniques show the feasibility of automating, at least partly, the
process of aspect extraction.

The evolution stage then deals with the evolution of the final aspect-oriented soft-
ware, and how this differs from the evolution of ordinary software. We showed that
evolving aspect-oriented software involves evolving the ordinary code as well as the
aspect code, and that this gives rise to extensions of existing techniques that support
evolution, as well as new techniques to support aspect evolution. Additionally, we
explained that the adoption of AOP gives rise to new evolution-related problems,
such as the fragile pointcut problem and the aspect composition problem. Solutions
to those problems are under active research by the AOP community.

The overall conclusion that can be drawn is that aspect-oriented software devel-
opment is still a young paradigm, that still needs to mature and requires much more
rigourous research. Nonetheless, it is a promising paradigm that receives a lot of at-
tention, and gives rise to several tools and techniques that already provide at least
some kind of support for early adopters.

Acknowledgement. This chapter builds on the work of a vast community of people working
on evolution-related issues in the domain of AOP. We are grateful to all authors of the work
referred to in this text for having implicitly or explicitly provided us the necessary material
for writing this chapter. Given the broad range of topics and issues covered by this chapter, it
is inevitable that some important references may be missing. We are equally grateful to those
researchers for advancing the state-of-the-art in this exciting research area.
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Summary. Software architectures must frequently evolve to cope with changing require-
ments, and this evolution often implies integrating new concerns. Unfortunately, when the
new concerns are crosscutting, existing architecture description languages provide little or no
support for this kind of evolution. The software architect must modify multiple elements of
the architecture manually, which risks introducing inconsistencies.

This chapter provides an overview, comparison and detailed treatment of the various state-
of-the-art approaches to describing and evolving software architectures. Furthermore, we dis-
cuss one particular framework named TranSAT, which addresses the above problems of soft-
ware architecture evolution. TranSAT provides a new element in the software architecture
descriptions language, called an architectural aspect, for describing new concerns and their
integration into an existing architecture. Following the early aspect paradigm, TranSAT al-
lows the software architect to design a software architecture stepwise in terms of aspects at
the design stage. It realises the evolution as the weaving of new architectural aspects into an
existing software architecture.

10.1 Introduction

The role of software architecture in the engineering of software-intensive systems
is becoming increasingly important and widespread. A software architecture models
the structure and behavior of a system, including the software elements and the rela-
tionships between them. It is the basis of the design process, a guide for the software
development process and one of the main inputs to drive the development of inte-
gration tests. There are currently a number of Architecture Description Languages
(ADLs) [358], which enable an architect to specify a software architecture. During
the design process, the architect uses an ADL to create the software architecture
of a system by constructing and combining increasingly complex components and
connectors.

An ADL makes it easy to construct an initial description of the architecture of
a system. In practice, however, so that an architecture can remain useful over time, it
must be able to evolve in response to the changing and often conflicting requirements
of the many diverse stakeholders. An architecture can thus not be viewed as simply
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a description of a static software structure, but as a description of the space in which
this software structure can dynamically evolve. Most ADLs, however, do not provide
support for describing the evolution of a software system.

Software systems undergo two main kinds of evolution: internal evolution and
external evolution. Internal evolution models the changes in the topology of the com-
ponents and interactions as they are created or destroyed during execution. As such,
it captures the dynamics of the system. External evolution models the changes in
the specification of the components and interactions that are required to cope with
new stakeholder requirements. It entails adaptation of the software architecture. In
the first part of this chapter, we study a number of approaches that address these is-
sues of evolution in a software architecture. We furthermore classify the approaches
according to the kind of evolution that is supported.

In the second part of this chapter, we focus on the issue of separation of con-
cerns in the context of the external evolution of a software architecture. Software
architectures are designed around the concepts of components and their interactions,
and thus suffer from the “tyranny of the dominant decomposition” [490], in which
some concerns cannot be adequately modularised because they crosscut the chosen
dimension of decomposition. Evolutions in such concerns require pervasively mod-
ifying the ADL specification, at all points affected by the concerns, which can be
tedious and difficult. In the context of implementations, Aspect-Oriented Software
Development (AOSD) [276], has been proposed to improve the separation of con-
cerns [153]. At the architecture level, several approaches have proposed to follow the
spirit of AOSD, by putting the description of each concern in a separate architecture
construct, that can automatically be integrated into an existing software architecture
by a weaver. However, because architectures are complex and aspects are invasive,
many transformations may be needed to integrate or modify a concern, making the
specification of the transformation highly error prone. We present in detail the sys-
tem TranSAT [36, 38], which detects inconsistencies that may be introduced by such
an architectural aspect as early as possible.

The rest of this chapter is organised as follows. Section 10.2 presents several soft-
ware architecture languages in order to identify the key concepts of these languages
and their advantages and shortcomings. Sections 10.3 and 10.4 present several ini-
tial solutions to cope with internal and external evolution. Section 10.5 presents the
TranSAT approach, showing how an explicit specification of weaving can help guar-
antee the consistency of the resulting architecture. Section 10.6 describes some re-
lated work and finally Section 10.7 concludes and presents some remaining critical
issues.

10.2 Component-Based Software Architecture: Concepts and
Open Issues

The software architecture of a software system describes its high level structure and
behavior. In a software architecture specification, a system is represented as a set of
software components, their connections, and their behavioral interactions. Creating
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a software architecture promotes a better understanding of the system, and thus facil-
itates the design process. A software architecture is described using an architectural
description language (ADL). Such a language can be a graphical textual, or both. The
use of an ADL allows rigorously specifying the global architecture of a system, that
can then be analyzed by automated tools. ADLs are typically both human and ma-
chine readable and provide a high level of abstraction. An ADL can provide features
that support the automatic generation of parts of a software system.

Many ADLs have been developed by either academic or industrial groups [115].
While the various ADLs differ in many points, the ADL community generally agrees
that the key elements of an ADL are abstractions for describing components, con-
nectors, and configurations [358]. A component represents a computational element
with multiple ports, allowing it to communicate with its environment. A connector
models the interaction between components. Finally, a configuration describes how
components and connectors are arranged into a system.

In this section, we focus on three significant directions in the design of ADLs:
(i) the specification and analysis of the interaction between distributed components,
as illustrated by Darwin [339] and Wright [5], (ii) the strong link with the imple-
mentation of the software system, as may be found in ArchJava [4], Fractal [87] and
SOFA [96], and (iii) the building of an architecture-driven software development en-
vironment, as promoted by ArchStudio [141], AcmeStudio [556] and SafArchie [37].
Finally, we evaluate these works in terms of their support for evolution.

Architecture Specification and Analysis

Some ADLs, such as Wright [5], Darwin [339] and Rapide [334], focus on the spec-
ification and analysis of component interaction. Wright provides a formal model
based on CSP for architectural description. Based on this model, it defines a set of
standard consistency and completeness properties that can be checked using stan-
dard model checking technology to increase the architect’s confidence in the design
of a system. Darwin has been built with the same spirit and goals as Wright. It is
a formal language for describing software structures and network topologies in the
context of dynamic distributed systems. It uses Finite State Process (FSP) Languages
to specify system behavior [340]. FSP provides a concise way of describing Labelled
Transition Systems (LTSs).

System Configuration and Code Generation

Many ADLs decouple the implementation from the architecture, which can lead to
a situation in which the implementation and the architecture are inconsistent. Arch-
Java [4], Fractal [87], and SOFA [96] have the goal of unifying software architecture
with implementation.

ArchJava is an extension to Java that unifies the software architecture with the
implementation by focusing on a property known as communication integrity. This
property requires that the implementations of components only communicate along
the channels declared in the architecture. ArchJava uses a type system to ensure this
property in the implementation code.
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The Fractal component model distinguishes two kinds of components: primitives,
which contain actual code, and composites, which are only used as a mechanism to
group components into a whole. Fractal provides an XML-based ADL that provides
constructs to specify component types, primitive templates and composite templates.
A tool can parse a Fractal ADL specification and instantiate the corresponding com-
ponents to create an implementation [315]. One of the implementations of Fractal,
Julia, is a Java library that enables the specification and manipulation of components
and architectures at runtime. In Julia, primitives can be standard Java classes that
conform to some coding conventions.

SOFA (SOFtware Appliances) provides a platform for developing applications
with primitive and composite software components. A component is described by
its frame and its architecture. The frame is a component interface and the architec-
ture is an abstract implementation. A frame specifies the services that are provided
and required by the component, and can be implemented by more than one archi-
tecture. The architecture of a composite describes the structure of the component
by instantiating direct subcomponents and specifying the interconnections between
them. A primitive has no architecture but an implementation that can be a binary.
SOFA provides a text-based ADL called Component Definition Language (CDL),
which is based on OMG IDL [397]. This ADL allows specifying the communication
among SOFA components and embeds a process algebra called behavior protocols
to express the behavior of each component.

The ADLs ArchJava and Fractal provide a tight link between the architecture and
the implementation, but unlike Darwin or Wright do not provide any facilities for be-
havior specification and analysis. Indeed, the only check on the interaction between
components is to ensure that connected ports provide and require services with com-
patible signatures. The language CDL used with SOFA, however, additionally allows
specifying behavior protocols in terms of regular expressions on sequences of events,
which constrains the set of admissible traces of the component.

Architecture-Centric Integrated Development Environments

Finally, some work has focused on the design of ADLs that are targeted towards use
with architecture-centric software development tools, with the goal of improving the
use of software architecture concepts in the software industry. Some of these ADLs
are ArchStudio [141], AcmeStudio [556], and SafArchie [37].

ArchStudio is a software development environment that focuses on software de-
velopment from the perspective of software architecture. It supports the C2 archi-
tectural style [491]. A C2 architecture is a hierarchical network of concurrent com-
ponents linked together by connectors (message routing devices) in accordance with
a set of style rules. C2 components communicate via message passing. ArchStudio
is extensible, and many extensions have been developed to analyze, refine, or deploy
architecture specifications.

AcmeStudio is a customizable editing environment and visualization tool for
software architectural designs based on the Acme ADL. Acme is extensible and is in-
tended to be used as a common interchange format for architecture design tools and
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as a foundation for developing new architectural design and analysis tools. Acme-
Studio allows the designer to define new Acme families and customise the environ-
ment to work with those families by defining diagram styles.

SafArchie Studio is a tool suite for the SafArchie component model [37] and
is built as a set of modules for ArgoUML [19]. SafArchie provides a hierarchical
component model, including primitive and composite components. Each component
interface is associated with a contract. These contracts clarify both the structure and
the external behavior of the components, describing its interactions with its envi-
ronment. SafArchie Studio allows a designer to describe an architecture and then
to check its properties using either a built-in model checker or the verification tool
LTSA [340]. Finally, it can generate code for use with ArchJava or Fractal.

Overall, these tools vary in the underlying architectural style that is targeted, but
they have the common goal of providing a complete tool suite to build, deploy and
refine a software architecture, in order to transform ADLs into an effective vehicle
for communication and analysis of a software system.

Evaluation: Managing Software Architecture Evolution

The various languages presented in this section support the static description of
a software architecture. From this description, tools can check the correctness of
the model and can generate code. They can furthermore guarantee the consistency
between a design and an implementation. However, none of these languages and
associated tools take evolution into account. Thus, a software architecture, once im-
plemented in the software system, can be prohibitively expensive to change. Due to
the lack of a first-class artefact that manages the evolution, architectures become ob-
solete quickly and their use degenerates to that of an outdated documentation of the
system.

If we consider the problem of evolution in the context of each of the different
languages presented in this section, we can notice that:

• these languages cannot describe the internal evolution (dynamics) of a system.
They give a snapshot view of the system that can become obsolete.

• these languages do not take care of external evolutions. For example, the archi-
tecture analysis tools do not support incremental checks when an architect inte-
grates a new concern. Consequently, for each modification, the model checker
has to re-check the entire system. At the implementation level, component-based
software platforms suffer greatly from tangled code because many functions that
relate to crosscutting concerns are spread out and repeated over different com-
ponents. Consequently, the integration or the modification of a new concern is
difficult and error-prone. Finally, the different architecture development environ-
ments do not provide any facilities for easily integrating or modifying a concern
that crosscuts several components in the architecture.

In the next sections, we will study several initial solutions to handle the internal and
external evolutions of component-based software architectures.
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10.3 Dynamic Software Architecture Description

A running system may create new components and interactions, causing it to diverge
from its initial architecture. Because such changes may interact in subtle ways with
the rest of the system, it is desirable for the architecture to document and allow rea-
soning about the changes that can occur during the system execution. A number of
approaches have been proposed to address the dynamics of a system at the architec-
ture level [78]. These can be divided into two main categories: either the ADL can
support an explicit specification of the software architecture’s dynamics in which
all of the possible evolutions of the system are foreseen in the software architecture
description, or the ADL can define the space of potential evolutions of the software
architecture.

10.3.1 Explicit Specification of the Software Architecture Dynamics

Wright

The first approach to address the problem of expressing the dynamics of a soft-
ware architecture was an extension of Wright [6]. This extension reuses the be-
havior notation of Wright to model reconfiguration. It allows the architect to view
the architecture in terms of a set of possible architectural snapshots, each with its
own steady-state behavior. Transitions between these snapshots are represented by
reconfiguration-triggering events. To introduce dynamism in an architecture descrip-
tion, the architect has to extend the interface of each component, i.e., its alphabet and
port descriptions, to describe when reconfigurations are permitted in each protocol in
which it participates. A manager of reconfiguration, called a “reconfiguration view,”
consumes these events to trigger reconfigurations. This extension allows the designer
to simulate the evolution of the software architecture. Each potential snapshot can be
checked by the Wright model checker.

This extension is especially tailored for dynamic software architectures. How-
ever, two main problems limit its use in a industrial system development. First, the
need to modify the component breaks the separation of concerns principle because
the reconfiguration is expressed at the same level as the functional behavior of the
component. Second, this approach is limited to modelling and to simulating dynamic
systems with a finite number of configurations.

Fractal/FScript

The execution model of Fractal is highly dynamic, as components or bindings can be
instantiated programmatically at runtime and the configuration of a composite can be
changed. Nevertheless, Fractal ADL, described in Section 10.2, only allows express-
ing a single instantiation of the system, indicating how its components are instanti-
ated and interconnected. The scripting language FScript [142], however, can be used
to program reconfigurations of Fractal components. The language guarantees vari-
ous properties of reconfigurations by considering them as transactions: termination
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(a reconfiguration cannot be infinite), atomicity (reconfiguration is executed either
completely or not at all), consistency (the Fractal system resulting from a successful
FScript reconfiguration is structurally consistent) and isolation (there are no concur-
rent reconfigurations). Each FScript program can be triggered by an event occurring
inside the application itself using reactive rules modelled after the Event-Condition-
Action paradigm (ECA). Combined with Fractal ADL, FScript allows modelling of
the dynamics of a system.

ArchJava

ArchJava, described in Section 10.2, only allows statically defined components to be
dynamically instantiated and connected. At creation time, each component records
the component instance that created it as its parent component. ArchJava enforces
the property of communication integrity, to ensure that the implementation remains
coherent with the model. Thus, each component must explicitly document the kinds
of architectural interactions that are permitted between its subcomponents. This is
done using a connection pattern, which describes the set of connections that can be
declared at runtime. ArchJava does not support the explicit component or connector
destruction.

AADL

AADL (Architecture Analysis & Design Language) is a new international standard
for predictable model-based engineering of real-time and embedded software [25]. It
is mainly inspired by MetaH [526], which has been designed to analyze and combine
software and hardware components to form a complete computer system, and targets
control systems in the automotive, avionics, and space industries. AADL is a lower-
level modelling language than the ADLs presented in the previous section. The main
concepts manipulated by this language are components, ports, threads, and the com-
munication bus. It models software topologies, execution platform topologies and
the relationships between them. AADL was one of the first ADLs to model quality
of service, including timing properties and resources consumption.

AADL provides a mechanism of mode to model the reconfiguration of statically-
known systems. These modes can be associated with any AADL component. Modes
represent alternative configurations of the component implementation. Only one
mode is active at a time. At the level of system and process a mode represents
possibly overlapping (sub-)sets of active threads and port connections, alternative
configurations of execution platform components, as well as alternative bindings of
application components to execution platform components. Mode changes are spec-
ified as a state transition diagram whose states are the modes, and the transitions are
triggered by events.

Evaluation

The languages presented in this section make dynamic architectures explicit. These
approaches are based on a limited version of the CRUD (Create, Retrieve, Update,
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Delete) primitives, i.e., they can create or destroy components or connections. How-
ever, although the reconfiguration policies are separated of the rest of the software
architecture for Fractal/FScript and AADL, these policies are completely tangled
into the components for ArchJava, and partially for Wright. Furthermore, these ap-
proaches currently do not describe the dynamics with the same goal. The Wright
extension and AADL model the dynamics to be able to simulate and check the evo-
lution of the software architecture. Fractal and ArchJava focus on implementing a dy-
namic software architecture. Finally, the exhaustive specification of all the possible
reconfigurations can be tricky and limits the real dynamics of the software architec-
ture.

10.3.2 A Frame for Dynamic Software Architecture

Rather than explicitly specifying the set of potential snapshots of the system config-
uration, some ADLs allow delimiting the space of potential evolutions in what we
call a frame for dynamic software architecture.

UML 2.0

UML 2.0 [398] permits the specification of logical components, e.g., business com-
ponents and process components, through the composite structure diagram, and de-
ployed components (such as artefacts and nodes) through the deployment diagram. It
models a system as a hierarchy of nested components that provide and require inter-
faces. It provides support for decomposition through the notion of structured classi-
fiers. A structured classifier is a classifier (a type) that can be internally decomposed
(Classes, Collaboration, and Components). Constructs to support decomposition
include: Part, Connectors, and Ports. In a UML 2.0 composite structure diagram,
a component is viewed as a “self-contained unit that encapsulates state + behavior
of a set of classifiers”[398]. It may have its own behavior specification and specifies
a contract of provided/required services, through the definition of ports. To model the
nested hierarchy, a component can be seen as parts because a component is a struc-
tured classifier. In this case, a part has type and a lower/upper bound multiplicity.
Consequently, a connector does not represent a connection at the instance level but
a potential connection at the type level. This kind of diagram is most relevant to de-
signing a frame for software architecture. The variability of the software architecture
is confined within the lower and the upper bound of subcomponents. Besides, each
connection between component instances must match a connection pattern declared
in the enclosing component between component types. However, UML 2.0 provides
usual intentional points of variation. This kind of diagram is optional, and the nested
hierarchy can be modelled only with instances that have a fixed cardinality. In this
last case, UML 2.0 does not provide any frame to mark out the software architecture
dynamics.
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SafArchie

In the same spirit, SafArchie defines the concept of an architecture type. An archi-
tecture type defines a set of constraints on component interfaces and the interac-
tion between them that must be respected by the software architectures. Architecture
types are used to check structural and behavioral compatibility between components.
An architecture type is composed of six main elements: port type, component type,
composite type, bindings, operation, and attribute. A port type specifies the set of sig-
natures of the operations that the port should provide or require. A component type
defines all port types of the component and the minimum and maximum cardinality
for each one. A composite type identifies all the component types that the composite
should contain and the minimum and maximum cardinality for each one. It defines
the allowed interactions between these component types through the binding con-
cept. A binding defines a possible interaction between two port types belonging to
one or two component types that belong to the same composite type. An architecture
type is a set of structured constraints in terms of composite type, component type,
and port type. Each typed software architecture should respect these constraints.

ACL

Tibermacine et al. [498] present an Architectural Constraint Language (ACL) as
a means to formally describe architectural choices at all the stages of the component-
based software development process. This language is based on the UML’s Object
Constraint Language (OCL) [399], but limits the scope of an OCL constraint to a par-
ticular component, by slightly modifying the syntax and semantics of the context part
in OCL. At the syntactic level, every constraint context should introduce an identi-
fier, corresponding to the name of a particular instance of the meta-class cited in
the context. At the semantic level, ACL interprets a constraint with the meaning it
would have in the context of the metaclass, but limiting its scope only to the in-
stance cited in the context. A component is thus able to define constraints on its own
structure. Finally, ACL can only express invariants; as compared to OCL, pre- and
post-conditions are removed from the language.

ACL can be used to define a frame for a software architecture by defining a set
of invariants that have to be respected by all configurations of the system. The ar-
chitect has more work to do when using UML 2.0 or SafArchie because he has to
define constraints for each component instances. ACL allows expressing more ac-
curate constraints. Indeed, like OCL, which has been shown useful to improve the
comprehensibility and the maintainability of models [81], ACL is easier for the de-
signer to define and to read than a formal language.

ArchStudio

An early version of ArchStudio [406] proposes a mechanism for restricting runtime
changes that compromise system integrity. It uses constraints to confine not only the
set of changes that can occur but also when these changes may occur. ArchStudio
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supports transactional modifications. The constraints are only checked at the end of
a transactional modification, thus allowing the system architecture to be in an invalid
state within a transaction. This allows imposing precise constraints, without limiting
how modifications are implemented.

Evaluation

These four approaches tackle the issue of the software architecture dynamics by
limiting the allowed variability. They, however, suffer from two main limitations. The
first problem is that there is insufficient connection with component-based platforms.
Indeed, these models could be seen as a repository which could evaluate if an explicit
evolution is permitted. But, currently, no approach combines a scripting language to
make explicit the dynamics at the platform level and an architecture type or a set of
constraints to check if the proposed evolutions are correct from the modelling point
of view. The second problem concerns the number of valid architectures that are
defined with a set of constraints or an architecture type. In many case, this number
is infinite. Consequently, it is impossible to check the correctness of all of these
architectures. Currently, model checkers do not support the evaluation of an infinite
architecture family.

10.4 Aspect-Oriented Architectures Description Language

10.4.1 Issue

The notion of architectural view/architectural layer/architectural aspect, depending
on the community, comes from a very natural analogy: Just as in the architecture
of a building we have distinct views/plans/blueprints describing distinct concerns of
the building structure (walls and spaces, electric wiring, water conduits), it seems
reasonable to conceive a software architecture description as the composition of dis-
tinct concern specifications (view, aspect, plan) reflecting distinct perspectives on the
same software system. Indeed the target audiences for an architecture description are
the various stakeholders of the system. A stakeholder is any person, organization or
other entity with a particular interest in the architecture of the system. Each of these
stakeholders may have different interests and requirements.

A software architecture description already provides an implicit separation of
concerns: by describing the component configuration and the component interface, it
separates the dimensions of composition from interaction. Nevertheless, the separa-
tion of these dimensions is not sufficient to modularise concerns such as security that
crosscut the software architecture. The insufficient modularity of crosscutting con-
cerns complicates software evolution. To overcome this issue, this section presents
several approaches that propose to integrate principles of Aspect-Oriented Software
Development (AOSD) into ADLs. Through the description of these approaches, we
will see how the improvement of the separation of concerns in a software architec-
ture description can ease its evolution. We will also discuss the main issues raised by
the introduction of AOSD into a software architecture.
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10.4.2 Using Aspects in Architectural Description

IEEE 1471

IEEE Std 1471, named Recommended Practice for Architectural Description of
Software-Intensive Systems [341], was the first formal standard to address what an
architectural description (AD) is. It was developed by the IEEE Architecture Work-
ing Group between 1995 and 2000 by representatives from industry, other standards
bodies and academia. In 2006, IEEE 1471 became a draft international standard
(ISO/IEC DIS 42010) and is now undergoing joint revision by IEEE and ISO. It
highlights the separation of concerns issue in a software architecture description.

IEEE 1471 is a conceptual framework. It establishes a set of content requirements
on an architectural description. In IEEE 1471, an architecture description contains
any collection of products used to document an architecture. IEEE 1471 specifies
how architecture descriptions should be organised, and their information content.
The three main principles of this framework are:

• abstracting away from specific media (e.g., text, HTML, XML);
• being method-neutral: It is being used with a variety of existing and new archi-

tectural methods and techniques;
• being notation-independent: IEEE 1471 recognises that diverse notations are

needed for recording various facets of architectures.

An architecture description in IEEE 1471 is governed by a set of rules that define
what it means for an AD to conform to the standard. Although IEEE 1471 does
not provide the concept of aspect, it identifies the concept of architectural concerns
which include: functionality, security, performance, reliability. All these concerns are
generally regarded as aspects that can be managed at the design stage. Under the rules
of IEEE 1471, an architectural description must explicitly identify the stakeholders
of the system’s architecture and enumerate each architectural concern. If an AD does
not address all identified stakeholders’ concerns, it is, by definition, incomplete.

In IEEE 1471, an AD is organised into one or more architectural views. An ar-
chitectural view is defined to be a representation of a whole system from the perspec-
tive of a related set of concerns. Each view has a governing architectural viewpoint.
The viewpoint provides the set of conventions for constructing, interpreting and an-
alyzing a view, including the rules for determining whether it is well-formed. Each
identified stakeholder concern must be covered by at least one of the architectural
viewpoints selected for use in an AD; if not, the AD is incomplete.

With respect to this conceptual framework, we can see that it has identified as
a key concept the issue of the different stakeholder management and the separation
of concerns in a software architecture description. Currently, they do not propose
to use Aspect-Oriented Modelling to compose this view. Consequently, they do not
propose any clear join point model or pointcut language. The composition phase is
furthermore not really formalised and thus this approach is not operational. However,
we can imagine using IEEE 1471 as a framework associated to an ADL that supports
AOSD.
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Aspect-Oriented ADLs

Recently, to improve modularity and component reusability, several ADLs have been
designed around the integration of Aspect-Oriented (AO) abstractions such as as-
pects, joinpoints, pointcuts and advice in order to address the modelling of crosscut-
ting concerns.

As a software architecture description relies on a connector to express the inter-
actions between components, an equivalent abstraction must be used to express the
crosscutting interactions. An Architectural Aspect, which is composed of aspectual
connectors and aspectual components, is a component that represents a crosscutting
concern in a component-based architecture. The traditional connector cannot model
the crosscutting interaction because the semantics between a binding of two com-
ponents is different than the semantics of weaving an aspect into a base component.
The first one usually defines a contract between a client and a supplier. The second
one is more invasive. Due to the obliviousness principle [176], the base component
must not be aware of the fact that it might be modified by an aspect component.

In order to express the crosscutting interaction, AspectualAcme [192] defines
the Aspectual Connector, an architectural connection element that is based on the
connector element but with a new kind of interface and a different semantics. The
new interface makes a distinction between the different elements playing different
roles in a crosscutting interaction, i.e., affected traditional components and aspectual
components, and captures how they are interconnected.The interface of an aspectual
component contains a glue clause, some base roles, and some crosscutting roles.
The glue clause specifies how an aspectual component affects regular components.
There are three types of glue clause: before, after, and around. The semantics is
similar to that of advice composition in AspectJ [276]. The base roles can be linked
to ports with a pointcut expression, which matches the different ports affected by
the aspectual component. A crosscutting role identifies the aspectual component that
affects the base components.

Similarly, Fractal Aspect Component (FAC) [413] extends the Fractal ADL with
Aspect Components (AC). Aspect Components are responsible for specifying cross-
cutting concerns in a software architecture. Each aspect component can affect com-
ponents by means of a special interception interface. Two kinds of bindings between
components and ACs are offered: a direct crosscut binding declaring the component
references and a crosscut binding using pointcut expressions based on component
names, interface names and service names.

Contrary to FAC or AspectualAcme, PRISMA [412] is a symmetrical approach
because it does not consider functionality as a kernel entity different from aspects and
it does not constrain aspects to specify non-functional requirements; functionality is
also specified as an aspect. As a result, PRISMA provides a homogeneous treatment
of functional and non-functional requirements. In PRISMA, aspects are first-order
citizens of software architectures and represent a specific behavior of a concern (e.g.,
safety, coordination, etc.) that may crosscut the software architecture.
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10.4.3 Evaluation

Other analyzis of Aspect-oriented ADL can be found in [44, 422]. Complementary
to these two studies, the approaches presented in this section illustrate that there is
currently no consensus among existing approaches concerning the way to define an
aspect in a software architecture. Some approaches consider that an aspect is com-
posed of components, while others consider that an aspect is a kind of component
or that a component is composed of aspects. However, most of them agree that the
semantics of the composition has to be extended to incorporate aspects into an ADL.
As in software architecture there is a consensus that a software connector is the ele-
ment that mediates interactions between components; several approaches modify the
semantics of the connector to reflect the concepts of AOSD in a software architecture
description.

As illustrated by Mens et al. in [366], in addition to separating the different con-
cerns during software development, AOSD can help to overcome many of the prob-
lems related to software evolution. Improving the separation at the architecture level
can help to coordinate the requirements of the different stakeholders of the system
and improve the ability to modify only one concern independently of the others. Nev-
ertheless, integrating or modifying a concern requires invasively modifying the ADL
specification, at all points affected by the concern. These modifications are low-level,
tedious and error-prone, making the integration of such concerns difficult. As pointed
out by the AOSD evolution paradox [505] (cf Section 10.6), the evolution of a con-
cern can break the consistency of the software architecture. For this reason, we claim
in the second part of this chapter that the consistency of a base architecture modi-
fied by an aspect is a key issue for the software architecture community. To illustrate
the problem and evaluate an initial solution, we propose to study in depth TranSAT:
a framework for integrating stepwise new concerns in a software architecture.

10.5 The Safe Integration of New Concerns
in a Software Architecture

10.5.1 Overview of TranSAT

In this section, to motivate the breaking consistency issue, we present an overview
of the TranSAT framework, through the example of a web travel agency software
architecture. We first describe the architecture and then show how to use the TranSAT
framework to extend this architecture with a session expiration concern. Finally, we
consider some of the issues that confront an architect when specifying a crosscutting
concern.

Example

Our example application of a web travel agency manages the booking of hotels and
flight. This application is represented by the software architecture shown in Fig-
ure 10.1, which is specified using the SafArchie ADL (see Section 10.2).
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Figure 10.1(a) gives the structural description of the web travel agency ar-
chitecture. The structure is described in terms of composites (WebTravelAgency,
ThirdPartyPartner), components (AuBoutDuMonde, Expedition, Voyage), ports
(p1 to p5), delegated ports (dp1 to dp3) and bindings. A port contains operations;
for example, the operations book and cancel are provided by the ports p4 and p5
respectively. A port must contain at least one operation, must be part of exactly one
component, and must be bound to exactly one other port, in some other component.
Operations are either provided or required. Bound ports must contain compatible
operations; for example, port p2 requires the operations provided by port p4. Dele-
gated ports do not contain any operations; they define the interface of a composite,
exporting the operations of the composite’s components.

Figure 10.1(b) gives the behavioral description of one of the components, Au-
BoutDuMonde. The behavior is specified in terms of an Input/Output Automa-
ton [335] that describes the sequences of messages that a component may receive
and emit. The notation used in these automata is as follows. For a provided operation

Fig. 10.1. Web travel agency software architecture
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op1, the message ?op1 represents the receipt of a request and the message !op1$
represents the sending of the response. ?op1 must precede !op1$, but they can be
separated by any number of messages, representing the processing of op1. For a re-
quired operation op2, the message !op2 represents the sending of a call and the
message ?op2$ represents the receipt of the response. Sending a call is a blocking
operation, and thus !op2 must always be immediately followed by ?op2$. Using this
notation, the behavior shown in Figure 10.1(b) specifies that when the AuBoutDu-
Monde receives a book request, it makes a reservation of an hotel and/or a reservation
of a flight.

Integrating a Session Expiration Concern Using the TranSAT Framework

The TranSAT framework manages the integration of a new concern, represented as
an architectural aspect, into an existing architecture, referred to as a basis plan.
The software architectural aspect represents the new concern in terms of a plan,
a join point mask, and a set of transformation rules. The plan describes the structure
and behavior of the new concern. The join point mask defines the structural and
behavioral requirements that the basis plan must satisfy so that the new concern can
be integrated. The transformation rules specify the means of composing the new
plan with the basis plan. Given a software architectural aspect, the architect specifies
where it should be added to the basis plan. The TranSAT weaver then checks that
the selected point in the basis plan matches the join point mask, instantiates the
transformation rules according to the architectural entities matched by the join point
mask, and executes the instantiated transformation rules to compose the new concern
into the basis plan.

As an example of the use of these constructs, we consider how to manage the
automatic cancel of a trip if it is not confirmed. This concern is crosscutting, in that
it affects the AuBoutDuMonde, the Expedition and Voyage components. The archi-
tectural aspect related to session expiration is shown in Figure 10.2. The new plan
corresponding to the session expiration concern keeps a log of certain operations,
sets a timer, and cancels some reservations when the timer expires. Specifically, the
Manager components provide operations to keep a log and to retrieve information
from this log. It also , and the Timer component triggers the Manager when a ses-
sion duration is elapsed. The join point mask specifies that this plan can be composed
in a context consisting of one component Cm1 attached to two other components Cm2
and Cm3. Some constraints (not shown) are also placed on the operations in the ports
connecting these components.

In the web travel agency software architecture, the join point mask is compati-
ble with the integration site consisting of the WebTravelAgency, Expedition and
Voyage components. Finally, the transformation rules connect the ports of the plan
to the ports of the selected integration site, and make other appropriate adjustments.
In the case of the web travel agency architecture, the result of the composition is
shown in Figure 10.3.
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Issues

To specify the integration of a crosscutting concern, the architect must describe how
to modify the component structure, behavior, and interfaces. This task is highly error
prone, as many modifications are typically required, and these modifications can have
both a local impact on the modified elements and a global impact on the consistency
of the architecture.

Typically, a component model places a number of requirements on local proper-
ties of the individual architectural elements. For example, in SafArchie, the ADL on
which TranSAT is built, it is an error to break a binding and then leave the affected
port unattached, or to remove the last operation from a port, and then leave the port
empty. The construction of the behavior automaton associated with each component
is particularly error prone, because it must be kept coherent with the other elements
of the component and because of the complexity of the automaton structure. For ex-
ample, in SafArchie, all of the operations associated with the ports of a component
must appear somewhere in the component’s behavior automaton. When the ADL
separates the structural and behavioral descriptions, it is easy to overlook one when
adding or removing operations from the other. An automaton must also describe
a meaningful behavior; at a minimum that for each operation, a call precedes a re-
turn and every call is eventually followed by a return from the given operation.

The architecture must also be globally coherent. The most difficult point raised
by this consistency issue lies mainly in the behavior of the architecture. So that the
application can run without deadlock, it must be possible to synchronize the behav-

Fig. 10.2. Architectural aspect for the session expiration concern
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Fig. 10.3. Transformed web travel agency software architecture

ior of each component with that of all of the components to which it is bound by its
ports. Any change in the behavior of a single component can impact the way it is syn-
chronized with its neighbors, which in turn can affect the ability to synchronize their
behaviors with those of other components in the architecture. The interdependencies
between behaviors can make the source of any error difficult to determine.
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10.5.2 A Specific Language for Software Architecture Transformation

In this subsection we present the TranSAT’s transformation language for specifying
the elements of an architectural aspect: plan, join point mask and transformation
rules. The component assembly shown in Figure 10.2 (a) is an example of a plan,
showing only structural information. We also present the join point mask and the
transformation rules. The use of the language is illustrated through the definition of
the session expiration aspect.

The Join Point Mask

The join point mask describes structural and behavioral preconditions that a basis
plan must satisfy to allow the integration of the new concern. It consists of a series
of declarations specifying requirements on the structure and behavior of the compo-
nents available at the integration site.

Figure 10.4 illustrates a join point mask suitable for use with the session expi-
ration plan (Figure 10.2 (a)). For readability, some of the declarations are elided or
represented by the diagram at the top of the figure. The diagram specifies that some
component Cm1 must be connected to two other components Cm2 and Cm3. The re-
maining declarations define a series of placeholders for operations (line 3), specify
whether these operations must be declared as provided or as required (lines 4-13)
and specify that they must be associated with the ports pm1 to pm5 (lines 14-18).
Finally, lines 19-22 ensure that the operation opm1 is the inverse of operation opm5
in the bound port, and similarly for opm2 and opm6, opm3 and opm7, and opm4 and
opm8. Operations are inverse if they have the opposite polarity, the same name and
compatible types. In the web travel agency architecture, these constraints would, for
example, allow the architect to select the required operation book in port p2 as opm1
and the provided operation book in port p4 as opm5. In this example, the join point
mask does not specify any behavioral requirements. If needed, the constraints on the
behavior of a component mask can be specified in terms of a sequence of messages.

The Transformation Rules

The transformation rules describe precisely how to compose the new plan with a ba-
sis plan. They specify the various transformations to perform on the elements de-
fined in the new plan and the join point mask, as well as their application order. The
language provides two kinds of transformation primitives: computation transforma-
tion primitives and interaction transformation primitives. The computation transfor-
mation primitives specify the introduction of new ports and operations in primitive
components, in order to adapt the component behavior. The interaction transforma-
tion primitives manage the insertion and deletion of component bindings and man-
age the composite content, in order to reconfigure the software architecture. Overall
TranSAT is targeted towards introducing new concerns into existing architectures
rather than removing existing functionalities. Thus, the language has been designed
to prevent transformations that remove existing behaviors.
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Fig. 10.4. Join point mask definition

Computation Transformation Primitives

Table 10.1 shows the primitives used to manage the structural transformation of
primitive component interfaces. These primitives allow the architect to create new
ports and operations, to destroy empty ports and to move an operation from one port
to another.

Adding an operation to a port has an impact on the behavior of the associated
component. When a new copy of an operation is added to a port using the operation
Operation Or = op in Pr, the architect must explicitly specify how the messages

Table 10.1. Computation transformations

Port Operation

create Port Pr in Cp; Operation Or = op in Pr;
Operation Or1 = op replaces Or2;

destroy Pr.destroy(); N/A

move N/A Or.move(Pr);

Cp: ComponentRef, Pr: PortRef, Or: OperationRef,
op ::= Or | inverse(Or), N/A: Not applicable
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associated with the newly added operation op fit into the behavior of the component
to which the operation is attached. The transformation of the behavior automaton is
specified using the pattern-matching syntax template => result. Such a rule inserts
the messages associated with the new operation, op, before, after, or around the call-
ing or responding messages associated with some existing operation, m. The template
specifies the sequence of messages on m, possibly separated by any sequence of mes-
sages, x. The result describes how messages associated with the new operation, op,
are interleaved with this sequence.

The following lines illustrate the use of the automaton transformation rules:

1?m → x → !m$ ⇒ ?m → ! op → ? op$ → x → !m$ ;
2?m → x → !m$ ⇒ ?m → ( ! op → ? op$ → x | x ) → !m$ ;

In line 1, the template describes the receipt of a call to m followed by any number of
messages, followed by the sending of m’s response. The result specifies that follow-
ing the receipt of the call to m, the component sends a call to op and waits for the
response before performing any further computation. The use of the new operation
op at runtime can also be conditional. In line 2, the transformed component either
calls op, waits for the response, and then performs the sequence x, or performs x
alone, ignoring the added op operation.

Interaction Transformation Primitives

The interaction transformation primitives manage the reconfiguration of the software
architecture. As shown in Table 10.2, operators are provided to create and destroy
bindings, to create composites either at the top level or within another composite,
and to move one composite Cr1 or one component Cp into another composite Cr2.

Example

We use the session expiration example to illustrate the use of the computation and
interaction transformation primitives. In this example, composing the new plan re-
quires (i) interposing the Manager component between the original component Cm1

Table 10.2. Interaction transformations

Binding Composite Component

create Binding Br = Composite Cr; N/A
{Pr1, Pr2}; Composite Cr1 in Cr2;

destroy Br.destroy(); N/A N/A

move N/A Cr1.move(Cr2); Cp.move(Cr2);

Cp: ComponentRef, Cr: CompositeRef, Pr: PortRef,
Br: BindingRef, N/A: Not applicable
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1// Cm1 transformation
2P o r t p14 i n Cm1;
3opm1 . move ( p14 ) ;
4opm2 . move ( p14 ) ;
5
6... Similarly for the port p15 and the operation masks (opm3,opm4) of pm2
7
8// Cm2 transformation
9P o r t p16 i n Cm2;
10opm5 . move ( p16 ) ;
11opm6 . move ( p16 ) ;
12... Similarly for the port p17 in Cm3 and the operation masks opm7 and opm8 of pm4
13
14// Port destruction
15pm1 . d e s t r o y ( ) ;
16pm2 . d e s t r o y ( ) ;
17pm3 . d e s t r o y ( ) ;
18pm4 . d e s t r o y ( ) ;
19... Ports are only destroyed if there are empty
20
21// Manager transformation
22
23O p e r a t i o n o6a = i n v e r s e ( opm1 ) r e p l a c e s p6 . invoke1 ;
24O p e r a t i o n o6b = i n v e r s e ( opm2 ) r e p l a c e s p6 . invoke2 ;
25
26... Similarly for the operations of the port p7
27
28O p e r a t i o n o10a= i n v e r s e ( opm5 ) r e p l a c e s p10 . invoke1 ;
29O p e r a t i o n o10b= i n v e r s e ( opm6 ) r e p l a c e s p10 . invoke2 ;
30... Similarly for the operations of the port p11
31
32// Introduction of p13 within Cm1
33P o r t p13 i n Cm1;
34O p e r a t i o n o13a = i n v e r s e ( p8 . c a l l B o o k ) i n p13 ;
35O p e r a t i o n o13b = i n v e r s e ( p8 . c a l l V a l i d a t e ) i n p13 ;
36?opm9 → x → ! opm9$
37⇒ ?opm9 → x → ! o13a → ? o13a$ → ! opm9$ ;
38?opm10 → x → ! opm10$
39⇒ ?opm10 → x → ! o13b → ? o13b$ → ! opm10$ ;
40
41// Component introduction
42Manager . move (Cm1 . p a r e n t ) ;
43Timer . move (Cm1 . p a r e n t ) ;
44
45// Binding creation
46Bind ing b6 = {p14 , p6 } ;
47Bind ing b7 = {p15 , p7 } ;
48
49Bind ing b18 = {p13 , p8 } ;
50
51Bind ing b10 = {p10 , p16 } ;
52Bind ing b11 = {p11 , p17 } ;

Fig. 10.5. Transformation rules for the session expiration concern

(instantiated as AuBoutDuMonde in the web travel agency case) and the operations
that are to be cancelled, and (ii) inserting this component between the components
Cm1 and (Cm2, Cm3) (instantiated as Expedition and Voyage in the web travel agency
case). Figure 10.5 shows the rules that carry out these transformations.
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In the join point mask, the operations to be cancelled are specified to be in a port
that may contain other operations, e.g., port pm1 includes the operations opm1, opm2,
and some unknown list of operations * (line 14 in Figure 10.4). So that the session
expiration concern does not have to take into account these other operations, lines 2-
12 in Figure 10.5 move the operations into newly created ports, p14 to p17. This
transformation may cause the ports matched by the join point mask to become empty.
Accordingly, lines 15–18 apply the destroy operation to these ports, causing them
to be destroyed if they are empty. When the session expiration concern is composed
into the web travel agency software architecture, the ports matched by pm1 to pm4
are not destroyed because they contain the operations getFlightsDescription and
getHotelsDescription.

The ports of the Manager are then updated with references to the operations to be
cancelled. For each port, p6, p7, p10, and p11, the generic operations invoke1 and
invoke2 are replaced by the inverses of the corresponding operations in the ports
p14 to p17 (lines 20–30). These transformations implicitly update the Manager’s be-
havior automaton by replacing the messages associated with the invoke operations
by the messages associated with the new operations.

To insert the component Manager into the WebTravelAgency composite, a new
port must be added to Cm1 and this ports must be instantiated with references to the
callBook and callValidate operations. Lines 33–35 add the port p13 and copy
the require counterpart of the Manager component’s callBook and callValidate
operations into this port. Because callBook and callValidate are new operations
for Cm1, we must specify where they fit into Cm1’s behavior. Lines 36–39 specify that
Cm1 sends a call to this new operation whenever opm9 or opm10 are called.

The remaining rules transform the interaction between components. Lines 42–43
add the components of the plan to the basis plan. In these rules, for any outermost
component or composite referenced by C in the join point mask, C.parent repre-
sents the parent of the element to which C is matched in the basis plan. As the com-
ponent model is arborescent, each component or composite has at most one parent. If
there is no parent, the enclosing transformation is not performed. Finally, lines 45–52
connect the components at the various ports. TranSAT automatically adds delegated
ports, e.g., dp4 in Figure 10.3, as needed. This behavior of the transformation en-
gine improves the genericity of the architectural aspect. Applying these transforma-
tion rules to the join point between the AuBoutDuMonde, Voyage and Expedition
components shown in Figure 10.1 (a) produces the software architecture shown in
Figure 10.3 (structural information only).

10.5.3 Static Verification of the Transformation

A goal of TranSAT is to ensure that the composition of a new concern produces
a valid software architecture. Accordingly, TranSAT statically checks various prop-
erties of the aspect at creation time and dynamically checks that the aspect is com-
patible with the insertion context when one is designated by the architect.
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Static Properties and Checks

Given an aspect, TranSAT first checks that its various elements are syntactically
and type correct. For example, a join point mask must declare that a port contains
elements of type Operation and a Binding transformation must connect two ports.
TranSAT then performs specific verifications for the plan, the join point mask, and
the transformation rules.

Plan. TranSAT requires that the plan be a valid software architecture according to
the component meta-model of SafArchie, except that it may contain unattached ports.
For example, TranSAT checks that all bindings connect ports that contain compatible
operations and that the automata describing the behaviors of the various components
in the plan can be synchronized.

Join point mask. The variables declared by the join point mask represent the
fragments of the basis architecture that can be manipulated by the transformation
rules. Unlike the plan, the join point mask need not be an enriched architecture spec-
ification and thus TranSAT does not check that e.g. operations are specified for all
ports or automata can be synchronized. These properties are, however, assumed to
be satisfied by the elements matched in the basis architecture. TranSAT does ver-
ify the consistency of the information that is given, for example that any automaton
provided uses operations in a manner consistent with their polarity.

Transformation rules. TranSAT ensures the safety of the transformation process
by a combination of constraints on the transformation language and verifications
performed statically on the transformation rules.

Compared to a general transformation languages, several features of the TranSAT
transformation language have been designed to prevent the architect from expressing
unsafe transformations. For example, the SafArchie component meta-model requires
the insertion of delegated ports whenever a binding crosses a composite boundary.
TranSAT introduces these delegated ports automatically, relieving the architect of
the burden of identifying the composites between two ports, reducing the size of
the transformation specification, and eliminating the need to fully specify composite
nesting in the join point mask. The SafArchie component model also requires that
each architectural element have a parent, except for the outermost components or
composites. The transformation language enforces this constraint by combining the
creation of a new element with a specification of where this element fits into the ar-
chitecture; for example, Port Pr in Cr both creates a new port Pr and attaches this
port to the composite Cr. Finally, a common transformation is to replace an operation
in a port by another operation, which requires updating both the port structure and
the automaton of the associated component. The transformation language combines
both operations in the declaration Operation Or1 = op replaces Or2.

Other safety properties are not built into the syntax of the transformation lan-
guage, but are checked by analyzis of the transformation rules. To do so, the oper-
ational semantics of the transformation language is formalised. Based on this for-
malization, the analyzis simulates the execution of the transformation rules on the
various elements identified by the plan and the join point mask. At the end of the
simulation, global post-conditions are checked to guarantee that the pattern will not
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break the software architecture consistency. For example, a post-condition guaran-
tees that every element has at least one subelement except operations and join point
mask elements for which no subelements are initially specified. A similar analyzis
checks various properties of bindings: every port is connected to some other port by
a binding, the connected ports are not part of the same component, the operations
of the connected ports are compatible, etc. Another analyzis checks that for each
component, the automaton and the set of operations in the various ports are kept
consistent. A more detailed description of these checks is provided in [38].

10.5.4 Dynamic Verification

An architect integrates an aspect by designating a fragment of the existing archi-
tecture to which the aspect should be applied. TranSAT checks that the fragment
matches the join point mask, to ensure that the fragment satisfies the assumptions
under which the safety of the transformation rules has been verified. However, be-
cause the join point mask does not describe the entire basis architecture, the static
checks of the different elements of the aspect are not sufficient to guarantee the cor-
rect composition of a new plan into a basis plan. Consequently, dynamic verifications
of some structural and behavioral properties of the architecture are performed during
the composition process.

The dynamic structural verification consists of checking the compatibility be-
tween the newly connected ports, according to the definition of the port compati-
bility of SafArchie [37]. Concretely, based on transformation rules that have been
applied, the analyzis builds a list containing the newly created connections as well
as the connections between ports that have been modified by the transformations.
For each of these connections, the connected ports are verified to contain compatible
operations. The other connections do not need to be checked as they are not affected
by the transformations and their correctness has been previously verified during the
analyzis of the basis plan or the aspect plan.

Adding new components and behaviors to a fragment of an architecture can
change the synchronization at the interface of the fragment, and thus have an ef-
fect on the synchronization of the rest of the architecture. The use of an architectural
aspect localises the modifications to a specified fragment of the existing architecture.
The process of resynchronization thus starts from the affected fragment and works
outward until reaching a composite for which the interface is structurally unchanged
and the new automaton is bisimilar to the one computed before the transformation.
The bismilarity relation ensures that the transformation has no impact on the observ-
able behavior of the composite, and thus the resynchronization process can safely
stop [520].

If the transformation of the architecture fails, any changes that were made must
be rejected. Before performing any transformations, TranSAT records enough infor-
mation to allow it to roll back to the untransformed version in this case.
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10.5.5 Assessment

In Section 10.1, we observed that the architect who integrates a new concern with-
out a dedicated framework, can use the general architecture analyzis tools to check
the validity of the resulting architecture after the composition is complete. This ap-
proach, however, can give imprecise error messages, because the resulting architec-
ture does not reflect the transformation step that caused the problem, and can be time
consuming, due to the automaton synchronization that is part of this validation proc-
ess. In this section, we briefly describe how a composition framework like TranSAT
can address these issues.

Because the static verifications have a global view of the transformations that will
take place, they can pinpoint the transformation rules that can lead to an erroneous
situation. For example, if an operation is moved from a port of the join point mask,
the port may become empty, resulting in an erroneous software architecture. While
SafArchie would simply detect the empty port, TranSAT can, via an analyzis of the
complete set of transformation rules, detect that there is a risk that a port contains
only one operation, that a move is performed on the operation in this port, and that
a destroy is not subsequently applied to this port. Using this information, TranSAT
can inform the architect of problems in the transformation rules, before any actual
modification of the architecture has taken place. Obtaining this feedback early in the
composition process can reduce the overall time required to correctly integrate the
new concern.

Because the dynamic verifications are aware of the exact set of components that
are modified by the composition, they can target the resynchronization of the au-
tomata accordingly. As synchronization is expensive, reducing the amount of resyn-
chronization required can reduce the amount of time required to integrate a new
concern, making it easier for the architect to experiment with new variants.

10.5.6 Discussion and Tool Suite

Contrary to most AO-ADLs that create new first-class entities that extend the con-
cept of component and connector, in TranSAT an architectural aspect is a composite
entity that contains a set of components and connectors that must be inserted. Con-
sequently, in TranSAT, weaving does not have a fixed semantics. Instead, the seman-
tics of weaving is specified by the transformation rules contained in the architectural
aspect description. This approach raises the issue of the difference between model
weaving and model transformation. Indeed, this issue is not limited to the TranSAT
approach. In many Aspect-Oriented Modelling approaches (AOM), a design is pre-
sented in terms of multiple user-defined views (aspects) and model composition is
used to obtain a model that provides an integrated view of the design. In these ap-
proaches, model composition involves merging or weaving two or more models to
obtain a single model. The apparent similarities between model weaving and model
transformations have already been discussed elsewhere [45]. As a result, even if
TranSAT can not be compared directly to others AO-ADLs, it can be classified as
an AOM approach.
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The TranSAT framework enriches the SafArchie tool suite to assist the architect
during the specification of the system. For TranSAT, three main static modules have
been developed. The first one permits the static checking of an architectural aspect.
The second one assists the architect in composing an architectural aspect with an
existing architecture by highlighting the different join points matched by the join
point mask. Finally, the transformation engine weaves an architectural aspect into an
architecture.

The static checking of the architectural aspect has been developed as an if-then
clause in Drools [496] and in Prolog [484]. The Drools rules and the Prolog rules
include the same conditions and the same consequences. The difference is that the
rule is called explicitly in Prolog whereas it is chosen by the rule engine in Drools.
Contrary to the Prolog implementation, the Drools implementation does not output
the reason for the failure of a transformation rule. Although it is possible to check the
reasons for the failure, it is not convenient to do so with forward-chaining. The time
spent for the verification using the Prolog implementation is quite similar for both
implementations. The rules check the initial state and the final state of the transfor-
mation environment and perform the structure and connection analyzis. The Drools
implementation relies on 39 Drools rules. The Prolog implementation is composed
of 21 Conditional Transformations [283] and 18 Prolog rules. Prolog and AGG rules
were derived from the semantics of the transformation primitives defined in [36].

To detect the join point that can be matched by a join point expression, a module
has been implemented in three ways with AGG [487], DROOLS and Prolog. The
idea is the same for all the implementations. First we fill the knowledge base with
facts that correspond to the elements of the software architecture. Then we transform
the join point mask into a set of rules. Finally we provide these generated rules to
the rule engine, which then finds all the matching facts in the knowledge base. The
main difference between those implementations concerns the efficiency of the search.
The AGG implementation is the slowest because of the graph matching process. The
Drools implementation is slower than the Prolog implementation because of the time
required to compile the Drools rules. Since the rules are generated from the join point
mask, the cost of the rule compilation cannot be reduced.

Finally, the transformation engine has been developed with two concurrent tech-
niques: AGG and Prolog. The AGG rules are generated from the TranSAT trans-
formation rules. There are 158 graph transformation rules created for the session
expiration composition. The host graph generated from the software architecture is
composed of 75 nodes and of 84 edges. The transformed host graph contains 109
nodes and 130 edges. There are 34 conditional transformations that perform the
TranSAT transformations. The software architecture is described by 172 predicates
in the knowledge base. After the session expiration concern integration, the trans-
formed software architecture is specified by 220 predicates. The session expiration
integration in the reservation software architecture takes 50 times more time with
AGG than with Prolog. Once again, the graph matching is responsible for the effi-
ciency difference.

When considering how to implement the different weaving stages of TranSAT
(static analyzis, join point resolution and transformation), we had two motivations:
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First comparing existing transformation techniques as graph transformation engine
and rules-based engine with backward chaining and forward chaining algorithms.
Second, compare a domain specific framework as TranSAT to design architectural
aspects with general transformation engine approaches. When comparing AGG,
DROOLS and Prolog, the main differences are the techniques to communicate
with the engine, the efficiency and the development complexity. Further differences
among these techniques are discussed in [36]. Second, comparing TranSAT with
these techniques, we can consider that our transformation engine and the join point
mask are more close to the SafArchie language and semantics. Consequently, it is
safer for an architect than using a general transformation approach; the language
prevents the architect from making some errors; the static analyzer is more accu-
rate thanks to the dedication of the transformation language. Finally, we plan to
experiment with these different techniques to prove that in the context of building
architectural aspects, TranSAT is easier to use and less verbose.

10.6 Related Work

Separation of Concerns in Software Modelling

In the Aspect Oriented Modelling domain, an important issue is how to compose the
different concern models identified in the early stages of the development process.
The major effort lies in being able to compose UML diagrams. For example, Reddy
et al. [435] have developed a systematic approach for composing UML class dia-
grams in which a default composition procedure based on name matching can be cus-
tomised by user-defined composition directives. The framework automatically iden-
tifies conflicts between models that have to be composed and solves them accord-
ing to the composition directives. Composition directives, however, address weaving
only from a structural point of view. They consider the composition as a model trans-
formation. Besides, composition directives amount to a symmetric AOM approach
that does not differentiate between aspect model and base model. Consequently, they
do not provide a pointcut language to manage the composition.

Close to model composition directives, Muller et al. [382] present a means to
build an information system with parametrised models. Model parametrisation al-
lows the reuse of a model in multiple contexts. They use a model composition opera-
tor to combine models according to alternative and coherent ordering rules. However,
as with model composition directives, their work only supports the composition of
class diagrams and can not compose dynamic diagrams. This approach does not pro-
vide aspectual composition operators and as such does not support the composition
of aspect models.

Along the same lines, Theme/UML extends UML to support the specification
of symmetric concern models. In such a model, base and aspect concerns are de-
fined in separate models at the same level of abstraction. At the modelling level,
a base concern represents behaviors that are not crosscutting while an aspect con-
cern represents behaviors that are primarily crosscutting. The Theme/UML approach
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introduces a theme module that can be used to represent a concern at the mod-
elling level. Themes are declaratively complete units of modularization in which
any of the diagrams available in the UML can be used to model one view of the
structure and behavior that the concern requires for execution. Classes and meth-
ods defined in these diagrams describe the structure of these entities in the scope
of the concern. Sequence diagrams describe the behavioral interactions that can oc-
cur between classes when the concern is executed. Aspects are represented as themes
parametrised with templates that represent the join points at which behaviors in other
themes are crosscut. In many ways, Theme/UML is very similar to TranSAT pre-
sented in this chapter. The main difference is in the target domain model. However,
unlike TranSAT, Theme does not make any static guarantees on the result of the com-
position. KerTheme [245], however, proposes to validate the result of composition
through testing.

Klein et al. [281] define an asymmetric operator that introduces the semantics-
based weaving of scenarios. In this approach, an aspect is defined as a pair of scenar-
ios, one for the join point designation (the “pointcut”), i.e., a scenario interpreted as
a predicate over the semantics of MSCs (Message Sequence Charts) [243] satisfied
by all join points (specification of the behavior to detect), and another for the advice,
representing the expected behavior at the join point. Similarly to Aspect-J, where
an aspectual behavior can be inserted around, before or after a join point, with this
approach, an advice may complete the matched behavior or replace it with a new
behavior to create a composed behavior. The operator proposed by Klein et al., is
generic enough to be used to compose the behavioral part of an architectural aspect.
It can for example be adapted to compose UML 2.0 sequence diagrams.

Less connected with UML, Roberto Lopez-Herrejon et al. [331] proposed an
approach based on algebraic foundations. Here an aspect is seen as a model transfor-
mation function, i.e., a function that maps models to models, and the effects of the
weaving process can be understood in terms of algebraic transformations. Around
this definition, theoretical properties (commutativity, associativity and identity) are
assigned to aspect compositions, and rules are generated (for example, precedence
rules for compositions). This approach allows one to reason about composition, ex-
posing its problems and leading to a partial solution for aspect reusability and prob-
lems that derive from the weaving process. The transformation language proposed in
TranSAT to express the composition has the same goal.

The various approaches presented above focus on the problem of composition in
the context of models. In considering a software architecture description as a model,
some ideas such as the post directives described in [435] can inspire the architects to
guarantee the correctness of an evolution step in a software architecture description.
In the same way, the problem of building reusable model fragment can be addressed
at the model level and specialised for the software architecture specification in a sec-
ond stage.
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AOSD Evolution Paradox

Despite the modularization provided by aspects, AOSD has been found to often hin-
der software evolution, and consequently to reduce software reliability. This problem
is called AOSD-Evolution Paradox [505], and arises even when considering aspects
at the architecture level. Essentially, the AOSD-Evolution Paradox is a consequence
of the obliviousness property of aspects, which tries to make the use of aspects
transparent for the base model. Because aspects include a description of each place
at which they apply, they rely on the existing structure of the system, resulting in
a tight coupling between the system and the aspects that advise it. When the system
evolves, its structure changes and every crosscutting concern in every aspect needs
to be checked to ensure that it still applies correctly, a tedious and error-prone task.
For more details, we refer to Chapter 9.

Kellens et al. [362] present the idea of a model-based pointcut definition. These
poincuts are defined in terms of a conceptual model of the base program, rather
than referring directly to the implementation structure, thus reducing the coupling of
the pointcut definition and the base model. These model-based pointcuts are useful
to avoid the AOSD Evolution paradox. In TranSAT, the join point mask is based
on the semantics of the software architecture. For example, when the join point
mask defines two connected components, that are directly or indirectly connected
are matched. Furthermore, a component mask matches either a component or a com-
posite. This behavior of the join point mask improves the genericity of architectural
aspects and limits the impact of structural changes on the weaving semantics.

10.7 Conclusion

Software architectures have the potential to provide a foundation for managing soft-
ware evolution. However, if many ADLs support static description of a system, most
of them currently provide no facilities for specifying architectural changes. In this
chapter, we have identified two kinds of change: runtime architectural changes called
internal software architecture evolution and changes managed by the architect called
external software architecture evolution. For the first kind of evolution, two subcat-
egories have been identified. The first one can express runtime reconfigurations to
architectures but requires that the reconfigurations be specified explicitly. In con-
trast, other ADLs can accommodate unplanned reconfigurations of an architecture
and incorporate behavior not anticipated by the original developers. These works
propose to define architectural constraints to confine the potential evolution of the
software architecture. On the other hand, to manage external evolution, ADLs suf-
fer from the lack of support for modularity. This leads to a number of architectural
breakdowns, such as increased maintenance overhead, reduced reuse capability, and
architectural erosion over the lifetime of a system. As AOSD allows designers to
modularise crosscutting concerns, promoting aspect-oriented software development
principles into ADLs seems to be an attractive solution to overcome this external
issue.
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However, if applying AOSD to ADLs can help to overcome many of the problems
related to software evolution, it pervasively modifies the semantics of the composi-
tion of software components. In the second part of this chapter, we argue that the inte-
gration of new concerns in a software architecture can break the software architecture
consistency. Since a majority of existing ADLs have focused on design issues, they
provide advanced static analyzis and system generation mechanisms. These mech-
anisms must be adapted to manage the new composition paradigm between aspects
and components. Through SafArchie and TranSAT, this chapter proposes an initial
solution to statically check that an aspect will not break the consistency of a software
architecture. TranSAT is based on a specific architecture transformation language to
describe the weaving. This language is carefully designed to make certain unsafe
transformations impossible to express. Besides, it allows static verification of addi-
tional consistency properties before aspect weaving is performed. However, TranSAT
and its transformation language are currently highly coupled with the SafArchie se-
mantics.

To conclude this chapter, we claim that one of the future main steps of software
architecture is to propose (i) a way to describe homogeneously internal and external
software evolutions. (ii) This evolution description should be associated to a pow-
erful analyzis model in order to be able to guarantee the consistency of a software
architecture by checking only the parts of an architecture impacted by the changes.
(iii) This approach should be generic in order to be adapted depending on the ADLs
semantics. (iv) Any changes should be represented as first-class entities in the soft-
ware architecture and it should, at least before system-deployment time, be possible
to add, remove and modify a concern with a limited effort. The approaches presented
in this chapter propose initial solutions to achieve these requirements. However, none
addresses the evolution issue in its entirety in considering both the software evolution
description, the analyzis impact of a change and its projection on a targeted platform.
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Summary. This chapter surveys a sample of empirical studies of Open Source Software
(OSS) evolution. According to these, the classical findings in proprietary software evolution,
such as Lehman’s laws of software evolution, might need to be revised, at least in part, to ac-
count for the OSS observations. The book chapter summarises what appears to be the empirical
status of each of Lehman’s laws with respect to OSS and highlights the threats to validity that
frequently emerge in this type of research.

11.1 Introduction

Software evolution is the phenomenon of software change over years and releases,
since inception (concept formation) to the decommissioning of a software system.
The work on the evolution of larger software systems poses many challenges. Our
assumption when studying software is that such work can be improved by taking into
account the findings of empirical studies of long-lived software systems.

With the emergence of the open source paradigm, software evolution researchers
have access to a larger number of evolving software systems for study than ever
before. This has led to a renewed interest in the empirical study of software evolution.
Some surprising findings in open source have emerged that appear to diverge from
the classical view of software evolution. In this book chapter we attempt to examine
this and, in doing so, propose research topics for further advance in this area.

The structure of this chapter is as follows. The remainder of this section briefly
presents the results of the classic studies of proprietary software evolution and pro-
vides a short overview of the open source paradigm. Section 11.2 summarises the
results of seven empirical studies of open source evolution. Section 11.3 attempts
to compare the evolution of open and closed source systems based on such studies.
Since addressing the threats to validity is a major challenge in order to make further
progress in this line of research, Section 11.4 lists and briefly discusses the threats
that are, in our view, the most common. Section 11.5 presents the main conclusions
of this chapter and proposes topics for further research.

T. Mens, S. Demeyer (eds.), Software Evolution.
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11.1.1 Classical Views of Proprietary Software Evolution

In the late 1960s and early 1970s Lehman and his collaborators pioneered the em-
pirical study of the changes done to a software system after it has been released.
They examined a number of proprietary systems, including the IBM 360-370 oper-
ating system. In the late 1970s and early 1980s they studied measurement data from
several other systems [320]. Their initial focus of attention was the phenomenon of
large program growth dynamics. Later they realised that the phenomenon was not
only a property of large systems, partly because largeness cannot be unambiguously
defined for software systems. What they observed was a process of change in which
software systems were not only modified, but also acquired additional functionality.
This process, they argued, could be legitimately called software evolution.

Lehman realised that software evolution, the continual change of a program, was
not a consequence of bad programming, but something that was inevitably required
to keep the software up-to-date with the changing operational domain. Continual
software change was needed for the stakeholders’ satisfaction to remain at an ac-
ceptable level in a changing world. This matched well with the software measure-
ments that he and colleagues had collected. This realisation was so compelling that
this observation was termed the law of continuing change. The use of the term laws
was justified on the basis that the phenomena they described were beyond the con-
trol of individual developers. The forces underlying the laws were believed to be as
strong as those of the laws of demand and supply in Economics. Other empirical ob-
servations were encapsulated in statements and similarly called laws. Initially three
laws were postulated, followed by five that were added at various points later, giving
a total of eight.

Despite the strong confidence on the validity of the laws, the matter of universal-
ity of the laws was not sufficiently well defined. Anyone could always recall a pro-
gram that was developed, used only once or twice and then discarded. Hence, the first
requisite for evolution is that there is a continual need for the program, i.e., there is
a community of users for which running the program provides some value. Lehman’s
analysis, however, went deeper and led to the realisation that, strictly speaking, the
laws only applied to a wide category of programs that Lehman called E-type sys-
tems [320], where the “E” stands for evolutionary. An E-type system is one for which
the problem being addressed (and hence, the requirements and the program specifica-
tion) cannot be fully defined. E-type software is always, to some degree, incomplete
and addresses “open” problems. We say ‘open’ in the sense that the change charter
has arbitrary boundaries that may move at any time and that the requirements speci-
fication can always be further refined or modified in some way as to seek to satisfy
new or changed needs. The immediate consequence is that for an E-type program
there is always a perceived need for change and improvement. Another characteris-
tic of E-type systems is that the installation of the program in its operational domain
changes the domain. The evolution process of an E-type program becomes a feed-
back system [320]. This is illustrated in Fig. 11.1.

E-type systems contrast with S-type programs, where the “S” stands for specified.
In S-type programs the specification is complete and can be formally expressed us-
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Fig. 11.1. Lehman’s view of the E-type Software Process. This is a slightly modified version
of the one in [174]

ing Mathematics. In S-type programs mathematical arguments can be used to prove
that the program fully satisfies its specification. S-type programs represent the do-
main within which the application of formal verification methods is more meaningful
and likely to be effective. However, the vast majority of systems used in businesses
and by the general public (e.g., complex PC operating systems, word processors,
spreadsheets, web browsers and servers, email systems) are of type E. Hence the im-
portance of the type E and the laws that seek to be descriptions of their evolutionary
characteristics. In its original classification [320], Lehman also identified a third type,
called P, for problem. P-type problems are usually well-defined and can be formally
described. However, the programs addressing such problems are based on heuristics
rather than mathematical proof. They are generally characterised by some trade-offs
in their requirements and their results are satisfactory only to certain level (not ab-
solutely correct as in the case of S-type programs). The software used to generate
schedules for trains and airline flights could be examples of the P-type. If a P-type
program is actively used in a real-world application it is likely to acquire, at least
to some extent, E-type properties. Traditionally, the software evolution research has
concentrated on the most common, the type E.

Initially, the topic of empirical study of software evolution did not reach much
momentum beyond Lehman’s immediate circle of collaborators. To our knowledge,
there were only two independent studies in the 1980s: one confirmatory by Kitchen-
ham [279] and one, by Lawrence [314], which was mainly a critique. Lawrence [314]
took a statistical approach and found support for one of the five laws, at that time.
Three of the laws were not supported by his tests and he was not able to formulate
one of the laws into proper statistical tests. In our view, a contribution of Lawrence’s
study was the realisation that laws were informal statements and that their formal
testing against empirical data involved first their formalisation. However, because
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each law can be formalised in more than one different way, it may lead to more than
one test for each law. We come back to this issue in subsection 11.2.7.

Despite these empirical challenges and the not uncommon view that software is
not restricted by any natural laws, the wider software engineering community seemed
to progressively realise that Lehman’s laws were a legitimate attempt, possibly the
most insightful so far, to describe why software evolves and what evolutionary trends
software is likely to display. The laws appeared to match common experience and
were discussed in popular software engineering textbooks and curricula [414, 468].
The laws should be considered, at the very least, hypotheses worth further studying.

In the late 1990s and early 2000s a fresh round of empirical studies by Lehman
and colleagues took place (e.g., [323]). These involved five proprietary systems that
were studied in the FEAST projects with results widely publicised [168]. FEAST
led to the refinement of some of the laws, which, as we said, are currently eight in
number. The laws are no longer isolated statements: the phenomena they describe
are interrelated. The project realised that empirical data related to some of the laws
were easier to extract than for others. Despite the difficulties, the laws were generally
supported by the observations and seen as the basis for a theory of software evolution.
The laws, in a recent post-FEAST wording [316], are listed in Table 11.1.

As can be seen in Table 11.1 a recent refinement of the fourth law included the
text “The work rate of an organisation evolving an E-type software system tends to

Table 11.1. Laws of E-type Software Evolution, a slight revision from the version published
in [316]

Number (year) Name Statement

I (1974) Continuing
change

An E-type system must be continually adapted otherwise it
becomes progressively less satisfactory in use

II (1974) Increasing
complexity

As an E-type system is evolved its complexity increases un-
less work is done to maintain or reduce the complexity

III (1974) Self regula-
tion

Global E-type system evolution is regulated by feedback

IV (1978) Conservation
of organisat-
ional stability

The work rate of an organisation evolving an E-type
software system tends to be constant over the operational
lifetime of that system or segments of that lifetime

V (1991) Conservation
of familiarity

In general, the incremental growth (growth rate trend) of E-
type systems is constrained by need to maintain familiarity

VI (1991) Continuing
growth

The functional capability of E-type systems must be contin-
ually enhanced to maintain user satisfaction over the system
lifetime

VII (1996) Declining
quality

Unless rigorously adapted and evolved to take into account
changes in the operational environment, the quality of an
E-type system will appear to be declining

VIII (1971/96) Feedback
system

E-type evolution processes are multi-level, multi-loop,
multi-agent feedback systems
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be constant over the operational lifetime of that system or segments of that lifetime”,
with the most recent addition in italics. This apparently minor addition recognised
explicitly in the laws for the first time the possible presence of discontinuities in the
lifetime of a software system and was a consequence of the observation in FEAST
of breakpoints in growth and accumulated change trends. Other researchers [17, 57]
seem to have independently arrived to similar views that software evolution is a dis-
continuous phenomenon. For example, Aoyama [17] studied the evolution of mobile
phone software in Japan over a period of four years in the late 1990s. During this
time mobile phones went through a fast evolution from voice communication de-
vices to mobile Internet Java-enabled terminals. The code base studied by Aoyama
increased its size by a factor of four in four years within which the software experi-
enced significant structural changes at particular points. We share this author’s view
that dealing with discontinuities in evolution is an unresolved challenge. The imme-
diate consequence is that it may not be sensible to simply extrapolate trends, such
as growth or change rate into the future, to predict the future of a system. In other
words, the analysis of quantitative data on growth and change rates, productivity,
and so on needs to be done with care, and any quantitative prediction using historical
trends should include the reservation “this might be so unless a discontinuity in the
evolution of the system happens”. (It is open to debate whether after discontinuities
we are still dealing with the evolution of the “same” software, whether they lead to
a new stage or even to a new system. One would expect a change of the software’s
name after a radical change that fundamentally transforms it, but software naming
conventions might be driven by commercial and other non-technical considerations.)

In connection to the idea of discontinuity, an important addition to the description
of how proprietary systems evolve came from Bennett and Rajlich [57], in the form of
their staged model of the software lifecycle. A key idea contributed by these authors
is that systems tend to go through distinctive phases, termed initial development,
evolution, servicing, phase-out and finally close-down, with each of these phases
involving specific management challenges. This is illustrated in Fig. 11.2. Bennett
and Rajlich chose to call one of their phases evolution, possibly because according
to them it is within this phase that software is actively enhanced and changed. During
the so-called servicing phase, only minor fixes are implemented to keep the system
running (possibly while a replacement is on its way) before phasing out the software.

As a summary, we can say that, when applied to software, evolution describes the
process enacted by the people who are in charge of a software system after its first
release when they seek to implement fixes (e.g., repairing the consequences of bad
programming and other defects), enhancements in functionality and other valuable
changes in the quality characteristics of the software, leading most of the time to
a gradual phenomenon of change. We have also seen that there could also be discon-
tinuities (even radical or revolutionary) in software evolution from time to time. It
must be pointed out that software evolution is very different from Darwinian evolu-
tion and that the differences between software and biological entities are important.
(For example, the changes in software are designed and implemented by intelligent
humans. Such changes are not random. Biological entities are subject to physical and
chemical laws but software isn’t.) Software evolution is very much a phenomenon
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Fig. 11.2. Staged model of the software life-cycle [57], taken from [174] © 2000 IEEE

on its own that has been studied during the last three or four decades, mainly using
data from proprietary systems. This section has presented a brief account of the situ-
ation with regards to empirical studies of such systems. With the emergence of open
source, software evolution researchers can access vast amounts of software evolu-
tion data which is now available for study. Some of the initial findings (e.g. [206])
were concerning because they suggested that open source evolutionary patterns can
be different to the ones suggested by the laws and generally expected in proprietary
software evolution. This and other open source case studies will be examined in the
remainder of this chapter with the aim of providing the reader with an overall picture
of the past and current empirical open source software evolution research.

11.1.2 The Emergence of Open Source

The emergence of open source software (OSS) and free software 3, has provided re-
searchers with access to large amounts of code and other software artefacts (e.g., doc-
umentation, change-log records, defect databases, email conference postings) that
they can use in their studies. For example, using OSS data researchers are able to test
certain hypotheses about the effectiveness of a software engineering technique or the
validity of theory. OSS has become an established approach to distribute software
as a common good. This is the free software ideal defended by the Free Software
Foundation and others. It is often emphasised that in free software, “free" is used as
in “freedom", not as in “free beer". The following quotation from the Debian web-
site (one of the largest Linux distributions) seems to capture well the open source
philosophy:

3 In this chapter we use “open source” and “free” as synonyms, even though there are slight
differences in meaning (see their glossary entries).
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“While free software is not totally free of constraints...it gives the user the
flexibility to do what they need in order to get work done. At the same time,
it protects the rights of the author. Now that’s freedom."4

The OSS approach to software development has been documented in the litera-
ture [434]. The brief description that follows is based on our own experiences and
on our discussions with colleagues. A defining property of OSS is that source code
is openly shared with only some restrictions (e.g., normally any changes can only
be released as OSS and under the same license restrictions as the original code).
Many OSS contributors seem to be working in their free time with their own com-
puting resources, even though companies are getting increasingly engaged in some
OSS projects. The OSS process is lighter than the processes followed in companies
involved in professional software development. In OSS, the code is the main artefact
for sharing knowledge and understanding amongst contributors. OSS development is
mostly about programming and testing. Other software engineering techniques and
processes are often missing or done implicitly, like requirements analysis and spec-
ification, and detailed design. For this reason it is unlikely to find in OSS formal or
informal requirements specification, a program specification or a formal represen-
tation of the architecture of a system. Release notes, email lists, defect databases
and configuration management facilities are frequently provided by an OSS project.
In some projects there are people that operate as gate keepers for any additions or
changes to the code. Rules are set out by each project or community, regarding the
submission of defect fixes, new functionality, and so on. The larger OSS projects tend
to have scheduled releases and stated goals in terms of functionality to be achieved in
coming releases. Frequently there are two evolving streams of code that are interre-
lated, the so-called “stable” or ready for distribution stream, and the developmental,
which is the one currently being changed and enhanced. From time to time, develop-
ment releases are promoted to stable and are distributed. Systematic testing (e.g., as
when test cases are available) is not always present.

Particularly since the late 1990s, there have been OSS-related contributions to
the literature. It is useful to distinguish here two types of studies. On the one hand,
there are technology-oriented papers. These address mainly the “how view of evo-
lution” [322]. These papers address a particular technical problem in implementing
or supporting software evolution processes and propose a technique to address such
problem. On the other hand, one encounters empirical studies that gather and anal-
yse observations of the OSS evolution phenomenon and attempt their modelling and
explanation, addressing the “what and why view of evolution” [322]. These empiri-
cal studies aim at characterising software evolution, identifying general or particular
evolutionary patterns, in order to increase our understanding of the phenomenon or
to inform good practice. The empirically-oriented papers that we have selected for
our discussion examine sequences of code versions or releases and provide empirical
observations that are comparable to those underlying the classical view of software
evolution. These include OSS functional growth patterns and tests of compliance
with Lehman’s laws.

4 http://www.debian.org/intro/free (as of Nov 2006).
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11.2 Empirical Studies of Open Source Evolution

Pirzada’s 1988 PhD thesis [418] was possibly the first study that singled out differ-
ences between the evolution of the Unix operating system and the systems studied
by Lehman et al. [320]. Pirzada’s work was still in the pre-Internet days and open
source was yet to arrive. However, he should be credited with arguing, probably for
the first time, that differences in development environments, in this case, differences
in academic and industrial software development, could lead to differences in the
evolutionary patterns. If Pirzada was right we should expect differences between
OSS and proprietary evolution. Study of OSS evolution started 10 years or so later
than Pirzada’s thesis. In the next sections we summarise some of the most relevant
empirical studies of OSS evolution to date.

11.2.1 The Linux Kernel Study by Godfrey and Tu [206]

Godfrey and Tu [206] studied the growth trend of the popular OSS operating system
Linux, for which Unix was a precursor, with data covering Linux evolution since
1994 to 1999. Development of Linux started as a hobby by Linus Torvalds in Fin-
land. The system was then publicly released and experienced an unprecedented pop-
ularity with hundreds of volunteers contributing to Linux. In 2000 more than 300
people were listed as having made significant contributions to the code. Godfrey and
Tu found that Linux, a large system with about 2 million LOCs at that time, had
been growing superlinearly. This essentially meant that the system was growing
with an increasing growth rate. These authors found that the size of Linux followed
a quadratic trend. This type of growth was fully in line with Lehman’s sixth law,
but the superlinear rate contradicted some consequences of the second law, such
as a decrease in growth rate as complexity increases. It also appeared to contradict
laws three (self-regulation) and five (conservation of familiarity). Godfrey and Tu’s
study was later replicated by Robles et al. [443] and Herraiz et al. [231] (see sub-
section 11.2.4 below), using independently extracted data from the Linux repository.
These more recent studies also identified a superlinear growth trend in Linux.

Godfrey and Tu found that the growth rate was higher in one particular subsys-
tem of Linux that holds the so-called device drivers, as can be seen in Fig. 11.3. Such
device drivers enable a computer to communicate with a large variety of external or
internal hardware components such as network adapters and video cards. Their ex-
planation for Linux’s high growth rate was that drivers tend to be independent of one
another and that the addition of new drivers does not impact overall the complexity
as when code is added to the kernel, the functional “heart” of the system. Another
significant part of the Linux code base was the replicated implementation of fea-
tures for different CPU types, giving the impression that the system was larger than
it really was. The Linux kernel represents only a small part of the code repository.
These authors recommended, in line with previous researchers [186], that evolution
patterns should be visualised not only for the total system but also individually for
each subsystem.
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Fig. 11.3. Growth of Linux’s major subsystems (development releases only), taken from [206].
©2000 IEEE

11.2.2 The Comparative Study by Paulson et al. [411]

Paulson et al. [411] compared the evolution of three well-known OSS (the Linux
kernel, the Apache HTTP web server, and the GCC compiler) and three proprietary
systems in the embedded real time systems domain (the proprietary systems were de-
scribed as “software protocol stacks in wireless telecommunication devices”). They
chose to look at the Linux kernel because in their view it was more comparable to
their three proprietary systems than the Linux system as a whole. The five hypothe-
ses studied were: (1) OSS grows more quickly than proprietary software, (2) OSS
projects foster more creativity, (3) OSS is less complex than proprietary systems, (4)
OSS projects have fewer defects and find and fix defects more rapidly, and (5) OSS
projects have better modularization. The measurements used to test these hypotheses
were as follows:

1. For hypothesis 1, related to size (or growth): number of functions and lines of
code (LOCs) added over time.

2. For hypothesis 2, related to creativity: functions added over time.
3. For hypothesis 3, related to complexity: overall project complexity, average com-

plexity of all functions, average complexity of added functions.
4. For hypothesis 4, related to defects: functions modified over time, percentage of

modified functions with respect to total.
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5. For hypothesis 5, related to modularity: correlation between functions added and
modified.

Only hypotheses (2) and (4) were supported by the measurements. However, with
respect to hypothesis 2, it could be an oversimplification to assess creativity by sim-
ply looking at the number of functions added over time, without taking into con-
sideration the number of developers. With respect to hypothesis 4, one would have
expected some direct measure of defects or defect density, instead of simply looking
at functions. For these reasons we conclude that these two hypotheses are not easy
to investigate based on the measurements chosen and raise some questions. The in-
vestigation of the other three hypotheses seems to have been more straightforward.
Paulson et al. found that the growth of the six systems analysed was predominantly
linear. They compared their results with the averaged data by two other groups of
researchers (see Fig. 11.4), finding that the slopes in the data by others matched well
into the pattern they found. Paulson et al. also found, using three different complex-
ity measures, that the complexity of the OSS projects was higher than that of the
proprietary systems, concluding that the hypothesis that OSS projects are simpler
than proprietary systems was not supported by their data. As said, one further aspect
investigated was modularity. They looked at the growth and change rates, arguing
that if modularity is low, adding a new function will require more changes in the
rest of the system than if modularity is high. No significant correlation was found
between the growth rate and change rate in proprietary systems, but such correlation
was present in OSS projects. Hence, no support was found to the hypothesis that
OSS projects are more modular than proprietary systems.

Whereas Godfrey and Tu (see subsection 11.2.1) found superlinear growth in
Linux, Paulson et al. detected linear growth. These two findings do not necessarily
contradict each other because the former study was looking at Linux as a whole,
while the latter focused on the kernel, which is one of its subsystems and does not
include drivers.

11.2.3 The Study of Stewart et al.[476]

Stewart et al. [476] explored the application of a statistical technique called func-
tional data analysis (FDA) to analyse the dynamics of software evolution in the
OSS context. They analysed 59 OSS projects in order to find out whether structural
complexity increases over time or not. Two measurements of complexity were con-
sidered: coupling and lack of cohesion. The higher a program element is related to
others, the higher the coupling. The higher the cohesion, the stronger will be the
internal relationships within an element of a program. They considered that gen-
erally there is trade-off between the two measurements (i.e., increasing cohesion
leads to a decrease in coupling). For this reason they used the product of the two
attributes “coupling× lack of cohesion”, as their measurement of interest. These au-
thors found that FDA helped to characterise patterns of evolution in the complexity
of OSS projects. In particular, they found two basic patterns: projects for which com-
plexity either increased or decreased over time. When they refined their search for
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Fig. 11.4. Total size of systems studied by Paulson et al. and by other researchers (linear
approximations), taken from [411]. ©2004 IEEE

patterns they actually found four patterns, as shown in Fig. 11.5. The names given to
each of these patterns (and the number of projects under each) were early decreasers
(13), early increasers (18), midterm decreasers (14) and midterm increasers (14).

Another differentiating factor, not represented in Fig. 11.5, was the period of
time, shorter or longer, during which projects appeared to be most active. These re-
searchers explored factors that might explain such patterns, as both functional growth
and complexity reduction are desirable evolution characteristics. They discuss that,
contrary to their hypotheses, neither the starting size nor the increase of size was
significantly different between increasing and decreasing complexity clusters. More-
over, there was not a significant difference in the patterns on the average release
frequency between increasing and decreasing complexity clusters. The authors hy-
pothesise that the results may relate to the number of people involved in the project.
Generally a correlation is expected between the number of contributors and the com-
plexity. Projects with low complexity may initially attract and retain more people
than others, but if they become very popular, their complexity may later increase.
This may explain the midterm complexity increase pattern observed. However, in
this study the number of contributors was not measured and this was suggested as an
aspect for further work.
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Fig. 11.5. Mean complexity for 59 OSS projects (line closest to zero) and for four specific
clusters of such projects sample, as found by Stewart et al., taken from [476]

11.2.4 The Study by Herraiz et al. [231]

Herraiz et al. [231] examined the growth of 13 OSS systems. This sample included
some of the largest packages in the Debian/Linux distribution. These authors con-
cluded that the predominant mode of growth was superlinear. The choice of the
large and popular Debian/Linux distribution was an attempt of achieving a repre-
sentative sample of successful OSS projects. After various technical considerations,
13 projects were selected for study. Mathematical models were fit to the growth
trends and the best fits were selected, determining that six projects where experi-
menting superlinear growth, four projects displayed linear growth and three projects
were sublinear. The size measurements were made using number of files and number
of lines or statements in the source code (SLOCs), with both measurements giving
similar results. This study, looked at Linux growth data from 1991 to 2003 or so, con-
firming that Linux had still growing superlinearly since Godfrey and Tu’s study [206]
six years before. Table 11.2 lists the names of the OSS systems studied, their growth
rates and the identified overall growth trends. In this table, growth rates are semian-
nual unless projects are labelled with an asterisk, indicating monthly growth rates.
What is also relevant for growth rates is their sign5: positive, approximate zero or
negative, which indicates predominantly superlinear, linear or sublinear growth.

5 Herraiz et al. [231] fitted a quadratic polynomial to the SLOC and number of files data and
looked at the coefficient of the quadratic term as an indication of the overall trend.
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Table 11.2. Growth rates and overall growth trend in some Debian packages, taken from
[231]. ©2006 IEEE

Project Growth rate Growth rate Category
(SLOCs) (files)

Amaya 1.45 -0.0055 linear
Evolution -31.89 -0.17 sublinear
FreeBSD* 15.16 0.056 linear
Kaffe 77.13 0.71 superlinear
NetBSD* 152.74 1.04 superlinear
OpenBSD* 401.20 2.01 superlinear
Pre tools 4.31 0.044 superlinear
Python 18.43 -0.062 linear
Wine 50.06 0.064 linear
wxWidgets* 587.56 0.29 superlinear
XEmacs -259.44 -0.60 sublinear
XFree86 -412.28 -1.47 sublinear
Linux* 186.21 0.71 superlinear

11.2.5 The Study by Wu et al.[548, 547]

Wu et al. [548, 547] analysed the evolution of three OSS systems (Linux, OpenSSH,
PostgreSQL). One of the contributions of this work is to have put forward evidence
that reinforces the observation that OSS evolution goes through periods of relatively
stability where small, incremental changes are implemented, separated by periods
of radical restructuring, where architectural changes take place. These are changes
that may occur in relatively short periods of time and that virtually transform the
architecture of an evolving system and the subsequent evolution dynamics. Fig. 11.6
presents one of the results derived by Wu [547] for Linux using the evolution spec-
trograph [548] visualisation technique. This type of graph shows the time on the
x-axis, whereas the y-axis is mapped to elements (e.g., files) in the system. Files are
ordered on the y-axis based on their creation date, from the bottom upwards. Ev-
ery horizontal line in the graph describes the behavior of a property (e.g., number
of dependencies) over time for each element. Whenever the property changes for an
element at a point in time, that portion of the horizontal line is painted with strong
intensity. If the property does not change or changes little, the intensity gradually
decreases and the line fades away. Changes in colour intensity that can be seen ver-
tically denote many elements having changes in that property. When vertical lines
appear on the spectrograph, these indicate massive changes across the system. As
one can see in Fig 11.6, there is evidence for at least four major Linux restructurings,
identified with the release codes in the figure.

11.2.6 The Study of Capiluppi et al. [103, 104, 105]

Capiluppi et al. [103, 104, 105] studied the evolution of approximately 20 OSS sys-
tems using measurements such as growth in number of files, folders and functions;
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Fig. 11.6. Outgoing dependency changes in Linux, taken from [548].©2004 IEEE

complexity of individual functions using the McCabe index [354]; number of files
handled (or touched) [320] and amount of anti-regressive work [320].

Segmented Growth Trends

One example of the systems studied is Gaim, a messenger program compatible with
several operating systems: Linux, Windows, MacOS X and BSD. The growth trend
of this system, in number of files and folders, is presented in Fig. 11.7.

In Gaim, one cannot easily identify its overall growth pattern. From day 1 to
day 450 or so the growth pattern is superlinear. Then, growth essentially stops until
day 1200, after which growth is resumed at a linear rate. It is difficult to predict
what type of curve (linear, sublinear, or superlinear) will come out if this data is fed
into a curve fitting algorithm. Gaim provides evidence of the fragmented nature of
software growth patterns: growth patterns can be abstracted differently depending
on the granularity of the observations. Another OSS system studied, Arla, showed
a positive sublinear growth followed by stagnation (Fig. 11.8).

While the growth pattern of Arla is smoother than that of Gaim, overall it is
a sublinear growth pattern. Nevertheless, it can also be seen as an initial superlin-
ear trend, up to day 125, then followed by a sublinear trend, up to day 400 or so,
followed by a short period of no growth, then followed by linear growth until day
1,000, and, more recently, a period of no growth. As in the Gaim case, in Arla, the
interpretation of a fragmented growth trend as an arbitrary sequence of superlinear,
linear and sublinear trends is plausible.

Both Fig. 11.7 and 11.8 display the growth in number of folders which overall
follows the file growth trend but tends to be more discontinuous, with the big jumps
possibly indicating architectural restructuring or other major changes, such as when
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Fig. 11.7. Growth of the OSS Gaim system both in number of files and number of folders
[428]

Fig. 11.8. Growth of the OSS Arla system both in number of files and number of folders [428]

large portions of code are transferred from another application. There is tendency for
large jumps (e.g., growth greater than 10 percent) in number of folders to precede
a period of renewed growth at the file level and it appears that one could use, to
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a certain extent, the folder size measurement to identify periods of restructuring,
even though it does not always work.

Anti-Regressive Work in OSS

One finding of these studies [105] was that, based on metric evidence, the so called
anti-regressive work, actually takes place in the OSS projects studied. These authors
measured anti-regressive work by comparing two successive releases and counting
how many functions had a lower cyclomatic complexity index [354] than in the pre-
vious release. Anti-regressive work is related to what has been more recently called
refactoring [183]. Refactoring consists in modifying portions of the code which ap-
pear to be too difficult to understand or too complex, without changing the func-
tionality that such code implements. The actual amount, role and impact of anti-
regressive work (and refactoring) on the long-term evolution of software systems
(including OSS) is not well-known. If one could generalise the results from a small
sample of systems studied by Capiluppi et al., one would say that in general OSS
projects invest on average only a small portion of the effort in anti-regressive work,
even though some large peaks of such activity occur from time to time. In two OSS
systems, Mozilla and Arla, for which anti-regressive work was measured, the por-
tion of changes that can be considered as anti-regressive was less than 25 percent of
the total changes in a given release. This is illustrated in Fig. 11.9 that presents the
approximate amount of anti-regressive work in Arla. The figure shows high variance
in anti-regressive work with high peaks but low running average [105]. Note that the
presence of a peak in anti-regressive work does not imply that the activity for that

Fig. 11.9. Estimated amount of complexity reduction work as a percentage of all the files
touched in a given release [105]. ©2004 IEEE
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month or period was predominantly such. New functionality or other changes could
have been implemented during the same interval.

11.2.7 The Study by Smith et al. [461, 462]

One important aspect, not considered by Lawrence [314] in his critique, is that the
phenomena described by all the laws operate in the real-world in a parallel fashion.
The important point to make here is that testing each law in isolation and indepen-
dently of the other laws and their assumptions can lead to erroneous results. This
is why, in our opinion, simulation models remain as the most promising way of
empirically validating the laws. In this line of work, Smith et al. [462] examined
25 OSS systems by looking at the following attributes: functional size, number of
files touched and average complexity. The research question was to test whether the
growth patterns in OSS were similar to those predicted by three simulation models
previously studied [429]. This was an indirect way of testing the empirical support
for some of Lehman’s laws, as these models were three different interpretations or
refinements of some of Lehman’s laws, in particular those related to system growth
and complexity. Simulation models seem to be a reasonable way to test the empirical
validity of the laws as a whole. This is important because the laws interact with each
other. Moreover, because the laws are informally stated in natural language, their
formalisation can vary and lead to multiple simulation models.

This work used qualitative abstraction. The key idea is to abstract from the detail
of the data and focus on a high level characteristic (e.g., overall pattern of growth).
One possible way of applying qualitative abstraction is by finding out whether a trend
is superlinear, linear, or sublinear by checking the value of the first and second dif-
ferences in a time series. The symbols used are presented in Fig. 11.10.

Since growth trends in OSS systems display discontinuities, a characteristic al-
ready discussed in Section 11.2.6, the authors allowed for a sequence of multiple
growth trends to be considered. Fig. 11.11 shows the results obtained for 25 systems.
Two types of growth trends were considered for each system: size in files per release,
called un-scaled trend, and a trend where the incremental growth in number of files
was divided by the number of files touched during the interval, called scaled trend.

Fig. 11.10. Symbols used
to represent abstracted
trends and the correspond-
ing signs for the first and
second differences of the
variable, taken from [461].
©2005. Copyright John
Wiley & Sons Limited. Re-
produced with permission
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Fig. 11.11. Qualitative behaviors for system growth identified in empirical data from 25 OSS
systems, taken from [461]. ©2005. Copyright John Wiley & Sons Limited. Reproduced with
permission

The scaled trend was intended in order to remove the effect of the effort applied,
hoping that any impact of the evolving complexity will be more evident. In fact,
however, both scaled and un-scaled patterns were quite similar, as can be appreci-
ated in Fig. 11.11.

The results in Fig. 11.11 show a variety of segment sequences (or patterns). These
25 OSS systems display greater variability in their segmented sequences of growth
than the proprietary systems studied in [429]. In the OSS systems, increasing patterns
predominated over non-growth or decreasing patterns. None of three qualitative sim-
ulation models, built and run using a tool called QSIM, was able to predict the OSS
observed trends, with the latter being richer and more complex than those predicted
by the models. This meant that none of the software evolution “theories” proposed
for proprietary systems (and reflected in the qualitative simulation models) was able
to explain the behaviors observed in OSS evolution. This implies that there is a need
for new and refined theories of OSS evolution. (The interested reader is referred
to [461] for details on how this type of analysis was carried out.) The search for
such “new theories” has led to the development of a multi-agent model to study how
size, complexity and effort relate to each other in OSS [462]. In this model, a large
number of contributors, represented in the model as agents, generate, extend, and
re-factor code modules independently and in parallel. To our knowledge, this was
the first simulation model of OSS evolution that included the complexity of software
modules as a limiting factor in productivity (second law), the fitness of the software
to its requirements (seventh law), and the motivation of developers (a new factor).
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Evaluation of the model was done by comparing the simulated results against four
measures of software evolution (system size, proportion of highly complex modules,
level of complexity control work, and distribution of changes) for four OSS sys-
tems (Arla, Gaim, MPlayer, Wine). The simulated results resembled the observed
data, except for system size: three of the OSS systems showed alternating patterns
of super-linear and sub-linear growth, while the simulations produced only super-
linear growth. However, the fidelity of the model for the other measures suggests
that developer motivation, and the limiting effect of complexity on productivity, are
likely to have a significant effect on the development of OSS systems and should be
considered in further simulation models of OSS development [462].

11.3 Comparing the Evolution of Open
and Closed Source Software Systems

This discussion brings out to the question of comparing the evolution of OSS and
proprietary systems. It is always challenging to compare the empirical results from
research that looked at different attributes, using different samples and measure-
ments. However, one can attempt to make a high-level summary of major points.
Such summary will be temporary and subject to change as results of future, hope-
fully more comprehensive studies, are published. With such caveat in mind, we can
observe the following:

• The laws were proposed when most of the systems were developed in-house
by a dedicated group of engineers working in the same place, under some form
of hierarchical management control and following a waterfall-like process. The
software systems of the 70s and 80s were in many cases monolithic and there
was little reuse from other systems. OSS challenges many of these assumptions6.

• The laws are difficult to test empirically, because they are informal statements.
One can formalise them making assumptions but many different formalisations
are possible. Moreover, the phenomena described by the laws happen in parallel,
with some of the laws related to the others. This calls for the use of techniques
such as simulation models to test the laws. Qualitative simulation and multi-
agent simulations are promising techniques.

• Growth patterns of OSS systems seem to be less regular than those of propri-
etary systems studied in the past7. This could be due to the open system, in the
system-theoretic sense, nature of OSS systems: contributors can come and go
from wherever in the world, code can be easily duplicated or transferred from
one application to the other. There are less restrictive rules than in traditional
organisations. All these appear to contribute to a richer and more chaotic phe-
nomenon.

6 Current proprietary systems are less monolithic and there are serious (e.g. Agile) process
model alternatives to the waterfall. This is likely to affect the validity of the laws even for
proprietary systems.

7 Ideally one would like to compare data from both recent proprietary and recent OSS. How-
ever, access to data on proprietary systems is restricted.
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• OSS evolutionary trends are in general more difficult to predict than those of
traditional systems. Paradoxically, this does not imply more risk for those using
OSS. Since they have access to the source code, they have a degree of control
on the evolution of a system that users of proprietary systems do not have. OSS
users can eventually implement their own features and fix defects, or even create
and evolve their own version if they need to.

• There is evidence for discontinuity in OSS evolution (see subsection 11.2.6).
Evolutionary stages are present in OSS but these have not been fully charac-
terised. Models such as the one by Bennett and Rajlich [57] might need to be re-
vised to accommodate OSS observations. One such revision is proposed in [102].

Table 11.3 is an attempt to summarise the applicability of each of the laws to suc-
cessful OSS projects, based on the empirical evidence so far collected. The laws do
not apply to many OSS projects which remain in the initial development or proposal
stage. Some of the possible reasons for a project to become successful have been
investigated in [123] and this is an important topic for the understanding of OSS
evolution.

It is worth mentioning here that the laws refer to common properties across evolv-
ing E-type systems at a very high level of abstraction. For example, under the laws,
the fact that two software systems display functional increase over time or over re-
leases, means that they share one property: positive functional growth. Growth is
a rather straightforward and global characteristic that can be studied across a large
number of systems. However, there is empirical research where investigators are
looking to much more detailed characteristics (e.g., types of design patterns in soft-
ware systems), perhaps looking for statistical regularities in these, which might be
more challenging to generalise across systems than the simple properties which are
the concern of the laws. This also means that two systems may share some properties
at a high level of abstraction but when one studies the details they might be highly
different. One needs to keep the issues of the level of abstraction in mind when
one is referring to common or different characteristics across software systems. The
same applies when one is discussing whether software evolution is predictable or
not. Some characteristics at a high level of abstraction may be predictable but as
we get concerned of more detailed properties (e.g., the precise evolution in require-
ments that a software application will experience in two years time), characteristics
are likely to be much more difficult to predict.

11.4 Threats to Validity

Empirical studies are frequently subject to some threats to validity and it is seen as
a duty of authors to discuss these to the best of their knowledge [280]. The validity
of the results of the empirical studies of OSS evolution, and in some cases also of
proprietary software evolution, is constrained by a number of factors such as the fol-
lowing ones:
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Incomplete or Erroneous Records

Chen et al. [110] found that in three different OSS systems studied, the omissions in
change-logs ranged from 3 to almost 80 percent and conclude that change-logs are
not a reliable data source for researchers. This is obviously a concern because some
studies may use change-logs as a data source. Other data sources may be subject sim-
ilarly to missing or mistaken entries. Quantification of the error (or uncertainty) due
to missing, incomplete or erroneous records tends to be difficult and, unfortunately,
not common. This is a factor that requires increasing attention in order for empirical
studies of software evolution to become more disciplined, scientific and relevant.

Biased Samples

When projects selected for study were not randomly chosen there is a risk of having
selected more projects of some type than others. For example, we know that only
a small percentage of OSS projects achieve a mature and stable condition where there
is a large number of contributions. The vast majority of OSS projects do not reach
such stage [123]. Similarly, many software projects are cancelled for one reason or
another before initial delivery to users and hence never achieve evolution. Strictly
speaking, one should be referring to many studies as empirical studies of successful
software evolution.

Errors in Data Extraction

Data extraction from raw sources (e.g., code repositories and configuration manage-
ment systems) can be complex and error prone. Assumptions may have made that are
not clearly indicated. Data extraction and parsing and visualisation tools may contain
errors.

Data Extraction Conventions

Whereas classic studies of proprietary systems use time series, where each mea-
surement was taken for a given release, most of OSS studies follow a contemporary
trend of using time series based on actual time of the measurement. Some authors
like [411] have argued that this is more appropriate. However, the question remains
as to what extent the release sequence is more or less informative than actual dates
(real-time) and how these different data can be compared.

External Validity

In many studies it is not clear how the systems studied were selected and to what
extent the systems analysed are representative of typical OSS, or whether such a typ-
ical OSS actually exists. Some empirical evidence [123] suggests that the type of
application influences the stability and success on an OSS project. Whether and how
application domains relate to evolutionary patterns remains an open question for fur-
ther research.
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Granularity

There is evidence that evolutionary behavior at the total system level and at the level
of individual subsystems is different [206]. This may affect the internal validity of
any results. Moreover, there is little knowledge on how the behavior observed at the
total system level relates to the behavior observed at the subsystem level.

Initial Development

Many OSS projects are started as closed-source projects before made available as
OSS on the Internet. Little is known about what happens during this initial phase and
how it influences the later evolution phases. Most of the empirical data do not capture
this hidden initial development phase, which is possibly more similar to proprietary
initial development than the later time when a system becomes OSS.

Confounding Variables and Co-Evolution

There might exist other known or unknown variables that impact on the observed be-
haviors different to those considered in the studies. This could be due to measurement
difficulties, because the researchers could not take additional variables into account
for practical reasons or because these additional variables are unknown. One example
of these is the amount of code that is duplicated, sometimes called code cloning, or
ported from another system. This is an example of network externality [450]. Scac-
chi et al. [450] refer to OSS as a software eco-system. In such eco-system one should
not study individual systems, but one should look at the complex co-evolution of
multiple software projects in order to make sense of the evolutionary trends.

Project Sample Definition

There is no general agreement about the definition of a successful OSS project. This
makes difficult to identify objectively a sample of projects for study. In the majority
of the cases the reference to successful OSS projects seems to be based on an ad-hoc
definition of the term or considering attributes such as high popularity and the ex-
istence of a lively community. Feitelson et al. [170] studied a very large sample of
OSS projects from SourceForge. Based on that study, they proposed an empirically-
derived criterion of OSS project success based on a discontinuity that they observed
in the distribution of the number of downloads. Such distribution suggested “natu-
ral” thresholds. These authors determined that, from the 41,608 projects with more
than one download, 85 were “superprojects”, which had been downloaded more than
1 million times. Some 10,000 projects were called “successful” (having been down-
loaded from about 1,000,000 to 1,681 times) and some 31,000 projects or so that they
called “struggling projects” (only a few downloads). The definition of Feitelson et
al., if widely accepted and used, could provide an objective way of defining samples
of OSS projects for future empirical study.

The above list is not complete and other factors may also become threats to va-
lidity. Future studies will need to consider and handle these factors in detail. For



11 Empirical Studies of Open Source Evolution 287

the moment, we assume that the empirical results are the best description we have
at hand of OSS evolution. The fact that some studies have been replicated or point
towards the same type of phenomena, however, enhances the validity of the current
OSS empirical research, despite the many threats that we have mentioned in this
section.

11.5 Conclusions and Further Work

Open source software (OSS) has made software evolution accessible for wider study.
Empirical studies of open source software is a vast area and this chapter has discussed
a small sample of studies that are concerned with the evolution of OSS, which is, as
someone put it, what happens when one looks at the dynamic changes in software
characteristics over time. By studying how OSS changes over time one might un-
derstand better the specific challenges of OSS evolution and how to address them in
different ways, by inventing specific tools, for example.

Empirical studies of OSS evolution, the focus of this chapter, tell us that the
classical results from the studies of proprietary software evolution, which have laid
a foundational stone in our collective understanding of software evolution, need to be
reconciled with some of the evidence coming from OSS. From Table 11.3 it is clear
that the OSS evolution phenomenon is not completely inconsistent with the laws, but
it is opening up new questions which challenge the assumptions of the laws and it
could well be that we are facing a paradigm-shift in our understanding of software
evolution. Scacchi et al. [450] have put forward the view that OSS evolution should
be viewed as an eco-system. If this were so, we would need to get a better under-
standing of the personal attitudes, rules and “good practice” that make the OSS eco-
system work successfully. Multi-agent simulation models [462] may be particularly
useful here and perhaps the software evolution and biological evolution analogies,
discussed in the 70s and 80s [320], may need to be revisited. We add a precaution-
ary note here since fundamental differences are likely to remain between the two
domains: software evolution is done by people using programming languages and
technologies that themselves evolve, unconstrained by any physical laws, while bio-
logical evolution is constrained by the physical and chemical properties of molecules
such as the DNA.

Section 11.4 addressed a number of important threats to the validity of the em-
pirical studies of OSS evolution. A key issue is to find out which should be the “first-
class entity” in the software evolution research. While classical studies of software
evolution concentrated in a single software system as the first-class entity, in OSS
(and in some proprietary environments too) there is high code reuse and software
evolves within interrelated multi-project environments. Because many OSS software
systems can be strongly related through reuse and the importing and exporting of
code, various systems co-evolve and influence the evolution of each other. This sug-
gests that we should conduct future empirical studies on families of OSS systems.

Even a superficial analysis makes evident that understanding OSS evolution re-
quires a multi-disciplinary approach that involves economics, social science and
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other disciplines in addition to computing. All this entails plenty of challenges for
developers and researchers and the need to establish links to other research commu-
nities (e.g. information systems, economics, complexity science, psychology) with
whom wider questions and interests could be shared. This is a prerequisite to any
major progress in understanding and improving OSS evolution.
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knowledge the discussions and collaborative work with Professor M.M. Lehman, who intro-
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which helped to improve this chapter. Any errors remain the responsibility of the authors.



Appendices



A

Resources

In this appendix we listed a number of additional resources for those readers that
wish to gain more detailed information on particular topics addressed in this book.

Books

Over the years, many books have been published on the topics of software mainte-
nance, software evolution and related areas. It is not our intent to provide a complete
list of such books here, especially since many of the older books are either outdated
or out of print. Therefore, we have preferred to present in chronological order our
personal, subjective, list of books that we feel relevant for the interested reader.

• Program Evolution: Processes of Software Change [320]. This book, written by
Lehman and Belady, is one of the very first that has been published on the topic
of software evolution. Although it is no longer available, electronic versions of
the book may be downloaded for free on the internet (for example, from the
Publications section on the website of the ERCIM Working Group on Software
Evolution – http://w3.umh.ac.be/evol).

• Software Evolution: The Software Maintenance Challenge [24]. Another impor-
tant milestone in software evolution, written by Arthur. Unfortunately no longer
available.

• Software Reengineering [23]. A book containing a collection of scientific articles
on the topic of software reengineering.

• Migrating Legacy Systems: Gateways, Interfaces and the Incremental Approach
[84]. This book illustrates how one should avoid risks while migrating legacy
systems, namely by doing small successive steps (i.e., “Chicken Little”).

• Software Change Impact Analysis [74]. A book containing a collection of scien-
tific articles on the topic of software change impact analysis.

• Refactoring: Improving the design of existing code [183]. Martin Fowler’s well-
known book on refactoring object-oriented programs, an important subdomain
of software restructuring.
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• Design and Use of Software Architectures - Adopting and Evolving a Product
Line Approach [75]. Bosch describes how to set-up and maintain a product line
architecture: a framework which allows to develop a series of products derived
from a reusable core.

• Managing the Change: Software Configuration and Change Management [225].
This book, written by Haug et al. offers a variety of perspectives on software
configuration/change management and requirements engineering.

• Object-Oriented Reengineering Patterns [149]. This book, written by Demeyer,
Ducasse and Nierstrasz, provides a number of practical guidelines for re-engin-
eering object-oriented legacy systems.

• Software Maintenance: Concepts and Practice [213]. The second edition of this
textbook comprehensively covers the breadth of software maintenance issues.

• Modernizing Legacy Systems: Software Technologies, Engineering Processes,
and Business Practices [457]. This book provides a roadmap to implement a
successful software modernization strategy. The proposed incremental approach
encompasses changes in software technologies, engineering processes, and busi-
ness practices. It exemplifies a case study of migrating legacy Cobol code to
J2EE.

• Refactoring to patterns [273]. This book explains how to introduce design pat-
terns in your code, by listing typical code smells and ways to refactor them away.
An appealing way to teach reluctant designers how to clean up their code base.

• Working Effectively with Legacy Code [169]. Feathers shows how to deal with
the “testing vs. reengineering” dilemma. Before you reengineer you need a good
suite of regression tests to ensure that the system does not break. However, the
design of a system that needs reengineering typically makes testing very difficult
and would benefit from reengineering.

• Refactoring Databases: Evolutionary Database Design [10]. This book applies
the ideas of refactoring to database schemas.

• Software Evolution and Feedback: Theory and Practice [338]. This book scien-
tifically explores what software evolution is and why it is inevitable. It addresses
the phenomenological and technological underpinnings of software evolution,
and it explains the role of feedback in software development and maintenance.

• Software Maintenance Management: Evaluation and Continuous Improvement
[11]. This book focuses on the managerial aspects of software maintenance. It
shows how process improvement models can be applied to software mainte-
nance, and proposes a Software Maintenance Maturity Model to achieve this.

Websites

The most important website related to the research domain on software evolution is
undoubtedly www.planet-evolution.org. It contains a wealth of data on people,
events, tools, and much more relevant information related to software evolution.

Another website containing a wealth of information on software evolution and
related research is Tao Xie’s Software Engineering Research Links
www.csc.ncsu.edu/faculty/xie/seresearchlinks.html
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Journals

The only dedicated international journal on the topic of software evolution and soft-
ware maintenance is Wiley’s Journal on Software Maintenance and Evolution: Re-
search and Practice (JSME).

Other international journals in which scientific articles on software maintenance
and evolution are published occasionally are: IEEE’s Transactions on Software Engi-
neering, ACM’s Transactions on Programming Languages and Systems and Trans-
actions on Software Engineering and Methodology, Kluwer’s journal on Automated
Software Engineering, Elsevier’s journal on Systems and Software and Wiley’s jour-
nal entitled Software: Practice and Experience.

Standards

The following standards are very relevant in the field of software evolution, though
some of them may be a bit outdated compared to the current state-of-the-art in re-
search:

• The ISO/IEC 14764 standard on “Software Maintenance” [242]
• The ISO/IEC 12207 standard (and its amendments) on “Information Technology

- Software Life Cycle Processes” [241]
• The ANSI/IEEE 1042 standard on “Software Configuration Management” [13]
• The IEEE 1219 standard on “Software Maintenance” [239]
• The ISO/IEC 9126 standard on “Information technology – Software product

evaluation – Quality characteristics and guidelines for their use” [240]

Events

There are many events being organised each year around the themes of software
evolution, software maintenance and reengineering, or related areas. We will only
list the most well-known international events here.

Conferences

A number of international conferences are organised each year, devoted to the
topics of software evolution, software maintenance, reverse engineering and re-
engineering:

CSMR The European Conference on Software Maintenance and Reengineering
ICPC The annual International Conference on Program Comprehension
ICSM The International Conference on Software Maintenance
WCRE The Working Conference on Reverse Engineering
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In addition, many other international conferences are being organised that in-
clude contributions on software evolution. We list only those conferences here that
have been cited frequently in the various chapters of this book:

AOSD The international conference on Aspect-Oriented Software Development
ASE The international conference on Automated Software Engineering
COMPSAC The international Computer Software and Applications Conference
ECMDA The European Conference on Model-Driven Architectures
ECOOP The European Conference on Object-Oriented Programming
ESEC The European Software Engineering Conference
FASE The ETAPS conference Fundamental Approaches to Software Engineering
FSE The ACM SIGSOFT International Symposium on the Foundations of Software

Engineering
ICSE The International Conference on Software Engineering
MODELS The international conference on Model Driven Engineering Languages

and Systems
OOPSLA The international conference on Object-Oriented Programming Systems,

Languages and Applications

Workshops

A wide range of international workshops are organised each year on the topic of
software evolution or a subdomain thereof:

EVOL The annual workshop on software evolution organised by the ERCIM Work-
ing Group on Software Evolution

IWPSE The annual International Workshop on Principles of Software Evolution
SCAM The annual workshop on Source Code Analysis and Manipulation
SCM The annual workshop on Software Configuration Management
SETra The bi-annual workshop on Software Evolution through Transformations
WOOR The annual ECOOP Workshop on Object-Oriented Reengineering
WSE The annual international workshop on Web Site Evolution
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Glossary of Terms

This appendix contains a glossary of terms that have been introduced in the various
chapters contributing to this book.

Abstract syntax tree. Compilers often construct an abstract syntax tree (AST) for
the semantic analysis. Its nodes are programming language constructs and its
edges express the hierarchical relation between these constructs. From [295]:
“The structure of an AST is a simplification of the underlying grammar of the
programming language, e.g., by generalization or by suppressing chain rules. (...)
This structure can be generalized so that it can be used to represent programs of
different languages.”

Advice. Aspect definitions consist of pointcuts and advices. Advices are the code
that crosscuts the dominant decomposition of a software system.

Agile software development. According to Scott W. Ambler, respected authority in
the agile methods community, agile software development “is an iterative and in-
cremental (evolutionary) approach to software development which is performed
in a highly collaborative manner with “just enough” ceremony that produces
high quality software which meets the changing needs of its stakeholders. Agile
methods refer to a collection of “lightweight” software development methodolo-
gies that are basically aimed at minimising risk and achieving customer satisfac-
tion through a short feedback loop.

Anti-regressive work. Term introduced by Lehman [320] to describe the work done
to decrease the complexity of a program without altering the functionality of the
system as perceived by users. Anti-regressive work includes activities such as
code rewriting, refactoring, reengineering, restructuring, redocumenting, and so
on.

Architecture. The architecture of a software system is the set of principal design
decisions about the system. It is the structural and behavioural framework on
which all other aspects of the system depend. It is the organisational structure of
a software system including components, connections, constraints, and rationale.

Architectural style. David Garlan states that an architectural style “defines con-
straints on the form and structure of a family of architectural instances”.
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Aspect. A modular unit designed to implement a (crosscutting) concern. In other
words, an aspect provides a solution for abstracting code that would otherwise
be spread throughout (i.e., cross-cut) the entire program. Aspects are composed
of pointcuts and advices.

Aspect exploration. The activity of locating opportunities for introducing aspects
in non aspect-oriented software. A distinction can be made between manual
exploration supported by special-purpose browsers and source-code navigation
tools, and aspect mining techniques that try to automate this process of aspect
discovery and propose the user one or more aspect candidates.

Aspect extraction. The activity that turns potential aspects into actual aspects in
some aspect-oriented language, after a set of potential aspects have been identi-
fied in the aspect exploration phase.

Aspect evolution. The process of progressively modifying the elements of an aspect-
oriented software system in order to improve or maintain its quality over time,
under changing contexts and requirements.

Aspect migration. The process of migrating a software system that is written in a
non aspect-oriented way into an aspect-oriented equivalent of that system.

Aspect mining. The activity of semi-automatically discovering those crosscutting
concerns that potentially could be turned into aspects, from the source code
and/or run-time behaviour of a software system.

Aspect-oriented software development. An approach to software development that
addresses limitations inherent in other approaches, including object-oriented
programming. The approach aims to address crosscutting concerns by providing
means for systematic identification, separation, representation and composition.
Crosscutting concerns are encapsulated in separate modules, known as aspects,
so that localization can be promoted. This results in better support for modular-
ization hence reducing development, maintenance and evolution costs.

Aspect weaving. The process of composing the core functionality of a software sys-
tem with the aspects that are defined on top of it, thereby yielding a working
system.

Bad smell. According to Kent Beck [183] a bad smell is a structure in the code that
suggests, and sometimes even scream for, opportunities for refactoring.

Case study. According to [171], a case study is a research technique where you
identify key factors that may affect the outcome of an activity and then doc-
ument the activity: its inputs, constraints, resources, and outputs. Case studies
usually look at a typical project, rather than trying to capture information about
all possible cases; these can be thought of as “research in the typical". Formal
experiments, case studies and surveys are three key components of empirical
investigation in software engineering.
However, the term case study is also often used in an engineering sense of the
word. Testing a given technique or tool on a representative case against a prede-
fined list of criteria and reporting about the lessons learned.

CASE tool. A software tool that helps software designers and developers specify,
generate and maintain some or all of the software components of an applica-
tion. Many popular CASE tools provide functions to allow developers to draw
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database schemas and to generate the corresponding code in a data description
language (DDL). Other CASE tools support the analysis and design phases of
software development, for example by allowing the software developer to draw
different types of UML diagrams.

Change charter. This term is used sometimes when developing a new system (or
evolving an existing system) to refer to what can be potentially changed. It may
be used as a synonym of “scope”.

Change log. Record with some of the information related to one or several amend-
ments (i.e., changes) made to the code or to another software artefact. The record
generally includes the responsible, the date and some explanation (e.g., reasons
for which a change was made).

Clone. A software clone is a special kind of software duplicate. It is a piece of soft-
ware (e.g., a code fragment) that has been obtained by cloning (i.e., duplicating
via the copy-and-paste mechanism) another piece of software and perhaps mak-
ing some additional changes to it. This primitive kind of software reuse is more
harmful than it is beneficial. It actually makes the activities of debugging, main-
tenance and evolution considerably more difficult.

Clone detection. The activity of locating duplicates or fragments of code with a
high degree of similarity and redundancy.

Component. In [459], Mary Shaw and David Garlan define software components as
“the loci of computation and state. Each component has an interface specification
that defines its properties, which include the signatures and functionality of its
resources together with global relations, performance properties, and so on. (...)”

Complexity. Structural complexity refers to the degree to which a program is dif-
ficult to understand by human developers in order to, for example, inspect the
program, or modify it. There are other types of complexity (e.g., algorithmic
complexity). Different measures of software complexity exist. One of the best
known is McCabe’s cyclomatic complexity [354].

Connector. In [459], Mary Shaw and David Garlan state that connectors are “the
loci of relations among components. They mediate interactions but are not things
to be hooked up (rather, they do the hooking up). Each connector has a protocol
specification that defines its properties, which include rules about the types of
interfaces it is able to mediate for, assurances about properties of the interac-
tion, rules about the order in which things happen, and commitments about the
interaction (...).”

Consistency. Consistency is the absence of inconsistencies in or between software
artefacts. If the software artefact under consideration is a program, we talk about
program (in)consistency, if the software artefact is a model, we talk about model
(in)consistency. If the software artefact is a (program or model) transformation,
we talk about transformation (in)consistency.

Crosscutting concerns. Concerns that do not fit within the dominant decomposition
of a given software system, and as such have an implementation that cuts across
that decomposition. Aspect-oriented programming is intended to be a solution to
modularise such crosscutting concerns.
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Database conversion. In database migration, we can distinguish between two mi-
gration strategies.
Physical database conversion is a straightforward migration strategy according

to which each source schema object (e.g., a record type or a data field) is
converted to the closest construct of the target DMS model (e.g., a table
or a column). This strategy is sometimes called one-to-one migration. This
approach is fast, simple and inexpensive but generally yields a database with
poor performance and weak maintainability.

Conceptual database conversion is a migration strategy that transforms the
source database into a clean and normalized target database that exploits
the expressive power of the target DMS. This strategy comprises a reverse
engineering phase, through which the conceptual schema of the database is
recovered, followed by a forward engineering towards the new DMS. This
approach is slow, expensive and relies on skilled developers, but its output
is a high quality database that will be easy to maintain and to evolve.

Database reverse engineering. Database reverse engineering is a special kind of
reverse engineering. It is the process through which the logical and conceptual
schemas of a legacy database, or of a set of files, are recovered from various
information sources such as DDL code, data dictionary contents, database con-
tents, or the source code of application programs that use the database.

Database model and database schema. In the database realm, a model M is a for-
mal system comprising a closed set of abstract object categories and a set of
assembly rules that states which arrangements of objects are valid. Since M is
supposed to describe the structure, the properties and the behaviour of a class S
of external systems, the semantics of M is specified by a mapping of M onto S.
Any arrangement m of objects which is valid according to M describes a specific
system s of class S. m is called a schema while s is the application domain or the
universe of discourse. Among the most popular conceptual models we can men-
tion the Entity-Relationship models, Object-Role models, relational models and
UML class models. Among DBMS models, the SQL, CODASYL, IMS, Object-
relational and XML models are currently the most widely used.
We can essentially distinguish three types of database schemas:
Conceptual schema. A structured technology-independent description of the in-

formation about an application domain such as a company or a library.
By extension, it is also an abstract representation of the existing or project
database that is made up of the data of this domain.

Logical schema. The description of the data structures of a database according
to the model of a specific technology, e.g., a RDBMS. The logical schema
of a database is the implementation of its conceptual schema. Application
programs know the database through its logical schema.

Physical schema. The technical description of a database where all the physical
constructs (such as indexes) and parameters (such as page size or buffer
management policy) are specified. The physical schema of a database is the
implementation of its logical schema.
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Decay. Decay is the antithesis of evolution. While the evolution process involves
progressive changes, the changes are degenerative in the case of decay.

Dominant decomposition. The dominant decomposition is the principle decompo-
sition of a program into separate modules. The tyranny of the dominant decom-
position [490] refers to restrictions imposed by the dominant decomposition on
a software engineer’s ability to represent particular concerns in a modular way.
Many kinds of concerns do not align with the chosen decomposition, so that the
concerns end up scattered across many modules and tangled with one another.

Duplicate. A software duplicate is a code fragment that is redundant to another code
fragment; often due to copy and paste. A negative consequence of duplication is
that if one fragment is changed, each duplicate may need to be adjusted, too.
Note that a the term software duplicate is preferred over software clone. In Eng-
lish, clone suggests that one fragment is derived/copied from the other one. How-
ever, this is just one special type of software redundancy. Code fragments could
also be similar by accident.

E-type system. One of the three types of software described by Lehman in his SPE
program classification [320]. The distinctive properties of E-type systems are:

• the problem that they address cannot be formally and completely specified;
• the program has an imperfect model of the operational domain embedded in

it;
• the program reflects an unbounded number of assumptions about the real

world;
• the installation of the program changes the operation domain;
• the process of developing and evolving E-type system is driven by feedback.

Evolution. According to Lehman and Ramil (chapter 1 of [338]), the term evolution
reflects “a process of progressive, for example beneficial, change in the attributes
of the evolving entity or that of one or more of its constituent elements. What is
accepted as progressive must be determined in each context. It is also appropri-
ate to apply the term evolution when long-term change trends are beneficial even
though isolated or short sequences of changes may appear degenerative. For ex-
ample, an entity or collection of entities may be said to be evolving if their value
or fitness is increasing over time. Individually or collectively they are becoming
more meaningful, more complete or more adapted to a changing environment.”

Evolutionary process model. A software process model that explicitly takes into
account the iterative and incremental nature of software development. A typical
example is the so-called spiral software process model [71].

Externality. Term used mainly in economics to refer to the break-down of markets
due to external influences. In open source software, network externalities have
been used to refer to code importing, replication, tailoring or code sharing be-
tween projects which can lead to superlinear functional growth.

Extreme programming. Extreme programming (XP) is a specific instance of agile
software development that aims to simplify and expedite the process of devel-
oping new software in a volatile environment of rapidly-changing requirements.
XP is a lightweight process that offers a set of values, principles and practices
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for developing software that provides the highest value for the customer in the
fastest way possible.

Feedback. In engineering, feedback refers to the case when at least some part of the
output(s) of the system are fed back to the input, normally for control purposes.
In systems thinking and related disciplines (e.g., system dynamics), feedback
describes a property of many complex systems in which the outputs determine
the inputs.

Forward engineering. Forward engineering is the traditional process of moving
from high-level abstractions and logical, implementation-independent designs
to the physical implementation of a system [149].

Fragile pointcut problem. This problem arises in aspect-oriented software devel-
opment when pointcuts unintentionally capture or miss particular joinpoints as
a consequence of their fragility with respect to seemingly safe modifications to
the base program.

Free software. A popular mode of software distribution as a common good in which
users can access, modify and re-distribute the code, under the terms of the license
and some parts (e.g., notices) that should not been modified.

Graph transformation. Graph transformation (also known as graph rewriting or
graph grammars) is a theory and set of associated tools that allows to modify
graph-based structures by means of transformation rules, and to reason about the
formal properties of these rules. It is an extension of the theory of term rewriting.
One of its many useful applications is to formalize model transformations in the
context of model-driven software engineering.

Graph transformation rule. A graph transformation rule is composed of a Left-
Hand Side (LHS) and a Right-Hand Side (RHS). The LHS of the rule specifies
the pre-conditions that must be satisfied so that the rule can be applied. The
RHS corresponds to the post-conditions of applying the rule. Executing a graph
transformation rule consists of finding an occurrence (or match) of the LHS and
transforming it into the RHS.

Implicit construct. In a database, a data structure or an integrity constraint that
holds, or should hold, among the data, but that has not been explicitly declared in
the DDL code of the database. Implicit compound and multivalued fields as well
as implicit foreign keys are some of the most challenging constructs to chase
when recovering the logical schema of a database.

Inconsistency. Paraphrased from [471], an inconsistency is a situation in which two
or more overlapping elements of one or different software artefacts make asser-
tions about aspects of the system they describe that are not jointly satisfiable.

Information system. The subsystem of an organization aimed at collecting, mem-
orizing, processing and distributing the information that is necessary to support
the business and management processes of this organization. According to a lim-
ited meaning, an information system is a business software system comprising a
database and the programs that use it.

Joinpoint. A joinpoint is a well-defined place in the structure or execution flow of a
program where additional behaviour can be attached.
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Legacy software. According to [84], a legacy system is any system that significantly
resists modifications and change.
According to [149], legacy software is valuable software that you have inherited.
It may have been developed using an outdated programming language or an
obsolete development method. Most likely it has changed hands several times
and shows signs of many modifications and adaptations.

Maintenance. According to the ISO Standard 12207 [241], the software product
undergoes modification to code and associated documentation due to a problem
or the need for improvement. The objective of software maintenance is to mod-
ify the existing software while preserving its integrity.
According to the IEEE Standard 1219 [239], software maintenance is the modi-
fication of a software product after delivery to correct faults, to improve perfor-
mance or other attributes, or to adapt the product to a modified environment. In
the ISO/IEC Standard 14764 [242], maintenance is further subdivided into four
categories:
Perfective maintenance is any modification of a software product after delivery

to improve performance or maintainability.
Corrective maintenance is the reactive modification of a software product per-

formed after delivery to correct discovered faults.
Adaptive maintenance is the modification of a software product performed af-

ter delivery to keep a computer program usable in a changed or changing
environment.

Preventive maintenance refers to software modifications performed for the pur-
pose of preventing problems before they occur. This type of maintenance,
that does not alter the system functionality, is also referred to as anti-
regressive work.

Metamodel. According to the Meta-Object Facility (MOF) standard [396], a meta-
model is a model that defines the language for expressing a model.

Metric. According to the IEEE Standard [238], a metric is a quantitative measure of
the degree to which a system, component or process possesses a given attribute.

Migration. Migration is a particular variant of re-engineering. In the context of soft-
ware systems, migration refers to the process of moving a software system from
one technological environment to another one that is, for some reason, consid-
ered to be better. Migrations can be very diverse in nature: changing the hardware
infrastructure, changing the underlying operating system, moving data to another
kind of database (database migration), changing the programming language in
which the software has been written, and so on.

Model. A model is a simplified representation of a system on a higher level of ab-
straction. It is an abstract view on the actual system emphasizing those aspects
that are of interest to someone. Depending on the system under consideration,
we talk about software models (for software systems), database models (for
database systems), and so on.

Model-driven engineering. A software engineering approach that promotes the use
of models and transformations as primary artefacts throughout the software de-
velopment process. Its goal is to tackle the problem of developing, maintaining
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and evolving complex software systems by raising the level of abstraction from
source code to models. As such, model-driven engineering promises reuse at the
domain level, increasing the overall software quality.

Open source software. Software of which the source code is available for users
and third parties to be inspected and used. It is made available to the general
public with either relaxed or non-existent intellectual property restrictions. It is
generally used as a synonym of free software even though the two terms have
different connotations. Open emphasises the accessibility to the source code,
while free emphasises the freedom to modify and redistribute under the terms of
the original license.

Outlier. An entity’s metric value that is beyond a predefined threshold.
Pointcut. Aspect definitions consist of pointcuts and advices. Pointcuts define those

points in the source code of a program where an advice will be applied (i.e.,
where crosscutting code will be “woven”).

Precision. In data mining or information retrieval, precision is defined as the pro-
portion of retrieved and relevant data or documents to all the data or documents
retrieved:

precision = |{relevant documents}∩{retrieved documents}|
|{retrieved documents}|

Precision is a measure of how well the technique performs in not returning non-
relevant items. Precision is 100% when every document returned to the user is
relevant to the query. Being very precise usually comes at the risk of missing
documents that are relevant, hence precision should be combined with recall.

Program representation. A program representation consists of properties of a pro-
gram specified in an alternate means to source code. Kontogiannis, in his article
[292], states that “Program representation is a key aspect for design recovery as
it serves as the basis for any subsequent analysis chosen. Some of the most com-
mon program representation methods include (a) abstract syntax trees (...); (b)
Prolog rules (...); (c) code and concept objects (...); (d) code action frames (...);
(e) attributed data flow graphs (...); (f) control and data flow graphs (...). Most of
these approaches represent and refer to the structural properties of a program.”

Program understanding. Program understanding or program comprehension is
“the task of building mental models of an underlying software system at various
abstraction levels, ranging from models of the code itself to ones of the underly-
ing application domain, for software maintenance, evolution, and re-engineering
purposes” [383].

Recall. In data mining or information retrieval, recall is defined as the proportion
of relevant data or documents retrieved, out of all relevant data or documents
known or available:

recall = |{relevant documents}∩{retrieved documents}|
|{relevant documents}|
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Recall is 100% when every relevant item is retrieved. In theory, it is easy to
achieve good recall: simply return every item in the collection, thus recall by
itself is not a good measure and should be combined with precision.

Redesign. Redesign, in the context of software engineering, is the transformation
of a system’s structure to comply to a given set of constraints. Architectural re-
design is a transformation at model level with the goal of achieving conformance
to a specific architectural style.

Redundancy. Software redundancy is the superfluous repetition of code or data.
Note that there is also “healthy” redundancy. For example, many programming
languages force us to specify an interface of a module, the declarations in the
module body are then redundant to the interface items, and this is a desirably
property.

Re-engineering. According to [112], re-engineering is the examination and alter-
ation of a subject system to reconstitute it in a new form and the subsequent im-
plementation of the new form. Re-engineering generally includes some form of
reverse engineering (to achieve a more abstract description) followed by some
form of forward engineering or restructuring. This may include modifications
with respect to new requirements not met by the original system.

Refactoring. Refactoring is the object-oriented equivalent of restructuring. Accord-
ing to [183], refactoring is [the process of making] a change to the internal struc-
ture of software to make it easier to understand and cheaper to modify without
changing its observable behaviour. If applied to programs, we talk of program
refactoring. If applied to models, we talk of model refactoring. If applied to
aspects, we talk of aspect refactoring.

Release. A release is a version of a software system that has been approved and
distributed to users outside the development team.

Restructuring. According to [112], restructuring is the transformation from one
representation form to another at the same relative abstraction level, while pre-
serving the system’s external behaviour.

Reverse engineering. According to [112], reverse engineering is the process of an-
alyzing a subject system to identify the system’s components and their interrela-
tionships and create representations of the system in another form or at a higher
level of abstraction. Reverse engineering generally involves extracting design
artefacts and building or synthesizing abstractions that are less implementation-
dependent.

Scattering and tangling. Occurs when the code needed to implement a given con-
cern is spread out (scattered) over and clutters (is tangled with) the code needed
to satisfy one or more other concern. Scattering or tangling are typically the
result of a program’s inability to handle what is called a crosscutting concern.

Schema refinement. The process within database reverse engineering that attempts
to recover all, or at least most, implicit constructs (data structures and integrity
constraints) of a physical or logical schema.

Schema conceptualisation. The process within database reverse engineering that
aims at deriving a plausible conceptual schema from the logical schema of a
legacy database. Also called schema interpretation.
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Schema transformation. A rewriting rule that replaces a set of constructs of a
database schema with another set of constructs. Such a transformation comprises
two parts: a schema rewriting rule (structural mapping) and a data conversion
rule (instance mapping). The latter transforms the data according to the source
schema into data complying with the target schema.

Service-oriented architecture. According to Thomas Erl [162], SOA is “a model
in which automation logic is decomposed into smaller, distinct units of logic.
Collectively, these units comprise a larger piece of business automation logic.
Individually, these units can be distributed. (...) (SOA) encourages individual
units of logic to exist autonomously yet not isolated from each other. Units of
logic are still required to conform to a set of principles that allow them to evolve
independently, while still maintaining a sufficient amount of commonality and
standardization. Within SOA, these units of logic are known as services.”
Some of the key principles of service-orientation are: loose coupling, service
contract, autonomy, abstraction, reusability, composability, statelessness and dis-
coverability.

Software engineering. The term software engineering was defined for the first time
during a conference of the NATO Science Committee [391] as “the establish-
ment and use of sound engineering principles in order to obtain economically
software that is reliable and works efficiently on real machines.” Alternatively,
the IEEE standard 610-12 [238] defines software engineering as “the application
of a systematic, disciplined, quantifiable approach to the development, operation,
and maintenance of software; that is, the application of engineering to software.”

Testability. The ISO/IEC standard 9126 defines testability as “attributes of software
that bear on the effort needed to validate the software product” [240].

Testing. We can distinguish different kinds of software testing [66]:
Regression testing. Tests which seek to reveal cases where software functional-

ity that previously worked as desired, stops working or no longer works in
the same way that was previously planned.

Developer testing. Preliminary testing performed by the software engineers who
design and/or implement the software systems. Stands in contrast with in-
dependent testing, or testing performed by software engineers who are not
directly involved with designing or implementing the software system.

Black box testing. The use of specified or expected responsibilities of a unit,
subsystem, or system to design tests. Synonymous with specification-orien-
ted, behavioural, functional, or responsibility-based test design.

Acceptance testing. Formal testing conducted to determine whether or not a sys-
tem satisfies its acceptance criteria and to enable the customer to determine
whether or not to accept the system.

White box testing. The use of source code analysis to develop test cases. Syn-
onymous with structural, glass box, clear box, implementation-based test
design.

Unit testing. Testing of individual software units, or groups of related units. A
test unit may be a module, a few modules, or a complete computer program.
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Traceability. The property of software design and development that makes it possi-
ble to link any abstract artefact to the technical artefacts that implement it, and
conversely. In addition, this link explains how and why this implementation has
been chosen.
In the database realm, traceability allows a programmer to know exactly which
conceptual object a definite column is an implementation of. Conversely, it in-
forms on how a conceptual object type has been implemented.

Transformation rule. A rewriting rule through which the instances of some pattern
of an abstract or concrete specification are replaced with instances of another
pattern. Depending on the type of artefact that needs to be transformed, different
types of transformation can be considered: schema transformation (for database
schemas), term rewriting (for tree-based structures), graph transformation (for
graph-based structures), and so on.

Transformational software engineering. A view of software engineering through
which the production and evolution of software can be modelled, and practically
carried out, by a chain of transformations which preserves some essential prop-
erties of the source specifications. Program compilation, but also transforming
tail recursion into an iterative pattern are popular examples. This approach is
currently applied to software evolution, reverse engineering and migration. The
transformational paradigm is one of the most powerful approaches to formally
guarantee traceability.

Threshold. A fixed value (typically an upper bound or lower bound) that distin-
guishes normal values from abnormal metric values. Typically used when ap-
plying software metrics to detect anomalies.

Uniqueness. Uniqueness is the property of model or program transformations to
deliver a unique result upon termination.

Version. A version is a snapshot of a certain software system at a certain point in
time. Whenever a change is made to the software system, a new version is cre-
ated. The version history is the collection of all versions and their relationships.

Version repository. A kind of database, file system or other kind of repository in
which the version history of a software system are stored. The repository may
be used to store source code, executable code, documentation or any other type
of software artefact of which different versions may exist over time (or even at
the same time).

Web service. The World Wide Web Consortium (W3C), in [544], states that “A
web service is a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the web
service in a manner prescribed by its description using SOAP-messages, typi-
cally conveyed using HTTP with an XML serialization in conjunction with other
web-related standards.”

Well-definedness. Well-definedness is the property of model or program transfor-
mations to terminate with a unique and correct result when given a consistent
input.
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Wrapper. A software component that encapsulates a system component (a proce-
dure, a program, a file, an API) in order to transform its interface with its envi-
ronment. For instance, a wrapper associated with a legacy program can give the
latter an object-oriented interface.
In a database setting, a data wrapper is a software component that encapsulates
a database or a set of files in order to change its model and the API through
which the data can be manipulated. For example, a data wrapper built on top of
a standard file can allow application programs to access the contents of the file
as if it were a relational table or a collection of XML documents.
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List of Acronyms

This appendix contains a list of acronyms that have been used throughout the various
contributing chapters.

ACM Association for Computing Machinery.
ADL Architectural Description Language.
AOP Aspect-Oriented Programming.
AOSD Aspect-Oriented Software Development.
API Application Programming Interface.
ASF Algebraic Specification Formalism.
AST Abstract Syntax Tree.
CASE Computer-Aided Software Engineering.
DBMS Database Management System.
DDL Data Description Language.
DML Data Manipulation Language.
DMS Data Management System.
ERCIM European Research Consortium on Informatics and Mathematics.
FEAST Feedback, Evolution And Software Technology.
IEEE Institute of Electrical and Electronics Engineers.
ISO International Standards Organisation.
L-CARE Legacy Computer Aided Reengineering Environment.
LOC Lines of Code.
MDA Model-Driven Architecture.
MDE Model-Driven Engineering. Sometimes, the acronym MDD or MDSD is used

in literature, for Model-Driven (Software) Development, but both terms are
largely interchangeable.

OMG The Object Management Group.
OSS Open Source Software.
RDBMS Relational Database Management System.
SDF Syntax Definition Formalism.
SOA Service-Oriented Architecture.
SQL Structured Query Language.
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SWEBOK The IEEE Software Engineering Body of Knowledge [2].
UML The Unified Modeling Language [398].
W3C World Wide Web Consortium.
WSDL Web Service Description Language.
XML eXtensible Markup Language.
XP Extreme Programming.
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cluster analysis 213
co-evolution 10
COBOL 131
code

annotation 145, 154
category 146, 151, 164
churn 82
clones 15
cloning 286
compaction 34
duplicate 17, 299
duplication 15, 204
ownership 50
redundant 17
restructuring 19

scattering 203
scavenging 15
smell 180, 191
tangling 203

CodeCrawler 48
common good 268
communication integrity 235
complexity 72, 297

cyclomatic 278, 297
metrics 72
structural 272, 297

component 149, 153, 233, 297
aspectual 244

concern 296
crosscutting 20, 30, 203, 209, 297
graph 216
multi-dimensional separation of 216
separation of 234

configuration management 8
connector 153, 233, 297

aspectual 244
consistency 297

global 149
maintenance 10

construct
explicit construct 117
implicit construct 117

conversion
conceptual schema 118
data conversion 121
program conversion 122
schema conversion 116

correctness
partial 150
total 149

cost estimation 7
CRC-Cards 92
CSP 235
CVS 37, 40, 53

damage 85
Darwin 235
data

analysis 40
cleaning 121
cleansing 121
conversion 112, 121
migration 133
modeling 39
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processing 39
retrieval 39
validation 133
wrapper 123, 306

database
bug database 69
conceptual conversion 298
conceptual schema 298
conversion 297
implicit construct 300
logical schema 298
migration 297, 301
model 298
physical conversion 298
physical schema 298
reverse engineering 119, 298
schema 298
schema conceptualisation 303
schema refinement 303
schema transformation 304

database-first 111
DB-MAIN 129
DDL parsing 118
decay 3, 299
decomposition

dominant 203–205, 234, 299
functional 143
technological 141, 160

defect 69, 71
density 73, 76, 79, 82
density distribution 70
prediction 38, 69, 85, 88

dependency 79
design disharmony 103
design pattern 98, 180
development

effort 46
pattern 47
team 49

DFG 88
DirectX 75
distribution 268
domino effect 80
dot plot 31
Drools 258
dynamic

analysis 109
evolution 234

Eclipse 70, 77–79, 87, 88, 165
effort estimation 7
empirical study 265, 269
engineering process

history 115
evolution 263, 264, 299

analysis 37
aspect evolution 296
Darwinian 267
dynamic 234
economics 7
external 234
internal 234
laws 2, 205, 264
of clones 23
paradox 226
radar 51, 52
runtime 9
spectograph 275
theory 266

externality 299
extreme programming 3, 20, 174, 176, 299

failure 69, 71, 85
fan-in analysis 109
fault prediction 38
FEAST 266
feature modelling 92
feedback 300

system 264
formal concept analysis 109, 213
forward engineering 145, 161, 300
Fractal 235, 236

Aspect Component 244
fractal figure 46, 47
fractal value 47
fragile pointcut problem 302
free software 300
FScript 238
functional data analysis 272

gestalt principle 47
glue 92
graph grammar see graph transformation
graph rewriting 94, see graph transforma-

tion
graph transformation 145, 152, 169, 300

transformation rule 300
graphical user interface 77



344 Index

growth
dynamics 264
linear 272
pattern 269
rate 270, 272, 274
superlinear 270, 274
trend 276

Hasse diagrams 31
horseshoe model 5
hot-spot analysis 38
human in the loop 100

IEEE 307
impact analysis 179
imports 76
inconsistency 300
inconsistency management 10
information system 105, 300

evolution 106
legacy 107
migration 106
reengineering 106

instance graph 148
intensional view 216
Internet Explorer 75
Internet Information Services 75
invariant

in history 71
in problem domain 79

inventory process 132
ISO 307

joinpoint 207, 300
mask 250
misses 230
unanticipated joinpoint capture 230

Julia 236
JUnit 178

keep it simple 99
Kiviat 61

language
conversion 108

legacy 91, 99
information system 107
software 300
system 3, 5, 139, 140, 159, 169, 204,

300

lego 92
Linux 270

maintainability 92
maintenance 1, 301

adaptive 4, 301
corrective 4, 301
perfective 4, 301
preventive 5, 301

mapping
definition 130
instance 114
schema 115
structural 114

MaX 79
MDA see model-driven architecture
MDE see model-driven engineering
merging 8
metamodel 145, 151, 301
metric 27, 28, 73, 175, 212, 213, 278, 301

complexity 72
Microsoft 75, 79, 88
migration 3, 301

database migration 301
information system migration 106
system migration 107

model 301
composition 259
database model 301
software model 301
transformation 257
weaving 257

model synchronisation 96
model-driven engineering 301
model-driven software engineering see

model-driven engineering
monolithic 92
Mozilla 46, 48
multi-agent model 280

NetMeeting 75
network externality 286
normalization 108

object-oriented programming 203
obliviousness 209, 219, 244
OCL 241
OMG 307
open source 268
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open source software 302
optimization 108
origin analysis 16
outlier 302

Pareto’s law 70
pattern form 98
pattern language 100
pattern system 98, 100
patterns

example 98
forces 98, 104
known uses 98, 103
trade-offs 98

plagiarism detection 29, 34
pointcut 206, 207, 216, 295, 302

enumeration-based 208
extensional 208, 229
fragile pointcut 228–230
intensional 209, 229
model-based 230
pattern-based 209

polymetric view 32, 61
postcondition 94
precision 29, 78, 214, 302
precondition 94
preserve behaviour 94, 96, 97
principal component analysis 76
PRISMA 244
problem domain 72, 76
process model 7

E-type 264
evolutionary 2, 299
horseshoe 5
spiral 2, 299
staged 2, 267
waterfall 1

program
comprehension 5, 176, 177, 302
conversion 112, 122
dependency graphs 28
representation 152, 162, 302
slicing 213
transformation 116, 131, 133
understanding 5, 176, 177, 302

programming clichés 119
Prolog 258

qualitative abstraction 279

quality 212
assurance 174

Rapide 235
re-engineering 303
recall 29, 78, 214, 302
redesign 145, 158, 303
redundancy 15, 303

theory of 35
reengineering 5, 91, 139, 141, 147, 151,

162, 169
reengineering pattern 91, 98

Big Ball of Mud 102
Extract Adapter 101
Functional Decomposition 102
God Class 102
Poltergeists 102
Speculate about Design 99

refactoring 6, 10, 16, 91, 143, 146, 159,
165, 175, 176, 184, 278, 303

aspect refactoring 303
composite refactorings 93, 95
economics 97
education 97
language independent 94
mining refactorings 95
model refactoring 96, 303
primitive refactorings 93, 95
program refactoring 303
Pull Up Method 101
refactoring in the large 96
session 192
strategy 96
test-driven 191
the noun 93
the verb 92

regression
model 75
testing 6, 94

release 303
history database 40, 42, 46, 47, 60

renovation see re-engineering
requirements

complexity 76
engineering 8, 92
evolution 8, 72

resists modification and evolution 91
resource allocation 69
restructuring 5, 6, 303
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reverse engineering 5, 145, 146, 162, 298,
303

database reverse engineering 119, 298
revision history 214
rewrite rule 116
rewriting

logic rewriting 126
statement rewriting 125

RHDB see release history database

SafArchie 235, 236
scatter plot 31
scattering 303
schema

conceptual conversion 118
conceptualisation 119
conversion 112, 116, 132
mapping 115
physical conversion 117
refinement 119
transformation 114

schema interpretation see database schema
conceptualisation

schema transformation
propagation 116

SDF 129, see syntax definition formalism
semantic

analysis 295
indexing 26
latent semantic analysis 26
similarity 17

service-oriented architecture 9, 139, 140,
169, 304

similarity 17
semantic 17

smells
code 191
test 175, 180, 191

SOA see service-oriented architecture
SOFA 235
software

aging 2
archive 69
E-type 264, 299
eco-system 286
exploration 177
free 268, 300
open source 268, 302
P-type 265

process 72
process improvement 8
quality 212
quality assurance 7
redundancy 16
reliability 72
repository analysis 38
S-type 264
visualization 46, 49, 52, 61

software architecture see architecture
software clone see clone
software decay see decay
software duplicate see code duplicate
Software Engineering

Body of Knowledge see SWEBOK
software engineering 1, 304

transformational software engineering
305

software evolution see evolution
software maintenance see maintenance
software metrics see metrics
software refactoring see refactoring
software restructuring see restructuring
Spearman correlation 78
SQL 307
string matching 26
structural regularities 211
Subversion 37, 40
suffix trees 28
support vector machine 78
SWEBOK 3, 97, 308

Software Engineering Body of Knowledge
93

synchronisation 10
system

dynamics 234
hot-spot 63

system migration see migration

tangling 303
term rewriting 116, 300
test 174

case 178
regression 6
smell 175, 180, 191
suite 178
test-driven development 176, 179
test-driven refactoring 191

testability 193, 304
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testing 11, 223, 269, 304
acceptance 174, 304
adequacy criterion 193
black box 174, 304
developer 304
developer testing 174
framework 178
mutation 192
patterns 98
regression testing 304
unit 174, 177, 304
white box 174, 304

threshold 305
traceability 305
TranSAT 234
transformation

architectural 250
compound 115
conditional 258
graph transformation 145, 152, 169, 258
history 115
primitive 250
program transformation 116, 131, 133
rule 250, 305
schema transformation 114
semantic preserving 25
signature 115
Tiger EMF 158

translation 108
tree map 32
trend analysis 38
type graph 148, 152

UML 240, see Unified Modeling
Language

uniqueness 150, 305
universe of discourse 298
use-case 92
user interface

migration 108

verification
dynamic 256
static 254

version 16, 305
comparison 34, 35
control system 40, 46
history 305
merging 35
repository 305

versioning 8

W3C 308
weaving 257
web service 141, 305
well-definedness 148, 305
Windows 75, 79–83, 87
wrapper 305

backward 123
data wrapper 123, 306
generation 130, 133

wrapping 122
Wright 235, 238
WSDL 308

XML 308
XP see extreme programming
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