
Chapter 6
Case Studies of Ck

1 -Subdivision Algorithms

In this chapter, we formally introduce and scrutinize three of the most popular sub-
division algorithms, namely the Catmull–Clark algorithm [CC78], the Doo–Sabin
algorithm [DS78], and Simplest subdivision1 [PR97]. Besides the algorithms in their
original form, it is instructive to consider certain variants. We selectively modify a
subset of weights to obtain a variety of algorithms that is rich enough to illustrate the
relevance of the theory developed so far. In particular, we show that a double sub-
dominant eigenvalue is neither necessary nor sufficient for a Ck

1 -algorithm: First,
there are variants of the Doo–Sabin algorithm with a double subdominant eigen-
value, which provably fail to be C1

1 because the Jacobian determinant ×Dψ of the
characteristic ring changes sign. Second, for valence n = 3, Simplest subdivision
reveals an eightfold subdominant eigenvalue, but due to the appropriate structure of
Jordan blocks, it is still C1

1 . In all cases, the algorithms are symmetric so that the
conditions of Theorem 5.24/105 can be used for the analysis.

6.1 Catmull–Clark Algorithm and Variants

The Catmull–Clark algorithm (Fig. 6.1/110) is currently the most popular subdivision
algorithm due to its close relationship with the tensor-product spline standard. The
algorithm generalizes uniform knot insertion for bicubic tensor-product B-splines.
Since each n-gon of the original mesh of control points is subdivided into n quadri-
laterals the mesh is purely quadrilateral after the first step. Figure 6.2/110 defines
the rules of the subdivision algorithm in terms of stencils. A stencil is an intu-
itive representation of a row of the local subdivision matrix A. In the regular case,
when n = 4, the control points have the structure of a regular planar grid. In anal-
ogy, near an extraordinary vertex, the control points can be arranged with n-fold
symmetry.

1 In the literature, Simplest subdivision is sometimes also called Mid-edge subdivision.
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Fig. 6.1 Illustration of Catmull–Clark algorithm: Mesh refinement.

There are three types of stencils for Catmull–Clark subdivision that are inherited
from bi-cubic B-spline subdivision and one generalization (see Fig. 6.2/110, right) that
is expressed in terms of the variables

α , β , γ, α + β + γ = 1. (6.1)

In [CC78], Catmull and Clark suggest

α = 1 − 7
4n

, β =
3
2n

, γ =
1
4n

. (6.2)

For n = 4, this choice coincides with the regular stencil. To establish C2
1 -

smoothness for variables α,β,γ summing to 1, we first define an appropriate data
structure for the space of rings. Then we determine the characteristic ring ψ and
apply Theorem 5.24/105 to obtain necessary and sufficient conditions for smooth-
ness. Let us start with considering a single ring xm. Each of the n segments
xm

j , j ∈ Zn, consists of three bicubic B-spline patches. The corresponding vec-
tor Q = [Q0; . . . ;Qn−1] of initial data is split into n blocks Qj with 13 elements
each. We label the coefficients of each block Qj = [qj,1; . . . ;qj,13] as shown in

Fig. 6.2 Stencils for the Catmull–Clark algorithm: From left to right, the weights for generating
a new ‘face point’, a new ‘edge point’, a new ordinary ‘vertex point’, and a new extraordinary
‘vertex point’ of valence n. The scalars α, β and γ are constrained by (6.1/110) and their originally
published choice is given in (6.2/110).
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Fig. 6.3 Labelling of the control points qj,k of the Catmull–Clark algorithm: Following (6.3/111),
the center control point is replicated.

Fig. 6.3/111. Following Example 5.14/97, identical copies of the central coefficient q̃0

are placed in all blocks to obtain a circulant structure,

q̃0 = q0,1 = · · · = qn−1,1. (6.3)

The corresponding subdivision matrix is block-circulant,

A = circ(A0, . . . , An−1),

where the blocks Aj are (13 × 13)-matrices. Moreover, the algorithm is sym-
metric in the sense of Definition 5.21/104, and the generated segments satisfy the
conditions (4.7/62) and (4.8/62) for k = 2. According to (5.14/99), the DFT Â =
diag(Â0, . . . , Ân−1) of A is block-diagonal. Omitting the details, we find the fol-
lowing: the blocks Âi have the form

Âi =

⎡
⎢⎣

Â0,0
i 0 0

Â1,0
i Â1,1

i 0

Â2,0
i Â2,1

i 0

⎤
⎥⎦ . (6.4)

Recalling (5.12/98), we set

cn + isn := wn := exp(2πi/n), cn,i + isn,i := wi
n = exp(2πii/n),
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for i ∈ Zn. With

p1 := 1/64, p2 := 3/32, p3 := 9/16, q1 := 1/16, q2 := 3/8, r := 1/4,

and using the abbreviation w := wi
n, we obtain

Â0,0
i :=

⎡
⎣αδi,0 βδi,0 γδi,0

q2δi,0 2q1cn,i + q2 q1(1 + w)
rδi,0 r(1 + w) r

⎤
⎦ (6.5)

and

[
Â1,0

i Â1,1
i

Â2,0
i Â2,1

i

]
:=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q2δi,0 q1 + q2w q1 q1 q1w 0 0
p2δi,0 2p1cn,i + p3 p2(1 + w) p1w p2 p1 0
q1δi,0 q1w + q2 q2 0 q1 q1 0
p1δi,0 p2(1 + w) p3 p2 p1(1 + w) p2 p1

0 q2 q1(1 + w) q1w q2 q1 0
0 r r 0 r r 0
0 q1 q2 q1 q1 q2 q1

0 0 r r 0 r r
0 q1w q2 q2 q1w q1 q1

0 rw r r rw 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The eigenvalues 1/8, 1/16, 1/32, 1/64 of the sub-matrix Â1,1
i are n-fold eigenval-

ues of A. Other non-zero eigenvalues come only from Â0,0
i . For i = 0, we obtain

the obligatory eigenvalue λ0 = 1 and, with γ := 1 − α − β, the pair

λ0
1,2 :=

(
4α − 1 ±

√
(4α − 1)2 + 8β − 4

)
/8.

Depending on the sign of the discriminant, these two eigenvalues are either both real
or complex conjugate. For i �= 0, the non-zero eigenvalues of Â0,0

i are always real
and given by

λi
1,2 :=

(
cn,i + 5 ±

√
(cn,i + 9)(cn,i + 1)

)
/16.

Here and in the penultimate display, the subscript 1 refers to the plus sign, and the
subscript 2 refers to the minus sign. By Theorem 5.18/101, the subdominant eigen-
value λ must come from the blocks Â1, Ân−1. Because the eigenvalue 1/32 has
algebraic multiplicity n, the only candidate is

λ := λ1
1 = λn−1

1 =
(
cn + 5 +

√
(cn + 9)(cn + 1)

)
/16. (6.6)

Straightforward calculus shows that

1 >λ > 1/4 > λi
2 > 1/8, i = 1, . . . , n − 1 (6.7)
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λ > λi
1 > 1/4, i = 2, . . . , n − 2 . (6.8)

That is, λ is subdominant if α, β, γ are chosen such that

λ > max
{|λ0

1|, |λ0
2|
}
. (6.9)

We will comment on the set of feasible weights at the end of this section, but state
already now that the original weights of Catmull–Clark (6.2/110) satisfy the condition.

For computing the characteristic ring, the eigenvector v̂ of Â1 is partitioned into
three blocks, v̂ = [v̂0; v̂1; v̂2], according to the structure of Â1 defined in (6.4/111).
Then Â1v̂ = λv̂ is equivalent to

(Â0,0
1 − λ)v̂0 = 0

(Â1,1
1 − λ)v̂1 = −Â1,0

1 v̂0 (6.10)

v̂2 = (Â2,0
1 v̂0 + Â2,1

1 v̂1)/λ.

Now, v̂ can be computed conveniently starting from

v̂0 := [1 + wn, 16λ − 2cn − 6], (6.11)

which solves the first eigenvector equation.
By (6.6/112), the characteristic ring depends only on cn ∈ [−1/2, 1) and not on

the particular choice of weights α, β, γ. For the interval of definition, we can invert
the relation to obtain

cn =
16λ2 − 10λ + 1

2λ
, λ ∈ Λ :=

[
(9 +

√
17)/32, (3 +

√
5)/8

)
, (6.12)

and write the characteristic ring in terms of λ ∈ Λ. After scaling, the eigenvector v̂
has the form

v̂ = ((4λ − 1)v̂re + 2sλ(64λ − 1)iv̂im)/13020,

where

v̂re :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
4λ2(64λ−1)(32λ−1)(16λ−1)(4λ−1)

8λ2(64λ−1)(32λ−1)(16λ−1)

4λ2(64λ−1)(928λ2+228λ−31)

8λ2(64λ−1)(16λ−1)(4λ−1)(4λ+13)

4λ2(64λ−1)(928λ2+228λ−31)

80λ2(1280λ3+2128λ2−56λ−13)

(64λ−1)(16λ−1)(4λ−1)(100λ2+42λ−1)

4λ(64λ−1)(640λ3+688λ2−82λ−1)

20λ(2048λ4+11040λ3+812λ2−165λ−1)

40λ(5248λ3+1568λ2−133λ−5)

20λ(2048λ4+11040λ3+812λ2−165λ−1)

4λ(64λ−1)(640λ3+688λ2−82λ−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, v̂im :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−4λ2(32λ−1)(16λ−1)

0

140λ2(8λ−1)

−8λ2(16λ−1)(4λ+13)

−140λ2(8λ−1)

0

−(16λ−1)(100λ2+42λ−1)

−4λ(160λ2+132λ−1)

−20λ(8λ2+15λ+1)

0

20λ(8λ2+15λ+1)

4λ(160λ2+132λ−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now, we compute f(1, 1, 0) to ensure normalization. After reformatting the middle
patch according to its tensor product structure and substituting in the parameter



114 6 Case Studies of Ck
1 -Subdivision Algorithms

Fig. 6.4 Characteristic ring of the Catmull–Clark algorithm: (left) n = 3, (middle) n = 6, and
(right) n = 12.

σ = [1, 1], we obtain with b := [1/6, 2/3, 1/6]

f(1, 1, 0) = b

⎡
⎣v̂3 v̂4 v̂13

v̂6 v̂7 v̂12

v̂9 v̂10 v̂13

⎤
⎦ · b =

2
29295

λ(4λ − 1)
(
139264λ4 + 170496λ3

+ 112λ2 − 1, 476λ − 11
)
.

For λ ∈ Λ this value is real and positive. That is, the characteristic ring f is normal-
ized in the sense of Definition 5.19/103.

To establish smoothness, we verify the sufficient conditions (5.22/107) given in
Theorem 5.25/107. The derivative of f0 in t-direction is computed by differencing
the Bernstein–Bézier control points of the three bicubic patches. The elements of
the resulting three sets of 3 × 4 coefficients are enumerated k1, . . . , k36. All kµ are
polynomials in λ with rational coefficients. More precisely,

kµ(λ) = pµ(λ) + isnqµ(λ), µ = 1, . . . , 36,

for certain polynomials pµ and qµ of degree ≤ 7 in λ which are independent of n or
the special weights. Computing the Sturm sequences of all these polynomials on the
larger, but more convenient interval Λ′ := [0.41, 0.66] ⊃ Λ, we find either no root
or the single root (3 +

√
5)/8 �∈ Λ. Hence, the sign of all polynomials in question

is constant and can be determined by evaluation at a single point. At λ = 1/2, we
obtain pµ(λ) = qµ(λ) = 3255/13020 = 1/4 for all µ = 1, . . . , 36. Hence, all
coefficients kµ are positive so that, by the convex hull property, Re(D2f0) > 0 and
Im(D2f0) > 0. Hence, by Theorem 5.25/107, the algorithm is C2

1 .
Figure 6.4/114 shows the characteristic rings for different values of n. As already

mentioned above, it depends only on n, but not on the particular choice of the
weights α, β, γ, provided that the conditions, summarized in the following theorem,
are satisfied.

Theorem 6.1 (C2
1 -variants of Catmull–Clark). For n ≥ 3, cn := cos(2π/n), and

λ :=
(
cn + 5 +

√
(cn + 9)(cn + 1)

)
/16 (6.13)
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Fig. 6.5 Illustration of Theorem 6.1/114: (left) Spectrum of the subdivision matrix of the Catmull–
Clark algorithm with standard weights (6.2/110) for n = 3, . . . , 40. The subdominant eigenvalue
λ satisfies the condition of the theorem. (right) Triangles ∆3, . . . , ∆8 in the αβ-plane. Choosing
(α, β) inside these triangles yields a C2

1 -algorithm.

λ0
1,2 :=

(
4α − 1 ±

√
(4α − 1)2 + 8β − 4

)
/8, (6.14)

the Catmull–Clark algorithm with weights α, β and γ = 1 − α − β is a standard
C2

1 -algorithm if and only if λ > max{|λ0
1|, |λ0

2|}.

Let us briefly comment on the set of parameters yielding a C2
1 -algorithm. We define

α̃ :=
α

2
− 1

8
, β̃ :=

β

8
− 1

16
,

and obtain the equivalent condition∣∣∣∣α̃ ±
√

α̃2 + β̃

∣∣∣∣ < λ.

Distinguishing the cases α̃2 + β̃ ≥ 0 and α̃2 + β̃ ≤ 0, we find

−λ2 < β̃ < λ(λ − 2|α̃|λ).

Given the valence n and the corresponding subdominant eigenvalue λ, the set of
pairs (α̃, β̃) satisfying this condition forms the interior of a triangle ∆̃n. Accord-
ingly, in terms of the original parameters α, β, we obtain a triangle ∆n in the αβ-
plane with corners (

1/4 ± 2λ, 1/2 − λ2
)
,
(
1/4, 1/2 + λ2

)
.

On the right hand side, Fig. 6.5/115 shows the triangles ∆3, . . . , ∆8. On the left
hand side, we see the complete spectrum of the algorithm when using the standard
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Fig. 6.6 Illustration of Doo–Sabin algorithm: Mesh refinement.

weights (6.2/110). We see that the condition of Theorem 6.1/114 is satisfied for n =
3, . . . , 40, and one can show that this is also true for all n > 40. However, it should
be noted that both λ and λ0

1 are converging to the limit (3 +
√

5)/8 ≈ 0.6545 as
n → ∞. As we will explain in the next chapter, shape may be poor if the ratio of the
subdominant eigenvalue λ and the next smaller subsubdominant eigenvalue is close
to 1.

6.2 Doo–Sabin Algorithm and Variants

The Doo–Sabin algorithm generalizes subdivision of uniform biquadratic tensor-
product B-splines. For each n-gon of the original mesh of control points, a new,
smaller n-gon is created and connected with its neighbors as depicted in Fig. 6.6/116.
Figure 6.7/117 shows the stencils for generating a new n-gon from an old one, both
for the regular case n = 4 (left) and the general case (middle). For n = 4
the weights are those of the biquadratic spline. Doo and Sabin in [DS78] sug-
gested

aj :=
δj,0

4
+

3 + 2 cos(2πj/n)
4n

(6.15)

for the general case. In the following, we analyze all algorithms that are affine
invariant and symmetric:

n−1∑
j=0

aj = 1, aj = an−j , j ∈ Zn. (6.16)

Each of the n segments xm
j , j ∈ Zn, of the m-th ring generated by the Doo–

Sabin algorithm consists of three biquadratic B-spline patches. Accordingly, we can
split the control points Qm into n groups of nine control points, each, ordered as
shown in Fig. 6.7/117 (right).

Since the algorithm is symmetric, we can apply DFT as introduced in Sect. 5.4/95

to obtain the block-diagonal form Â = diag(Â0, . . . , Ân−1) of the subdivision
matrix. The non-zeros elements of Âi are situated in the first four columns. With
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Fig. 6.7 Stencils for the Doo–Sabin algorithm: (left) Regular refinement rule, (middle) general
refinement rule, and (right) control point labels of one segment.

w = wi
n = exp(2πii/n), as before, we have

Âi(:, 1 : 4) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α̂i 0 0 0
p + wq q 0 wr

p q r q
p + wq wr 0 q
q + wr p 0 wq

q p q r
r q p q
q r q p

q + wr wq 0 p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.17)

where p := 9/16, q := 3/16, r := 1/16 are the standard weights for quadrilaterals,
and

âi :=
n−1∑
j=0

w−ij
n aj

are the entries of the DFT of the vector [a0, . . . , an−1] of special weights for
the inner n-gon. The weights aj sum to one, i.e., â0 = 1, and satisfy aj =
an−j . Hence, âi = ân−i is real. The eigenvalues of Âi are âi, 1/4, 1/8, 1/16, 0.
Since each eigenvalue 1/4 corresponds to a separate eigenspace and also the
eigenspace of each âi is spanned by a single vector, and by the requirement on
the Fourier index to be F(λ) = {1, n − 1}, the subdominant eigenvalue must
be λ := â1 = ân−1 ∈ (1/4, 1) to generate a C1

1 -algorithm. This yields the
inequality

1 > â1 > max
{
1/4, |â2|, . . . , |ân/2|

}
. (6.18)

We will see below that this constraint is however not sufficient. Using a computer
algebra system, one can determine the complex eigenvector v̂ of Â1 corresponding
to λ explicitly:
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v̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2λ(16λ−1)(8λ−1)(4λ−1)
6λ(16λ−1)(6λ−1+2wnλ)

18λ(32λ2−1+4cnλ)
6λ(16λ−1)(6λ−1+2wnλ)

(16λ−1)
(
12λ2+18λ−3+wn(4λ2+12λ−1)

)
6λ
(
32λ2+64λ−12+cn(20λ+1)−isn(16λ−1)

)
64λ3+512λ2−46λ−8+36cnλ(2λ+1)

6λ
(
32λ2+64λ−12+cn(20λ+1)+isn(16λ−1)

)
(16λ−1)

(
12λ2+18λ−3+wn(4λ2+12λ−1)

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where as before wn = cn + isn.
In particular, for the original Doo–Sabin weights in (6.15/116), we have λ = 1/2

and, rearranging the entries of v̂ in a (3 × 3)-matrix according to Fig. 6.7/117, right,⎡
⎣v̂5 v̂6 v̂7

v̂2 v̂3 v̂8

v̂1 v̂4 v̂9

⎤
⎦ = 3

⎡
⎣21 + 14wn 28 + 2wn + 9wn 35 + 12cn

14 + 7wn 21 + 6cn 28 + 2wn + 9wn

7 14 + 7wn 21 + 14wn

⎤
⎦ .

By elementary computations, one can determine the Bernstein–Bézier-form of all
three biquadratic patches forming the first segment of the complex characteristic
ring f . For λ ∈ (1/4, 1),

f0(1, 1) =
v̂3 + v̂6 + v̂7 + v̂8

4
= p(λ) + cnq(λ)

:= (256λ3 + 320λ2 − 52λ − 2) + cn

(
96λ2 + 12λ

)
.

(6.19)

For n ≥ 3, we have cn ≥ −1/2. Furthermore p(λ) > 320λ2−54λ−2 and q(λ) > 0
for all λ ∈ (1/4, 1) so that

p(λ) + cnq(λ) > 320λ2 − 54λ − 2 − (96λ2 + 12λ)/2

= 272λ2 − 60λ − 2 = 2(4λ − 1)(34λ + 1).
(6.20)

That is, f0(1, 1) is real and positive for λ ∈ (1/4, 1). The eigenvector v̂ and hence
the characteristic ring f depends only on λ = â1 = ân−1 and on the valence n.

For λ ∈ (1/4, 1), the minimum of the real parts of all Bernstein–Bézier co-
efficients is positive. Hence, by the convex hull property, the condition c(u) ∈
R ⇒ c(u) > 0 in Theorem 5.24/105 is always satisfied. It remains to show
regularity of the segment f0 of the characteristic ring. The Jacobian determi-
nant ×Df0 consists of three bicubic patches, which can also be expressed explic-
itly in Bernstein–Bézier-form. A careful analysis shows that all coefficients are
positive if

p(λ) := 128λ2(1 − λ) − 7λ − 2 + 9λcn > 0. (6.21)

By the convex hull property, this implies regularity of f0. In particular, for λ = 1/2,
we obtain p(1/2) = 3/2 (7 + 3cn) > 0 proving that the Doo–Sabin algorithm
with standard weights is a C1

1 -algorithm. Figure 6.8/119 illustrates the situation: all
Bernstein–Bézier coefficients of the Jacobian ×Df depend only on λ and cn, and
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Fig. 6.8 Illustration of Theorem 6.2/119: (left) Admissible range of subdominant eigenvalues λ plot-
ted in the (λ, cn)-plane (see (6.21/118)) and (right) magnified detail.

they change sign on the lines plotted in the (λ, cn)-plane. In particular, p(λ) = 0 for
points on the thick line, and this line is bounding the shaded subset of the interval
(1/4, 1)×[−1/2, 1). For given n, the eigenvalue λ yields a C1

1 -algorithm if and only
if the point (λ, cn) lies in this region. The dotted line, corresponding to the standard
case λ = 1/2, indicates that this value is feasible for all values of n. Surprisingly,
there is an upper bound λsup(n) with p(λ) < 0 for 1 > λ > λsup(n). For such λ,
×Df actually reveals a change of sign, and the corresponding algorithm cannot be
C1

1 . Fortunately, the upper bounds are quite close to 1 so that they do not impose
severe restrictions when designing variants on the standard Doo–Sabin algorithm.
More precisely, as indicated in Fig. 6.8/119 by the dot, the lowest upper bound occurs
for n = 3. We have c3 = −1/2 and

λsup(n) ≥ λsup(3) =
√

187
24

cos

(
1
3

arctan

(
27
√

5563
1576

))
+

1
3
≈ 0.8773.

The asymptotic behavior for n → ∞ is

λsup(n) ∗= 1 − π2

7n2
.

In summary, we have shown the following.

Theorem 6.2 (C1
1 -variants of Doo–Sabin subdivision). Let â0, . . . , ân−1 be the

Fourier coefficients of a symmetric set of weights for the generalized Doo–Sabin
algorithm. Then a standard algorithm is obtained if λ := â1 = ân−1 satisfies the
condition

1 > λ > max{1/4, |â2|, . . . , |ân−2|}.
The algorithm is C1

1 if p(λ) > 0, and not C1
1 if p(λ) < 0. In particular, the algorithm

is C1
1 when choosing the standard weights.
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Fig. 6.9 Illustration of Theorem 6.2/119: Corner piece of the characteristic ring for n = 3 and
subdominant eigenvalue (left) λ = 0.5 and (right) λ = 0.95. On the right hand side, the coordinate
axes are scaled differently to clearly visualize non-injectivity.

6.3 Simplest Subdivision

When regarded as an algorithm for refining control meshes, one step of Simplest
subdivision connects every edge-midpoint of the given mesh to the four midpoints
of the edges that share both a vertex and a face with the current edge. For that
reason, Simplest subdivision is sometimes also called Mid-edge subdivision. Once
all midpoints are linked, the old mesh is discarded, as shown in Fig. 6.10/120. Thus

Fig. 6.10 Illustration of Simplest subdivision: Mesh refinement.
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every new point, not on the global boundary, has exactly four neighbors; and every
mesh point is replaced by a facet that is quadrilateral if the point is new. Each step
can be interpreted as cutting off all vertices, along with neighborhoods that stretch
half way to the neighbor vertex. The cuts are in general not planar.

The following feature justifies the name of the algorithm: all subdivision stencils
are equal and of minimal size 2. The only weight used throughout is 1/2 so that, in
contrast to most other subdivision algorithms, there is no dependence on the valence
n. Evidently, this setup is as simple as it can be.

To apply the analysis developed so far, we have to think of the algorithm not in
terms of control meshes, but as a recursion for rings. To fit that pattern, we need
to combine two steps of mesh refinement to generate a new ring xm+1 from the
given ring xm. For that reason, Simplest subdivision is called a

√
2-algorithm. On a

regular, quadrilateral control mesh with 4-valent vertices, a double step of mid-edge
mesh refinement coincides with one subdivision step of the 4-direction box spline
with directions Ξ :=

[
1 0 −1 1
0 1 −1 −1

]
. Hence, the resulting limit surface is such a box

spline. It is C1, and each quadrilateral patch consists of four triangles of total degree
2, arranged in a quincunx pattern. From a combinatorial point of view, a double step
of mid-edge mesh refinement for a general mesh coincides with one step of Doo–
Sabin subdivision. That is, each n-gon is mapped to a smaller one. Using the same
arrangement of control points q� and weights a = [a0, . . . , an−1] as in Fig. 6.7/117,
we have

aj =

⎧⎪⎨
⎪⎩

1
2 for j = 0,
1
4 for j = 1, n − 1,

0 otherwise.

The decisive point is that these weights are also used in the regular case n = 4. The
structure of the Fourier blocks Âi of the subdivision matrix is the same as for the
Doo–Sabin algorithm. But now, the weights in (6.17/117) are p := 1/2, q := 1/4, r :=
0, and

âi =
n−1∑
j=0

w−ij
n aj =

1 + cos(2iπ/n)
2

, i ∈ Zn.

For i = 0, . . . , n − 1, the non-zero eigenvalues of Âi are

âi and
1
4
,

1
4
.

The dominant eigenvalue of the subdivision matrix A is â0 = 1. Determining the
subdominant eigenvalue is subtle here: If n ≥ 4, we have |âi| < |â1| for i =
2, . . . , n − 2, and also 1/4 < |â1| so that

λ := â1 = ân−1 =
1 + cn

2
, cn := cos(2π/n),

is the double subdominant eigenvalue. That is, we obtain a standard algorithm. How-
ever, if n = 3, the upper left (4 × 4)-submatrices Â′

i := Âi(1 : 4, 1 : 4) of Âi read
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Fig. 6.11 Illustration of Simplest subdivision: (left) Input mesh, (middle) side view after three
double-steps of refinement, and (right) close-up of visual cone tip after 20 double-steps of refine-
ment. Nevertheless, from a mathematical point of view, the limit surface is smooth.

Â′
0 =

1
4

⎡
⎢⎢⎣

4 0 0 0
3 1 0 0
2 1 0 1
3 0 0 1

⎤
⎥⎥⎦ , Â′

1 = Â′
2 =

1
8

⎡
⎢⎢⎣

2 0 0 0
3 − i

√
3 2 0 0

4 2 0 2
3 + i

√
3 0 0 2

⎤
⎥⎥⎦ .

The subdominant eigenvalue λ = 1/4 appears in multitude: its algebraic multiplic-
ity in Â′

0, Â
′
1, Â

′
2 is 2, 3, 3, respectively, while its geometric multiplicity in all three

matrices is 2. Consequently, the Jordan decomposition of the subdivision matrix
comprises the non-zero Jordan blocks

J0 = 1, J1 = J2 =
[
1/4 1
0 1/4

]
, J3 = · · · = J6 = 1/4.

Thus, for n = 3, the algorithm is non-standard. Here, the more general theory,
developed in Sect. 5.3/89, applies. The subdivision matrix has type A ∈ A1

1, and
the characteristic ring ψ is defined according to Definition 5.10/92. The complex
eigenvector defining ψ, arranged in matrix form as shown in Fig. 6.7/117, is

v̂ :=

⎡
⎣6 + 4 cn 8 + 3 cn 10 + 4 cn

4 + 2 cn 6 + 2 cn 8 + 3 cn

2 4 + 2 cn 6 + 4 cn

⎤
⎦+ isn

⎡
⎣4 2 0

2 0 −2
0 −2 −4

⎤
⎦ .

As detailed in [PR97], regularity and uni-cyclicity can be verified using the same
techniques as described above for the Doo–Sabin algorithm. Hence, we can state

Theorem 6.3 (Simplest subdivision is C1
1 ). Simplest subdivision is a C1

1 -algo-
rithm for all valences n ≥ 3.

It remains to touch on the following two subjects: First, unlike tensor product
B-splines, the nodal functions of box spline spaces do not always form bases. In
particular, the system G of generating rings of Simplest subdivision is linearly de-
pendent. But fortunately, the matrix A as specified here is a subdivision matrix in
the sense that it does not have any ineffective eigenvectors.
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Fig. 6.12 Illustration of Simplest subdivision: Fast convergence for 3-sided facets and slow con-
vergence for large facets.

Second, it must be noted that simplest subdivision, as described here, reveals se-
rious shape artifacts for n = 3, and extremely slow convergence for high valences.
In Fig. 6.11/122 left, we see an input mesh including a triangle, corresponding to an
extraordinary point of valence n = 3. The first two coordinates correspond to the
characteristic spline, while the third one has initial data which are 0 for the three
innermost coefficients, and −1 otherwise. At the center, the surface seems to have
a cone point, even if we zoom in by a factor of one billion to visualize the control
mesh after 20 double steps of refinement (see Fig. 6.11/122, right). By the standards
of Computer Graphics, this is hardly considered a smooth surface.2 The apparent
inconsistence between the theoretical result and the practical realization can be ex-
plained as follows: In the tangent plane, the behavior of rings is governed by the
factor λm,1 = mλm−1, while the component perpendicular to it decays as λm. To
put it differently, let us consider the subdivision step from ring xm to xm+1. Asymp-
totically, the tangential components are multiplied by (1 + 1/m)/4 and the normal
component is multiplied by 1/4, what does not make too much of a difference. As
a consequence, the surface locally resembles the tip of a cone. Only for very large
values of m, the slightly slower decay of the normal component prevails, and forces
the rings to approach the tangent plane3.

Another problem is depicted in Fig. 6.12/123. We see an input mesh which, after
the first step, consists of triangles, quadrangles, and a 16-gon. The obvious problem
concerns the extremely slow shrinkage of the 16-gon. It is due to the corresponding
subdominant eigenvalue λ ≈ 0.962, which is only slightly smaller than 1. As a
consequence, a very large number of subdivision steps is required to obtain a mesh
which is sufficiently dense for, say, visualization.

For practical purposes, Simplest subdivision should be modified, for instance by
the Doo–Sabin weights (6.15/116) for n �= 4. The modest increase in complexity is
easily compensated for by superior shape properties.

2 Imagine that the middle part of Fig. 6.11/122 is the size of Mount Everest. Then the detail on the
right hand side is smaller than the breadth a hair. But mathematicians think in different categories.
3 A quite instructive univariate analog of this case, justified by identifying u = λm, is given by
the curve c(u) =

[
u ln |u|, |u|], u ∈ (−1/2, 1/2). Although the x-axis is easily verified to be the

tangent at the origin, the image of the curve suggests a kink. The reader is encouraged to generate
plots of the curve and its curvature at different scales.
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Anyway, the latter observations clearly show that it is not sufficient to classify a
subdivision algorithm as Ck

1 to ensure fairness of the generated surfaces. Rather, an
exacting analysis is necessary to scrutinize shape properties of subdivision surfaces.
The next chapter focuses on that subject.
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