Chapter 5
C*-Subdivision Algorithms

In the last chapter, we have defined a C}-subdivision algorithm as a pair (A, G)
consisting of a subdivision matrix A and a C*-system G of generating rings. The
conditions given in Definition 4.270 guarantee that the generated splines are consis-
tent at the center. Such algorithms are easy to construct, but of course, they do not
live up to the demands arising in applications, where smoothness is required also
at extraordinary knots. In this chapter, we consider subdivision algorithms in more
detail with the goal to find conditions for normal continuity and single-sheetedness.
First, in Sect. 5.1, we define ‘generic’ sets of initial data Q. Restriction to generic
data is necessary to exclude degenerate configurations which, even for impeccable
algorithms, yield non-smooth surfaces. Section 5.2x+ defines standard algorithms.
This class of algorithms, which is predominant in applications, is characterized by
a double positive subdominant eigenvalue. Here, the characteristic ring, which is
a planar ring built from the subdominant eigenfunctions, plays a key role in the
analysis. With a careful generalization of terms, Sect. 5.35 yields a complete classi-
fication of all C¥-subdivision algorithms. Because we will mostly focus on standard
algorithms throughout the book, this part, which is quite technical, may be skipped
on a first reading. In Sect. 5.4»5, we consider shift invariant algorithms. Shift invari-
ant algorithms have the property that the shape of the generated splines is indepen-
dent of the starting point which we choose for labeling the segments x;,j € Z,,.
The subdivision matrix of shift invariant algorithms is block-circulant and can be
transformed to block-diagonal form by means of the Discrete Fourier Transform.
This process is of major importance in applications, as well as for the further devel-
opment of the theory. Typically, subdivision algorithms are not only shift invariant,
but also indifferent with respect to a reversal of orientation of segment labels. Such
symmetric algorithms are discussed in Sect. 5.5105. We show that symmetric algo-
rithms necessarily have a pair of real subdominant eigenvalues, justifying our focus
on such schemes. Further, we specify easy-to-verify conditions for the characteris-
tic ring which guarantee normal continuity and single-sheetedness of the generated
spline surfaces.
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84 5 CF-Subdivision Algorithms

5.1 Generic Initial Data

Since degenerate cases are unavoidable in any linear setting, we cannot expect a sub-
division algorithm to generate geometrically smooth spline surfaces for all choices
of initial data. In the extreme, subdivision will not even generate a surface: if all
coefficients qg = --- = qp coincide, it generates a sequence of rings that are all
shrunk to a single point. The following definition allows us to discard degenerate
constellations of coefficients so that we can focus on situations that have practical
meaning.

Definition 5.1 (Generic initial data). A vector Q = [qo;...;qp] of initial data
qs € R?, and equally the corresponding vector P = V ~1Q of eigencoefficients
pe € C3, is called generic, if any triple of eigencoefficients has full rank,

det(pit,p2,pi2) #0, (r1,i1) # (ra,i2) # (r3,i3) # (r1,i1).

Imposing conditions on all triples of eigencoefficients is more than needs to be re-
quired in the following. For instance, in the next section on standard algorithms, it is
sufficient to assume that the eigencoefficients p1, p2 are linearly independent. How-
ever, since the set of non-generic initial data as introduced above has measure zero
in RUTD*3 anyway, we choose the simple, more stringent form of the requirement
that will cover all cases of interest.

To classify subdivision algorithms, we regard smoothness of the generated sur-
faces for generic initial data only.

Definition 5.2 (C*-subdivision algorithm). A C}-subdivision algorithm is called

e CF, respectively
e normal continuous, respectively
o single-sheeted,

if it generates spline surfaces that are

e C¥ in the sense of Definition 3.12s, respectively
e normal continuous in the sense of Definition 3.11s, respectively
e single-sheeted in the sense of Definition 3.11ss:

for any generic vector Q of initial data.

5.2 Standard Algorithms

Most subdivision algorithms of practical relevance have a double subdominant
eigenvalue that is real. As will be explained in Sect.5.5:10;, double subdominant
eigenvalues arise from symmetry properties of the algorithms.

Definition 5.3 (Standard algorithm, subdominant eigenvalue )\). A C(’)“-subdivis-
ion algorithm (A, G) is called a standard algorithm, if the subdivision matrix A has
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eigenvalues according to
1>>\1:>\2>|)\3|, lh =49 =0.
Moreover,
A= Al = )\2
is called the subdominant eigenvalue of A.
This definition means that the second largest eigenvalue A of the subdivision matrix
is positive and has geometric and algebraic multiplicity 2. According to (4.26r:) and

(4.29r4), with w?, w$ denoting the second and third row of the matrix V=1 of left
eigenvectors, the equations

Avi = Xv;,  fi =Gu;, pi=wQ, ic{l,2}, G.1)

characterize the corresponding pairs of subdominant eigenvectors, eigenrings, and
eigencoefficients, respectively. With fy = Gvg = 1, we obtain the asymptotic ex-
pansion

x" =FJ"P =po+ A" (fip1 + fop2) (5.2)

for the sequence of rings generated by a standard algorithm. That is, first order
behavior of x™ is completely determined by the user-given data pg, p1, p2 and the
eigenrings f1, f2, which depend only on the algorithm. Together, f; and f, form a
planar ring whose properties are crucial for understanding first order differentiability
properties of subdivision surfaces.

Definition 5.4 (Characteristic ring 1) and spline x, standard). Let (A, G) be
a standard algorithm with Jordan decomposition A = V.JV 1 of A according to
(4.223) and subdominant eigenrings f1, fo according to (5.1ss). The planar ring

’l,[l = [fl,fg] = F[’Ul,'UQ] S Ck(Sg,RQ,G)

is called the characteristic ring of the algorithm corresponding to V. Accordingly,
with the subdominant eigensplines eq, e of Definition 4.24s,

X = [e1, e2] = Blvy,ve] € CF(S,,,R?) (5.3)

is called the characteristic spline.

Since A™[v1,v2] = A™[v1,vq], the rings of the characteristic spline are scaled
copies of the characteristic ring,

XWL — A'le. (5‘4)

For standard algorithms, the characteristic spline x inherits from equation (4.17)
the scaling property

x(27™Ms) = \"x(s), s€8S,, meNy. (5.5)
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Fig. 5.1 Illustration of Definition 5.4:ss: Characteristic ring 1) and its coefficients o, which are
given by the components of the subdominant eigenvectors v1, va.

The coefficients of the characteristic ring are points in R? given by the rows of the
matrix [v1, v2] of subdominant eigenvectors vy, vy (cf. Fig. 5.1s):

’l,b = G[’Ul,’Ug].

These eigenvectors are not uniquely defined, and hence also the matrix V' used for
Jordan decomposition is ambiguous. However, any two admissible pairs are related
by a regular (2 x 2)-matrix L according to [01, U2] = [v1, v2]L. The corresponding
characteristic rings satisfy @ = L. That is, ¥ and 1) are related by a regular
linear map. By this relation, the set of all possible characteristic rings becomes an
equivalence class. The basic properties of characteristic rings that are employed in
the sequel, namely regularity and induced winding numbers, are invariant under
that relation. In this regard, any choice of V' is as good as any other. Therefore,
we omit the suffix “corresponding to V”” when talking about characteristic rings or
characteristic splines (Fig. 5.2s¢).
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Fig. 5.2 Tllustration of Definition 5.4ss: Characteristic spline x of a standard algorithm for sub-
dominant eigenvalues (left) A = 3/8, (middle) A = 1/2, and (right) A = 5/8.
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Now, (5.2s5) reads
x™ = po + A" )[p1; pal. (5.6)

In order to compute normal vectors, we use the operator *D, as introduced in (2.17).
By (2.2/17),
“Dx™ = D1x™ x Dox™ = A2 *Dap (p1 X p2), (5.7)

where we recall that D) = Dy f1 D5 fo — Do f1 D1 fo is the Jacobian determinant
of the characteristic ring.

Definition 5.5 (Regularity of /). The characteristic ring 1) is called regular, if
*D1) has no zeros.

The following theorem shows that regularity of the characteristic ring is sufficient
for a standard algorithm to be normal continuous, and, moreover, discards algo-
rithms with *D1) changing sign.

Theorem 5.6 (Regularity of 1) and normal continuity, standard). A standard
algorithm with characteristic ring 1) is

e normal continuous with central normal

P1 X P2

n® = sign(*D)) 7||p1 <ol

if 1) is regular;
e not normal continuous, if “D1) changes sign.

Proof. We assume generic initial data, hence p; X ps # 0, for both parts of the
proof. First, let us assume that 1) is regular. Since, by Theorem 4.7, *D1) is con-
tinuous on the compact domain SY, the absence of zeros implies that sign(*D1p) is
continuous, and that 1/|*D1)| is bounded. Hence, we obtain

= Sin(Dy) (b1 x pa) £ 0
———— =sign
22 |><D fd" g P1 P2
and see that x™ is regular for almost all m. Further, the normal vectors n” are
convergent according to

*Dx™ X
n" = ————- = sign("Dy) PrEPz e
| Dx || [p1 x P2
Theorem 4.7+ implies normal continuity, as stated. Second, let us assume that
“Dap(s1) “Dp(s2) < 0 for some arguments s1, s € SO. Here, we obtain

N p1 X p :
n"(s;) = sign(*D(s;)) m, ie{1,2},

and see that n" cannot converge to a constant limit since |n™(s;) —
n"(sq)|| = 2. O
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Fig. 5.3 Illustration of Definition 5.7ss: (left) Curve cppnq in S$ and (right) curve 1) o cpnq in R2.

Theorem 5.657 covers all but the case where *D1) has zeros without changing sign.
Here, the behavior of *Dx™ depends on higher order eigencoefficients and cannot
be determined a priori.

Now, the issue of single-sheetedness has to be addressed, and again, properties
of the characteristic ring are crucial. We consider the curve cppq : U = [0, 1] — SO
in the domain of 1) which parametrizes the outer boundary: With u; := j/n, let

) (1,2n(u — u;), j) if uy <u<uji

Cbn = .

bnd (2n(uj+1 —u), 2,j) if wjp1/0 <u<ujp,

see Fig.53ss left. As shown in Example 3.10s, its winding number is
V(Cbnd,O) = 1.

Definition 5.7 (Winding number of v0). The winding number of the characteristic
ring ¢ € C*(SY,R?) is defined as

v(1) := v( o cpna, 0),
see Fig. 5.3ss. We say that v is uni-cyclic if |v(¢)| = 1.

We are now able to prove an easy-to-verify criterion for the single-sheetedness of
subdivision algorithms in terms of the winding number of the characteristic ring.

Theorem 5.8 (Winding number of 1) and single-sheetedness, standard). Con-
sider a standard algorithm (A,G) with a regular characteristic ring @ €
C*(SY R?). Then the following assertions are equivalent:

e (A,G)is a Cf-subdivision algorithm.

e The characteristic ring % is uni-cyclic.

e The characteristic ring 1 is injective.

Proof. First, we prove equivalence of the first and the second assertion. We consider
the rings £ of the tangential component &, of x, according to (4.11s4). By (5.6s7),
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€' = (x™ —x°) - T° = \"lp1; pa] - T,

For generic initial data, the (2 x 2)-matrix L := [p1; p2] - T¢ is invertible. On one
hand, by (2.5/17),
“DET = NP Dap det L.

This implies that £, and hence also x is locally almost regular. On the other hand,
let
€= ATl

then E’” = 2). By continuity and affine invariance of the winding number,

mlgnoo V(&:cn O Cbnd, 0) = 'rr%gnoo V(Em O Cbnd; 0) = VW’)
Combining the two observations, we see that there exists mg € Ny such that &, is
mo-almost regular and v(£*° o cpnq,0) = v(v)). Hence, by Theorem 4.8, £, is
single-sheeted if and only if |v ()| = 1, i.e., if v is uni-cyclic.

Second, we prove equivalence of the second and the third assertion. We define
the spline surface x := [x,0]. Using (5.4s5), we have ||"Dx™| = |"Dx™| =
A2 XDap|, showing that x is almost regular. Further, x is normal continuous with
n° = [0,0,1] and x° = 0. Hence, &, = x, and

v(€, 0 Cpnd,0) = (X © Cbnd, 0) = V(¢ 0 Cpna, 0) = v ().

If 9 is uni-cyclic, then x is single-sheeted by Theorem 3.155:. This implies that x
and hence also v = X is injective. Conversely, if 9 is injective, then the curve
1) o Cpypq 1s injective and can be deformed continuously to a circle with winding
number +1. (]

In applications, it is much easier to check if ¢/ is uni-cyclic than to consider global
injectivity. Since the conditions given above are sufficient and (almost) necessary
for generating C'F-surfaces, we conclude with the following definition:

Definition 5.9 (Standard C{“-algorithm). A standard algorithm is called a stan-
dard Cf-algorithm, if its characteristic ring v is regular with *Dvp > 0 and
uni-cyclic.

Assuming positivity of *Dap is not restrictive. If *D1p = *D(G[v1,v2]) < 0 then
interchanging v; and vy readily yields the desired sign.

5.3 General Algorithms

Standard algorithms cover most cases of practical relevance. Yet, there are legitimate
algorithms, for example “simplest subdivision” in Sect. 6.3/, that have a different
eigenstructure-structure; and, certainly, identifying and characterizing more classes
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of C¥-subdivision algorithms is of interest in its own right. This section shows how
a careful extension of the concepts used in the standard case yields results of very
similar flavor and identical wording also in more general settings.

Specifically, we give six families of possible subdivision matrices that, in princi-
ple, are suitable to generate CF-surfaces. We focus on showing that membership in
each family implies smoothness; completeness is proven in [Rei99].

Let us consider the sequence {x"},, of rings according to (4.26+) forming the
spline x. By (2.3/7), the cross product of partial derivatives has the form

Dx™ = Z ahic;. (5.8)

As specified later, the {al"},, form decaying sequences of scaling factors, the
h; = h;(s) are real-valued rings, and the c; are cross products of pairs of eigen-
coefficients. If the above sum has a single dominant term, i.e.,

Dx™ = a{”hlcl, (59)

and if in addition a’"h1 (s) has constant sign s = +1 for all (m,s) € N x S, then
normalization yields normal continuity according to

n" = scy/|lc|.

It is easy to see that alternating behavior of the sequence with elements ai”, or sign
changes of h; destroy convergence.

Now, we consider the case of a multiple dominant term in (5.8w). For simplicity,
we assume that it is double, and write

Dx™ = |af? (STh1C1 +S7271h202)a s = [s3"] = 1.
Choosing a subsequence (for simplicity we reuse the index m) such that si* —
S1, 85° — Sg, we obtain

m » Sthici 4 sahocy

|sihict + s2hacal|

This expression can only converge to a constant limit either if the vectors c1, co
or the functions hq, he are linearly dependent. The simple argument is left to the
reader. The first case is possible only for non-generic data, while the second one
corresponds to the exceptional situation that two functions, which are not interre-
lated by deeper principles, happen to be linearly dependent.

Consequently, we will search algorithms for which the sum in (5.8r0) has a single
dominant term. Using (4.2654) and (4.27r4), we obtain

X" = po + AT Y AT (T S e
A — — _
FA TR T AT SR
+ A [y
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where the remainder term satisfies, with the notation for asymptotics of sequences
in Sect. 4.5, P P ,
m,l1— m,lo— m,{:
r AT AT A

The cross product of partial derivatives can be computed with the aid of (2.317). We
obtain
"Dx™ = a" + g + 1" (5.10)

with
By = AP DS S () X py?)
BY = (772 - A2 DY, (e < pi )

and a remainder term '™ which can be bounded by

B AT AT AT AR L AT AT T AT TR ),

Recalling our convention that 2™ = 0 for ¢ < 0, we find ny’ =0if¢; =0, and
B = O D, IS < pl ) i 6> 0.

The order of decay of the three summands is easily determined using (4.19),

a7 ~ (Arhg)" mhi e
am 0 if 6, =0
? AZmn26=2if 0 > 0
o {(Alxg)m mts if 0, =0

)\%m m26—3 + (/\1)\2)m mlittz—1 + ()\1)\3)7” mbrites if £ > 0.

Now, we are prepared to determine a list of cases where in the representation (5.1051)
either n7* or ny" is the strictly dominant term. In the following,

A:={A: )\ #0}

denotes the set of all subdivision matrices according to Definition 4.270 excluding
the trivial case \; = 0. We distinguish the following cases:

Case 1: (A\1,41) ~ (A2, £2), i.e., there is a multiple subdominant eigenvalue. In this
case, 1y’ < A7, and ¥ < 0§ if (Mg, £2) > (A3, £3). We distinguish two sub-cases:

1-1: Ay € R. Here, A, is also real. If \; = —M\o, then n¥* is alternating and the
algorithm cannot be normal continuous. The case A\; = A5 does not lead to such
problems, and the corresponding class of subdivision matrices is denoted by

Al ={Aec A: (M, 01) = (A2, £2) = (N3, 03), \1 € R}.

We note that standard algorithms, as introduced in the last section, belong to this
class with /1 = /5 = 0.
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1-2: )1 ¢ R. The complex sub-case yields the class
A2 :={Ac A: (M, 01) = (g, 62) = (N3, 03), A1 € R}.

Case 2: | \1| = |Az2], €1 > £s, i.e., we have equal modulus, but differing multiplici-
ties of the first and second eigenvalue. We distinguish three sub-cases:

2-1: 41 = l3+1. Here, 1}* < 07", and ¥ < A" if (A2, £2) = (A3, 3). In that case,
A1 and ), are both real, and their product has to be positive to avoid alternating
behavior of n*. We obtain the class

A% = {A cA: )\ = )\2, {1 =4y + 1, ()\2,62) > ()\3,63)}.
2-2: 41 > {9 + 2. Here, ¥ < nf* < n}’, and we denote
AZ:={Ac A:|\|=|hal, b1 > bs +2}.

2-3:01 = {3 + 2. Here, n" ~ 0y’ implies decay at equal rates of both terms, and
normal continuity cannot be expected by the argument similar to the one ruling
out multiple dominant terms in (5.8x0).

Case 3: |A\1| > |A2|. We distinguish two sub-cases:

3-1:4; = 0. Here, n3* < nf’, and © < 07" if (A2, f2) > (As, f3). Further, the
sign of A1 and A5 has to be equal to avoid alternating behavior. This sub-case is
denoted by

Ag = {A e A: ‘)\1| > |)\2|, l1 =0, A\ >0, ()\2,[2) - (Ag,fg)}
3-2:4; > 1. Here, n7" < n3" and also " < n5'. We denote
.Azl)) = {A cA: |)\1| > I/\2|, ly > 1}

Summarizing, A" is dominant if the subdivision matrix lies in A}, A2 A} or AL,
and #%" is dominant if it lies in A2 or A2.

The, off-hand heuristic, partition of cases into six families will turn out to sim-
plify the analysis that we start by extending the definition of the characteristic
ring.

Definition 5.10 (Characteristic ring, general). Let (A, G) be a subdivision al-
gorithm with subdivision matrix A € A%, p € {1,2,3}, g € {1,2}. We define the
characteristic ring 1 € C*(S%,R?) by
[, £3)] if A€ AjUA;UA;
%= [Re f),Im f] if Ae A}
(7, f1] if A€ A3 U A3
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and the (2 x 3)-matrix P* of eigencoefficients by

pi*; py] if A€ AfUALU AL
P* = [p};ps] := ¢ [Repi’; —Imp'] if A€ A3
PP if Ae A3U A3

) is called regular, if its Jacobian determinant *D1) has no zeros.

The following result on normal continuity is completely analogous to Theorem 5.657
and the conclusion is verbatim the same.

Theorem 5.11 (Regularity of 1) and normal continuity, general). A subdivision
algorithm (A, G) with A € A% and characteristic ring 1 according to the preceding
definition is

e normal continuous with limit

*

Pi X p5
*

n° = sign(*D1) =
( ) x ps|l’

||P1

if the characteristic ring is regular,
e not normal continuous; if *D1p changes sign.

Proof. With the scaling factor

PP if Ae AluA UALU A3
Ay 1=
YT A e A2U A2

the cross product of the partial derivatives of the rings is

Dx™ = am "Dy (P} X P3)-
In the complex case A € A? the relations f0 = fJ and pi' = P52 = pi — ip}
are used to obtain the real representation. Now, the proof proceeds exactly as for
Theorem 5.65. (]

The wording of the theorem below in the general case is verbatim the same as in the
standard case, i.e., as for Theorem 5.8:s on C’,i -regularity.

Theorem 5.12 (Winding number of 1) and single-sheetedness, general). Con-
sider a subdivision algorithm with matrix A € A} with a regular characteristic ring
W € CF(S2,R2). Then the following assertions are equivalent:

e (A,Q) is a CF-subdivision algorithm.
e The characteristic ring v is uni-cyclic.
e The characteristic ring 1 is injective.
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Proof. In all six cases, we will specify sequences { A} of invertible (2 x 2)-matrices
such that the rings can be written as

X" = po + AP 41"

with a suitable remainder term r™. Let us denote the L@)-decomposition of P* by
P* = LT. That is, L is a lower triangular matrix, and T consists of two orthonor-
mal row-vectors spanning the same plane as the rows of P*. For generic data, P*
has full rank, and hence L is invertible. The projection to the tangent plane at the
center 1s

& =(x"—po) T=vpA"L+r™ -T.

We define €7 := ¢™ L~ (A™)~1 and obtain

E"=ap+p", p"i=(" -T)LH(A™)

We will show~ that in all cases the remainder term satisfies p™ < 1, i.e., it converges
to 0. Thus, £€™ = 1), and all the rest of the conclusion proceeds exactly as in
Theorem 5.8ss. It remains to add the details for the six cases. Throughout, we omit
the subscript of the first eigenvalue, (), £) := (Aq, 41).

Case 1-1: For (\g,03) = (A, ¢), the leading terms are
X" = po + A FIP] + A f) .
With 4 = [}, f3], P* = [p{; p5]. and

™

A" =
{ 0 Amt

| e
the remainder terms satisfy

< AN pm (AT < 1L
Case 1-2: For (A\g, £2) = (A, £), we have

x™ = pg + 2Re(A"™" f{p})
’lﬂ:[Ref?,Imf{)], P*:[Repg;*hnpﬂ

Re ™ Tm A4
—Im \™¢ Re \™! |’

r'’ < )\m’g, pm o~ rm(/lm)*1 <1

AT =9 (Am)fl _ % (Am)t/|/\m,é|2 < I/Am,l

Case 2-1: For (Ag, l2) = (A, £ — 1), the leading terms of x™ are

XM = po + /\m,éfi)p{ + )\77L7€_1(f20p571 + f{)p€71 + f%P{%
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and the characteristic ring is v = [f?, f]. With a vector n® perpendicular to P* =

[p%; p5 '] we decompose pt ! = [a, b|P* + ¢n®. Setting

m At pymat—1 e b — 1—b
A :|:O )\m,é—1:|7 (A )IN()‘ ,Z)l[Om]’

5

we obtain the remainder term r™ = A" "1(cf9n® + af{p! + fip!). Using
n°P* = 0 and p{P* ~ [1,0], we find

m 1-b
p™ ~[1/m,0] [O m] <1
Case 2-2: For |A2| = || and ¢5 < ¢ — 2, we have
x™ = po + AIPL A AT (P fip)
Y =1[. 1], P =[pipi "]
ml ym,l—1
A A :| , (Am)—l < ()\m,é—l)—l

0 )\m,é—l
< AL rm(/lm)_1 < 1.

"

Case 3-1: For |A2| < |A1] and £ = 0, we have

X" = py + A FPpL + A fOp
¥ =[f, 5], P*=[p};p?]
AL

0 gt

rm < AR pm (AT <

AT = [ :| , (Am)—l < 1/)\;71,@2

Case 3-2: For |A\z] < |A\1] and ¢ > 0, we have
X" = po + ATOIPL XN (i + fipY)
v=[f.fil. P"=[pipi"]

)\m,[ )\m,é—l s fe1s—
o ] T ey

< AL rm(/lm)_1 < 1.

-

5.4 Shift Invariant Algorithms

A subdivision algorithm is shift invariant if the shape generated by the sequence of
rings remains unchanged regardless which segment is labeled first when numbering
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them. Most subdivision algorithms currently in use have this property. It allows an-
alyzing the spectrum of the subdivision matrix with the help of the Discrete Fourier
Transform (DFT). We will show that shift invariance is possible only for subdivision
matrices with a pair of — either real or complex conjugate — subdominant Jordan
blocks. Further, the characteristic ring is symmetric in the sense that neighboring
segments are related by a 27 /n-rotation.

Corresponding to the partition of a ring x™ = GA™Q into segments x7' =
x"(-,4),j € Zy, the coefficients Q can typically be partitioned into n blocks Q =
[Qo; - . . ; Qn_1], where all blocks' Q; have equal size £ := (£4-1) /n. This grouping
of coefficients into blocks with equal structure is a natural process; by contrast,
assigning the label 7 = 0 to one of these blocks is a random choice, unless the blocks
are intentionally treated differently. We expect from a shift invariant algorithm that
this choice determines the labelling of segments, but not their shape. To make this
precise, let us consider two possible representations Q and Q of a given set of
initial data, differing only by the labelling of blocks, i.e., Qj = Q,;_; for some
© € Zyp. Then the corresponding rings x™ and X™ should have segments related by
an equal shift of labels, i.e., X7* = x7* ;. Let us investigate the consequences of this
requirement. With 1 the identity matrix of size ¢, let

00---01
L0 00 TERT
g |01-00] . ’
00 - 10
00 - 01

00---10

denote the n-block shift matrix. Then Q = S'Q, and shift invariance formally
reads

X' =G(,j)A"S'Q=G(,j —i)A"Q =x]",. (5.11)
For m = 0, we obtain G(-,j)S* = G(-,j — i), and hence, for arbitrary m,
G(-,j)A™S" = G(-,7)S?A™. Disregarding possible linear dependence of the gen-
erating system G, the latter equality suggests that A™ and S* commute. These con-
siderations give rise to the following definition:

Definition 5.13 (Shift invariance). A subdivision algorithm (A, G) is called shift
invariant, if the generating system satisfies

G(7J)S = G(7.7 - 1)7 ,7 € ZTM

and if A and S commute,
AS = SA.

! The partition of vectors of coefficients and functions into n similar blocks must not be confused
with the partition into Jordan blocks, see Sect. 4.6/72.
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The two conditions imply G(-,§)S* = G(-,j — i) and A™S* = S*A™ for all
7,1 € Z,, and m € Ny. Following (5.11x), we obtain

for a shift invariant algorithm, as intended.
According to the partitioning of the coefficients, the subdivision matrix of a shift-
invariant algorithm can be represented by (n x n) blocks A; ; of size (¢ x (),

Aoo - Aon—1
A= : :
An—l,O e An—l,n—l

If A and S commute, we obtain for the blocks
(AS) J i1 = AjJrl)i = (SA)j)i, i,j S Zn.

Hence, the matrix A is completely determined by the blocks A; := A o of the first
column via A; = A;; ;. We say that A is block-circulant and write

Ao Ap1 - Ay
A Ay - Ag
A =circ(Ag, ..., Ap_1) = ) L
Anfl An72 T AO

The given conditions for shift invariance are more general than might appear at first
sight. This is best explained by example.

Example 5.14 (Catmull-Clark algorithm in circulant form). In its standard form,
the Catmull-Clark algorithm uses £ 4+ 1 = 12n + 1 coefficients, arranged as shown
in Fig. 6.3/ to describe a ring. There is one central coefficient qg, and n blocks
QO, e Qn 1 with always 12 elements. The corresponding subdivision matrix and
the generating system have the structure

ag aip ar -+ ap do
as Ay Ap_q - Ay Qo

A = d2 Al AO A2 ) Q = Ql ) é:: [907617"'7én—1]a
Gy Aoy Ay oo A Q1]

where ag is a real number, a; is row-vector, and @y is a column vector with al-
ways 12 elements. Of course, one can adapt the notion of shift invariance to cover
also such situations, but we want to show now that this is actually not necessary
if we slightly modify the structure of the coefficients. The trick is to artificially
extend each block Qj by a copy q; := qo of the central coefficient to obtain
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the arrangement

Q:=[Qu;---;Qu1l, Qj:=[q;; Q]

with 13n coefficients, see Fig. 6.3,111. Accordingly, the subdivision matrix yields the
desired circulant structure,

. ap/n a
A :=circ(Ay,...,An_1), A= [dzjn /Nll] .
J

Division by n is applied to ensure that also the rows of A sum to 1. Further, all
points qi* = --- = q)"_; remain equal throughout the iteration. The new system of
generating rings is

G = [Go,. . ~>Gn71]; Gj = [go/’n, éj],

where division by n retains partition of unity. It is easily shown that the original
algorithm and its variant are equivalent in the sense that

GA™Q = GA™Q

for any choice of initial data. Unlike the original generating rings, the new system
G is linearly dependent. However, no ineffective eigenvectors are introduced.  [J

The key tool for handling circulant matrices is the Discrete Fourier Transform
(DFT). We denote the imaginary unit and the primitive n-th root of unity by

i:=v—-1, w,:=c,+is, :=exp(2ni/n). (5.12)

With 1 the identity matrix of size /as above, we define the Fourier block matrix VYV
by

1 1 T -~ 1
1w, ' 1w, - wll

y —21 4 2
W= (w;71)iez, = 1w, 1 w,*L--- w;1
1wl w2l - w;tl

It is easily verified by inspection that the inverse of WV is given by

I -
wt = - (Wi’ )j ez, = = W.

1
n

In particular, the i-th block column of W~1 is

witi== : . (5.13)



5.4 Shift Invariant Algorithms 99

The DFT of the matrix A is defined by A:=WAW~1, and a standard computation
shows that

Ay 0
A = diag(Ao, ..., Ay_q) = (5.14)
0 An—l

is block-diagonal with entries obtained by applying the Fourier matrix to the first
block column of A,

=W : , thatis A; = Z w, 7t A;.

€L
An—l An—1 IEEn

By definition, A and A are similar, and in particular, they have equal eigenvalues.
More precisely, the Jordan decompositions of A and A are related by

A=VJV™Y, A=VJV~' V=ww

Since A is block-diagonal, its Jordan decomposition is obtained from the respective
decompositions of the blocks,

V:diag(%,...,f/n,l), J=diag(j0,...,jn,1), Az :‘?Z‘jﬂzil.

This means that with the help of the DFT, Jordan decomposition of the subdivision
matrix A, which typically is quite large, boils down to decomposing the n much
smaller blocks AO, ceey Apq individually. More specifically, let © be a (generalized)
eigenvector of fll Then v is the i-th block of a column of V all other blocks of this
column are zero. Hence, using the Kronecker symbol d;; and V' = W*W/, the
corresponding (generalized) eigenvector v of A is

80,0 wn{)
01,i0 1 wy, 0
v=wW" . = - . ,
. n :
6n—1,i’0 wslnfl)zA
or, with (5.13us), briefly
v=Wt0. (5.15)

K3

Moreover, v is always an eigenvector of S to the eigenvalue w,, iie.,
Sv = w, ‘v. (5.16)

This implies for the segments of the corresponding eigenring f := Gv
fi =G, j)v=wiG(-,j)Sv = wiG(-,j — 1)v = w! f;_;. (5.17)

The observation that every Jordan block of A corresponds to a Jordan block of one
of the diagonal blocks leads to the following
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Definition 5.15 (Fourier index). For a complex number A, the set of all indices ¢
with the property that X is eigenvalue of A; is called the Fourier index of \ and
denoted by

F(N\) == {i € Z, : \is eigenvalue of A;}.

Equally, the Fourier index of a Jordan block J, see (4.20m), is

F(J) :={i € Zy, : J is Jordan block of A;}.

It is easily shown that the unique dominant eigenvalue A\g = 1 of a subdivision
matrix has the Fourier index

F(1) ={0}.
Since A is real, the blocks of A and also their Jordan decompositions come in com-
plex conjugate pairs,

A’I’L—i = 27 Vn—z - ?7;7 jl = }1

In particular, if J is a Jordan block of A;, then J is a Jordan block of A,,_;,

ieF(J) o n—ieF(J). (5.18)

Together with (5.17s), this pairing allows us to discard shift invariant subdivision
algorithms without a pair of real or complex subdominant Jordan blocks.

Theorem 5.16 (Shift invariant algorithms). Consider a shift invariant subdivision
algorithm (A, G) with A € A% according to Sect. (5.3s) and a regular characteris-
tic ring ap. Then (A, G) can be a CF-algorithm only if A € A} U A2.

Proof. The excluded cases A € Ag, p > 2, are characterized by the fact
that the first eigenvalue dominates the second one, (A1,01) = (A2,82). \p
has to be real, since otherwise there would exist a similar, but different, eigen-
value (A1, /). Since the Jordan block .J; corresponding to (A1, /1) appears only
once, its Fourier index contains exactly one element, F(J;) = {i1}. How-
ever, by (5.18:1w), n — 4, is also in the Fourier index of J; = J;, what
implies 43 = n — i¢; mod n. This condition has at most two solutions. Ei-
ther i; = 0 or, if n is even, i1 = n/2. In both cases, 2i; = 0 mod n.
Hence, by (5.17), any eigenring f; corresponding to .J; has coinciding segments
fi(-,2) = fi(-,0). Now, we show that in all excluded cases the characteristic
ring ) is not injective, and hence, in view of Theorem 5.12xs, the algorithm is not
Ck.

If A € A2U.A2, then both components of the characteristic ring correspond to the
first Jordan block, ¥ = [f?, f]. Hence, (-, 2) = %(-,0), and ) is not injective.

If A € A U AL, then the second eigenvalue dominates the third one, (\g, f2) =
(A3, ¢3). By the same arguments as above, .J5 is real, the single element is of the
Fourier index F(J,) satisfies 2io = 0 mod n, and the segments f4(-,2) = fi(-,0)
of the eigenring f& coincide. Hence, also in this case, the characteristic ring
P = [fY, f9] is not injective. O
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We now focus on the two remaining classes of algorithms. If A € A1, then we have
a double subdominant Jordan block J; = J5 with Fourier index F(.J;) = F(J2) =
{i,n—i}.If A € A2, then we have a complex conjugate pair of subdominant Jordan
blocks J; = Jp with Fourier indices F(J;) = {i} and F(J;) = {n — i}. In both
cases, we call

-Fsub = {i, n— Z}

the subdominant Fourier index of the algorithm. With ¢ the eigenvector of A; to
A and v = Wi_lﬁ, the two subdominant eigenrings f = Guv; and f = GU are
complex-valued. For A € A%, \; is complex, and this is just the situation that
we expect. We set v := v, vJ := ¥ to obtain f = f, f = f and the char-
acteristic ring v := [Re f{,Im fY] = [Re f,Im f]. For A € A}, X is real, and
v{ := Rew, v§ := Imv are real eigenvectors of A. Hence, f = Re f, f9 = Im f
are real subdominant eigenring, and again, the characteristic ring is 1 := [f}, f9] =
[Re f,Im f]. Thus, the case distinction made in Definition 5.10s: is resolved using
the complex-valued eigenring f.

Definition 5.17 (Characteristic ring, complex).Let (A, G), A € Al U A2, be a
shift invariant C’(’)“—subdivision algorithm with subdominant Fourier index Fg,p =
{i,n — ¢} and a subdominant eigenvector

vi=W o, A = \id. (5.19)
Then the characteristic ring in complex form of the algorithm is defined as the

complex-valued ring
f=GveC*S,C,a).

If clear from the context, the suffix “in complex form” is omitted.

As explained above, f is just the complexification of the formerly defined real char-
acteristic ring,

¥ = [Re f,Im f].

Due to the relation (5.17x), the complex version is sometimes more convenient for
analytical purposes than the real form. For instance, it is helpful when proving the
following theorem on the Fourier index of the subdominant eigenvalue. Its claim is
illustrated by Fig. 5.4.02. On the left hand side, it shows the characteristic ring of the
standard Doo—Sabin algorithm for n = 5 with weights according to (6.15:15). Here,
the subdominant eigenvalue A = 1/2 has the correct Fourier index Fyy, = {1,4}.
On the right hand side, the modified weights a = [1,0,1,1,0]/3 are used, which
yield the subdominant eigenvalue A = (1 + v/5)/6 ~ 0.54 with the inappropriate
Fourier index Fg,p, = {2, 3}.

Theorem 5.18 (Winding number of ) and Fourier index). Let (A, G) be a shift
invariant subdivision algorithm with A € Al U AZ2. If the characteristic ring f is
uni-cyclic then the subdominant Fourier index is Fsup = {1,m — 1}.

Proof. Following Definition 5.7ss, we define the curve z := f o cpnq, Which para-
metrizes the outer boundary of the image of the complex characteristic ring f. Let



102 5 CF-Subdivision Algorithms

Fig. 5.4 Tllustration of Theorem 5.18/101: Characteristic ring 2/ of an algorithm for n = 5 using
(left) standard Doo—Sabin weights so that the Fourier index is F(\) = {1, 4} and (right) intention-
ally modified weights so that 7(\) = {2, 3}. The figure shows and Theorem 5.18101 proves that ¥
is not uni-cyclic in the latter case.

us assume that F,p, = {4, n — i}, then (5.17x) implies

Z'(u+j/n) _ w;{z'(u)
z(u+j/n)  wi 2(u)

, we€l0,1/n]

for all j € Z,,. We obtain

L Un z(1/n
2miv(ep) :/0 z((u)) duzn/o z((u)) du=mnln (zl(é)),

where the imaginary part of the logarithm is only determined up to an integer mul-
tiple of 27. By consistency of neighboring segments according to (4.9) and by
(5.17m),

2(1/n) = £(0,1,0) = £(1,0,1) = w’ 2(0). (5.20)
Hence, for some ¢ € Z,
2nv(f) =n(2mi/n + 27l),
implying that
1=1w(f)] =i+ n|.

The only solutions to this equation are given by |[i| = 1 mod n, as stated. O

Summarizing, a shift invariant Cf-algorithm must have a double subdominant
eigenvalue, either real or complex, corresponding to the Fourier blocks 1 and
n — 1. The following definition removes some of the ambiguities in choosing the
characteristic ring by fixing the index ¢ = 1 in (5.19:0) and requiring f(1,1,0) to
be real and positive.
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Fig. 5.5 Illustration of Example 5.20/103: Characteristic ring of algorithms for n = 6 using (left)
standard Doo—Sabin weights and (right) asymmetric weights.

Definition 5.19 (Characteristic ring, normalized). The characteristic ring f =
G of a shift-invariant subdivision algorithm (A, G) is called normalized, if

v=Wrt, A=\

and the value
f(1> 170) € R>O

is a positive real number.

It is easily shown that normalization is always possible for a C'F-algorithm. In this
case, by Theorem 5.1203, f is injective. Further, Fsup, = {1,n — 1}, and a sub-
dominant eigenvector v can be defined as above. By (5.17w), the characteristic ring
f = Gu satisfies

fi =whfo, J€ZLn. (5.21)

Hence, because f is injective, we have f(1,1,1) = w, f(1,1,0) # f(1,1,0) im-
plying that f(1,1,0) # 0. Now, the rescaled eigenvector ¢ := rv yields the normal-
ized complex characteristic ringf = G if we set, e.g., r :== 1/f(1,1,0).

5.5 Symmetric Algorithms

Now, we consider subdivision algorithms that are not only invariant under shift but
also invariant under reversal of orientation when labelling the initial data. We call
the reversal operation ‘flipping’. The following example illustrates lack of flip in-
variance:

Example 5.20 (Flip symmetry). On the left hand side, Fig. 5.5:0; shows the charac-
teristic ring of the standard Doo—Sabin algorithm with weights according to (6.15:16)



104 5 CF-Subdivision Algorithms

and subdominant eigenvalue A = 1/2. On the right hand side, asymmetric weights
a = [4,1,0,0,0,3]/8 are used. These yield the complex subdominant eigenvalue
A = (6 +/3i)/8 ~ 0.75 + 10.22 and the characteristic ring is not symmetric with
respect to the x-axis. O

Orientation reversal of coefficient labels can be expressed by means of a square
matrix R, the flip matrix. Analogous to shift invariance, flip invariance requires that
A and R commute and that the rings x™ and X™ corresponding to Q and Q = RQ,
respectively, differ only by a flip of orientation.

Definition 5.21 (Symmetry). A subdivision algorithm (A, G) is called flip invari-
ant, if the system of generating rings satisfies

G(S7t7j) = G(t7 57 _])R7 (S7t7]) e S?L?
for some matrix R commuting with A,
AR = RA.

The algorithm is called symmetric, if it is both shift and flip invariant.

We observe that if the generating rings in G are linearly independent, then R must
be an involution, R = R~!.

The spectrum of the asymmetric case in Example 5.2010: included a complex
subdominant eigenvalue. This case is ruled out by symmetry.

Theorem 5.22 (Symmetry requires real subdominant eigenvalues). The symmet-
ric subdivision algorithm (A, G) can be C} only if A € Al, i.e., the subdominant
Jordan block is double and real,

()‘78) = ()\1;61) = (>\2,€2) - ()\2,63), A €eR.

Proof. According to Theorem 5.16:w, A € A} or A € A%, where we recall form
Sect. 5.3 that the class A? contains algorithms with a pair of complex conjugate
subdominant eigenvalues. We assume A € A% and derive a contradiction:

From AR = RA and Av = A\jv, we conclude ARv = RAv = \{Rw, ie., Rv
is either 0 or an eigenvector of A to A;. Since the eigenvector to \; is unique up
to scaling, Rv = av for some a € C. Using the definition of flip invariance, we
obtain

f(1,1,0) = G(1,1,0)v = G(1,1,0)Rv = aG(1,1,0)v = af(1,1,0).
As explained in the sequel of Definition 5.1910;, we may assume that f is injective
if (A, G) is a CF-algorithm. In particular, we have f(1,1,0) # 0 so that a = 1.
Further, by (5.21/03),
f(1,0,0) = G(1,0,0)v = G(1,0,0)Rv = G(0,1,0)v = f(0,1,0)

contradicting injectivity of f. O
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This theorem explains why most subdivision algorithms of practical importance are
standard algorithms according to Definition 5.35:. Shift and flip invariance neces-
sarily lead to a double subdominant Jordan block J; = Jo = J(A, ) and, typically,
this block is reduced to the trivial case ¢ = 0, where the Jordan block is a singleton
A. An algorithm with non-trivial Jordan blocks is given in Sect. 6.3/12.

Consider the characteristic spline h = Bwv in complex form, where v is the sub-
dominant eigenvector according to Definition 5.17:101. The m-th ring of A is

A = GA™Y = A™f.

That is, h is built from complex multiples of the characteristic ring. In the real
case, applying the factor A™ simply amounts to scaling, while in the complex case
A = |\ exp(i¢). Hence, there is an additional rotation, £ = |\|™ exp(ime)f.
This rotation is illustrated by Fig. 5.510: (right).

The following theorem establishes an additional symmetry property for the char-
acteristic ring of a symmetric subdivision algorithm.

Theorem 5.23 (Symmetry of the characteristic ring). Let f = Gv be the normal-
ized characteristic ring of a symmetric subdivision algorithm (A, G) with A € A}.
Then

f(s,t.3) = f(t.s,—j), (s,t.j) € Sp.

Proof. Here, the subdominant eigenvalue A := A\; = )\, is double. As before,
one can show that Rv is 0 or an eigenvector of A to A. Hence, Rv = av + bv
for some constants a,b € C and by (5.16m), Sv = w,, *v and ST = w,v. This
implies SYRSTv = aw, *v + bv. Let us assume without loss of generality that
f(1,1,0) = 1. By symmetry, we obtain

1=G(1,1,00v = G(1,1,0)8' RS?v = aw, ¥ G(1,1,0)v + bG(1,1,0)5
for any j € Z,. Since G is real, it follows G(1,1,0)7 = G(1,1,0)v = 1, and
l=aw,* +b, jeEL.
This implies a = 0,b = 1 and Rv = v. Hence,
f(s,t,j) = G(s,t,j)v = G(t,s,—j)Rv = G(t,s,—j)T = f(t,s,—j).

O

In case of symmetry, C'¥-subdivision algorithms can be detected using significantly
simplified criteria, which involve only properties of the upper half of the segment f
of the characteristic ring. In particular, the appropriate winding number v(f) = 1
can be proven by showing that one arc of the outer boundary of fj does not intersect
the non-positive part of the real axis.

Theorem 5.24 (Conditions for symmetric C-algorithms). Let (A, G) be a sym-
metric C§-subdivision algorithm with A € A} and F(X\) = {1,n— 1}, and assume
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that the characteristic ring f is normalized. Then f is regular if and only if the first
segment fq satisfies

“Dfo(s,t) #0 forall (s,t) € X°withs <t.

Further, if f is regular, then (A, G) is a CF-subdivision algorithm if and only if all
real points on the curve c(u) := fo(u,1),u € [0, 1], are positive, i.e.,

clu) eR = ¢(u) >0.

Proof. By Theorem 5.23105, “Dfo(s,t) = *Dfo(t,s). Further, by (5.2110),
"Df;(s,t) = "D fo(s,t), what proves the first part of the theorem.
To prove the second part, let us assume that c(u.) = fo(us, 1) is a negative

real number. Then u, # 1 because normalization requires fo(1,1) > 0. By The-
orem 5.23n0s, f(us,1,0) = f(1,us,0), showing that f is not injective. Hence, by
Theorem 5.12ss, the algorithm is not C¥. Conversely, let the condition given in the
theorem be satisfied. Following Definition 5.7xs, the winding number of f is

v(f) :=v(f o cpng,0).

The curves c and z := f o cpuq are related as follows: Let u; := j /n. The curves ¢
and ¢ combine to the outer boundary of the segment fj,

() ¢(2nu) ifug <u<wuy/2
zo(u) ==
0 (2 —=2nu) ifu/2 <u<u,

and the segments of z are rotated copies of z,
2(u) = whzo(u —uj), u; <u<ujp.

Now, we apply Lemma 2.20s6. The disjoint half-lines are given by h; := —wi 1.
Further, by (5.20102) and Theorem 5.23/10s,

co(u1) = wyco(uo) = o(uo).
Hence, arg(z1) = — arg(zo9) = 7/n, and therefore
arg(z;/hj) —arg(zj_1/h;) = 1+ 1/n)r — (1 — 1/n)m = 27 /n.

Finally, we obtain the winding number
() =r(z0) = £ Y omm=1
v(f) =v(z2,0)= — w/n =
) 27T jil Y

showing that f is uni-cyclic. By Theorem (5.12s3), (A, G) is a CF-algorithm. [0

In some cases, an even simpler sufficient condition is applicable:
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Theorem 5.25 (More conditions for symmetric Cf-algorithms). Let (A, G) be a
symmetric C§-subdivision algorithm with A € A} and F(\) = {1,n — 1}, and as-
sume that the characteristic ring f is normalized. Then (A, G) is a CF-subdivision
algorithm if both components of Da fy are positive,

Re(Dafo) >0, Im(Dsfo) > 0. (5.22)

Proof. Symmetry implies Re(D1 fo(s,t)) = Re(Dafo(t,s)) > 0 and Im(Ds fo
(s,t)) = —Im(Dsyfo(t, s)) < 0. Hence,

"D fo = Re(D1 fo) Im(Dz fo) — Im(D1 fo) Re(D2.fo) > 0,

showing that hat f is regular. Further,

/ D fo(r,1)dt = fo(1,1) — fo(u,1) = fo(1,1) — c(u).

fo(1,1) is real, and the imaginary part of the integrand is negative so that
Im(c(u)) >0 for wu e (0,1].

Hence, ¢(1) = 1 is the only real point in the image of ¢, and the argument is
complete. (]
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