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Preface

Akin to B-splines, the appeal of subdivision surfaces reaches across disciplines from
mathematics to computer science and engineering. In particular, subdivision sur-
faces have had a dramatic impact on computer graphics and animation over the
last 10 years: the results of a development that started three decades ago can be
viewed today at movie theaters, where feature length movies cast synthetic char-
acters ‘skinned’ with subdivision surfaces. Correspondingly, there is a rich, ever-
growing literature on its fundamentals and applications.

Yet, as with every vibrant new field, the lack of a uniform notation and standard
analysis tools has added unnecessary, at times inconsistent, repetition that obscures
the simplicity and beauty of the underlying structures. One goal in writing this book
is to help shorten introductory sections and simplify proofs by proposing a standard
set of concepts and notation.

When we started writing this book in 2001, we felt that the field had sufficiently
settled for standardization. After all, Cavaretta, Dahmen, and Micchelli’s mono-
graph [CDM91] had appeared 10 years earlier and we could build on the habilita-
tion of the second author as well as a number of joint papers. But it was only in the
process of writing and seeing the issues in conjunction, that structures and notation
became clearer. In fact, the length of the book repeatedly increased and decreased,
as key concepts and structures emerged.

Chapter 2/15, for example, was a late addition, as it became clear that the differen-
tial geometry for singular parameterizations, of continuity, smoothness, curvature,
and injectivity, must be established upfront and in generality to simplify the ex-
position and later proofs. By contrast, the key definition of subdivision surfaces as
splines with singularities, in Chap. 3/39, was a part of the foundations from the outset.
This point of view implies a radical departure from any focus on control nets and
instead places the main emphasis on nested surface rings, as explained in Chap. 4/57.
Careful examination of existing proofs led to the explicit formulation of a number
of assumptions, in Chap. 5/83, that must hold when discussing subdivision surfaces
in generality. Conversely, placing these key assumptions upfront, shortened the pre-
sentation considerably. Therefore, the standard examples of subdivision algorithms
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viii Preface

reviewed in Chap. 6/109 are presented with a new, shorter and simpler analysis than
in earlier publications. Chapters 7/125 and 8/157 were triggered by very recent, new
insights and results and partly contain unpublished material. The suitability of the
major known subdivision algorithms for engineering design was at the heart of the
investigations into the shape of subdivision surfaces in Chap. 7/125. The shortcomings
of the standard subdivision algorithms discovered in the process forced a renewed
search for an approach to subdivision capable of meeting shape and higher-order
continuity requirements. Guided subdivision was devised in response. The second
part of Chap. 7/125 recasts this class of subdivision algorithms in a more abstract form
that may be used as a prototype for a number of new curvature continuous subdi-
vision algorithms. The first part of Chap. 8/157 received a renewed impetus from a
recent stream of publications aimed at predicting the distance of a subdivision sur-
face from their geometric control structures after some m refinement steps. The
introduction of proxy surfaces and the distance to the corresponding subdivision
surface subsumes this set of questions and provides a framework for algorithm-
specific optimal estimates. The second part of Chap. 8/157 grew out of the surprising
observation that the Catmull–Clark subdivision can represent the same sphere-like
object starting from any member of a whole family of initial control configurations.
The final chapter, Chap. 9/175, shows that a large variety of subdivision algorithms
is fully covered by the exposition in the book. But it also outlines the limits of
our current knowledge and opens a window to the fascinating forms of subdivision
currently beyond the canonical theory and to the many approaches still awaiting
discovery.

As a monograph, the book is primarily targeted at the subdivision community,
including not only researchers in academia, but also practitioners in industry with
an interest in the theoretical foundations of their tools. It is not intended as a course
text book and contains no exercises, but a number of worked out examples. However,
we aimed at an exposition that is as self-contained as possible, requiring, we think,
only basic knowledge of linear algebra, analysis or elementary differential geometry.
The book should therefore allow for independent reading by graduate students in
mathematics, computer science, and engineering looking for a deeper understanding
of subdivision surfaces or starting research in the field.

Two valuable sources that complement the formal analysis of this book are the
SIGGRAPH course notes [ZS00] compiled by Schröder and Zorin, and the book
‘Subdivision Methods for Geometric design’ by Warren and Weimer [WW02]. The
notes offer the graphics practitioner a quick introduction to algorithms and their
implementation and the book covers a variety of interesting aspects outside our
focus; for example, a connection to fractals, details of the analysis of univariate
algorithms, variational algorithms based on differential operators and observations
that can simplify implementation.

We aimed at unifying the presentation, placing for example bibliographical notes
at the end of each core chapter to point out relevant and original references. In addi-
tion to these, we included a large number of publications on subdivision surfaces in
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the reference section. Of course, given the ongoing growth of the field, these notes
cannot claim completeness. We therefore reserved the internet site

www.subdivision-surface.org

for future pointers and additions to the literature and theme of the book, and, just
possibly, to mitigate any damage of insufficient proof reading on our part.

It is our pleasure to thank at this point our colleagues and students for their sup-
port: Jianhua Fan, Ingo Ginkel, Jan Hakenberg, René Hartmann, Kȩstutis
Karčiauskas, Minho Kim, Ashish Myles, Tianyun Lisa Ni, Andy LeJeng Shiue,
Georg Umlauf, and Xiaobin Wu who worked with us on subdivision surfaces over
many years. Jan Hakenberg, René Hartmann, Malcolm Sabin, Neil Stewart, and
Georg Umlauf helped to enhance the manuscript by careful proof-reading and pro-
viding constructive feedback. Malcolm Sabin and Georg Umlauf added valuable
material for the bibliographical notes. Nira Dyn and Malcolm Sabin willingly con-
tributed two sections to the introductory chapter, and it was again Malcolm Sabin
who shared his extensive list of references on subdivision which formed the starting
point of our bibliography. Chandrajit Bajaj generously hosted a retreat of the authors
that brought about the final structure of the book. Many thanks to you all! The work
was supported by the NSF grants CCF-0430891 and DMI-0400214.

Our final thanks are reserved for our families for their support and their patience.
You kept us inspired.
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Chapter 1
Introduction and Overview

Subdivision surfaces can be viewed from at least three different vantage points. A
designer may focus on the increasingly smooth shape of refined polyhedra. The
programmer sees local operators applied to a graph data structure. This book
views subdivision surfaces as spline surfaces with singularities and it will focus
on these singularities to reveal the analytic nature of subdivision surfaces. Lever-
aging the rich interplay of linear algebra, analysis and differential geometry that
the spline approach affords, we will, in particular, be able to clarify the necessary
and sufficient constraints on subdivision algorithms to generate smooth surfaces.
Viewing subdivision surfaces as spline surfaces with singularities is, at present, an
unconventional point of view. Visualizing a sequence of polyhedra or tracking a
sequence of control nets appears to be more intuitive. Ultimately, however, both
views fail to capture the properties of subdivision surfaces due to their discrete
nature and lack of attention to the underlying function space. In Sects. 1.1/1 and
1.2/2, we now briefly discuss the two points of view not taken in this book while
in Sect. 1.3/4 the analytic view of subdivision surfaces as splines with singularities
is sketched out. Section 1.4/6 delineates the focus and scope and Sect. 1.5/7 gives an
overview over the topics covered in the book. A useful section to read is Sect. 1.6/7 on
notation.

The trailing two sections are special. We felt a need to recall the state of the
art in subdivision in the regular, shift invariant setting, and to give an overview on
the historical development of the topic discussed in this book. In view of our own,
limited expertise in these fields, we decided to seek prominent help. Nira Dyn and
Malcolm Sabin, two pioneers and leading researchers in the subdivision community
agreed to contribute, and their insightful overviews form Sects. 1.7/8 and 1.8/11.

1.1 Refined Polyhedra

For a graphics designer, subdivision is a tool for automatically cutting off sharp
edges from a carefully crafted polyhedral object. The goal is to obtain a finer and

1



2 1 Introduction and Overview

Fig. 1.1 Catmull–Clark algorithm: Starting from a given input mesh, iterated mesh refinement
yields a sequence of control nets converging to a smooth limit surface. Vertices with n �= 4 neigh-
bors require extraordinary subdivision rules.

finer faceted representation that converges to a visually smooth limit surface (see
Fig. 1.1/2). In effect, subdivision is viewed here as geometric refinement and smooth-
ing. This intuitive view of subdivision has made it popular for a host of applications.
This book could be faulted for failing to celebrate the rich content that can be gen-
erated with such faceted representations that have taken, for example, movie anima-
tion by storm. Indeed, we neglect the graphics designer’s faceted control polyhedron
until Sect. 8.1/157. This is due to the fact that a number of restrictions and assump-
tions have to be placed on subdivision algorithms before the notion of a control
polyhedron even makes geometric sense. The cases where the control polyhedron is
well-defined are therefore justifiably famous and popular.

The actual relationship between the properties of the finite control polyhedron
and those of the limit subdivision surface is not straightforward, already for posi-
tion and more so for higher-order differential geometric quantities. Moreover, in
many design packages, the control polyhedron is ultimately projected onto the limit
surface.

1.2 Control Nets

For the computer scientist, subdivision is primarily a set of operations on a graph
data structure. While the vertices still carry geometric meaning, the edges serve
to encode connectivity. Facets play a subordinate role, relevant only for render-
ing. This point of view, subtly different from faceted approximation, was also taken
by the early literature on subdivision surfaces. Subdivision surfaces were correctly
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Fig. 1.2 Stencils for Catmull–Clark algorithm: (left three) Rules for determining new B-spline
control points of a uniform bicubic spline from old ones after uniform knot insertion. The numbers
placed at the grid points give the averaging weights: for example (left), a new point is generated
as 1/4 of each of four control points of a quadrilateral. The rules establish a new control point
for each face, edge and vertex respectively. (right) Vertices with n �= 4 neighbors require a rule
generalizing the regular case n = 4.

characterized as generalizing a property of tensor-product B-splines: where the
vertices connected by edges form a regular grid, they are interpreted as the B-
spline control net of a uniform tensor-product spline. Representing such splines
on a subdivided domain, by a standard technique called ‘uniform knot insertion’,
yields a finer regular grid. Figure 1.2/3, left three, illustrates this process for bicubic
splines.

When the regular grid of control points is replaced by an irregular configuration,
the rules of regular grid refinement can obviously no longer be applied. The contri-
bution of the seminal papers [DS78,CC78] are ‘extraordinary subdivision rules’ that
mimic the regular rules and apply to irregular networks of points. The vertices of the
input are taken to be control points and the edges determine how a mesh refinement
operator is applied (Fig. 1.2/3, right).

To analyze these extraordinary rules, the early subdivision literature viewed sub-
division surfaces as the limit of a sequence of ever finer control nets. The rules
of refinement correspond to smoothing operators that map a neighborhood of the
control point to an equivalent neighborhood of the corresponding control point
in the refined control net. To track the mesh near any given control point, all
smoothing operators are placed into the rows of a subdivision matrix. Repeated
refinement can then locally be viewed as repeated application of the subdivision
matrix to a vector of control points of the neighborhood. This discrete, linear
algebraic view immediately yields important guidelines for constructing extraor-
dinary rules. In particular, it provides necessary conditions for a smooth limit
surface that take the form of restrictions on the eigenvalues of the subdivision
matrix.

However, the discrete, linear-algebraic point of view fails to provide sufficient
conditions since it neglects the functions associated with the control points. The
splines defined by the ever-increasing regular parts of the control net give a foothold
to tools of analysis and differential geometry.
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pQ4 pT4 dQ4 √3

Fig. 1.3 Types of mesh refinement: top Initial mesh and bottom refined mesh. We focus on algo-
rithms of type pQ4 and dQ4 that result in quadrilateral patches; the analysis and structure of other
subdivision algorithms is analogous (see Chap. 9/175).

1.3 Splines with Singularities

To adequately characterize the continuity properties of subdivision surfaces, this
book emphasizes a third view. As before, where the connectivity allows, the points
of the control net may be interpreted as, e.g., spline coefficients. Refinement isolates
pieces of the surface where such an interpretation is not possible and extraordinary
rules have to be applied. These pieces of the surface are defined as the union of
nested sequences of surface rings and their limit points. This approach supplies a
concrete parametrization that allows us to leverage tools of analysis and differential
geometry to expose the structure of subdivision surfaces. We contrast the concepts
as follows.

• Mesh refinement generates a sequence of finer and finer control nets, converging
to a limit surface. This is the appropriate setup for data structures and implemen-
tation.

• Subdivision generates a sequence of nested rings, whose union forms a spline in
the generalized sense. This is the appropriate setup for analytic purposes.

Typically, the resulting objects coincide: the union of rings defines the same surface
as the limit of control nets. Because this book investigates analytic properties, it
focuses on subdivision in the sense of the second item. The exposition will use the
following concepts.

Splines in a generalized sense. The common attribute of the numerous variants of
splines appearing in the literature1 is a segmentation of the domain. Hence, we use

1 The ‘zoo of splines’ is a crowded place: A large part of the latin and greek alphabets is already re-
served for one-letter prefixes such as for ‘B-spline’ or ‘G-spline’. In addition, there are arc splines,
box splines, Chebyshev splines, discrete splines, exponential splines, trigonometric splines, rational

splines, simplex splines, perfect splines, monosplines, Euler splines, Whittaker splines . . .
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the term ‘spline’ in the following, much generalized sense. A spline is a function
defined on a domain which consists of indexed copies of a standard domain, such as
the unit square for quadrilateral bivariate splines (cf. Definition 3.1/43). Beforehand,
we make no assumptions on the particular type of functions to be used. Therefore
our use of the word ‘spline’ covers not only linear combinations of B-splines or
box-splines,2 but also a host of non-polynomial cases like piecewise exponentials or
even wavelet-type functions. The key observation is that we can regard subdivision
surfaces as a special case of these general splines. Because, ultimately, we are aim-
ing at the representation of smooth surfaces, we assume throughout that splines are
at least continuous.

Quadrilateral splines. We focus on splines defined on a union of indexed unit
squares, called cells, and subdivision that iterates binary refinement of these cells.
The analysis of subdivision surfaces based on a triangular domain partition (see
Fig. 1.3/4) is analogous; as is ternary or finer tessellation rather than dyadic refine-
ment (see for example [IDS02, Ale02, ZS01] for various classifications of mesh re-
finement patterns). Even vector-valued subdivision does not require new concepts
but is fully covered by the theory to be developed. Chapter 9/175 lists classes of sub-
division algorithms that share the structure of subdivision based on quadrilateral
splines and that therefore need not be developed separately.

Splines as union of rings. To properly characterize continuity, the spline domain is
given the topological structure of a two-dimensional manifold. This avoids a more
involved characterization by means of matching smoothness conditions for abutting
patches. The key to understanding subdivision surfaces are the isolated singulari-
ties of splines on a topological domain. That is, we focus on the neighborhood of
extraordinary domain points where n �= 4 quadrilateral cells join.

In the language of control points and meshes, each refinement enlarges the ‘reg-
ular parts’ of the control mesh, i.e., the submeshes where standard subdivision rules
apply. At the same time, the region governed by extraordinary rules shrinks. As
this process proceeds, a nested sequence of smaller and smaller ring-shaped surface
pieces is well-defined, corresponding to the newly created regular region. Eventu-
ally, these rings, together with a central limit point, cover all of the surface (see
Fig. 4.3/61).

In the language of splines,

a spline in subdivision form is a nested sequence of rings.

Since all rings are mappings from the same annular domain to R
d, where typically

d = 3, we can consider spaces of rings spanned by a single, finite-dimensional
system of generating rings.

A subdivision algorithm is a recursion that generates a sequence of rings

within the span of such a system of generating rings. The word ‘ring’ will not lead
to confusion since no rings in the algebraic sense will be considered in this context.

Smoothness at singularities. With rings contracting ad infinitum towards a singular-
ity of the parametrization, it is necessary to use, in the limit, a differential geometric

2 See e.g. [dHR93] or [PBP02,Chap. 17].
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characterization of smoothness. Smoothness is measured in a natural local coor-
dinate system. Injectivity with respect to this coordinate system is crucial but not
always guaranteed by subdivision algorithms; and the lack of second-order differ-
entiability with respect to the coordinate system presents a challenge for character-
izing shape. We therefore devote Chap. 2/15 of this book to a review of concepts of
differential geometry specifically of surfaces with isolated singularities. This differ-
ential geometry of singularities is rarely discussed in the classical literature and is
crucial for understanding subdivision surfaces.

1.4 Focus and Scope

The analysis of subdivision on regular grids has been well-documented and we can
point to a rich literature (see Sect. 1.7/8) on the subject. In particular, [CDM91, p. 18]
gives a general technique for evaluating functions in subdivision form, polynomial
or otherwise, at any rational parameter value. Differentiability of such functions
can typically be established by proving contraction of difference sequences of the
coefficients3 The resulting surfaces are splines in the generalized sense discussed
above.

The continuity and shape analysis in this book will therefore focus on the sin-
gularities corresponding to ‘extraordinary rules’. These singularities are assumed to
be isolated so that a local analysis, based the union of rings, suffices to establish
necessary and sufficient conditions for C1 and C2 continuity.

We focus on at stationary linear algorithms. The analysis then combines the
discrete, linear-algebraic view with the analytic differential geometric view, i.e.,
considers both the subdivision matrix and the surface parametrization.

This analysis develops simple recipes for checking properties of subdivision al-
gorithms and their limit surfaces. Such recipes are needed to verify the correctness
of newly proposed algorithms and to assess their strengths and deficiencies. An im-
portant component in deriving these recipes is to make assumptions explicit. For
example, if we fail to check for ‘ineffective eigenvectors’ (Definition 4.19/76), we
cannot conclude that the subdivision matrix ought to have a single leading eigen-
value of 1, a property that is often taken for granted. Or, to conclude that a C1-
subdivision algorithm generates a C1-surface, we need to check that the input con-
trol points are ‘generic’ (Definition 5.1/84). Once such prerequisites have been es-
tablished, even the ‘injectivity-test’ becomes simple (see, e.g., Theorem 5.24/105).
We illustrate this process for three well-known subdivision algorithms and pro-
vide a framework for constructing new algorithms, in particular for generating
C2-surfaces.

3 The technique relies on the following observation [CDM91, DGL91, Kob98b] [PBP02, p.117]:
Let qm := [. . . , qm

i , . . .] be a sequence with 2mk∇k+1qm converging uniformly to zero as m

tends to infinity. Then the limit qc is a Ck function and for j = 0 : k, the sequences 2mj∇jqm

converge uniformly to the derivatives ∂jqc.
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1.5 Overview

Chapter 2/15 reviews some little known material on the differential geometry of sur-
faces in the presence of singularities, and lays the groundwork for most of the
proofs in Chaps. 3/39–7/125. Chapter 3/39 formally defines the objects of the investi-
gation: splines on topological domains and their forced singularities. Chapter 4/57

introduces the refinement aspect for these splines and defines the resulting class of
surfaces obtained by subdivision. We now narrow the focus to stationary algorithms,
i.e., algorithms where the same rules are applied at each step.

Chapter 5/83 characterizes stationary subdivision algorithms that generate smooth
surfaces, that is, at least C1-manifolds. While a very general class of algorithms is
covered here, particular scrutiny is given to ‘standard algorithms’ which are charac-
terized by subdivision matrices with a double subdominant eigenvalue. In Chap. 6/109,
the resulting powerful analysis techniques are applied to three well-known subdivi-
sion algorithms. In Chap. 7/125 we derive constraints that further restrict the class
of admissible subdivision algorithms to those that are able to represent the full
spectrum of second order shapes. A further restriction of this class finally yields
C2-subdivision algorithms, and we present a new framework for constructing such
algorithms. Finally, in Chap. 8/157, we determine bounds on the distance of a subdi-
vision to a proxy surface, and in particular to its control polyhedron. Further, the
question of local and global linear independence of systems of generating splines is
discussed. Chapter 9/175 then summarizes what schemes fall in the scope of the book
and points to algorithms outside.

For a quick tour through the material, one may proceed as follows. Not skipping
the notational conventions in Sect. 1.6/7 below, Sect. 2.1/16 is indispensable for un-
derstanding whatever follows; also Sect. 2.3/23 should not be missed. In Chap. 3/39,
Sects. 3.2/41–3.4/47 are fundamental, as well as the whole of Chap. 4/57. In Chap. 5/83,
Sect. 5.3/89 may be skipped on first reading. Chapter 6/109 provides examples by ap-
plying the techniques to specific algorithms; its content is not prerequisite to un-
derstanding the remaining chapters. Parts of the material in Chaps. 7/125 and 8/157 are
brand-new. Here, the exposition is less tutorial, but rather intended to prepare the
ground for new research in the field.

1.6 Notation

As a mnemonic help, in particular to discern objects and maps into the range R
d

from objects and maps into the bivariate domain, we use bold greek letters for ob-
jects and for maps into R

2. For example, planar curves and reparametrizations, such
as the ‘characteristic’ reparametrization, will be represented by bold greek letters.
We use plain roman letters for real or complex-valued functions and constants. The
constants, λ for eigenvalues and κ for curvature, are an exception to conform to well-
established usage. Bold roman font is used, in particular, for points and functions in
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the embedding space R
d. For example, the subdivision surface x, its normal n and

the control points qi are so identified.
Points and functions in R

2 and R
d are always understood as row-vectors, e.g.

ξ = [ξ1, ξ2] ∈ R
2, x = [x1, . . . ,xd] ∈ R

d.

Consequently, linear maps in R
2 and R

d are represented by matrix multiplication
from the right. For example,

ξ̃ := ξR, R :=
[

cos t sin t
− sin t cos t

]
,

is a counter-clockwise rotation about the origin by the angle t. We summarize:

Bold greek – point or map into R
2 – row vector

Bold roman – point or map into R
d – row vector

As in Matlab, elements in a row of a matrix or vector are separated by a comma,
while rows are separated by a semicolon. For example,

[1, 2, 3; 4, 5, 6] =
[
1 2 3
4 5 6

]
.

We have made an effort to clarify concepts by a consistent use of names. For exam-
ple, what appears currently in the literature as ‘characteristic map’ is called charac-
teristic ring when we want to emphasize its structure as a map over a topological
ring and distinguish it from the characteristic spline that is defined as a union of
rings and their limit point (cf. Fig. 4.3/61). Replicated from the Index, here are the
key variables:

x spline xm m-th ring of x
b� generating spline g� generating ring
e� eigenspline f� eigenring
χ characteristic spline ψ characteristic ring

Generating splines span the space of subdivision surfaces. They have no relationship
with the formal power series of the z-transform that is sometimes called generating
function (see also the footnote on p. 10).

1.7 Analysis in the Shift-Invariant Setting

Contributed by Nira Dyn

A ‘classical’ subdivision scheme on a regular mesh generates a limit object, such
as function, curve, surface, from initial data consisting of discrete points (control
points), parametrized by the vertices of the mesh. The limit object is obtained by
two processes; first by recursive refinements of the control points, based on a fixed
local refinement rule, and then by a limiting process on the sequence of control
points generated by the recursive refinements.
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The theory of subdivision schemes on regular meshes is quite different from the
analysis presented in this book. It can be traced back to two papers by de Rham
[dR47, dR56], who designed schemes for generating univariate functions with cer-
tain unusual smoothness properties.

The use of subdivision schemes in geometric modeling started with the efficient
rendering of B-spline curves [Cha74, For74]. This method is directly extendable to
tensor-product B-spline surfaces. The topology of such surfaces is rather limited,
and in order to design surfaces of general topology, it was necessary to introduce
irregular points and faces in the initial net of control points, together with spe-
cial valence-dependent refinement rules. (The valence of points and faces in the
regular mesh on which tensor-product B-spline surfaces are defined is 4. Points
and faces with valence different from 4 are termed irregular or extraordinary). The
necessity to refine such general nets lead to the design and analysis of the Doo–
Sabin scheme and the Catmull–Clark scheme, which extend to arbitrary meshes the
tensor-product quadratic and cubic B-spline schemes respectively [CC78,DS78]. At
a later stage the Loop scheme extended a certain box-spline subdivision scheme de-
fined on regular triangulations (all vertices of valence 6), to general triangulations
[Loo87].

In all these cases the limit surface and its properties were known away from a
finite number of irregular points, and the analysis was concentrated at these points.
This book presents the state-of-the-art theory about subdivision surfaces in the vicin-
ity of irregular points.

The analysis of convergence and smoothness of subdivision schemes on reg-
ular meshes became important when interpolatory schemes were introduced by
Dubuc and Deslauriers for univariate functions [DD89, Dub86] and independently
by Dyn, Gregory and Levin, in [DGL87] for curves and in [DGL90] for surfaces.
The limit objects of these schemes are no more piecewise analytic functions, as in
the spline cases, but are of fractal nature. These limits have only a procedural def-
inition in terms of the refinement rule of the corresponding scheme. The existence
of limit objects and their properties had to be deduced from a finite number of co-
efficients, called the mask of the scheme, which define the subdivision refinement
rule.

The need to analyze both the convergence of subdivision schemes defined on
regular meshes, and the smoothness properties of the limit objects generated by
these schemes, gave rise to the development of analysis tools of several kinds. In
parallel to the developments in the geometric-modeling literature, there were many
independent developments in the wavelets literature, since a very important class of
wavelets is defined by subdivision.

In [DGL91], Dyn, Gregory and Levin presented the analysis of a general uni-
variate subdivision scheme for curves, in terms of derived subdivision schemes for
the differences and the divided differences of the data generated by the investigated
scheme. This analysis extends the one used for the four-point scheme [DGL87] to
any order of smoothness.

In [CDM91], Cavaretta, Dahmen and Micchelli considered subdivision schemes
on regular meshes in any space dimension. They introduced the important notion of
a symbol of a scheme, which replaces the finite set of mask coefficients by a Laurent
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polynomial. With this notion, algebraic methods became relevant to the analysis of
subdivision schemes. Also in [CDM91], the principle of ‘contractivity relative to
a positive function’ was introduced, for checking convergence. This lead to simple
sufficient conditions for the convergence of schemes with positive mask coefficients.
The seminal work [CDM91] dealt with many other aspects of subdivision, in par-
ticular with the refinement equation satisfied by the ‘B-spline-like’ function defined
by a convergent subdivision scheme. This observation related subdivision with that
part of wavelets theory which is based on a refinement equation (see [HD03] for
further developments on this relation).

While the analysis tools in [DGL91, CDM91] dealt with subdivision schemes
as refinement operators on control points, the analysis of the interpolatory schemes
in [DD89, Dub86] was done in the Fourier domain. Also, most of the analysis of
solutions of refinement equations in the wavelets literature was done in the Fourier
domain [Dau88, Dau92, DL92a]. Yet in [DL92b], Daubechies and Lagarias devised
methods which follow the development of the control points during the subdivision
process, and obtained in particular interesting observations about the fractal nature
of limits of the four-point interpolatory scheme of [DD89].

The analysis tools based on derived schemes in [DGL91] were simplified and
extended to the multivariate setting by Dyn, Levin and Hed [Hed90]. Using the
symbol and the z-transform4 of the control points, it was possible to investigate
convergence and smoothness by simple algebraic operations (see [Dyn92] and ref-
erences therein). The analysis of convergence and smoothness of multivariate sub-
division schemes was based on the existence of derived ‘non-degenerate’ (called
now ‘full rank’) matrix subdivision schemes for differences and divided differ-
ences of the data generated by the investigated scheme. (A matrix subdivision
scheme refines sequences of vectors using a matrix-valued mask, and generates a
limit vector-function). The convergence part of this analysis, was first presented
in [CDM91].

In a series of papers, Sauer with co-authors developed algebraic methods for
the derivation of matrix-Laurent-polynomial symbols of the matrix subdivision
schemes, used in the analysis of convergence and smoothness of multivariate subdi-
vision schemes (see [MS04] and references therein). They also studied the analysis
of matrix subdivision schemes in general [CCS05].

In the wavelet literature, there was an intense study of matrix subdivision
schemes, mainly for the construction of multiwavelets from a refinable vector of
functions [Str96]. In this context rank 1 matrix schemes are of interest in contrast to
the full rank case above. B-splines with equidistant multiple knots are limits of such
schemes [Plo97].

Matrix subdivision schemes are not affine invariant, and therefore not adequate
for geometric modeling from control points. Yet Hermite subdivision schemes,

4 The analysis of sequences is aided by the z-transform [Jur64] or ‘generating function method’.
The z-transform converts a sequence (of coefficients) into a Laurent series i.e. a summation of
rational and polynomial terms such that the j-th summand is the j-th element of the sequence
weighted by z−j . The sequence of coefficients can then be analyzed as a continuous functions,
called symbol.
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which comprise a special class of matrix subdivision schemes, are of interest in
the functional setting. These schemes refine function values and derivatives val-
ues. Hermite schemes can be used for the design of curves from control points and
tangent vectors attached to them. The first Hermite schemes were introduced and
investigated by Merrien in [Mer92, Mer94b]. General analysis tools for univariate,
interpolatory Hermite schemes were presented by Dyn and Levin in [DL99], as ex-
tension of the tools for the ‘classical’ case.

The analysis of scalar or matrix schemes, defined on regular meshes, and based
on the same refinement rule, operating at all locations and at all refinement levels,
can be done in the Fourier domain. Yet, the analysis based on derived schemes can
be easily adapted to non-uniform schemes, as was done by Daubechies, Guskov and
Sweldens [DGS01, DGS99].

For the analysis of non-stationary subdivision schemes, where a fixed refinement
rule operates in each refinement level, but is changing with the refinement level,
new tools were introduced by Dyn and Levin in [DL95]. The analysis of conver-
gence is done by comparison with converging stationary schemes, and the analysis
of smoothness by extension of the notion of a smoothing factor, which is related
to the derived first divided-difference scheme in the stationary case. Non-stationary
schemes can generate exponential splines, which are piecewise analytic functions,
as well as compactly supported infinitely smooth functions [DL95].

In recent years, much of the research effort is invested in the design and analy-
sis of non-linear subdivision schemes. Such schemes can operate on other types
of data, as manifold-valued data [RDS+05, WD05], or can be data dependent
[MDL05, DY00, KvD98]. The available analysis tools for linear schemes are not
applicable for non-linear schemes, and new methods of analysis have to be
developed.

1.8 Historical Notes on Subdivision on Irregular Meshes

Contributed by Malcolm Sabin

The beginnings of the subdivision story can be dated back to the papers of de Rham
[dR56,dR47], over fifty years ago, but the relevance to the modeling of shape started
with the proposal of Chaikin [Cha74], who devised a method of generating smooth
curves for plotting. This was soon analyzed by Forrest [For74] and by Riesenfeld
[Rie75] and linked with the burgeoning theory of B-spline curves. It became clear
that equal-interval B-spline curves of any degree would have such a subdivision
construction.

The extension to surfaces took just a few years, until 1978, when Catmull and
Clark [CC78] published their descriptions of both quadratic and cubic subdivision
surfaces, the exciting new point being that a surface could be described which was
not forced to have a regular rectangular grid in the way that the tensor product B-
spline surfaces were. The definition of a specific surface in terms of a control mesh
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could follow the needs of the boundaries and the curvature of the surface. This was
made possible by the extension of the subdivision rules to allow for ‘extraordinary
vertices’ where other than four faces come together and ‘extraordinary faces’ where
a face has other than four sides.

At about the same time Doo [DS78] and Sabin, who had also been working on
quadratic subdivision, showed a way of analyzing the behavior of these algorithms
at the extraordinary points, treating the refinement process in terms of matrix multi-
plication, and using eigenanalysis of the spectrum of this matrix [DS78], a technique
also used in the univariate case by de Rham. This aspect was followed up by Ball and
Storry [BS84,BS86] who made this analysis process more formal and succeeded in
making some improvements to the coefficients used around the extraordinary points
in the Catmull–Clark algorithm. Storry identified that in the limit, the configuration
around an extraordinary point was always an affine transform (dependent on the
original polyhedron) of a point distribution which was completely defined by the
eigenvectors of the subdivision matrix. He called this the natural configuration.

The next two big ideas emerged in 1987. Loop, in his Masters’ thesis [Loo87],
described a subdivision algorithm defined over a grid of triangles. This not only
gave a new domain over which subdivisions could be defined, but also showed that
the eigenanalysis could be used explicitly in the original design of an algorithm, in
the choice of coefficients which should be used around extraordinary points.

The other significant publication that year was the description by Dyn, Levin and
Gregory [DGL87] of their four-point curve scheme. This was new in two ways:
it was an interpolating scheme, rather than smoothing, and the limit curve did not
consist of parametric polynomial pieces. The analysis of its continuity and differen-
tiability therefore required new tools.

The first tool was provided in [DGL87] and tools of a greater generality were
provided in [CDM91] and [DGL91]. The method in the later paper together with
the idea of the symbol of a subdivision scheme, presented in [CDM91], was later
expressed in terms of z-transforms, which turn convolution of sequences of num-
bers into multiplication of Laurent polynomials. Algebraic manipulation of these
polynomials allows such processes as the taking of differences to be expressed very
simply, and it has turned out that many of the arguments we need to deploy can be
expressed very elegantly in this notation. It also provides sufficient conditions for
a scheme to have a certain level of derivative continuity, whereas the eigenanalysis
approach provides only necessary conditions.

The generalization of the four-point ideas to an interpolating surface scheme
came in 1990, with the description by Dyn, Gregory and Levin [DGL90] of the
Butterfly scheme, an interpolating surface scheme defined over a triangular grid.

In 1995 Reif [Rei95c] showed that there was rather more to continuity than had
been dreamt of. He identified that the natural configuration implies a parametrization
of the rings of regular pieces which surround each extraordinary point and that it is
essential, in order to obtain a scheme which generates well-behaved surfaces at the
extraordinary points, to ensure that this parametrization is injective. Later, Peters
and Reif went further, and in [PR98] they constructed a scheme (a variant of the
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quadratic) for which the injectivity test fails, resulting in severe folding of the limit
surface in every ring.

The following year Reif [Rei96a] showed that the attempts to make a C2-variant
of Catmull–Clark were not going to succeed, because a surface C2 at the extraordi-
nary points would need to have regular pieces at least bi-sextic.

Thus as we passed the mid-1990s, subdivision theory stood like this:

• A surface subdivision scheme takes a manifold mesh of vertices joined by faces,
usually called the polyhedron, and creates a new, finer, polyhedron by construct-
ing new vertices as linear combinations of the old ones, in groups defined by
the connectivity of the polyhedron, and joining them up by new faces in a way
related to the old connectivity.

• This refinement can be repeated as often as desired, and there are conditions on
the scheme guaranteeing the existence of a well-defined limit surface to which the
sequence of finer and finer polyhedra converges. During the refinement process
the number of extraordinary points remains constant, and they become separated
by regular mesh of a kind which is dependent on the topological rules of the
scheme.

• The regular mesh is often well-described by box-spline theory (the Butterfly
scheme was almost alone in not being describable in those terms) but the z-
transform analysis can always be applied to determine the smoothness of the
limit surface in the regular regions. The extraordinary points are surrounded by
rings of regular mesh, and close to the extraordinary point these are just affine
transforms of the natural configuration, and can be parametrized by the charac-
teristic map.

• Because every box-spline has a generating subdivision scheme [DM84], we had a
way in principle of creating as many different subdivision schemes as we might
want. Each such scheme would have to have its extraordinary point rules in-
vented, of course, but nobody had bothered to go through the exercise. We also
had a sequence of interpolating curve schemes, generated by letting an increas-
ing number (2n) of points influence the new vertex in the middle of each span
[DD89], but this had not led to a sequence of interpolating triangular surface
schemes. In fact Catmull–Clark, Loop and Butterfly were regarded as the sig-
nificant surface schemes, and the cubic B-spline subdivision and the four-point
scheme as the significant curve schemes, any others being only of academic in-
terest.

• The question of the behavior of the limit surface in the immediate vicinity of the
extraordinary points was still of interest. Indeed, the papers [DS78,BS88,Sab91a]
before Reif’s key result[Rei96a] on the lower bound of the polynomial order of
patches surrounding an extraordinary point have been more than balanced by
those after [PU98b, PU98a, QW99, PU00a, PU00b, GBDS05].



Chapter 2
Geometry Near Singularities

Subdivision surfaces have to be analyzed in the terms of differential geometry. This
chapter summarizes well-known concepts, such as the Gauss map, the principal
curvatures and the fundamental forms, but also develops material that is not found
in standard text books, such as the embedded Weingarten map, that is crucial to
understanding subdivision surfaces.

Parametric singularities in the form of isolated ‘extraordinary points’ are a key
feature of subdivision surfaces. The analysis of such singularities requires a sepa-
rate assessment of parametric and geometric continuity. Accordingly, we will define
function spaces Ck

r where k indicates the smoothness of the parametrization, except
at isolated points, and r measures the smoothness of the resulting surface in the
geometric sense.

After providing special notations for dot and cross products in Sect. 2.1/16, we
consider basic concepts from the differential geometry of regularly parametrized
surfaces in Sect. 2.2/17. In particular, the embedded Weingarten map, which is given
by a (3×3)-matrix, is introduced as a geometric invariant for the study of curvature
properties. Unlike the principal directions, it is uniquely defined and continuous
even at umbillic points. This property is crucial for our subsequent considerations
of limit properties of subdivision surfaces at singular points.

In Sect. 2.3/23, the standard requirement on the regularity of the parametrization is
suspended at an isolated point to allow for the structural conditions of subdivision
surfaces. To establish geometric continuity, we first introduce the concept of ‘normal
continuity’. That is, we require that the normal map can be continuously extended
from the regular neighborhood to the singular point. This unique normal is used to
define a differential-geometric notion of smoothness. If and only if the projection
of the surface to the tangent plane is injective, the surface is single-sheeted and
meets the requirements of a two-dimensional manifold. Then, the surface can be
viewed as the graph of a scalar-valued function in a local coordinate system: the
parameters are associated with the tangent plane, and function values are measured
in the normal direction. To capture both analytic and geometric smoothness, we call
a single-sheeted surface Ck

r if its parametrization is Ck and the local height function
is Cr. In case of single-sheetedness, we can use continuity of the Gauss map and the

15
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embedded Weingarten map to decide membership in Ck
1 and Ck

2 , respectively. This
approach circumvents an explicit construction of the local height function. Using the
embedded Weingarten map avoids having to select consistent coordinate systems in
the set of tangent planes, as is necessary when working with the standard Weingarten
map.

2.1 Dot and Cross Products

In this section, we introduce notations for dot and cross products of vectors and
matrices, that should be familiar to the reader before reading on. They are carefully
designed to reduce the notational complexity throughout the book.

We denote the transpose of a matrix B by Bt, and ABt is the standard matrix
product of two matrices A and Bt of suitable dimensions. Then the dot product of
A and B is defined by

A · B := ABt.

In particular, for two row-vectors a,b ∈ R
d with components ai, bi

a · b := abt =
d∑

i=1

aibi

is the Euclidean inner product. The associated norm is

‖a‖ :=
√

a · a.

The cross product of two vectors a = [a1, a2, a3],b = [b1, b2, b3] in R
3 is the vector

a × b := [a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1],

while the cross product of two vectors α := [a1, a2],β := [b1, b2] in R
2 is the real

number
α × β := det[α;β] = a1b2 − a2b1.

For differentiable bivariate functions, partial differentiation is denoted by the oper-
ators D1 and D2. If the differentiable function x := R

2 → R
d depends on s and t,

we also write
D1x = xs, D2x = xt.

Combining both partial derivatives, we obtain the operator D := [D1;D2]. That is,

Dx =
[
D1x
D2x

]
=
[
xs

xt

]

is a (2 × d)-matrix because x is always written as a row-vector. Further, we define
the partial cross product operator ×D := D1 × D2. We distinguish the following
two cases:
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• If applied to a differentiable surface x : R
2 → R

3 then, as detailed in Sect. 2.2/17,

×Dx = D1x × D2x (2.1)

is a field of vectors perpendicular to this surface.
• If applied to a differentiable function ξ : R

2 → R
2 then

×Dξ = D1ξ × D2ξ = ξ1,sξ2,t − ξ1,tξ2,s

is a real-valued function, also known as the Jacobian determinant of ξ.

For later use, we define the following rules, which are easily verified by
inspection:

• If p,q ∈ R
3 are constant vectors, and f, g : R

2 → R are differentiable functions,
then

×D(fp + gq) = ×D[f, g] (p × q). (2.2)

We recall that ×D[f, g] = fsgt−ftgs is real-valued since [f, g] is a function with
two coordinates. For general sums of that type,

×D
(∑

k

fkpk

)
=
∑
k<�

×D[fk, f�] (pk × p�). (2.3)

• If x : R
2 → R

3 is a surface and F is an orthogonal (3×3)-matrix, i.e., F ·F = 1

is the identity, then
×D(x · F) = (×Dx) · F. (2.4)

• If ξ : R
2 → R

2 is a function with two coordinates and L is a (2×2)-matrix, then

×D(ξL) = (×Dξ) det L. (2.5)

2.2 Regular Surfaces

In differential geometry, domains of surfaces are typically assumed to be open
subsets of R

2. In our context however, domains are always required to be closed.
Thus, let Σ be a non-empty closed subset of R

2 that allows for differentiation
up to the boundary.1 Points in the domain Σ , later on also called parameters, are
denoted by

σ = (s, t) ∈ Σ .

1 For now, Σ can be visualized as the unit square. More generally, Σ needs only satisfy the
following cone property: for every point σ on the boundary of Σ, there exists ε > 0 and a vector
ρ ∈ R

2\{0} such that σ + ρ′ ∈ Σ for all ρ′ with ‖ρ′‖ ≤ ‖ρ‖ and
∥∥ρ′/‖ρ′‖ − ρ/‖ρ‖∥∥ ≤ ε. For

instance, the L-shaped set Σ := [0, 2]2\[0, 1)2 has this property.
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s

S

x,n

x(s )

n(s )

Fig. 2.1 Illustration of Definition 2.1/18: Regular surface x and its Gauss map n at a parameter
σ ∈ Σ.

A Ck-surface x on the domain Σ is a k-times continuously differentiable function

x : Σ � σ �→ x(σ) ∈ R
3,

and the space of all such functions is denoted by Ck(Σ , R3). Unless otherwise
stated, we assume k ≥ 1, throughout. The image of x is the set

x(Σ) := {x(σ) : σ ∈ Σ}.

Further, we say that x is embedded in R
3, if the map x is injective. Using the nota-

tion ×Dx for the cross product of partial derivatives, as introduced in the preceding
section, we define regular surfaces as usual (see also Fig. 2.1/18).

Definition 2.1 (Regular surface, Gauss map). A C1-surface x is called regular,
if ×Dx(σ) �= 0 for all σ ∈ Σ . For a regular surface x, the Gauss map is defined by

n : Σ � σ �→
×Dx(σ)
‖×Dx(σ)‖ ∈ R

3.

The Gauss map assigns to each point x(σ0) a normalized normal vector n(σ0) that
is asymptotically perpendicular to the surface,

lim
σ→σ0

(
x(σ) − x(σ0)

) · n(σ0)
‖x(σ) − x(σ0)‖ = 0. (2.6)

The plane which is orthogonal to n(σ0) and passes through x(σ0) is called the
tangent plane at the point x(σ0). Property (2.6/18) can be used to show that the
Gauss map is a geometric invariant in the following sense.

Theorem 2.2 (Invariance of n). Let x and x̃ be two regular embedded C1-surfaces
with equal image. Then, for any pair σ, σ̃ of parameters with x(σ) = x̃(σ̃), the
normal vectors are equal up to sign. That is,

n(σ) = r ñ(σ̃)

either for r = 1 or for r = −1.
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Now, in order to study curvature properties, we assume x ∈ Ck, k ≥ 2, for the rest
of this chapter. Differentiating the identity n · n = 1, we obtain Dn · n = 0. That
means that the row vectors of Dn lie in the tangent plane of x at the corresponding
point. Hence, by regularity, there exists a (2 × 2)-matrix W , called the Weingarten
map,2 with

−Dn = WDx.

Multiplication with the transpose of Dx yields

II = WI,

where

I := Dx · Dx =
[
xs · xs xt · xs

xs · xt xt · xt

]
and, as we will show below,

II := −Dn · Dx = −
[
xs · ns xt · ns

xs · nt xt · nt

]
(2.7)

are symmetric (2 × 2)-matrices, called the first and second fundamental form of x,
respectively. It is easily verified by inspection that

det I = ‖×Dx‖2.

Thus, I is invertible since the parametrization is assumed to be regular. By the prod-
uct rule,

0 = Dk(Dix · n) = DiDkx · n − IIi,k.

Hence, the components of the second fundamental form are given by

IIi,k = DiDkx · n =
det[DiDkx;Dx]

‖×Dx‖ =
det[DiDkx;Dx]√

det I
, (2.8)

showing that II is indeed symmetric. Because I is invertible, we obtain

W = II I−1.

Given a smooth curve γ(t) = σ + tσ′ + o(t) in the domain Σ of x, we define the
related curves

cx(t) := x(γ(t))

on the surface, and
cn(t) := n(γ(t))

on the unit sphere. Dropping, as usual, the parameter σ = γ(0), we obtain by the
chain rule

c′x(0) = σ′Dx, c′n(0) = −σ′WDx.

2 In the literature, the Weingarten map is also referred to as the shape operator.
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Now, we are looking for curves γ with the property that

• r := c′x(0) has unit length;
• c′n(0) = −κr for some κ ∈ R, i.e., c′x(0) and c′n(0) are parallel.

Then the vector r ∈ R
3 is called a principal direction, and κ is the corresponding

principal curvature of x at the point x(σ). The condition c′n(0) = −κr is equivalent
to

σ′W = κσ′, r = σ′Dx.

In other words, σ′ is a left eigenvector of W to the eigenvalue κ. We will show
that W has always two real eigenvalues κ1, κ2, and that the corresponding pair
r1, r2 of principal directions can be chosen orthonormal. It is well known that the
principal curvatures and directions are geometric invariants in the sense that they do
not depend on the parametrization, but only on the shape and the orientation of the
surface.

Theorem 2.3 (Invariance of principal curvatures and directions). Let x and
x̃ be two regular embedded C2-surfaces with equal image. Then, for any pair
σ, σ̃ of parameters with x(σ) = x̃(σ̃) and n(σ) = rñ(σ̃) according to Theo-
rem (2.2/18), the following holds: if r is a principal direction of x at x(σ) to the
principal curvature κ, then it also a principal direction of x̃ at x̃(σ̃) to the principal
curvature rκ.

The theory developed so far is well established, but does not suffice for analyzing
subdivision surfaces.

The principal curvatures depend continuously on the parameter σ ∈ Σ if we
fix the order κ1 ≤ κ2, but the principal directions have discontinuities at umbil-
lic points, characterized by κ1 = κ2. Here, any direction in the tangent plane is a
principal direction, and r1, r2 do not converge when approaching such a point. Ex-
ample 2.15/29 illustrates this fact with a paraboloid of revolution: here the principal
directions diverge near the vertex. In standard textbooks on differential geometry,
the phenomenon of diverging principal directions is described, but then shrugged
off as a degenerate situation. In our context, however, convergence properties will
play a most important role so that we resort to a less common, yet natural approach.

Definition 2.4 (Embedded Weingarten map W). For a regular C2-surface x, let

Dx+ := (I−1Dx)t

denote the pseudo-inverse of Dx, which is a (3 × 2)-matrix. Then we define the
embedded Weingarten map of x as the symmetric (3 × 3)-matrix

W := Dx+ II · Dx+.

We claim that this object is a geometric invariant that contains the complete cur-
vature information in a continuous way. Because W · n = 0, the normal vector
is always an eigenvector of W to the eigenvalue 0. The two other eigenvectors
can be chosen orthonormal (mutually and with respect to n), and are collected in a
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(2 × 3)-matrix R. The diagonal matrix of the corresponding pair of eigenvalues is
denoted by K := diag(κ1, κ2). We obtain the factorization

W = [Rt nt]
[
K 0
0 0

] [
R
n

]
= RtKR,

and therefore
RW = KR.

By orthogonality of the eigenvectors, we have R · n = 0. Hence, there ex-
ists a (2 × 2)-matrix Σ with R = ΣDx. Together with the definitions W =
DxtI−1II I−1Dx and W = II I−1, we conclude from the last display ΣWDx =
WΣDx, and eventually

ΣW = KΣ.

That is, the diagonal entries of K = diag(κ1, κ2) are the eigenvalues of W , and the
rows of Σ = [σ′

1;σ
′
2] are the corresponding left eigenvectors which, via [r1; r2] :=

ΣDx = R, yield the principal directions. Another useful identity is obtained by
multiplying W from both sides by Dx,

DxW · Dx = (Dx · Dx)I−1III−1(Dx · Dx) = II.

Substituting in the definition (2.7/19) of II , we find DxW · Dx = −Dn · Dx and

DxW = −Dn.

Hence, just as W , the matrix W describes the connection between the differentials
Dx and Dn. But, formally speaking, this connection is expressed in the dual of
the tangent space. The resulting advantage of W over W is that W refers to the
coordinates of the embedding space. By contrast, W refers to coordinates of the
tangent space, and there is no distinguished choice for them. This ambiguity be-
comes a substantial problem for segmented surfaces such as subdivision surfaces,
because W may then be discontinuous even in case of geometric smoothness (see
Example 2.15/29).

Together with the last display, the condition nW = 0 uniquely defines W,

[
Dx
n

]
W =

[−Dn
0

]
.

Let F be any orthogonal (3 × 3)-matrix, and x0 a point in R
3. If we define x̄ :=

(x − x0) · F then Dx̄ = Dx · F. By (2.4/17), this yields

n̄ = n · F, (2.9)

and Dn̄ = Dn · F. Thus, the penultimate display easily verifies that the embedded
Weingarten maps are related by

W̄ = FW · F. (2.10)
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So far, we have found the following: the embedded Weingarten map W is a
symmetric (3 × 3)-matrix with a trivial eigenvalue 0 corresponding to the surface
normal n. The other two eigenvalues κ1, κ2 are the principal curvatures, and the
corresponding eigenvectors r1, r2 are the principal directions of the surface. But
unlike these directions, the matrix W depends continuously on the parameter σ.
The following theorem establishes W as a geometric invariant:

Theorem 2.5 (Invariance of W). Let x and x̃ be two regular embedded C2-sur-
faces with equal image, and let n(σ) = rñ(σ̃) for x(σ) = x̃(σ̃) as in The-
orem 2.3/20. Then the corresponding embedded Weingarten maps are equal up to
sign,

W(σ) = rW̃(σ̃).

Proof. Let r = 1. If r is a principal direction of x at x(σ) to the principal curvature
κ, then, by Theorem 2.3/20, it is also a principal direction of x̃ at x̃(σ̃) to κ. Further,
W(σ) · n(σ) = W̃(σ̃) · ñ(σ̃) = 0. Hence, the eigenspaces and eigenvalues of
W(σ) and W̃(σ̃) coincide so that W(σ) = W̃(σ̃). If r = −1, then again, the cor-
responding eigenspaces coincide. However, the eigenvalues and hence the matrices
have opposite sign. �

The mean curvature κM and the Gaussian curvature κG of x are defined by

κM :=
κ1 + κ2

2
, κG := κ1κ2.

They can be computed from W ,

κM =
1
2

trace W, κG = det W = det II/det I,

or, equally well, from W,

κM =
1
2

traceW, κG =
1
2

trace2 W − 1
2
‖W‖2

F, (2.11)

where ‖W‖2
F :=

∑
i,j W2

i,j is the squared Frobenius norm of W. A point x(σ) is
called

• elliptic if κG(σ) > 0,
• hyperbolic if κG(σ) < 0,
• parabolic if κG(σ) = 0.

For later use, and as an important special case, we consider a surface in Euler form.

Example 2.6 (Euler form). Consider a surface in Euler form

x̄(u, v) := [u, v, h(u, v)], (u, v) ∈ Σ̄, (2.12)
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where Σ̄ is a closed domain and h is a C2-function. Obviously, the parametrization
is always regular, and with

R :=

⎡
⎣ rv −huhv

−huhv ru

hu hv

⎤
⎦ ,

ru := 1 + h2
u

rv := 1 + h2
v

w := (1 + h2
u + h2

v)−1/2,

we obtain

Dx̄ =
[
1 0 hu

0 1 hv

]
, Ī =

[
ru huhv

huhv rv

]
, (Dx̄)+ = w2R.

Using
n̄ = w [−hu, −hv, 1], (2.13)

the second fundamental form turns out to be a multiple of the Hessian matrix H of
h,

ĪI = w

[
huu huv

huv hvv

]
=: w H.

Together, the embedded Weingarten map is

W̄ = w5 RH · R, (2.14)

In particular, at a point with hu = hv = 0, we have

W̄ =
[
H 0
0 0

]
,

and the principal curvatures are the eigenvalues of H . �

2.3 Surfaces with a Singular Point

As the next chapter will demonstrate, subdivision surfaces have isolated points
where the natural parametrization of such surfaces is either non-regular or fails to be
differentiable at all. There the theory developed above does not apply. However, the
surfaces can still be smooth from a geometric point of view. The following example
illustrates this difference between analytic and geometric smoothness.

Example 2.7 (Geometric and analytic smoothness).Consider the two surfaces with
(s, t) ∈ [−1, 1]2 (see Fig. 2.2/24),

(s, t) �→ [2s + |s|, t, 0]

(s, t) �→ [s3, t3, s2 + t2]. (2.15)
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Fig. 2.2 Illustration of Example 2.7/23: (left) C0∞-surface and (right) C∞
0 -surface.

The first parametrization is not C1, but generates a perfectly smooth plane. By
contrast, the second parametrization is C∞, but generates a surface with a cusp
at the origin. Its partial derivatives vanish at the origin, i.e., they are linearly
dependent. �

This section is devoted to a study of geometric smoothness properties of surfaces
that are not differentiable at a single parameter, say σ = 0. We start with the fol-
lowing general definition that covers functions with values in R

d.

Definition 2.8 (Ck
0 -function, almost regular). Let Σ ⊂ R

2 be a domain contain-
ing the origin σ = 0. A continuous function x : Σ → R

d is called Ck
0 , if it is

Ck everywhere except at the origin. The space of all such functions is denoted by
Ck

0 (Σ, Rd). The image
xc := x(0)

is called the central point of x. For d = 2 or d = 3, the function x ∈ Ck
0 (Σ, Rd) is

called almost regular if ×Dx(σ) �= 0 for all σ ∈ Σ\{0}.

The subscript of Ck
0 does not refer to σ = 0 but to x being continuous there.

Typically, it is impossible to define a normal vector of a Ck
0 -surface at the central

point in a meaningful way. However, in special situations it may still be possible.
The following definition addresses such a case.

Definition 2.9 (Normal continuity).An almost regular surface x ∈ C1
0 (Σ , R3) is

normal continuous,3 if the limit

nc := lim
σ→0

n(σ),

called the central normal, exists.

3 In the literature, normal continuity is also called tangent plane continuity.
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Fig. 2.3 Illustration of Example 2.10/25: Normal continuous surface with local self-intersection.

In other words, normal continuity requires that the Gauss map can be extended in a
continuous way to all of the domain. For instance, if we consider the first surface in
(2.15/23), we find n(σ) = [0, 0, 1] for σ �= 0 so that, trivially, the surface is normal
continuous with nc = [0, 0, 1]. By contrast, the surface x(s, t) :=

[
s, t,

√
s2 + t2

]
is almost regular, but not normal continuous.

Normal continuity is a weak notion of smoothness as the following example
shows.

Example 2.10 (Multi-sheeted surface). Consider the almost regular C∞
0 -surface

shown in Fig. 2.3/25

x(s, t) :=
[
s2 − t2, st, s3

]
, (s, t) ∈ [−1, 1]2.

It is easily verified by inspection that x is normal continuous with nc = [0, 0, 1].
However, the image of x is not a 2-manifold in the sense of differential geometry
because it is not homeomorphic to a subset of R

2, not even if restricted to an ar-
bitrarily small neighborhood of the central point. The reason is that x has a local
self-intersection so that the projection to the xy-plane is non-injective. More pre-
cisely, the first two components of x(s, t) and x(−s,−t) coincide, while the third
component has opposite sign. �
The next definition addresses this issue in the following way: first, x is moved by a
Euclidean motion so that the central point is mapped to the origin, and the central
normal is mapped to the third unit vector. In that way, the xy-plane becomes the
tangent plane at the central point. Second, the xy-component of the resulting surface
is checked for local injectivity.

Definition 2.11 (Single-sheetedness). Let x ∈ Ck
0 (Σ , R3) be normal continuous

with central normal nc. For a pair Tc := [tc
1; t

c
2] of orthonormal vectors in the
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tangent plane, Fc := [Tc;nc] is an orthogonal (3 × 3)-matrix, called the central
frame. The transformed surface

x∗ := (x − xc) · Fc

has the tangential component

ξ∗ := (x − xc) · Tc ∈ Ck
0 (Σ , R2)

and the normal component

z∗ := (x − xc) · nc ∈ Ck
0 (Σ , R).

If there exists an open connected neighborhood Σ∗ ⊂ Σ of the origin such that ξ∗
restricted to Σ∗ is injective, then x is called single-sheeted at the central point. If x
is single-sheeted, then the local height function4 h∗ is defined by

h∗ : Ξ∗ � ξ �→ z∗
(
σ∗(ξ)

) ∈ R,

where the domain is Ξ∗ := ξ∗(Σ∗) ⊂ R
2, and σ∗ : Ξ∗ → Σ∗ is the local inverse

of ξ∗.

In case of single-sheetedness, the surface can locally be represented with the help
of the local height function h∗, see Fig. 2.4/27,

x(σ) = x̃(ξ) = xc + ξTc + h∗(ξ)nc, ξ ∈ Ξ∗, (2.16)

where σ and ξ are related by σ = σ∗(ξ) and ξ = ξ∗(σ). Accordingly,

x̄(ξ) :=
(
x̃(ξ) − xc

) · Fc = [ξ, h∗(ξ)] (2.17)

is the local Euler form of x, see (2.12/22). The surfaces x and x̄ are related by a reg-
ular affine map so that they share all shape properties. In particular, the Gauss maps
and the embedded Weingarten maps are related by (2.9/21) and (2.10/21), respectively.
We note that the parametrization x̄ is always regular so that, locally, we can identify
smoothness properties of x and h∗.

Definition 2.12 (Ck
r -surface). Let x ∈ Ck

0 (Σ , R3) be normal continuous and
single-sheeted. Then x is called a Ck

r -surface if the local height function is r-times
continuously differentiable in a neighborhood of the origin.

In the sense of this definition, the two surfaces given in (2.15/23) are C0
∞ and C∞

0 ,
respectively. In the forthcoming analysis of subdivision surfaces, the local height

4 If we rotate the central frame about nc, we obtain a one parameter family of local height func-
tions. However, any two members are equivalent in the sense that they differ only by a rotation
of the variable ξ about the origin. In particular, all possible local height functions share the same
smoothness properties. This justifies referring to a single representative.
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Fig. 2.4 Illustration of Definition 2.11/25: Central frame and local height function.

function is relatively hard to determine, while convenient formulas for the normal
vector and the embedded Weingarten map are readily available. Therefore, we are
now going to relate convergence properties of n and W to differentiability proper-
ties of h∗.

Theorem 2.13 (Normal continuity and single-sheetedness imply Ck
1 ). If the sur-

face x ∈ Ck
0 (Σ , R3) is normal continuous and single-sheeted, then x is Ck

1 . In
particular, the local height function satisfies

h∗(0) = 0, Dh∗(0) = 0.

Proof. The equation
(x(σ) − xc) · Tc = ξ

defines σ = σ∗(ξ) as a function of ξ. Since the domain Σ∗ of ξ∗ is assumed to be
connected, σ∗ is continuous with

lim
ξ→0

σ∗(ξ) = σ∗(0) = 0.

Hence, h∗(0) = z∗(0) = 0. By the inverse function theorem, σ∗ is Ck for ξ �= 0
because Dx(σ) ·Tc has full rank for σ �= 0. Hence, h∗ = z∗ ◦σ∗ is Ck away from
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the origin. By (2.9/21),

lim
ξ→0

n̄(ξ) = lim
σ→0

n(σ) · Fc = [0, 0, 1].

According to (2.13/23), the normal vector of the local Euler form is given by

n̄ = w [−h∗,u,−h∗,v, 1], w := (1 + (h∗,u)2 + (h∗,v)2)−(1/2)

away from the origin. Hence, comparing the last two displays, we obtain

lim
ξ→0

Dh∗(ξ) = 0.

Because h∗ is C0 and Dh∗ converges, h∗ is C1. �

Just as convergence of the Gauss map implies Ck
1 , convergence of the embedded

Weingarten map implies Ck
2 .

Theorem 2.14 (Convergence of W implies Ck
2 ). Let k ≥ 2. If the surface x ∈

Ck
1 (Σ , R3) is curvature continuous in the sense that the limit

Wc := lim
σ→0

W(σ)

exists, then x is Ck
2 .

Proof. Let us consider the local Euler form x̄(ξ) = [ξ, h∗(ξ)] of x according to
(2.17/26), and its embedded Weingarten map W̄ according to (2.14/23). Below, we
replace h∗ by h to improve readability, and let ξ = (u, v). We extract three compo-
nents from W̄ and write them in the form⎡

⎣W̄1,1

W̄1,2

W̄2,2

⎤
⎦ = w5

⎡
⎣ r2

u −2huhvru h2
uh2

v

−huhvru h2
uh2

v + rurv −huhvrv

h2
uh2

v −2huhvrv r2
v

⎤
⎦
⎡
⎣huu

huv

hvv

⎤
⎦ ,

where w, ru, rv are defined as in Example 2.6/22. The matrix on the right hand side
is always invertible, and we obtain⎡

⎣huu

huv

hvv

⎤
⎦ = w−1

⎡
⎣ r2

v 2huhvrv h2
uh2

v

huhvrv h2
uh2

v + rurv huhvru

h2
uh2

v 2huhvru r2
u

⎤
⎦
⎡
⎣W̄1,1

W̄1,2

W̄2,2

⎤
⎦ .

By assumption, h is C1 everywhere, and C2 away from the origin. Further, con-
vergence of W implies convergence of W̄ = FcW · Fc, see (2.10/21). Hence, also
huu, huv, and hvv converge so that h is C2 and x is Ck

2 . �

It is important to notice that a similar result is not true for convergent principal
curvatures alone. That is, there are Ck

1 -surfaces with convergent principal curvatures
that are not Ck

2 . Let us illustrate the concepts developed so far by a simple example.
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Fig. 2.5 Illustration of Example 2.15/29: Almost regular surface with (left) its parameter lines and
(right) its confluent principal curvature lines.

Example 2.15 (Computing W). We consider the C∞
0 -surface

x(s, t) := [2
√

s, 2
√

t, s + t], (s, t) ∈ [0, 1]2,

see Fig. 2.5/29. The parametrization is not differentiable at the origin so that we do
not know beforehand if the surface is normal continuous or curvature continuous.
With w := (1 + s + t)−1/2, we obtain for (s, t) �= (0, 0)

Dx =
[
1/
√

s 0 1
0 1/

√
t 1

]
, n = w [−√

s, −√
t, 1].

The normal vector converges according to

lim
(s,t)→(0,0)

n(s, t) = [0, 0, 1].

A suitable central frame Fc is given by the identity, and we obtain

ξ∗(s, t) = [2
√

s, 2
√

t], z∗(s, t) = s + t.

The tangential component ξ∗ is invertible so that x is single-sheeted. Hence, by
Theorem 2.13/27, x is a C∞

1 -surface. The inverse of ξ∗ and the local height function
are

[s, t] = σ∗(x, y) = [x2/4, y2/4], h∗(x, y) = (x2 + y2)/4,

showing that x is in fact C∞
∞ . However, in more complicated situations, such explicit

knowledge on h∗ is not readily available. Therefore, let us analyze curvature and re-
establish curvature continuity that way. We obtain

I =
[
1 + 1/s 1

1 1 + 1/t

]
, II =

w

2

[
1/s 0
0 1/t

]
, W =

w3

2

[
1 + t −t
−s 1 + s

]
.
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Hence, the principal curvatures are κ1 = w/2 and κ2 = w3/2. For (s, t) �= (0, 0),
the corresponding left eigenvectors are unique up to orientation, and we obtain

r1 =
1√

s + t
[
√

t, −√
s, 0], r2 =

w√
s + t

[
√

s,
√

t, s + t].

Obviously, these vectors do not converge as (s, t) → (0, 0). Rather, the origin is
an umbillic point, and any direction in the xy-plane is a principal direction. Now
we compute the embedded Weingarten map. With v := 2 + s + t, we find for
(s, t) �= (0, 0)

Dx+ = w2

⎡
⎣
√

s(1 + t) −√
st

−√
ts

√
t(1 + s)

s t

⎤
⎦ , W =

w5

2

⎡
⎣ 1 + vt −v

√
st

√
s

−v
√

st 1 + vs
√

t√
s

√
t s + t

⎤
⎦ .

The eigenvalues of W are κ1, κ2, 0, and the corresponding eigenvectors are r1, r2,n.
At the origin, we obtain the limit

Wc = lim
(s,t)→(0,0)

W(s, t) =
1
2

⎡
⎣1 0 0

0 1 0
0 0 0

⎤
⎦ .

Hence, by Theorem 2.14/28, the surface is C∞
2 . One could argue that also the stan-

dard Weingarten map W converges as (s, t) → (0, 0), and that curvature continuity
follows equally from that. This is correct, but the situation changes if we consider
the union of x and a second piece of surface,

x′(s, t) := [−2
√

t, 2
√

s, s + t], (s, t) ∈ [0, 1]2.

In the next chapter, we will identify such a construction as a spline surface. Here,
n′ = w [−√

t,
√

s, s + t], and

W ′ =
w3

2

[
1 + t −t
−s 1 + s

]
, W′ =

w5

2

⎡
⎣1 + vs v

√
st −√

t

v
√

st 1 + vt
√

s

−√
t

√
s s + t

⎤
⎦ .

x and x′ join normal continuous along the common boundary according to

x(0, u) = x′(u, 0) = [0, 2
√

u, 0], u ∈ [0, 1]

n(0, u) = n′(u, 0) = (1 + u)−1/2 [0, −√
u, 1].

The corresponding standard Weingarten maps differ at the common boundary,

W (0, u) =
(1 + u)−3/2

2

[
1 + u −u

0 1

]
, W ′(u, 0) =

(1 + u)−3/2

2

[
1 0
−u 1 + u

]
,

while the embedded Weingarten maps coincide,
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W(0, u) = W′(u, 0) =
(1 + u)−5/2

2

⎡
⎣(1 + u)2 0 0

0 1
√

u
0

√
u u

⎤
⎦ .

This shows that x and x′ join curvature continuously. Finally,

lim
(s,t)→(0,0)

W(s, t) = lim
(s,t)→(0,0)

W′(s, t) =

⎡
⎣1 0 0

0 1 0
0 0 0

⎤
⎦

establishes the composed surface x([0, 1]2) ∪ x′([0, 1]2) as Ck
2 in a generalized

sense, which will be made precise in the next chapter. �

2.4 Criteria for Injectivity

The analysis of almost regular surfaces requires criteria for the injectivity of the
tangential component ξ∗ = (x−xc)·Tc of x∗ to establish single-sheetedness of the
surface. At regular points, local injectivity of a function follows immediately from
the inverse function theorem. At singularities, where the situation is much more
complicated, an appropriate tool is provided by a concept from algebraic topology:
the winding number. Below, we give a short introduction to the topic as far as it is
required in this context.

If the surface x is almost regular then

×Dξ∗ = (×Dx) · nc

shows that the tangential component ξ∗ is almost regular in a vicinity of the origin.
For simplicity, we assume Σ = R

2, i.e., ξ ∈ Ck
0 (R2, R2). However, we will not take

advantage of the unboundedness of the domain, but refer only to local properties.
Further, we will omit the subscript star of ξ for the remainder of this chapter.

The map ξ = (ξ1, ξ2) : R
2 → R

2 can be identified in a natural way with a
complex map f : C → C via

f(z) = ξ1(σ) + iξ2(σ), z = σ1 + iσ2. (2.18)

Then the spaces of complex functions corresponding to Ck(R2, R2) and Ck
0 (R2, R2)

are denoted Ck(C, C) and Ck
0 (C, C), respectively, and we can use notions for real

functions ξ or for complex functions f accordingly, e.g.

×Df := ×Dξ.

Further, we assume
f(0) = 0

without loss of generality, throughout. We start with the fundamental definition of
the winding number.
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Fig. 2.6 Illustration of Definition 2.16/32: (left) Winding numbers ν(z, z0) = 0, ν(z, z1) =
ν(z, z2) = 1, ν(z, z3) = 2 and (right) induced winding numbers ν(f, z, z0) = 0, ν(f, z, z1) =
1, ν(f, z, z2) = 2, ν(f, z, z3) = 3 for function f(z) = z2.

Definition 2.16 (Winding number). For U := [0, 1], let z : U → C be a continu-
ous, piecewise differentiable curve in the complex plane that is closed and does not
contain the point z0,

z(0) = z(1), z0 �∈ z(U).

Then the winding number of z with respect to the point z0 is defined by

ν(z, z0) :=
1

2πi

∫ 1

0

z′(u)
z(u) − z0

du. (2.19)

If the curve z passes through z0, i.e., z(u) = z0 for some u ∈ U , we formally set

ν(z, z0) := ∞

to indicate that, typically, the integral diverges. Further, for a function f ∈ C1(C, C),
we define the induced winding number

ν(f, z, z0) := ν(f ◦ z, f(z0)) = ν(w,w0)

as the winding number of the curve w := f◦z with respect to the point w0 := f(z0).

Later on, we will apply the above definitions also to functions, curves, and points in
R

2 using the standard identification with C. As a consequence of the Cauchy integral
formula, the winding number is always an integer. Roughly speaking, the winding
number counts how many times the point z(u) is orbiting counter-clockwise around
the point z0 for u from 0 to 1. Figure 2.6/32 shows a few examples.

The winding number ν(f, z, z0) depends continuously on its arguments, wher-
ever it is finite. Hence, because it can attain only integer values, it is piecewise
constant, where the pieces are separated by infinite values. More precisely, we state
without formal proof:
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Lemma 2.17 (Persistence of winding number). If fα, zα, zα
0 are families of func-

tions, curves, and points, respectively that depend, with respect to the sup-norm,
continuously on the parameter α ∈ [0, 1] and satisfy

fα(zα
0 ) �∈ fα(zα(U))

for all α, then the induced winding number is independent of α,

ν(fα, zα, zα
0 ) = ν(f0, z0, z0

0).

In particular, if fα is consistently the identity, then ν(zα, zα
0 ) = ν(z0, z0

0).

The assumption that f be C1 is made only to ensure that w = f ◦ z is piecewise
differentiable. Hence, we can relax this assumption, and require differentiability
of f only in a neighborhood of z(U). In particular, the induced winding number
ν(f, z, z0) is well-defined for f ∈ C1

0 (C, C) as given by (2.18/31), provided that 0 �∈
z(U). However, for the theory to be derived now, we have to extend the definition
of the induced winding number to the case where z0 �= 0 and the curve z passes
through the origin. Here, the integral defining ν(w,w0) does not necessarily exist,
but we can resort to the following smoothing process: Let fα be a continuous family
of C1-functions converging uniformly according to

lim
α→0

‖fα − f‖∞ = 0.

Then, for fα sufficiently close to f , the number of orbits of fα(z) around the point
f(z0) depends neither on α nor on the particular choice of fα. This observation
justifies the definition

ν(f, z, z0) := lim
α→0

ν(fα, z, z0)

for functions f ∈ C1
0 (C, C). Thus, Lemma 2.17/33 remains valid also in this more

general setting.
Now, we consider an almost regular function f ∈ C1

0 (C, C). Because ×Df has
no zeros on the connected set C\{0}, the sign of ×Df is constant,

sf := sign×Df(z0) ≡ ±1, z0 ∈ C\{0}.

For a value w0 �= 0, the preimage does not contain the origin, but only regular
points,

f(z0) = w0 ⇒ ×Df(z0) �= 0.

By the inverse function theorem, there exists a neighborhood Γ (z0) of z0 such that f
restricted to Γ (z0) is a diffeomorphism. Hence, for any curve z in Γ (z0) encircling
the point z0 once, i.e., ν(z, z0) = 1, also the image w = f ◦ z is encircling the point
w0 := f(z0) once. The orientation of the image curve depends on the sign of ×Df
so that

ν(f, z, z0) = ν(f ◦ z, w0) = sf .
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This value is independent of the particular choice of the curve z as long as z is
sufficiently close to z0. It is called the index of f at z0. Indices and winding numbers
are related by a fundamental formula. In our setting, it takes on the following simple
form.

Lemma 2.18 (Number of preimages). Let f ∈ C1
0 (C, C) be almost regular,

f(z0) = w0 �= 0 be the image of a regular point, and z be a piecewise differen-
tiable Jordan curve with winding number ν(z, z0) = 1. Then the set

{z0, . . . , zm−1} := {z∗ ∈ f−1(w0) : ν(z, z∗) = 1}

of preimages in the interior of the set bounded by z consists of

m = sf ν(f, z, z0)

elements.

Proof. We assume sf = 1; the other case is analogous. In the following, zα is
always a family of curves that depend continuously on α ∈ [0, 1], where

• z0 = z coincides with the given curve,
• f(zα(U)) does not contain w0. By Lemma 2.17/33,

ν(z1, z0) = ν(z, z0) = 1 and ν(f, z1, z0) = ν(f, z, z0).

Hence, we have to show that ν(f, z1, z0) = m. The proof is by induction on m,
starting from m = 1. In this case, zα is chosen such that z1 is shrunk to a circle
lying entirely in the neighborhood Γ (z0). Hence, ν(f, z1, z0) = 1. Now, assume
that the assertion is true for ≤ m preimages, and consider the case of m + 1 preim-
ages. Then, as shown in Fig. 2.7/35, zα is chosen such that z1 consists of two closed
curves z1

0 and z1
1 . The curve z1

0 encloses the point z0, and z1
1 encloses the remaining

points z1, . . . , zm. We split the integral defining ν(f, z1, z0) into two parts. Using
the induction hypothesis, we find

ν(f, z1, z0) = ν(f, z1
0 , z0) + ν(f, z1

1 , z0) = 1 + m,

and the proof is complete. �

This lemma has an important consequence. It reduces the task of establishing injec-
tivity of an almost regular function f in the vicinity of the origin to checking the
winding number of a single curve.

Theorem 2.19 (Injectivity of an almost regular function). Let f ∈ C1
0 (C, C) be

an almost regular function, and let z : U → C be a piecewise differentiable Jordan
curve with ν(z, 0) = 1.

• If |ν(f, z, 0)| = 1 then the restriction of f to a sufficiently small neighborhood
Γ (0) of the origin is injective.

• If |ν(f, z, 0)| �= 1 then the restriction of f to any neighborhood of the origin is
not injective.
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Fig. 2.7 Homotopy used in the proof of Lemma 2.18/34: The given curve z = z0 is transformed
into the target curve z1, which separates z0 from z1, . . . , zm.

Proof. We consider the first statement, and assume |ν(f, z, 0)| = 1. Since the com-
pact set f(z(U)) does not contain the point f(0) = 0, there exists ε0 > 0 such that
the neighborhood

Γ (0) := {z ∈ C : |z| < ε0}
of the origin and f(z(U)) are disjoint. Let w0 = f(z0) be an arbitrary point in the
image of Γ (0).

First, we consider the case w0 �= 0 of a regular value. The family zα
0 := αz0 of

points satisfies the assumptions of Lemma 2.17/33. Hence,

ν(z, z0) = ν(z, 0) = 1, |ν(f, z, z0)| = |ν(f, z, 0)|.

By Lemma 2.18/34, w0 has exactly one preimage in Γ (0).
Second, consider the irregular point w0 = f(0) = 0. Suppose there exists an-

other point z1 �= 0 in Γ (0) with f(z1) = 0. By the inverse function theorem, there
exists ε1 ∈ (0, |z1|/2) such that the neighborhood

Γ (z1) := {z ∈ Γ (0) : |z − z1| < ε1}

of z1 is mapped to a neighborhood of the origin. Now, consider the sequence of
values f(1/r), r ∈ N, converging to the origin. For r sufficiently large, 1/r �∈
Γ (z1), while f(1/r) ∈ f(Γ (z1)). Hence, the regular value f(1/r) has at least two
preimages, contradicting the result of the first part of the proof.
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Now, we consider the second statement, and assume |ν(f, z, 0)| �= 1. For any
ε > 0, the family zα :=

(
(1 − α)ε + α

)
z of curves satisfies the assumptions of

Lemma 2.17/33. Hence,

ν(εz, 0) = ν(z, 0) = 1, |ν(f, εz, 0)| = |ν(f, z, 0)|.

By Lemma 2.18/34, the point f(0) = 0 has |ν(f, z, 0)| > 1 preimages in the interior
of the Jordan curve εz, and the proof is complete. �

We conclude this chapter by providing a tool for computing winding numbers
ν(z, 0) by summing up a finite number of differences of angles, instead of eval-
uating the integral (2.19/32). This is possible if the curve z is partitioned into a finite
number n of segments such that each of these segments is contained in a sliced
plane. Given a point hj �= 0 in C, such a sliced plane is defined as the complement
of the half-line

Hj := {rhj : r ≥ 0}.
Ambiguities, as they typically arise for the complex logarithm can be avoided when
considering only points z ∈ C\Hj in the sector complementary to Hj . Using

arg
z

hj
:= ϕ ∈ [0, 2π),

z

hj
=
∣∣∣∣ z

hj

∣∣∣∣ eiϕ,

the complex logarithm

ln : C\Hj � z �→ ln |z| + i arg
z

hj
(2.20)

is a uniquely defined smooth function on C\Hj with ln′(z) = 1/z.

Lemma 2.20 (Winding number via arguments). Let z : U → C be a closed
piecewise differentiable curve. If there exist points 0 = u0 < u1 < · · · < un−1 <
un = 1 in U and half-lines H1, . . . , Hn such that

z([uj−1, uj ]) ∩ Hj = ∅

for all j = 1, . . . , n, then

ν(z, 0) =
1
2π

n∑
j=1

(
arg

zj

hj
− arg

zj−1

hj

)
,

where zj := z(uj) (cf. Fig. 2.8/37).

Proof. For fixed j, the curve segment z([uj−1, uj ]), is contained in C\Hj . Hence,
we can use the complex logarithm (2.20/36) to evaluate the contour integral
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1

zj−1

arg(zj/hj)

hj

arg(zj−1/hj)

zj

Fig. 2.8 Illustration of Lemma 2.20/36: Half-line Hj through hj and disjoint curve segment
z([uj−1, uj ]) with endpoints zj−1, zj and angles arg(zj−1/hj), arg(zj/hj).

rj :=
∫ uj

uj−1

z′(u)
z(u)

du = ln(z(u))
∣∣uj

uj−1
= ln zj − ln zj−1

= ln |zj | − ln |zj−1| + i
(
arg

zj

hj
− arg

zj−1

hj

)
.

Summing over j, the real part vanishes since ln |z0| = ln |zn|, and we obtain

2πi ν(z, 0) =
n∑

j=1

rj = i
n∑

j=1

(
arg

zj

hj
− arg

zj−1

hj

)
,

as stated. �
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3. The advantages of the embedded Weingarten map over earlier approaches in
the context of the analysis of subdivision surfaces were observed only recently in
[Rei07]. The exposition of the material given here is inspired by that paper.

4. An alternative criterion for curvature continuity is given by means of the an-
chored osculating quadratic, as introduced in [KP08]. For a single-sheeted, al-
most regular surface, the anchored osculating quadratic is defined in the vicinity
of the origin. Using the formalism derived in this chapter, the anchored osculating
quadratic coincides with the quadratic Taylor jet of the local height function h∗ as
defined in Definition 2.11/25. Curvature continuity is equivalent to convergence of
the anchored osculating quadratic to a unique limit when approaching the origin.
Explicit formulas for the coefficients of the anchored osculating quadratic are avail-
able.



Chapter 3
Generalized Splines

In this chapter, we define bivariate splines. The term spline is often used synony-
mous with linear combinations of B-splines and hence piecewise polynomials. We
will define splines in a less restrictive fashion to include, for example, trigonometric
splines and functions generated by interpolating refinement algorithms. This will
allow us to cover the shared underlying fundamentals once and for all. Specifi-
cally, splines are defined as continuous functions on a domain that is a topologi-
cal space. This domain is the result of gluing together indexed copies of the unit
square, and is locally homeomorphic to the domain of standard bivariate tensor
product spline spaces – except at extraordinary knots where more or fewer than
four unit squares join up. Consequently, we can focus on characterizing analyti-
cal and differential-geometric properties of such splines at and near these isolated
singularities.

To lead up to this generalized definition of splines, Sect. 3.1/40 re-interprets the
familiar uniform univariate spline as a spline over a piecewise domain. Section 3.2/41,
devoted to the bivariate setting, formalizes the familiar view of spline continuity
as the joining of pairs of patches along common boundary curves. This is made
precise by a relation that gives the domain the structure of a topological space. Once
that topology is defined, we can introduce splines as continuous functions on this
space. In Sect. 3.3/44, Ck-splines are defined in terms of standard differentiability
properties of joint patches, which are obtained by embedding neighboring cells of
the domain into R

2 in a specific way. This approach turns out to be equivalent to the
familiar characterization of Ck-splines via the agreement of transversal derivatives
along patch boundaries. Of course, in the case of spline surfaces, the analytical
definition fails to yield geometric information at points where the parametrization is
singular.

With the machinery of the preceding chapter, Sect. 3.4/47 characterizes properties
of the spline surface at an extraordinary knot where the parametrization is neces-
sarily singular. Note that this is not yet a characterization of smoothness and shape
of recursive subdivision surfaces, the main topic of this book. However, it captures
essential concepts in a simpler setting. Finally, in Sect. 3.5/53, all new concepts are
illustrated by a singularly parametrized cubic splines in Bernstein–Bézier form.

39
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κ1 κ2

0 1

x

xi
xi+1

× I
U

ϕ

x ◦ ϕ−1

(κ2,i)= (κ1,i+1)

Fig. 3.1 Illustration of Sect. 3.1/40: The spline domain S := U × I is embedded by ϕ into R,
and mapped by x to R

d. The map x is a Ck-spline curve, if x ◦ ϕ−1 is k-times continuously
differentiable.

3.1 An Alternative View of Spline Curves

Usually, a spline curve x is viewed as an R
d-valued function defined piecewise over

the real line. The abscissae separating its segments are called knots. Between two
consecutive knots, the spline curve coincides with a function of a fixed type, say
a polynomial of a certain degree. At knots, the spline has to satisfy smoothness
conditions.

To prepare our analysis of bivariate splines, and to motivate the setting to be
developed then, we take an alternative view. Let U := [0, 1] denote the unit interval,
with κ1 = 0,κ2 = 1 its left and right endpoint.1 Further, I := Z is an index
set enumerating segments xi : U → R

d, i ∈ I, of the spline curve x. The spline
domain

S := U × I
consists of indexed copies (U, i) := U × {i} of the unit interval (Fig. 3.1/40). We
call these copies cells. Then x is a function of both the index i ∈ I indicating the
segment and u ∈ U parametrizing the segment,

x : S � (u, i) �→ xi(u) ∈ R
d.

Let us assume that the different segments xi are linked so that the right endpoint of
the ith segment coincides with the left endpoint of the (i + 1)st segment,

xi(κ2) = xi+1(κ1), i ∈ I. (3.1)

Intuitively, matching values lead to a continuous spline curve. How can this be made
precise? Instead of identifying function values, we identify domain endpoints,

1 According to our conventions, bold greek characters are reserved for objects in R
2. This and

other deviations from our notational conventions are restricted to this section, and justified by the
fact that we are preparing for the bivariate setting.
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(κ2, i) = (κ1, i + 1), i ∈ I. (3.2)

The pairs of identified endpoints play the role of knots, i.e., a knot is an equivalence
class of identified interval endpoints. By this definition, a knot {(κ2, i), (κ1, i + 1)}
is a single argument, which must be assigned a single function value. Hence, (3.1/40)
is not an imposed condition, but an elementary property, which we refer to as
consistency.

To give S the structure of a topological space, we consider a subset S
′ ⊂ S. S

′
is

defined to be open if and only if U ′
i , defined by (U ′

i , i) := S
′ ∩ (U, i), is open for all

i ∈ I in the natural topology of U . This process is a standard technique in topology,
where it is called gluing. For instance, the set S

′
:=
(
(1/2, 1], 5

) ∪ ([0, 1/2), 6
)

is
open since U ′

5 := (1/2, 1] and U ′
6 := [0, 1/2) are open in [0, 1], and all other U ′

i are
empty, hence open, too. But S

′
:=
(
(1/2, 1], 7

)
is not open since, by identification

of end points, U ′
8 := {0}, which is not open but closed.

By defining open sets, S obtains the structure of a topological space. Continu-
ity of x with respect to this topology is equivalent to continuity of all segments
xi together with consistency expressed by (3.1/40). To declare higher order smooth-
ness, we define an embedding ϕ : S → R of the domain S into R as an injective,
continuous, and real-valued spline. The simplest choice is

ϕ : S � (u, i) �→ u + i ∈ R.

Now, x is called a Ck-spline curve, if the composed map

xϕ := x ◦ ϕ−1 : R → R
d

is k-times continuously differentiable. It is easily shown that this is the case if and
only if all segments are Ck, and if the values of the derivatives of two neighboring
segments always agree at the common knot. The above choice of ϕ corresponds
to the familiar class of uniform splines. Non-uniform splines correspond to linear
segments of ϕ with arbitrary slopes, while non-linear segments of ϕ lead to the
concept of geometric smoothness.

Obviously, the complexity of the setup described so far is excessive for uniform
spline curves, but anyway, it is merely meant to be a motivation for the less straight-
forward bivariate setting. The requirements of an analysis of general spline surfaces
necessarily lead to non-trivial topological concepts, any much of the early literature
on the topic suffers from a lack of clean foundations.

3.2 Continuous Bivariate Splines

Analogous to the univariate case, we describe continuous bivariate splines in topo-
logical terms. Let I ⊂ Z be a set of indices, and denote by

U := [0, 1] and Σ := U × U
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the unit interval in R and the unit square in R
2, respectively. Then Σ has corners

κ� and counterclockwise oriented edges ε�, where the index � ∈ {1, 2, 3, 4} is al-
ways understood modulo 4,

κ1 := (0, 0) , ε1(u) := (u, 0)
κ2 := (1, 0) , ε2(u) := (1, u) (3.3)

κ3 := (1, 1) , ε3(u) := (1 − u, 1)
κ4 := (0, 1) , ε4(u) := (0, 1 − u), u ∈ U,

see Fig. 3.2/43. The pair (Σ , i) := Σ × {i}, i ∈ I, is a cell and the union of all cells
forms the spline domain

S := Σ × I.

A ‘patch layout’ is stamped on S by defining a neighbor relation

(ε�, i) ∼ (ε�′ , i
′)

on the set of edges {ε1, . . . , ε4}×I, and identifying points on these edges according
to2

(ε�(u), i) = (ε�′(1 − u), i′), u ∈ U. (3.4)

The pointwise identification of edges induces an equivalence relation

(ε�, i) ∼ (ε�′ , i
′) ⇒ (κ�, i) = (κ�′+1, i

′)

on the set K := {κ1, . . . ,κ4}× I of corners. Each such equivalence class is called
a knot. The number of elements in the equivalence class is the valence of a knot and
denoted by n throughout the book. Pairs of related edges are called knot lines.

To avoid meaningless structures, we make the following assumptions on the
neighbor relation.

• No pair of related edges belongs to the same cell, i.e., i �= i′.
• For a spline domain without boundary, the valence n of each knot is finite and at

least 3. Each knot line corresponds to two edges. That is, each edge is related to
exactly one other edge.

• A spline domain S
′

= Σ × I ′ with boundary is a proper subset of a spline
domain S without boundary, endowed with the same rules for identification.

The pointwise identification (3.4/42) of the edges of the cells gives S the structure
of a topological space via gluing as explained in the univariate setting. We always
refer to this topology in the following. The elements of Σ and S,

σ = (s, t) ∈ Σ , s = (σ, i) = (s, t, i) ∈ S,

2 The special choice of identification leads to orientable surfaces. A generalization of the concept
would complicate the formal setup without yielding additional insight.
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K

ϕ(Σ,i) ϕ(Σ,i′)

ϕ
(ε

,i
)

ϕ
(ε

,i′)

Fig. 3.2 Illustration of Definition 3.3/44: The spline domain S := Σ × I is rigidly embedded by
ϕ into R

2 and mapped by x to K. Gluing identifies knots (κ�, i) = (κ�′+1, i′) and (κ�+1, i) =
(κ�′ , i

′), and edges (ε�, i) ∼ (ε�′ , i
′) (see (3.4/42)).

respectively, are called parameters. To simplify notation later on, we use the con-
vention that multiplication of s by a scalar applies only to its first component,

c s = c (σ, i) = (cσ, i), c ∈ R. (3.5)

Now we define splines as continuous functions over the domain S.

Definition 3.1 (Spline). Let S be a spline domain and K = R
d or K = C

d. A
K-valued spline is a continuous map3

x : S → K.

The restriction
xi : Σ � σ �→ x(σ, i) ∈ K

of x to the cell (Σ , i) is called a patch.4 If K = R
3, then x(S) is called a real spline

surface. The set of all K-valued splines defined on S is denoted by C0(S, K).

The case K = R corresponds to coordinate functions of higher dimensional splines.
In particular, it will serve to construct systems of generating splines. The case
K = R

3 corresponds to spline surfaces, as does K = R
4 for the homogeneous rep-

resentation of rational surfaces. The case K = R
2, or equivalently K = C, occurs

as a change of parameter and to represent the local structure of the spline domain.

3 In the classical theory of spline functions, continuity is not required. However, in the context
of spline surfaces, discontinuous parametrizations make little sense and are therefore excluded a
priori.
4 For the sake of generality, we do not assume that the patches are polynomials or belong to some
other finite-dimensional function space. It is arguable if the object defined here should still be called
‘spline’. However, we find it appropriate since the common characteristics of the many residents
in the ‘zoo of splines’ is segmentation, which is at the core of our definition.
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Corresponding to the pointwise identification of related edges, any two abutting
patches xi and xi′ of a spline x satisfy

(ε�, i) ∼ (ε�′ , i
′) ⇒ xi(ε�(u)) = xi′(ε�′(1 − u)), u ∈ U. (3.6)

This property is called consistency, and it is easy to see that continuity of a spline
is equivalent to continuity of its individual patches together with consistency at all
knot lines.

3.3 Ck-Splines

As in the univariate case, differentiability properties are studied by embedding. That
is, parts of the spline domain are mapped to R

2 in order to construct a suitable re-
parametrization of the spline that can be analyzed by standard tools.

Definition 3.2 (Embedding). Let S be a spline domain and S
′
= Σ × I ′ a subset

inheriting the topology. Then S
′

is called a sub-domain. A spline ϕ ∈ C0(S
′
, R2)

is an embedding of S
′

if ϕ is injective. If all patches of ϕ are rigid motions of the
unit square Σ in R

2, then ϕ is called a rigid embedding.

In other words, an embedding ϕ identifies a subset of R
2 with a subset of S. In the

following, we will use only rigid embeddings to define smoothness of splines.5

Definition 3.3 (Ck-spline). Let (ε�, i) ∼ (ε�′ , i
′) be a knot line, S

′
:= (Σ , i) ∪

(Σ , i′) the corresponding pair of the abutting cells, and ϕ a rigid embedding of S
′
.

A spline x ∈ C0(S, K), K ∈ {Rd, Cd}, is called Ck on S
′
, if the composed map

xϕ := x ◦ ϕ−1 : R
2 ⊃ ϕ(S

′
) → K

is k-times continuously differentiable, see Fig. 3.2/43. x is a Ck-spline, if it is Ck

on all pairs of abutting cells. The space of all Ck-splines on S with values in K is
denoted by Ck(S, K).

Since xϕ is k-times continuously differentiable either for all or for no rigid em-
bedding of two abutting cells, the definition of a Ck-spline is independent of the
particular choice of a rigid ϕ. The following characterization of Ck-splines shows
that the notion of smoothness introduced above is equivalent to the notion of para-
metric smoothness as it appears in the literature. That is, for a Ck-spline, appropri-
ately chosen directional derivatives up to order k of abutting patches agree along
the common edge up to sign. Below, differentiation in the direction of the edge ε�

is expressed by means of the operator
⇀

D�, defined by

⇀

D�x :=
d

du
x(· + ε�(u))

∣∣
u=0

.

5 General embeddings can be used to formalize the concept of ‘geometric smoothness’ but are not
needed here.
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Σ

Σ

Σ

Σ

Σ

ϕ

Fig. 3.3 Illustration of (3.9/45): Piecewise rigid embedding of the spline domain S := U × I.

Lemma 3.4 (Derivatives at knot lines). A spline x ∈ C0(S, K), K ∈ {Rd, Cd},
is a Ck-spline if and only if the following holds:

• Each patch xi is a Ck-function on Σ .
• For all knot lines (ε�, i) ∼ (ε�′ , i

′) and all µ, ν with 0 ≤ µ + ν ≤ k,

⇀

Dµ
�

⇀

Dν
�+1xi

(
ε�(u)

)
= (−1)µ+ν ⇀

Dµ
�′

⇀

Dν
�′+1xi′

(
ε�′(1 − u)

)
, u ∈ U. (3.7)

This system is referred to as the Ck-smoothness conditions.

Proof. Let (ε�, i) ∼ (ε�′ , i
′) and S

′
:= (Σ , i) ∪ (Σ , i′). Further, T denotes the

translation by (1, 0) and

R =
[
0 −1
1 0

]
(3.8)

the planar rotation by the angle π/2 about the origin. Then we define a rigid embed-
ding of S

′
by

ϕ(σ, ι) =

{
σ (RT )−� if ι = i,

σ (RT )1−�′R if ι = i′.
(3.9)

In particular, ϕ(S
′
) = [−1, 1] × U and

ϕ
(
ε�(u)

)
= ϕ

(
ε�′(1 − u)

)
= (0, 1 − u), u ∈ U,

as illustrated in Fig. 3.3/45. The equivalence of k-fold continuous differentiability of
x ◦ ϕ−1 on {0} × [0, 1] and condition (3.7/45) follows from the chain rule. �
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As an important special case of (3.7/45), the first order derivatives along and transver-
sal to a common edge satisfy the C1-conditions

⇀

D�xi

(
ε�(u)

)
= −⇀

D�′xi′
(
ε�′(1 − u)

)
⇀

D�+1xi

(
ε�(u)

)
= −⇀

D�′+1xi′
(
ε�′(1 − u)

)
. (3.10)

Parametric smoothness according to Definition 3.3/44 is not necessary for the
smoothness of a spline surface from a differential geometric point of view; however,
despite its simplicity, it suffices to generate free-form splines of arbitrary topology,
i.e., splines whose patch layout is not restricted to a checkerboard pattern. As a
generic example, polynomial tensor-product splines of coordinate degree d are Ck

in the sense of Definition 3.3/44 if and only if the underlying univariate splines have
equally spaced knots with multiplicity ≤ d − k.

Definition 3.3/44 implies that the elementary algebraic properties of the space of
k-times continuously differentiable functions in K are inherited by the spline space
Ck(S, K). First, Ck(S, K) is a linear space and affine invariant, i.e., closed under
affine transformations of the image space K. Second, Ck(S, K) with coordinate-
wise multiplication is a commutative ring with unit; the latter is the spline that is
constant equal 1 in all coordinates.

Since the construction of continuous splines on the spline domain is straightfor-
ward, we now consider at least once continuously differentiable splines. In other
words, unless explicitly specified otherwise, in the following

we assume an order of differentiability k ≥ 1. (3.11)

It should be noted that it does not make sense to apply the operators
⇀

D� to a spline
because, typically, inconsistencies would arise at knot lines. By contrast, the partial
cross product operator

×D = D1 × D2,

as introduced in Sect. 2.1/16, is well defined on the space of C1-splines. More pre-
cisely, if x is a Ck-spline, then the patches ×Dxi satisfy the smoothness conditions
(3.7/45) up to order k − 1.

Lemma 3.5 (Smoothness of ×Dx). For d ∈ {2, 3}, let x ∈ Ck(S, Rd). Then the
map

×Dx : S � (σ, i) �→ ×Dxi(σ) ∈
{

R if d = 2
R

3 if d = 3

is a Ck−1-spline, i.e., ×Dx ∈ Ck−1(S, R2d−3).

Proof. Obviously, ×D =
⇀

D� × ⇀

D�+1 for all � = {1, . . . , 4}. Let (ε�, i) ∼ (ε�′ , i
′)

be a knot line. For µ + ν < k, the product rule yields

⇀

Dµ
�

⇀

Dν
�+1

×Dxi =
µ∑

m=0

ν∑
n=0

(
µ

m

)(
ν

n

)
⇀

Dm+1
�

⇀

Dν−n
�+1 xi ×

⇀

Dµ−m
�

⇀

Dn+1
�+1 xi
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and equally

⇀

Dµ
�′

⇀

Dν
�′+1

×Dxi′ =
µ∑

m=0

ν∑
n=0

(
µ

m

)(
ν

n

)
⇀

Dm+1
�′

⇀

Dν−n
�′+1xi′ ×

⇀

Dµ−m
�′

⇀

Dn+1
�′+1xi′ .

If we evaluate these expressions at ε�(u) and ε�′(1 − u), respectively, then
Lemma 3.4/45 shows that all corresponding cross products agree since the factors
are equal up to the necessary multiplier (−1)µ+ν . �

Having cross products of partial derivatives at our disposal, regularity of a spline
surface can be defined just as in Definition 2.1/18 for ordinary surfaces.

Definition 3.6 (Regular surface). A C1-spline surface x is called regular, if
×Dx(s) �= 0 for all s ∈ S.

For a regular spline surface x, the Gauss map

n : S � s �→
×Dx(s)

‖×Dx(s)‖ ∈ R
3

is well defined. This follows immediately from Lemma 3.5/46. An equally valid ar-
gument would be to employ a rigid embedding ϕ of abutting cells. The resulting
surface x◦ϕ−1 has a well defined normal vector. By invariance of the normal vector
according to Theorem 2.2/18, the patches equally have a well defined normal vector
which satisfies the consistency condition. Just in the same way, one can show using
Theorem 2.5/22 that for a regular C2-spline surface x the embedded Weingarten map

W : S � (σ, i) �→ Wi(σ) ∈ R
3×3

is well defined as a spline in C0(S, R3×3), where Wi denotes the embedded
Weingarten map of the patch xi.

3.4 Ck
r -Splines

As stated earlier, C1-continuity of splines is not necessary for geometric smooth-
ness, but is assumed for convenience. Conversely, C1-continuity is not sufficient to
imply geometric smoothness due to possible linear dependencies of the partial deriv-
atives. Such dependencies can occur in any affine invariant space of surface parame-
trizations; for example, if all coordinate functions are equal. In applications this is
typically considered a curiosity rather than a problem, but for Ck-splines with extra-
ordinary knots, singularities in the parametrization are a necessity, as Lemma 3.7/48

below will show. Therefore, following Sect. 2.3/23, we now derive a concept of geo-
metric smoothness that applies to spline surfaces with an isolated singularity at a
knot.

Let us consider an interior knot of valence n. Since, for the forthcoming analysis
of subdivision surfaces, the continuity properties of interest are local, we can restrict
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the analysis to the n cells that share the knot. With Zn the integers modulo n, we
define the local domain of n cells by

Sn := Σ × Zn. (3.12)

A spline x on Sn is composed of the patches

x0, . . . ,xn−1.

Without loss of generality, we assume that the neighbor relation has the cyclic struc-
ture

(ε4, j) ∼ (ε1, j + 1), j ∈ Zn. (3.13)

For brevity, we denote the central knot by

0 := (0, 0) = · · · = (0, n − 1),

and its image by
xc := x(0) = x0(0) = · · · = xn−1(0).

The following lemma points to the trade-off between geometric and parametric sin-
gularities.

Lemma 3.7 (Forced singularities). If x ∈ C1(Sn, R3) and n �= 4 then either

×Dx0(0, 0) = · · · = ×Dxn−1(0, 0) = 0,

or x has no injective projection into the tangent plane at xc.

Proof. Since directional and partial derivatives are related by

⇀

D1 = D1,
⇀

D4 = −D2,

the smoothness conditions (3.7/45) on Sn now read

Dµ
1 Dν

2xj(0, u) = (−1)µDν
1Dµ

2 xj+1(u, 0), (3.14)

where
ν + µ ≤ k, u ∈ U := [0, 1], j ∈ Zn.

For µ = ν = 0, this yields the consistency conditions

xj(0, u) = xj+1(u, 0).

For the first order derivatives, with R = [0,−1; 1, 0] as in (3.8/45),

Dxj(0, u) = R Dxj+1(u, 0),
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so that at u = 0

Dxj(0, 0) = R Dxj+1(0, 0) = · · · = R4 Dxj+4(0, 0) = Dxj+4(0, 0)

since R4 = 1 is the identity. The sequence Dxj(0, 0) is therefore 4-periodic with
respect to the index j. However, by construction, it is n-periodic as well. For
n �= 4, this implies that for any j ∈ Zn there exists an index j′ �= j such that
Dxj(0, 0) = Dxj′(0, 0). If the matrix Dxj(0, 0) = Dxj′(0, 0) has full rank, then
the implicit function theorem shows that the projections of the patches xj and xj′

to the tangent plane at xc overlap. �

Lemma 3.7/48 motivates the following definition.

Definition 3.8 (Ordinary and extraordinary knot). A knot with valence n = 4 is
called ordinary; a knot with valence n �= 4 is called extraordinary.

Spline surfaces with all ordinary knots are well understood and need not be dis-
cussed in the following. In the extraordinary case, n �= 4, Lemma 3.7/48 shows that
we either have an undesirable multi-sheeted surface or a Ck-spline surface with a
singular parametrization at the central knot. In the latter case, we cannot deduce
geometric smoothness of the surface from the analytic smoothness of the parame-
trization. Therefore, there is no point in requiring the spline to be differentiable at
an extraordinary knot.

Parts of the material presented now are almost verbatim transcriptions from
Sect. 2.3/23. The difference is that parameters are now not points in a subset Σ of
R

2, but in the spline domain Sn = Σ ×Zn. Since the proofs need not be carried out
again, arrows in the headings of definitions and theorems point to their counterparts
in the preceding chapter.

Definition 3.9 (Ck
0 -spline → Definition 2.8/24). A spline x ∈ C0(Sn, K) is called

Ck
0 if it is Ck everywhere except for the central knot. That is, using the notation of

Definition 3.3/44, the composed map

xϕ := x ◦ ϕ−1

is k-times continuously differentiable on ϕ(S
′
)\ϕ(0). The space of all such func-

tions is denoted by Ck
0 (Sn, K). The image

xc := x(0)

is called the central point of x. For K ∈ {R2, R3, C}, the spline x ∈ Ck
0 (Sn, K) is

called almost regular if ×Dx(s) �= 0 for all s ∈ Sn\{0}.

Obviously, the relaxation of smoothness requirements at the central knot implies
slight modifications of the results given in Lemmas 3.4/45 and 3.5/46. In particular,

• The smoothness conditions (3.14/48) do no longer apply at u = 0 if ν + µ > 0
• If x ∈ Ck

0 (Sn, Rd), then ×Dx ∈ Ck−1
0 (Sn, R3)
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Fig. 3.4 Illustration of Example 3.10/50: Fractional power embedding for (left) n = 3, (middle)
n = 6, and (right) n = 12.

The following example of an almost regular function on Sn does not only illustrate
the definition above, but will later on also serve as a canonical embedding of Sn.

Example 3.10 (Fractional power embedding). Let wn := exp(2πi/n) denote the
primitive nth root of unity. We define the complex-valued spline

p : Sn � (s, t, j) �→ wj
n(s + it)4/n ∈ C (3.15)

and its real-valued equivalent by

π := [Re p, Im p], (3.16)

see Fig. 3.4/50. Obviously, p is continuous, and C∞ away from the origin, i.e., p ∈
C∞

0 (Sn, C). Its Jacobian determinant is given by

×Dp(s, t, j) := ×Dπ(s, t, j) =
16
n2

(s2 + t2)4/n−1,

showing that p is almost regular. Further, p is injective so that it is an embedding
of the whole domain Sn in the sense of Definition 3.2/44. Due to its definition via
the complex power function, we call p and also π the fractional power embedding
of Sn.

Now, we consider a closed piecewise differentiable curve c : U := [0, 1] → Sn

which does not contain the origin, 0 �∈ c(U), and the curve z := p ◦ c : U → C in
the complex plane. If there exists a sequence of break-points 0 = u0 < u1 < · · · <
un = 1 such that

c(u) ∈ (Σ, j), u ∈ [uj , uj+1],

for all j ∈ Zn, then the segments z([uj−1, uj ]) lie in the sectors p((Σ, j)). Since
p is injective, z(U) does not contain the origin, and Lemma 2.20/36 easily yields the
winding number

ν(z, 0) = 1.

�

Typically, it is impossible to define a normal vector of a Ck
0 -spline surface at the

central point in a meaningful way. However, in special situations it may still be
possible. The following definition addresses such a case.
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Definition 3.11 (Normal continuity and single-sheetedness → Definitions 2.9/24,
2.11/25). An almost regular spline surface x ∈ C1

0 (Sn, R3) is normal continuous if
the limit

nc := lim
s→0

n(s),

called the central normal, exists. For a pair Tc := [tc
1; t

c
2] of orthonormal vectors in

the tangent plane, Fc := [Tc;nc] is an orthogonal (3×3)-matrix, called the central
frame. The transformed spline

x∗ := (x − xc) · Fc

has the tangential component

ξ∗ := (x − xc) · Tc ∈ Ck
0 (Sn, R2)

and the normal component

z∗ := (x − xc) · nc ∈ Ck
0 (Sn, R).

If there exists an open connected neighborhood S∗ ⊂ Sn of the central knot such
that ξ∗ restricted to S∗ is injective, then x is called single-sheeted at the central
point. If x is single-sheeted, then the local height function h∗ is defined by

h∗ : Ξ∗ � ξ �→ z∗
(
σ∗(ξ)

) ∈ R,

where the domain is Ξ∗ := ξ∗(S∗) ⊂ R
2, and σ∗ : Ξ∗ → S∗ is the local inverse

of ξ∗.

In other words, x is single-sheeted, if the tangential component ξ∗ is an embedding.
In this case, the spline surface can locally be represented with the help of the local
height function h∗,

x(s) = x̃(ξ) = xc + ξTc + h∗(ξ)nc, ξ ∈ Ξ∗, (3.17)

where s and ξ are related by s = σ∗(ξ) and ξ = ξ∗(s). The local Euler form is
defined by

x̄(ξ) :=
(
x̃(ξ) − xc

) · Fc = [ξ, hc(ξ)],

which is no longer a spline, but a standard surface, as considered in the preceding
chapter. We note that both x̃ and x̄ are always regular so that, locally, we can identify
smoothness properties of x and h∗.

Definition 3.12 (Ck
r -spline surface → Definition 2.12/26). Let x ∈ Ck

0 (Sn, R3) be
normal continuous and single-sheeted. Then x is called a Ck

r -spline surface if the
local height function h∗ is r-times continuously differentiable in a neighborhood of
the origin.

Following exactly the same arguments as in Sect. 2.3/23, it is possible to relate con-
vergence properties of the Gauss map and the embedded Weingarten map to the
regularity of a spline surface at the central point.
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Fig. 3.5 Illustration of Example 3.14/52: The gradient near the central knot is (left) continuous with
limit 0; (middle) not continuous but bounded, and (right) divergent.

Theorem 3.13 (Conditions for Ck
1 - and Ck

2 -spline surfaces → Theorems 2.13/27,
2.14/28). If a spline surface x ∈ Ck

0 (Sn, R3) is normal continuous and single-
sheeted, then it is Ck

1 . Further, if a spline surface x ∈ Ck
1 (Sn, R3), k ≥ 2, is

curvature continuous in the sense that the limit

Wc := lim
s→0

W(s)

exists, then x is Ck
2 .

As in the proof of Theorem 2.13/27, the inverse σ∗ of ξ∗ is continuous with

lim
ξ→0

σ∗(ξ) = σ∗(0) = 0,

and the local height function satisfies

h∗(0) = 0, Dh∗(0) = 0.

The notion of Ck
r -smoothness is particularly well suited for analyzing subdivision

surfaces. We illustrate this claim by the following example:

Example 3.14 (Gradients near the central knot). Drawing on the discussion of gen-
eralized biquadratic subdivision in Sect. 6.2/116, we consider three variants that all
yield C1

1 -surfaces. Figure 3.5/52 shows the norm of the gradient of scalar patches
generated by these algorithms. On the left, the subdominant eigenvalue is λ = 0.3
and the gradient vanishes at the origin. In the middle, λ = 0.5 and the gradient is
bounded but discontinuous. On the right, λ = 0.8 and the gradient diverges. �

Checking projections of almost regular spline surfaces for injectivity is facilitated by
the concept of winding numbers, as introduced in Sect. 2.4/31. Since the definitions in
the preceding chapter do not immediately apply to closed curves in Sn, we employ
an embedding π of the domain Sn, for instance the fractional power embedding
π according to Example 3.10/50. On one hand, the reparametrization ξ∗ ◦ π−1 is
an almost regular function defined in a neighborhood of the origin in R

2. On the
other hand, if c : U = [0, 1] → Sn is a piecewise differentiable closed curve in the
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Fig. 3.6 Illustration of Sect. 3.5/53: Free control points • and dependent control points ◦ for (left)
the ordinary case and (right) the extraordinary case. The control points bounding the shaded region
must form a convex planar polygon.

spline domain, then π ◦c is a piecewise differentiable closed curve in R
2. Recalling

that Definition 2.16/32 can be equally applied to functions, curves, and points in R
2

using the standard identification with C, we note that Theorem 2.19/34 can be applied
to the function ξ∗ ◦ π−1 when considering the winding numbers ν(π ◦ c, 0) and
ν(ξ∗ ◦ π−1,π ◦ c, 0). For the first one, we write briefly

ν(c,0) := ν(π ◦ c, 0), (3.18)

while, by definition, the second one is just

ν(ξ∗ ◦ π−1,π ◦ c, 0) = ν(ξ∗ ◦ c, 0).

Theorem 3.15 (Single-sheetedness via winding number). Let c : U = [0, 1] →
Sn be a piecewise differentiable Jordan curve with ν(c,0) = 1. Then the normal
continuous spline surface x ∈ C1

0 (Sn, R3) is single-sheeted if and only if

|ν(ξ∗ ◦ c, 0)| = 1.

Proof. Since π is injective, ξ∗ is injective if and only if ξ∗ ◦ π is injective. By
Theorem 2.19/34, the latter function is injective if and only if |ν(ξ∗ ◦ c, 0)| = 1. �

3.5 A Bicubic Illustration

We illustrate the framework developed so far with a concrete construction taken
from [Rei97]. The example presumes some basic knowledge of Bézier techniques,
see [Far97, PBP02] for an introduction (Figs. 3.6/53 and 3.7/54).
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Fig. 3.7 Illustration of Sect. 3.5/53: Bicubic C1
1 -surfaces for (left) n = 3 and (right) n = 5 with

patch boundaries (red) and level lines (black).

For n �= 4, we consider the domain Sn provided with the cyclic neighbor relation
(3.13/48),

(ε4, j) ∼ (ε1, j + 1), j ∈ Zn.

The patches

xj(s, t) :=
3∑

ν=0

3∑
µ=0

b3
ν(s)b3

µ(t)qj
ν,µ

of the spline surface x are bicubic polynomials with control points qj
ν,µ ∈ R

3. The
corresponding basis functions are given as products of cubic Bernstein polynomials,

b3
ν(u) :=

(
3
ν

)
(1 − u)3−νuν , u ∈ U, ν = 0, . . . , 3.

Consistency of x requires that control points corresponding to related edges coin-
cide,

qj
0,ν = qj+1

ν,0 .

Further, x is a C1-spline surface if and only if the control points on edges are the
midpoints of neighboring interior control points,

2qj
0,ν = qj

1,ν + qj+1
ν,1 . (3.19)

This implies that the full set of control points can be determined from the subset{
qj

ν,µ : j ∈ Zn, (ν, µ) ∈ {1, 2, 3}2
}

by a simple averaging process. However, since the conditions for ν, µ ≤ 1 are cou-
pled, the points qj

1,1 cannot be chosen freely. A simple argument shows that the
sequence of these points is both n-periodic and 4-periodic. Single-sheetedness is
possible only if we resort to the trivial solution

q0
1,1 = · · · = qn−1

1,1 ,
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yielding coalescing control points according to

xc = qj
0,0 = qj

1,0 = qj
0,1 = qj

1,1, j ∈ Zn.

As predicted, the collapse of control points at the extraordinary knot implies a
singular parametrization of all patches at xc. Typically, the so-constructed spline
surfaces are continuous and almost regular, but not normal continuous. However,
C1

1 -spline surfaces can still be generated if some additional constraints on the
control points qj

1,2,q
j
2,1 are satisfied. For instance, it suffices to require that the

points
q0

2,1, q0
1,2, q1

2,1, q2
1,2, . . . ,qn−1

2,1 , qn−1
1,2

are the corners of a convex planar polygon which also contains the central point xc.
The proof, which is non-trivial, can be found in [BR97].
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Chapter 4
Subdivision Surfaces

Subdivision derives its name from a splitting of the domain. A spline x on the initial
domain S is mapped to a finer domain S̃ where it is represented by more, smaller
pieces. This chapter focuses on such refinement, in particular near extraordinary
knots. We will not yet discuss specific algorithms.

Section 4.1/58 motivates the framework of subdivision by formalizing the refine-
ment of spline domains: the basic step is to replaced each cell of the given domain
by four new ones. In Sect. 4.2/59, we study a special reparametrization of splines,
which is facilitated by iterated domain refinement. If exactly one of the corners of
the initial square is an extraordinary knot, one of the four new cells inherits this knot
while the other three, which have only ordinary knots, combine to an L-shape. Ac-
cordingly, the initial surface patch is split into a smaller patch with an extraordinary
point, and an L-shaped segment. Repeating the refinement for the new extraordinary
patch yields another patch and another segment of even smaller size. If this process
is iterated ad infinitum, the initial patch is eventually replaced by a sequence of
smaller and smaller segments, and the extraordinary point itself. If we consider a
spline surface x consisting of n patches x1, . . . ,xn sharing a common central point
xc, always n segments at refinement level m form an annular piece of surface xm,
called a ring. As illustrated by Fig. 4.3/61 (top), the sequence of rings is nested, and
contracts towards the central point xc. The representation of a spline as the union
of rings and a central point is called a spline in subdivision form. Thus, spline sur-
faces in subdivision form, as they are generated by many popular algorithms, can be
understood by analyzing this sequence. In particular, the conditions for continuity,
smoothness and single-sheetedness can all be reduced to conditions on rings.

In Sect. 4.3/65, we represent a ring xm = GQm in terms of a vector Qm of co-
efficients qm

� ∈ R
d and a vector G of generating rings g�. Typically, we think of

qm
� as points in 3-space. But qm

� can just as well represent derivative data, or color
and texture information so that the setup conveniently covers a very general setting.
In many practical algorithms, the generating rings are built from box-splines and
form a basis. We emphasize, however, that we assume neither that the generating
rings are piecewise polynomial nor that they are linearly independent. Joining the

57
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rings xm = GQm, we obtain the representation of the spline x := BQ as a linear
combination of generating splines b�.

In Sect. 4.4/67, subdivision algorithms are characterized as recursions for rings.
The recursion is governed by a subdivision matrix. Since the subdivision matrix is
applied over and over again, it is natural to introduce at this point notational and al-
gebraic tools: the asymptotic equivalence of expansions in Sect. 4.5/71 and the Jordan
decomposition of matrices in Sect. 4.6/72. In particular, the subdivision matrix is de-
composed into A = V JV −1, where V is a matrix of eigenvectors and generalized
eigenvectors. Correspondingly, we introduce eigenrings F = GV and eigensplines
E = BV . In Sect. 4.7/75, we can then relate properties of the subdivision matrix to
properties of the limit surface. In the process, we see examples of the insufficiency
of an analysis based solely on the control points. For example, so-called ineffective
eigenvectors have to be removed before we can claim the leading eigenvalue of the
subdivision matrix needs to be 1.

4.1 Refinability

A major feature of Ck
0 -splines is their refinability, i.e., the fact that a Ck

0 -spline
surface x(S) can be reproduced by a spline surface x̃(S̃) with a finer patch structure.
The splitting of patches corresponds to a refinement of the cells of the given spline
domain. Every cell (Σ , i) is split into four new cells (Σ , 4i + 1), . . . , (Σ , 4i + 4),
as illustrated in Fig. 4.1/59.

Definition 4.1 (Refined domain). Let S := Σ ×I be a spline domain. The refined
domain S̃ = Σ × Ĩ is characterized as follows:

• The new index set is Ĩ := {4i + � : i ∈ I, � = 1, . . . , 4}.
• The original and the new domain are linked by the isomorphism

r : S̃ � (s, t, 4i + �) �→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(s/2, t/2, i) for � = 1
(s̄/2, t/2, i) for � = 2
(s̄/2, t̄/2, i) for � = 3
(s/2, t̄/2, i) for � = 4

∈ S, (4.1)

where s̄ := 1 + s, t̄ := 1 + t, see Fig. 4.1/59.
• The neighbor relation on S̃ is defined by

(ε�, i) ∼ (ε�′ , i
′) ⇐⇒ r(ε�(u), i) = r(ε�′(1 − u), i′), u ∈ U.

We note that all four new cells are of standard size. They are not shrunk to quarters
or the like. Rather, the process represents a topological split. This split is expressed
by means of the inverse of r because, according to the above definition, r describes
the merging of always four refined cells. To motivate the framework of the follow-
ing sections, we briefly discuss some further properties of domain refinement. Every
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Fig. 4.1 Illustration of (4.1/58): Refinement of a cell.

knot of valence n in S is mapped to a knot of valence n in S̃. All new knots in S̃
have valence 4. Hence, the number and valences of extraordinary knots are fixed
under refinement, while the number of ordinary knots is increasing. When refine-
ment is iterated, the extraordinary knots become more and more separated in the
sense that every extraordinary knot is surrounded by more and more layers of ordi-
nary cells that contain exclusively ordinary knots. The algorithms that we are going
to consider in the following are based on a fixed number of neighboring cells. The
non-trivial part of the analysis concerns the long term behavior of iterated refine-
ment. In this respect, any finite number of initial refinement steps is irrelevant (see,
however, Example 8.10/173). As a consequence, the limit behavior of the algorithms
will not depend on the interplay between various extraordinary knots, but only on
the characteristics of the situation near an extraordinary knot of valence n. For this
reason, we will confine our analysis to splines with one isolated extraordinary knotof
valence n. That is, in the following, x is always assumed to be defined on the local
domain Sn = Σ × Zn, as defined in (3.12/48).

4.2 Segments and Rings

In this section, we define a spline in subdivision form as a special representation of a
standard spline using segments and rings as building blocks. Further, we relate prop-
erties of splines, such as normal continuity or single-sheetedness, with properties of
these objects.

To fix ideas, let us consider a spline surface x : Sn → R
3. If we apply one step

of refinement, as introduced in the preceding section, to the local domain Sn, we
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Fig. 4.2 Illustration of (4.2/60): Partitioning of Σ into scaled copies of Σ0.

obtain a new domain with 4n cells: 3n outer cells that are ordinary, and n inner
cells sharing the central knot. Due to its annular shape, the restriction x0 of x to the
outer cells is called a ring. The n L-shaped parts of the ring corresponding to the
initial patches are called segments. We keep the ring x and its domain and repeat
the refinement process only for the inner part to obtain a second ring x1 and an even
smaller inner part. In this way, iterated refinement generates a sequence of rings,
which eventually covers all of the surface with the exception of the central point xc

itself. The alternative representation of x in terms of rings and segments is called its
subdivision form. More precisely, we subdivide Σ and Sn as follows (cf. Fig. 4.2/60).
Let

Σ0 := [0, 1]2\[0, 1/2)2, Σm := 2−mΣ0, Sm
n := Σm × Zn, m ∈ N0.

(4.2)
Then

Σ =
⋃

m∈N0

Σm ∪ {0}, Sn =
⋃

m∈N0

Sm
n ∪ {0}. (4.3)

We note that all Sm
n ,m ∈ N0, are just scaled copies of the prototype S0

n, which
we call the ring domain. Points in S0

n corresponding to knot lines in Sn are identified
in the natural way,

(0, u, j) = (u, 0, j + 1), u ∈ [1/2, 1], j ∈ Zn.

Definition 4.2 (Segment and ring). Let x ∈ Ck
0 (Sn, K), K ∈ {Rd, Cd}, be a

spline with patches xj . For m ∈ N0 and j ∈ Zn, the segment xm
j is defined by

xm
j : Σ0 � σ �→ xj(2

−mσ), (4.4)

and the ring xm is defined by

xm : S0
n � s �→ x(2−ms), (4.5)
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Fig. 4.3 Illustration of Definition 4.2/60: (top) Ring xm, (middle) segment xm
j , and (bottom)

patch xj of a subdivision surface x. The rings x0,x1, . . . form the spline x; the patches
x0, . . . ,xn−1 form the spline x; the segments x0

j ,x1
j , . . . form the patch xj ; the segments

xm
0 , . . . ,xm

n−1 form the ring xm.

where, recalling (3.5/43), 2−ms = 2−m(σ, j) = (2−mσ, j). The space of all Ck-
rings is denoted by Ck(S0

n, K).

The segment xm
j corresponds to the restriction of the patch xj to the set Σm, i.e.,

xm
j (Σ0) = xj(Σ

m), see Fig. 4.3/61. The re-scaling of arguments facilitates the use
of a common domain for all m. Analogously, the ring xm corresponds to the re-
striction of the spline x to the set Sm

n , i.e., xm(S0
n) = x(Sm

n ). With (4.3/60), this
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implies

xj(Σ) =
⋃

m∈N0

xm
j (Σ0) ∪ {xc}, x(Sn) =

⋃
m∈N0

xm(S0
n) ∪ {xc},

where xc = x(0) is the central point. An alternate way of looking at it is as follows.
With x̃ = x◦r the refinement of x, the first ring x1 corresponds to x̃ restricted to its
3n ordinary patches. Accordingly, the mth ring xm corresponds to the 3n innermost
ordinary patches of the m-fold refined spline x ◦ rm.

The partition of a spline into rings and segments leads to the notion of subdivi-
sion. It refers to a special way of representing splines rather than to a new class of
objects.

Definition 4.3 (Spline in subdivision form). The spline x ∈ Ck
0 (Sn, Rd) repre-

sented as

x : Sn � s �→
{

xm(2ms) if s ∈ Sm
n

xc if s = 0
(4.6)

is called a spline in subdivision form with ring sequence {xm}m. For d = 3, x is
also called a subdivision surface.

The principal task of analyzing splines in subdivision form is to deduce their geo-
metric properties from analytic properties of the ring sequence. Being parts of a
Ck

0 -spline x, the segments xm
j fulfill certain consistency and differentiability condi-

tions, both inside a ring and between consecutive rings.

Theorem 4.4 (Smoothness conditions for segments). Let x ∈ Ck
0 (Sn, Rd) be a

spline in subdivision form with segments xm
j . Then all segments are Ck and, for

u ∈ U = [0, 1] and µ + ν ≤ k, we have:

• All pairs of neighboring segments xm
j ,xm

j+1 satisfy

Dµ
1 Dν

2x
m
j (0, 1/2 + u/2) = (−1)µDν

1Dµ
2 xm

j+1(1/2 + u/2, 0), (4.7)

• All pairs of consecutive segments xm
j ,xm+1

j satisfy

Dµ
1 Dν

2x
m
j (1/2, u/2) = 2µ+νDµ

1 Dν
2x

m+1
j (1, u)

Dµ
1 Dν

2x
m
j (u/2, 1/2) = 2µ+νDµ

1 Dν
2x

m+1
j (u, 1). (4.8)

Proof. The first equality follows from (3.14/48), while the other one is a straightfor-
ward application of the chain rule. �

In particular, for µ = ν = 0, we obtain the consistency conditions

xm
j (0, 1/2 + u/2) = xm

j+1(1/2 + u/2, 0)

xm
j (1/2, u/2) = xm+1

j (1, u)

xm
j (u/2, 1/2) = xm+1

j (u, 1), (4.9)
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and µ + ν = 1 yields with R = [0,−1; 1, 0]

Dxm
j (0, 1/2 + u/2) = RDxm

j+1(1/2 + u/2, 0)

Dxm
j (1/2, u/2) = 2Dxm+1

j (1, u)

Dxm
j (u/2, 1/2) = 2Dxm+1

j (u, 1). (4.10)

The question arises whether the conditions given in the last theorem are also suf-
ficient for a set of segments to form a Ck

0 -spline x. Obviously, these conditions
guarantee x to be Ck on all of Sn, except for the extraordinary knot 0. According to
Definition 3.9/49, no differentiability conditions apply at that point, but consistency
still has to be ensured.

Theorem 4.5 (From Ck-rings to Ck
0 -splines). Let {xm}m be a sequence of rings

in Ck(S0
n, Rd) with segments xm

j satisfying (4.7/62) and (4.8/62). If, in addition, there
exists a point xc ∈ R

d such that, for any j ∈ Zn and any sequence {σm}m in Σ0,

xc = lim
m→∞xm

j (σm),

then these rings form a Ck
0 -spline in subdivision form (4.6/62).

Proof. The only non-trivial part of the proof concerns continuity at the extraordinary
knot. Let {s� = (σ�, j�)}� be any sequence in Sn converging to 0. Then this se-
quence can be partitioned into subsequences, indexed by �m

j (µ), with σ�m
j (µ) ∈ Σm

and j�m
j (µ) = j. By assumption, for all such subsequences,

lim
µ→∞x

(
s�m

j (µ)
)

= xc

so that
lim

�→∞
x(s�) = xc.

�

Now, we are going to transfer the results on normal continuity and single-
sheetedness of splines, as derived in the preceding chapter, to the subdivision setting.
Because the properties in question are local, we can slightly relax the assumptions
on almost regularity. It is no longer required on all of Sn, but only in a vicinity of
the central knot.
Definition 4.6 (Local almost regularity). A spline x ∈ C1

0 (Sn, Rd), d ∈ {2, 3},
is locally almost regular if there exists m0 ∈ N0 such that

×Dx(s) �= 0 for all s ∈
⋃

m≥m0

Sm
n .

In this case, we also say that x is m0-almost regular.

In the following, we denote by nm and nm
j the rings and the segments of the Gauss

map n of the spline surface x, respectively. Of course, in case of local almost regu-
larity, existence is ensured only for m ≥ m0.
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Theorem 4.7 (Normal continuity of subdivision surfaces). A subdivision surface
x ∈ Ck

0 (Sn, R3) is

• m0-almost regular, if the rings xm are regular for m ≥ m0, i.e.,

×Dxm(s) �= 0 for all s ∈ S0
n, m ≥ m0;

• normal continuous, if it is m0-almost regular, and there exists a vector nc ∈ R
3,

called the central normal, such that for all j ∈ Zn and any sequence {σm}m≥m0

in Σ0

nc = lim
m→∞nm

j (σm).

Proof. Using the same arguments concerning subsequences as in the previous
theorem, the results follow from Definitions 3.9/49 and 3.11/51. �

Following Definition 3.11/51, if x is normal continuous, we denote by ξm
∗ and zm

∗ the
rings of the tangential and the normal component of x∗ = [ξ∗, z∗], respectively,

ξm
∗ := (xm − xc) · Tc

zm
∗ := (xm − xc) · nc. (4.11)

We can use the sequence ξm
∗ to formulate a criterion for single-sheetedness by spe-

cializing the curve c used in Theorem 3.15/53 to a curve c : U → S0
n in the domain of

rings. With π0 denoting the initial ring of the fractional power embedding (3.16/50),
we define the winding number

�(c,0) := �(π0 ◦ c, 0), 0 �∈ c(U),

just as in (3.18/53).

Theorem 4.8 (Single-sheetedness of subdivision surfaces). Let the subdivision
surface x ∈ C1

0 (Sn, R3) be m0-almost regular and normal continuous. Further, let
c : U = [0, 1] → S0

n be a piecewise differentiable Jordan curve with �(c,0) = 1.
Then x is single-sheeted if and only if

|�(ξm0∗ ◦ c, 0)| = 1.

Proof. The rings
x̃m := xm+m0 , m ∈ N0

define a spline surface x̃ ∈ C1
0 (Sn, R3) which is almost regular and normal contin-

uous. In fact, it is nothing but a reparametrized version of the regular part of x. Then
ξm0∗ = ξ̃0

∗ implies

|�(ξm0∗ ◦ c, 0)| = |�(ξ̃0
∗ ◦ c, 0)| = |�(ξ̃∗ ◦ c, 0)|.

From Theorem 3.15/53, we conclude that x∗, and hence also x, is single-sheeted if
and only if this number equals 1. �
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4.3 Splines in Finite-Dimensional Subspaces

Due to the refinement property, any Ck
0 -spline on S0

n can be represented as the
union of rings. Subdivision algorithms in the literature, as well as a large class of
generalizations, are distinguished by a further property: all rings belong to a com-
mon linear function space that is spanned by a finite set of real-valued functions.
In many cases of practical relevance, these functions are obtained as an appropriate
arrangement of B-splines, and in particular, they are linearly independent. In the
forthcoming analysis, however, we explicitly drop such assumptions for the sake
of generality: the generating rings spanning the space of rings can be linearly de-
pendent, and they need not be piecewise polynomial or the like. Thus, subdivision
algorithms generalizing box spline subdivision, interpolatory subdivision, and many
other generalizations are covered.

Definition 4.9 (Generating rings). Let

G := [g0, . . . , g�̄], g� ∈ Ck(S0
n, R), � = 0, . . . , �̄,

be a row-vector of scalar-valued rings that form a partition of unity,

�̄∑
�=0

g�(s) = 1, s ∈ S0
n. (4.12)

Then G is a Ck-system of generating rings g�, spanning the function space

Ck(S0
n, K, G) :=

⎧⎨
⎩xm =

�̄∑
�=0

g�q� : q� ∈ K

⎫⎬
⎭ ⊂ Ck(S0

n, K), (4.13)

see Fig. 4.4/66.

Of course, adding linearly dependent functions to a given system of generat-
ing rings does not change the corresponding space of rings. However, the class of
subdivision surfaces which can be generated by linear stationary algorithms, as de-
fined below, becomes substantially richer. Example 4.14/70 will illustrate this fact.
Moreover, many box splines that give rise to subdivision algorithms lead to linearly
dependent generating rings in a natural way.

We endow the finite-dimensional linear function space Ck(S0
n, Rd, G) with the

max-norm
‖xm‖∞ := max

s∈S0
n

‖xm(s)‖,

where ‖ · ‖ denotes the Euclidean norm in R
d. Limits of sequences of rings

are always understood with respect to this norm. For instance, the condition of
Theorem 4.5/63 for consistency and continuity of a sequence of rings is equivalent
to

lim
m→∞xm = xc. (4.14)
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Fig. 4.4 Illustration of Definition 4.9/65: (left) Embedding of S0
n and natural arrangement of B-

spline coefficients for bicubic rings. (right) Generating ring g� corresponding to the coefficient •,
plotted above the embedding.

Here, the point xc ∈ R
d on the right hand side is identified with the constant ring

xc =
�̄∑

�=0

g�xc ∈ Ck(S0
n, Rd, G) (4.15)

via (4.12/65). A ring xm ∈ Ck(S0
n, Rd, G) is written as a sum or in matrix notation

as

xm =
�̄∑

�=0

g�qm
� = GQm.

The points qm
� ∈ R

d are called the coefficients1 of xm. These coefficients are col-
lected in an ((�̄+1)×d)-matrix2 Qm := [qm

0 ; . . . ;qm
�̄

] to obtain the short expression
xm = GQm. Specifying arguments, we have

xm(s) = xm
j (σ) = G(s)Qm, s = (σ, j) ∈ S0

n.

As usual, the fact that the generating rings form a partition of unity implies affine
invariance of the given representation. The following observation is as simple as it is
important since it ensures a free choice of coordinates when investigating sequences
of rings.

Theorem 4.10 (Affine invariance of rings). With a (d×d′)-matrix H and a vector
h ∈ R

d′
, define the affine map L : R

d → R
d′

by L(p) := pH + h. Accordingly,
L(Qm) := [L(qm

0 ); . . . ;L(qm
� )]. Then

L(GQm) = GL(Qm). (4.16)

1 In applications, the coefficients qm
� are also called control points. However, this word is mislead-

ing here since the coefficients do not necessarily have a geometric meaning as they do have, for
instance, in the B-spline setup.
2 Instead of regarding Qm as a matrix of reals, it is also convenient to think of it as a column vector
of points in R

d.
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Proof. Using (4.15/66), we obtain

L(GQm) =

⎛
⎝ �̄∑

�=0

g�qm
q

⎞
⎠H + h =

�̄∑
�=0

g�(qm
� H + h) = GL(Qm).

�

4.4 Subdivision Algorithms

A subdivision algorithm is an iterative prescription for generating a sequence of
rings starting from some initial data (cf. Fig. 4.5/68). This definition is in sync with
the earlier definition of subdivision surfaces as the union of a sequence of rings and
their limit, but is in contrast with the commonly held view of subdivision algorithms
as rules for refining spatial nets.

Definition 4.11 (Subdivision algorithm, preliminary). Let A be a square matrix
with all rows summing up to 1, and G a system of generating rings of according
size. Given a column vector Q = [q0; . . . ;q�̄] of coefficients q� ∈ R

d, we define
the corresponding sequence of rings

xm := GQm, Qm := AmQ, m ∈ N0,

in Ck(S0
n, Rd, G). If, for any choice of Q, this sequence satisfies the assump-

tions of Theorem 4.5/63, i.e., if the sequence constitutes a spline x ∈ Ck
0 (Sn, Rd)

in subdivision form, then (A,G) defines a (linear stationary Ck-)subdivision al-
gorithm. Because x0 = GQ, the coefficients Q are also called the initial data
of x.

This definition is preliminary because the conditions on A are not specific enough
to exclude unwanted situations, such as non-smooth contact between consecutive
rings or spurious components in the spectrum. At the end of this chapter, the final
version will be presented in Definition 4.27/80.

Of course, generalizations are conceivable. For instance, one could consider non-
stationary algorithms, where the sequence of coefficients is defined recursively by
Qm+1 = A(m)Qm with a sequence {A(m)}m of matrices. If A(m) has a repeating
pattern then all results apply to the finite product of matrices that generates the
pattern. Even algorithms of the form Qm+1 = fm(Qm), using non-linear functions
fm, are conceivable. However, our understanding of such algorithms is still very
limited, and most algorithms currently in use fit Definition 4.11/67.

Definition 4.11/67 imposes conditions on the matrix A in conjunction with G.

• Consecutive rings xm and xm+1 must join smoothly according to (4.8/62).
Typically, this is easy to achieve by using the regular subdivision rules of the
underlying spline space.
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AA

x0=GQ x1=GAQ xm=GAmQ

Fig. 4.5 Illustration of Definition 4.11/67: Subdivision algorithm (A, G) generating a sequence xm

of rings.

• By Theorem 4.5/63, the rings xm form a Ck
0 -spline if and only if there exists a

point xc ∈ R
d such that

lim
m→∞xm = xc.

In Sect. 4.7/75, we show that this condition is met if the dominant eigenvalue of A
is λ0 = 1.

• In Theorem 4.13/69, the condition that the rows of A sum to 1 is crucial for show-
ing that the generating splines form a partition of unity. Just as in Theorem 4.10/66,
the condition also implies that splines in subdivision form are affine invariant.

The correspondence between the initial data Q and the resulting spline x can be
formalized as follows (Fig. 4.6/69).

Definition 4.12 (Generating spline). Let δ� denote the �th unit vector in R
�̄+1. The

generating spline b� ∈ Ck
0 (Sn, R) of the subdivision algorithm (A,G) is defined as

the spline corresponding to the initial data δ�,

b�(s) := G(2ms)Amδ� for s ∈ Sm
n .
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Fig. 4.6 Illustration of Definition 4.12/68: (left) Embedding of Sn and (right) generating spline b�

plotted above the embedding.

The row-vector of all generating splines is denoted by

B := [b0, . . . , b�̄].

In the definition, the value of bc
� = b�(0) at the central knot is not specified

explicitly. However, its existence and uniqueness is ensured because, by Defini-
tion 4.11/67, the consistency condition (4.14/65) is satisfied. A formula will be de-
rived later. The following theorem summarizes some basic properties of generating
splines.

Theorem 4.13 (Properties of generating splines). The generating splines B of a
subdivision algorithm (A,G)

(1) span the space of splines generated by the subdivision algorithm via the repre-
sentation

x = BQ;

(2) satisfy the scaling relation

B(2−ms) = B(s)Am, s ∈ Sn, m ∈ N0; (4.17)

(3) form a partition of unity,
∑

� b� = 1;
(4) are affine invariant, i.e.

L(BQ) = BL(Q)

for any affine map L : R
d → R

d′
.

Proof. Part (1) follows immediately from linearity of the whole process. To prove
(2), let σ ∈ Σm′

. Then (4.6/62) yields B(σ, ·) = G(2m′
σ, ·)Am′

. For m ∈ N0,
it is 2−mσ ∈ Σm+m′

, and accordingly B(2−mσ, ·) = G(2m′
σ, ·)Am+m′

.
Comparison of the two equations, which hold for any m′ ∈ N, establishes
(4.17/69). To prove part (3) we denote by δ = [1; . . . ; 1] the one-vector in
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Fig. 4.7 Illustration of Example 4.14/70: (left) The minimal generating system necessarily yields
collinear line segments, while (right) the overcomplete system generates a broken line. The shaded
triangles are spanned by the coefficients q̃m

1 , q̃m
2 , q̃m

3 of Q̃m at level m.

R
�̄+1. Because the rows in A sum to one, we have Amδ = δ. For σ ∈

Σm, ∑
�

b�(σ, j) = B(σ, j)δ = B(2−mσ, j)δ = G(2−mσ, j)δ = 1

follows from (4.17/69) and (4.12/65). The same arguments as in Theorem 4.10/66

imply (4). �

We do not elaborate on generating splines, but continue our analysis of subdivision
surfaces based on generating rings. However, in Sects. 8.2/169 and 8.1/157, generating
splines will play an important role for investigating approximation and interpolation
properties.

Before we continue our analysis of subdivision algorithms, we want to empha-
size that Definition 4.9/65 does not require G to be linearly independent. Appar-
ently, if G and G̃ are linearly dependent in the sense that each function of one
system can be written as linear combination of the other, then the corresponding
spaces of rings coincide: Ck(S0

n, Rd, G) = Ck(S0
n, Rd, G̃). So it is tempting to

simplify the analysis considerably by confining it to linearly independent systems.
However, this would miss a number of potentially useful algorithms. Let us as-
sume that G̃ has more entries than G. Then, given a matrix Ã, one cannot guar-
antee that there exists a matrix A such that the sequences of rings generated by
(A,G) always equal those generated by (Ã, G̃). In other words, there need not ex-
ist A and Q such that GAmQ = G̃ÃmQ̃ for all m. Instead of detailing the lin-
ear algebra of this statement, we illustrate the difference by Example 4.14/70 and
Fig. 4.7/70.

Example 4.14 (Usefulness of overcomplete systems of generating rings). To keep the
example simple, we consider a univariate case with the system G := [1 − u, u], u ∈
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[0, 1], of generating rings spanning the space of linear functions. The matrix A is to
be chosen such that the sequence xm = GAmQ = G[qm

1 ;qm
2 ] forms a continuous,

piecewise linear function in the sense of Sect. 3.1/40. That is, xm(1) = xm+1(0), and
the most general form of A is

A :=
[

0 1
1 − a a

]

with a ∈ R. As an overcomplete alternative, we extend G artificially to G̃ := [1 −
u, u/2, u/2]. Obviously, the additional third component of G̃ does not influence the
shape of a single piece x̃m. However, it substantially enriches the possible behavior
of the sequence {x̃m}m. To show this, we consider

Ã :=
1
4

⎡
⎣ 0 2 2
−2 3 3
−2 2 4

⎤
⎦ , Q̃ :=

⎡
⎣0 0

1 −1
1 1

⎤
⎦ .

We check that x̃0 connects [0, 0] to [1, 0], while x̃1 connects [1, 0] to [3/2, 1/4].
Let us try to find A and Q such that xm = x̃m. In order to match x0, we have to
choose Q = [0, 0; 1, 0], and the endpoint of x1 becomes [a, 0] �= [3/2, 1/4]. So,
no matter how we choose a, all points generated by A will lie on the x-axis, while
those generated by Ã do not. Figure 4.7/70 illustrates this observation. �
We note that linear dependent systems of generating rings are especially useful
when representing vector-valued subdivision algorithms, or the like. There might
exist components of these vectors which are used for the recursion, but not for the
parametrization of the rings. Accordingly, the generating system can be padded with
zeros to facilitate the representation in the form given here. This aspect is discussed
also in Sect. 9.1/176.

4.5 Asymptotic Expansion of Sequences

In the following analysis, we are rarely interested in the full expression of a sequence
of rings, but only in the asymptotic behavior of the dominant terms as m tends to
infinity. To efficiently deal with such asymptotic expansions, we introduce a relation
for sequences of functions with coinciding leading terms.

Definition 4.15 (Equivalence of sequences). Let {am}m, {bm}m, and {cm}m be
sequences in m. We write

am cm

= bm iff am − bm = o(cm),

where, by definition, o(cm)/cm converges uniformly to zero as m → ∞. In
particular, am 1= a means that {am}m converges to a. For simplicity,

cm

= is mostly
replaced by the symbol ∗= with the understanding that the little star refers to the
lowest order term specified explicitly on the right hand side of a relation.
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For example,
1

2m + u
∗=

1
2m

− u

4m
, u ∈ U, (4.18)

implies equivalence up to order o(4−m). For vector-valued expressions, the equiva-
lence relation is understood component-wise.

To compare the decay of sequences of numbers or functions, we write

am � bm iff lim
m→∞ |bm/am| = 0

am � bm iff lim sup
m→∞

|bm/am| < ∞
am ∼ bm iff (am � bm and bm � am) or (am = bm = 0).

In other words, for sequences converging to 0, am � bm means that bm decays faster
than am, am � bm means that am does not decay faster than bm, and am ∼ bm

means that both sequences decay at equal rates. For example, anticipating (4.21/73),

λmm� ∼ λm,� � λm,�−1 (4.19)

for λ �= 0 and � ≥ 0 or, recalling (4.18/72),

1
2m

� 1
4m

∼ 1
2m + u

− 1
2m

, u ∈ U.

4.6 Jordan Decomposition

In order to compute and analyze powers of A, it is convenient to use its Jordan
decomposition. The Jordan block J(λ, �) is defined as the (� + 1) × (� + 1)-matrix

J(λ, �) :=

⎡
⎢⎢⎢⎢⎢⎣

λ 1 0 · · · 0
0 λ 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 λ 1
0 · · · 0 0 λ

⎤
⎥⎥⎥⎥⎥⎦ . (4.20)

As is easily shown by induction, its powers are

Jm(λ, �) =

⎡
⎢⎢⎢⎢⎢⎣

λm,0 λm,1 λm,2 · · · λm,�

0 λm,0 λm,1 · · · λm,�−1

...
. . .

. . .
. . .

...
0 · · · 0 λm,0 λm,1

0 · · · 0 0 λm,0

⎤
⎥⎥⎥⎥⎥⎦ ,

where
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λm,� :=

⎧⎪⎨
⎪⎩
(
m
�

)
λm−� if λ �= 0 and 0 ≤ � ≤ m

1 if λ = 0 and � = m

0 else.

(4.21)

Defining the relations

(λ, �) ∼ (λ̃, �̃) iff λm,� ∼ λ̃m,�̃, i.e., |λ| = |λ̃|, � = �̃ or λ = λ̃ = 0

(λ, �) � (λ̃, �̃) iff λm,� � λ̃m,�̃, i.e., |λ| = |λ̃| > 0, � > �̃ or |λ| > |λ̃|
(λ, �) � (λ̃, �̃) iff (λ, �) ∼ (λ̃, �̃) or (λ, �) � (λ̃, �̃)

for pairs (λ, �) ∈ C × N0, we can conveniently compare sequences of type λm,�,

(λ, �) ∼ (λ̃, �̃) ⇔ λm,� ∼ λm,�̃

(λ, �) � (λ̃, �̃) ⇔ λm,� � λm,�̃

(λ, �) � (λ̃, �̃) ⇔ λm,� � λm,�̃

The Jordan decomposition of A is

A = V JV −1, J = diag(J0, J1, . . . , Jr̄), Jr = J(λr, �r), (4.22)

that is, the rth Jordan block Jr has dimension (�r + 1) and corresponds to the
eigenvalue λr. Without loss of generality, we may assume that the Jordan blocks are
ordered such that

(λ0, �0) � (λ1, �1) � · · · � (λr̄, �r̄).

According to the block structure of J , the matrix V is partitioned into

V = [V0, V1, . . . , Vr̄], Vr = [v0
r , . . . , v�r

r ].

The eigenvector v0
r to the eigenvalue λr satisfies

Av0
r = λpv

0
r ,

and for �r>0, the other vectors v1
r , . . . , v�r

r form a chain of generalized
eigenvectors,

Av�
r = λrv

�
r + v�−1

r , � = 1, . . . , �r.

As usual, we assume that Vr is chosen real if λ is real. Powers of A are given by

Am = V JmV −1, Jm = diag(Jm
0 , Jm

1 , . . . , Jm
r̄ ).

Thus, the mth ring becomes xm = GV JmV −1Q. This expression is most conve-
nient for analytical purposes since Jm is known explicitly. The factors to the left
and to the right of Jm are referred to as follows:
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Definition 4.16 (Eigenrings and eigencoefficients). Consider a subdivision algo-
rithm (A,G) and the Jordan decomposition A = V JV −1. The vector F of eigen-
rings and the vector P of eigencoefficients corresponding to the initial data Q are
defined by

F := GV, P := V −1Q, (4.23)

respectively.

With these settings, the sequence of rings reads

xm = FJmP. (4.24)

The vectors F and P are partitioned into blocks according to the structure of V ,

F =: [F0, F1, . . . , Fr̄], Fr =: [f0
r , f1

r , . . . , f �r
r ]

P =:

⎡
⎢⎢⎢⎢⎣
P0

P1

...
Pr̄

⎤
⎥⎥⎥⎥⎦ , Pr =:

⎡
⎢⎢⎢⎢⎣

p0
r

p1
r

...
p�r

r

⎤
⎥⎥⎥⎥⎦ , (4.25)

where the individual eigenrings are f �
r = Gv�

r. For brevity, we further define

vr := v0
r , fr := f0

r , pr := p�r
r .

In general, V is complex, so that also the eigenrings are complex,

f �
r ∈ Ck(S0

n, C, G).

Now, (4.24/74) becomes

xm =
r̄∑

r=0

FrJ
m
r Pr. (4.26)

Collecting factors of type λm,�
r , we find for the summands

FrJ
m
r Pr =

�r∑
�=0

λm,�
r

�r∑
i=�

f i−�
r pi

r. (4.27)

Equation (4.19/72) implies that the dominant term in this sum corresponds to � = �r.
Hence, we obtain

FrJ
m
r Pr

∗= λm,�r
r frpr. (4.28)

An even simpler expression is obtained for �r = 0. In this case,

FrJ
m
r Pr = λm

r frpr. (4.29)

Since A is real, the eigenvalues and eigenvectors come in complex conjugate pairs,
and we assume without loss of generality that such pairs have consecutive indices.
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If λr = λr+1 �∈ R is such a pair, then

Jr = Jr+1, Vr = Vr+1, Fr = Fr+1.

Moreover, if Q is real, we have also Pr = Pr+1 so that the summands FrJ
m
r Pr

and Fr+1J
m
r+1Pr+1 combine to

FrJ
m
r Pr + Fr+1J

m
r+1Pr+1 = 2Re(FrJ

m
r Pr)

∗= 2|λm,�r
r |Re(dm−�r

r frpr),
(4.30)

where the direction

dr :=
λr

|λr| (4.31)

of λr is a number on the complex unit circle.

4.7 The Subdivision Matrix

It is our goal to relate properties of the matrix A as introduced in Definition 4.11/67

to properties of the generated spline x = BQ. The first issue is consistency at the
central knot 0. The matrix A is called consistent if, for any set of coefficients Q,
there exists a unique limit

x(0) := xc := lim
m→∞GAmQ.

Since the rows of A sum to 1, we have

Aδ = δ, δ := [1; . . . ; 1].

Hence, 1 is always an eigenvalue of A. If this eigenvalue is dominant in the sense
that all other eigenvalues of A are smaller than 1 in modulus, then it is easily shown
that A is consistent.

Lemma 4.17 (Dominant eigenvalue and consistency). If the dominant eigenvalue
if A is

(1, 0) = (λ0, �0) � (λ1, �1),

then A is consistent. Further, if wt
0 = wt

0A is the left eigenvector of A corresponding
to λ0 = 1, then the unique limit of rings is given by the first eigencoefficient,

xc = p0 =
wt

0Q
wt

0δ
. (4.32)

Proof. The first column of V is v0
0 = δ, while the first row of V −1 is wt

0/(wt
0δ).

This implies f0 = Gδ = 1 and p0 = (wt
0Q)/(wt

0δ). By (4.19/72), Jm
r

1= 0 for r ≥ 1.

Hence, (4.26/74) yields xm 1= f0p0 = p0. �
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Fig. 4.8 Illustration of Example 4.18/76: Consistent univariate subdivision algorithm with dominant
eigenvalue 2. The shaded triangles are spanned by the coefficients Qm at level m.

Intuitively, one might expect that a dominant eigenvalue 1 is also necessary for
consistency – but this is by no means true.

Example 4.18 (Large dominant eigenvalue permits consistency). We consider the
generating rings G = [1 − u, u/2, u/2] introduced in Example 4.14/70. Let

A :=
1
4

⎡
⎣ 0 2 2
−2 7 −1
−2 −1 7

⎤
⎦ . (4.33)

The eigenvalues are λ0 = 2, λ1 = 1, λ2 = 1/2 so that, in general, AmQ diverges
(see the increasing width of the triangles in Fig. 4.8/76). However,

GAm = [−1, 1, 1] + 2−m[2 − u, u/2 − 1, u/2 − 1].

Hence, despite the dominant eigenvalue 2, the matrix A is consistent with

xc = lim
m→∞GAmQ = [−1, 1, 1]Q.

This phenomenon is possible since the eigenvector v0
0 = [0; 1;−1] corresponding to

the dominant eigenvalue λ0 = 2 is in the kernel of G, i.e., Gv0
0 = 0. In other words,

the divergent component of AmQ is annihilated by G. The remaining components
are well behaved. �

More generally, if G is linearly dependent, it is conceivable that there exist possibly
different matrices A and Ã that generate equal sequences of rings. To address this
issue, we say that two subdivision algorithms (A,G) and (Ã,G) are equivalent, if

GAm = GÃm for all m ∈ N0.

This concept will now be used for removing eigenvectors to non-zero eigenvalues
of A that are annihilated by G.

Definition 4.19 (Ineffective eigenvector). The vector v �= 0 is an ineffective eigen-
vector of the subdivision algorithm (A,G) if

Av = λv, λ �= 0, and Gv = 0. (4.34)
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The notion of ineffective eigenvectors is definitely essential for the further devel-
opment of a spectral theory of subdivision algorithms. So far, however, they have
not been observed in applications. But even if a given algorithm happens to reveal
ineffective eigenvectors, they can be removed without further consequences. The
following theorem addresses this issue.

Theorem 4.20 (Removal of ineffective eigenvectors). For any subdivision algo-
rithm (A,G) there exists an equivalent algorithm (Ã,G) without ineffective eigen-
vectors.

Proof. The proof is constructive. We recursively construct a finite sequence
{(A�, G)}� of algorithms starting from A0 := A as follows. If A� has no ineffective
eigenvectors, set Ã := A� and stop. Otherwise, let v be an ineffective eigenvector
of (A�, G) corresponding to the eigenvalue λ �= 0. Then there exists a vector w
such that wtv = λ, and wtv′ = 0 for any other eigenvector v′ of A�. Now, set
A�+1 := A� − vwt. The matrix A�+1 has the following properties:

• v remains an eigenvector of A�+1, but is no longer ineffective since A�+1v =
(A� − vwt)v = λv − λv = 0.

• All other eigenvalues and eigenvectors are retained. That is, for any eigenvector
v′ �= v of A�, we have A�+1v

′ = (A� − vwt)v′ = A�v
′ = λ′v′.

• If the rows of A� sum up to 1, so do the rows of A�+1. This follows immediately
from specializing the preceding statement to A�+1δ = A�δ = δ.

• GAm
�+1 = GAm

� for all m ∈ N0. To show this, we observe that for any m there
exists a vector wm such that (A� − vwt)m = Am

� − vwt
m. Hence, GAm

�+1 =
GAm

� − Gvwt
m = GAm

� .

By induction, all algorithms (A0, G), (A1, G), . . . are equivalent. A� has the
eigenvalue 1 and at least an �-fold eigenvalue 0. Hence, the iteration terminates
after at most �̄ steps. �

Example 4.21 (Removal of ineffective eigenvectors). Let us illustrate the algorithm
given in the proof by Example 4.18/76. The matrix A0 = A has the ineffective eigen-
vector v = v0

0 = [0; 1;−1] corresponding to λ0 = 2. The other two eigenvectors
corresponding to λ1 = 1 and λ2 = 1/2 are v0

1 = [1; 1; 1] and v0
2 = [2; 1; 1]. The

conditions wtv = 2 and wtv0
1 = wtv0

2 = 0 yield w := [0; 1;−1]. We define

A1 := A0 − vwt =
1
4

⎡
⎣ 0 2 2
−2 3 3
−2 3 3

⎤
⎦

and obtain A1v
0
0 = 0. The other two eigenvectors v0

1 and v0
2 satisfy Gv0

1 = 1
and Gv0

2 = 2 − u. Hence, (Ã,G) := (A1, G) is equivalent to (A,G) and has no
ineffective eigenvectors. �
To be able to link the spectrum of A to properties of the resulting subdivision sur-
faces, we will assume that (A,G) has no ineffective eigenvectors. Before we pro-
ceed in that direction, we establish an important result on the linear independence
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of eigenrings, which, in particular, implies that eigenrings fr corresponding to non-
zero eigenvalues cannot vanish.

Lemma 4.22 (Linear independence of eigenrings). Let (A,G) be a subdivision
algorithm without ineffective eigenvectors. If v0

r1
, . . . , v0

rk
are linearly independent

eigenvectors of A to the same eigenvalue λ �= 0, then the corresponding eigen-
rings fr1 , . . . , frk

are linearly independent. Moreover, if the generating rings G are
linearly independent, so are the eigenrings F .

Proof. Let f := cr1fr1 + · · · + crk
frk

and v := cr1v
0
r1

+ · · · + crk
v0

rk
. Then

f = Gv and Av = λv. Since λ �= 0, f = 0 is possible only if v = 0 and cr1 =
· · · = crk

= 0.
The second statement of the lemma follows immediately from F = GV and the

linear independence of the generalized eigenvectors forming V . �

The following example shows that eigenrings corresponding to different eigenvalues
can be linearly dependent even if there are no ineffective eigenvectors.

Example 4.23 (Linear dependence of eigenrings). For

G := [1 − u, u/2, u/2], A :=
1
2

⎡
⎣ 0 1 1

2 0 0
−1 1 2

⎤
⎦ ,

we have

λ0 = 1, v0 = [1, 1, 1]t, f0 = 1

λ1 = 1/2, v1 = [1, 2,−1]t, f1 = 1 − u/2

λ2 = −1/2, v2 = [1,−2, 1]t, f2 = 1 − 3u/2.

Clearly, there is no ineffective eigenvector, but 2f0 − 3f1 + f2 = 0. �

Just as the eigenrings are derived from the generating rings, we derive eigensplines
from generating splines.

Definition 4.24 (Eigensplines). The generating splines B of a subdivision algo-
rithm (A,G) define the eigensplines E = [e0, . . . , e�̄] via

E := BV.

Unlike eigenrings, the eigensplines e� corresponding to non-zero eigenvalues are
linearly independent.

Lemma 4.25 (Linear independence of eigensplines). Let E be partitioned into
blocks Er corresponding to the Jordan blocks of A. The eigensplines E′ :=
[E0, . . . , Er′ ] corresponding to nonzero eigenvalues are linearly independent if
(A,G) has no ineffective eigenvectors.
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Proof. Since eigensplines to the eigenvalue 0 are not involved, we assume E′ = E
to simplify notation. Assume that E′ is dependent, and let w �= 0 be a vector such
that EV −1w = Bw = 0. Since Amw �= 0, the sequence

wm :=
Amw

‖Amw‖
is well defined and bounded, hence has a convergent subsequence with limit w∞ �=
0. Because all rings of Bw vanish, we have

0 =
(Bw)m

‖Amw‖ =
GAmw

‖Amw‖ = Gwm, m ∈ N0.

Passing to the limit of the subsequence, we find Gw∞ = 0. This implies that
w∞ is an ineffective eigenvector of (A,G), contradicting the assumptions of the
lemma. �

Now, we are prepared to prove the fundamental theorem on the dominant eigen-
value 1 of a consistent matrix A. Although this result seems to suggest itself,
it should be emphasized that it is essentially based on the absence of ineffec-
tive eigenvectors. Even then, a concise verification is not completely straightfor-
ward.

Theorem 4.26 (Unique dominant eigenvalue). Let (A,G) be a subdivision al-
gorithm according to Definition 4.11/67 without ineffective eigenvectors. Then A is
consistent if and only if

(1, 0) = (λ0, �0) � (λ1, �1).

Proof. Sufficiency of the given condition has already been established in
Lemma 4.17/75. To prove necessity, it suffices to consider the case d = 1 of
real-valued coefficients. We eliminate all cases contradicting the given condition.
First, we exclude the case (λ0, �0) � (1, 0).

• Let (λ0, �0) � (1, 0), and λ ∈ R. We choose p0 = 1 and set all other eigencoef-
ficients to 0. The corresponding sequence xm ∗= λm,�0

0 f0 of rings, see (4.28/74),
is divergent since |λm,�0

0 | → ∞ by (4.19/72) and f0 �= 0 by Lemma 4.22/78.
• Let (λ0, �0) � (1, 0), and λ �∈ R. Since f0 �= 0, there exists s0 ∈ Sn with

f0(s0) �= 0. We choose p0 = p1 = f0(s0) and set all other eigencoefficients
to 0. The sequence xm ∗= 2|λm,�0

0 |Re(dm−�0
0 f0p0) of rings, see (4.30/75), is

divergent for the following reasons: first, |λm,�0
0 | → ∞; second, there exists

a subsequence of {dm−�0
0 }m converging to 1; third, Re(f0p0) �= 0 since

f0(s0)p0 = |f0(s0)|2 �= 0.

Since δ is always an eigenvector of A to the eigenvalue 1, we may assume
(λ0, �0) = (1, 0) and v0

0 = δ for the remaining cases, where we have to exclude
(λ1, �1) ∼ (1, 0).
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• Let (λ1, �1) = (1, 0). We choose p1 = 1 and set all other eigencoefficients to 0.
xm = f1 cannot be constant since f1 is linearly independent of f0 = Gδ = 1 by
Lemma 4.22/78.

• Let (λ1, �1) = (−1, 0). We choose p1 = 1 and set all other eigencoefficients to
0. xm = (−1)mf1 does not converge since f1 �= 0.

• Let (λ1, �1) = (λ2, �2) ∼ (1, 0) and λ1 �∈ R. We choose p0 = p1 = 1 and
set all other eigencoefficients to 0. xm = 2 Re(dm

1 f1) does not converge since
f1 �= 0. �

In summary, the necessary and sufficient conditions for smoothness and con-
sistency derived in this chapter lead to the following final definition of a
subdivision algorithm, which from now on replaces the tentative draft of
Sect. 4.4/67.

Definition 4.27 (Subdivision algorithm, final). For k ≥ 1, let G = [g0, . . . , g�̄] be
a system of generating rings g� ∈ Ck(S0

n, R), and let A ∈ R
�̄×�̄ be a square matrix

with all rows summing up to 1, i.e., Aδ = δ. If

• the matrix A has no ineffective eigenvectors, and
• the eigenvalues of A satisfy (1, 0) = (λ0, �0) � (λ1, �1), and
• for any choice of initial data Q, the generated sequence xm = GAmQ of rings

satisfies the Ck-conditions (4.7/62) and (4.8/62).

then (A,G) is a Ck
0 -subdivision algorithm, and A is its subdivision matrix.

We recall from Theorem 4.20/77 that the absence of ineffective eigenvectors can
be required without loss of generality. In view of Theorem 4.26/79, the assumption
concerning the unique dominant eigenvalue λ0 = 1 is necessary and sufficient for
consistency at the central knot. Together with the third condition concerning smooth
contact of neighboring and consecutive segments xm

j , Theorem 4.5/63 implies

Theorem 4.28 (Ck
0 -subdivision algorithm yields Ck

0 -spline). Let (A,G) be a Ck
0 -

subdivision algorithm. Then, for any choice of initial data Q,

x : Sn � s �→
{

G(2ms)AmQ if s ∈ Sm
n

p0 if s = 0

is a Ck
0 -spline in subdivision form, where p0 is the fist eigencoefficient of Q accord-

ing to Lemma 4.17/75.
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provides a constructive procedure, similar to the one described in the proof of
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6. By its nature, the Jordan decomposition (4.22/73) of the subdivision matrix A
provides an efficient way to compute powers of A: Am = V JmV −1. If the matrix A
is dense, or if m is large, it is efficient to map the coefficients Q into the eigenspace,
apply Jm and recover the coefficients before applying standard spline evaluation
with the local coefficients of the ring [Sta98c, Sta98a]. However, since the matrices
A are typically sparse, but V and its inverse are dense, a rough computation shows
that the method pays off for Catmull–Clark subdivision when m ≈ 16 or larger. For
rendering purposes, when many points have to be evaluated at many consecutive
rings, it is typically much more efficient to proceed step by step using the sparse
matrix product by A.

7. The rows of V −1 are the left eigenvectors of the subdivision matrix A. In partic-
ular, the rows corresponding to the leading three eigenvalues, wt

0, wt
1 and wt

2, yield
position wt

0Q (4.32/75) and tangent directions wt
jQ, j = 1, 2 (5.2/85) at the central

point. Explicit formulas for the central limit point and tangent plane of Catmull–
Clark subdivision are given, for example, in [HKD93], and for the Butterfly algo-
rithm in [SDL99].



Chapter 5
Ck

1 -Subdivision Algorithms

In the last chapter, we have defined a Ck
0 -subdivision algorithm as a pair (A,G)

consisting of a subdivision matrix A and a Ck-system G of generating rings. The
conditions given in Definition 4.27/80 guarantee that the generated splines are consis-
tent at the center. Such algorithms are easy to construct, but of course, they do not
live up to the demands arising in applications, where smoothness is required also
at extraordinary knots. In this chapter, we consider subdivision algorithms in more
detail with the goal to find conditions for normal continuity and single-sheetedness.
First, in Sect. 5.1/84, we define ‘generic’ sets of initial data Q. Restriction to generic
data is necessary to exclude degenerate configurations which, even for impeccable
algorithms, yield non-smooth surfaces. Section 5.2/84 defines standard algorithms.
This class of algorithms, which is predominant in applications, is characterized by
a double positive subdominant eigenvalue. Here, the characteristic ring, which is
a planar ring built from the subdominant eigenfunctions, plays a key role in the
analysis. With a careful generalization of terms, Sect. 5.3/89 yields a complete classi-
fication of all Ck

1 -subdivision algorithms. Because we will mostly focus on standard
algorithms throughout the book, this part, which is quite technical, may be skipped
on a first reading. In Sect. 5.4/95, we consider shift invariant algorithms. Shift invari-
ant algorithms have the property that the shape of the generated splines is indepen-
dent of the starting point which we choose for labeling the segments xj , j ∈ Zn.
The subdivision matrix of shift invariant algorithms is block-circulant and can be
transformed to block-diagonal form by means of the Discrete Fourier Transform.
This process is of major importance in applications, as well as for the further devel-
opment of the theory. Typically, subdivision algorithms are not only shift invariant,
but also indifferent with respect to a reversal of orientation of segment labels. Such
symmetric algorithms are discussed in Sect. 5.5/103. We show that symmetric algo-
rithms necessarily have a pair of real subdominant eigenvalues, justifying our focus
on such schemes. Further, we specify easy-to-verify conditions for the characteris-
tic ring which guarantee normal continuity and single-sheetedness of the generated
spline surfaces.

83
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5.1 Generic Initial Data

Since degenerate cases are unavoidable in any linear setting, we cannot expect a sub-
division algorithm to generate geometrically smooth spline surfaces for all choices
of initial data. In the extreme, subdivision will not even generate a surface: if all
coefficients q0 = · · · = q�̄ coincide, it generates a sequence of rings that are all
shrunk to a single point. The following definition allows us to discard degenerate
constellations of coefficients so that we can focus on situations that have practical
meaning.

Definition 5.1 (Generic initial data). A vector Q = [q0; . . . ;q�̄] of initial data
q� ∈ R

3, and equally the corresponding vector P = V −1Q of eigencoefficients
p� ∈ C

3, is called generic, if any triple of eigencoefficients has full rank,

det(pi1
r1

,pi2
r2

,pi3
r3

) �= 0, (r1, i1) �= (r2, i2) �= (r3, i3) �= (r1, i1).

Imposing conditions on all triples of eigencoefficients is more than needs to be re-
quired in the following. For instance, in the next section on standard algorithms, it is
sufficient to assume that the eigencoefficients p1,p2 are linearly independent. How-
ever, since the set of non-generic initial data as introduced above has measure zero
in R

(�̄+1)×3, anyway, we choose the simple, more stringent form of the requirement
that will cover all cases of interest.

To classify subdivision algorithms, we regard smoothness of the generated sur-
faces for generic initial data only.

Definition 5.2 (Ck
r -subdivision algorithm). A Ck

0 -subdivision algorithm is called

• Ck
r , respectively

• normal continuous, respectively
• single-sheeted,

if it generates spline surfaces that are

• Ck
r in the sense of Definition 3.12/51, respectively

• normal continuous in the sense of Definition 3.11/51, respectively
• single-sheeted in the sense of Definition 3.11/51

for any generic vector Q of initial data.

5.2 Standard Algorithms

Most subdivision algorithms of practical relevance have a double subdominant
eigenvalue that is real. As will be explained in Sect. 5.5/103, double subdominant
eigenvalues arise from symmetry properties of the algorithms.

Definition 5.3 (Standard algorithm, subdominant eigenvalue λ). A Ck
0 -subdivis-

ion algorithm (A,G) is called a standard algorithm, if the subdivision matrix A has
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eigenvalues according to

1 > λ1 = λ2 > |λ3|, �1 = �2 = 0.

Moreover,
λ := λ1 = λ2

is called the subdominant eigenvalue of A.

This definition means that the second largest eigenvalue λ of the subdivision matrix
is positive and has geometric and algebraic multiplicity 2. According to (4.26/74) and
(4.29/74), with wt

1, w
t
2 denoting the second and third row of the matrix V −1 of left

eigenvectors, the equations

Avi = λvi, fi = Gvi, pi = wt
iQ, i ∈ {1, 2}, (5.1)

characterize the corresponding pairs of subdominant eigenvectors, eigenrings, and
eigencoefficients, respectively. With f0 = Gv0 = 1, we obtain the asymptotic ex-
pansion

xm = FJmP ∗= p0 + λm(f1p1 + f2p2) (5.2)

for the sequence of rings generated by a standard algorithm. That is, first order
behavior of xm is completely determined by the user-given data p0,p1,p2 and the
eigenrings f1, f2, which depend only on the algorithm. Together, f1 and f2 form a
planar ring whose properties are crucial for understanding first order differentiability
properties of subdivision surfaces.

Definition 5.4 (Characteristic ring ψ and spline χ, standard). Let (A,G) be
a standard algorithm with Jordan decomposition A = V JV −1 of A according to
(4.22/73) and subdominant eigenrings f1, f2 according to (5.1/85). The planar ring

ψ := [f1, f2] = F [v1, v2] ∈ Ck(S0
n, R2, G)

is called the characteristic ring of the algorithm corresponding to V . Accordingly,
with the subdominant eigensplines e1, e2 of Definition 4.24/78,

χ := [e1, e2] = B[v1, v2] ∈ Ck
0 (Sn, R2) (5.3)

is called the characteristic spline.

Since Am[v1, v2] = λm[v1, v2], the rings of the characteristic spline are scaled
copies of the characteristic ring,

χm = λmψ. (5.4)

For standard algorithms, the characteristic spline χ inherits from equation (4.17/69)
the scaling property

χ(2−ms) = λmχ(s), s ∈ Sn, m ∈ N0. (5.5)
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Fig. 5.1 Illustration of Definition 5.4/85: Characteristic ring ψ and its coefficients ◦, which are
given by the components of the subdominant eigenvectors v1, v2.

The coefficients of the characteristic ring are points in R
2 given by the rows of the

matrix [v1, v2] of subdominant eigenvectors v1, v2 (cf. Fig. 5.1/86):

ψ = G[v1, v2].

These eigenvectors are not uniquely defined, and hence also the matrix V used for
Jordan decomposition is ambiguous. However, any two admissible pairs are related
by a regular (2 × 2)-matrix L according to [ṽ1, ṽ2] = [v1, v2]L. The corresponding
characteristic rings satisfy ψ̃ = ψL. That is, ψ and ψ̃ are related by a regular
linear map. By this relation, the set of all possible characteristic rings becomes an
equivalence class. The basic properties of characteristic rings that are employed in
the sequel, namely regularity and induced winding numbers, are invariant under
that relation. In this regard, any choice of V is as good as any other. Therefore,
we omit the suffix “corresponding to V ” when talking about characteristic rings or
characteristic splines (Fig. 5.2/86).

Fig. 5.2 Illustration of Definition 5.4/85: Characteristic spline χ of a standard algorithm for sub-
dominant eigenvalues (left) λ = 3/8, (middle) λ = 1/2, and (right) λ = 5/8.
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Now, (5.2/85) reads
xm ∗= p0 + λmψ[p1;p2]. (5.6)

In order to compute normal vectors, we use the operator ×D, as introduced in (2.1/17).
By (2.2/17),

×Dxm = D1xm × D2xm ∗= λ2m ×Dψ (p1 × p2), (5.7)

where we recall that ×Dψ = D1f1D2f2 − D2f1D1f2 is the Jacobian determinant
of the characteristic ring.

Definition 5.5 (Regularity of ψ). The characteristic ring ψ is called regular, if
×Dψ has no zeros.

The following theorem shows that regularity of the characteristic ring is sufficient
for a standard algorithm to be normal continuous, and, moreover, discards algo-
rithms with ×Dψ changing sign.

Theorem 5.6 (Regularity of ψ and normal continuity, standard). A standard
algorithm with characteristic ring ψ is

• normal continuous with central normal

nc = sign(×Dψ)
p1 × p2

‖p1 × p2‖ ,

if ψ is regular;
• not normal continuous, if ×Dψ changes sign.

Proof. We assume generic initial data, hence p1 × p2 �= 0, for both parts of the
proof. First, let us assume that ψ is regular. Since, by Theorem 4.7/64, ×Dψ is con-
tinuous on the compact domain S0

n, the absence of zeros implies that sign(×Dψ) is
continuous, and that 1/|×Dψ| is bounded. Hence, we obtain

×Dxm

λ2 |×Dψ|
∗= sign(×Dψ) (p1 × p2) �= 0

and see that xm is regular for almost all m. Further, the normal vectors nm are
convergent according to

nm =
×Dxm

‖×Dxm‖
∗= sign(×Dψ)

p1 × p2

‖p1 × p2‖ = nc.

Theorem 4.7/64 implies normal continuity, as stated. Second, let us assume that
×Dψ(s1)×Dψ(s2) < 0 for some arguments s1, s2 ∈ S0

n. Here, we obtain

nm(si)
∗= sign(×Dψ(si))

p1 × p2

‖p1 × p2‖ , i ∈ {1, 2},

and see that nm cannot converge to a constant limit since ‖nm(s1) −
nm(s2)‖ ∗= 2. �
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0 1/2 1
0

1

cbnd(uj)

cbnd(uj+1/2)cbnd(uj+1)

(Σ0, j)

1/2

ψ(cbnd(uj))

ψ(cbnd(uj+1))

Fig. 5.3 Illustration of Definition 5.7/88: (left) Curve cbnd in S0
n and (right) curve ψ ◦ cbnd in R

2.

Theorem 5.6/87 covers all but the case where ×Dψ has zeros without changing sign.
Here, the behavior of ×Dxm depends on higher order eigencoefficients and cannot
be determined a priori.

Now, the issue of single-sheetedness has to be addressed, and again, properties
of the characteristic ring are crucial. We consider the curve cbnd : U = [0, 1] → S0

n

in the domain of ψ which parametrizes the outer boundary: With uj := j/n, let

cbnd(t) :=

{(
1, 2n(u − uj), j

)
if uj ≤ u ≤ uj+1/2(

2n(uj+1 − u), 2, j
)

if uj+1/2 ≤ u ≤ uj+1,

see Fig. 5.3/88 left. As shown in Example 3.10/50, its winding number is
ν(cbnd,0) = 1.

Definition 5.7 (Winding number of ψ). The winding number of the characteristic
ring ψ ∈ Ck(S0

n, R2) is defined as

ν(ψ) := ν(ψ ◦ cbnd,0),

see Fig. 5.3/88. We say that ψ is uni-cyclic if |ν(ψ)| = 1.

We are now able to prove an easy-to-verify criterion for the single-sheetedness of
subdivision algorithms in terms of the winding number of the characteristic ring.

Theorem 5.8 (Winding number of ψ and single-sheetedness, standard). Con-
sider a standard algorithm (A,G) with a regular characteristic ring ψ ∈
Ck(S0

n, R2). Then the following assertions are equivalent:

• (A,G) is a Ck
1 -subdivision algorithm.

• The characteristic ring ψ is uni-cyclic.
• The characteristic ring ψ is injective.

Proof. First, we prove equivalence of the first and the second assertion. We consider
the rings ξm

∗ of the tangential component ξ∗ of x∗ according to (4.11/64). By (5.6/87),
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ξm
∗ = (xm − xc) · Tc ∗= λmψ[p1;p2] · Tc.

For generic initial data, the (2 × 2)-matrix L := [p1;p2] · Tc is invertible. On one
hand, by (2.5/17),

×Dξm
∗

∗= λ2m×Dψ det L.

This implies that ξ∗ and hence also x is locally almost regular. On the other hand,
let

ξ̃m := λ−mξm
∗ L−1,

then ξ̃m ∗= ψ. By continuity and affine invariance of the winding number,

lim
m→∞ ν(ξm

∗ ◦ cbnd, 0) = lim
m→∞ ν(ξ̃m ◦ cbnd, 0) = ν(ψ).

Combining the two observations, we see that there exists m0 ∈ N0 such that ξ∗ is
m0-almost regular and ν(ξm0∗ ◦ cbnd, 0) = ν(ψ). Hence, by Theorem 4.8/64, ξ∗ is
single-sheeted if and only if |ν(ψ)| = 1, i.e., if ν is uni-cyclic.

Second, we prove equivalence of the second and the third assertion. We define
the spline surface x := [χ, 0]. Using (5.4/85), we have ‖×Dxm‖ = |×Dχm| =
λ2m|×Dψ|, showing that x is almost regular. Further, x is normal continuous with
nc = [0, 0, 1] and xc = 0. Hence, ξ∗ = χ, and

ν(ξ∗ ◦ cbnd, 0) = ν(χ ◦ cbnd, 0) = ν(ψ ◦ cbnd, 0) = ν(ψ).

If ψ is uni-cyclic, then x is single-sheeted by Theorem 3.15/53. This implies that χ
and hence also ψ = χ0 is injective. Conversely, if ψ is injective, then the curve
ψ ◦ cbnd is injective and can be deformed continuously to a circle with winding
number ±1. �

In applications, it is much easier to check if ψ is uni-cyclic than to consider global
injectivity. Since the conditions given above are sufficient and (almost) necessary
for generating Ck

1 -surfaces, we conclude with the following definition:

Definition 5.9 (Standard Ck
1 -algorithm). A standard algorithm is called a stan-

dard Ck
1 -algorithm, if its characteristic ring ψ is regular with ×Dψ > 0 and

uni-cyclic.

Assuming positivity of ×Dψ is not restrictive. If ×Dψ = ×D(G[v1, v2]) < 0 then
interchanging v1 and v2 readily yields the desired sign.

5.3 General Algorithms

Standard algorithms cover most cases of practical relevance. Yet, there are legitimate
algorithms, for example “simplest subdivision” in Sect. 6.3/120, that have a different
eigenstructure-structure; and, certainly, identifying and characterizing more classes
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of Ck
1 -subdivision algorithms is of interest in its own right. This section shows how

a careful extension of the concepts used in the standard case yields results of very
similar flavor and identical wording also in more general settings.

Specifically, we give six families of possible subdivision matrices that, in princi-
ple, are suitable to generate Ck

1 -surfaces. We focus on showing that membership in
each family implies smoothness; completeness is proven in [Rei99].

Let us consider the sequence {xm}m of rings according to (4.26/74) forming the
spline x. By (2.3/17), the cross product of partial derivatives has the form

×Dxm =
∑

i

am
i hici. (5.8)

As specified later, the {am
i }m form decaying sequences of scaling factors, the

hi = hi(s) are real-valued rings, and the ci are cross products of pairs of eigen-
coefficients. If the above sum has a single dominant term, i.e.,

×Dxm ∗= am
1 h1c1, (5.9)

and if in addition am
1 h1(s) has constant sign s = ±1 for all (m, s) ∈ N × S0

n, then
normalization yields normal continuity according to

nm ∗= s c1/‖c1‖.

It is easy to see that alternating behavior of the sequence with elements am
1 , or sign

changes of h1 destroy convergence.
Now, we consider the case of a multiple dominant term in (5.8/90). For simplicity,

we assume that it is double, and write

×Dxm ∗= |am
1 |(sm

1 h1c1 + sm
2 h2c2

)
, |sm

1 | = |sm
2 | = 1.

Choosing a subsequence (for simplicity we reuse the index m) such that sm
1 →

s1, sm
2 → s2, we obtain

nm ∗=
s1h1c1 + s2h2c2

‖s1h1c1 + s2h2c2‖ .

This expression can only converge to a constant limit either if the vectors c1, c2

or the functions h1, h2 are linearly dependent. The simple argument is left to the
reader. The first case is possible only for non-generic data, while the second one
corresponds to the exceptional situation that two functions, which are not interre-
lated by deeper principles, happen to be linearly dependent.

Consequently, we will search algorithms for which the sum in (5.8/90) has a single
dominant term. Using (4.26/74) and (4.27/74), we obtain

xm = p0 + λm,�1
1 f0

1p�1
1 + λm,�1−1

1 (f0
1p�1−1

1 + f1
1p�1

1 )

+ λm,�1−2
1 (f0

1p�1−2
1 + f1

1p�1−1
1 + f2

1p�1
1 )

+ λm,�2
2 f0

2p�2
2 + rm,
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where the remainder term satisfies, with the notation for asymptotics of sequences
in Sect. 4.5/71,

rm � λm,�1−3
1 + λm,�2−1

2 + λm,�3
3 .

The cross product of partial derivatives can be computed with the aid of (2.3/17). We
obtain

×Dxm = ñm
1 + ñm

2 + r̃m (5.10)

with

ñm
1 := λm,�1

1 λm,�2
2

×D[f0
1 , f0

2 ](p�1
1 × p�2

2 )

ñm
2 :=

(
(λm,�1−1

1 )2 − λm,�1
1 λm,�1−2

1

)×D[f0
1 , f1

1 ](p�1
1 × p�1−1

1 )

and a remainder term r̃m which can be bounded by

r̃m � λm,�1
1 (λm,�1−3

1 + λm,�2−1
2 + λm,�3

3 ) + λm,�1−1
1 (λm,�1−2

1 + λm,�2
2 ).

Recalling our convention that λm,� = 0 for � < 0, we find ñm
2 = 0 if �1 = 0, and

ñm
2

∗= �−1
1 (λm,�1−1

1 )2 ×D[f0
1 , f1

1 ](p�1
1 × p�1−1

1 ) if �1 > 0.

The order of decay of the three summands is easily determined using (4.19/72),

ñm
1 ∼ (λ1λ2)m m�1+�2

ñm
2 ∼

{
0 if �1 = 0
λ2m

1 m2�1−2 if �1 > 0

r̃m �
{

(λ1λ3)m m�3 if �1 = 0
λ2m

1 m2�1−3 + (λ1λ2)m m�1+�2−1 + (λ1λ3)m m�1+�3 if �1 > 0.

Now, we are prepared to determine a list of cases where in the representation (5.10/91)
either ñm

1 or ñm
2 is the strictly dominant term. In the following,

A := {A : λ1 �= 0}
denotes the set of all subdivision matrices according to Definition 4.27/80 excluding
the trivial case λ1 = 0. We distinguish the following cases:

Case 1: (λ1, �1) ∼ (λ2, �2), i.e., there is a multiple subdominant eigenvalue. In this
case, ñm

2 ≺ ñm
1 , and r̃m ≺ ñm

2 if (λ2, �2) � (λ3, �3). We distinguish two sub-cases:

1-1: λ1 ∈ R. Here, λ2 is also real. If λ1 = −λ2, then ñm
2 is alternating and the

algorithm cannot be normal continuous. The case λ1 = λ2 does not lead to such
problems, and the corresponding class of subdivision matrices is denoted by

A1
1 := {A ∈ A : (λ1, �1) = (λ2, �2) � (λ3, �3), λ1 ∈ R}.

We note that standard algorithms, as introduced in the last section, belong to this
class with �1 = �2 = 0.
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1-2:λ1 �∈ R. The complex sub-case yields the class

A2
1 := {A ∈ A : (λ1, �1) = (λ2, �2) � (λ3, �3), λ1 �∈ R}.

Case 2: |λ1| = |λ2|, �1 > �2, i.e., we have equal modulus, but differing multiplici-
ties of the first and second eigenvalue. We distinguish three sub-cases:

2-1: �1 = �2+1. Here, ñm
2 ≺ ñm

1 , and r̃m ≺ ñm
1 if (λ2, �2) � (λ3, �3). In that case,

λ1 and λ2 are both real, and their product has to be positive to avoid alternating
behavior of ñm

1 . We obtain the class

A1
2 := {A ∈ A : λ1 = λ2, �1 = �2 + 1, (λ2, �2) � (λ3, �3)}.

2-2: �1 > �2 + 2. Here, r̃m � ñm
1 ≺ ñm

2 , and we denote

A2
2 := {A ∈ A : |λ1| = |λ2|, �1 > �2 + 2}.

2-3:�1 = �2 + 2. Here, ñm
1 ∼ ñm

2 implies decay at equal rates of both terms, and
normal continuity cannot be expected by the argument similar to the one ruling
out multiple dominant terms in (5.8/90).

Case 3: |λ1| > |λ2|. We distinguish two sub-cases:

3-1: �1 = 0. Here, ñm
2 ≺ ñm

1 , and r̃m ≺ ñm
1 if (λ2, �2) � (λ3, �3). Further, the

sign of λ1 and λ2 has to be equal to avoid alternating behavior. This sub-case is
denoted by

A2
3 := {A ∈ A : |λ1| > |λ2|, �1 = 0, λ1λ2 > 0, (λ2, �2) � (λ3, �3)}.

3-2:�1 ≥ 1. Here, ñm
1 ≺ ñm

2 and also r̃m ≺ ñm
2 . We denote

A1
3 := {A ∈ A : |λ1| > |λ2|, �1 ≥ 1}.

Summarizing, ñm
1 is dominant if the subdivision matrix lies in A1

1,A2
1,A1

2 or A1
3,

and ñm
2 is dominant if it lies in A2

2 or A2
3.

The, off-hand heuristic, partition of cases into six families will turn out to sim-
plify the analysis that we start by extending the definition of the characteristic
ring.

Definition 5.10 (Characteristic ring, general). Let (A,G) be a subdivision al-
gorithm with subdivision matrix A ∈ Aq

p, p ∈ {1, 2, 3}, q ∈ {1, 2}. We define the
characteristic ring ψ ∈ Ck(S0

n, R2) by

ψ :=

⎧⎪⎪⎨
⎪⎪⎩

[f0
1 , f0

2 ] if A ∈ A1
1 ∪ A1

2 ∪ A1
3

[Re f0
1 , Im f0

1 ] if A ∈ A2
1

[f0
1 , f1

1 ] if A ∈ A2
2 ∪ A2

3,
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and the (2 × 3)-matrix P∗ of eigencoefficients by

P∗ := [p∗
1;p

∗
2] :=

⎧⎪⎪⎨
⎪⎪⎩

[p�1
1 ;p�2

2 ] if A ∈ A1
1 ∪ A1

2 ∪ A1
3

[Rep�1
1 ;− Imp�1

1 ] if A ∈ A2
1

[p�1
1 ;p�1−1

1 ] if A ∈ A2
2 ∪ A2

3.

ψ is called regular, if its Jacobian determinant ×Dψ has no zeros.

The following result on normal continuity is completely analogous to Theorem 5.6/87

and the conclusion is verbatim the same.

Theorem 5.11 (Regularity of ψ and normal continuity, general). A subdivision
algorithm (A,G) with A ∈ Aq

p and characteristic ring ψ according to the preceding
definition is

• normal continuous with limit

nc = sign(×Dψ)
p∗

1 × p∗
2

‖p∗
1 × p∗

2‖
,

if the characteristic ring is regular,
• not normal continuous; if ×Dψ changes sign.

Proof. With the scaling factor

am :=

{
λm,�1

1 λm,�2
2 if A ∈ A1

1 ∪ A1
2 ∪ A1

3 ∪ A2
1

�−1
1 (λm,�1−1

1 )2 if A ∈ A2
2 ∪ A2

3,

the cross product of the partial derivatives of the rings is

×Dxm ∗= am
×Dψ (p∗

1 × p∗
2).

In the complex case A ∈ A2
1 the relations f0

1 = f0
2 and p�1

1 = p�2
2 = p∗

1 − ip∗
2

are used to obtain the real representation. Now, the proof proceeds exactly as for
Theorem 5.6/87. �

The wording of the theorem below in the general case is verbatim the same as in the
standard case, i.e., as for Theorem 5.8/88 on C1

k-regularity.

Theorem 5.12 (Winding number of ψ and single-sheetedness, general). Con-
sider a subdivision algorithm with matrix A ∈ Aq

p with a regular characteristic ring
ψ ∈ Ck(S0

n, R2). Then the following assertions are equivalent:

• (A,G) is a Ck
1 -subdivision algorithm.

• The characteristic ring ψ is uni-cyclic.
• The characteristic ring ψ is injective.
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Proof. In all six cases, we will specify sequences {Λm} of invertible (2×2)-matrices
such that the rings can be written as

xm = p0 + ψΛmP∗ + rm

with a suitable remainder term rm. Let us denote the LQ-decomposition of P∗ by
P∗ = LT. That is, L is a lower triangular matrix, and T consists of two orthonor-
mal row-vectors spanning the same plane as the rows of P∗. For generic data, P∗

has full rank, and hence L is invertible. The projection to the tangent plane at the
center is

ξm = (xm − p0) · T = ψΛmL + rm · T.

We define ξ̃m := ξmL−1(Λm)−1 and obtain

ξ̃m = ψ + ρm, ρm := (rm · T)L−1(Λm)−1.

We will show that in all cases the remainder term satisfies ρm ≺ 1, i.e., it converges
to 0. Thus, ξ̃m ∗= ψ, and all the rest of the conclusion proceeds exactly as in
Theorem 5.8/88. It remains to add the details for the six cases. Throughout, we omit
the subscript of the first eigenvalue, (λ, �) := (λ1, �1).

Case 1-1: For (λ2, �2) = (λ, �), the leading terms are

xm ∗= p0 + λm,�f0
1p�

1 + λm,�f0
2p�

2.

With ψ = [f0
1 , f0

2 ], P∗ = [p�
1;p

�
2], and

Λm :=
[
λm,� 0

0 λm,�

]
, (Λm)−1 � 1/λm,�,

the remainder terms satisfy

rm ≺ λm,�, ρm ∼ rm(Λm)−1 ≺ 1.

Case 1-2: For (λ2, �2) = (λ, �), we have

xm ∗= p0 + 2Re(λm,�f0
1p�

1)

ψ = [Re f0
1 , Im f0

1 ], P∗ = [Rep�
1;− Imp�

1]

Λm := 2
[

Re λm,� Im λm,�

− Im λm,� Re λm,�

]
, (Λm)−1 =

1
2

(Λm)t/|λm,�|2 � 1/λm,�

rm ≺ λm,�, ρm ∼ rm(Λm)−1 ≺ 1

Case 2-1: For (λ2, �2) = (λ, � − 1), the leading terms of xm are

xm ∗= p0 + λm,�f0
1p�

1 + λm,�−1(f0
2p�−1

2 + f0
1p�−1

1 + f1
1p�

1),
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and the characteristic ring is ψ = [f0
1 , f0

2 ]. With a vector nc perpendicular to P∗ =
[p�

1;p
�−1
2 ] we decompose p�−1

1 = [a, b]P∗ + cnc. Setting

Λm :=
[
λm,� bλm,�−1

0 λm,�−1

]
, (Λm)−1 ∼ (λm,�)−1

[
1 −b
0 m

]
,

we obtain the remainder term rm ∗= λm,�−1(cf0
1nc + af0

1p�
1 + f1

1p�
1). Using

ncP∗ = 0 and p�
1P

∗ ∼ [1, 0], we find

ρm ∼ [1/m, 0]
[
1 −b
0 m

]
≺ 1.

Case 2-2: For |λ2| = |λ| and �2 < � − 2, we have

xm ∗= p0 + λm,�f0
1p�

1 + λm,�−1(f0
1p�−1

1 + f1
1p�

1)

ψ = [f0
1 , f1

1 ], P∗ = [p�
1;p

�−1
1 ]

Λm :=
[
λm,� λm,�−1

0 λm,�−1

]
, (Λm)−1 � (λm,�−1)−1

rm ≺ λm,�−1, ρ ∼ rm(Λm)−1 ≺ 1.

Case 3-1: For |λ2| < |λ1| and � = 0, we have

xm ∗= p0 + λm,�f0
1p�

1 + λm,�2
2 f0

2p�2
2

ψ = [f0
1 , f0

2 ], P∗ = [p�
1;p

�2
2 ]

Λm :=
[
λm,� 0

0 λm,�2
2

]
, (Λm)−1 � 1/λm,�2

2

rm ≺ λm,�2
2 , ρm ∼ rm(Λm)−1 ≺ 1.

Case 3-2: For |λ2| < |λ1| and � > 0, we have

xm ∗= p0 + λm,�f0
1p�

1 + λm,�−1(f0
1p�−1

1 + f1
1p�

1)

ψ = [f0
1 , f1

1 ], P∗ = [p�
1;p

�−1
1 ]

Λm :=
[
λm,� λm,�−1

0 λm,�−1

]
, (Λm)−1 � (λm,�−1)−1

rm ≺ λm,�−1, ρ ∼ rm(Λm)−1 ≺ 1.

�

5.4 Shift Invariant Algorithms

A subdivision algorithm is shift invariant if the shape generated by the sequence of
rings remains unchanged regardless which segment is labeled first when numbering
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them. Most subdivision algorithms currently in use have this property. It allows an-
alyzing the spectrum of the subdivision matrix with the help of the Discrete Fourier
Transform (DFT). We will show that shift invariance is possible only for subdivision
matrices with a pair of – either real or complex conjugate – subdominant Jordan
blocks. Further, the characteristic ring is symmetric in the sense that neighboring
segments are related by a 2π/n-rotation.

Corresponding to the partition of a ring xm = GAmQ into segments xm
j =

xm(·, j), j ∈ Zn, the coefficients Q can typically be partitioned into n blocks Q =
[Q0; . . . ;Qn−1], where all blocks1 Qj have equal size �̃ := (�̄+1)/n. This grouping
of coefficients into blocks with equal structure is a natural process; by contrast,
assigning the label j = 0 to one of these blocks is a random choice, unless the blocks
are intentionally treated differently. We expect from a shift invariant algorithm that
this choice determines the labelling of segments, but not their shape. To make this
precise, let us consider two possible representations Q and Q̃ of a given set of
initial data, differing only by the labelling of blocks, i.e., Q̃j = Qj−i for some
i ∈ Zn. Then the corresponding rings xm and x̃m should have segments related by
an equal shift of labels, i.e., x̃m

j = xm
j−i. Let us investigate the consequences of this

requirement. With 1 the identity matrix of size �̃, let

S :=

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1

1 0 · · · 0 0
0 1 · · · 0 0

. . .
0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦ , 1 :=

⎡
⎢⎣

1 0 ··· 0 0
0 1 ··· 0 0

. . .
0 0 ··· 1 0
0 0 ··· 0 1

⎤
⎥⎦ ,

denote the n-block shift matrix. Then Q̃ = SiQ, and shift invariance formally
reads

x̃m
j = G(·, j)AmSiQ = G(·, j − i)AmQ = xm

j−i. (5.11)

For m = 0, we obtain G(·, j)Si = G(·, j − i), and hence, for arbitrary m,
G(·, j)AmSi = G(·, j)SiAm. Disregarding possible linear dependence of the gen-
erating system G, the latter equality suggests that Am and Si commute. These con-
siderations give rise to the following definition:

Definition 5.13 (Shift invariance). A subdivision algorithm (A,G) is called shift
invariant, if the generating system satisfies

G(·, j)S = G(·, j − 1), j ∈ Zn,

and if A and S commute,
AS = SA.

1 The partition of vectors of coefficients and functions into n similar blocks must not be confused
with the partition into Jordan blocks, see Sect. 4.6/72.
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The two conditions imply G(·, j)Si = G(·, j − i) and AmSi = SiAm for all
j, i ∈ Zn and m ∈ N0. Following (5.11/96), we obtain

x̃m
j = xm

j−i if Q̃j = Qj−i, i, j ∈ Zn,

for a shift invariant algorithm, as intended.
According to the partitioning of the coefficients, the subdivision matrix of a shift-

invariant algorithm can be represented by (n × n) blocks Aj,i of size (�̃ × �̃),

A =

⎡
⎢⎣

A0,0 · · · A0,n−1

...
...

An−1,0 · · · An−1,n−1

⎤
⎥⎦ .

If A and S commute, we obtain for the blocks

(AS)j,i = Aj,i+1 = Aj+1,i = (SA)j,i, i, j ∈ Zn.

Hence, the matrix A is completely determined by the blocks Aj := Aj,0 of the first
column via Aj = Aj+i,i. We say that A is block-circulant and write

A = circ(A0, . . . , An−1) :=

⎡
⎢⎢⎢⎣

A0 An−1 · · · A1

A1 A0 · · · A2

...
...

. . .
...

An−1 An−2 · · · A0

⎤
⎥⎥⎥⎦ .

The given conditions for shift invariance are more general than might appear at first
sight. This is best explained by example.

Example 5.14 (Catmull–Clark algorithm in circulant form). In its standard form,
the Catmull–Clark algorithm uses �̄ + 1 = 12n + 1 coefficients, arranged as shown
in Fig. 6.3/111 to describe a ring. There is one central coefficient q̃0, and n blocks
Q̃0, . . . , Q̃n−1 with always 12 elements. The corresponding subdivision matrix and
the generating system have the structure

Ã :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ã0 ã1 ã1 · · · ã1

ã2 Ã0 Ãn−1 · · · Ã1

ã2 Ã1 Ã0 · · · Ã2

...
. . .

. . .

ã2 Ãn−1 Ãn−2 · · · Ã0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Q̃ :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

q̃0

Q̃0

Q̃1

...

Q̃n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, G̃ := [g̃0, G̃1, . . . , G̃n−1],

where ã0 is a real number, ã1 is row-vector, and ã2 is a column vector with al-
ways 12 elements. Of course, one can adapt the notion of shift invariance to cover
also such situations, but we want to show now that this is actually not necessary
if we slightly modify the structure of the coefficients. The trick is to artificially
extend each block Q̃j by a copy qj := q̃0 of the central coefficient to obtain
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the arrangement

Q := [Q0; . . . ;Qn−1], Qj := [qj ; Q̃j ]

with 13n coefficients, see Fig. 6.3/111. Accordingly, the subdivision matrix yields the
desired circulant structure,

A := circ(A0, . . . , An−1), Aj :=
[
ã0/n ã1

ã2/n Ãj

]
.

Division by n is applied to ensure that also the rows of A sum to 1. Further, all
points qm

0 = · · · = qm
n−1 remain equal throughout the iteration. The new system of

generating rings is

G := [G0, . . . , Gn−1], Gj := [g̃0/n, G̃j ],

where division by n retains partition of unity. It is easily shown that the original
algorithm and its variant are equivalent in the sense that

GAmQ = G̃ÃmQ̃

for any choice of initial data. Unlike the original generating rings, the new system
G is linearly dependent. However, no ineffective eigenvectors are introduced. �
The key tool for handling circulant matrices is the Discrete Fourier Transform
(DFT). We denote the imaginary unit and the primitive n-th root of unity by

i :=
√−1, wn := cn + isn := exp(2πi/n). (5.12)

With 1 the identity matrix of size �̃ as above, we define the Fourier block matrix W
by

W := (w−ji
n 1)j,i∈Zn

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1

1 w−1
n 1 w−2

n 1 · · · w1
n1

1 w−2
n 1 w−4

n 1 · · · w2
n1

...
...

...
. . .

...

1 w1
n1 w2

n1 · · · w−1
n 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

It is easily verified by inspection that the inverse of W is given by

W−1 =
1
n

(w+ji
n 1)j,i∈Zn

=
1
n
W.

In particular, the i-th block column of W−1 is

W−1
i :=

1
n

⎡
⎢⎢⎢⎣

1

wi
n1
...

w
(n−1)i
n 1

⎤
⎥⎥⎥⎦ . (5.13)
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The DFT of the matrix A is defined by Â := WAW−1, and a standard computation
shows that

Â = diag(Â0, . . . , Ân−1) =

⎡
⎢⎣

Â0 0
. . .

0 Ân−1

⎤
⎥⎦ (5.14)

is block-diagonal with entries obtained by applying the Fourier matrix to the first
block column of A,⎡

⎢⎣
Â0

...
Ân−1

⎤
⎥⎦ = W

⎡
⎢⎣

A0

...
An−1

⎤
⎥⎦ , that is Âi =

∑
j∈Zn

w−ji
n Aj .

By definition, A and Â are similar, and in particular, they have equal eigenvalues.
More precisely, the Jordan decompositions of A and Â are related by

A = V JV −1, Â = V̂ JV̂ −1, V̂ = WV.

Since Â is block-diagonal, its Jordan decomposition is obtained from the respective
decompositions of the blocks,

V̂ = diag(V̂0, . . . , V̂n−1), J = diag(Ĵ0, . . . , Ĵn−1), Âi = V̂iĴiV̂
−1
i .

This means that with the help of the DFT, Jordan decomposition of the subdivision
matrix A, which typically is quite large, boils down to decomposing the n much
smaller blocks Â0, . . . , Ân−1 individually. More specifically, let v̂ be a (generalized)
eigenvector of Âi. Then v̂ is the i-th block of a column of V̂ , all other blocks of this
column are zero. Hence, using the Kronecker symbol δj,i and V = W−1V̂ , the
corresponding (generalized) eigenvector v of A is

v = W−1

⎡
⎢⎢⎢⎣

δ0,iv̂
δ1,iv̂

...
δn−1,iv̂

⎤
⎥⎥⎥⎦ =

1
n

⎡
⎢⎢⎢⎣

w0
nv̂

wi
nv̂
...

w
(n−1)i
n v̂

⎤
⎥⎥⎥⎦ ,

or, with (5.13/98), briefly
v = W−1

i v̂. (5.15)

Moreover, v is always an eigenvector of S to the eigenvalue w−i
n , i.e.,

Sv = w−i
n v. (5.16)

This implies for the segments of the corresponding eigenring f := Gv

fj = G(·, j)v = wi
nG(·, j)Sv = wi

nG(·, j − 1)v = wi
nfj−1. (5.17)

The observation that every Jordan block of A corresponds to a Jordan block of one
of the diagonal blocks leads to the following
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Definition 5.15 (Fourier index). For a complex number λ, the set of all indices i
with the property that λ is eigenvalue of Âi is called the Fourier index of λ and
denoted by

F(λ) := {i ∈ Zn : λ is eigenvalue of Âi}.
Equally, the Fourier index of a Jordan block J , see (4.20/72), is

F(J) := {i ∈ Zn : J is Jordan block of Âi}.

It is easily shown that the unique dominant eigenvalue λ0 = 1 of a subdivision
matrix has the Fourier index

F(1) = {0}.
Since A is real, the blocks of Â and also their Jordan decompositions come in com-
plex conjugate pairs,

Ân−i = Âi, V̂n−i = V̂ i, Ĵi = Ĵ i.

In particular, if J is a Jordan block of Âi, then J is a Jordan block of Ân−i,

i ∈ F(J) ⇔ n − i ∈ F(J). (5.18)

Together with (5.17/99), this pairing allows us to discard shift invariant subdivision
algorithms without a pair of real or complex subdominant Jordan blocks.

Theorem 5.16 (Shift invariant algorithms). Consider a shift invariant subdivision
algorithm (A,G) with A ∈ Aq

p according to Sect. (5.3/89) and a regular characteris-
tic ring ψ. Then (A,G) can be a Ck

1 -algorithm only if A ∈ A1
1 ∪ A2

1.

Proof. The excluded cases A ∈ Aq
p, p ≥ 2, are characterized by the fact

that the first eigenvalue dominates the second one, (λ1, �1) � (λ2, �2). λ1

has to be real, since otherwise there would exist a similar, but different, eigen-
value (λ1, �1). Since the Jordan block J1 corresponding to (λ1, �1) appears only
once, its Fourier index contains exactly one element, F(J1) = {i1}. How-
ever, by (5.18/100), n − i1 is also in the Fourier index of J1 = J1, what
implies i1 = n − i1 mod n. This condition has at most two solutions. Ei-
ther i1 = 0 or, if n is even, i1 = n/2. In both cases, 2i1 = 0 mod n.
Hence, by (5.17/99), any eigenring f i

1 corresponding to J1 has coinciding segments
f i
1(·, 2) = f i

1(·, 0). Now, we show that in all excluded cases the characteristic
ring ψ is not injective, and hence, in view of Theorem 5.12/93, the algorithm is not
Ck

1 .
If A ∈ A2

2∪A2
3, then both components of the characteristic ring correspond to the

first Jordan block, ψ = [f0
1 , f1

1 ]. Hence, ψ(·, 2) = ψ(·, 0), and ψ is not injective.
If A ∈ A1

2 ∪ A1
3, then the second eigenvalue dominates the third one, (λ2, �2) �

(λ3, �3). By the same arguments as above, J2 is real, the single element i2 of the
Fourier index F(J2) satisfies 2i2 = 0 mod n, and the segments f i

2(·, 2) = f i
2(·, 0)

of the eigenring f i
2 coincide. Hence, also in this case, the characteristic ring

ψ = [f0
1 , f0

2 ] is not injective. �
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We now focus on the two remaining classes of algorithms. If A ∈ A1
1, then we have

a double subdominant Jordan block J1 = J2 with Fourier index F(J1) = F(J2) =
{i, n−i}. If A ∈ A2

1, then we have a complex conjugate pair of subdominant Jordan
blocks J1 = J2 with Fourier indices F(J1) = {i} and F(J2) = {n − i}. In both
cases, we call

Fsub := {i, n − i}
the subdominant Fourier index of the algorithm. With v̂ the eigenvector of Âi to
λ1 and v = W−1

i v̂, the two subdominant eigenrings f = Gv1 and f = Gv are
complex-valued. For A ∈ A2

1, λ1 is complex, and this is just the situation that
we expect. We set v0

1 := v, v0
2 := v to obtain f0

1 = f, f0
2 = f and the char-

acteristic ring ψ := [Re f0
1 , Im f0

1 ] = [Re f, Im f ]. For A ∈ A1
1, λ is real, and

v0
1 := Re v, v0

2 := Im v are real eigenvectors of A. Hence, f0
1 = Re f, f0

2 = Im f
are real subdominant eigenring, and again, the characteristic ring is ψ := [f0

1 , f0
2 ] =

[Re f, Im f ]. Thus, the case distinction made in Definition 5.10/92 is resolved using
the complex-valued eigenring f .

Definition 5.17 (Characteristic ring, complex). Let (A,G), A ∈ A1
1 ∪ A2

1, be a
shift invariant Ck

0 -subdivision algorithm with subdominant Fourier index Fsub =
{i, n − i} and a subdominant eigenvector

v := W−1
i v̂, Âiv̂ = λ1v̂. (5.19)

Then the characteristic ring in complex form of the algorithm is defined as the
complex-valued ring

f = Gv ∈ Ck(S0
n, C, G).

If clear from the context, the suffix “in complex form” is omitted.

As explained above, f is just the complexification of the formerly defined real char-
acteristic ring,

ψ = [Re f, Im f ].

Due to the relation (5.17/99), the complex version is sometimes more convenient for
analytical purposes than the real form. For instance, it is helpful when proving the
following theorem on the Fourier index of the subdominant eigenvalue. Its claim is
illustrated by Fig. 5.4/102. On the left hand side, it shows the characteristic ring of the
standard Doo–Sabin algorithm for n = 5 with weights according to (6.15/116). Here,
the subdominant eigenvalue λ = 1/2 has the correct Fourier index Fsub = {1, 4}.
On the right hand side, the modified weights a = [1, 0, 1, 1, 0]/3 are used, which
yield the subdominant eigenvalue λ = (1 +

√
5)/6 ≈ 0.54 with the inappropriate

Fourier index Fsub = {2, 3}.

Theorem 5.18 (Winding number of ψ and Fourier index). Let (A,G) be a shift
invariant subdivision algorithm with A ∈ A1

1 ∪ A2
1. If the characteristic ring f is

uni-cyclic then the subdominant Fourier index is Fsub = {1, n − 1}.

Proof. Following Definition 5.7/88, we define the curve z := f ◦ cbnd, which para-
metrizes the outer boundary of the image of the complex characteristic ring f . Let
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Fig. 5.4 Illustration of Theorem 5.18/101: Characteristic ring ψ of an algorithm for n = 5 using
(left) standard Doo–Sabin weights so that the Fourier index is F(λ) = {1, 4} and (right) intention-
ally modified weights so that F(λ) = {2, 3}. The figure shows and Theorem 5.18/101 proves that ψ

is not uni-cyclic in the latter case.

us assume that Fsub = {i, n − i}, then (5.17/99) implies

z′(u + j/n)
z(u + j/n)

=
wij

n z′(u)
wij

n z(u)
, u ∈ [0, 1/n]

for all j ∈ Zn. We obtain

2πi ν(ψ) =
∫ 1

0

z′(u)
z(u)

du = n

∫ 1/n

0

z′(u)
z(u)

du = n ln
z(1/n)
z(0)

,

where the imaginary part of the logarithm is only determined up to an integer mul-
tiple of 2π. By consistency of neighboring segments according to (4.9/62) and by
(5.17/99),

z(1/n) = f(0, 1, 0) = f(1, 0, 1) = wi
nz(0). (5.20)

Hence, for some � ∈ Z,

2π ν(f) = n(2πi/n + 2π�),

implying that
1 = |ν(f)| = |i + �n|.

The only solutions to this equation are given by |i| = 1 mod n, as stated. �

Summarizing, a shift invariant Ck
1 -algorithm must have a double subdominant

eigenvalue, either real or complex, corresponding to the Fourier blocks 1 and
n − 1. The following definition removes some of the ambiguities in choosing the
characteristic ring by fixing the index i = 1 in (5.19/101) and requiring f(1, 1, 0) to
be real and positive.
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Fig. 5.5 Illustration of Example 5.20/103: Characteristic ring of algorithms for n = 6 using (left)
standard Doo–Sabin weights and (right) asymmetric weights.

Definition 5.19 (Characteristic ring, normalized). The characteristic ring f =
Gv of a shift-invariant subdivision algorithm (A,G) is called normalized, if

v = W−1
1 v̂, Â1v̂ = λ1v̂

and the value
f(1, 1, 0) ∈ R>0

is a positive real number.

It is easily shown that normalization is always possible for a Ck
1 -algorithm. In this

case, by Theorem 5.12/93, f is injective. Further, Fsub = {1, n − 1}, and a sub-
dominant eigenvector v can be defined as above. By (5.17/99), the characteristic ring
f = Gv satisfies

fj = wj
nf0, j ∈ Zn. (5.21)

Hence, because f is injective, we have f(1, 1, 1) = wnf(1, 1, 0) �= f(1, 1, 0) im-
plying that f(1, 1, 0) �= 0. Now, the rescaled eigenvector ṽ := rv yields the normal-
ized complex characteristic ringf̃ = Gṽ if we set, e.g., r := 1/f(1, 1, 0).

5.5 Symmetric Algorithms

Now, we consider subdivision algorithms that are not only invariant under shift but
also invariant under reversal of orientation when labelling the initial data. We call
the reversal operation ‘flipping’. The following example illustrates lack of flip in-
variance:

Example 5.20 (Flip symmetry). On the left hand side, Fig. 5.5/103 shows the charac-
teristic ring of the standard Doo–Sabin algorithm with weights according to (6.15/116)
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and subdominant eigenvalue λ = 1/2. On the right hand side, asymmetric weights
a = [4, 1, 0, 0, 0, 3]/8 are used. These yield the complex subdominant eigenvalue
λ = (6 +

√
3i)/8 ≈ 0.75 + i0.22 and the characteristic ring is not symmetric with

respect to the x-axis. �

Orientation reversal of coefficient labels can be expressed by means of a square
matrix R, the flip matrix. Analogous to shift invariance, flip invariance requires that
A and R commute and that the rings xm and x̃m corresponding to Q and Q̃ = RQ,
respectively, differ only by a flip of orientation.

Definition 5.21 (Symmetry). A subdivision algorithm (A,G) is called flip invari-
ant, if the system of generating rings satisfies

G(s, t, j) = G(t, s,−j)R, (s, t, j) ∈ S0
n,

for some matrix R commuting with A,

AR = RA.

The algorithm is called symmetric, if it is both shift and flip invariant.

We observe that if the generating rings in G are linearly independent, then R must
be an involution, R = R−1.

The spectrum of the asymmetric case in Example 5.20/103 included a complex
subdominant eigenvalue. This case is ruled out by symmetry.

Theorem 5.22 (Symmetry requires real subdominant eigenvalues). The symmet-
ric subdivision algorithm (A,G) can be Ck

1 only if A ∈ A1
1, i.e., the subdominant

Jordan block is double and real,

(λ, �) := (λ1, �1) = (λ2, �2) � (λ2, �3), λ ∈ R.

Proof. According to Theorem 5.16/100, A ∈ A1
1 or A ∈ A2

1, where we recall form
Sect. 5.3/89 that the class A2

1 contains algorithms with a pair of complex conjugate
subdominant eigenvalues. We assume A ∈ A2

1 and derive a contradiction:
From AR = RA and Av = λ1v, we conclude ARv = RAv = λ1Rv, i.e., Rv

is either 0 or an eigenvector of A to λ1. Since the eigenvector to λ1 is unique up
to scaling, Rv = av for some a ∈ C. Using the definition of flip invariance, we
obtain

f(1, 1, 0) = G(1, 1, 0)v = G(1, 1, 0)Rv = aG(1, 1, 0)v = af(1, 1, 0).

As explained in the sequel of Definition 5.19/103, we may assume that f is injective
if (A,G) is a Ck

1 -algorithm. In particular, we have f(1, 1, 0) �= 0 so that a = 1.
Further, by (5.21/103),

f(1, 0, 0) = G(1, 0, 0)v = G(1, 0, 0)Rv = G(0, 1, 0)v = f(0, 1, 0)

contradicting injectivity of f . �
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This theorem explains why most subdivision algorithms of practical importance are
standard algorithms according to Definition 5.3/84. Shift and flip invariance neces-
sarily lead to a double subdominant Jordan block J1 = J2 = J(λ, �) and, typically,
this block is reduced to the trivial case � = 0, where the Jordan block is a singleton
λ. An algorithm with non-trivial Jordan blocks is given in Sect. 6.3/120.

Consider the characteristic spline h = Bv in complex form, where v is the sub-
dominant eigenvector according to Definition 5.17/101. The m-th ring of h is

hm = GAmv = λmf.

That is, h is built from complex multiples of the characteristic ring. In the real
case, applying the factor λm simply amounts to scaling, while in the complex case
λ = |λ| exp(iφ). Hence, there is an additional rotation, ξm = |λ|m exp(imφ)f .
This rotation is illustrated by Fig. 5.5/103 (right).

The following theorem establishes an additional symmetry property for the char-
acteristic ring of a symmetric subdivision algorithm.

Theorem 5.23 (Symmetry of the characteristic ring). Let f = Gv be the normal-
ized characteristic ring of a symmetric subdivision algorithm (A,G) with A ∈ A1

1.
Then

f(s, t, j) = f(t, s,−j), (s, t, j) ∈ S0
n.

Proof. Here, the subdominant eigenvalue λ := λ1 = λ2 is double. As before,
one can show that Rv is 0 or an eigenvector of A to λ. Hence, Rv = av + bv
for some constants a, b ∈ C and by (5.16/99), Sv = w−1

n v and Sv = wnv. This
implies SjRSjv = aw−2j

n v + bv. Let us assume without loss of generality that
f(1, 1, 0) = 1. By symmetry, we obtain

1 = G(1, 1, 0)v = G(1, 1, 0)SjRSjv = aw−2j
n G(1, 1, 0)v + bG(1, 1, 0)v

for any j ∈ Zn. Since G is real, it follows G(1, 1, 0)v = G(1, 1, 0)v = 1, and

1 = aw−2j
n + b, j ∈ Z.

This implies a = 0, b = 1 and Rv = v. Hence,

f(s, t, j) = G(s, t, j)v = G(t, s,−j)Rv = G(t, s,−j)v = f(t, s,−j).

�

In case of symmetry, Ck
1 -subdivision algorithms can be detected using significantly

simplified criteria, which involve only properties of the upper half of the segment f0

of the characteristic ring. In particular, the appropriate winding number ν(f) = 1
can be proven by showing that one arc of the outer boundary of f0 does not intersect
the non-positive part of the real axis.

Theorem 5.24 (Conditions for symmetric Ck
1 -algorithms). Let (A,G) be a sym-

metric Ck
0 -subdivision algorithm with A ∈ A1

1 and F(λ) = {1, n− 1}, and assume
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that the characteristic ring f is normalized. Then f is regular if and only if the first
segment f0 satisfies

×Df0(s, t) �= 0 for all (s, t) ∈ Σ0 with s ≤ t.

Further, if f is regular, then (A,G) is a Ck
1 -subdivision algorithm if and only if all

real points on the curve c(u) := f0(u, 1), u ∈ [0, 1], are positive, i.e.,

c(u) ∈ R ⇒ c(u) > 0.

Proof. By Theorem 5.23/105, ×Df0(s, t) = ×Df0(t, s). Further, by (5.21/103),
×Dfj(s, t) = ×Df0(s, t), what proves the first part of the theorem.

To prove the second part, let us assume that c(u∗) = f0(u∗, 1) is a negative
real number. Then u∗ �= 1 because normalization requires f0(1, 1) > 0. By The-
orem 5.23/105, f(u∗, 1, 0) = f(1, u∗, 0), showing that f is not injective. Hence, by
Theorem 5.12/93, the algorithm is not Ck

1 . Conversely, let the condition given in the
theorem be satisfied. Following Definition 5.7/88, the winding number of f is

ν(f) := ν(f ◦ cbnd,0).

The curves c and z := f ◦ cbnd are related as follows: Let uj := j/n. The curves c
and c combine to the outer boundary of the segment f0,

z0(u) :=

{
c(2nu) if u0 ≤ u < u1/2
c(2 − 2nu) if u1/2 ≤ u ≤ u1,

and the segments of z are rotated copies of z0,

z(u) = wj
nz0(u − uj), uj ≤ u ≤ uj+1.

Now, we apply Lemma 2.20/36. The disjoint half-lines are given by hj := −wj−1
n .

Further, by (5.20/102) and Theorem 5.23/105,

c0(u1) = wnc0(u0) = c0(u0).

Hence, arg(z1) = − arg(z0) = π/n, and therefore

arg(zj/hj) − arg(zj−1/hj) = (1 + 1/n)π − (1 − 1/n)π = 2π/n.

Finally, we obtain the winding number

ν(f) = ν(z, 0) =
1
2π

n∑
j=1

2π/n = 1,

showing that f is uni-cyclic. By Theorem (5.12/93), (A,G) is a Ck
1 -algorithm. �

In some cases, an even simpler sufficient condition is applicable:
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Theorem 5.25 (More conditions for symmetric Ck
1 -algorithms). Let (A,G) be a

symmetric Ck
0 -subdivision algorithm with A ∈ A1

1 and F(λ) = {1, n− 1}, and as-
sume that the characteristic ring f is normalized. Then (A,G) is a Ck

1 -subdivision
algorithm if both components of D2f0 are positive,

Re(D2f0) > 0, Im(D2f0) > 0. (5.22)

Proof. Symmetry implies Re(D1f0(s, t)) = Re(D2f0(t, s)) > 0 and Im(D1f0

(s, t)) = − Im(D2f0(t, s)) < 0. Hence,

×Df0 = Re(D1f0) Im(D2f0) − Im(D1f0)Re(D2f0) > 0,

showing that hat f0 is regular. Further,

∫ 1

u

D1f0(τ, 1) dt = f0(1, 1) − f0(u, 1) = f0(1, 1) − c(u).

f0(1, 1) is real, and the imaginary part of the integrand is negative so that

Im(c(u)) > 0 for u ∈ (0, 1].

Hence, c(1) = 1 is the only real point in the image of c, and the argument is
complete. �
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Chapter 6
Case Studies of Ck

1 -Subdivision Algorithms

In this chapter, we formally introduce and scrutinize three of the most popular sub-
division algorithms, namely the Catmull–Clark algorithm [CC78], the Doo–Sabin
algorithm [DS78], and Simplest subdivision1 [PR97]. Besides the algorithms in their
original form, it is instructive to consider certain variants. We selectively modify a
subset of weights to obtain a variety of algorithms that is rich enough to illustrate the
relevance of the theory developed so far. In particular, we show that a double sub-
dominant eigenvalue is neither necessary nor sufficient for a Ck

1 -algorithm: First,
there are variants of the Doo–Sabin algorithm with a double subdominant eigen-
value, which provably fail to be C1

1 because the Jacobian determinant ×Dψ of the
characteristic ring changes sign. Second, for valence n = 3, Simplest subdivision
reveals an eightfold subdominant eigenvalue, but due to the appropriate structure of
Jordan blocks, it is still C1

1 . In all cases, the algorithms are symmetric so that the
conditions of Theorem 5.24/105 can be used for the analysis.

6.1 Catmull–Clark Algorithm and Variants

The Catmull–Clark algorithm (Fig. 6.1/110) is currently the most popular subdivision
algorithm due to its close relationship with the tensor-product spline standard. The
algorithm generalizes uniform knot insertion for bicubic tensor-product B-splines.
Since each n-gon of the original mesh of control points is subdivided into n quadri-
laterals the mesh is purely quadrilateral after the first step. Figure 6.2/110 defines
the rules of the subdivision algorithm in terms of stencils. A stencil is an intu-
itive representation of a row of the local subdivision matrix A. In the regular case,
when n = 4, the control points have the structure of a regular planar grid. In anal-
ogy, near an extraordinary vertex, the control points can be arranged with n-fold
symmetry.

1 In the literature, Simplest subdivision is sometimes also called Mid-edge subdivision.
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Fig. 6.1 Illustration of Catmull–Clark algorithm: Mesh refinement.

There are three types of stencils for Catmull–Clark subdivision that are inherited
from bi-cubic B-spline subdivision and one generalization (see Fig. 6.2/110, right) that
is expressed in terms of the variables

α , β , γ, α + β + γ = 1. (6.1)

In [CC78], Catmull and Clark suggest

α = 1 − 7
4n

, β =
3
2n

, γ =
1
4n

. (6.2)

For n = 4, this choice coincides with the regular stencil. To establish C2
1 -

smoothness for variables α,β,γ summing to 1, we first define an appropriate data
structure for the space of rings. Then we determine the characteristic ring ψ and
apply Theorem 5.24/105 to obtain necessary and sufficient conditions for smooth-
ness. Let us start with considering a single ring xm. Each of the n segments
xm

j , j ∈ Zn, consists of three bicubic B-spline patches. The corresponding vec-
tor Q = [Q0; . . . ;Qn−1] of initial data is split into n blocks Qj with 13 elements
each. We label the coefficients of each block Qj = [qj,1; . . . ;qj,13] as shown in

Fig. 6.2 Stencils for the Catmull–Clark algorithm: From left to right, the weights for generating
a new ‘face point’, a new ‘edge point’, a new ordinary ‘vertex point’, and a new extraordinary
‘vertex point’ of valence n. The scalars α, β and γ are constrained by (6.1/110) and their originally
published choice is given in (6.2/110).
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Fig. 6.3 Labelling of the control points qj,k of the Catmull–Clark algorithm: Following (6.3/111),
the center control point is replicated.

Fig. 6.3/111. Following Example 5.14/97, identical copies of the central coefficient q̃0

are placed in all blocks to obtain a circulant structure,

q̃0 = q0,1 = · · · = qn−1,1. (6.3)

The corresponding subdivision matrix is block-circulant,

A = circ(A0, . . . , An−1),

where the blocks Aj are (13 × 13)-matrices. Moreover, the algorithm is sym-
metric in the sense of Definition 5.21/104, and the generated segments satisfy the
conditions (4.7/62) and (4.8/62) for k = 2. According to (5.14/99), the DFT Â =
diag(Â0, . . . , Ân−1) of A is block-diagonal. Omitting the details, we find the fol-
lowing: the blocks Âi have the form

Âi =

⎡
⎢⎣

Â0,0
i 0 0

Â1,0
i Â1,1

i 0

Â2,0
i Â2,1

i 0

⎤
⎥⎦ . (6.4)

Recalling (5.12/98), we set

cn + isn := wn := exp(2πi/n), cn,i + isn,i := wi
n = exp(2πii/n),
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for i ∈ Zn. With

p1 := 1/64, p2 := 3/32, p3 := 9/16, q1 := 1/16, q2 := 3/8, r := 1/4,

and using the abbreviation w := wi
n, we obtain

Â0,0
i :=

⎡
⎣αδi,0 βδi,0 γδi,0

q2δi,0 2q1cn,i + q2 q1(1 + w)
rδi,0 r(1 + w) r

⎤
⎦ (6.5)

and

[
Â1,0

i Â1,1
i

Â2,0
i Â2,1

i

]
:=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q2δi,0 q1 + q2w q1 q1 q1w 0 0
p2δi,0 2p1cn,i + p3 p2(1 + w) p1w p2 p1 0
q1δi,0 q1w + q2 q2 0 q1 q1 0
p1δi,0 p2(1 + w) p3 p2 p1(1 + w) p2 p1

0 q2 q1(1 + w) q1w q2 q1 0
0 r r 0 r r 0
0 q1 q2 q1 q1 q2 q1

0 0 r r 0 r r
0 q1w q2 q2 q1w q1 q1

0 rw r r rw 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The eigenvalues 1/8, 1/16, 1/32, 1/64 of the sub-matrix Â1,1
i are n-fold eigenval-

ues of A. Other non-zero eigenvalues come only from Â0,0
i . For i = 0, we obtain

the obligatory eigenvalue λ0 = 1 and, with γ := 1 − α − β, the pair

λ0
1,2 :=

(
4α − 1 ±

√
(4α − 1)2 + 8β − 4

)
/8.

Depending on the sign of the discriminant, these two eigenvalues are either both real
or complex conjugate. For i �= 0, the non-zero eigenvalues of Â0,0

i are always real
and given by

λi
1,2 :=

(
cn,i + 5 ±

√
(cn,i + 9)(cn,i + 1)

)
/16.

Here and in the penultimate display, the subscript 1 refers to the plus sign, and the
subscript 2 refers to the minus sign. By Theorem 5.18/101, the subdominant eigen-
value λ must come from the blocks Â1, Ân−1. Because the eigenvalue 1/32 has
algebraic multiplicity n, the only candidate is

λ := λ1
1 = λn−1

1 =
(
cn + 5 +

√
(cn + 9)(cn + 1)

)
/16. (6.6)

Straightforward calculus shows that

1 >λ > 1/4 > λi
2 > 1/8, i = 1, . . . , n − 1 (6.7)
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λ > λi
1 > 1/4, i = 2, . . . , n − 2 . (6.8)

That is, λ is subdominant if α, β, γ are chosen such that

λ > max
{|λ0

1|, |λ0
2|
}
. (6.9)

We will comment on the set of feasible weights at the end of this section, but state
already now that the original weights of Catmull–Clark (6.2/110) satisfy the condition.

For computing the characteristic ring, the eigenvector v̂ of Â1 is partitioned into
three blocks, v̂ = [v̂0; v̂1; v̂2], according to the structure of Â1 defined in (6.4/111).
Then Â1v̂ = λv̂ is equivalent to

(Â0,0
1 − λ)v̂0 = 0

(Â1,1
1 − λ)v̂1 = −Â1,0

1 v̂0 (6.10)

v̂2 = (Â2,0
1 v̂0 + Â2,1

1 v̂1)/λ.

Now, v̂ can be computed conveniently starting from

v̂0 := [1 + wn, 16λ − 2cn − 6], (6.11)

which solves the first eigenvector equation.
By (6.6/112), the characteristic ring depends only on cn ∈ [−1/2, 1) and not on

the particular choice of weights α, β, γ. For the interval of definition, we can invert
the relation to obtain

cn =
16λ2 − 10λ + 1

2λ
, λ ∈ Λ :=

[
(9 +

√
17)/32, (3 +

√
5)/8

)
, (6.12)

and write the characteristic ring in terms of λ ∈ Λ. After scaling, the eigenvector v̂
has the form

v̂ = ((4λ − 1)v̂re + 2sλ(64λ − 1)iv̂im)/13020,

where

v̂re :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
4λ2(64λ−1)(32λ−1)(16λ−1)(4λ−1)

8λ2(64λ−1)(32λ−1)(16λ−1)

4λ2(64λ−1)(928λ2+228λ−31)

8λ2(64λ−1)(16λ−1)(4λ−1)(4λ+13)

4λ2(64λ−1)(928λ2+228λ−31)

80λ2(1280λ3+2128λ2−56λ−13)

(64λ−1)(16λ−1)(4λ−1)(100λ2+42λ−1)

4λ(64λ−1)(640λ3+688λ2−82λ−1)

20λ(2048λ4+11040λ3+812λ2−165λ−1)

40λ(5248λ3+1568λ2−133λ−5)

20λ(2048λ4+11040λ3+812λ2−165λ−1)

4λ(64λ−1)(640λ3+688λ2−82λ−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, v̂im :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−4λ2(32λ−1)(16λ−1)

0

140λ2(8λ−1)

−8λ2(16λ−1)(4λ+13)

−140λ2(8λ−1)

0

−(16λ−1)(100λ2+42λ−1)

−4λ(160λ2+132λ−1)

−20λ(8λ2+15λ+1)

0

20λ(8λ2+15λ+1)

4λ(160λ2+132λ−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now, we compute f(1, 1, 0) to ensure normalization. After reformatting the middle
patch according to its tensor product structure and substituting in the parameter
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Fig. 6.4 Characteristic ring of the Catmull–Clark algorithm: (left) n = 3, (middle) n = 6, and
(right) n = 12.

σ = [1, 1], we obtain with b := [1/6, 2/3, 1/6]

f(1, 1, 0) = b

⎡
⎣v̂3 v̂4 v̂13

v̂6 v̂7 v̂12

v̂9 v̂10 v̂13

⎤
⎦ · b =

2
29295

λ(4λ − 1)
(
139264λ4 + 170496λ3

+ 112λ2 − 1, 476λ − 11
)
.

For λ ∈ Λ this value is real and positive. That is, the characteristic ring f is normal-
ized in the sense of Definition 5.19/103.

To establish smoothness, we verify the sufficient conditions (5.22/107) given in
Theorem 5.25/107. The derivative of f0 in t-direction is computed by differencing
the Bernstein–Bézier control points of the three bicubic patches. The elements of
the resulting three sets of 3 × 4 coefficients are enumerated k1, . . . , k36. All kµ are
polynomials in λ with rational coefficients. More precisely,

kµ(λ) = pµ(λ) + isnqµ(λ), µ = 1, . . . , 36,

for certain polynomials pµ and qµ of degree ≤ 7 in λ which are independent of n or
the special weights. Computing the Sturm sequences of all these polynomials on the
larger, but more convenient interval Λ′ := [0.41, 0.66] ⊃ Λ, we find either no root
or the single root (3 +

√
5)/8 �∈ Λ. Hence, the sign of all polynomials in question

is constant and can be determined by evaluation at a single point. At λ = 1/2, we
obtain pµ(λ) = qµ(λ) = 3255/13020 = 1/4 for all µ = 1, . . . , 36. Hence, all
coefficients kµ are positive so that, by the convex hull property, Re(D2f0) > 0 and
Im(D2f0) > 0. Hence, by Theorem 5.25/107, the algorithm is C2

1 .
Figure 6.4/114 shows the characteristic rings for different values of n. As already

mentioned above, it depends only on n, but not on the particular choice of the
weights α, β, γ, provided that the conditions, summarized in the following theorem,
are satisfied.

Theorem 6.1 (C2
1 -variants of Catmull–Clark). For n ≥ 3, cn := cos(2π/n), and

λ :=
(
cn + 5 +

√
(cn + 9)(cn + 1)

)
/16 (6.13)
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Fig. 6.5 Illustration of Theorem 6.1/114: (left) Spectrum of the subdivision matrix of the Catmull–
Clark algorithm with standard weights (6.2/110) for n = 3, . . . , 40. The subdominant eigenvalue
λ satisfies the condition of the theorem. (right) Triangles ∆3, . . . , ∆8 in the αβ-plane. Choosing
(α, β) inside these triangles yields a C2

1 -algorithm.

λ0
1,2 :=

(
4α − 1 ±

√
(4α − 1)2 + 8β − 4

)
/8, (6.14)

the Catmull–Clark algorithm with weights α, β and γ = 1 − α − β is a standard
C2

1 -algorithm if and only if λ > max{|λ0
1|, |λ0

2|}.

Let us briefly comment on the set of parameters yielding a C2
1 -algorithm. We define

α̃ :=
α

2
− 1

8
, β̃ :=

β

8
− 1

16
,

and obtain the equivalent condition∣∣∣∣α̃ ±
√

α̃2 + β̃

∣∣∣∣ < λ.

Distinguishing the cases α̃2 + β̃ ≥ 0 and α̃2 + β̃ ≤ 0, we find

−λ2 < β̃ < λ(λ − 2|α̃|λ).

Given the valence n and the corresponding subdominant eigenvalue λ, the set of
pairs (α̃, β̃) satisfying this condition forms the interior of a triangle ∆̃n. Accord-
ingly, in terms of the original parameters α, β, we obtain a triangle ∆n in the αβ-
plane with corners (

1/4 ± 2λ, 1/2 − λ2
)
,
(
1/4, 1/2 + λ2

)
.

On the right hand side, Fig. 6.5/115 shows the triangles ∆3, . . . , ∆8. On the left
hand side, we see the complete spectrum of the algorithm when using the standard
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Fig. 6.6 Illustration of Doo–Sabin algorithm: Mesh refinement.

weights (6.2/110). We see that the condition of Theorem 6.1/114 is satisfied for n =
3, . . . , 40, and one can show that this is also true for all n > 40. However, it should
be noted that both λ and λ0

1 are converging to the limit (3 +
√

5)/8 ≈ 0.6545 as
n → ∞. As we will explain in the next chapter, shape may be poor if the ratio of the
subdominant eigenvalue λ and the next smaller subsubdominant eigenvalue is close
to 1.

6.2 Doo–Sabin Algorithm and Variants

The Doo–Sabin algorithm generalizes subdivision of uniform biquadratic tensor-
product B-splines. For each n-gon of the original mesh of control points, a new,
smaller n-gon is created and connected with its neighbors as depicted in Fig. 6.6/116.
Figure 6.7/117 shows the stencils for generating a new n-gon from an old one, both
for the regular case n = 4 (left) and the general case (middle). For n = 4
the weights are those of the biquadratic spline. Doo and Sabin in [DS78] sug-
gested

aj :=
δj,0

4
+

3 + 2 cos(2πj/n)
4n

(6.15)

for the general case. In the following, we analyze all algorithms that are affine
invariant and symmetric:

n−1∑
j=0

aj = 1, aj = an−j , j ∈ Zn. (6.16)

Each of the n segments xm
j , j ∈ Zn, of the m-th ring generated by the Doo–

Sabin algorithm consists of three biquadratic B-spline patches. Accordingly, we can
split the control points Qm into n groups of nine control points, each, ordered as
shown in Fig. 6.7/117 (right).

Since the algorithm is symmetric, we can apply DFT as introduced in Sect. 5.4/95

to obtain the block-diagonal form Â = diag(Â0, . . . , Ân−1) of the subdivision
matrix. The non-zeros elements of Âi are situated in the first four columns. With
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Fig. 6.7 Stencils for the Doo–Sabin algorithm: (left) Regular refinement rule, (middle) general
refinement rule, and (right) control point labels of one segment.

w = wi
n = exp(2πii/n), as before, we have

Âi(:, 1 : 4) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α̂i 0 0 0
p + wq q 0 wr

p q r q
p + wq wr 0 q
q + wr p 0 wq

q p q r
r q p q
q r q p

q + wr wq 0 p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.17)

where p := 9/16, q := 3/16, r := 1/16 are the standard weights for quadrilaterals,
and

âi :=
n−1∑
j=0

w−ij
n aj

are the entries of the DFT of the vector [a0, . . . , an−1] of special weights for
the inner n-gon. The weights aj sum to one, i.e., â0 = 1, and satisfy aj =
an−j . Hence, âi = ân−i is real. The eigenvalues of Âi are âi, 1/4, 1/8, 1/16, 0.
Since each eigenvalue 1/4 corresponds to a separate eigenspace and also the
eigenspace of each âi is spanned by a single vector, and by the requirement on
the Fourier index to be F(λ) = {1, n − 1}, the subdominant eigenvalue must
be λ := â1 = ân−1 ∈ (1/4, 1) to generate a C1

1 -algorithm. This yields the
inequality

1 > â1 > max
{
1/4, |â2|, . . . , |ân/2|

}
. (6.18)

We will see below that this constraint is however not sufficient. Using a computer
algebra system, one can determine the complex eigenvector v̂ of Â1 corresponding
to λ explicitly:
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v̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2λ(16λ−1)(8λ−1)(4λ−1)
6λ(16λ−1)(6λ−1+2wnλ)

18λ(32λ2−1+4cnλ)
6λ(16λ−1)(6λ−1+2wnλ)

(16λ−1)
(
12λ2+18λ−3+wn(4λ2+12λ−1)

)
6λ
(
32λ2+64λ−12+cn(20λ+1)−isn(16λ−1)

)
64λ3+512λ2−46λ−8+36cnλ(2λ+1)

6λ
(
32λ2+64λ−12+cn(20λ+1)+isn(16λ−1)

)
(16λ−1)

(
12λ2+18λ−3+wn(4λ2+12λ−1)

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where as before wn = cn + isn.
In particular, for the original Doo–Sabin weights in (6.15/116), we have λ = 1/2

and, rearranging the entries of v̂ in a (3 × 3)-matrix according to Fig. 6.7/117, right,⎡
⎣v̂5 v̂6 v̂7

v̂2 v̂3 v̂8

v̂1 v̂4 v̂9

⎤
⎦ = 3

⎡
⎣21 + 14wn 28 + 2wn + 9wn 35 + 12cn

14 + 7wn 21 + 6cn 28 + 2wn + 9wn

7 14 + 7wn 21 + 14wn

⎤
⎦ .

By elementary computations, one can determine the Bernstein–Bézier-form of all
three biquadratic patches forming the first segment of the complex characteristic
ring f . For λ ∈ (1/4, 1),

f0(1, 1) =
v̂3 + v̂6 + v̂7 + v̂8

4
= p(λ) + cnq(λ)

:= (256λ3 + 320λ2 − 52λ − 2) + cn

(
96λ2 + 12λ

)
.

(6.19)

For n ≥ 3, we have cn ≥ −1/2. Furthermore p(λ) > 320λ2−54λ−2 and q(λ) > 0
for all λ ∈ (1/4, 1) so that

p(λ) + cnq(λ) > 320λ2 − 54λ − 2 − (96λ2 + 12λ)/2

= 272λ2 − 60λ − 2 = 2(4λ − 1)(34λ + 1).
(6.20)

That is, f0(1, 1) is real and positive for λ ∈ (1/4, 1). The eigenvector v̂ and hence
the characteristic ring f depends only on λ = â1 = ân−1 and on the valence n.

For λ ∈ (1/4, 1), the minimum of the real parts of all Bernstein–Bézier co-
efficients is positive. Hence, by the convex hull property, the condition c(u) ∈
R ⇒ c(u) > 0 in Theorem 5.24/105 is always satisfied. It remains to show
regularity of the segment f0 of the characteristic ring. The Jacobian determi-
nant ×Df0 consists of three bicubic patches, which can also be expressed explic-
itly in Bernstein–Bézier-form. A careful analysis shows that all coefficients are
positive if

p(λ) := 128λ2(1 − λ) − 7λ − 2 + 9λcn > 0. (6.21)

By the convex hull property, this implies regularity of f0. In particular, for λ = 1/2,
we obtain p(1/2) = 3/2 (7 + 3cn) > 0 proving that the Doo–Sabin algorithm
with standard weights is a C1

1 -algorithm. Figure 6.8/119 illustrates the situation: all
Bernstein–Bézier coefficients of the Jacobian ×Df depend only on λ and cn, and
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Fig. 6.8 Illustration of Theorem 6.2/119: (left) Admissible range of subdominant eigenvalues λ plot-
ted in the (λ, cn)-plane (see (6.21/118)) and (right) magnified detail.

they change sign on the lines plotted in the (λ, cn)-plane. In particular, p(λ) = 0 for
points on the thick line, and this line is bounding the shaded subset of the interval
(1/4, 1)×[−1/2, 1). For given n, the eigenvalue λ yields a C1

1 -algorithm if and only
if the point (λ, cn) lies in this region. The dotted line, corresponding to the standard
case λ = 1/2, indicates that this value is feasible for all values of n. Surprisingly,
there is an upper bound λsup(n) with p(λ) < 0 for 1 > λ > λsup(n). For such λ,
×Df actually reveals a change of sign, and the corresponding algorithm cannot be
C1

1 . Fortunately, the upper bounds are quite close to 1 so that they do not impose
severe restrictions when designing variants on the standard Doo–Sabin algorithm.
More precisely, as indicated in Fig. 6.8/119 by the dot, the lowest upper bound occurs
for n = 3. We have c3 = −1/2 and

λsup(n) ≥ λsup(3) =
√

187
24

cos

(
1
3

arctan

(
27
√

5563
1576

))
+

1
3
≈ 0.8773.

The asymptotic behavior for n → ∞ is

λsup(n) ∗= 1 − π2

7n2
.

In summary, we have shown the following.

Theorem 6.2 (C1
1 -variants of Doo–Sabin subdivision). Let â0, . . . , ân−1 be the

Fourier coefficients of a symmetric set of weights for the generalized Doo–Sabin
algorithm. Then a standard algorithm is obtained if λ := â1 = ân−1 satisfies the
condition

1 > λ > max{1/4, |â2|, . . . , |ân−2|}.
The algorithm is C1

1 if p(λ) > 0, and not C1
1 if p(λ) < 0. In particular, the algorithm

is C1
1 when choosing the standard weights.
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Fig. 6.9 Illustration of Theorem 6.2/119: Corner piece of the characteristic ring for n = 3 and
subdominant eigenvalue (left) λ = 0.5 and (right) λ = 0.95. On the right hand side, the coordinate
axes are scaled differently to clearly visualize non-injectivity.

6.3 Simplest Subdivision

When regarded as an algorithm for refining control meshes, one step of Simplest
subdivision connects every edge-midpoint of the given mesh to the four midpoints
of the edges that share both a vertex and a face with the current edge. For that
reason, Simplest subdivision is sometimes also called Mid-edge subdivision. Once
all midpoints are linked, the old mesh is discarded, as shown in Fig. 6.10/120. Thus

Fig. 6.10 Illustration of Simplest subdivision: Mesh refinement.
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every new point, not on the global boundary, has exactly four neighbors; and every
mesh point is replaced by a facet that is quadrilateral if the point is new. Each step
can be interpreted as cutting off all vertices, along with neighborhoods that stretch
half way to the neighbor vertex. The cuts are in general not planar.

The following feature justifies the name of the algorithm: all subdivision stencils
are equal and of minimal size 2. The only weight used throughout is 1/2 so that, in
contrast to most other subdivision algorithms, there is no dependence on the valence
n. Evidently, this setup is as simple as it can be.

To apply the analysis developed so far, we have to think of the algorithm not in
terms of control meshes, but as a recursion for rings. To fit that pattern, we need
to combine two steps of mesh refinement to generate a new ring xm+1 from the
given ring xm. For that reason, Simplest subdivision is called a

√
2-algorithm. On a

regular, quadrilateral control mesh with 4-valent vertices, a double step of mid-edge
mesh refinement coincides with one subdivision step of the 4-direction box spline
with directions Ξ :=

[
1 0 −1 1
0 1 −1 −1

]
. Hence, the resulting limit surface is such a box

spline. It is C1, and each quadrilateral patch consists of four triangles of total degree
2, arranged in a quincunx pattern. From a combinatorial point of view, a double step
of mid-edge mesh refinement for a general mesh coincides with one step of Doo–
Sabin subdivision. That is, each n-gon is mapped to a smaller one. Using the same
arrangement of control points q� and weights a = [a0, . . . , an−1] as in Fig. 6.7/117,
we have

aj =

⎧⎪⎨
⎪⎩

1
2 for j = 0,
1
4 for j = 1, n − 1,

0 otherwise.

The decisive point is that these weights are also used in the regular case n = 4. The
structure of the Fourier blocks Âi of the subdivision matrix is the same as for the
Doo–Sabin algorithm. But now, the weights in (6.17/117) are p := 1/2, q := 1/4, r :=
0, and

âi =
n−1∑
j=0

w−ij
n aj =

1 + cos(2iπ/n)
2

, i ∈ Zn.

For i = 0, . . . , n − 1, the non-zero eigenvalues of Âi are

âi and
1
4
,

1
4
.

The dominant eigenvalue of the subdivision matrix A is â0 = 1. Determining the
subdominant eigenvalue is subtle here: If n ≥ 4, we have |âi| < |â1| for i =
2, . . . , n − 2, and also 1/4 < |â1| so that

λ := â1 = ân−1 =
1 + cn

2
, cn := cos(2π/n),

is the double subdominant eigenvalue. That is, we obtain a standard algorithm. How-
ever, if n = 3, the upper left (4 × 4)-submatrices Â′

i := Âi(1 : 4, 1 : 4) of Âi read
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Fig. 6.11 Illustration of Simplest subdivision: (left) Input mesh, (middle) side view after three
double-steps of refinement, and (right) close-up of visual cone tip after 20 double-steps of refine-
ment. Nevertheless, from a mathematical point of view, the limit surface is smooth.

Â′
0 =

1
4

⎡
⎢⎢⎣

4 0 0 0
3 1 0 0
2 1 0 1
3 0 0 1

⎤
⎥⎥⎦ , Â′

1 = Â′
2 =

1
8

⎡
⎢⎢⎣

2 0 0 0
3 − i

√
3 2 0 0

4 2 0 2
3 + i

√
3 0 0 2

⎤
⎥⎥⎦ .

The subdominant eigenvalue λ = 1/4 appears in multitude: its algebraic multiplic-
ity in Â′

0, Â
′
1, Â

′
2 is 2, 3, 3, respectively, while its geometric multiplicity in all three

matrices is 2. Consequently, the Jordan decomposition of the subdivision matrix
comprises the non-zero Jordan blocks

J0 = 1, J1 = J2 =
[
1/4 1
0 1/4

]
, J3 = · · · = J6 = 1/4.

Thus, for n = 3, the algorithm is non-standard. Here, the more general theory,
developed in Sect. 5.3/89, applies. The subdivision matrix has type A ∈ A1

1, and
the characteristic ring ψ is defined according to Definition 5.10/92. The complex
eigenvector defining ψ, arranged in matrix form as shown in Fig. 6.7/117, is

v̂ :=

⎡
⎣6 + 4 cn 8 + 3 cn 10 + 4 cn

4 + 2 cn 6 + 2 cn 8 + 3 cn

2 4 + 2 cn 6 + 4 cn

⎤
⎦+ isn

⎡
⎣4 2 0

2 0 −2
0 −2 −4

⎤
⎦ .

As detailed in [PR97], regularity and uni-cyclicity can be verified using the same
techniques as described above for the Doo–Sabin algorithm. Hence, we can state

Theorem 6.3 (Simplest subdivision is C1
1 ). Simplest subdivision is a C1

1 -algo-
rithm for all valences n ≥ 3.

It remains to touch on the following two subjects: First, unlike tensor product
B-splines, the nodal functions of box spline spaces do not always form bases. In
particular, the system G of generating rings of Simplest subdivision is linearly de-
pendent. But fortunately, the matrix A as specified here is a subdivision matrix in
the sense that it does not have any ineffective eigenvectors.
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Fig. 6.12 Illustration of Simplest subdivision: Fast convergence for 3-sided facets and slow con-
vergence for large facets.

Second, it must be noted that simplest subdivision, as described here, reveals se-
rious shape artifacts for n = 3, and extremely slow convergence for high valences.
In Fig. 6.11/122 left, we see an input mesh including a triangle, corresponding to an
extraordinary point of valence n = 3. The first two coordinates correspond to the
characteristic spline, while the third one has initial data which are 0 for the three
innermost coefficients, and −1 otherwise. At the center, the surface seems to have
a cone point, even if we zoom in by a factor of one billion to visualize the control
mesh after 20 double steps of refinement (see Fig. 6.11/122, right). By the standards
of Computer Graphics, this is hardly considered a smooth surface.2 The apparent
inconsistence between the theoretical result and the practical realization can be ex-
plained as follows: In the tangent plane, the behavior of rings is governed by the
factor λm,1 = mλm−1, while the component perpendicular to it decays as λm. To
put it differently, let us consider the subdivision step from ring xm to xm+1. Asymp-
totically, the tangential components are multiplied by (1 + 1/m)/4 and the normal
component is multiplied by 1/4, what does not make too much of a difference. As
a consequence, the surface locally resembles the tip of a cone. Only for very large
values of m, the slightly slower decay of the normal component prevails, and forces
the rings to approach the tangent plane3.

Another problem is depicted in Fig. 6.12/123. We see an input mesh which, after
the first step, consists of triangles, quadrangles, and a 16-gon. The obvious problem
concerns the extremely slow shrinkage of the 16-gon. It is due to the corresponding
subdominant eigenvalue λ ≈ 0.962, which is only slightly smaller than 1. As a
consequence, a very large number of subdivision steps is required to obtain a mesh
which is sufficiently dense for, say, visualization.

For practical purposes, Simplest subdivision should be modified, for instance by
the Doo–Sabin weights (6.15/116) for n �= 4. The modest increase in complexity is
easily compensated for by superior shape properties.

2 Imagine that the middle part of Fig. 6.11/122 is the size of Mount Everest. Then the detail on the
right hand side is smaller than the breadth a hair. But mathematicians think in different categories.
3 A quite instructive univariate analog of this case, justified by identifying u = λm, is given by
the curve c(u) =

[
u ln |u|, |u|], u ∈ (−1/2, 1/2). Although the x-axis is easily verified to be the

tangent at the origin, the image of the curve suggests a kink. The reader is encouraged to generate
plots of the curve and its curvature at different scales.
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Anyway, the latter observations clearly show that it is not sufficient to classify a
subdivision algorithm as Ck

1 to ensure fairness of the generated surfaces. Rather, an
exacting analysis is necessary to scrutinize shape properties of subdivision surfaces.
The next chapter focuses on that subject.
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Chapter 7
Shape Analysis and Ck

2 -Algorithms

In the preceding chapters, we have studied first order properties of subdivision sur-
faces in the vicinity of an extraordinary point. Now we look at second order proper-
ties, such as the Gaussian curvature or the embedded Weingarten map, which char-
acterize shape. To simplify the setup, we assume k ≥ 2 throughout. That is, second
order partial derivatives of the patches xm

j exist and satisfy the contact conditions
(4.7/62) and (4.8/62) between neighboring and consecutive segments. However, most
concepts are equally useful in situations where the second order partial derivatives
are well defined only almost everywhere. In particular, all piecewise polynomial
algorithms, such as Doo–Sabin type algorithms or Simplest subdivision, can be an-
alyzed following the ideas to be developed now.

In Sect. 7.1/126, we apply the higher-order differential geometric concepts of
Chap. 2/15 to subdivision surfaces and derive asymptotic expansions for the funda-
mental forms, the embedded Weingarten map, and the principal curvatures. In par-
ticular, we determine limit exponents for Lp-integrability of principal curvatures in
terms of the leading eigenvalues of the subdivision matrix. The central ring will
play a key role, just as the characteristic ring for the study for first order properties.

In Sect. 7.2/134, we can leverage the concepts to characterize fundamental shape
properties. To this end, the well-known notions of ellipticity and hyperbolicity
are generalized in three different ways to cover the special situation in a vicin-
ity of the central point. Properties of the central ring reflect the local behavior,
while the Fourier index F(µ) of the subsubdominant eigenvalue µ of the subdi-
vision matrix is closely related to the variety of producible shapes. In particular,
F(µ) ⊃ {0, 2, n − 2} is necessary to avoid undue restrictions. Further, we intro-
duce shape charts as a tool for summarizing, in a single image, information about
the entirety of producible shape.

Conditions for Ck
2 -algorithms are discussed in Sect. 7.3/140. Following Theo-

rem 2.14/28, curvature continuity is equivalent to convergence of the embedded
Weingarten map. This implies that the subsubdominant eigenvalue µ must be the
square of the subdominant eigenvalue λ, and the subsubdominant eigenrings must
be quadratic polynomials in the components of the characteristic ring. These ex-
tremely restrictive conditions explain the difficulties encountered when trying to

125
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construct Ck
2 -algorithms. In particular, they lead to a lower bound on the degree of

piecewise polynomial schemes, which rules out all schemes generalizing uniform
B-spline subdivision, such as the Catmull–Clark algorithm.

Section 7.4/145 presents hitherto unpublished material concerning a general prin-
ciple for the construction of Ck

2 -algorithms, called the PTER-framework. This
acronym refers to the four building blocks: projection, turn-back, extension, and
reparametrization. The important special case of Guided subdivision, which inspired
that development, is presented in Sect. 7.5/149.

7.1 Higher Order Asymptotic Expansions

We focus on symmetric standard C2
1 -algorithms and assume, for simplicity of expo-

sition, that the subdominant Jordan blocks are singletons, i.e.,

1 > λ := λ1 = λ2 > |λ3|, �1 = �2 = 0.

All subsequent arguments are easily generalized to the case of subdominant Jordan
blocks of higher dimension (see Sect. 5.3/89), but the marginal extra insight does not
justify the higher technical complexity. We obtain the structure

(1, 0) � (λ, 0) ∼ (λ, 0) � (λ3, �3) ∼ · · · ∼ (λq̄, �q̄) � (λq̄+1, �q̄+1)

for the eigenvalues, and denote by µ the common modulus of the subsubdominant
eigenvalues and by � the size1 of the corresponding Jordan blocks minus one:

µ := |λ3| = · · · = |λq̄|, � := �3 = · · · = �q̄.

Consider a subdivision surface x corresponding to generic initial data Q. Follow-
ing Definition 2.11/25, we denote by nc the central normal, and by (tc

1, t
c
2,n

c) an
orthonormal system defining the central frame Fc,

Tc :=
[
tc
1

tc
2

]
, Fc :=

[
Tc

nc

]
.

With (4.28/74), the second order asymptotic expansion of the rings xm reads

xm ∗= xc + λmψ[p1;p2] + µm,�dm. (7.1)

The term

dm :=
q̄∑

q=3

dm−�
q fqpq

summarizes the contribution of the subsubdominant eigencoefficients pq and eigen-
rings fq. The directions dq = λq/µ, as defined in (4.31/75), are numbers on the

1 Note that the symbol 	 does not indicate the size of the subdominant Jordan block, as in earlier
chapters, but the size of the subsubdominant Jordan block.
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complex unit circle, referring to the angles of the potentially complex subsubdomi-
nant eigenvalues λ3, . . . , λq̄ .

According to (4.21/73), the scaling factor in (7.1/126) is µm,� =
(
m
�

)
µm−� pro-

vided that m ≥ �. Hence, if µ = 0, the rings xm become entirely flat after a few
steps. To exclude this trivial situation, we assume µ > 0 throughout. Appropriate
asymptotic expansions of the rings of the tangential and the normal component of
the transformed spline x∗ = (x − xc) · Fc, as defined in (4.11/64), are given by

ξm
∗ = (xm − xc) · Tc ∗= λmψ [p1;p2] · Tc

and
zm
∗ = (xm − xc) · nc ∗= µm,�dm · nc, (7.2)

respectively. We will focus on algorithms without negative or complex directions dq.
For if, say d3, is negative or complex then dm

3 oscillates, and if the corresponding
coefficient p3 ·nc dominates then zm

∗ repeatedly attains positive and negative values
as m is growing. In other words, the rings xm repeatedly cross the central tangent
plane, an undesirable behavior for applications. We therefore focus on algorithms
with the following properties:

Definition 7.1 (Algorithm of type (λ, µ, �)). A subdivision algorithm (A,G) is
said to be of type (λ, µ, �), if

• (A,G) is a symmetric standard C2
1 -algorithm, and

• the subsubdominant Jordan blocks have a unique positive eigenvalue,

µ := λ3 = · · · = λq̄ > 0, � := �3 = · · · = �q̄, (µ, �) � (λq̄+1, �q̄+1).

Let us briefly discuss some simple consequences of the assumptions made here: In
view of Definition 5.3/84, we have a double subdominant eigenvalue,

1 > λ := λ1 = λ2 > |λ3|, �1 = �2 = 0.

Further, by Definition 5.9/89 and Theorem 5.18/101, the Fourier index of λ must be

F(λ) = {1, n − 1}

to ensure that the characteristic ring ψ is uni-cyclic.
For an algorithm of type (λ, µ, �),

ξm
∗

∗= λmξ, ξ := ψL, L := [p1;p2] · Tc

zm
∗

∗= µm,�z, z := dm · nc =
q̄∑

q=3

fqpq · nc. (7.3)

The planar ring ξ = ψL is an affine image of the characteristic ring. By (2.5/17),

×Dξ = ×Dψ det L, (7.4)
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i.e., it is regular and injective if and only if L is invertible. From

[p1;p2;nc] · Fc =
[
L 0
0 1

]

we conclude that

det L = det[p1;p2;nc] = ±‖p1 × p2‖. (7.5)

Hence, L is invertible if and only if p1 and p2 are linearly independent. In particular,
ξ is regular and injective for generic initial data. Since, by assumption, dq = 1 for
q = 3, . . . , q̄, the factors dm−�

q in the definition of dm disappear so that the real-
valued ring z = dm · nc, appearing in the formula for zm

∗ , is independent of m.
Together, we find the expansion

x∗ = (xm − xc) · Fc ∗=
[
λmξ, µm,�z

]
=
[
ξ, z
]
diag(λm, λm, µm,�), (7.6)

where the asymptotic equivalence of sequences is understood component-wise. That
is, the tangential and the normal component are specified exactly up to terms of order
o(λm) and o(µm,�), respectively. Equation (7.6/128) shows that, up to a Euclidean
motion, the rings xm are asymptotically just scaled copies of the surface

[
ξ, z
]
. For

the forthcoming investigation of curvature and shape properties, this surface plays a
most important role.

Definition 7.2 (Central ring and central spline). Consider a subdivision surface
x = BQ ∈ Ck(Sn, R3) generated by an algorithm of type (λ, µ, �) with central
normal nc, central frame Fc, and eigencoefficients P := V −1Q. Let P̄ be a vector
of points in R

3 with the same block structure as P, see (4.25/74), and all entries zero
except for

p̄0 := 0, [p̄1; p̄2] := [p1;p2] · Fc, p̄0
q := [0, pq · nc], q = 3, . . . , q̄.

The central ring r̄ and the central spline x̄ corresponding to x are defined by

r̄ := F P̄ ∈ Ck(S0
n, R3), x̄ := BV P̄ ∈ Ck(Sn, R3).

Recalling (7.3/127), we find [p̄1; p̄2] = [L, 0] and

r̄ :=
[
ξ, z
]
.

Further, we observe the following: According to the structure defined in (4.25/74),
p̄0

q is the first entry in the block P̄q of P̄, while pq = p�
q is the last entry in the

block Pq. Hence, when computing the ring x̄m = FJmP̄ of the central spline, the
summands with index q = 3, . . . , q̄ are FqJ

m
q P̄q = µmfqp̄0

q . We obtain

x̄m =
[
λmξ, µm

q̄∑
q=3

fqp̄0
q

]
= r̄diag(λm, λm, µm)
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and see that these rings are scaled copies of r̄. The central point and the central
normal of x̄ are given by

x̄c = p̄0 = 0, n̄c =
p̄1 × p̄2

‖p̄1 × p̄2‖ = e3 := [0, 0, 1], (7.7)

respectively.
Unlike the characteristic ring, the central ring depends on the initial data via the

eigencoefficients p1, . . . ,pq̄ in (7.3/127). If these data are generic then the central ring
is regular, i.e., ×Dr̄ �= 0. More precisely, using (7.4/127), one easily shows that

‖×Dr̄‖ ≥ |×Dξ| = ×Dψ |det L|,

where we recall that, by definition, ×Dψ > 0 for a standard algorithm. We start with
a lemma concerning the first and second fundamental form.

Lemma 7.3 (Asymptotic expansion of fundamental forms). For generic initial
data consider a subdivision surface x = BQ ∈ Ck(Sn, R3) with segments xm

j

generated by a subdivision algorithm of type (λ, µ, �). Then we obtain the following
asymptotic expansions:

• The first fundamental form of xm
j is a symmetric matrix Im

j ∈ Ck−1(Σ0, R2×2)
with

Im
j

∗= λ2m Ij , where Ij := Dξj · Dξj . (7.8)

• There exists m̄ such that the inverse (Im
j )−1 exists for all m ≥ m̄, j ∈ Zn, and

satisfies

(Im
j )−1 ∗= λ−2m I−1

j . (7.9)

• Let Ij and IIj denote the first and second fundamental form of the segments of
the central ring r̄. The second fundamental form of xm

j is a symmetric matrix

IIm
j ∈ Ck−2(Σ0, R2×2) with

IIm
j

∗= µm,� IIj , where IIj :=

√
det Ij

det Ij
IIj . (7.10)

Proof. The first formula, (7.8/129), follows immediately from the definition Im
j :=

Dxm
j · Dxm

j and the expansion

Dxm
j

∗= λmDξjT
c
j . (7.11)

To compute (Im
j )−1, we note that the inverse of any (2×2)-matrix M with det M �=

0 can be expressed in the form

M−1 =
1

det M
(C · M) · C, where C :=

[
0 −1
1 0

]
,
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where we recall that the dot operator transposes its right argument. Now, using
(7.4/127),

det Im
j

∗= λ4m det Ij = λ4m(×Dξj)
2 = λ4m(×Dψj)

2(det L)2. (7.12)

By (7.5/128), (det L)2 = ‖p1 × p2‖2 does not vanish for generic initial data, while
(×Dψj)2 ≥ cj > 0 for some constant cj by regularity of ψj , compactness of the
domain Σ0, and continuity of ×Dψj . Hence, the right hand side in the last display
is bounded away from zero so that there exists an integer m̄ with det Im

j > 0 for all
m ≥ m̄, j ∈ Zn, and

(det Im
j )−1 ∗= λ−4m(det Ij)−1. (7.13)

As claimed in (7.9/129), we obtain

(Im
j )−1 =

1
det Im

j

(C · Im
j ) · C ∗=

λ−2m

det Ij
(C · Ij) · C = λ−2m I−1

j .

To prove (7.10/129), we conclude from (7.6/128)

det[DiDkxm
j ;Dxm

j ] ∗= λ2mµm,� det[DiDkx̄j ;×Dx̄j ].

Then, by comparing the components

(IIm
j )i,k =

det[DiDkxm
j ;Dxm

j ]√
det Im

j

, (IIc
j )i,k =

det[DiDkx̄j ;Dx̄j ]√
det Ic

j

of IIm
j and IIc

j according to (2.8/19) and using (7.13/130), we obtain the given
expansion. �

In the following, we will assume without further notice that, if required, m ≥ m̄ so
that Im

j is invertible. With the help of the expansions for the fundamental forms, we
are now able to derive the expansion for the embedded Weingarten map of the rings.

Theorem 7.4 (Asymptotic expansion of Wm). Under the assumptions of Lemma
7.3/129, the embedded Weingarten maps of the rings xm ∈ Ck(S0

n, R3) are rings
Wm ∈ Ck−2(S0

n, R3×3) with

Wm ∗= �m,� (Tc)t WTc, � :=
µ

λ2
, (7.14)

where W is a symmetric (2 × 2)-matrix with segments

Wj := (Dξj)
−1IIj · (Dξj)

−1, j ∈ Zn. (7.15)

Moreover, consecutive rings Wm,Wm+1 join smoothly in the sense that the seg-
ments satisfy the contact conditions (4.8/62) up to order k − 2.

Proof. Recalling Definition 2.4/20, and using (7.11/129) and (7.9/129), the pseudo-inverse
of Dxm

j is
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(Dxm
j )+ ∗= λ−m

(
(Tc)t · Dξj)(Dξj · Dξj)

−1 = λ−m(Tc)t(Dξj)
−1.

Together with (7.10/129), we find the desired expansion. The Ck−2-contact of
consecutive and neighboring segments is shown as follows. Using the fractional
power embedding π, as introduced in Example 3.10, we define the reparametrized
surface x̃ := x ◦ π−1, which is not a spline, but an almost regular standard
Ck

0 -surface. Its embedded Weingarten map W̃ is well defined and Ck−2 away
from the origin. Because the images of x and x̃ coincide, so do the corresponding
embedded Weingarten maps, see Theorem 2.5/22. Hence, smooth contact of the
segments Wm

j follows from smoothness of W̃. �

Now, using the formulas (2.11/22) and the identities

trace
(
(Tc)t WTc

)
= trace W, ‖(Tc)t WTc‖F = ‖W‖F,

we easily find the asymptotic expansions

κm
M

∗=
�m,�

2
trace W (7.16)

for the mean curvature, and

κm
G

∗=
(�m,�)2

2
(trace2 W − ‖W‖2

F) = (�m,�)2 det W (7.17)

for the Gaussian curvature. Let us derive two further asymptotic formulas from these
expansions. First, we see immediately that the principal curvatures κm

1,2 of xm and
the eigenvalues κW

1,2 of W are related by

κm
i

∗= �m,�κW
i , i ∈ {1, 2}. (7.18)

Second, let κ̄G := det II/det I denote the Gaussian curvature of the central ring.
Then, with the definitions (7.10/129) of II and (7.15/130) of W , we further find using
|×Dξ| =

√
det I

κm
G

∗=
(

�m,� det I

det I

)2

κ̄G. (7.19)

In particular, this formula shows that elliptic and hyperbolic points of the central
ring r̄ correspond to elliptic and hyperbolic points of the rings xm, respectively,
for sufficiently large m. Of course, parabolic points of r̄ do not admit a similar
conclusion.

The preceding formulas, and in particular (7.18/131), indicate that the ratio � =
µ/λ2 together with the dimension � of the subsubdominant Jordan block governs
the limit behavior of the principal curvatures of the rings. Clearly, � < 1 implies
convergence to 0, while (�, �) = (1, 0) guarantees boundedness. However, it is not
obvious that (�, �) � (1, 0) necessarily causes divergence since both eigenvalues of
W could still be 0. This case is excluded by the following lemma.
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Lemma 7.5 (Generically, W �= 0). For generic initial data P, the matrix W does
not vanish identically.

Proof. Let us assume that Wj = (Dξj)−1IIj · (Dξj)−1 = 0. Because ξ is regular
for generic initial data, we have IIj = IIj = 0 so that the principal curvatures of the
central ring vanish identically. This is possible only if the image of r̄ is contained in
a plane. Now, we consider the central spline x̄. As we have shown above, its rings
x̄m are scaled copies of r̄, hence planar, too. Because x̄ is continuous and normal
continuous, the image of x̄ must be a subset of a single plane. In view of (7.7/129),
this must be the xy-plane,

r̄ · e3 = z =
q̄∑

q=3

fq pq · nc = 0.

By Lemma 4.22/78, the eigenrings fq are linearly independent, implying pq · nc = 0
and det[p1;p2;pq] = 0 for all q = 3, . . . , q̄. This, however, contradicts the
assumption that the initial data P be generic, see Definition 5.1/84. �

As a consequence of the lemma, we can be sure that the factor �m,� in the asymptotic
expansion (7.18/131) of the principal curvatures provides not only an upper bound. In
fact, it describes the precise asymptotic behavior of at least one out of κm

1 and κm
2

since, for generic initial data, at least one eigenvalue of W is non-zero. For that
reason, the following critical exponents for Lp-integrability of principal curvatures
cannot be improved. We define the Lp-norm ‖κ‖p,m̄ of a spline κ, built from rings
κm, as the sum of integrals over all surface rings xm with index m ≥ m̄, by

‖κ‖p
p,m̄ :=

∑
m≥m̄

∫
|κ|p dxm =

∑
m≥m̄

∑
j∈Zn

∫
Σ0

|κ(s, t, j)|p ‖×Dxm‖ dsdt.

The space of all functions κ for which ‖κ‖p,m̄ is well defined and finite for suffi-
ciently large m̄ is denoted by Lp

loc. Then the following theorem holds and is illus-
trated in Fig. 7.1/133.

Theorem 7.6 (Curvature integrability). For generic data, let x ∈ Ck(Sn, R3) be
a subdivision surface with principal curvatures κi, i ∈ {1, 2}. Then, for sufficiently
large m̄ and m ≥ m̄, the rings κm

i are well-defined. Furthermore, κi ∈ Lp
loc for all

p with

• p < 2 ln λ
2 ln λ−ln µ , if µ > λ2;

• p < ∞, if µ = λ2 and � > 0;
• p ≤ ∞, if (µ, �) � (λ2, 0).

In any case, κi ∈ L2
loc.

Proof. The principal curvatures κm
i are well-defined and continuous if det Im > 0.

Now, the asymptotic expansion (7.12/130) guarantees the existence of an index m̄ such
that det Im > 0 for all m ≥ m̄. By (7.18/131), both principal curvatures are bounded
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Fig. 7.1 Illustration of Theorem 7.6/132: Limit exponent p of curvature integrability plotted over
subsubdominant eigenvalue µ for different values of λ.

if and only if (µ, �) � (λ2, 0). Hence, it remains to consider the case p < ∞. We
use (5.7/87), (7.4/127), and (7.5/128) to find

‖×Dxm‖ ∗= λ2m‖×Dψ‖ ‖p1 × p2‖ = λ2m‖×Dξ‖.

Hence, with (7.18/131),

|κm
i |p ‖×Dxm‖ ∗= (�m,�)p|κW

i |pλ2m|×Dξ| ∗= (m/�)�p rm
p kp

i ,

where we used the abbreviations

rp :=
µp

λ2(p−1)
and kp

i := |κW
i |p |×Dξ|.

Denoting the integral of the ring kp
i by

Kp
i :=

∑
j∈Zn

∫
Σ0

kp
i (s, t, j) dsdt,

we obtain

‖κi‖p
p,m̄ =

∑
m≥m̄

∑
j∈Zn

∫
Σ0

|κm
i (s, t, j)|p ‖×Dxm‖ dsdt ∗= Kp

i

∑
m≥m̄

(m/�)�p rm
p .

The latter series converges if and only if rp < 1. For µ > λ2, this inequality is
equivalent to p being smaller than the bound given in the first item of the theorem,
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while it is always satisfied for µ ≤ λ2. The final statement, which guarantees square
integrability of the principal curvatures for any algorithm of type (λ, µ, �), follows
immediately from the above results and µ < �. �

7.2 Shape Assessment

As it will be explained in the next section, Ck
2 -subdivision algorithms are hard to

find, and most schemes currently in use are merely Ck
1 . While many popular Ck

1 -
algorithms live up to the standards of Computer Graphics, they do not satisfy the
higher demands arising in applications like car body design. To put it shortly, one
could say that most subdivision surfaces are fair from afar, but far from being fair.

When scrutinizing subdivision surfaces by means of shaded images or curvature
plots, one possibly encounters an erratic behavior of shape near the central point.
It would be an oversimplification to explain these observations by just pointing to
the lack of curvature continuity. Rather, it pays off to explore the deeper sources
of shape deficiencies. Based on such additional insight, one can develop guidelines
for tuning algorithms. Even for families of subdivision algorithms where curvature
continuity is beyond reach, this may result in a significant improvement of shape.

As a motivation, consider the following facts regarding Catmull–Clark subdivi-
sion, as discussed in the preceding chapter:

• For standard weights and valence n ≥ 5, the principal curvatures grow unbound-
edly when approaching the central point.

• For standard weights and valence n ≥ 5, the generated surfaces are generically
not convex.

• Even when tuning the weights α, β, γ carefully to get rid of the latter restriction,
the generated surfaces sometimes reveal a hybrid behavior, what means that there
are both elliptic and hyperbolic points in any neighborhood of the central point.

The first observation can be understood when considering the asymptotic expansion
(7.18/131) derived in the preceding section: the ratio � = µ/λ2 > 1 causes divergence
of the principal curvatures. Also the second observation can be explained by spectral
properties of the subdivision matrix. The subsubdominant eigenvalue µ has Fourier
index F(µ) = {2, n−2}, and we will show below that this generically leads to non-
convex shape. The third observation is quite subtle, and can be explained only with
the help of a so-called shape chart, which summarizes properties of central rings for
all possible choices of initial data.

Before we come to that point, let us start with developing concepts for classifying
shape at the central point. Because, in general, the Gaussian curvature is not well
defined at xc, we have to generalize the notions of ellipticity and hyperbolicity. We
suggest three different approaches, respectively based on:

• The local intersections of the subdivision surface with its tangent plane
• The limit behavior of the Gaussian curvature
• Local quadratic approximation
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We will show that in all cases the behavior of the subdivision surface is closely
related to the shape of the central surface ring and, in the first and third case, to
spectral properties of the subdivision matrix. For simplicity, we continue to consider
algorithms of type (λ, µ, �) according to Definition 7.1/127.

We start by introducing an appropriate notion of periodicity for rings.

Definition 7.7 (P-periodicity). Let P = {k1, . . . , kq} be a set of indices, which
are understood modulo n. A ring f ∈ Ck(S0

n, K) is called P-periodic, if there exist
functions gi, ḡi ∈ Ck(Σ0, K) such that its segments are given by

f(·, j) =
q∑

i=1

(
gi sin(2πkij/n) + ḡi cos(2πkij/n)

)
.

One easily shows that ∑
j∈Zn

f(·, j) = 0 if 0 �∈ P. (7.20)

Further, the space of P-periodic functions is linear. The product of a P-periodic
function f and a Q-periodic function g yields an R-periodic function fg, where
R := P ±Q contains all sums and differences of elements of P and Q.

By (5.17/99) and F(λ) = {1, n − 1}, the tangential component ξ = [f1, f2]L of
the central ring r̄ is {1, n−1}-periodic, while the third component z =

∑
q fq pq ·nc

is F(µ)-periodic.
Now, we introduce three variants on the notion of an elliptic or hyperbolic point,

which apply to the special situation at the central point. As a first approach, let us
consider a non-parabolic point of a regular C2-surface. If it is elliptic, then the sur-
face locally lies on one side of the tangent plane. By contrast, if it is hyperbolic, then
the surface intersects the tangent plane in any neighborhood. This basic observation
motivates the following generalization. It involves the notion of the central tangent
plane which is the plane perpendicular to nc through the point xc.

Definition 7.8 (Sign-type). The central point xc of a subdivision surface x is called

• elliptic in sign if, in a sufficiently small neighborhood of xc, the subdivision
surface intersects the central tangent plane only in xc;

• hyperbolic in sign, if in any neighborhood of xc the subdivision surface has
points on both sides of the central tangent plane.

This classification defines a minimum standard for subdivision surfaces: any high-
quality algorithm should be able to generate both sign-types in order to cover basic
shapes. The sign-type can be established by looking at the third component of the
central ring.

Theorem 7.9 (Central surface and sign-type). Let r̄ =
[
ξ, z
]

be the central ring
of the subdivision surface x.

• If z > 0 or z < 0, then xc is elliptic in sign.
• If z changes sign, then xc is hyperbolic in sign.
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Proof. Intersections of x and the central tangent plane correspond to zeros of the
normal component z∗ of the transformed spline surface x∗. According to (7.2/127)
and (7.6/128), its rings zm

∗ satisfy

zm
∗ = (xm − xc) · nc ∗= µm,�z,

and the assertion follows easily. �

The last display implies more than is stated in the theorem. We see that the sign map
of zm

∗ is equivalent to the sign map of z in an asymptotic way. Thus, the distribution
of signs of the normal component z∗ can be studied with the help of the central ring,
except for points corresponding to zeros of z. The next theorem relates the sign-type
and the Fourier index of the subsubdominant eigenvalue.

Theorem 7.10 (Fourier index and sign-type). For generic initial data, the central
point xc is hyperbolic in sign unless 0 ∈ F(µ).

Proof. The function z is F(µ)-periodic. Hence, if 0 �∈ F(µ), the sum of its
segments vanishes,

∑
j∈Zn

zj = 0. Since z �= 0 for generic initial data, it has to
have positive and negative function values. �

The strong consequence of this theorem is that, for any good subdivision algorithm,
one of the subsubdominant eigenvalues must correspond to the zero Fourier block
of the subdivision matrix. Otherwise, the resulting surfaces will locally intersect the
tangent plane at the extraordinary vertex for almost all initial data. For example, the
standard Catmull–Clark algorithm reveals this shortcoming for n ≥ 5: the Fourier
index of µ is {2, n−2} and the generated subdivision surfaces are, for generic data,
not elliptic in sign. In particular, they are not convex.

The second approach to a classification of the central point makes use of the fact
that the Gaussian curvature is well defined for all rings xm with sufficiently large
index m.

Definition 7.11 (Limit-type). Wherever it is well defined, denote by κG the
Gaussian curvature of a subdivision surface x. The central point xc is called

• elliptic in the limit if κG > 0 in a sufficiently small neighborhood of xc;
• hyperbolic in the limit if κG < 0 in a sufficiently small neighborhood of xc;
• hybrid, if κG changes sign in every neighborhood of xc.

Again, the limit-type of an extraordinary vertex is closely related to the central ring.

Theorem 7.12 (Central surface and limit-type). Denote by κ̄G the Gaussian cur-
vature of the central ring r̄. For generic initial data, the central point is

• elliptic in the limit, if κ̄G > 0;
• hyperbolic in the limit, if κ̄G < 0;
• hybrid, if κ̄G changes sign.

The proof follows immediately from (7.19/131). Again, this expansion implies more
than is stated in the theorem. We see that the sign map of the Gaussian curvature
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Fig. 7.2 Illustration of hybrid case: Hybrid shape of a subdivision surface generated by a modified
Catmull–Clark algorithm. (left) Lighted surface with an undesired pinch-off near the central point.
(right) Part of the surface shaded by Gaussian curvature. Blue and green colors indicate hyperbolic
points, yellow and red colors indicate elliptic points.

of r̄ is equivalent to that of the rings in an asymptotic way. Thus, the distribution
of the sign of the Gaussian curvature in a vicinity of an extraordinary vertex can
be studied with the help of the central ring – except at parameters corresponding
to parabolic points of the central ring. The study of the Gaussian curvature of the
central surface is a basic tool for judging the quality of a subdivision surface since,
in applications, fairness requires that the extraordinary point be either elliptic or
hyperbolic in sign. The hybrid case leads to shape artifacts (see Fig. 7.2/137). A high
quality subdivision algorithm should therefore exclude the hybrid case completely,
while facilitating both elliptic and hyperbolic shape in the limit-sense. This is a
very strong requirement that is hard to fulfill in practice. To explain the problem,
let us consider two sets of initial data: Q[0] is chosen so that the central ring has
positive Gaussian curvature and Q[1] so that the central ring has negative Gaussian
curvature. Now, we consider any continuous transition Q[t], t ∈ [0, 1], connecting
the two cases. The Gaussian curvature of the corresponding central rings is a family
κ̄G[t] of functions connecting κ̄G[0] > 0 and κ̄G[1] < 0. If hybrid behavior is to
be excluded then the transition between the positive and the negative case has to be
restricted to isolated t-values where κ̄G[t] ≡ 0. However, to devise an algorithm with
such a property is challenging since the relation between initial data and curvature
of the central ring is highly non-linear.

Relating κ̄G to spectral properties is rather difficult and does not promise re-
sults beyond Theorem 7.10/136. Since we want to be able to distinguish the desired
cup- and saddle-shapes from unstructured local oscillations, we consider a third ap-
proach. As we will show in Theorem 7.16/143 of the next section, the subdivision
surface x is Ck

2 if and only if the function z is a quadratic polynomial in the sub-
dominant eigenrings f1, f2, i.e., there exists a constant symmetric (2× 2)-matrix H
such that the components of the central ring satisfy

ξH · ξ − z = 0.
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Then, the Gaussian curvature of the central point is given by det(H/2). In general,
no matrix will satisfy the above identity exactly. But one can still try to determine a
best approximation in the least squares sense. To this end, we define an inner product
for real-valued rings by

〈f, g〉 :=
∑
j∈Zn

∫
Σ0

f(s, t, j)g(s, t, j) dsdt

and denote the corresponding norm by | · |. Now, for given ξ and z, we define H as
the minimizer of the functional

ϕ(H) :=
∣∣ξH · ξ − z

∣∣2.
The matrix H provides information on the global shape of the central ring in the
sense of averaging, and its determinant is now used to define a third notion of hy-
perbolicity and ellipticity.

Definition 7.13 (Average-type). The central point xc is called

• elliptic in average, if det H > 0;
• hyperbolic in average, if det H < 0.

The average-type is closely related to the Fourier index of the subsubdominant
eigenvalue.

Theorem 7.14 (Central surface and average-type). For generic initial data, the
central point is

• not elliptic in average unless 0 ∈ F(µ);
• not hyperbolic in average unless {2, n − 2} ⊂ F(µ).

Proof. We start with a simple observation for periodic functions. Let f be P-
periodic and g be Q-periodic. By (7.20/135),

〈f, g〉 = 0 if 0 �∈ P ± Q, (7.21)

where we recall that P ±Q contains all sums and differences of elements of P and
Q modulo n. To put the optimization problem in a more convenient form, we set
p := ψ2

1 + ψ2
2 , q := ψ2

1 − ψ2
2 , r := 2ψ1ψ2, and write

ϕ(H) = |ψ(LH · L) · ψ − z|2 = |ap + bq + cr − z|2 (7.22)

where the coefficients a, b, c are defined by

LH · L =:
[
a + b c

c a − b

]
. (7.23)

The sign of the determinant of H , which we are going to determine, is given by

sign(det H) = sign(det LH · L) = sign(a2 − b2 − c2).
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Minimizing the functional ϕ according to (7.22/138) is equivalent to solving the
Gramian system ⎡

⎣〈p, p〉 〈p, q〉 〈p, r〉
〈p, q〉 〈q, q〉 〈q, r〉
〈p, r〉 〈q, r〉 〈r, r〉

⎤
⎦
⎡
⎣a

b
c

⎤
⎦ =

⎡
⎣〈p, z〉
〈q, z〉
〈r, z〉

⎤
⎦ . (7.24)

Now, we determine the periodicity of the functions p, q, r. With the rotation matrix

R :=
[

cos(2π/n) sin(2π/n)
− sin(2π/n) cos(2π/n)

]

we obtain for the segments

pj = ψ0R
j

⎡
⎢⎢⎣ 1 0

0 1

⎤
⎥⎥⎦ · (ψ0R

j) = p0

qj = ψ0R
j

⎡
⎢⎢⎣ 1 0

0 −1

⎤
⎥⎥⎦ · (ψ0R

j) = cos(4πj/n)q0 − sin(4πj/n)r0

rj = ψ0R
j

⎡
⎢⎢⎣ 0 1
−1 0

⎤
⎥⎥⎦ · (ψ0R

j) = cos(4πj/n)q0 + sin(4πj/n)r0

and observe that p is {0}-periodic, while q and r are {2}-periodic. Hence, by
(7.21/138), the off-diagonal elements of the Gramian matrix in the first row and
column vanish, 〈p, q〉 = 〈p, r〉 = 0. If 0 �∈ F(µ), the function z is P-periodic with
0 �∈ P , and the first entry of the right hand side of (7.24/139) becomes 〈p, z〉 = 0.
Thus, a = 0 and sign(det H) = sign(−b2 − c2) ≤ 0. If {2, n − 2} �⊂ F(µ), the
function z is P-periodic with {2, n − 2} ∩ P = ∅, and the second and third entry
of the right hand side of (7.24/139) become 〈q, z〉 = 〈r, z〉 = 0. Thus, b = c = 0 and
sign(det H) = sign(a2) ≥ 0. �

As a consequence of this theorem, we see that the variety of producible shapes will
cover both basic average-types only if the subsubdominant eigenvalue is at least
triple with Fourier index F(µ) ⊃ {0, 2, n−2}. However, it must be emphasized that
this spectral property is by no means a sufficient condition for a good subdivision
algorithm, but merely a basic requirement.

Deeper insight is provided by the concept of shape charts, that classify the space
of shapes that can be generated by a subdivision algorithm. Let us consider a sub-
division algorithm of type (λ, µ, �) with a triple subsubdominant eigenvalue and
Fourier index F(µ) = {0, 2, n − 2}. Then the third component of the central
ring is

z = αf3 + βf4 + γf5,

where the coefficients α, β, γ depend on the initial data. Further, we observe that
all three shape types of the central point are invariant with respect to regular linear
maps. That is, if P and P̃ = PM are initial data related by an invertible (3 × 3)-
matrix M , then the classifications of the corresponding central points xc and x̃c

coincide. For that reason, we may assume that the matrix L in (7.23/138) is the identity
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and that, without loss of generality,

α2 + β2 + γ2 = 1, γ ≥ 0.

This observation implies that we can restrict a basic investigation of possible shapes
to the two-parameter family

r̄α,β :=
[
ψ, αf3 + βf4 +

√
1 − α2 − β2f5

]
of surface rings, where the parameters vary inside the unit circle,

(α, β) ∈ Γ :=
{
(α, β) ∈ R

2 : α2 + β2 ≤ 1
}
.

A shape chart c := Γ → Z is a map which assigns to each α, β an indicator for the
shape-type, for instance

climit(α, β) :=

⎧⎪⎨
⎪⎩

1 if κ̄α,β
G ≥ 0

0 if κ̄α,β
G changes sign

−1 if κ̄α,β
G ≤ 0,

(7.25)

where κ̄α,β
G is the Gaussian curvature of r̄α,β . By Theorem 7.12/136, the value climit

(α, β) indicates whether the corresponding subdivision surface is elliptic, hybrid, or
hyperbolic in the limit. A shape chart thus summarizes, in a single image for all input
data, information about the possible shape in a neighborhood of the central point. In
particular, the hybrid region, i.e., the set of pairs (α, β) such that climit(α, β) = 0,
can be used to assess the quality of a subdivision algorithm: the smaller that region,
the better the algorithm.

Shape charts can be visualized by coloring the different regions of Γ and thereby
partitioning the unit circle into two or three subsets as in Fig. 7.3/141. When com-
puting shape charts, possible symmetry properties can be exploited to increase effi-
ciency. Variants on the concept include in particular the following:

• Different normalizations of the triple (α, β, γ). For example, max{|α|, |β|,
|γ|}= 1 leads to square-shaped plots.

• Continuous variation of values. For example, the variance of trace W , see
(7.16/131), shows the deviation of the mean curvature of the rings xm from a con-
stant value.

7.3 Conditions for Ck
2 -Algorithms

In this section, we derive necessary and sufficient conditions for curvature continuity
at the central point. It turns out that the sufficient conditions are extremely restric-
tive. This explains the failure of many early attempts to construct such algorithms.
We start with a necessary condition on the spectrum of the subdivision matrix.
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Fig. 7.3 Illustration of (7.25/140): Shape chart for the Catmull–Clark algorithm with n = 10 and
flexible weights. (left) Perspective view and (right) top view. Respectively, the colors red, green,
and blue indicate elliptic, hybrid, and hyperbolic behavior in the limit.

Theorem 7.15 (Necessity of µ ≤ λ2). A subdivision algorithm of type (λ, µ, �) can
be Ck

2 only if (µ, �) � (λ2, 0).

Proof. Let us recall the expansion (7.14/130),

Wm ∗= �m,� (Tc)t WTc, � =
µ

λ2
.

In view of Lemma 7.5/132, which states that W �= 0 for generic initial data, we see
that pointwise convergence of the sequence Wm, as required by Theorem 2.14/28, is
possible only if �m,� converges. �

If µ < λ2 then � < 1 and Wm converges to 0. According to Theorem 2.14/28, this
guarantees curvature continuity. However, in this case the central point is necessarily
a flat spot, i.e., the principal curvatures vanish here. For most applications, such a
restriction is not acceptable so that we do not elaborate on that case. Rather, we seek
conditions for nontrivial curvature continuity and assume from now on

(µ, �) = (λ2, 0).

Then, according to Theorem 2.14/28, a necessary and sufficient condition for curva-
ture continuity is that the limit

Wc := lim
m→∞Wm =

[
W 0
0 0

]

be a constant (3×3)-matrix, i.e., it does not depend on the arguments (s, t, j). Now,
we reparametrize the rings xm via the inverse of the planar ring ξ = ψL, which is
an embedding for generic data,

x̃m(u, v) := xm(s), s := ξ−1(u, v) ∈ S0
n.
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By (2.5/22), the corresponding embedded Weingarten maps are equal up to sign:

W̃m(u, v) = ±Wm(s).

Following (7.6/128), the asymptotic expansion of x̃m is

(x̃m − xc) · Fc ∗=
[
λmu, λmv, λ2mz̃(u, v)

]
,

where z̃(u, v) := z(s). Some elementary computations now yield

Dx̃m ∗= λmTc, (Dx̃m)+ ∗= λ−m(Tc)t, ñm ∗= nc, ĨI
m ∗= λ2m

[
z̃uu z̃uv

z̃uv z̃vv

]

so that
W̃m ∗= (Tc)tW̃Tc, W̃ :=

[
z̃uu z̃uv

z̃uv z̃vv

]
.

Hence, the limit W̃c = ±Wc is constant if and only if the three functions z̃uu, z̃uv ,
and z̃vv are constant. This holds if and only if

z̃ ∈ span
{
1, u, v, u2, uv, v2

}
.

That is, z̃ is a quadratic polynomial in u, v. Since [u, v] = ξ(s), and the components
of ξ are linear combinations of the subdominant eigenrings f1 and f2, we obtain the
equivalent condition

z ∈ span
{
1, f1, f2, f

2
1 , f1f2, f

2
2

}
.

Now, we consider the central spline x according to Definition 7.2/128. As observed
above, its rings satisfy

x̄0 = r̄ =
[
ξ, z
]
, x̄m =

[
λmξ, λ2mz

]
.

We know that z is a quadratic polynomial in the components of ξ and write z =
p(ξ). Being scaled copies of x̄0, the other rings satisfy similar equations λ2mz =
pm(λmξ), where the functions pm := λ2mp(λ−m·) are also quadratic polynomials.
However, because the rings x̄m join C2, all these polynomials must in fact coincide,
i.e., pm = p. The resulting relation

λ2mp = p(λm·), m ∈ N0,

shows that p is a homogeneous quadratic polynomial. Hence,

z ∈ span
{
f2
1 , f1f2, f

2
2

}
.

Finally, because

z =
q̄∑

q=3

fqpq · nc = a1f
2
1 + a2f1f2 + a3f

2
2 (7.26)

must hold for any choice of generic initial data, we obtain the following result.



7.3 Conditions for Ck
2 -Algorithms 143

Theorem 7.16 (Ck
2 -criterion). A subdivision algorithm of type (λ, λ2, 0) is a Ck

2 -
algorithm if and only if the subsubdominant eigenrings satisfy

fq ∈ span
{
f2
1 , f1f2, f

2
2

}
, q = 3, . . . , q̄.

Moreover, q̄ ≤ 5

Proof. The first part of the theorem was derived above. The second part, saying that
the subsubdominant eigenvalue is at most triple, follows from linear independence
of the subsubdominant eigenrings according to Lemma 4.22/78. �

The functional dependence required by the theorem is extremely restrictive and ac-
counts, for instance, for the impossibility of finding C2

2 -variants on the Catmull–
Clark algorithm. To see this, we now focus on piecewise polynomial algorithms.

Definition 7.17 (Ck,q
r -algorithm). Let {Σi}i be a finite family of intervals forming

a partition of the domain Σ0 of segments,

Σ0 =
⋃
i

Σi.

A ring xm ∈ Ck(S0
n, Rd, G) is said to have bi-degree q with respect to {Σi}i if xm

restricted to Σi is a polynomial of bi-degree at most q for all i, and a polynomial of
bi-degree q for at least one i; we write

deg xm = q.

Further, a Ck
r -subdivision algorithm (A,G) is called a Ck,q

r -algorithm, if

max
�

deg g� = q

for the generating rings g�.

For instance, the Catmull–Clark algorithm is a C2,3
1 -algorithm, and the Doo–Sabin

algorithm is a C1,2
1 -algorithm. For tensor-product splines with simple knots, the bi-

degree q exceeds the smoothness k only by 1. However, non-trivial Ck,q
2 -algorithms

require a substantially higher degree. The results in that direction are all based on
the following observation:

Lemma 7.18 (Degree estimate for ψ). For n �= 4, the characteristic map ψ of a
standard Ck,q

1 -algorithm satisfies

deg ψ > k.

Proof. Let us assume that deg ψ ≤ k. Then the segments ψj are in fact not
piecewise polynomials on a partition, but simply polynomials on Σ0. Equally, two
neighboring segments ψj and ψj+1 differ only by a change of parameters,

ψj+1(s, t) = ψj(t,−s).

Hence, ψj+4 = ψj , implying that injectivity is possible only for n = 4. �



144 7 Shape Analysis and Ck
2 -Algorithms

For n = 4, the characteristic ring of the Catmull–Clark-algorithm and of the Doo–
Sabin-algorithm have deg ψ = 1. For n �= 4, the lemma and Theorem 7.16/143

suggest, and the following shows, that the generating system G must have at least
bi-degree 2k + 2 to represent subsubdominant eigenfunctions.

Theorem 7.19 (Degree estimate for Ck,q
2 -algorithms). Let n �= 4. For a non-

trivial Ck,q
2 -algorithm with characteristic ring ψ,

q ≥ 2 deg ψ ≥ 2k + 2.

In particular, the lowest degree for k = 2 is q = 6.

Proof. By (7.26/142), with the complex characteristic ringf = f1 + if2, the j-th
segment of the normal component of the central ring can be written as

z̄j = a1f
2
1,j + a2f1,jf2,j + a3f

2
2,j

= Re(αf2
j ) + β|fj |2 = Re(αw2j

n f2
0 ) + β|f0|2,

where α := (a1 − a3 − ia2)/2, β := (a1 + a3)/2. The last equality follows
from (5.21/103), saying that the segments of f are related by fj = wj

nf0. By
Lemma 7.18/143, the complex-valued piecewise polynomial f0 has degree deg f0 ≥
k + 1.

For a bivariate polynomial p of degree d := deg p we define the leading coeffi-
cient c[p] �= 0 and the leading monomial m[p](s, t) = s�td−� by the split

p = c[p]m[p] + T [p],

where the trailing term

T [p] :=
d∑

i=�+1

cis
itd−� +

∑
i+k<d

ci,ksitk

summarizes all terms of degree d which contain at least the factor s�+1, and all
terms of degree < d. Obviously, for two polynomials p1, p2 with m[p1] = m[p2]
it is

c[p1p2] = c[p1] c[p2], m[p1p2] = (m[p1])2.

When restricted to a suitable subset of its domain,

f0 = c[f0]m[f0] + T [f0], deg m[f0] ≥ k + 1.

Because the characteristic ring f can be scaled arbitrarily, we may assume without
loss of generality that the leading coefficient is c[f0] = 1. Hence,

f2
0 = (m[f0])2 + T

[
f2
0

]
, |f0|2 = f0f0 = (m[f0])2 + T

[|f2
0 |
]
,
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and the coefficient of zj to the monomial (m[f0])2 is

Re(αw2j
n ) + β.

This expression can vanish for all j ∈ Zn only if α = β = 0. This implies
a1 = a2 = a3 = 0 and z = 0, contradicting the assumption that the initial data be
generic. Hence, m[zj ] = (m[f0])2 at least for one j, showing that the degree of z̄ is
bounded by deg z ≥ deg zj = 2d[f0] ≥ 2(k + 1). �

7.4 A Framework for Ck
2 -Algorithms

In this section, we provide a framework for constructing Ck
2 -algorithms. So far, the

algorithm (A,G) was assumed to be given, and ψ was determined as the planar ring
corresponding to the subdominant eigenvalues of the subdivision matrix A. By con-
trast, we now start with a function ϕ ∈ Ck(S0

n, R2, G) and then derive a matrix A so
that (A,G) defines a Ck

2 -algorithm with ψ := ϕ as its characteristic ring. More pre-
cisely, we say that the planar ring ϕ ∈ Ck(S0

n, R2, G) is a regular Ck-embedding
of S0

n with scale factor λ if it has the two key properties of a characteristic ring, i.e.,

• ϕ is regular and injective, and
• there exists a real number λ ∈ (0, 1) such that ϕ and λϕ join C2 according to

(4.8/62) when regarded as consecutive rings.

For instance, the characteristic ring of the Catmull–Clark algorithm represents a
regular C2-embedding of bi-degree 3, which may be used to construct a C2,6

2 -
algorithm. But as mentioned already above, there is no need to derive ϕ from an
existing algorithm. The image of ϕ is denoted by

Ω := ϕ(S0
n).

Now, we define a family of reparametrization operators, taking rings to functions on
scaled copies of Ω.

Definition 7.20 (Reparametrization Rm). For m ∈ N0, the reparametrization
operator Rm maps a ring p ∈ Ck(S0

n, Rd) to a Ck-function q := Rm[p] on
λmΩ ⊂ R

2,
q : λmΩ � ξ �→ p(ϕ−1(λ−mξ)) ∈ R

d.

The inverse operator R−1
m maps a Ck-function q on λmΩ to a ring p := R−1

m [q] ∈
Ck(S0

n, Rd),
p : S0

n � s �→ q(λmϕ(s)).

The operator Rm, and equally R−1
m , is linear in the sense that Rm[αf + βg] =

αRm[f ] + βRm[g]. Given ϕ, we denote the space of bivariate polynomials of total
degree 2 restricted to λmΩ by P2(λmΩ). The following definition is crucial. It
characterizes subdivision algorithms which are able to represent rings corresponding
to quadratic polynomials, and generate such quadratic rings from quadratic rings.
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Definition 7.21 (Quadratic precision). The subdivision algorithm (A,G) has qua-
dratic precision with respect to ϕ if

• for each quadratic polynomial p ∈ P2(Ω) there exists a real-valued ring x0 ∈
Ck(S0

n, R, G) with
R0[x0] = p,

• for consecutive rings x0 = GQ and x1 = GAQ,

R0[x0] ∈ P2(Ω) implies R0[x1] ∈ P2(Ω).

First, we observe that for a subdivision algorithm (A,G) with quadratic precision,
R0[x0] ∈ P2(Ω) implies R0[xm] ∈ P2(Ω) and also Rm[xm] ∈ P2(λmΩ) for all
m. Second, we consider the sequence

R0[x0], R1[x1], R2[x2], . . . ,

starting from R0[x0] ∈ P2(Ω). Corresponding to consecutive rings that join C2,
all these polynomials coincide in the sense that they must have the same monomial
expansion. However, strictly speaking, they are not equal because the domains are
different. To account for that fact, we write

R0[x0] ∼= Rm[xm], m ∈ N.

In particular, if R0[x0] is a monomial of total degree � ≤ 2, we have

R0[xm] = λ�mR0[x0]. (7.27)

Remarkably, quadratic precision immediately yields an appropriate eigenstructure
for (A,G).

Lemma 7.22 (Quadratic precision yields correct spectrum). Let ϕ be a regular
Ck-embedding of S0

n with scale factor λ. If (A,G) has quadratic precision with
respect to ϕ, then there exist eigenvalues λi, eigenvectors vi, and eigenrings fi :=
Gvi, satisfying

λ0 = 1, λ1 = λ2 = λ, λ3 = λ4 = λ5 = λ2,

f0 = 1, [f1, f2] = ϕ, f3 = f2
1 , f4 = f1f2, f5 = f2

2 .

Here, with a slight abuse of notation, we indexed eigenvalues without assuming that
the whole sequence is ordered by modulus. In particular, further eigenvalues with
modulus greater than λ2 are not excluded a priori.

Proof. With ξ = (x, y), we define the monomials

p0(ξ) = 1, p1(ξ) = x, p2(ξ) = y, p3(ξ) = x2, p4(ξ) = xy, p5(ξ) = y2

in P2(Ω). For i = 0, . . . , 5, we have λi = λ�i , where �i is the total degree of pi.
By definition of quadratic precision, the function fi := R−1

0 [pi] = pi ◦ ϕ can be
written as fi = Gv′

i for some vector v′
i �= 0. By (7.27/146), R0[GAmv′

i] = λ�impi,
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and hence, applying R−1
0 on both sides,

GAmv′
i = λm

i fi = λm
i Gv′

i.

If G is linearly independent, it follows immediately that v′
i is an eigenvector of A to

λi, but we have to show that the same is true in general.
For k ∈ N0, let vi := λ−k

i Akv′
i. Then

Gvi = λ−k
i GAkv′

i = fi

shows that vi is another possible choice of coefficients corresponding to the poly-
nomial pi. As before,

GAmvi = λm
i fi = λm

i Gvi. (7.28)

With A = V JV −1 the Jordan decomposition of A, let

w′ := V −1v′
i, w := V −1vi = λ−k

i Jkw′.

Recalling (4.25/74), F and w are partitioned into blocks Fr and wr corresponding to
the Jordan blocks Jr of J . Condition (7.28/147) yields the equivalent system

FrJ
m
r wr = λm

i Frwr, r = 0, . . . , r̄.

When determining solutions wr, we distinguish two cases: First, if the eigenvalue
corresponding to Jr is λr = 0, then wr = λ−k

i Jk
r w′

r = 0 is the only solution for k
chosen sufficiently large.

Second, if λr �= 0, then Lemma 4.22/78 guarantees that the eigenfunction f0
r does

not vanish. Of course, the trivial solution wr = 0 is possible. Otherwise, if wr �= 0,
let ν denote the largest index of a non-vanishing component, i.e., wi

r = 0 for i > ν
and wν

r �= 0. By (4.27/74), we have the asymptotic expansion

λm
i Frwr = FrJ

m
r wr

∗= λm,ν
r f0

r wν
r ,

implying λi = λr and ν = 0. Hence, wr = [w0
r ; 0; . . . ; 0] is an eigenvector of

Jr to the eigenvalue λi. Summarizing, we have Jrwr = λiwr for all r. Therefore,
Jw = λiw and Avi = λivi.

For i = 0, . . . , 5, we obtain the eigenvalues λ0 = 1, λ1 = λ2 = λ and λ3 =
λ4 = λ5 = λ2, as stated. The corresponding dominant and subdominant eigenrings
are f0 = 1, and [f1, f2] = ϕ. Hence, f3 = p3 ◦ ϕ = p2

1 ◦ ϕ = (p1 ◦ ϕ)2 = f2
1 , and

equally f4 = f1f2, f5 = f2
2 . �

Together, Lemma 7.22/146 and Theorem 7.16/143 show that quadratic precision and
scalable embeddings yield promising candidates for Ck

2 -algorithms.

Theorem 7.23 (Quadratic precision suggests Ck
2 -algorithm). Let ϕ be a regular

Ck-embedding of S0
n with scale factor λ. If the symmetric Ck-subdivision algorithm

(A,G) has quadratic precision with respect to ϕ, and if |λi| < λ2 for all i > 5,
then (A,G) is of type (λ, λ2, 0) and defines a Ck

2 -algorithm.
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Now, we describe a four-step procedure which yields subdivision algorithms with
quadratic precision. The four steps reparametrization – extension – turn-back – pro-
jection suggest the acronym PTER for the framework, where as usual the concate-
nation of operators is from right to left.

Let us assume that a Ck-system G of generating rings and a regular Ck-
embedding ϕ with scale factor λ are given and have the following properties:

• The generating rings g� are piecewise polynomial with maximal degree q in the
sense of Definition 7.17/143.

• In view of Theorem 7.19/144, the embedding ϕ = G[v1, v2] has degree deg ϕ ≤
k/2.

• There exist vectors v3, v4, v5 with

Gv3 = (Gv1)2, Gv4 = (Gv1)(Gv2), Gv5 = (Gv2)2

to account for Theorem 7.16/143. In particular, this assumption is fulfilled if G
spans the space of all piecewise polynomials with respect to the given partition
and the given order of continuity.

To simplify notation, we describe how to compute x1 = GQ1 from x0 = GQ for
given initial data Q. But the whole procedure is linear and independent of the level
m so that it defines a stationary algorithm. The building blocks are characterized as
follows:

R – Reparametrization: Reparametrize the ring x0 as a function y0 on Ω,

y0 := R0[x0].

E – Extension: Extend y0 to a function y1 defined on λΩ such that quadratic poly-
nomials are extended by themselves,

y0 ∼= y1 if y0 ∈ P2(Ω).

We note that smooth contact is required only for quadratic polynomials. In
general, y0 and y1 do not need to join continuously. Since G is not necessarily
linear independent, y1 may depend not only on y0, but also directly on the
initial data Q. We write in terms of the linear extension operator E

y1 := E [Q,y0].

Some examples of E are as follows:
(i) A projection from the space of functions on Ω onto some finite dimensional
space P(Ω) of bivariate polynomials containing P2(Ω). This projection could
be obtained, e.g., by a least squares fit or by an interpolant ỹ0 ∈ P(Ω) of y0.
Then, the extension is defined by the polynomial ỹ0, i.e., y1 ∼= ỹ0. In the same
way, also spaces of piecewise polynomials can be used.
(ii) The minimizer of some positive semi-definite quadratic fairness functional
F , acting on functions defined on λΩ, with the property that F vanishes on
P2(λΩ). For instance, for functions y1 joining Ck with y0, one can consider
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F(y1) :=
∫

λΩ

∆ky1(ξ) dξ → min

or discrete variants thereof. Also here, if y0 ∈ P(Ω), then y1 ∼= y0 because
F(y1) = 0 for y1 ∈ P2(λΩ).

T – Turn-back: Convert the function y1 back into a ring,

x̃1 := R−1
1 [y1].

In general, this ring is neither in the span of G, nor does it join smoothly
with x0.

P – Projection: Project x̃1 into the subspace of Ck(S0
n, Rd, G) consisting of rings

that join Ck with x0. The coefficients Q1 of the resulting ring x1 = GQ1 are
obtained by a linear operator P ,

Q1 := P[Q, x̃1],

where the first argument provides information to enforce the Ck-condition.
Crucially, P has to be chosen such that x1 = x̃1 if x̃1 is a quadratic polynomial
in the components of ϕ, i.e., if R0[x̃1] ∈ P2(Ω). Thus, P is typically defined
by a constrained least squares fit with respect to some inner product, either
continuous or discrete,

‖x̃1 − GQ1‖ → min.

We note that, if G is linearly dependent, P is not uniquely determined by the
above optimization problem.

Together, the PTER-framework yields the new coefficients

ÃQ := Q1 := P[Q,R−1
1 [E [Q,R0[GQ]]]].

The columns of Ã are obtained by substituting in unit vectors for the argument Q.
Then, any ineffective eigenvectors should be removed from Ã according to Theo-
rem 4.20/77 to obtain a genuine subdivision matrix A.

Theorem 7.24 (The PTER-framework works). The PTER-framework yields a
Ck,q

2 -algorithm (A,G) if |λi| < λ2 for i > 5.

Proof. Tracing subdivision of the ring x0 corresponding to a quadratic function
R[xm], one easily sees that the so constructed algorithm (A,G) has quadratic
precision and the assumptions of Theorem 7.23/147 are satisfied. �

7.5 Guided Subdivision

The framework in the previous section is inspired by and closely related to that of
Guided subdivision. Guided subdivision aims at controlling the shape by means of
a so-called guide surfaces, or guide for short. This guide g serves as an outline
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of the local shape of the subdivision surface x to be constructed, and is not changed
as subdivision proceeds. The sequence of rings will be defined such that consec-
utive rings join C2 and the reparametrization of xm approximates the guide on
λmΩ = λmϕ(S0

n). For a given regular Ck-embedding ϕ of S0
n with scale factor λ,

we expect
Rm[xm] ≈ g|λmΩ,

or equivalently
xm ≈ R−1

m [g].

Thus, the shape of the spline surface approximates the shape of the guide.
It is instructive to explain the concept of Guided subdivision by means of a con-

crete and actually quite simple setting. Just like the framework, it has many op-
tions, generalizations and extensions, such as algorithms for triangular patches or
for higher smoothness and precision.

Let {Σi}3
i=1 be the natural partition of Σ0 into three squares with side length

1/2, and choose smoothness k = 2 and bi-degree q = 7. Bi-degree 7 is not minimal,
but chosen to simplify the exposition of Hermite sampling below.

Due to the partition, for 0 ≤ � ≤ k = 2 and all j ∈ Zn, the functions

D�
1x

m(1/2, ·, j), D�
2x

m(·, 1/2, j)

defining the inner boundary of xm are polynomials of degree at most q. Hence, the
C2-contact conditions (4.8/62) imply that the corresponding functions

D�
1x

m+1(1, ·, j), D�
2x

m+1(·, 1, j),

at the outer boundary of xm+1 are also not piecewise polynomial but each a single
polynomial of degree q = 7 or less. Therefore, we define G̃ = [g̃1, . . . , g̃q̄] to be a
system of rings spanning the linear subspace of all C2-rings with bi-degree q = 7,
and for which

D�
1g̃�(1, ·, j), D�

2g̃�(·, 1, j), 0 ≤ � ≤ k = 2,

are polynomials of degree ≤ 7. Then a ring in Ck(S0
n, Rd, G̃) is uniquely defined

by its partial derivatives up to order ( q−1
2 , q−1

2 ) = (3, 3) at the 4n points

s1
j := (1/2, 0, j), s2

j := (1, 0, j), s3
j := (1/2, 1/2, j), s4

j := (1, 1, j), j ∈ Zn,
(7.29)

see Fig. 7.4/151. To formalize the construction of rings from partial derivatives, we
define the tensor-product Hermite operator H of order (3, 3). The operator H maps
a ring x0 to the (4 × 4)-matrix

H[x0] :=
[
Dα

1 Dβ
2 x0
]
(0,0)≤(α,β)≤(3,3)

of partial derivatives up to order (3, 3).
For simplicity, we consider polynomial guides only. To represent them in mono-

mial form, let
Mr := [mν,µ]ν+µ≤r, mν,µ(x, y) := xνyµ,
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Fig. 7.4 Illustration of (7.29/150): Hermite sampling at the marked points determines the rings.

span the space Pr of bivariate polynomials of total degree ≤ r. It is convenient to
define the algorithm by means of a diagonal matrix J and a corresponding system
F of eigenrings. Let F = [fν,µ]ν+µ≤r be the set of rings fν,µ ∈ Ck(S0

n, R, G̃)
interpolating the reparametrized monomials R−1

0 [mν,µ] up to order (3, 3) at the
points si

j ,

H[fν,µ −R−1
0 [mν,µ]

]
(si

j) = 0, i = 1, . . . , 4, j ∈ Zn.

According to the labelling of generating rings fν,µ, the vector of initial data has the
form P := [pν,µ]ν+µ≤r so that

x0 = FP =
r∑

ν=0

r−ν∑
µ=0

fν,µpν,µ.

Since the values of a monomial mν,µ on λmΩ and on λm+1Ω are related by a
scale factor λν+µ, and since this monomial corresponds to the rings fµ,ν , Guided
subdivision can be defined by a simple scaling process. We define the diagonal
matrix

J := diag
(
[λν+µ]ν+µ≤r]

)
to obtain the recursion

xm := FPm, Pm := JmP = [λm(ν+µ)pν,µ]ν+µ≤r.

Although this is needed neither for the analysis nor for an implementation, we
briefly discuss a possible conversion of the setup into a subdivision algorithm (A,G)
in its genuine form. Let Br = [bν,µ]ν+µ≤r denote the vector of bivariate Bernstein
polynomials of total degree ≤ r on the unit triangle. Because these Bernstein poly-
nomials are linearly independent, monomials can be represented as linear combi-
nations of them. That is, there exists an invertible matrix V with Mr = BrV and
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Br = MrV
−1. Then we define

G := FV −1, Q := V P, A := V JV −1,

to obtain
xm = FJmP = GAmQ.

Because the elements gν,µ of the generating system G are Hermite interpolants to
the Bernstein polynomials, they form a partition of unity. Further, A represents just
de Casteljau’s algorithm with scale factor λ,

Br(λξ)Q = Br(ξ)AQ, ξ = (x, y),

showing that the rows of A sum to 1.

Definition 7.25 (Guided C2,7
2,r -subdivision). For r ≥ 2, the subdivision algorithm

(A,G) with A and G as defined above is called Guided C2,7
2,r -subdivision. The poly-

nomial
g :=

⋃
m∈N0

λmΩ � ξ �→ Br(ξ)Q ∈ R
d

is called the guide to the initial data Q.

Although the minimal value r = 2 is impeccable from a theoretical point of view,
one typically chooses much larger values for r to define a space of rings which
covers a sufficiently rich variety of shapes. Let us discuss some implications of the
above definition.

First, the subdivision matrix A and the diagonal matrix J = V −1AV are similar
so that we can easily read off the common spectrum and see that the structure of the
leading eigenvalues is just right.

Second, because J is diagonal, we have

xm = FJmP =
r∑

ν=0

r−ν∑
µ=0

λm(ν+µ)mν,µpν,µ,

showing that xm interpolates the reparametrization of g|λmΩ ,

H[xm −R−1
m [g]

]
(si

j) =
r∑

ν=0

r−ν∑
µ=0

λm(ν+µ)pν,µH[fν,µ − R−1
0 mν,µ](si

j) = 0.

Hence, by the chain rule,

Dα
1 Dβ

2 xm(s1
j ) = 2α+βDα

1 Dβ
2 xm+1(s2

j )

Dα
1 Dβ

2 xm(s3
j ) = 2α+βDα

1 Dβ
2 xm+1(s4

j )

for (α, β) ≤ (3, 3). Since, for � ≤ 2,

D�
1x

m(1, ·, j), D�
2x

m(·, 1, j), D�
1x

m+1(2, ·, j), D�
2x

m+1(·, 2, j)
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are all polynomials of degree at most 7, we conclude that coincidence of partial
derivatives at the points si

j implies

D�
1x

m(1/2, ·, j) = 2�D�
1x

m+1(1, ·, j)
D�

2x
m(·, 1/2, j) = 2�D�

2x
m+1(·, 1, j).

This shows that consecutive rings join C2 so that Guided subdivision (A,G) is
indeed a C2-algorithm.

Third, the surfaces x and g have third-order contact at the points 2−msi
j . In

particular, the points

x(2−msi
j) = g(λmξi

j), ξi
j := ϕ(si

j)

and also the embedded Weingarten maps

Wx(2−msi
j) = Wg(λmξi

j)

coincide. This property accounts for our initial statement, saying that the image of
g yields a good approximation of the image of x. As one approaches the center,
the interpolation points become denser and denser so that the shapes are closer and
closer.

While the latter observation is relevant for a qualitative assessment of shape, the
next theorem verifies analytic smoothness.

Theorem 7.26 (Guided C2,7
2,r -subdivision works). For r ≥ 2, Guided C2,7

2,r -
subdivision (A,G) defines a C2,7

2 -algorithm.

Proof. For ν + µ ≤ 2, the ring R−1
0 [mν,µ] lies in C2(S0

n, R, G), and hence
fν,µ = R−1

0 [mν,µ]. Since J is a diagonal matrix, we can easily read off the non-zero
eigenvalues λν+µ, and see that the functions fν,µ are the corresponding eigenrings.
The eigenring to the dominant eigenvalue λ0 = λ0 = 1 is

f0,0 = R−1
0 [m0,0] = 1,

the eigenrings to the subdominant eigenvalue λ1 = λ2 = λ are

[f1,0, f0,1] = R−1
0 [m1,0,m0,1] = ϕ,

and the eigenrings to the subsubdominant eigenvalue λ3 = λ4 = λ5 = λ2 are

[f2,0, f1,1, f0,2] = R−1
0 [m2,0,m1,1,m0,2] = [f2

1,0, f1,0f0,1, f
2
0,1].

All other eigenvalues are, by construction, smaller so that the claim follows from
Theorem 7.16/143. �

Guided C2,7
r,2 -subdivision fits the pattern of the PTER-framework. The extension

process yields the guide g restricted to the domain λΩ, while the projecting step
into the appropriate space is defined via Hermite sampling at the points ξi

j .
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Chapter 8
Approximation and Linear Independence

In this chapter, we elaborate on two aspects of subdivision which, besides smooth-
ness, are very important for applications – convergence of sequences of so-called
proxy surfaces, such as control polyhedra, and linear independence of generating
splines.

In Sect. 8.1/157, we consider a sequence {x̌k}k of proxy surfaces to a subdivision
surface x. For example, piecewise linear proxy surfaces arise as ‘control polyhedra’
in whatever sence, or as a sequence of finer and finer piecewise linear interpolants
of x. The analysis to be developed is, however, sufficiently general to cover cases
where the proxy surfaces consist of non-linear pieces, for instance, when approx-
imating x by an increasing, but finite number of polynomial patches. We derive
upper bounds on the parametric and geometric distance between x̌k and x, which
are asymptotically sharp up to constants as k → ∞. Our results show that the rate
of convergence of the geometric distance, which is crucial for applications in Com-
puter Graphics, depends on the subsubdominant eigenvalue µ.

In Sect. 8.2/169, we consider the question of local and global linear independence
of the generating splines B = [b0, . . . , b�̄]. This topic is closely related to the ex-
istence and uniqueness of solutions of approximation problems in spaces of sub-
division surfaces, such as interpolation or fairing. We show that local linear inde-
pendence cannot be expected if the valence n is high, and that even global linear
independence is lost in special situation, like Catmull–Clark subdivision for a con-
trol net with the combinatorial structure of a cube.

8.1 Proxy Splines

Much of the appeal of subdivision lies in the intuitive refinability of a faceted
proxy representation that outlines the limit surface ever more closely (see e.g.
Fig. 1.1/2): for applications such as rendering on the computer a piecewise linear
polyhedron (Fig. 8.1/158, left) is displayed in place of the limit surface (Fig. 8.1/158,
right). Evidently, too few subdivision steps result in a polyhedron that visibly lacks

157
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Fig. 8.1 Illustration of approximation by a proxy surface: How many steps k of control mesh
refinement are required to ensure an approximation of the subdivision surface with a given
accuracy?

smoothness, while too many steps are costly due to exponential growth of the num-
ber of facets under uniform refinement. For example, estimating the number to be
k = 10 when the sharp estimate is k = 5 means computing and processing millions
instead of thousands of facets for each original facet.

The (maximal) distance between the polyhedron and the limit surface can be
measured numerically, after each refinement step using bounds on the generating
rings. For many applications, however, it is of interest to obtain tight a priori bounds
to allocate resources or to guide adaptivity.

In applications, a control polyhedron of a subdivision surface x is a piecewise
linear or bi-linear surface that interpolates the control points and thereby approxi-
mates x. The following definition addresses this approximation as a special case of
a much larger class of proxy surfaces. Other instances of proxy surfaces include the
piecewise linear or bi-linear interpolant of the subdivision surface x, or the approx-
imation by an increasing, but finite number of polynomial patches.

Let us consider a subdivision surface x = BQ ∈ C0(Sn, R3). Then a se-
quence x̌k = B̌kQ of proxy surfaces is defined by vectors B̌k = [b̌0,k, . . . , b̌�̄,k]
of generating proxy splines b̌�,k ∈ C0(Sn, R). Typically, the functions b̌� are piece-
wise linear or bi-linear, but this is not assumed in what follows. The index k is
called the level of the proxy surface and may be thought of as the ‘budget’ al-
located for the approximation. As k increases, the tessellation of the splines b̌�,k

becomes finer and finer. Therefore, incrementing k is also called refinement of
proxy surfaces. Typically, under refinement, x̌k rapidly approaches x. Therefore,
in applications such as rendering of surfaces, x is frequently not evaluated point-
wise, but replaced by the faceted surface x̌k for some modest value of the level
k. When represented in subdivision form (4.6/62), we denote the rings of the spline
x̌k by

x̌m
k := B̌m

k Q ∈ C0(S0
n, Rd).

The following three properties are typical for sequences of control polyhedra, and
will serve to define more general systems of generating proxy splines:
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• The generating proxy splines form a partition of unity,

�̄∑
�=0

b̌�,k = 1, k ∈ N0.

• The (m + 1)-st ring x̌m+1
k+1 of level k + 1 equals the mth ring of level k corre-

sponding to iterated coefficients AQ, i.e.,

x̌m+1
k+1 = B̌m+1

k+1 Q = B̌m
k AQ, m, k ∈ N0.

• For increasing level k, i.e. repeated refinement, the outermost ring x̌0
k converges

to x0 with respect to the maximal Euclidean distance according to

‖x0 − x̌0
k‖∞ ≤ cqk|Q|

for constants c > 0, q ∈ (0, 1), and some semi-norm | · |. Estimates of that type
are well understood, and in particular, c and q can be determined reliably. In the
case of binary refinement, the typical value of q is q = 1/4. The semi-norm | · |
typically involves certain first or second order differences of coefficients.

Before we proceed, we introduce basic notation required here. For a vector H =
[h0, . . . , h�̄] of splines or rings, let

‖H‖∞ :=
�̄∑

�=0

‖h�‖∞

denote the sum of sup-norms on the respective domain. For vectors R = [r0; . . . ; r�]
of points in R

d, and 0 ≤ i ≤ �̄, we define the semi-norm

|R|i := max
i≤�≤�̄

‖r�‖

as the maximal Euclidean norm of ri, . . . , r�̄. If the first i entries of H vanish, i.e.,
h0 = · · · = hi−1 = 0, then the estimate

‖HR‖∞ ≤ ‖H‖∞ |R|i (8.1)

applies. Further, if M is a square matrix with row-sum norm ‖M‖, then the vector
of functions HM is bounded by

‖HM‖∞ ≤ ‖H‖∞ ‖M‖. (8.2)

Now, we formalize the notion of a proxy spline and show both lower and upper
bounds on its convergence to the corresponding subdivision surface. As the name in-
dicates, proxy splines have the same structure as the splines underlying subdivision.

Definition 8.1 (Proxy spline). The splines B̌k = [b̌0,k, . . . , b̌�̄,k], b̌�,k ∈ C0(Sn, R),
form a sequence of generating proxy splines of the standard subdivision algorithm
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(A,G) if there exist constants cB > 0 and q ∈ (0, 1) independent of k so that

�̄∑
�=0

b̌�,k = 1, B̌m+1
k+1 = B̌m

k A, ‖B0 − B̌0
k‖∞ ≤ cBqk (8.3)

for all m, k ∈ N0. Then x̌k := B̌kQ is a level k proxy spline of the spline x = BQ.
Further, we say that the sequence B̌k has a uniformly bounded gradient, if all rings
b̌0
�,k consist of finitely many differentiable pieces, and there exists a constant c′ in-

dependent of � and k such that ‖Db̌0
�,k‖∞ ≤ c′, wherever Db̌0

�,k is defined.

The third condition in (8.3/160) says that the generating rings G = B0 are approxi-
mated with order qk by the generating proxy rings

Ǧk := B̌0
k

as k tends to infinity. The typical value for binary refinement is q = 1/4. The
condition concerning uniform boundedness of gradients is satisfied if, for instance,
the gradients of generating proxy rings are converging uniformly,

‖DG − DǦk‖∞ → 0.

This property is typically satisfied for control polyhedra, and also for piecewise
linear interpolants.

Analogous to the eigenrings F := GV , we define proxy eigenrings F̌k, eigen-
splines E, and proxy eigensplines Ěk by

F̌k := ǦkV, E := BV, Ěk := B̌kV,

respectively, where V is the matrix of eigenvectors of A yielding the Jordan decom-
position A = V JV −1. Hence, with the eigencoefficients P = V −1Q,

x̌m
k = F̌kJmP, x = EP, x̌k = B̌kP.

By the second relation in (8.3/160), we can express the ring x̌m
k either in terms of some

proxy on the initial ring, or in terms of the initial proxy of some ring, depending on
k being larger or smaller than m. More precisely,

x̌m
k =

{
B̌0

k−mAmQ = Ě0
k−mJmP if m ≤ k

B̌m−k
0 Ak Q = Ěm−k

0 Jk P if m ≥ k.
(8.4)

First, we consider the parametric deviation of a spline x from its proxy x̌k,

dk := x − x̌k,

and derive a bound on the maximum of the Euclidean norm,

‖dk‖∞ := max
s∈Sn

‖dk(s)‖.
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This bound is defined in terms of the seminorm |P|1 in the space of eigencoeffi-
cients, and the constants

cE := ‖E − Ě0‖∞, ck
F := q−k ‖F − F̌k‖∞.

By (8.2/159) and the third property in (8.3/160), we have ‖F − F̌k‖∞ = ‖(B0 −
B̌0

k)V ‖∞ ≤ cBqk ‖V ‖ showing that the sequence ck
F is bounded by

cF := sup
k

ck
F ≤ cB ‖V ‖,

where cB is the constant defined in (8.3/160). While being crucial for the asymptotic
behavior, this estimate of the ck

F is far from being tight. Hence, in applications, these
constants, or at least close upper bounds thereof, should be derived independently
for some values of k.

Theorem 8.2 (Parametric distance to a proxy spline). The parametric distance
dk between the spline x = BQ and the proxy spline x̌k = B̌kQ is bounded by

‖dk‖∞ ≤ max
{

max
m≤k

ck−m
F qk−m |JmP|1, cE |JkP|1

}
. (8.5)

In particular, there exists a constant c such that

‖dk‖∞ ≤ c max{λk, qk} |P|1. (8.6)

Proof. Since B̌k forms a partition of unity and the dominant eigenvector v0 consists
of all ones,

ě0,k = B̌kv0 = 1 = Bv0 = e0. (8.7)

Hence, the first component of E − Ěk and also of F − F̌k always vanishes. With
dm

k = (Bm − B̌m
k )Q denoting the rings of dk,

‖dk‖∞ = sup
m∈N0

‖dm
k ‖∞.

Following (8.4/160), we distinguish two cases: For the outer rings with indices m ≤ k,
the approximation is governed by the refinement of the proxy rings, while for the
rings close to the central point with indices m ≥ k, the convergence properties of
subdivision are predominant.

If m ≤ k then, using Bm = GAm and the estimate (8.1/159), we obtain the first
maximand in (8.5/161),

‖dm
k ‖∞ = ‖(G − Ǧk−m)AmQ‖∞ = ‖(F − F̌k−m)JmP‖∞

≤ ‖F − F̌k−m‖∞ |JmP|1 ≤ ck−m
F qk−m |JmP|1.

To also verify (8.6/161) for m ≤ k, we partition J into blocks Jr as in Sect. 4.6/72, and
obtain

|JmP|1 ≤ max
1≤r≤r̄

‖Jm
r ‖∞ |P|1. (8.8)
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For the subdominant blocks, the row-sum norm is ‖Jm
1 ‖ = ‖Jm

2 ‖ = λm, while
the remaining ones correspond to eigenvalues with modulus < λ. Hence, there ex-
ists a constant c1

J so that ‖Jm
r ‖∞ ≤ c1

Jλm for all r ≥ 1. Since ck−m
F ≤ cF and

qk−mλm ≤ max{qk, λk}, (8.6/161) follows for m ≤ k:

‖dm
k ‖∞ ≤ cF c1

J qk−mλm |P|1 ≤ cF c1
J max{qk, λk} |P|1.

If m ≥ k then, using (8.7/161) and (8.1/159) again, we obtain the second maximand in
(8.5/161),

‖dm
k ‖∞ = ‖(Bm−k − B̌m−k

0 )AkQ‖∞ = ‖(Em−k − Ěm−k
0 )JkP‖∞

≤ ‖E − Ě0‖∞ |JkP|1 = cE |JkP|1.

Combining the results of the two cases, we obtain (8.5/161). Using the bound (8.8/161)
on |JkP|1, we also obtain

‖dm
k ‖∞ ≤ cEc1

J λk |P|1.

and prove (8.6/161) with c := max{cF c1
J , cEc1

J}. �

Let us briefly discuss the result. The first maximand in (8.5/161) applies to the outer
rings of the spline. For fixed m, the term qk−m describes the convergence in the
regular setting as k → ∞. The second maximand applies to the inner rings, and
in particular to the situation near the center. For its verification, we estimated the
deviation Em−k−Ěm−k

0 on the (m−k)th ring by the constant cE , which is valid for
all rings. When approaching the center, i.e., for m � k, this is pessimistic. Refined
estimates for individual rings dm

k can be derived, but here, we are only interested
in the maximum over all rings. The second estimate (8.6/161) is in general also not
sufficiently tight for applications but is primarily intended to provide insight into
the asymptotic decay of the bound as k → ∞. For typical values like λ = 1/2 and
q = 1/4, the predicted convergence rate 1/2k is much slower than the qk-behavior
of the proxy surface in the regular setting. The following example shows that, in
general, this reduced order of convergence is not an overestimation, but accurately
describes the actual deviation.

Example 8.3 (Characteristic proxy spline).According to Definition 5.4/85, the char-
acteristic spline

χ := B[v1, v2] = BQ′

of the standard algorithm (A,G) is the planar spline corresponding to the subdomi-
nant eigenvectors Q′ := [v1, v2]. By (5.5/85), its basic scaling property is

χ(s) = λ−mχ(2−ms). (8.9)

The characteristic proxy splines and the characteristic proxy rings are defined by

χ̌k := [ě1,k, ě2,k] = B̌kQ′, ψ̌k := [f̌1,k, f̌2,k] = ǦkQ′. (8.10)
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Denote the deviation by

δk := χ − χ̌k = (B − B̌k)Q′.

For k ≥ m, the deviation on ring m is

δm
k = (Bm − B̌m

k )Q′ = (B0 − B̌0
k−m)AkQ′

= λk(G − Ǧk−m)Q′ = λk(ψ − ψ̌k−m).

The vector P′ = [δ1, δ2] of eigencoefficients consists of two unit vectors and has
semi-norm |P′|1 = 1. Hence, (8.6/161) yields the estimate

‖χ − χ̌k‖ ≤ cmax{λk, qk}. (8.11)

In fact, for k = m,
δk

k = λk(ψ − ψ̌0) = λkδ0
0.

So, unless the characteristic proxy ring ψ̌0 reproduces the characteristic ring ψ, we
have δ0

0 = ψ − ψ̌0 �= 0 and ‖δk‖ converges no faster than λk.
On the other hand, for a fixed index m and level k tending to infinity, the con-

vergence cannot be faster than qk given in Definition 8.1/159. This may not be a tight
estimate in general, but for q < λ the estimate

‖δm
k ‖∞ = λm ‖(F − F̌k−m)P′‖∞ ≤ λm cF qk−m (8.12)

establishes a much faster decay than λk, anyway. �

If x ∈ C0(Sn, R3) is a spline surface, then in many applications the parametric
deviation from x̌k is not important. Instead, the geometric deviation is used to judge
the quality of approximation. Among the various possibilities to define that quantity,
we choose the Hausdorff distance

d(x, x̌k) := max
{
max
s∈Sn

min
sk∈Sn

‖x(s) − x̌k(sk)‖,
max
sk∈Sn

min
s∈Sn

‖x(s) − x̌k(sk)‖}.
Obviously, d(x, x̌k) ≤ ‖dk‖∞ so that we can expect tighter bounds than before.

Given a parameter s, it is typically very difficult to find sk such that ‖x(s) −
x̌k(sk)‖ is actually minimized, and vice versa. Instead, we specify a fixed sequence
of relations sk := rk(s), define the reparametrized proxy surface x̄ := x̌k ◦ rk, and
estimate

d(x, x̌k) ≤ ‖d̄k‖∞, d̄k := x − x̄k.

The reparametrizations rk are chosen so that the convergence rate near the center is
raised from λk to µk, where µ is the subsubdominant eigenvalue of the algorithm.

To avoid discussing degenerate cases, such as the image of the characteristic
proxy spline χ̌k shrunk to a point, we make the following assumption: there exists
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m̄ ∈ N0 such that

λmχ(Sn) ⊂ χ̌k(Sn) for all k ∈ N0 and m ≥ m̄.

That is, the image of all rings χm of the characteristic spline χ = E[v1, v2] with
index m ≥ m̄ is contained in the image of all characteristic proxy surfaces. In most
applications, the inclusion holds already for m̄ = 0 or m̄ = 1.

We say that the parameter s ∈ Sn has ring index m if 2ms ∈ S0
n so that x(s) =

xm(2ms). For a parameter s with ring index m ≥ m̄, we have 2m̄s ∈ Sn. Then,
depending on the level k ∈ N0, there exists sk ∈ Sn with

χ̌k(sk) = λm̄χ(2m̄s) = χ(s).

If χ̌k is not injective, then sk is not necessarily unique. However, by arbitrary choice,
we can define a (possibly discontinuous) function rk : Sn → Sn that maps s to a
parameter sk satisfying the above equation. If s lies in a ring with index m < m̄,
we simply set rk(s) = s. This yields the identity

χ̄k(s) := χ̌k

(
rk(s)

)
=

{
χ(s) if 2m̄s ∈ Sn

χ̌k(s) if 2m̄s �∈ Sn,
(8.13)

which characterizes rk. We denote the reparametrized proxies of eigensplines by

Ēk := Ěk ◦ rk,

and define the constants

c̄E := ‖E − Ē0‖∞, c̄k
F := q−k‖Em̄ − Ēm̄

k ‖∞.

If m̄ = 0, as in many applications, then e0
� = f� are the eigenrings and f̄�,k := ē0

�,0

their reparametrized level k proxies. Proving the boundedness of the sequence of
constants c̄k

F is the main challenge in the reparametrized setting since it requires
verifying the decay of the reparametrized distance ‖Em̄ − Ēm̄

k ‖∞ by at least qk

even when the parameterization is different from the one used to define q.

Lemma 8.4 (Boundedness of c̄k
F ). If the sequence B̌k of generating proxy splines

has uniformly bounded gradient, then the sequence c̄k
F is bounded, i.e.,

c̄F := sup
k

c̄k
F < ∞.

Proof. We have

c̄k
F = q−k‖Em̄ − Ēm̄

k ‖∞ ≤ q−k‖Em̄ − Ěm̄
k ‖∞ + q−k‖Ěm̄

k − Ēm̄
k ‖∞

and may assume k ≥ m̄ since m̄ is fixed. The first summand is bounded since
Em̄ − Ěm̄

k = (E0 − Ě0
k−m̄)Jm̄ = (F − F̌k−m̄)Jm̄, and hence

q−k‖Em̄ − Ěm̄
k ‖∞ = q−k‖(F − F̌k−m̄)Jm̄‖∞ ≤ cF ‖Jm̄‖.
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To estimate the second summand, we consider an arbitrary parameter s ∈ Sn with
ring index m̄ and denote the index of the corresponding parameter sk := rk(s) by
mk so that

s0 := 2m̄s ∈ S0
n, and s0

k := 2mk ∈ S0
n.

We will show that there exist constants m∗ and cL so that for each component of
the summand and any s0 ∈ S0

n,

q−k|ěm̄
�,k(s0) − ēm̄

�,k(s0)| ≤ cLcF q−m∗ . (8.14)

First, we show that for sufficiently large k the index mk is bounded by some number
m∗ that is independent of s. By definition of rk (8.13/164) and by (8.11/163), we obtain
the upper bound

‖χ(s) − χ(sk)‖∞ = ‖χ̌k(sk) − χ(sk)‖∞ ≤ cmax{λk, qk}.

To obtain a lower bound, we observe that, by (8.9/162),

χ(s) − χ(sk) = λm̄ψ(s0) − λmkψ(s0
k).

Also the image of ψ is compact and does not contain the origin, so that there exist
constants r,R > 0 with r ≤ ‖ψ(̃s)‖ ≤ R for all s̃ ∈ S0

n. Hence,

‖χ(s) − χ(sk)‖∞ ≥ ‖λm̄ψ(s0)‖∞ − ‖λmkψ(s0
k)‖∞ ≥ rλm̄ − Rλmk .

Combining the upper and lower bound on ‖χ(s) − χ(sk)‖∞, we obtain

rλm̄ − Rλmk ≤ cmax{λk, qk}.

There exists k∗ ∈ N such that cmax{λk, qk} ≤ rλm̄/2 for all k ≥ k∗. Hence,

Rλmk ≥ rλm̄/2, k ≥ k∗,

shows that mk cannot be arbitrarily large. More precisely, there exists a constant m∗
independent of s with mk ≤ m∗ for all k ≥ k∗.

We now derive the constant cL of uniform Lipschitz continuity of the functions
Ěk ◦ χ−1 on a certain part of their domain. Let χ∗ and Ě∗,k = [ě∗,0,k, . . . , ě∗,�̄,k]
denote the restriction of χ and Ěk to arguments with ring index m ≤ m∗, respec-
tively. For level k ≥ m∗ and a parameter s′ with ring index m ≤ m∗, we obtain
using the second property of (8.3/160)

DĚ∗,k(s′) = DĚm
∗,k(2ms′) = DB̌0

∗,k(2ms′)AmV.

By assumption, the functions in DB̌0
∗,k are uniformly bounded, and AmV is

one out of finitely many matrices since m ≤ m∗. So we conclude that Ě∗,k

has uniformly bounded gradient. Further, χ−1
∗ is a continuous and piecewise

differentiable function with bounded Jacobian. From the latter two observations
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it follows that the functions Ě∗,k ◦ χ−1
∗ are uniformly Lipschitz continu-

ous in the sense that there exists a constant cL independent of � and k
with ∣∣ě∗,�,k(χ−1

∗ (σ)) − ě∗,�,k(χ−1
∗ (σ′))

∣∣ ≤ cL ‖σ − σ′‖∞
for all σ,σ′ in the image of χ∗.

We now have the constants needed to establish (8.14/165). For a single component,
we find

|ěm̄
�,k(s0) − ēm̄

�,k(s0)| = |ě∗,�,k(s) − ě∗,�,k(sk)|
= |ě∗,�,k(χ−1

∗ (χ∗(s))) − ě∗,�,k(χ−1
∗ (χ∗(sk)))|

≤ cL ‖χ∗(s) − χ∗(sk)‖∞
= cL ‖χ(s) − χ(sk)‖∞.

By (8.13/164), we can replace χ(s) by χ̌k(sk), and the estimate (8.12/163) yields

‖χ(s) − χ(sk)‖∞ = ‖χ̌k(sk) − χ(sk)‖∞ ≤ cF qk−mk ≤ cF qk−m∗ .

Together, we have (8.14/165):

q−k|ěm̄
�,k(s0) − ēm̄

�,k(s0)| ≤ cLcF q−m∗

for all s0 ∈ S0
n. Summation of the respective maxima over � yields the desired

bound

q−k‖Ěm̄
k − Ēm̄

k ‖∞ ≤ (�̄ + 1) cLcF q−m∗ . �

Now, we are prepared to estimate

d̄k = (B − B̌k ◦ rk)Q = (E − Ēk)P,

which, in turn, is an upper bound on the geometric deviation d(x, x̌k).

Theorem 8.5 (Geometric distance to proxy spline). The geometric distance
d(x̌k,x) between the spline surface x = BQ and the proxy surface x̌k = B̌kQ
is bounded by

d(x, x̌k) ≤ min{‖dk‖∞, ‖d̄k‖∞},
where

‖d̄k‖∞ ≤ max
{

max
0≤m<m̄

ck−m
F qk−m |JmP|1,

max
m̄≤m≤k+m̄

c̄k−m+m̄
F qk−m+m̄ |Jm−m̄P|3, c̄E |JkP|3,

}
.

(8.15)
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In particular, if the sequence B̌k of generating proxy splines has uniformly bounded
gradient, there exists a constant c̄ such that

‖d̄k‖∞ ≤ c̄ max{µk, qk} |P|1. (8.16)

Proof. With d̄m
k = (Bm − B̄m

k )Q denoting the rings composing d̄k, it is

‖d̄k‖∞ = sup
m∈N0

‖d̄m
k ‖∞.

The three maximands in (8.15/166) refer to bounds on d̄m
k for m varying in three

different intervals.
For m < m̄, r is the identity so that d̄m

k and the parametric difference dm
k coin-

cide. The estimates of Theorem 8.2/161 apply and yield the first maximand. With the
estimate ‖JmP‖∞ ≤ c1

Jλm|P|1, derived in the proof of Theorem 8.2/161, we obtain

max
m≤m̄

ck−m
F qk−m |JmP|1 ≤ cF c1

J max
m≤m̄

(qk−mλm) |P|1
≤ (cF c1

Jq−m̄)qk |P|1.

To estimate the other two cases, we note that, as before, the first component of E
and Ēk coincides,

ē0,k = ě0,k ◦ rk = 1 ◦ rk = 1 = e0.

But moreover, the reparametrization (8.13/164) is designed so that the next two com-
ponents coincide as well for rings with index m ≥ m̄,

[ēm
1,k, ēm

2,k] =
(
[ě1,k, ě2,k] ◦ rk

)m = (χ̌k ◦ rk)m = χm = [em
1 , em

2 ].

In other words, the first three components of Em − Ēm
k vanish. The remaining

part of the proof follows exactly the pattern developed in the parametric case. If
m̄ ≤ m ≤ k + m̄ then, abbreviating m′ := m − m̄,

‖d̄m
k ‖∞ = ‖(Em̄ − Ēm̄

k−m′)Jm′
P‖∞ ≤ c̄k−m′

F qk−m′ |Jm′
P|3,

which is the second maximand in (8.15/166). The Jordan blocks J3, . . . , J�̄ have ei-
ther modulus µ and dimension 1, or they have modulus < µ. Hence, there exists a
constant c3

J with ‖Jm
r ‖ ≤ c3

Jµm for all r ≥ 3, and we find

‖d̄m
k ‖∞ ≤ c̄F c3

J qk−m′
µm′ |P|3 ≤ c̄F c3

J max{µk, qk} |P|3.

If m ≥ k + m̄ then

‖d̄m
k ‖∞ = ‖(Em−k − Ēm−k

0 )JkP‖∞ ≤ c̄E |JkP|3
yields the third maximand in (8.15/166). Further, in this case,

‖d̄m
k ‖∞ ≤ c̄Ec3

J µk |P|3.
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Combining the results of the three cases, we obtain (8.15/166) and, with

c̄ := max{cF c1
Jq−m̄, cF c3

J , c̄Ec3
J}

and with |P|3 ≤ |P|1 also (8.16/167). �

The first two maximands in (8.15/166) show that convergence on rings with fixed
index m is governed by the factor qk, as before. However, due the appropriate choice
of the reparametrization, the decay near the central point is now of order µk as k →
∞. Typically, for binary refinement, q = µ = 1/4 so that quadratic convergence
of the regular setting also applies for proxies of subdivision surfaces. If, as in many
applications, m̄ = 0, then the bound given by the first maximand does not apply,
and the factor |P|1 in (8.16/167) can be replaced by |P|3.

By means of a spline surface with eigencoefficients p1 = [1, 0, 0], p2 =
[0, 1, 0], p3 = [0, 0, 1] and p� = [0, 0, 0] else, one can show that, in general, ‖d̄k‖
cannot decay faster than µk. The example below confirms that the same is true even
for the Hausdorff distance.
Example 8.6 (Hausdorff distance of Catmull–Clark control net).Let us consider the
Catmull–Clark algorithm according to Sect. 6.1/109 for n = 3 with modified weights

α = 5/8, β = 1/2, γ = −1/8.

The leading eigenvalues are

λ0 = 1, λ = λ1
1 = λ2

1 =
9 +

√
17

32
≈ 0.41, µ = λ0

1 =
3
8

= 0.375.

In a vicinity of the center, the proxy surface x̌k is given by the piecewise bilin-
ear interpolant of the control points Qk at level k. Let us consider a spline surface
x = [χ, z] = B[v1, v2, q3], where the first two coordinates coincide with the charac-
teristic spline, and the third coordinate z corresponds do initial data with the central
control point set to 1, and all other 0. For the technical reasons described earlier, the
central control point appears in threefold, i.e., q0,1 = q1,1 = q2,1 = [0, 0, 1] (see
Fig. 6.3/111). The submatrix Â0,0

0 has the eigenvalues λ0 = 0, µ = 3/8 and 0. Using
the Jordan form, one can compute its powers and show that the central control point
q̃k at level k ≥ 1 is

qk
0,1 = qk

1,1 = qk
2,1 := q̃k, q̃k := [0, 0, 1 + µk/3].

These points are converging to the central point

xc = lim
k→∞

q̃k = [0, 0, 1].

To determine a lower bound on the Hausdorff distance d(x, x̌k), we consider the
point q̃k = x̌k(0) on x̌k. We have

d(x, x̌k) ≥ min
s∈Sn

‖x(s) − q̃k‖,
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and claim that the minimum is attained for s = 0, i.e.,

min
s∈Sn

‖x(s) − q̃k‖ = ‖xc − q̃k‖ = µk/3.

To show this, we note that the third component z of x attains its maximum at the
center, and this value is less than the third component 1 + µk of q̃k. Hence, the
moduli of all three components of xc− q̃k are minimized simultaneously for s = 0.
Thus,

d(x, x̌k) ≥ µk/3

shows that the order of convergence of the Hausdorff distance cannot exceed the
bound given in the theorem. �

8.2 Local and Global Linear Independence

In this section, we take a closer look at the independence of generating splines.
This topic is less important for geometric properties of subdivision surfaces, but is
crucial for the existence and uniqueness of solutions of interpolation or approxi-
mation problems in subdivision spaces. So far, we know by Lemma 4.25/78 that the
eigensplines corresponding to non-zero eigenvalues are linearly independent on the
domain Sn if there are no ineffective eigenvectors. Beyond that observation, a local
and a global aspect of the problem are relevant:

First, we discuss local linear independence. Here, we consider subsets S̄ ⊂ Sn

with an non-empty interior and ask whether all generating splines with support on
S̄ are linearly independent when restricted to that subset. Surprisingly, the answer
may differ from that for B-splines, even when the subdivision surfaces are derived
from them.

Second, we briefly comment on the situation when stationary subdivision, repre-
sented by the powers of A, is preceded by a few initial steps which differ from that
rule to account for, say, neighboring extraordinary vertices. When starting from a
global control net, corresponding to a global subdivision surface defined on a super-
set S ⊃ Sn of the n-cell domain Sn, the initial steps split the configuration until the
local, stationary rules are applicable. While the finitely many initial steps are typ-
ically irrelevant for smoothness properties, they are essential for shape properties,
and they can also lead to a globally non-injective relation between the initial control
points and the resulting surfaces.

Let us start with defining local linear dependence:

Definition 8.7 (Local linear dependence). Let B be the sequence of generating
splines of a subdivision algorithm. Given a subset S̄ ⊂ Sn, we denote by

B|S̄ :=
{
b�|S̄ : b� �= 0 on S̄

}
the restriction of all non-vanishing generating splines to this subset. The generating
splines B are called locally linearly dependent, if there exists a subset S̄ ⊂ Sn with
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non-empty interior such that the functions BS̄ are linearly dependent, i.e.,

#BS̄ > rankBS̄.

If no such subset S̄ exists, then B is called locally linearly independent.

Local linear independence is neither a stronger nor a weaker property than linear
dependence in the usual sense. As a simple univariate example, consider the system
[u, |u|], u ∈ [−1, 1]. It is linearly independent, but locally linearly dependent since
we may choose S̄ = [0, 1]. By contrast, the system [0, u] is linearly dependent, but
locally linearly independent since the 0-function is disregarded.

If the generating rings G are linearly dependent, then the generating splines B are
locally linearly dependent. To show this, we may simply choose S̄ := S0

n. However,
if G is linearly independent, B can still be locally linearly dependent. To discuss
this point, we introduce the following terms:

• A generating spline b� covers the central knot 0, if 0 is an interior point of its
support. The set of all such b� is denoted by

B0 := {b� : b� covers 0}.

• The local rank loc G of G is defined as the minimal rank that can be obtained
when restricting G to an open subset S̄ ⊂ S0

n,

loc G := min
{
rankG|S̄ : S̄ is open in S0

n

}
.

For instance, for the Catmull–Clark algorithm, the number of generating splines
covering the central knot is #B0 = 2n + 1. The generating rings are piecewise bi-
cubic so that we have the local rank loc G = 4×4 = 16. For n > 7, the first number
exceeds the second one so that, as shown below, local linear independence is lost.
This situation is typical for many families of algorithms: The number of generating
splines covering the central knot grows with n, while the local rank does not change
with n. For symmetric algorithms, this inevitably leads to local linear dependence
for sufficiently large n.

Theorem 8.8 (Local linear dependence). Consider a subdivision algorithm (A,
G) with generating splines B according to Definition 4.12/68. If the number of gen-
erating splines covering 0 exceeds the local rank,

#B0 > loc G,

then B is locally linearly dependent. In particular, for a shift invariant standard
algorithm according to Definition 5.13/96, B is locally linearly dependent if

n > loc G.

Proof. The intersection of the finitely many generating splines covering the central
knot contains a neighborhood of the central knot. Hence, there exists m ∈ N such
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that
Sm

n ⊂
⋂

b�∈B0

supp b�.

Let S̄ ⊂ S0
n be a subset with loc G = rankG|S̄, and define S̄m := 2−mS̄. We con-

sider the set BS̄m of generating splines that do not vanish on S̄m. On one hand,
because b�(2−ms) = g�(s) for s ∈ S̄, we have rankBS̄m = loc G. On the other
hand, because S̄m ⊂ Sm

n , none of the functions in B0 vanishes on S̄m. Hence, BS̄m

contains at least as many functions as B0, and

#BS̄m ≥ #B0 > loc G = rankBS̄m

shows that BS̄m is linearly dependent.
To prove the second assertion, we consider initial data Q[�] := [v1, v2, δ�], where

v1, v2 are the subdominant eigenvectors of A, and δ� is the �th unit vector. The
corresponding subdivision surface x[�] = BQ[�] is normal continuous with central
normal nc[�], and its third component is b� = Bδ�. Let us assume that none of these
generating splines is covering the central knot. Then nc[�] = [0, 0,±1] for all �.
Hence, for the initial data Q = [v1, v2, vz] and any choice of the third component
vz , we equally have the central normal nc = [0, 0,±1] for the subdivision surface
x = BQ. In particular, nc = [0, 0,±1] for Q = [v1, v2, v1]. This is a contradiction
because here, the subdominant eigencoefficients are p1 = [1, 0, 1],p2 = [0, 1, 0]
so that, by Theorem 5.6/87, the central normal is nc = [−1, 0, 1]/

√
2. Hence, there

must exist a generating spline b� covering the central knot. Following Sect. 5.4/95,
δ�′ := Siδ� is also a unit vector for all powers i ∈ Zn of the shift matrix S. The
corresponding generating spline b�′ has segments

b�′(·, j) = b�(·, j − i), i, j ∈ Zn.

Hence, b�′ is covering the central knot, too. That way, for i running from 0 to n− 1,
we obtain n different generating splines which belong to B0, implying #B0 ≥ n.

�

According to the theorem, families of subdivision algorithms generating piecewise
polynomial surfaces of fixed degree reveal local linear dependence of the generat-
ing splines for large n. More precisely, for Ck,q

r -algorithms as introduced in Defi-
nition 7.17/143, local linear independence is certainly lost if n > loc G = (q + 1)2.
The actual bound, however, is typically much lower. As an example, we examine
the Catmull–Clark algorithm and derive a sequence of sharper and sharper results
using the arguments provided above.

Example 8.9 (Local linear dependence for the Catmull–Clark algorithm). We
consider the Catmull–Clark algorithm with control points labelled as shown in
Fig. 6.3/111. Here, we have q = 3 and loc G = 16.

• According to the second condition of Theorem 8.8/170, we have local linear de-
pendence for n > 16.
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Fig. 8.2 Illustration of Example 8.9/171, fourth item: (left) The nonzero input to a Catmull–Clark
mesh with isolated node of valence n = 3 results (right) in the zero function on the shaded area.

• The generating splines corresponding to the central control point q̃0 and the
innermost ring qj,1,qj,2 cover the central knot. Hence, according to the sec-
ond condition of Theorem 8.8/170, we have local linear dependence for #B0 =
2n + 1 > 16, i.e., for n > 7.

• When considering the subset S̄ := [2−m−1, 2−m]2 × {j} ⊂ Sm
n ⊂ Sn for a

sufficiently large value of m, the set BS̄ consists of the the functions in B0 and
seven further generating splines. Because rankBS̄ = loc G = 16, we have local
linear dependence for #BS̄ = 2n + 8 > 16, i.e., for n > 4.

• For the regular case n = 4, the generating splines coincide with standard bicubic
tensor product B-splines, which are known to be locally linearly independent.
Hence, it remains to consider the case n = 3. Here, the counting arguments
used above yield no indication for local linear dependence. However, as can be
verified by explicit computation, the generating splines fail to be locally linearly
independent even here. In Fig. 8.2/172, we see an arrangement of control points
which yields vanishing segments near the central point.

Summarizing, the generating splines of the Catmull–Clark algorithm are locally
linearly dependent unless n = 4. �

The example shows that for low valences the problem of local linear dependence
may be subtle and can be settled only by an analysis which is specific to the given
algorithm, [PW06].

We conclude with some remarks on global linear independence. So far, our analy-
sis was geared to the case that the same subdivision rules apply at each step. How-
ever, for a given global mesh of control points, it might be necessary to apply a
few special initial steps with different rules. Without going into the details, we are
facing the situation that the initial data Q, as used for stationary subdivision, are
computed from some vector Q� of primal data forming the input mesh. For these
primal data, no special connectivity, or a block structure, or the like is assumed. For
a linear algorithm, Q and Q� are related by some matrix A�, that is not necessarily
square,

Q = A�Q�.
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Fig. 8.3 Illustration of Example 8.10/173: Choosing any nonzero number for + and its negative for
− results in the zero function. By the refinement stencils of Fig. 6.2/110, new face and edge nodes
have value 0. For a vertex, α− 3β +3γ = (5− 6+1)/12 = 0, too, so that all coefficients are zero
after one step. (right) The two control nets generate the same Catmull–Clark limit surface.

Accordingly, we define the primal eigensplines B� via their rings

Bm
� = GAmA�.

Then, the subdivision surface x� corresponding to Q� is x� = B�Q�. Linear in-
dependence of the functions B�, is referred to as global linear independence. Of
course, this property relies not only on the matrix A, but also on A�. One can cer-
tainly say that B� is linearly dependent if A� has a non-trivial kernel. However,
beyond that elementary statement, it is hardly possible to derive universal results.
Instead, we exemplarily consider the Catmull–Clark algorithm, again:

Example 8.10 (Global linear dependence for the Catmull–Clark algorithm). We
consider the Catmull–Clark algorithm in its original form for a primal control mesh
with the connectivity of a cube. Here, two initial steps are requested before station-
ary subdivision can be launched. As a matter of fact, the primal generating splines
are globally linearly dependent. More precisely, when assigning the values ±1 to
the primal control points in an alternating way then anything is annihilated by the
two initial steps. Exploiting this fact, Fig. 8.3/173 shows two different primal control
meshes which yield the same resulting subdivision surface. �
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one or more subdivision steps to each neighborhood. Predicting the deviation, as
opposed to measuring it after refinement, is practically relevant since it helps with
(a) preallocation of resources, (b) guiding adaptive refinement, and (c) optimizing
rendering. Estimates derived from control-net differences predict considerably more
subdivision steps than necessary [ZC06, CC06, CY06, CCY06, HW07b, HW07a].

3. The distance of the control polyhedron to the limit surface of Loop subdivision
is analyzed in [PW07]. That paper also shows that the easily-computed heuristic
prediction of the distance, as the distance between control points and their limit, is
in many cases a good estimate, but is unsafe since the maximal distance between the
subdivision surface and the control polyhedron is in general not taken on at iterates
of the control points.

4. In [GPU07], Ginkel et al. show that the normals of the control polyhedron can
be misleading when estimating the limit surface normal.

5. Piecewise polynomial proxy surface constructions with one piece per facet of the
control polyhedron have been derived for evaluation on graphics processing units
[LS07, NYM+07, MYP07].

6. Local and global linear independence of Catmull–Clark and Loop subdivision is
considered in detail in [PW06]. In particular, the amazing phenomena for n = 3 dis-
cussed in Examples 8.9/171 and 8.10/173 are observed there for the first time. An early
version of the Catmull–Clark subdivision algorithm, quoted in [DS78], computes
the vertex node as (Q + R + 2S)/4. This results in linearly independent generating
splines also for n = 3.



Chapter 9
Conclusion

The analysis of stationary linear subdivision algorithms presented in this book sum-
marizes and enhances the results of three decades of intense research and it com-
bines them into a full framework. While our understanding of C1-algorithms is now
almost complete, the generation and the analysis of algorithms of higher regularity
still offers some challenges. Guided subdivision and the PTER-framework pave a
path towards algorithms of higher regularity, that, for a long time, were considered
not constructible. Various aspects of these new ideas have to be investigated, and the
development is in full swing, at the time of writing.

In focusing on analytical aspects of subdivision surfaces from a differential geo-
metric point of view, we left out a number of other interesting and important topics,
such as the following.

• Implementation issues: In many applications, subdivision is considered a
recipe for mesh refinement, rather than a recursion for generating sequences
of rings. The availability of simple, efficient strategies for implementation
[ZS00, SAUK04], even in the confines of the Graphics Processing Unit [BS02,
SP03, SJP05a], evaluation of refinable functions at arbitrary rational parame-
ters [CDM91] and, for polynomial subdivision, at arbitrary parameters [Sta98a,
Sta98c] and their inclusion into the graphics pipeline [DeR98, DKT98] largely
account for the overwhelming success of subdivision in Computer Graphics.

• Sharp(er) features: By using modified weights for specially ‘tagged’ vertices
or edges, it is possible to blend subdivision of space curves and subdivision of
surfaces to deliberately sharpen features and even reduce the smoothness to rep-
resent creases or cusps [DKT98,Sch96]. In a similar way, subdivision algorithms
can be adapted to match curves and boundaries [Nas91, Lev99c, Lev00, Nas03].

• Multiresolution: Based on the inherent hierarchy of finer and finer spaces,
one can develop strategies for multiresolution editing of subdivision surfaces
[LDW97]. There are close relations to the study of wavelets, but this develop-
ment is still in its infancy.

• Applications in scientific computing: Beyond the world of Computer Graph-
ics, subdivision surfaces can be employed for the simulation of thin shells and

175



176 9 Conclusion

plates [COS00, GKS02, Gri03, GTS02], and possibly also in the boundary ele-
ment method.

Many of these and other application-oriented issues are discussed in the book of
Warren and Weimer [WW02].

Necessarily, the material presented here is a compromise between generality and
specificity. Therefore, to conclude, we want to review the basic assumptions of our
analysis framework, check applicability to the rich ‘zoo’ of subdivision algorithms
in current use, and discuss possible generalizations. We consider in turn function
spaces, types of recursion, and the underlying combinatorial structure.

9.1 Function Spaces

The spaces of splines and rings that we considered throughout the book cover a
very wide range of algorithms. Many popular algorithms are generalizations of sub-
division schemes for B-splines or box-splines [Vel01b, Vel01a, VZ01, ZS01, CC78,
DS78, PR97]. The classical definition of the term ‘spline’ implies that the surface
rings are piecewise polynomial then. However, except were explicitly mentioned,
e.g. in the degree estimate in Theorem 7.19/144, the concepts and proofs of this book
never relied on the particular type of functions used to build the generating rings g�.
In fact, Definitions 3.1/43 and 4.9/65 are very general. The only requirements on the
function spaces are the following:

• The segments are C1 and join parametrically smooth.
• All rings xm can be represented by using one and the same finite-dimensional

system G of generating rings.
• The generating rings g� form a partition of unity.

Therefore, the framework covers for instance all schemes where the g� are de-
rived from tensoring univariate subdivision, such as the interpolatory algorithms
discussed in [DGL87, DL99, HIDS02, Leb94, Kob96a]. Moreover, not even the ten-
sor product structure is crucial. Genuine bivariate subdivision operating on a reg-
ular square grid, such as Simplest subdivision or non-polynomial variants thereof,
is equally covered by the framework. By contrast, subdivision algorithms generat-
ing patches that join geometrically smooth are not considered by our analysis. In
the terminology of this book, geometric continuity can be defined using non-rigid
embeddings. The first algorithm of that type was suggest by Prautzsch for subdivid-
ing Freeform splines [Pra97]. Here, the limit consists of finitely many polynomial
patches so that no limit analysis is required. Other algorithms exploiting geometric
continuity can be found in [KP07b] and in [ZLLT06].

The last bullet above, requiring that generating rings form a partition of unity,
and, similarly, that the rows of the subdivision matrix to sum to 1, are not strictly
necessary but a relict of the fact that most algorithms were formulated by forming
local affine combinations of ‘control points’. Only the following is actually needed.
The ring with constant value 1 must be contained in the space spanned by G and it
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is mapped to itself by the recursion: for some vector e

Ge = 1, Ae = e.

The changes required to adapt our analysis to this more general setting are marginal.
Not stipulating linear independence of the generating system G is a crucial for

generality. Example 4.14/70 gives a first indication that the class of overcomplete
generating systems provides a much richer source of algorithms. In fact, by not as-
suming linear independence of G, our analysis applies unchanged to most kinds of
vector-valued or matrix-valued, Hermite or jet subdivision algorithms, see for in-
stance [XYD06, KMP06, CJ06]. The mapping to the framework of the book is as
follows. All components of the vectors, matrices, or jets in question are collected
in the single vector Q, and all subdivision rules are encoded in a single subdivi-
sion matrix A. Since some of the coefficients, representing for instance derivative
information, are not needed for the parametrization of the ring, (although they are
involved in determining the coefficients of subsequent rings), the vector G of gen-
erating rings is simply padded with zeros at the corresponding places. The iteration
xm = GAmQ is then perfectly able to model the vector-valued or matrix-valued,
Hermite or jet subdivision. All that remains to be done is to remove ineffective
eigenvectors from A, if there are any, by the procedure of Theorem 4.20/77.

9.2 Recursion

Throughout, we assume that the recursion Qm → Qm+1 is

• stationary and
• linear

That is, there exists a square matrix A such that we can write

Qm = AQ, m ∈ N0.

Due to its simplicity, this class of algorithms is predominant in applications. Non-
stationary linear algorithms may use a different rule A(m) for each step,

Qm+1 = A(m)Qm.

In the univariate case, such schemes arise in a natural way when subdividing L-
splines. In particular, subdivision for exponential and trigonometric splines falls into
that class. An important feature of special trigonometric splines is their ability to re-
produce conic section, and in particular circles [MWW01, Sab04, CJar, ANM06].
Such schemes are not covered by our approach. Typically, the analysis of non-
stationary algorithms is complicated, compared to our setup, by the need to char-
acterize the joint spectrum of a sequence of subdivision matrices, i.e., the spectrum
of arbitrary products of members of these families [Rio92, DL02].
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Even less is known about non-linear algorithms. Here, we have

Qm+1 = A(m,Qm)

for some non-linear function A. For instance, positions of new control points could
be defined by geometric algorithms like the intersection of planes associated with
the given points. Such an algorithm, which provably generates smooth surfaces, was
suggested by Dyn, Levin, and Liu [DLL92]. Defining Qm+1 as the coefficients of
the solution of a non-linear fairing problem for the corresponding ring yields another
rich source of non-linear subdivision schemes. However, the analysis is far from
well understood. Further, non-linear schemes are encountered when generalizing
subdivision to operate on manifolds or Lie groups. In the univariate case, there are
some results in that direction due to Wallner and Dyn [WD05], while the regular
bivariate case is currently studied by Grohs [Gro07].

Concerning the recursion, the framework is implicitly based on a further as-
sumption. The algorithms are assumed to be local in the sense that only control
points in the vicinity of an extraordinary point influence the recursion. This need
not hold. There are algorithms, known as variational subdivision, where new con-
trol points are computed as the solution of a global, linear or non-linear fairing
problem [HKD93, Kob95b, Kob96b]. The visual results of these algorithms are
impressive, but more or less nothing is known about the underlying theoretical
properties.

9.3 Combinatorial Structure

In discussing the topological and combinatorial structure of the space of the parame-
ters, we have to, first of all, distinguish subdivision in the univariate, the bivariate,
and the general multivariate setting. As summarized in Sect. 1.7/8, there exists an
extensive literature covering the univariate case. Refinable shift-invariant construc-
tions can be obtained in the multivariate setting by tensoring univariate subdivision,
or by subdividing box splines [dHR93]. The non-shift invariant setting, in three vari-
ables, has been studied, for instance in [BMDS02, SHW04]. In this book, we focus
on the bivariate case.

For local algorithms, it is admissible to reduce the analysis to a vicinity of an
isolated singularity. In Chap. 4/57 we chose

• the local domain Sn := [0, 1]2 × Zn to consist of n copies of the unit square;
• a binary refinement of cells. That is, each square is subdivided into four new

ones.

The algorithms of Catmull–Clark and Doo–Sabin, but also Simplest subdivision
or 4−8-subdivision fit that pattern. However, many other popular algorithms, like
Loop’s subdivision [Loo87], the Butterfly algorithm [DGL90, ZSS96] or the three-
direction box splines of Sabin’s thesis [Sab77] are based on triangular patches. Here,
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Fig. 9.1 Combinatorial layout. (left) �-sprocket (Catmull–Clark subdivision) layout; (middle) 	-
sprocket (Loop subdivision) layout; (right) polar layout (9.1/180). (top) Two nested characteristic
rings. (bottom) S and S/2 of the prolongation ϕ(S/2) := λϕ(S).

the appropriate structure is obtained when replacing the unit square Σ = [0, 1]2 by
an equilateral triangle. Conceptually, the framework for such triangular subdivision
algorithms is exactly the same. However, certain technical details concerning the
neighbor relation and the contact conditions have to be adapted. The regular case
for triangular subdivision is n = 6, corresponding to a lattice spanned by three
directions. As in the quadrilateral case, the regular part Σ0 of the cells is obtained
by subtracting one half of Σ from itself,

Σ0 := Σ\(Σ/2).

As shown in Fig. 9.1/179, Σ0 is a trapezoid rather than L-shaped.
Another generalization is to modify the number of new cells into which a given

cell is subdivided. For binary refinement, each quadrilateral or triangular cell is split
into 2 × 2 = 4 new ones. It is equally possible to use a (ν × ν)-partition. In such a
ν-ary refinement, we set

Σ0 := Σ\(Σ/ν).

For example, Kobbelt’s
√

3-subdivision [Kob00] is based on ternary refinement,
i.e., ν = 3, and several other algorithms use the same or even finer tessellations
[DIS03, OS03, Loo02b, NNP07, IDS05, LG00]. The analysis can proceed in exactly
the same way as in the binary setting except for replacing, by ν±m, the factors
2±m that are ubiquitous in the binary setup. The partition of the domain in ν-ary
subdivision is uniform in that the domain is split evenly into subdomains. Goldman
and Warren [GW93] extend uniform subdivision of curves to knot intervals that are
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Fig. 9.2 Different patterns of control nets to be considered when proving smoothness of a tri/quad
algorithm for (from top) n = 3, 4, 6, 12.

in a globally geometric progression. Sederberg et al. [SSS98] propose Non-uniform
Recursive Subdivision Surfaces where every edge of the initial domain is allowed
to be scaled differently. This presents challenges, currently not met by the state of
the analysis. By contrast, the non-uniform subdivision algorithm [KP07a] has been
fully analyzed within the framework presented in this book. Here the edges near a
singularity are recursively subdivided in a ratio σ : (1 − σ) where σ ∈ (0, 1) is
chosen to adjust the relative width of the rings and the ‘speed of convergence’.

For high valence n, the rings of subdivision surfaces considered so far typically
feature n sharp corners corresponding to the corners of the domain Sn. Referring
to Fig. 6.4/114 right, we call this arrangement the sprocket layout. To remove related
shape artifacts, the so-called polar layout, as described below, offers an interest-
ing alternative. Recall that, in (3.13/48), we connect the cells Σ using the neighbor-
hood relations (ε4, j) ∼ (ε1, j + 1), j ∈ Zn. As illustrated in Fig. 9.1/179, right, the
cells can be glued together differently to form a ring structure. In polar subdivision
[KP07c, KMP06, KP07d]

(ε4, j) ∼ (ε2, j + 1), j ∈ Zn. (9.1)

That is, opposite edges of each cell are identified with the edges of its two neighbors.
A ring with polar structure is therefore bounded on either side by a closed smooth
curve. The papers on Guided subdivision [KP05,KP07b,KP08] juxtapose polar and
sprocket layout. It turns out that polar subdivision nicely models features of high
valence, especially rotationally extruded features. Again, for the analysis of polar
subdivision, the neighbor relations and contact conditions have to be adapted, while
the core methodology applies with minor modifications.

A further generalization is obtained when permitting a mix of quadrilateral and
triangular cells to enclose an extraordinary knot [LL03, SL03, PS04, SW05]. Basi-
cally, one has to cope with two technical difficulties not encountered in the stan-
dard, symmetric setting. First, due to a lack of shift invariance, we cannot apply
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the Discrete Fourier Transform to simplify the analysis of spectral properties of the
subdivision matrix. Rather, to obtain general results, a multitude of different patterns
has to be analyzed individually. Figure 9.2/180 gives an impression of the combinato-
rial complexity of the problem. Second, the smooth transition between neighboring
patches of different type may be more difficult to establish than between triangles
only or squares only. This problem, which is very interesting in its own right, is con-
sidered in [Rio92, DL02, LL03, PS04]. For example, [PS04] proves C1-continuity
and bounded curvature for a quad-tri algorithm.
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[MS04] Möller, H., Sauer, T.: Multivariate refinable functions of high approximation or-
der via quotient ideals of Laurent polynomials. Adv. Comput. Math. 20, 205–228
(2004)

[MWW01] Morin, G., Warren, J., Weimer, H.: A subdivision scheme for surfaces of revolu-
tion. Comput. Aided Geom. Des. 18(5), 483–502 (2001)

[MYP07] Myles, A., Yeo, Y., Peters, J.: Bi-quintic C1 surfaces via perturbation. Technical
Report TR-2007-423, University of Florida, Department of CISE (2007)

[MZ00] Ma, W., Zhao, N.: Catmull–Clark surface fitting for reverse engineering applica-
tions. In: GMP 2000, IEEE, pp. 274–283 (2000)

[Nas87] Nasri, A.H.: Polyhedral subdivision methods on free-form surfaces. ACM Trans.
Graph. 6(1), 29–73 (1987)

[Nas91] Nasri, A.: Boundary-corner control in recursive subdivision surfaces. Comput.
Aided Des. 23(6), 405–410 (1991)

[Nas03] Nasri, A.: Interpolating an unlimited number of curves meeting at extraordinary
points on subdivision surfaces. Comput. Graph. Forum 22(1), 87–97 (2003)

[NF01] Nasri, A., Farin, G.: A subdivision algorithm for generating rational curves. J.
Graph. Tools 6(1), 35–47 (2001)

[NKL01] Nasri, A., Kim, T.-W., Lee, K.: Fairing recursive subdivision surfaces with curve
interpolation constraints. In: 3rd International Conference on Shape Modeling and
Applications (SMI 2001), pp. 49–59 (2001)

[NNP07] Ni, T., Nasri, A.H., Peters, J.: Ternary subdivision for quadrilateral meshes. Com-
put. Aided Geom. Des. 24(6), 361–370 (2007)

[NP94] Neamtu, M., Pfluger, P.R.: Degenerate polynomial patches of degree 4 and 5 used
for geometrically smooth interpolation in R3. Comput. Aided Geom. Des. 11(4),
451–474 (1994)

[NPL99] Nairn, D., Peters, J., Lutterkort, D.: Sharp, quantitative bounds on the distance
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Index

A subdivision matrix, 80
(A, G) subdivision algorithm, 67, 80
B vector of generating splines, 68
C0(S, K) spline space, 43
Ck-spline, 44
Ck-surface, 18
Ck(S0

n, K) ring space, 61
Ck(S0

n, K, G) rings generated by G, 65
Ck(S, K) spline space, 44
Ck

0 -function, 24
Ck

0 -spline, 49
Ck

0 (Sn, K) spline space, 49
Ck

1 -algorithm, 89
Ck

r -algorithm, 84
Ck

r -spline surface, 51
Ck

r -surface, 26
D derivative, 16
D1, D2 partial derivative, 16
Dx+ pseudo inverse of Dx, 20
×D cross product of D, 17
E vector of eigensplines, 78
F vector of eigenrings, 74
G system of generating rings, 65
I, II fundamental forms, 19
1 Identity, 17
J Jordan matrix, 72
U unit interval, 40
V matrix of eigenvectors, 73
W Weingarten map, 19
W embedded Weingarten map, 20
Zn integers mod n, 48
P vector of eigencoefficients, 74
Q vector of initial data, 67
S0

n ring domain, 60
Sm

n subset of spline domain, 60
Sn local domain, 48
S spline domain, 42

Tc tangent vectors, 25
W embedded Weingarten map, 20
F Fourier Index, 100
I index set, 41
P-periodicity, 135
W Fourier block matrix, 98
Σ0 L-shaped domain, 60
Σm subset of unit square, 60
(Σ, i) cell, 42
Σ unit square, 42
b� generating spline, 68
dq direction, 128
e� eigenspline, 78
f characteristic ring, complex, 101
fr eigenring, 74
f�

r eigenring, 74
g� generating ring, 65
h∗ local height function, 26
m ring index, 60
n valence, 42
wn nth root of unity, 98
vr eigenvector, 74
v�

r (generalized) eigenvector, 73
z-transform, 8, 10, 12
z∗ normal component of x∗, 26, 51
i imaginary unit, 98
n Gauss map, 18
nm Gauss map of ring, 63
nm

j Gauss map of segment, 63
nc central normal, 24, 51
pr eigencoefficient, 74
qm

� coefficient of mth ring, 66
q� coefficient, 67
r principal direction, 20
r̄ central ring, 128
s parameter, 43
tc1,2 tangent vectors, 25
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x surface, 18
x̄ central spline, 128
x spline, 43
x subdivision surface, 62
xm ring, 60
xm

j segment, 60
xc central point, 24, 49
x∗ transformed surface, 26
xi patch, 43
xj patch, 48
xϕ composed map, 44
δ one vector, 75
δ� unit vector, 68
κ principal curvature, 20
κG Gaussian curvature, 22
κM mean curvature, 22
λ subdominant eigenvalue, 85
λr eigenvalue, 73
µ subsubdominant eigenvalue, 126
 ratio of eigenvalues, 130
ε� edge, 42
σ parameter, 18, 43
ϕ embedding, 44
χ characteristic spline, 85
ψ characteristic ring, 85, 92
ξ∗ tangential component of x∗, 26, 51
∗= asymptotically equal, 71

cm

= asymptotically equal, 71
≺ compare sequences, 72
� compare sequences, 72
∼ equivalent sequences, 72
a · b dot product, 16
a × b cross product, 16

affine invariance, 66, 68, 69
algorithm

Ck
1 -standard, 89

Catmull–Clark, 109
Butterfly, 12, 81, 124, 178
Doo–Sabin, 116
interpolatory, 9
linear, 67
Loop, 178
non-linear, 178
non-stationary, 177
normal continuous, 84
of type (λ, µ, 	), 127
single-sheeted, 84
standard, 84
stationary, 67
symmetric, 104
symmetric standard, 127

almost regularity, 24, 49, 64
local, 63

anchored osculating quadratic, 38
asymptotic expansion, 58, 71, 85
Augsdörfer, U., 124, 154

Ball, A., 12, 107
Barthe, L., 154
basis function, 57
Bernstein polynomial, 54

Catmull, E., 11
Catmull–Clark

algorithm, 109
subdivision matrix, 111

Cavaretta, A.S., 9
cell, 42

refinement, 58
central

frame, 26, 51
normal, 24, 51, 64
point, 24, 49
ring, 128
spline, 128
tangent plane, 135

Chaikin, G., 11
characteristic

map, 7
ring, 7, 85
spline, 85

characteristic ring
Catmull–Clark, 113
regular, 87
winding number, 88, 93
complex, 101
general, 92
mid-edge, 121
normalized, 103
standard, 85
symmetry, 105

Clark, J., 11
coefficient, 67
component

normal, 26, 51
tangential, 26, 51

consistency, 44, 48, 54, 76
of matrix A, 75, 79

control
net, 2, 107
point, 3, 54, 66, 158
polyhedron, 2, 158

cross product, 16
of partial derivatives, 17

curvature
continuity, 28, 52
Gaussian, 22, 131, 136
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integrability, 132
mean, 22
principal, 20, 22, 132

Dahmen, W., 9
Daubechies, I., 10, 11
de Rham, G., 9, 11
Deslauriers, G., 9
deviation

geometric, 163
parametric, 160

DFT, 98
direction, 128
Discrete Fourier Transform,

98
distance, 157
Dodgson, N., 124, 154
domain, 17

local, 48
refined, 58

Doo, D., 12, 107
Doo–Sabin

algorithm, 116
subdivision matrix, 117

dot product, 16
Dubuc, S., 9
Dyn, N., 8–10, 12, 124, 178

edge, 42
eigenanalysis, 12
eigencoefficient, 74

first, 80
eigenring, 74, 99
eigenspline, 78

subdominant, 85
eigenvalue, 73

Catmull–Clark, 112
dominant, 75, 79, 80, 100
Doo–Sabin, 118
real, 104
Simplest subdivision, 121
subdominant, 84
subsubdominant, 126

eigenvector
Catmull–Clark, 113
subdominant, 101
Doo–Sabin, 117
generalized, 73
ineffective, 76
left, 75, 85
Simplest subdivision, 121

elliptic
in average, 138
in sign, 135

in the limit, 136
point, 22

embedded surface, 18
embedded Weingarten map, 20

of spline surface, 47
embedding, 44

fractional power, 50
non-rigid, 176
rigid, 44, 45
with scale factor, 145, 146

equivalence
of sequences, 71
of subdivision algorithms, 76

Euclidean norm, 65
Euler form, 22
extension, 148

operator, 148
extraordinary knot, 49

flat spot, 141, 154
Fourier

block matrix, 98
index, 100, 101, 136, 139
index, subdominant, 101

fractal, 9, 10
fractional power embedding, 55
Freeform splines, 155, 176
fundamental form, 19

first, 129
second, 129

Gauss map, 18, 47
ring of, 63
segment of, 63

Gaussian curvature, 22
generating

proxy ring, 160
proxy spline, 158
ring, 65
spline, 43
system, 65

generic initial data, 84
geometric

invariant, 18, 20, 22
smoothness, 23, 41

Ginkel, I., 108, 154, 174
gluing, 41, 42
Goldman, R., 179
Goodman, T., 108
Gregory, J., 9, 12, 124
Grohs, P., 178
Guided subdivision, 149
Guskov, I., 11
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Habib, A., 124
Hartmann, R., 154
Hausdorff distance, 163

of Catmull–Clark control net, 168
Hed, S., 10
Holt, F., 154
hybrid, 136
hyperbolic

in average, 138
in sign, 135
in the limit, 136
point, 22

Höllig, K., 80

image, 18
index, 34

Fourier, 100
set, 41

ineffective eigenvector, 76
initial data, 67

generic, 84
injectivity, 31, 34
input mesh, 2, 123, 172
interior knot, 47
internet site, ix
invariance

affine, 66, 68, 69
flip, 104
shift, 96
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