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Abstract. This paper presents a novel approach to tracking people in
multiple cameras. A target is tracked not only in each camera but also
in the ground plane by individual particle filters. These particle filters
collaborate in two different ways. First, the particle filters in each cam-
era pass messages to those in the ground plane where the multi-camera
information is integrated by intersecting the targets’ principal axes. This
largely relaxes the dependence on precise foot positions when mapping
targets from images to the ground plane using homographies. Secondly,
the fusion results in the ground plane are then incorporated by each
camera as boosted proposal functions. A mixture proposal function is
composed for each tracker in a camera by combining an independent
transition kernel and the boosted proposal function. Experiments show
that our approach achieves more reliable results using less computational
resources than conventional methods.

1 Introduction

Tracking people in multiple cameras is a basic task in many applications such
as video surveillance and sports analysis. A commonly-used fusion strategy is to
detect people in each camera with bottom-up approaches such as background
subtraction and color segmentation, and then to calculate the correspondences
between cameras using the camera calibrations, or more often, the ground homo-
graphies. In order to reason about occlusions between targets, this fusion strat-
egy usually requires all targets to be correctly detected and tracked [8,4,2,6,5].
However, sometimes we may be interested in the trajectories of only a few key
targets, for instance, the star players in a soccer game or a few suspects in a
surveillance scenario. Top-down approaches are preferable in such situations.

In this paper, we present a novel top-down approach to people tracking by
multiple cameras. The approach is based on collaborative particle filters, i.e.,
we track a target not only in each camera but also in the ground plane by
individual particle filters. These particle filters collaborate in two different ways.
First, the particle filters in each camera pass messages to those in the ground
plane where the multi-camera information is integrated using the homographies
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of each camera. Such a fusion framework usually relies on precise foot positions of
the targets, which are often not provided by the particle filters in the cameras. To
overcome the imprecise foot positions as well as the uncertainties of the camera
calibrations, we exploit the principal axes of the targets during integration, which
greatly improves the precision of the fusion results. These fusion results are then
incorporated by the trackers in each camera as boosted proposal functions. A
mixture proposal function is composed for each tracker in a camera by combining
an independent transition kernel and the boosted proposal function, from which
new particles are generated for the next time instant.

Our approach has several distinct features. First, it doesn’t require all targets
to be tracked simultaneously. Instead of having different target trackers interact,
we compute the consensus between cameras by having different camera trackers
communicate. Second, it has a fully distributed architecture. All the computa-
tions are performed locally and only the filter estimates are exchanged between
the cameras and the fusion module. Third, the fusion of the multi-camera infor-
mation is done by intersecting the targets’ principal axes. Experiments on both
surveillance and soccer scenarios show that our approach achieves more reliable
results using less computational resources than conventional methods.

Particle filters are conventional in multi-camera tracking. Most previous work
performed particle filtering in 3D so that precise camera calibration is required
to project particles into the image plane of each camera [9,7]. The multi-camera
information is often integrated by either the product of the likelihoods in all
cameras [7] or a selection of the best cameras that contain the most distinc-
tive information [9]. In our previous work, we proposed a different approach
to fusion that combined particle filters and belief propagation, where particle
filters collaborated with each other via a message passing procedure [1]. To
match ground-plane target positions using homographies, the foot positions of
the tracked people have to be detected. This, however, is a difficult and error-
prone task if done separately for each camera. In this paper, we address the
precision and computational issues. We relax the dependence on precise foot po-
sitions by exploiting the principal axes of the targets, the intersections of which
give better ground positions. At the same time, we improve the speed over our
previous system [1] by incorporating the fusion results from the ground plane as
proposal functions into each camera.

The rest of the paper is organized as follows. Section 2 formulates the multi-
camera tracking problem. Section 3 introduces the collaborative particle filters,
including the principal axis-based integration and the boosted proposal func-
tions. Experiments on sequences of video surveillance and soccer games are
shown in Section 4.

2 Problem Formulation

Suppose L cameras are used and each camera collects one observation for each
target at each time instant. Denote the target state on the ground plane by
xt,0 and its states in different cameras by xt,j , j = 1, . . . , L. Let zt,j denote
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(a) tree-structured graphical model (b) dynamic Markov model

Fig. 1. Graphical models for modeling the dependencies at time t and for modeling
the evolution of the system in time

the observation in camera j at time t, Zt = {zt,1, . . . , zt,L} the multi-camera
observation at time t, and Zt = {Z1, . . . , Zt} the multi-camera observations up
to time t.

Fig. 1(a) shows the graphical model that models the dependencies between
target states in the ground plane and at different cameras at time t. We assume
that the xt,j , j = 1, . . . , L, are independent given xt,0 so that a tree-structured
model is formed. Note that xt,0 is associated with no observation. Connecting the
graphical models at different times results in a dynamic Markov model, shown
in Fig. 1(b), that describes the evolution of the system over time. As all the xt,j

depend on xt,0, we add temporal links from xt−1,0 to xt,j . The addition of these
temporal links is beneficial to the design of the proposal functions, shown in the
next section.

In both models in Fig. 1, each directed link from xt,0 to xt,j , j = 1, . . . , L,
represents a message passing process and is associated with a potential function
ψt

0,j(xt,0, xt,j). The directed link from xt,j to zt,j , j = 1, . . . , L, represents the
observation process and is associated with a likelihood function pj(zt,j |xt,j). In
Fig. 1(b), the directed links from xt−1,i to xt,i, i = 0, . . . , L, and from xt−1,0
to xt,j , j = 1, . . . , L represent the state transition processes and are associated
with motion models p(xt,i|xt−1,i) and p(xt,j |xt−1,0) respectively.

Thus, we infer each xt,i, i = 0, . . . , L, based on all Zt. A message passing
scheme, the same as is used in belief propagation, is adopted to pass messages
from each camera to the ground plane. The message from camera j is defined as

m0j(xt,0) ←
∫

pj(zt,j |xt,j)ψt
0,j(xt,0, xt,j)

∫
p(xt,j|xt−1,j)p(xt−1,j|Zt−1)dxt−1,jdxt,j.

(1)
The belief p(xt,0|Zt) is computed recursively by the message product and the
propagation of the previous posterior,

p(xt,0|Zt) ∝
∏

j=1,..., L

m0j(xt,0) ×
∫

p(xt,0|xt−1,0)p(xt−1,0|Zt−1)dxt−1,0. (2)

Note that the same message and belief update equations are used in our previous
work [1].
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The inference of xt,j , j = 1, . . . , L, is done by nearly standard particle filters,
except that the fusion results at t − 1 are taken into consideration. The belief
p(xt,j |Zt) is computed as

p(xt,j |Zt) ∝ p(xj |zj) × (3)∫ ∫
p(xt,j |xt−1,j)p(xt−1,j |Zt−1)p(xt,j |xt−1,0)p(xt−1,0|Zt−1)dxt−1,0dxt−1,j .

The underlined terms incorporate the fusion results as a boosted proposal func-
tion. In other words, the fusion module is used by each camera as a coupled
process.

3 Collaborative Particle Filters

All the inference processes formulated above, in the ground plane and for each
camera, are performed by individual but collaborative particle filters. Details are
given below.

3.1 Principal Axis-Based Integration

The ground-plane particle filter integrates the multi-camera information accord-
ing to Eqs. 1 and 2. For tracking ground targets, homographies are often used
to map the foot positions from each camera to the ground plane. However, a
large number of particles are required to estimate precise foot positions, which
significantly slows down the tracking system. With a small number of particles,
usually the sizes of the targets cannot be estimated precisely. We overcome this
problem by exploiting the principal axes of the targets.

The principal axis of a target is defined as the vertical line from the head of
the target to the feet. It has been shown that the principal axes of a target in
different cameras intersect in the ground plane, and computing the intersection
point yields very robust fusion results [4,6], illustrated in Fig. 3. We exploit this
effect in our multi-camera integration.

The idea is to sample particles in the ground plane by importance sampling,
and to evaluate these particles by passing messages from each camera. Here,
p(xt,0|xt−1,0) is used as the proposal function from which new particles for xt,0
are sampled. Each of these ground-plane particles receives messages from each
camera, and a message weight is computed using Eq. 1. The principal axes are
incorporated in the potential function ψt

0,j(xt,0, xt,j) in Eq. 1. In general, the
principal axes of the particles in a camera are projected to the ground plane
using the homographies. The potential function measures the distances of the
ground particles to these projected principal axes and converts them to proba-
bility densities, given by

ψt
0,j(x

n
t,0, x

m
t,j) ∝ exp(−dist2(xn

t,0, project(Hj , x
m
t,j))), (4)

where xn
t,0 and xm

t,j are the nth ground-plane particle and mth particle in camera
j, Hj is the homography from camera j to the ground plane, dist() computes
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Fig. 2. The particle distributions in four cameras at a time instant. It can be seen
that the foot positions are not precise although all the particles are placed at the right
location.

(a) Mapping particles to the ground. (b) Mapping principal axes to the ground.

Fig. 3. Comparison between homography-based integration and principal axis-based
integration. In (a), the projections of the particles (the red stars) from the images in
Fig 2 to the ground have a large variance, making the integration imprecise. In contrast,
in (b), the intersection of the principal axes (the red lines) of four selected particles
yields a more precise foot position (the white square).

the distance between a point and a line, and project() maps the principal axis
to the ground. The message and belief weights are then computed by

wj,n
t,0 ∝

N∑
m=0

πm
t,jψ

t
0,j(x

n
t,0, x

m
t,j), πn

t,0 ∝
L∏

j=1

wj,n
t,0 , (5)

where wj,n
t,0 is the message weight of xn

t,0 from camera j, and πn
t,0 and πm

t,j are
the belief weights of xn

t,0 and xm
t,j . Intuitively, the closer a ground-plane particle

is to all the principal axes, the larger its weight is, as illustrated in Fig. 4.

3.2 Boosted Proposal Functions

A target is tracked in each camera by a particle filter. Due to the occlusions
or other image noise, feedback from the fusion module is expected to improve
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(a) Camera 1 passes messages (b) Camera 2 passes messages

Fig. 4. An illustration of evaluating ground-plane particles using two cameras. The
ground-plane particles are evaluated according to the distances to the projected prin-
cipal axes. (a) After the first camera passes messages to the ground plane, all the
particles along the principal axes (red dots) have larger weights than those further
away (blue dots). The weights of the camera particles are shown at one end of the
corresponding principal axes. (b) After the second camera passes messages, only those
ground-plane particles that are close to the intersections have large weights.

the tracking performance in a camera. A similar message passing procedure was
adopted in our previous work to pass messages from the ground plane to each
camera, which proved computationally expensive. We propose here a different
method to incorporate this feedback.

Note that in the dynamic Markov model in Fig. 1(b), for each xt,j , j = 1,
. . . , L, there is an extra temporal link from xt−1,0 besides that from xt−1,j . This
enables us to design a mixture proposal function for importance sampling,

p(xt,j |xt−1,j , xt−1,0) ∝ αp(xt,j |xt−1,j) + (1 − α)p(xt,j |xt−1,0). (6)

Thus, we sample particles from both p(xt,j |xt−1,j) and p(xt,j |xt−1,0), i.e., αN par-
ticles are sampled from p(xt,j |xt−1,j) and the other (1 − α)N from p(xt,j |xt−1,0).
Parameter α specifies a trade-off between two proposal functions and is set to 0.5
in our experiments. To sample from p(xt,j |xt−1,0), we fit a Gaussian distribution
to xt−1,0 and propagate it to each camera using the homographies.

In a sense, the fusion results at t−1 are used as boosted proposal functions by
each camera. This is beneficial not only in maintaining consistency between the
particle filters at different nodes but also in speeding up the tracking algorithm.
The sampled particles are evaluated using the image likelihood as is done in
standard particle filters.

4 Results

We tested our method on both video surveillance and soccer game sequences. We
manually initialized the targets of interest in the first frames of the sequences
and sampled 100 particles for each filter.

Figure 5 shows the results of tracking a pedestrian in PETS sequences and a
comparison with a reference method [7], which tracks a target in 3D by a particle



Multi-camera People Tracking by Collaborative Particle Filters 371

Fig. 5. The results of tracking a pedestrian in PETS sequences with our approach (top
rows) and with a reference method [7] (bottom rows). In the latter method [7], we
initialize a tracker in one camera and project the particles to another camera using
the homographies. Here, due to imprecise foot positions, the estimates are projected
to wrong positions.

filter and evaluates the particles by the product of the likelihoods in all cameras.
In this experiment, we adopted a classic color observation model and evaluate
each particle by matching the color histogram to a reference model [11]. The
figure shows that particle filters do not estimate precise foot positions; thus,
mapping the particles between cameras or between cameras and the ground
plane using homographies is imprecise. As a result, using this method [7], most
particles in one camera are projected to wrong positions in another camera so
that only one camera contributes to the tracking. On the other hand, due to the
use of the principal axes, our method integrates information from both cameras
and achieves more reliable results.

Figure 6 shows the results of tracking two selected people in an indoor environ-
ment with four cameras. In this experiment, we adopted a hierarchical multi-cue
observation model and evaluated each particle first by a color likelihood function
and then by a background-subtraction likelihood function [10]. We also assumed
that the sizes of the people were fixed and could be inferred from their ground po-
sitions [2]. Thus, the only parameters of interest were the positions in the images
and in the ground plane. A comparison with our previous work [1] shows that
the new approach achieved similar results but was approximately twice faster.
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Fig. 6. The results of tracking two people in an indoor environment with four cameras.
Each row shows four simultaneous views. In this experiment, both the head and the
ground homographies of each camera are available. The fixed-size assumption signifi-
cantly improved the robustness of the algorithm.

Figure 7 shows the results of tracking several soccer players in three cameras.
Due to the interactions between the players, the feedback from the fusion module
to each camera becomes critical, without which the trackers in different cam-
eras fail one by one. In this experiment, the same observation model as in the
PETS experiment was used and the homographies of each camera were obtained
on-line by using a field model and by accumulating motion estimates between
consecutive frames [3]. Note in the figure that the estimated foot positions do
not coincide with the bottom of the bounding boxes, but are more precise than
these thanks to the multiple-camera fusion using principal axes. At one point,
due to a heavy occlusion that occurs in all cameras, a tracker jumps from one
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Fig. 7. The results of tracking several soccer players in the last frames of the three
sequences. The ellipses under the rectangles are the fusion results in the ground plane.

Fig. 8. The particle distributions at the time when the tracker is about to jump to a
different player, which happens here because the players involved are very close both
in space and in appearance in all three views. The green rectangles are the sampled
particles, the blue are the estimates, and the red are the predictions of the fusion results
at the previous time.

target to another. In such situations, multi-camera systems without feedback be-
tween cameras are susceptible to mismatched targets. In our system, thanks to
the feedback from the ground-plane tracker, the trackers at each camera remain
consistent, even if they collectively follow the wrong target. Figure 8 shows the
particle distributions at the time instant when the jump begins. This problem
can be partially solved by tracking multiple targets simultaneously.

5 Conclusion and Future Work

This paper presents a novel approach to ground-plane tracking of targets in
multiple cameras. Different from previous work, our approach is not based on
bottom-up detection or segmentation methods. Instead, we infer target states in
each camera and in the ground plane by collaborative particle filters. Message
passing and boosted proposal functions are incorporated in the collaboration
between the trackers in each camera and the fusion module. Principal axes are
exploited in the multi-camera integration, which enables us to handle the im-
precise foot positions and some calibration uncertainties. In doing so, we achieve
robust results using relatively little computational resources. We are currently
adapting this approach to multi-target, multi-camera tracking, which involves
the modeling of the target interactions and data association across cameras.
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