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Introduction

Polycystic kidney disease (PKD) is a heritable disorder

with diffuse cystic involvement of both kidneys without

dysplasia (1). All forms of PKD can have clinical mani-

festations in infants and children. The major clinical en-

tities of autosomal-recessive polycystic kidney disease

(ARPKD) and autosomal-dominant polycystic kidney

disease (ADPKD) have considerable overlap in clinical

presentation and radiographic features. Glomerulocystic

kidney disease (GCKD) can be a feature of several inher-

ited, sporadic, and syndromal conditions, as well as an

expression of ADPKD.
Differential Diagnosis of Polycystic
Kidneys in Childhood

The clinical presentation of polycystic kidneys and/or

enlarged echogenic kidneys can be associated with a num-

ber of kidney disorders. Not all of these represent the

classic genetic disorders of polycystic kidney disease (i.e.,

ARPKD and ADPKD). Additional diagnoses to consider

include bilateral cystic dysplasia, which is often associated

with congenital syndromes, and multicystic dysplastic

kidney (MCDK). Both of these diseases generally occur

sporadically and are reviewed in detail in Chapter 5. The

inherited disorder of juvenile nephronophthisis (JN) is

associated with cystic kidneys, but these are usually small

or normal in size. JN is reviewed in Chapter 35. Other

rarer causes of polycystic and/or enlarged echogenic

kidneys are outlined in >Table 36-1.

In most clinical settings, the major challenge in the

differential diagnosis of polycystic kidneys in the pediatric

patient is clearly delineating ARPKD from ADPKD. In

fact, ADPKD presenting in the neonatal period may be

indistinguishable clinically from ARPKD (2, 3). In such

instances, a staged evaluation including careful history,

physical examination, imaging, and histologic examina-

tion is recommended. As shown in >Table 36-2, certain

clinical features can help differentiate between ARPKD

and ADPKD, although no single finding is diagnostic.

A complete family history is often the most important
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element in difficult cases. Parents should have standard,

or if available, high resolution renal ultrasonography. If

the parents of a child with undiagnosed PKD are under

30, the grandparents should also be evaluated because

4–5% of patients with ADPKD may not have visible

renal cysts before age 30. The absence of any cystic disease

in family members makes the diagnosis of ARPKD more

likely. It does not, however, exclude the diagnosis of

ADPKD, since approximately 8–10% of all ADPKD

cases are the result of new gene mutations (4). Radio-

graphic studies, particular MRI imaging if the kidneys

and liver, may clearly distinguish ARPKD and ADPKD

in some cases (> Table 36-2). However, in clinical prac-

tice, up to 20% of all cases will show certain features of

both diseases on radiographic studies of the kidneys,

making definitive diagnosis difficult unless extra-renal

features of either disease are present (see below). Tissue

diagnosis (biopsy of kidney and liver) is generally deferred

given the availability of molecular diagnostics. Molecular

genetic testing for ARPKD and ADPKD is available and

is increasingly utilized given mutation detection rates

of 85–90% in high quality laboratories (5). Such testing

is indicated for the subset of patients in whom the clini-

cal and/or tissue diagnosis is equivocal, and/or addi-

tional information is needed for genetic counseling. In

the United States, passage of recent legislation (2008) pre-

venting discrimination by employers or insurers against

any individual with a genetic disorder (Genetic Informa-

tion Non-Discrimination Act or GINA) will remove a

major obstacle to diagnostic testing of asymptomatic, at

risk PKD patients. Early diagnosis of asymptomatic indi-

viduals with ADPKD and ARPKD affords the current

opportunity for maximal anticipatory care (i.e., BP con-

trol), and the future opportunity to benefit from new

therapies (i.e., early treatment with therapies that will

limit cyst development and enlargement) (6).
Pathophysiology of Cyst Formation
in PKD

In the last decade, major advances have been made in

understanding the molecular genetics of PKD. Through



. Table 36-2

Differential Clinical Features of Childhood PKD

Major clinical features of both ARPKD and ADPKD

Enlarged kidneys

Hypertension

Concentrating defect

Sterile pyuria

Clinical features suggesting ARPKD rather than ADPKD

Neonatal presentation

Progression to end-stage renal disease as a child

Hepatosplenomegaly

Portal hypertension and esophageal varices

Bacterial cholangitis

Negative family history

Clinical features suggesting ADPKD rather than ARPKD

Positive family history

Extrarenal cysts

Cerebral aneurysms

Asymptomatic presentation

Unilateral renal presentation

Hematuria

Urinary tract infection

Adapted from Avner ED. Polycystic kidney disease. In Pediatric Nephrol-

ogy. Drukker A, Grushkin A (eds.). In Pediatric and Adolescent Medicine.

Branski D (series ed.). Basel, AG Karger, 1993

. Table 36-1

Differential Diagnosis of Polycystic and/or Echogenic

Kidneys in the Pediatric Patient

Polycystic Kidney Diseases (PKD)

Autosomal-recessive polycystic kidney disease (ARPKD)

Autosomal-dominant polycystic kidney disease (ADPRD)

Glomerulocystic kidney disease (GCKD)

Inherited Disorders Associated with Polycystic Kidneys

Tuberous sclerosis complex

Meckel�Gruber syndrome

Jeune syndrome and other chondrodysplasia syndromes

Ivemark syndrome

Bardet�Biedl syndrome

Oro-facial-digital syndrome Type I

Zellweger cerebrohepatorenal syndrome

Beckwith�Wiedemann syndrome

Trisomy 9 and 13

Juvenile nephronophthisis (JN)/medullary cystic disease

(MCD) complex

Von Hippel-Lindau Syndrome

Hajdu-Cheney Syndrome

Sporadic Disorders Associated with Cystic Kidneys

Isolated cystic dysplasia

Multicystic dysplastic kidney (MCDK)

Unilateral/localized cystic kidney disease

Caliceal diverticula

Miscellaneous Causes of Cystic and/or Enlarged Echogenic

Kidneys

Nephroblastomatosis

Bilateral Wilms’ tumor

Leukemia or lymphoma

Pyelonephritis

Glomerulonephritis

Radiocontrast nephropathy

Bilateral renal vein thrombosis

Transient nephromegaly

Congenital nephrotic syndrome

Glycogen storage disease

Acquired cystic kidney disease
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a combination of positional cloning, direct sequencing

and utilization of the rapidly expanding genome data-

bases, the major causative genes for both ADPKD

(PKD1 and PKD2) as well as ARPKD (PKHD1) have

been identified (7–10) (> Table 36-3). Details specific to
the molecular genetics of ARPKD and ADPKD are

addressed in the respective sections that follow. Numer-

ous studies have demonstrated that the protein products

of the ADPKD and ARPKD genes are membrane-bound

proteins which interact and generally exist in multimeric

protein complexes at various sites in cells. The primary

sites of ‘‘cystoprotein complex’’ localization have been

reported to be apical cell membranes (particularly on or

adjacent to the primary cilium), adherins junctions, des-

mosomes, and focal adhesions (11–15). Multimeric cysto-

protein complexes thus interact with a number of distinct

signal transduction pathways which appear to be critical

in normal tubular growth and differentiation. Mutations

in PKD genes result in abnormal cystoprotein structure

and function, with subsequent aberrant integration of

complex signaling events resulting in the unique pheno-

type of the cystic epithelial cell. Although the precise

mechanisms by which specific PKD gene mutations result

in cyst formation have not yet been fully elucidated,

considerable progress has been made in understanding

the pathophysiology of cyst formation. Key pathogenic



. Table 36-3

Human Polycystic Kidney Disease Genes and Proteins

Disease Gene

Mode of

inheritance

Chromosome

location Protein Function/Role

ADPKD PKD1 AD 16p13.3-p13.12 Polycystin 1 ?Receptor

ADPKD PKD2 AD 4q21-q23 Polycystin 2 Cation channel

ARPKD PKHD1 AR 6p21 Fibrocystin (polyductin) ?Receptor

GCKD (hypoplastic

variant)

HNF-1b AD 17cen-q21.3 Hepatocyte nuclear factor –

1beta

Transcription

factor

AD, Autosomal Dominant, AR, Autosomal Recessive
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features of the cystic phenotype have been identified

(6, 15, 16). Such features are critical as targets for the

development of future therapies, and include:

● Abnormalities of expression and function of the epi-

dermal growth factor (EGFR) – axis

● Decreased intracellular calcium with aberrant intra-

cellular cAMP signaling

● Abnormal structure and/or function of the primary cilia

● Alterations in cell-cell, and cell-matrix interactions

Each of these pathogenic processes likely contributes to

some extent to one or more of the fundamental features of

renal cyst formation and progressive enlargement, name-

ly: (1) tubular cell hyperplasia; (2) tubular fluid secretion;

and (3) abnormalities in tubular extracellular matrix,

structure, and/or function (> Fig. 36-1) (16–20). As the

following sections will illustrate, key insights into the

pathogenesis of cyst formation in PKD have been

provided by rodent models of ARPKD and ADPKD

(> Table 36-4). This Table does not include the increasing

number of reported genetically-manipulated ‘‘knockout’’

or conditionally targeted genetic models, many of which

have not been fully characterized as of this writing. The

interested reader is referred to the following readings

which review the most significant of these models pro-

duced to date (21–24). Several of these models have been

used to test the efficacy of novel therapies.
Renal Tubular Cell Hyperplasia

Renal tubular hyperplasia is a central morphologic feature

of all described human renal cystic diseases (25, 26). On

the basis of mathematic modeling of cyst growth, it has

been shown that tubular cell hyperplasia, with expansion

of tubular wall segments to accommodate an increased

cellular mass, is an essential factor in cyst formation and
enlargement (27). Multiple studies in vivo and in vitro

have demonstrated abnormal renal tubule epithelial pro-

liferation. Increased renal tubular epithelial cell prolife-

ration is a feature of both cystic and non-cystic tubular

epithelium from ADPKD and ARPKD kidneys (28). Cyst-

derived epithelial cells from ADPKD and ARPKD dem-

onstrate increased cell growth potential compared with

controls (29, 30).
The EGFR-Axis

Dysregulation of growth factors/receptors have a primary

role in tubular cell hyperplasia. A growing body of evi-

dence implicates one or more members of the ErbB re-

ceptor family, including the epidermal growth factor

receptor (EGFR), as well as the related receptors, ErbB2

and ErbB4. In both human ADPKD and ARPKD and in

every rodent models of PKD published to date, cystic

kidneys display characteristic alterations in EGFR expres-

sion. Both quantitative abnormalities, including increased

mRNA and protein, and qualitative differences, in partic-

ular, the appearance of ‘‘mislocalized’’ EGFR expressed on

the apical surface of tubular epithelium, are seen (31–33).

Apical EGFR is functional and capable of transmitting

mitogenic signals in vitro (34). Inhibition of EGFR fun-

ction in vitro by treatment with either an inhibitor of

tyrosine kinase function or a blocking antibody inhibits

formation of proximal tubule cysts and significantly de-

creased explant growth and distal nephron differentiation

in metanephric organ culture models (35, 36). Additional

support for a central role for EGFR in the pathogenesis

of cyst formation is provided by in vivo data. Inhibition

or reduction of EGFR function, either by treatment

with a novel tyrosine kinase inhibitor (37), or genetic

manipulation (38), leads to a marked reduction in cyst

formation and progressive enlargement in animal models.



. Figure 36-1

Pathophysiology of renal cyst formation. Studies in a variety of experimental models, in addition to human ADPKD and

ARPKD tissue, implicate three major factors in renal cyst formation and progressive enlargement. Normal renal tubular

absorptive epithelium can become cystic if (a) hyperplasia, localized to a distinct nephron segment, requires

accommodation of increased renal mass; (b) secretion, as opposed to absorption, leads to the accumulation of intratubular

fluid; and (c) extracellular matrix (ECM) abnormalities alter the epithelial microenvironment to further stimulate

proliferation and secretion. The figure depicts the difference between ADPKD epithelia, where proliferation leads to

isolated cysts which are not connected to intratubular flow and can grow only through transtubular fluid movement; and

ARPKD epithelia, where proliferation leads to thickened tubular ectasia and where fluid secreted across tubular walls

remains part of urinary flow. These processes are not mutually exclusive, may reflect characteristics of undifferentiated

epithelium, and operate in concert during tubular cysr formation and progressive enlargement.
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The central role of EGFR-family members in the patho-

genesis of ARPKD has been recently confirmed by the

demonstration that ErbB2, rather than EGFR (or ErbB1)

is predominantly overexpressed and apically mislocated

in the PCK rat, an orthologous ARPKD rodent model.

This model, which does not respond to ErbB1 inhibition

(39) responds dramatically in-vivo to therapies which

decrease active phosphorylated ErbB2 (40, 41) This re-

sponse includes a dramatic reduction in renal cyst forma-

tion and progressive enlargement, an improvement in

biliary tract ectasia and periportal fibrosis, and dramatic

improvements in renal function and renal concentrating

ability. Given the importance of G-protein coupled recep-

tors in cystogenesis previously noted, it is significant that

activation of such receptors leads to significant transacti-

vation of the EGFR family (42).

ErbB2 (HER-2) overexpression is seen in some cysts of

ADPKD kidneys but not seen in late-stage ARPKD kidneys
(43). Late-gestation/early post-natal human ARPKD kid-

neys samples, however, show increased ErbB2 expression

compared with normal human fetal and postnatal kidneys

(44). Wilson et al. (45) demonstrated that apical localized

EGFR complexes in normal fetal and ADPKD epithelia

are heterodimers of EGFR (ErbB1) and ErbB2, while basal

membrane localized EGFR in normal adult renal epithelia

are comprised of EGFR (ErbB1) homodimers. They fur-

ther showed that inhibition of ErbB2 corrected the migra-

tory phenotype seen in ADPKD cells. Overexpression and

mislocalization of another ErbB family member, ErbB4,

has been demonstrated in cystic collecting tubule epithelia

of two ARPKD rodent models (46).

Overexpression of several EGF related growth factors/

ErbB ligands, is also a prominent feature of both ARPKD

and ADPKD cystic epithelia. Renal cyst fluid contains

EGF or EGF-like peptides in mitogenic concentrations,

despite apparent reductions in EGF tissue expression



. Table 36-4

Rodent Models of PKDa

Mouse

model

Mode of

inheritance

Chromosome

location Gene

Protein

product Function/Role/Comments

bpk AR 10 Bicc1 bicaudal C RNA-binding protein

cpk AR 12 Cys1 cystin Cilia-associated protein

inv AR 4 Inv inversin Role in left-right axis development

jck AR 11 Nek8 nek8 Function unknown

kat AR 8 Nek1 nek1 Function unknown

jcpk AR 10 Bicc1 bicaudal C Allelic with bpk

orpk AR 14 Ift88

(TgN737)

IFT88 (polaris) Role in left-right axis development; Cilia-

associated protein

pcy AR 9 Nphp3 Nephrocystin3 Model of JN

Rat model

Mode of

inheritance

Chromosome

location Gene

Protein

product Function/Role/Comments

Han-SPRD AD 5 PKDR (Cy) SamCystin Function unknown

LPK AR ? ? ? Function unknown

PCK AR 9 PKHD1 fibrocystin

(polyductin)

Orthologous model of human ARPKD, with

some clinical features of ADPKD

WPK AR 5 MKS3 Meckelin Function unknown

AD Autosomal Dominant, AR Autosomal Recessive
a‘‘Knockout’’ models for PKD are not included in this listing
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(29, 47–50). Treatment with EGF transiently improves

renal function in murine models (51), but has no effect

on histopathologic abnormalities and continued EGF

treatment worsens disease and shortens survival (52).

TGF-a and EGF are cystogenic in both murine embryonic

organ cultures (53) and normal human kidney cells grown

in a unique collagen gel system in vitro (54). ADPKD

kidneys and cells derived from ADPKD have increased

mRNA or protein levels of TGF-a (31, 55), and transgenic

mice that overexpress TGF-a develop cystic kidneys (56).

Loss of TGF-a, however, does not modify cystic kidney

disease in an ARPKD mouse model, suggesting that there

is significant redundancy in EGFR ligands which can

promote cyst formation or growth in ARPKD (57).

Additional data suggest that inhibiting EGFR-ligand

function may also partially ameliorate cystic disease.

Treatment with an inhibitor of TACE, a metalloproteinase

implicated in the processing of several EGF-related

growth factors, decreased cystic kidney disease in a mu-

rine model, less effectively than EGFR inhibition (58).

Combining inhibition of EGFR ligand release with

EGFR inhibition maximized therapeutic effectiveness

while minimizing toxicity (59). Additional EGFR ligands,
including amphiregulin and heparin-binding EGF, are

abnormally expressed in PKD and may prove to also

have a role in proliferation of cystic epithelium (50).

c-Src is an important intermediate in several key

cystogenic signaling pathways. Src is a critical intermedi-

ate which integrates proliferation from both G-coupled

protein receptors and the EGFR-axis (6, 16). Increased Src

activity (pY418) was found to be associated with a more

severe renal cystic disease in two ARPKD rodent models.

Furthermore, treatment of these models with an inhibitor

of Src ameliorated both the renal and hepatic disease

through inhibition of G-protein coupled receptor and

EGFR-axis triggered phosphorylation cascades (41).
cAMP and Intracellular Calcium Ion

Another major contributor to cellular proliferation in

both ADPKD and ARPKD is intracellular cyclic AMP

(cAMP). Unlike normal renal epithelia, ADPKD and

ARPKD cystic epithelia respond to increased intracellular

cyclic AMP (cAMP)with an increase, rather than decrease,

in proliferation due to phosphorylation of B-Raf (60–62).
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Normal and polycystic kidney epithelia from an ARPKD

rodent model also demonstrate differences in regulation

of cAMP-dependent protein kinase (PKA), which is asso-

ciated with increased proliferation in vitro (63).

Intracellular calcium concentrations have been iden-

tified as a critical component of the pro-mitogenic cAMP

response of cystic epithelia. Several studies have demon-

strated that calcium restriction induces a switch to this

cAMP dependent growth phenotype, whereas addition of

calcium to PKD cells in culture restores the normal anti-

mitogenic response to cAMP (64, 65). In addition, cells

that do not express PKHD1, the mutated gene in ARPKD,

have decreased intracellular calcium and increased epider-

mal growth factor (EGF)-induced proliferation, suggest-

ing that loss of one or more PKD proteins may lead to

abnormal proliferation by modulation of intracellular

calcium (66). In addition, Leuenroth et al. (67) recently

showed that triptolide (a Chinese herb) induces calcium

release in a polycystin-2 dependent manner. Further, trip-

tolide treatment of a mouse model of ADPKD resulted in

attenuated cyst formation and decreased tubular cellular

proliferation.

The cAMP pro-mitogenic response in PKD cells is

associated with phosphorylated B-Raf activation of the

mitogen-activated protein kinase (MAPK) pathway, which

can mediate a variety of cellular processes, most notably

cell proliferation. There is considerable ‘‘cross talk’’ bet-

ween the cAMP and MAPK signaling pathways in both

normal and disease states (68). Increased phosphorylation

of several MAPK pathway members is a prominent feature

of rodent and human ADPKD and ARPKD kidneys and

tubular epithelial cells (23, 69, 70). There are conflicting

animal data, however, as to whether inhibition of ERK 1/

2 impacts progression of cystic kidney disease (23, 71).
Apoptosis

Dysregulation of apoptosis, or the balance between

apoptosis and proliferation, may also contribute to the

progression of ARPKD and ADPKD (72–74). Increased

rates of apoptosis and increased caspase 3 and 4 activity

have been demonstrated in kidneys from ARPKD rodent

models (75, 76). A marked increase in caspase 3 and

7 activity has also been reported in an ADPKD rodent

model (77, 78). Furthermore, caspase inhibition reduced

tubular apoptosis and proliferation and slowed cystic

kidney disease progression in that same model (79).

Mice deficient in the anti-apoptotic molecule, bcl-2,

develop severe multicystic hypoplasia characterized by

proximal and distal tubular cysts and hyperproliferation
of epithelium and interstitium (80). Alternatively, in-

creased bcl-2 expression has been demonstrated in animal

models of both ARPKD and ADPKD (73, 76, 77). These

finding suggest that the balance of pro- and anti-apoptotic

mediators, rather than the absolute expression levels,

may be a critical factor in the development of cystic

kidney disease (77).
Proto-oncogenes

Abnormal expression of proto-oncogenes, in particular,

c-Myc may also contribute to abnormalities in prolifera-

tion and apoptosis, leading to cyst development. In both

murine ARPKD and human ADPKD kidneys, c-Myc is

overexpressed in cystic tissue (73, 81, 82) and is associated

with a marked increase in both tubular cellular prolifera-

tion and apoptosis (83–85). In addition, c-Myc antisense

oligonucleotides have been used to ameliorated cystic

kidney disease in a murine ARPKD model (85).
mTOR

The target of rapamycin (mTOR) pathway is currently a

growing area of interest in the pathophysiology PKD

because it integrates signals from growth factors (includ-

ing EGFR), G-protein coupled receptors (which generate

cAMP), cellular energy levels, nutrient status and stress

conditions to stimulate protein synthesis and cell growth

through activation through phosphorylation of S6K1

and eIF4E (86, 87). The TSC1 and TSC2 genes, when

mutated, cause tuberous sclerosis, a disease in which

renal cystic lesions may accompany the more classical

angiomyolipomas. TSC1/2 mutations upregulate mTOR

signaling. The fact that the TSC2 and PKD1 genes lie

adjacent to each other on human chromosome 16p13.3,

as well as the fact that the cytoplasmic tail of polycystin-1

interacts with mTOR led to an evaluation of mTOR

activity in polycystic kidney disease. In a variety of ani-

mal models, as well as in human ADPKD and ARPKD

cyst-lining epithelia, expression of phospho-mTOR and

p70S6K is increased (88). The mTOR pathway is regulated

by polycystin-1, and its inhibition reverses renal cystogen-

esis in polycystic kidney disease. These findings, com-

bined with therapeutic efficacy of rapamycin (an mTOR

inhibitor) in ameliorating cystic disease in the orpk, bpk

and Han:SPRD rodent models has led to the development

of pilot clinical trials for rapamycin in patients with

ADPKD (87).
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Arachidonic Acid Metabolites

20-hydroxyeicosatetratraenoic acid (20-HETE), is formed

by the o-hydroxylation of arachidonic acid by cyto-

chrome P450 (CYP) 4A and 4F enzymes (89). Recent

evidence has implicated 20 HETE as a mediator of cellular

proliferation in normal and malignant renal cells (90–94).

Further, norepinephrine, angiotensin II, and EGFR activ-

ity (all upregulated in PKD) stimulate the synthesis and

release of 20-HETE and increase proliferation in both

vascular smooth muscle cells and renal tubular epithelial

cells (90–92, 95). With this rationale, recent studies have

demonstrated a significant role of 20-HETE in mediating

collecting tubular epithelial proliferation in the murine

BPK and rodent orthologous PCK models of ARPKD

(96); Further, in these studies, when 20-HETE synthesis

was selectively decreased, or 20-HETE activity was spe-

cifically inhibited using genetic or pharmacological

inhibition, both in vitro and in vivo, cystic epithelial

proliferation, cyst formation, and progressive cystic en-

largement were markedly inhibited (96). Notably, the

decrease in proliferation and amelioration of cystic dis-

ease was associated with a dramatic decrease in EGFR-

activity and downstream signaling. Clinical development

of 20-HETE inhibitors as potential therapeutic agents in

PKD is being actively pursued.
Fluid Secretion

In addition to epithelial hyperplasia, tubular fluid secre-

tion is an important feature of renal cyst formation and

progressive enlargement (25, 26, 29). Given the anatomi-

cal differences discussed below, it is likely that tubular

fluid secretion is quantitatively and qualitatively different

in the pathophysiology of cyst formation in ADPKD and

ARPKD. On a theoretical basis, tubular fluid secretion in

addition to hyperplasia, fulfills the requirements for cyst

growth predicted by mathematic modeling (27). Cellular

proliferation without tubular secretion would produce

solid tumor nests of epithelial cells rather than cysts. In

ADPKD more than 70% of cysts have no afferent or

efferent tubular connections, and thus must fill by trans-

epithelial secretion of solute and fluid (97, 98). In con-

trast, microdissection studies confirm that enlarged,

ecstatic collecting tubules in ARPKD are in continuity

with the urinary space (99). One would not expect trans-

tubular secretion to be as critical in the pathogenesis of

changes in ARPKD as in ADPKD, unless there is down-

stream obstruction (which is not a characteristic finding

in ARPKD). Studies in a variety of model systems have
evaluated possible mechanisms involved in PKD tubular

fluid secretion. These include alterations in ciliary struc-

ture and function, intracellular calcium transport, cyclic-

AMP activity, epithelial sodium channel function, and

sodium potassium ATPase localization and activity.
Cilia

Studies in ARPKD and ADPKD animal models, and

human kidneys and cells, (as well as studies in other

renal cystic diseases, such as nephronophthisis), have

demonstrated that many of the disease-associated pro-

teins appear to be present as multimeric complexes on,

or in close proximity to, the primary cilia that are present

on the apical membranes of renal tubular epithelial cells

(100). In tubular epithelial cells, cilia project into the

lumen and are thought to have a mechanosensory role

(101, 102). Abnormalities in ciliary structure and/or func-

tion have been demonstrated in many PKD animal mod-

els, as well as in epithelium isolated from human ADPKD

and ARPKD kidneys (103–107).

Pkd1 �/� cells have normal-appearing cilia, but lack

the flow-induced Ca++ response noted in normal cells

(101, 108). This finding suggests that polycystin com-

plexes in or near the cilia act as flow-sensors, and that

Ca++ influx occurs via a functional polycystin channel

(predominantly mediated by polycystin 2). The Ca++

influx consequently induces release of Ca++ from intracel-

lular stores. As previously noted, the polycystin complex is

also found at desmosomes, adherens junctions, and focal

adhesions (11–15). Primary cilia can sense changes in shear

stress and fluid flow at the apical cell surface, whereas focal

adhesions can sense tensile strength of cell-matrix attach-

ments, and cell-cell junctional complexes sense forces

between cells. Therefore, polycystin complex localization

to these sites suggests a complex integration of mechan-

osensation with multiple signal transduction pathways.

It should be noted that data localizing a large number

of cystoproteins to apical cilia have recently been called

into question. To co-localize proteins of interest to cilia,

tagged-antibodies have often been mixed with an anti-

acetylated alpha tubulin antibody prior to tissue stain-

ing. It now appears that this procedure gives many false

positives through non-specific protein-protein interac-

tions of the antibodies prior to tissue staining (personal

communication, Joel Rosenbaum PhD; Yale University,

August 2008).

At the time of this writing, a primary role for isolated

ciliary abnormalities in cystogenesis remains controversial

in ADPKD and ARPKD. One cannot ignore the findings
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that ciliary structural and functional abnormalities appear

to be present in cystic tissue. However, in addition

to the methodological problems noted above in protein

co-localization studies, recent data suggest that polycystin-

fibrocystin complexes may be found in subapical endo-

somes adjacent to, but not superimposed upon, ciliary

basal bodies (centrosomes) in electron micrographs

of human ADPKD and ARPKD kidneys. These endo-

somes bud around cilial axonema and appear in cyst

fluid and urine. (Chris Ward, PhD, Mayo Research Foun-

dation, personal communication, August 2008). Current

data suggest that ciliary abnormalities may have a more

primary role in syndromic renal cysts and other organ

abnormalities seen in so called ‘‘ciliopathies’’ such as

Meckel-Gruber syndrome, Bardet-Biedl syndrome, Oral-

facial-Digital syndrome and perhaps nephronophthisis

(see chapter 6 on Syndromes in Section One of this

Textbook and Chapter 36 on Nephronophthisis in this

Textbook). However, as suggested above, in ADPKD and

ARPKD, it appears that cilia are part of a complex patho-

physiological process linking mechanosensation to inte-

gration of multiple cell-signaling pathways emanating

from multiple sites within the cell.
cAMP and Transport

Several studies support a major role for cyclic adenosine

monophosphate (cAMP)-mediated chloride secretion dur-

ing in vitro cyst formation (60, 109–111). A putative lipid

‘‘secretagogue’’ isolated from cyst fluid of human ADPKD

kidneys was found to stimulate intracellular cAMP and

stimulate fluid secretion (112) and more recently was

confirmed to be the cAMP agonist forskolin (113).

Pharmacologic interventions directed towards down-

regulating cAMP levels in cystic epithelia are therapeutic

in both ARPKD and ADPKD animal models. Inhibitors of

the vasopressin V2 receptor, a G-protein coupled, adeny-

late cyclase activating receptor present in the collecting

duct, which modulates levels of intracellular cAMP, ame-

liorates renal cyst disease in the PCK rat model of ARPKD

and the Pkd2(-/WS25) model of ADPKD (114–116). In both

models, improvement in cystic kidney disease was associated

with decreased levels of cAMP and aquaporin 2. Inter-

estingly, increased water intake, which functionally down-

regulates V2R activity, also improved cystic kidney disease

and decreased kidney cAMP levels (117). In a related study,

orthologous ARPKD (PCK) rats were bred to a Brattel-

boro rat strain (which lacks a functional renal vasopressin

axis), and resultant double mutants demonstrated signifi-

cant amelioration of renal cystic disease (118). Although
background genetic modifiers may have influenced the

results, such genetic complementation studies further

support the primary role of G-protein mediated increases

in renal epithelial cAMP in cystogenesis. Accordingly,

controlled Phase 3 clinical trials with a VPV2R inhibitor

(Tolvaptan) in patients with ADPKD have been initiated

in both the United States and Japan. In addition, studies

in animals and European pilot studies in ADPKD patients

suggest that octreotide, a somatostatin analogue that

decreases cAMP activity in both renal and biliary epithe-

lium, may be effective in ameliorating cystic kidney and

liver disease in ADPKD (119–121). However, recent data

suggest that increased cAMP activity may not be the final

‘‘effector’’ for mediating cyst growth. The therapeutic

effect of Src inhibition on renal and biliary disease in

bpk and PCK rodent models, was not associated with

significant changes in intracellular cAMP levels. These

findings suggest that Src activity in PKD is downstream

and independent from cAMP activation (41).

It has been hypothesized that cAMP-stimulated chlo-

ride and fluid secretion occurs in PKD through activity of

the CFTR (cystic fibrosis transmembrane receptor), the

chloride channel mutated in cystic fibrosis (122). CFTR

Cl- channels exist in apical membranes of epithelial cells

and are major mediators of forskolin-stimulated chloride

and fluid secretion by epithelial cells of human polycystic

kidneys in vitro (122, 123). CFTR is required for cAMP-

dependant in vitro renal cyst formation (124). In vivo

support for a role of CFTR in the pathogenesis of PKD

was provided by a report of an ADPKD kindred in which

cystic fibrosis was also present. Patients with ADPKD and

CF (which results in a loss of functioning CFTR) were

found to have less severe disease than those with ADPKD

who did not have CF (125). However, a subsequent report

failed to confirm such a protective effect (126). An in vitro

study of CFTR inhibitors and cyst growth in 3D collagen

gels demonstrated that cyst growth inhibition correlated

with cAMP-stimulated chloride current inhibition, but

not cell proliferation, suggesting that an effect, if present,

is related to inhibition of fluid secretion only (127). Stud-

ies of ARPKD rodent models bred with a CFTR null

mouse failed to show improvement in kidney disease in

cystic animals lacking CFTR compared to those that

expressed CFTR (128). Thus, these data demonstrate

that CFTR does not have a significant impact on

ARPKD cyst formation and expansion. The most attrac-

tive alternative hypothesis to date, supported by an in-

creasing body of electophysiological data in normal and

cystic tissue implicates abnormal EGFR-mediated down-

regulation of the amiloride-sensitive Na+ channel in

tubular secretion in ARPKD (129–131). EGFR-expression
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leads to decreased ENac subunit production at both

the mRNA and protein level with consequent electro-

physiological alterations. A block in active Na+ transport

at the luminal membrane results in intratubular Na+

accumulation which obligates anion and fluid transport

through active channels and perhaps, the paracellular

pathway. With the availability of new reagents and tech-

nologies to perform definitive transport studies in human

kidney epithelia, studies are underway in many labora-

tories to delineate both the similarities and differences

underlying abnormal tubular secretion in ADPKD and

ARPKD.

Additional in vivo and in vitro studies demonstrate a

potential role for quantitative and qualitative alterations

in Na+-K+-ATPase activity in mediating tubular fluid

secretion in cystogenesis (132–137). In proximal tubules,

it has been postulated that increases in Na+-K+-ATPase

activity modulate tubular secretion and cyst formation

through activation of a secondary active transport process

(e.g., tubular organic anion secretion), which osmotically

obligates intratubular fluid accumulation cystogenesis

(132–134). In collecting tubules, apical, as opposed to

normal basolateral cell surface Na+-K+-ATPase expression

may mediate basal to apical vectorial sodium transport

and thus directly drive fluid secretion in affected nephron

segments in ADPKD and ARPKD (135–137). Apical Na+-

K+-ATPase expression in murine ARPKD may reflect an

exaggeration of the normal developmental profile of col-

lecting tubule sodium pump expression (137). This, in

association with the relatively undifferentiated ultrastruc-

tural and genetic profile of cystic tubular epithelium (18),

suggests that abnormalities in the differentiation program

of cystic tubular cells are fundamental to the process of

cystogenesis.

Alternatively, apical misclocation of the Na+-K+-

ATPase in many PKD specimens from end stage kidney

(or those shipped under less than optimal conditions

may), may reflect the results of ischemic injury. As

ADPKD kidneys enlarge and vessels splay around enlarg-

ing tubular cysts, there are parenchymal areas which are

underperfused and chronically ischemic. These changes

not only result in mislocalization of the Na+-K+-ATPase

and many additional changes, but contribute to the char-

acteristic chronic fibrosis in ADPKD kidneys which leads

to end stage renal disease. Similar alterations of the Na+-

K+-ATPase and other polarized proteins can also artifi-

cially result from 24–48 h of cold ichemia time in ADPKD

kidneys studied post-nephrectomy. These variables may

explain, in part, conflicting reports demonstrating nor-

mal, basolateral Na+-K+-ATPase expression in freshly

isolated PKD kidneys and some PKD models (138).
Extracellular Matrix

The third major mediator of tubular cyst formation and

progressive enlargement is abnormalities involving the

extracellular matrix (18, 25, 139, 140). Diffuse ultrastruc-

tural and biochemical abnormalities of tubular basement

membranes have been demonstrated in human and ani-

mal models of PKD. Specific defects in the biosynthesis

and transport of sulfated proteoglycans have also been

identified (141–143). Renal tubular cells from patients

with ADPKD grown in vitro produce increase amounts

of extracellular matrix when compared with normal

tubular epithelia (144).

It does not appear that matrix abnormalities mediate

simple changes in the compliance or viscoelastic proper-

ties of tubular basement membranes leading to distension

under normal intratubular pressures (145). Rather, it

would appear that altered matrix composition modulates

cyst formation through altered tubular epithelial cell–

matrix interactions. These interactions regulate various

aspects of cell growth, cell surface protein expression,

cytodifferentiation, and gene expression (18, 19). Con-

ceivably, altered epithelial cell-matrix interaction could

modulate or amplify the processes of hyperplasia and

fluid secretion discussed above. b-4 integrin and its li-

gand, laminin a-5, a component of the basement mem-

brane, are aberrantly expressed in polycystic kidney

disease and may have a role in cell adhesion and migration

abnormalities seen in ADPKD cyst-lining epithelial cells

(146). A recent study reported the development of PKD in

a mouse harboring a hypomorphic mutation in the lami-

nin a-5 gene (147). These and other findings suggest that

a primary defect in one ECM component is sufficient to

cause aberrant cell proliferation and development of renal

cysts (148).

Experimental evidence suggests that matrix metallo-

proteinases (MMPs) and tissue inhibitors of metallopro-

teinases (TIMPs) may also play a role in progression

of disease in PKD (149–151). Elevated serum levels of

MMPs, including MMP-1, TIMP-1 and MMP-9 have

been demonstrated in a cohort of ADPKD patients

when compared to normal controls (152). Although it is

difficult to determine whether abnormal MMP expression

is a reflection of a primary abnormality or a secondary

effect, data suggest that inhibition of MMPs may have an

impact on the severity of disease in animal models of

ADPKD and ARPKD (58, 153). Overexpression of other

basement membrane, extracellular matrix and cell adhe-

sion components have also been demonstrated in PKD.

Tenascin, an ECM glycoprotein, is abnormally expressed

in human ARPKD and ADPKD fetal kidneys and in a
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murine model of ARPKD (154, 155). Irregular expression

of alpha-integrin subunits has also been demonstrated in

fetal PKD kidneys (156).

Abnormal processes within the interstitium leading

to interstitial inflammation and fibrosis contribute to

progression in all cystic kidney diseases. For instance,

MCP-1, a chemoattractant and mediator of interstitial

inflammation, is upregulated in ADPKD rats (157). In

addition, oxidant stress is increased and protective effects

of antioxidants decreased in the kidneys of animal models

of both ARPKD and ADPKD models (158). Abnormal-

ities in steroid and lipid metabolism have also been

demonstrated in murine ARPKD (159–161).

Angiogenesis may also have a role in the pathogenesis

of cyst expansion in ADPKD. When cysts enlarge,

their nutrient requirements may outstrip their blood

supply, in a manner analogous to tumor progression in

cancer. ADPKD kidneys show increased vascularity

around cysts and evidence of ongoing angiogenesis

(162). Endothelin levels are increased in human and

rodent ADPKD kidneys (163). ET-1 overexpressing

mice also develop polycystic kidneys and interstitial fibro-

sis, although they do not develop hypertension. Yet, inter-

estingly, blockade of either endothelin A or B increased

the severity of polycystic kidney disease in two ADPKD

animal models (164, 165). The authors speculated that

acceleration of cystic kidney disease was due to altered

balance between ETA and ETB. Whether angiogenesis

has a role in cyst expansion in ARPKD remains to be

determined.

Theories of renal cyst formation generated in experi-

mental models are not mutually exclusive and are largely

complementary. A mutant gene or environmental factors

can directly lead to alterations in tubular epithelial prolif-

eration. In addition, there is increasing recognition that

modifying genes can significantly alter the cystic kidney

disease caused by the mutated PKD gene (161, 166–171).

Environmental factors can also modulate the expression

of a mutant gene or directly lead to tubular cell death.

Resultant alteration of tubular cell metabolism may sub-

sequently lead directly to the abnormal sorting of trans-

port proteins, growth factor receptors, or cell adhesion

molecules, with resultant abnormal extracellular matrix

production, or production of growth factors mediating

tubular hyperplasia. Induced changes in transtubular

transport energetics may lead to hyperplasia secondary

to increased transmembrane sodium flux, whereas pro-

grammed cell death may lead to further hyperplasia sec-

ondary to tubular regeneration. Alterations in sodium or

chloride-mediated transtubular transport could lead to

net intratubular fluid accumulation. Subsequent increases
in tubular wall tension may further increase stimulation

of epithelial proliferation, leading to tubular hyperplasia.

The presence of a particular pattern of tubular hyperpla-

sia, along with necrotic debris from cell death, may lead to

partial tubular obstruction and further increases in tubu-

lar wall tension. Finally, abnormal extracellular matrix

production could alter the epithelial microenvironment,

further increasing hyperplasia and transtubular transport,

thereby contributing to cyst formation and progressive

cyst enlargement. Such an overall hypothetical schema

of renal cyst formation appropriately focuses future inves-

tigations on the molecular mechanisms by which tubular

epithelial hyperplasia is controlled and tubular metabo-

lism are altered in both experimental and human cystic

diseases.
The Cystic Phenotype and Targeted Future
Therapy

As discussed in the previous sections, the extensive studies

delineating the molecular and cellular biology of ADPKD

and ARPKD over the past decade have defined a unique

‘‘cystic phenotype’’, which provides a number of potential

targets for future genetic and pharmacological therapy

(> Fig. 36-2). Relative to controls, the cystic ADPKD

and ARPKD epithelial cell:

1. Demonstrates quantitative (increased amount) and

qualitative (apical vs. basolateral) expression of vari-

ous members of the EGFR-family of receptors and

ligands. This initiates an autocrine-paracrine cycle

of proliferation through activation of the Ras-Raf-

MEK-ERK pathway and stimulates tubular fluid

secretion by inhibiting amiloride sensitive sodium

transport.

2. Demonstrates increased intracellular cAMP, which

mediates proliferation through activation of PKA,

phosphorylation and activation of the B-Raf/MEK-

ERK pathway and stimulates tubular fluid secretion

through activation of PKA and apical CFTR-mediated

chloride transport.

3. Interacts with an abnormal microenvironment which

includes poorly characterized abnormalities of ECM

structure and function, increased cytokines, and an-

giogenesis that secondarily increases proliferation and

tubular secretion.

Delineation of the ‘‘cystic phenotype’’ identifies key tar-

gets for future therapeutic intervention. As noted in the

text and > Fig. 36-2, the most promising therapies for

future development and clinical trial target the abnormal



. Figure 36-2

The Cystic Phenotype and Therapeutic Interventions. The figure depicts the two primary signaling pathways which mediate

progressive cyst formation and enlargement in ADPKD and ARPKD: Abnormal expression of the EGFR-axis and adenylate

cyclase activating receptor activity leading to increased cAMP (see text for details). Superimposed on the figure are key

sites of therapeutic targeting: 1. Monoclonal antibodies against the EFGR-family (e.g., cetuximab; transtuzumab;

nimotuzumab); 2. Small molecule inhibitors of EGFR-family tyrosine kinase activity (e.g., erlotinib, lapatinib, HKI-272);

3. Inhibitors of adenylate cyclase activating receptors (e.g., tolvaptan; somatostatin analogues); 4. Inhibitors of c-Src kinase

activity which decrease EGFR-family ligand availability and inhibit tyrosine kinase activity, as well as decrease B-Raf activity

(e.g., bosutinib, SKI-758, SU-6656); 5. Matrix metalloproteinase inhibitors which inhibit release of bioavailable EGFR-ligands

(e.g., XL-784); 6. mTOR inhibitors (e.g., rapamycin); 7. Inhibitors of MEK kinase activity (e.g., UO126, PD98059). Additional

therapies described in the text and recent reviews (21, 173, 285) but not depicted include: 20-HETE inhibitors (96); CDK

inhibitors (458), Reactive Oxygen Species inhibitors and TNF-alpha inhibitors (459).
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EGFR-axis and adenylate cyclase activation at multiple

sites. Perhaps the most promising therapies will target

key signaling intermediates which appear to integrate

these separate pathways, such as Src kinase (> Fig. 36-2)

(6, 16, 21, 41, 172, 173) and/or utilize multiple agents in

combination. At this writing, a number of agents are in

advanced states of pre-clinical development or Phase 2–3

pilot clinical trials. The interested reader is referred to

regularly updated listings of ongoing clinical trials for

ADPKD and ARPKD at (www.pkdcure.org; and http://

clinicaltrials.gov/.).
Autosomal Recessive Polycystic Kidney
Disease (ARPKD)

ARPKD is an inherited disorder characterized by cystic

dilations of renal collecting ducts and varying degrees of

hepatic abnormalities consisting of biliary dysgenesis and

periportal fibrosis (5). ARPKD has alternatively been re-

ferred to as ‘‘infantile’’ polycystic kidney disease. This

term, however, is generally no longer used because of

recognition that the disease can present any time from

the prenatal period through adolescence, and rarely even

http://www.pkdcure.org
http://clinicaltrials.gov/
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in adulthood. Furthermore, other forms of PKD, includ-

ing ADPKD, can present in the neonatal period ( 2, 174).
Epidemiology and Genetics

Based on published reports, the incidence of ARPKD is

1:10,000–1:40,000 ( 175, 176). The frequency of the gene

in the population is estimated to be approximately 1:70

( 177). However, the exact incidence is unknown, since

published repor ts var y in the po pulat ions stud ied (e. g. ,

autop sied p at ients ver sus s ur vivo rs ), and affec ted children

may die in the pe rinatal period w ithout a definitive dia gno-

sis. Wi th improvements in neonatal management lead ing to

improved sur v ival r at es, a s w ell a s for ma l repor ting mechan-

isms (such a s a newly develo ped ARPKD registr y (178)),

more accurate incidence rates may become established.

Consistent w ith autosomal recessive disease, hetero-

zygotes (carriers) are unaffected. The recurrence risk for

subsequent pregnancies is 25%, and unaffected siblings

have a 66% risk of being a carrier for ARPKD (5). Males

and females are affected equally and ARPKD affects all

racial and ethnic groups.

ARPKD is caused by mutations in PKHD1 (polycystic

kidney and hepatic disease 1), a large, novel gene that

localizes to chromosome 6p21 (179). To date, all kindreds

w ith features t y pical of ARPKD have demonstrated link-

age to this locus (177). Thus, there is no ev idence for

genetic heterogeneit y in patients wit h the t y pical features

of ARPKD. Of note, kindred w ith features of ARPKD as

well as additional extrarenal abnormalities including skel-

etal and facial anomalies has been described and linkage

to the 6q21 locus excluded ( 180). Intrafamilial variability

in ARPKD disease phenot y pe was originally repor ted to

be unusual ( 181) in contrast to the w ide variabilit y often

seen in some ADPKD kindreds (see below). However

recent data suggest that up to 20% of ARPKD multiplex

pedigrees exhibit significant intrafamilial phenot y pic

variabilit y (182). Among families w ith at least one neona-

tal sur v ivor, the risk for perinatal demise of a subsequent

affected child is 37%. These data are impor tant for appro-

priate genetic counseling .

PKHD1 was cloned by two independent research

groups in 2002 ( 9, 10). The gene spans a region of over

400-kb of genomic DNA and contains at least 66 and

possibly over 86 exons. The mRNA for the gene is pro-

duced as multiple alternative transcripts. The primar y

transcript of approximately 14–16 kb in length encodes

a novel protein termed fibrocystin (alternatively named

polyductin). Several alternative transcripts have also

been described, several of which lack the transmembrane
domain, suggesting that (if translated) they may result in

production of secreted forms of fibrocystin ( 10). Fibro-

cystin is a ver y large protein w ith a predicted molecular

weig ht of 447 kD, similar in size to polycystin 1. The

precise function of fibro cystin is unknow n at present. How-

ever, protein mod eling sugge sts that it is a m embr an e-

bound protein wi th immunog lobulin-like proper ties

including the presence of several TIG/IPT domains

(immunog lobulin-like folds shared by plexins and tran-

scription factors). These motifs suggest that fibrocystin

may function as a receptor ( 9, 10). Recent studies have

demonstrated that fibrocystin undergoes proteoly tic

cleavage and that the C-terminal fragment of fibrocystin

translocates to the nucleus ( 183). In addition, fur ther

studies have shown that fibrocystin regulates the expres-

sion and function of polycystin-2 (184). The precise func-

tional significances of these obser vations are as yet

undefined but they again hig hlig ht the complexities of

PKD protein and signal transduction biolog y.
Pathogenesis

With the cloning and identification of PKHD1 as the

causative gene in ARPKD, detailed obser vations about

mutations and genot y pe-phenot y pe correlations have

begun to emerge. Several published series of multiple

ARPKD kindreds have demonstrated different PKHD1

mutations throughout the gene, without a clear clustering

at specific sites, and the majority of families have unique

(‘‘private’’) mutations (9, 185–187). In addition, most

patients studied in an ethnically diverse population are

compound heterozygotes (188), i.e., has a different muta-

tion on each PKHD1 allele. Mutations identified include

both missense and truncating mutations.

Genotype-phenotype analyses have also been per-

formed, although these studies are complicated by the

large number of mutations and high rate of compound

heterozygotes. The locus-specific database for PKHD1 con-

tains over 350 different mutations (www.humgen.r wt h-

aachen.de). Several studies have confirmed, however, that

patients with more pathogenic mutations (those with two

truncating mutations) displayed a very severe phenotype,

associated with a high rate of perinatal/neonatal mortality

(185, 188, 189). In contrast, amino acid substitutions

(missense mutations) were found to be more commonly

associated with a nonlethal presentation (190). The actual

position of the mutation along the gene, however, did not

appear to correlate overall with phenotype (188).

Despite recent advances in the understanding of the

molecular genetics of ARPKD, the pathogenesis remains

http://www.humgen.rwthaachen.de
http://www.humgen.rwthaachen.de
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poorly defined. Northern analyses and RT-PCR demon-

strated that PKHD1 is expressed in both fetal and adult

kidney, and to a much lesser extent in liver, pancreas and

lung. Expression in other organs was not seen (9, 10).

With the development of antibodies to the fibrocystin

protein, additional tissue and cellular localizations have

been delineated. During development, fibrocystin is

expressed in the branching ureteric bud/collecting

ducts of the developing kidney and is also present in

developing neural tube, gut, bronchi and vascular system

(191, 192). In the postnatal kidney, fibrocystin is primarily

expressed in the collecting duct, the site of cyst formation

in ARPKD. It is also present in the bile ducts and pancre-

atic ducts and islets. This expression pattern persists into

adulthood (191). On a cellular level, fibrocystin localizes

to primary cilia of renal collecting tubule and loop of

Henle epithelia as well as biliary and pancreatic ductal

epithelia (191–193). On a subcellular level, fibrocystin co-

localizes with polycystin 2 in the polycystin complex

adjacent to the basal bodies of cilia on the apical cell

surface, as well as at adherens junctions and focal adhe-

sions (192, 194). Recent data suggest that fibrocystin can

undergo a complex pattern of Notch-like processing in

which a large extracellular domain is shed in a process

mediated by ADAM family metalloproteinases. Concom-

itantly, an intracellular fragment is release by gamma

secretase actions (195). A similar pattern of processing is

also seen with polycystin 1, which appears to translocate

to the nucleus where it presumably affects expression of

multiple genes (196).

Studies of animals with PKHD1 mutations (either

spontaneous or genetically engineered) have provided

important insights into the abnormalities that can devel-

op when fibrocystin is not expressed normally. The PCK

rat harbors a 157-bp deletion in exon 36 of the rat ortho-

logue of the human ARPKD gene, and developed sponta-

neously in a colony of Sprague-Dawley rats (9, 197).

Although it is a genetic model of ARPKD, this model

has clinical features of both ARPKD and ADPKD kidney

and liver disease (9, 197). Affected animals develop pro-

gressive cystic enlargement of the kidneys after the first

week of life. Renal cysts develop predominantly in distal

tubules and collecting ducts. The animals also develop

features consistent with Caroli’s disease/congenital hepat-

ic fibrosis (198). Several Pkhd1 ‘‘knockout’’ models have

also been developed and harbor mutations at various

points along the gene. Interestingly, the phenotypes are

quite varied and quite dissimilar to human ARPKD (199,

200). Insights into the regulation of PKHD1 expression,

have been provided by the observation that mice with muta-

tions in hepatocyte-nuclear factor 1(HNF-1b), the gene
mutated in the human disease MODY5, develop renal

cysts and show a decrease in PKHD1 expression (201).

Further data demonstrate that HNF-1b itself directly reg-

ulates the activity of the PKHD1 promoter (202).

Recent studies have provided new information re-

garding the pathogenesis of congenital hepatic fibrosis

in ARPKD. CHF is characterized primarily by fibrosis

and bile duct proliferation although biliary cyst format-

ion is not a prominent feature. Increased expression of

pro-fibrotic molecules transforming growth factor-beta

(TGF-b) and thrombospondin–1 have been demon-

strated in human ARPKD livers (203). Livers from ortho-

logous PCK rats show a pattern consistent with the ductal

plate malformation of patients with CHF. Intrahepatic

bile duct dilatation with cystic changes and marked portal

fibrosis are particularly prominent (198, 204). Biliary

epithelium in the PCK show abnormalities in proliferative

activity, related to abnormal EGFR-axis expression as well

as apoptosis (41, 198, 205). Cholangiocytes in this model

have abnormal cilia, the length of which is related to the

level of PKDH1 expression (206).

Liver disease is also evident in other ARPKD models,

including the bpk and cpkmouse models. (170, 207–209).

Biliary epithelial hyperplasia, like renal tubule hyperplasia

appears to be mediated by a mitogenic cycle driven by

abnormal EGFR-axis expression (205, 210).
Pathology

In infants and young children, the kidneys are reniform

but grossly enlarged. Pinpoint opalescent dots are visible

on the capsular surface and correspond to cystic cortical

collecting ducts (211). Microscopically (see > Fig. 36-3a),

the cysts are usually less than 2 mm in size (‘‘microcysts’’)

and have been shown by microdissection, histochemical,

and immunologic studies to be dilated collecting ducts

lined by low columnar or cuboidal epithelium (212–215).

The glomeruli and other tubular structures appear to be

decreased in number because of marked collecting duct

ectasia and interstitial edema. In fetal kidneys, proximal

tubular cystic lesions have also been identified (216),

but are largely absent by birth. The pelvicaliceal system

and renal vessels appear normal. Unlike ADPKD, in which

the cysts become discontinuous with the tubule, the cys-

tic tubules in ARPKD are fusiform in shape and remain

in contact with the urinary stream. Microdissection stud-

ies and scanning electron microscopy demonstrate that

obstruction of urinary flow is not a component of

ARPKD (211, 212). With increased patient survival, the

development of larger renal cysts, interstitial fibrosis, and



. Figure 36-3

Kidney histology and ultrasonography of autosomal recessive polycystic kidney disease (ARPKD). (a) Microscopic

appearance of a kidney biopsy from a 7-month-old with ARPKD demonstrating multiple radially oriented collecting tubule

cysts extending from the medulla to the peripheral cortex. A small amount of residual parenchyma contains glomeruli and

noncystic tubules situated between the cysts. No glomerular cysts or signs of renal dysplasia are present. (Hematoxylin and

eosin stain; original magnification x1.) (Specimen kindly provided by Dr. Steven Emancipator, Case Western Reserve

University.). (b) Renal ultrasound (right kidney) of a newborn with ARPKD demonstrates the typical appearance of

echogenic, enlarged kidneys (length = 6.5 cm; normal for age = 4.48� 0.62 cm) with poor corticomedullary differentiation.
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hyperplasia produces a pattern more like ADPKD (see

below) (217). Gang and Herrin (218) describe increasing

fibrosis and inflammation in later specimens from

patients who had typical collecting duct microcysts dur-

ing infancy.

Some degree of biliary dysgenesis and hepatic fibrosis

is always present in ARPKD. Although hepatic involve-

ment is invariably present microscopically at birth, it is

clinically evident in only 40–50% of neonates (219). The

classic liver lesion shows a typical ductal plate abnormali-

ty consisting of portal fibrosis surrounding increased

numbers of hyperplastic, ectatic biliary ducts with normal

hepatocellular histology (217, 220, 221). With time, hepa-

tomegaly and portal hypertension become evident in

many patients. Intrahepatic biliary ectasia may result

in macrocysts and dilation of extrahepatic bile ducts

sometimes resulting in an enlarged gallbladder (222) or

choledochal cysts (223). Although the combination of

collecting tubule and biliary ectasia with periportal fibro-

sis is unique to ARPKD, portal fibrosis and bile duct

proliferation may be associated with other types of renal

disease, including ADPKD (224, 225).
Clinical and Radiographic Features

Historically, ARPKD was originally separated into four

distinct clinical entities based on age at presentation and
relative degrees of renal and hepatic involvement (226).

Although such distinctions were useful as clinicopatho-

logical classifications, they are now recognized to be the

result of different mutations within the same gene and are

not used clinically (5, 227).

Themajority of patients with ARPKD present in infan-

cy (178, 219, 228, 229). A subset of patients with ARPKD

may present as older infants with abdominal enlargement

secondary to enlarged kidneys or hepatosplenomegaly

without the full spectrum of clinical symptoms outlined

below (178, 229). A smaller, though increasingly recog-

nized subset of patients with ARPKD are diagnosed as

older children or adults (178, 230, 231). These patients

typically present with signs and symptoms related to

congenital hepatic fibrosis, including hepatosplenome-

galy and portal hypertension (177, 232). A recent series

showed that almost one-third of individuals with muta-

tions in PKHD1 and hepatic involvement were 20 years or

older at the time of initial presentation, suggesting that

the clinical spectrum of the disease is broader than previ-

ously appreciated (231).

With the widespread use of prenatal ultrasound, most

patients with ARPKD are now detected in utero. Prenatal

ultrasound may demonstrate the findings of oligohy-

dramnios, large renal masses, or absence of fetal bladder

filling (233). At birth, patients usually have large, pal-

pable flank masses that may be large enough to compli-

cate delivery. Urine output is usually normal; however,
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oliguric acute renal failure may occur (175). In such

patients, increased urine output and a corresponding impro-

vement in renal function may be seen following improve-

ment in respiratory status (234). Most patients (70–80%)

have some evidence of impaired renal function in the

newborn period (3, 219). However, death from renal

insufficiency is uncommon (226). Transient hyponatre-

mia related to a urinary dilution defect is often present,

but usually resolves over time (219, 228). The treatment

consists of water restriction. Metabolic acidosis has also

been reported (3, 228). As might be predicted from a

pathological process that affects the collecting tubule,

most patients have a urinary concentrating defect and

symptoms of polyuria and polydipsia (3, 217, 228, 229).

Hypertension, which may be severe, is common in

both infants and children and may well be a presenting

feature (175, 217). It can be present in patients with

normal renal function and eventually affects almost all

children with the disease (3, 178). However, the patho-

physiology of hypertension in ARPKD is poorly under-

stood (172). In ADPKD patients the renin-angiotensin

aldosterone system (RAAS) is upregulated and thought

to occur as the result of expanding cysts causing local

ischemia (235). The role of the RAAS in mediating hyper-

tension in ARPKD is less clear. Systemic renin levels are

not usually elevated in hypertensive ARPKD patients or in

an ARPKD rat model (228, 229, 236). In addition, kidney

size in ARPKD stabilizes over time and does not show the

progressive macrocystic enlargement classically seen in

ADPKD. Thus, it is unknown whether the same mecha-

nism accounts for hypertension in both ADPKD and

ARPKD. Local (intrarenal) RAAS activation is suggested

by a recent histologic study that demonstrated increased

expression of several renin-angiotensin axis components

in two kidneys of individuals with ARPKD (237). Simi-

larly, intrarenal RAAS activation has also been demon-

strated in the orthologous PCK rat (238).

Pulmonary insufficiency, as manifest by respiratory

distress, is a major cause of morbidity and mortality in

neonates with ARPKD. Oligohydramnios results in pul-

monary hypoplasia, which may be complicated by re-

striction of diaphragmatic movement due to massively

enlarged kidneys. Additional causes of respiratory dis-

tress in these patients include pneumothorax and atel-

ectasis, or a variety of common neonatal pulmonary

disorders such as surfactant deficiency, bacterial pneu-

monia, meconium aspiration, or persistent fetal cir-

culation. Severely affected infants may demonstrate

all features of the ‘‘oligohydramnios sequence’’, inclu-

ding pulmonary hypoplasia, abnormal extremities

and characteristic Potter’s facies (239). Infants with
true pulmonary hypoplasia often die soon after birth

secondary to pulmonary insufficiency.

The typical appearance of ARPKD by ultrasonography

is one of large echogenic kidneys with poor corticome-

dullary differentiation (> Fig. 36-3b). Macrocysts, a fea-

ture of ADPKD, are usually not present at birth, but are

not uncommon with progression of disease (240). In a

study of sonographic features of adult patients with

ARPKD, Nicolau et al. (241) noted the presence of multi-

ple small cysts in normal-sized kidneys, increased cortical

echogenicity and loss of corticomedullary differentiation

as common features. Stein-Wexler and Jain (242) pro-

posed that the ultrasonographic findings of ‘‘focal rose-

ttes,’’ corresponding to the macroscopic appearance of

radially-oriented collecting tubule cysts, are specific for

ARPKD. In addition, although kidneys may be markedly

enlarged at birth, over time, the majority show stable to

decreased renal size (243, 244). In a preliminary report

from a prospective, NIH-supported study of the natural

history of ARPKD, kidney volumes of enlarged kidneys

increased at approximately 1/3 of the normal rate for age

over 2–4 years (245).

Findings on magnetic resonance imaging include enlar-

ged kidneys with hyperintense T2-weighted signals (246).

Kern et al. showed that ARPKD kidneys have a character-

istic hyperintense, linear radial pattern in the cortex and

medulla by RARE-MR urography that may reflect the

microcystic dilatation seen histologically (246, 247).

ARPKD kidneys have also been reported to have char-

acteristic features by nuclear medicine studies. DMSA

scanning demonstrated loss of the normal kidney outline

and internal structure and patchy tracer uptake with focal

defects throughout the kidneys, particularly at the poles.

In the majority of cases, these DMSA changes did not

correlate with the ultrasonographic findings, in which the

kidneys appeared more uniformly affected (248).

Ultrasonographic findings in the liver include hepato-

megaly, increased echogenicity and poor visualization of

the peripheral portal veins. Reversal of normal venous

flow by Doppler study, suggestive of portal hypertension,

may also be seen. Hypertrophy of the left lateral segment

of the liver is also occasionally seen (249) and a subset of

patients will have overt evidence of biliary ductal dilata-

tion (Caroli’s disease) (249). In a preliminary report of

the NIH-supported natural history study, over 75% of

ARPKD patients demonstrated intra and extra-hepatic

biliary dilatations, with dilated common bile ducts and

enlarged gall bladders (245). Macroscopic liver cysts are

uncommon (250), although choledochal cysts have been

reported (223), and MRCP demonstrates diffuse intrahe-

patic bile duct dilatation with periportal fibrosis (249).
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Diagnosis

With the advent of modern obstetrical ultrasonography,

many patients w ith ARPKD are identified in the prenatal

period. Enlarged echogenic kidneys, oligohydramnios,

and the absence of urine in the bladder, are ver y suggestive

of ARPKD ( 251). Older literature suggests that sono-

graphic features of ARPKD may present in the second

trimester but usually are not apparent until after 30 weeks’

gestation (252). Both false-positive and false-negative

results have been repor ted ( 253). However, w ith newer

hig h-resolution obstetrical ultrasonography it is probable

that diagnostic sensitiv it y and detection rates w ill im-

prove. Wisser et al. ( 254) reported a case of a fetus w ith

pathologically-confirmed ARPKD who demonstrated

echogenic, normal sized kidneys at 15 + 4 weeks gestation.

As noted prev iously, other cystic kidney diseases in

infancy, including ADPKD and cystic dysplasia, may have

antenatal sonographic appearances that are difficult to

distinguish from ARPKD ( 2). It has been proposed that

fetal MRI may be a useful additional diagnostic study in

fetuses w ith inconclusive ultrasonography in the third

trimester of pregnancy ( 255). However, its accuracy in

confirming the diagnosis earlier in pregnancy has not

been assessed. Increased maternal alpha fetoprotein and

amniotic fluid trehalase activ it y have been identified as

potential markers for ARPKD, but neither has been con-

firmed as specific or sensitive for disease detection in utero

( 256, 257).

Definitive diagnostic criteria for ARPKD have not

been established. Those proposed by Zerres et al, w ith

modifications ( 5, 219), are used by many pediatric

nephrologists, and include:

1. Ultrasonographic features ty pical of ARPKD, includ-

ing enlarged, echogenic kidneys, wi th poor cortico-

medullar y differentiation; and

2. One or more of the follow ing:
a) Absence of renal cysts in both parents, par ticularly

if they are at least 30 years old,

b) Clinical, laborator y or radiographic ev idence of

hepatic fibrosis,

c) Hepatic patholog y demonstrating characteristic

ductal plate abnormality,

d) Prev ious affected sibling wi th pathologically con-

firmed disease,

e) Parental consanguinit y suggestive of autosomal

recessive inheritance
As noted above, renal ultrasonography may be less diag-

nostic in children who present later in childhood. Fur-

thermore, in the subset of patients who present as older
children and adolescents, hepatic abnormalities are often

the prominent presenting feature.

Althoug h renal biopsies w ill clearly differentiate the

isolated fusiform cortical collecting tubular cysts of

ARPKD ( > Fig. 36-3) from the heterogeneous cystic

nephron involvement of ADPKD ( > Fig. 36-4 ) (214,

258), they are generally not indicated for patients who

fulfill the classic criteria for ARPKD and/or those for

whom genetic testing is definitive (see below) (5). In

cer tain instances, liver biopsy may prov ide additional

information and reveal the characteristic biliar y dysgene-

sis of ARPKD. However, hepatic por tal fibrosis and bile

duct ectasia have been associated w ith other ty pes of renal

cystic disease, including ADPKD.

Genetic testing is also t y pically not required for

patients wi th classic ARPKD diagnostic criteria. Genetic

testing is useful, however, for families who already have an

affected child, in identify ing sibling carriers and in

instances in which the diagnosis is less clear. Prenatal

diagnosis may be made in a family w ith at least one

know n affected child throug h the techniques of linkage

analysis or mutation analysis. Linkage analysis uses anal-

ysis of poly morphic markers that flank the location of a

know n disease gene to ‘‘track’’ the disease. This technique

can also be used to identify whether the unaffected sibling

is a carrier of the disease. In informative families, the

accuracy of prenatal diagnosis using linkage analysis was

> 95% ( 259). An accurate genetic diagnosis by linkage

analysis, however, is critically dependent on the diagnosis

of ARPKD in the affected sibling (259).

With the identification and cloning of PKHD1, mo-

lecular analysis is now available. Although initial studies

reported a relatively low mutation detection rate (40–60%)

by sequencing methods, newer studies using mutation

screening by DHPLC demonstrate an overall mutation de-

tection rate of 82–87% in individuals (including fetuses)

with ARPKD (188, 260–263). In addition, pre-implanta-

tion genetic diagnosis (PGD) is now offered by a limited

number of genetic laboratories (264). A complete list

of laboratories offering clinical and research testing for

ARPKD is available at www.geneclinics.org .
Treatment and Complications

Survival of neonates with ARPKD has improved in con-

cert with overall medical advances in neonatal artificial

ventilation and intensive care. It is currently impossible to

predict which neonates with ARPKD who require imme-

diate artificial ventilation have critical degrees of pulmo-

nary hypoplasia incompatible with survival (3, 5). In some

http://www.geneclinics.org


. Figure 36-4

Kidney histology and ultrasonography of autosomal dominant polycystic kidney disease (ADPKD). (a) Microscopic

appearance of a kidney biopsy from an adult with ADPKD demonstrating multiple thin-walled cysts of varying sizes

involving different nephron segments. Focal hemorrhage is noted within some cysts. (Hematoxylin and eosin stain; original

magnification x1.) (Specimen kindly provided by Dr. Steven Emancipator, Case Western Reserve University.). (b) Renal

ultrasound (right kidney) of a 13- year-old with ADPKD demonstrates several cysts (the largest measuring 1.5 cm� 1.6 cm).

The left kidney also had several cysts not present on an ultrasound 2 years before this study. Kidneys are 11.4 cm (right) and

11.7 cm (left) (normal for age = 9.79 cm � 1.5 cm).
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instances, severe pulmonary distress may be secondary to

potentially reversible fluid overload, neonatal lung dis-

ease, or restricted diaphragmatic motion secondary

to massively enlarged kidneys. In selected cases, some

authors have advocated continuous venovenous hemofil-

tration, unilateral or bilateral nephrectomy coupled with

peritoneal dialysis to allow optimal ventilation and there-

by assess the long-term pulmonary prognosis of the

patient (265–268).

Infants and young children with ARPKD, including

those without significant renal insufficiency must be fol-

lowed closely. Because most children with ARPKD have

urinary concentrating defects, significant dehydration is

a particular risk during intercurrent illnesses, which may

increase insensible water loss (fever), limit free water

intake (nausea), or increase extrarenal water loss (vomit-

ing, diarrhea). In patients with severe polyuria, thiazide

diuretics may be of benefit to decrease distal nephron

solute and water delivery. Supplemental bicarbonate ther-

apy is required for those with metabolic acidosis.

Hypertension can be difficult to manage and may

require multiple medications (175). Despite the fact that

peripheral renin values are not usually elevated in hyper-

tensive ARPKD patients, most patients respond well to

angiotensin-converting enzyme inhibitors or angiotensin-II

receptor blockers, which are considered by many to be
the treatments of choice. It should be noted, however,

that the safety of ACEi or ARBs in neonates has been

called into question by recent studies in neonatal rats

that demonstrated adverse effects on tubular maturation

and exacerbation of injury associated with obstructive

uropathy (269). In addition, ACEi can precipitate acute

renal failure in PKD patients (270), as well as in infants in

general (271), particularly with dehydration. If additional

medications are required, second-line agents include cal-

cium channel blockers, b-blockers (in those without chro-
nic lung disease or signs of congestive heart failure), and

diuretics. Recent studies on the pathophysiology of cyst

formation (see above) raise the theoretical concern

that Ca++ channel blockers may exacerbate low intra-

cellular Ca++ in cystic renal epithelia and increase abnor-

mal proliferation and disease progression.

Urinary abnormalities may be present or develop over

the course of disease. Pyuria is a relatively common finding

and can be seen in the absence of demonstrable bacteriuria

or documented infection (217). Urinary tract infection has

been reported as a common complication in at least one

uncontrolled series (3), but it is unclear whether children

with ARPKD truly have an increased incidence of upper

or lower urinary tract infections (UTIs) when compared

with appropriately age-matched controls. Thus, as in any

child with an abnormal urinalysis, clinical features and
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appropriately obtained urine cultures must guide antibi-

otic therapy. If a UTI is documented, a voiding cystour-

ethrogram and renal ultrasound should be performed to

determine the possible presence of vesicoureteral reflux

and rule out obstruction or superimposed upper tract

structural abnormalities (218). Microscopic or gross he-

maturia and proteinuria may also be seen (3, 175). In

infants and children who develop chronic kidney disease,

the consequences of progressive CKD (e.g. growth failure,

anemia, and renal osteodystrophy) become apparent as

renal function decreases.

Dialysis and/or transplantation are indicated when

children with ARPKD reach symptomatic end-stage

renal failure or if progressive uremia results in growth

failure or developmental delay. Peritoneal dialysis is

often the preferred method of dialysis and may be the

only practical long-term option in the young child. Peri-

toneal dialysis in ARPKD is usually successful even in the

face of large kidneys and hepatosplenomegaly. Kidney

transplantation offers definitive renal replacement thera-

py in children with ARPKD. Successful kidney transplan-

tation prolongs survival and often accelerates growth and

development in young uremic children. Nephrectomies

may be indicated prior to, or at the time of, transplanta-

tion to control hypertension and/or to permit room for

transplant placement in patients with massively enlarged

kidneys.

Difficulties in feeding, even in patients without renal

insufficiency, are often noted. This is presumably due to

the presence of enlarged kidneys and or liver, interfering

with normal gastrointestinal function. Supplemental feed-

ing via nasogastric or gastrostomy tubes is often required

to optimize weight gain and growth. Although growth

failure in ARPKD may also occur as the result of chronic

kidney disease, a study by Lilova et al. (272) suggests that

growth failure in this population is common, may be

attributable to factors other than CKD alone, and res-

ponds well to growth hormone treatment. In contrast, the

preliminary report from the NIH-supported Natural His-

tory Study of ARPKD suggests that completely normal

growth curves may not be uncommon (245).

With improved patient survival and advances in renal

replacement therapy, hepatic complications progressively

dominate the clinical picture of many patients with

ARPKD (178, 219, 221, 232, 273). These include hepatos-

plenomegaly, bleeding esophageal varices, portal vein

thrombosis, and hypersplenism causing thrombocytope-

nia, anemia, and leucopenia. Data from two recent series

showed that portal hypertension occurred in 37–44%

of neonatal survivors and was age-related (178, 274).

Although significant complications related to portal
hypertension develop, liver synthetic function is usually

intact.

One serious and potentially lethal complication in

ARPKD patients with significant hepatic involvement is

bacterial cholangitis, which has been reported as early as a

few weeks of age (3). Fever or elevation of liver function

tests at any time should lead to the suspicion of cholangi-

tis and result in complete evaluation and appropriate

antimicrobial therapy. However, patients may not present

with the classic clinical findings of cholangitis and the

diagnosis should be strongly considered in ARPKD

patients with unexplained recurrent sepsis with gram

negative organisms (275). Caroli’s disease (dilated intra-

hepatic bile ducts) has been identified as a potential risk

factor for bacterial cholangitis (276, 277). Cholangiocar-

cinoma has also been reported in patients with CHF/

Caroli’s (278).

In infants and children with hepatic involvement, close

monitoring for complications of portal hypertension is

mandated, particularly since typical ‘‘liver function’’ tests

(such as serum albumin and transaminases) may be nor-

mal. Yearly ultrasonography to determine changes in liver

or spleen size to identify portal hypertension by reversal of

venous flow is non-invasive and may be of value. Endosco-

py is necessary to evaluate suspected esophageal varices

that can be treated by sclerotherapy or banding prior to

life-threatening hemorrhage. Periodic monitoring should

reveal the hematologic profile of hypersplenism. Sudden

worsening of anemia should raise the possibility of occult

gastrointestinal blood loss secondary to splenic sequestra-

tion or variceal bleeding. Porto-systemic shunting may

be indicated in some cases (228, 279), but concerns have

been raised about reported cases of ultimately fatal recur-

rent hepatic encephalopathy in children with porto-caval

shunts who progressed to ESRD (280). It has been hypo-

thesized that the loss of kidney function results in im-

paired clearance of toxins that are shunted from the liver.

This finding has raised concerns about whether liver

transplantation should be considered as an alternative

therapy for ARPKD patients with portal hypertension

being evaluated for possible shunts or those with recur-

rent episodes of cholangitis (281). The increased use and

successful outcome of living-related partial liver trans-

plants makes this a more realistic option. In fact, success-

ful sequential liver and kidney living-related transplants

have been reported (282).

In addition to the significant medical problems, the

psychosocial stresses of ARPKD on the patient and family

can be overwhelming. Social support measures and peri-

ods of respite care are often necessary. A team approach

using the skills of pediatric nephrologists in concert with
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other pediatric medical subspecialists, specialized nurses,

dietitians, social workers, psychiatrists, and other support

staff is required to provide optimal comprehensive care

for children with ARPKD.
Prognosis

Prognosis is difficult to assess, although it is now clear that

survival of all but the most severely affected neonates who

demonstrate pulmonary hypoplasia is possible (1, 217).

Published reports vary with respect to neonatal survival

rates, but suggest that approximately 70–80% of patients

survive the newborn period with aggressive neonatal in-

tensive care (3, 228, 232). Actuarial survival rates calcu-

lated from birth for 55 patients with ARPKD referred to a

pediatric tertiary care center revealed that 86% were alive

at 3 months, 79% at 1 year, 51% at 10 years, and 46% at

15 years (228). Calculations based on patients who survived

to 1 year of age showed that 82% were alive at 10 years and

79% at 15 years (228). Similar findings were reported in a

more recent study of 164 neonatal survivors with con-

firmed PKHD1 mutations. Patients in that cohort had a

1 year survival rate of 85% and a 10 year survival rate of

82% (274). In a cohort of 166 ARPKD patients born after

1990, 75% were alive at a median age of 5.4 years (178).

Patients who survive the neonatal period usually have

a decreased glomerular filtration rate (GFR), but studies

have demonstrated subsequent improvement in renal

function consistent with some degree of continued renal

maturation (175). However, a significant number of pat-

ients with ARPKD will progress to end-stage kidney dis-

ease. In a cohort of patients surviving the first month

of life, Roy et al. (232) reported renal survival of 86% at

1 year and 67% at 15 years. A more recent study of patient

with confirmed PKHD1mutations showed actuarial renal

survival rates of 86% at 5 years, 71% at 10 years, and 42%

at 20 years (274).

With the success of renal transplantation and im-

proved survival of patients with ARPKD, morbidity and

mortality of complications related to congenital hepatic

fibrosis are more common and clinically relevant. Wheth-

er these complications result in significant mortality post-

kidney transplant is a subject of some debate. Khan et al.

reported the outcome of 14 patients with ARPKD after

renal transplantation (283). With a mean follow-up of

14 years, the study showed 1 and 5 year patient survival

rates of 93% and 86% respectively. Overall 36% of patients

died and, in 4 of 5 of those patients, death was directly

related to complications of hepatic disease. In those who

survived, 63% had portal hypertension. Thus, complications
of CHF developed in almost 80% of patients following renal

transplantation for ARPKD. In contrast, in a retrospective

study of patients included in the North American Pediatric

Renal Transplantation Cooperative Study (NAPRTCS) reg-

istry, Davis et al. (284) reported similar patient and graft

survival rates in kidney transplant patients with ARPKD

compared to those without. It is interesting to note,

however, that among those patients who died, sepsis was

the cause in 64% of those with PKD versus 32% in those

without PKD, suggesting that ARPKD patients may be at

increased risk of infection compared to the general pedi-

atric transplant population.
Autosomal Dominant Polycystic Kidney
Disease (ADPKD)

ADPKD is a systemic inherited disease characterized by

progressive renal cystic enlargement of all nephron seg-

ments coupled with variable extrarenal manifestations

involving the gastrointestinal tract, cardiovascular system,

reproductive organs and the brain (4, 173, 285). ADPKD

has alternatively been called ‘‘adult’’ polycystic kidney

disease. However, this term is a misnomer because

ADPKD has been diagnosed in the fetus, newborns,

older children and adolescents (175, 229, 286, 287).
Epidemiology and Genetics

ADPKD is the most common inherited human kidney

disease and occurs at an incidence of approximately 1:400

to 1:1000. It affects all races and males and females are

both affected; however, the kidney phenotype may be

more severe in males (288). ADPKD is a rare cause of

ESRD in the pediatric population, but accounts for ap-

proximately 5–10% of ESRD in adults. The two major

disease-causing genes are PKD1 and PKD2. In the general

population, PKD1 accounts for approximately 85% of

ADPKD and PKD2 the remaining 15%. A third ADPKD

locus has been suggested by a few case reports (289–291),

but has not been substantiated (4). Mutations in PKD1

and PKD2 produce similar phenotypes, however, the age

of onset of cystic disease, hypertension, and renal insuffi-

ciency is delayed in the latter (21, 292–294).

PKD1 has been mapped to chromosome 16p13.3

(295). Like PKHD1, PKD1 is a very large gene, spanning

53 kb of genomic DNA with 46 exons encoding a 14.5 kb

transcript (7). A portion of the gene is duplicated in

the proximal portion of chromosome 16. The gene

encodes a large, novel 4304 amino acid protein product,
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polycystin-1 (PC-1), a 460 kD protein with a large extra-

cellular domain that contains motifs likely to function as

protein and carbohydrate binding sites. The PKD repeats

in the extracellular domain may mediate homodimeriza-

tion of PC-1. The extracellular domain of PC-1 also con-

tains a physiologically important G-protein-coupled

receptor proteolytic site (GPS). Taken together these

motifs suggest that PC-1 may function as a receptor

and/or have roles in cell-cell interactions. PKD2 has

been linked to chromosome 4q13-q23 (8, 296) and

expresses a 5.4 kb mRNA, which encodes a 968 amino

acid polypeptide, polycystin-2 (PC-2) (8). Polycystin-2,

also called TRPP2, is a calcium permeable, non-selective

cation channel (297, 298) whose NH2 and COOH termini

are both cytoplasmic.
Pathogenesis

ADPKD is characterized by considerable intrafamilial and

interfamilial phenotypic variation (189, 299). Several

studies have supported a role for genetic background/

genetic modifiers as a cause of this variability (300). A

number of candidate genes have been examined as poten-

tial modifiers of the disease phenotype. These include

members of the renin-angiotensin system, including

the angiotensin converting enzyme (ACE) gene, the

endothelin system and the cystic fibrosis gene, CFTR.

However, positive results suggesting an effect have not

been reproducible (189).

One gene that has been found to influence disease

severity is the tuberous sclerosis 2 (TSC2) gene. Several

kindred’s were identified that had co-existent TSC2 and

PKD1 mutations with severe childhood-onset ADPKD.

These kindreds were subsequently found to have large

deletions in an area containing both PKD1 and TSC2,

resulting in a contiguous gene syndrome (301).

One explanation for phenotypic variability may be

related to the so-called ‘‘second hit’’ theory of ADPKD

which result in heterozygous mutations at the level of

individual cysts. By analyzing two closely linked polymor-

phic markers within the PKD1 gene, Qian et al. revealed

that the renal epithelia from single cysts are monoclonal,

containing only the mutant haplotype (302). A sub-

sequent study by Brasier et al. (303) confirmed these

findings. These two studies suggest that patients harbor-

ing a germline mutation in the one allele of a PKD gene

undergo a somatic ‘‘second hit’’, which results in the loss

of the remaining normal allele and genetic heterozygosity

in those affected cells. These studies provide a possible

molecular explanation for both the focal nature of cysts
(<5% of tubules are cystic in ADPKD) as well as

the phenotypic variability within families harboring the

same germline mutation. The extent to which this two-hit

phenomenon contributes to the overall phenotypic varia-

bility remains a subject of some debate (304).

Because of the significant intrafamilial variability in

ADPKD, including kindreds with more severe disease

noted in successive generations, the genetic phenomenon

of anticipation has been postulated to be an explanation

for this heterogeneity. However, a recent study of ADPKD

patients with PKD1 mutations failed to find evidence for

anticipation in this disease (305).
PKD1

Numerous different mutations throughout the PKD1 gene

have been identified in patients with ADPKD with no

specific mutational ‘‘hot spots’’ identified (306). The ma-

jority of mutations are predicted to result in truncation of

the PC-1 protein. Substantial phenotypic variability has

made genotype-phenotype correlations unachievable, but

a number of recent studies have made significant observa-

tions about the nature of PKD1 mutations and disease

phenotype. Rosetti et al. (307) found that, even taking

into consideration the significant inter- and intrafamilial

phenotypic heterogeneity, patients with mutations in the

50 region of PKD1 had significantly more severe kidney

disease than those with mutations in the 30 portion of the

gene. Thus, the location, rather than the type of PKD1

mutation, was found to be the factor that correlated with

the onset of ESRD. In addition, 50 PKD1 mutations have

also been reported to be predictive for the development of

cerebral aneurysms (308).

PC-1, the protein product of PKD1, is expressed in

multiple tissues, including kidney, liver, pancreas, intes-

tine and cerebral blood vessels (all sites of pathologic

changes in ADPKD), as well as in the lung, testis, and

other tissues (309–312). Localization studies demon-

strated robust PC-1 expression in human fetal renal tu-

bular epithelia that diminished with age, but persisted at

low levels into adulthood (309, 313), suggesting a role in

renal development and tubular maintenance.

PC-1 possesses a large extracellular domain, multiple

transmembrane spanning regions, and an intracellular

carboxy-terminus (314, 315). The extracellular domain

is dominated by immunoglobulin-like repeats (the PKD

domain) as well as a leucine-rich repeat, a LDL-A domain,

a REJ domain, and a calcium-dependent lectin domain.

These structural components, taken as a whole, suggest

that the extracellular portion of PC-1 may be capable of
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binding an as yet undefined ligand (315). PC-1 is an-

chored to the cell membrane by 7–11 putative transmem-

brane domains. These numerous features suggest that

PC-1 is a large, multifunctional molecule involved in carbo-

hydrate motif recognition, ligand binding, and Ca2+

regulation. It may engage in cell–cell and/or cell–matrix

interactions, which regulate signal transduction pathways

mediated by cell surface protein–protein interactions

or directly participate in regulating transcriptional

programs.

PC-1 has been localized to the plasma membrane of

renal epithelial cells in a basal distribution at areas of cell-

cell contact (adherens junctions), cell-matrix contacts

(focal adhesions), and in the primary cilia. PC-1 has

been shown to bind to polycystin 2 (316, 317) and regu-

late the channel activity of polycystin-2 (a non-selective

cation channel) (318). The polycystin complex at the cilia

appears to play a role in mechanosensation as previously

discussed and loss of function of one of the complex

members can result in loss of flow induced-calcium re-

sponse (101). Interestingly, Chauvet et al. (319) showed

that mechanical stimuli can induce proteolytic cleavage

and nuclear translocation of the polycystin-1 carboxy

terminus tail suggesting that polycystin-1 may have a

role in regulating gene expression.

PC-1 co-localizes with and forms multimeric com-

plexes with a wide variety of other proteins at other sites

along the plasma membrane as previously discussed.

These include those involved with cell-matrix interactions

(such as a2beta 4 integrins and focal adhesion complexes)

as well as cell-cell interactions (including E-cadherin-b-
catenin complexes) (11, 13, 315, 320). PC-1 has also been

shown to interact with intermediate filaments at the des-

mosomes (321) and cells lacking polycystin 1 show mis-

localization of desmosomal proteins (14).

Additional data demonstrate that polycystin-1 indu-

ces resistance to apoptosis via the phosphatidylinositol

3-kinase/Akt signaling pathway and promotes spontane-

ous tubulogenesis in MDCK cells (322, 323). The carboxy

terminal of polycystin-1 triggers branching morpho-

genesis and migration of inner medullary collecting

duct (IMCD) cells, and supports in vitro tubule forma-

tion (324).

Both under- and over-expression of polycystin-1 is

associated with cyst formation and/or developmental

abnormalities. In cystic epithelium of human ADPKD

kidneys (309), polycystin 1 is overexpressed and data

from animal studies suggest that PKD1 overexpression is

sufficient to induce cysts (325). ‘‘Knockout’’ mouse mod-

els, in which a variety of PKD1 mutations have been

introduced that result in the loss of functional polycystin,
have also provided important clues to its function, partic-

ularly during development. Animals lacking polycystin-1

die in utero or soon after birth and demonstrate abnorm-

alities in multiple organs, including the heart, blood ves-

sels kidneys and pancreas (326–328). To overcome this

lethal phenotype, investigators have developed PKD1

mutant mice that either produce low levels of PC-1

(hypomorphs) or have a ‘‘conditional’’ mutation (floxed

allele) that is controlled via breeding with a Cre-recombi-

nase expressing mouse or by pharmacologically driven

Cre-gene expression. These animals survive, but develop

kidney, pancreatic and vascular disease of variability

severity (22, 329). Interestingly, the timing of the loss of

PC-1 post-natally has a significant impact on the disease

phenotype. Neonatal mice that lose PC-1 develop massive

cystic kidney enlargement within 4 weeks, whereas older

mice who lose PC-1 expression develop only mild cystic

kidney disease (330). These observations suggest that cyst

formation requires not only loss of PC-1, but also con-

comitant cell proliferation, such as is seen during early

post-natal kidney development.
PKD2

Multiple mutations in PKD2 have been identified in

affected families, and as with PKD1, most families have

unique mutations (331, 332). These mutations truncate

polycystin-2 (PC-2) and appear to be loss-of-function

mutations. As with PKD1, considerable intrafamilial

phenotypic variability is reported in families with PKD2

mutations (189, 332). Genotype-phenotype studies

have suggested that, unlike PKD1, the location of PKD2

mutations does not appear to influence the age of onset

of ESRD.

Similar to PC-1, PC-2 is widely expressed. The highest

levels of expression within the kidney are the thick as-

cending loop of Henle and the distal convoluted tubule,

where PC-2 localizes to the basolateral plasma membrane

of renal tubular epithelium (333). PC-2, like polycystin-1,

is expressed in the vasculature, including porcine aorta

and normal human elastic and intracranial arteries (334).

On a subcellular level, PC-2 localizes to the plasma mem-

brane as well as to the endoplasmic reticulum and Golgi

apparatus (12, 333).

PC-2 contains six transmembrane regions and has

intracellular domains at both its amino- and carboxy-

termini. The transmembrane regions share significant

homology with voltage-activated Ca2+/Na+ channels,

which suggested that polycystin-2 may be a channel pro-

tein. The carboxy-terminus contains an EF-hand domain
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that binds Ca2+ in addition to several potential phosphor-

ylation sites. Koulen et al. (297) confirmed by single

channel studies that PC-2 (a member of the subfamily

of the transient receptor potential (TRP) channel super-

family) functions as a calcium-activated intracellular ion

release channel in vivo and hypothesized that polycystic

kidney disease results from the loss of regulation of an

intracellular calcium release signaling pathway.

As noted previously, PC-2 interacts with PC-1 to form

a complex located at the cilia.Data suggest that PC-2 located

on the endoplasmic reticulum also interacts with PC-1

present at the plasma membrane (173). Recent data also

demonstrate that PC-2 has a role in regulating the cell

cycle through direct interaction with Id2, a member of

the helix-loop-helix (HLH) protein family known to reg-

ulate cell proliferation and differentiation. This interac-

tion requires PC-1-dependent phosphorylation of PC-2

(335). PC-2 also interacts with the protein, kidney injury

molecule-1 (KIM1), a chemosensor present on the cilia

(336, 337). Finally, Li et al. (338) reported that intracellu-

lar portions of PC-2 associate with alpha-actinins, which

are actin-binding and actin-bundling proteins. They

hypothesized that the aberrant interactions between

PC-2 and alpha-actinins could play a role in the cell

proliferation, adhesion and migration abnormalities

seen in PKD epithelia.

Animal models with reduced or absent PKD2 expres-

sion have also provided important insights into the func-

tion of PC-2. Similar to PKD1, PKD2 knockout mice die

in utero or soon after birth and demonstrate cardiac

defects in septum formation as well as kidney and pan-

creatic cysts (339). Studies of two PKD2 mutant models

expressing variable levels of PC-2 demonstrate that

increased cell proliferation is an early event associated

with the loss of PKD2 expression and precedes cyst for-

mation (340). This in vivo finding was supported by

in vitro studies of cell lines lacking PC-2. In those cell

lines, the loss of PKD2 was associated with increased

proliferation rates, suggesting that PC-2 is a negative

regulator of cell growth (341). In addition, loss of PKD2

has been reported to induce changes in the localization of

PKD1, suggesting it has a role in mediating PKD1 subcel-

lular localization (342).
Pathology

In ADPKD (see > Fig. 36-4a), kidney cysts form in glo-

meruli and all tubular segments. Glomerular cysts may be

seen as a component of ADPKD or as a separate disease

entity. Unlike ARPKD, in which the cystic dilatations are
fusiform in nature and remain in connection with the

tubular lumen, in ADPKD the enlarging cysts eventually

‘‘pinch off ’’ and become disconnected from the tubular

lumen and urinary space.
Clinical and Radiographic Features

Patients with ADPKD are usually diagnosed and become

symptomatic in adulthood (173). However, children af-

fected with ADPKD may also become symptomatic or be

diagnosed as an incidental finding. The clinical spectrum

of pediatric ADPKD ranges from severe neonatal mani-

festations indistinguishable from ARPKD to renal cysts

noted on ultrasound in asymptomatic adolescents (2, 175,

229, 286, 343, 344).

As with ARPKD, hypertension can present during the

newborn or infant periods and is common in pediatric

and young adult ADPKD patients, despite the presence of

normal renal function (229, 286, 345, 346). The accep-

tance of ambulatory blood pressure monitoring (ABPM)

as an important tool for blood pressure assessment has

allowed for more in depth studies of blood pressure ab-

normalities in patients with ADPKD. A significant pro-

portion of normotensive young adults with ADPKD have

‘‘prehypertension’’ by ambulatory blood pressure moni-

toring (347). Blunted ‘‘nocturnal dipping’’ on ambulatory

blood pressure monitoring has also been reported to be

associated with endothelial dysfunction in this population

(348). It is also notable that in a study of adults with

ADPKD, a history of hypertension in affected parents

was associated with an earlier onset of hypertension in

their affected offspring (349).

Hypertension in ADPKD has been hypothesized to be

due to reduced renal blood flow due to cyst compression

with subsequent activation of the renin?angiotensin sys-

tem, and increased sodium retention (350, 351). Recent

case–controlled studies that have specifically controlled

for sodium intake have shown no differences in the sys-

temic RAS activation in hypertensive ADPKD patients

compared to patients with essential hypertension (352).

It is still possible, however, that local (intrarenal) RAS

activation could still play a role in the pathogenesis of

both hypertension as well as progressive kidney damage

associated with ADPKD (353, 354). In addition, increased

ACE independent generation of angiotensin II (via mast

cell production of chymase) has been reported (355).

Increased left ventricular mass been reported to occur

in normotensive children and young adults with ADPKD

(356) and is associated with impaired relaxation time

during exercise testing (357). Doppler abnormalities
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consistent with early diastolic dysfunction has been

reported in some patients, although the data are

conflicting (356, 358). In addition, Oflaz et al. (359)

reported an increased rate of biventricular dysfunction

in both hypertensive and normotensive ADPKD patients,

suggesting early cardiac involvement prior to the devel-

opment of overt hypertension. An intrinsic cardiac ab-

normality is not unexpected given the diffuse vascular

localization of PKD1 and PKD2 and the severe vascular

phenotypes associated with null mutations in these genes.

On the other hand, in light of the data about prehyperten-

sion diagnosed by ABPM in apparently normotensive

ADPKD patients, it is possible that patients who were

reported to be ‘‘normotensive’’ may, in fact, have had

subtle blood pressure abnormalities not recognized by

standard casual blood pressure measurements.

The increased incidence of cardiac valvular abnor-

malities such as mitral valve prolapse, commonly seen in

the adult ADPKD population (360, 361), has also been

reported in children with ADPKD (362). There have also

been several reports of endocardial fibroelastosis in chil-

dren with ADPKD (363, 364). An increased risk of coro-

nary aneurysms has been reported in adults, but no

pediatric cases have been reported, to date (365). An

increased risk of pericardial effusion has also been rep-

orted in adults with ADPKD (366). Although rarely

detected before the age of 20, there are reports of clinically

significant cerebral vessel aneurysms in pediatric ADPKD

patients as well (367).

In addition to hypertension, other presenting symp-

toms can include abdominal pain, palpable abdominal

masses, gross or microscopic hematuria, UTIs, abdominal

or inguinal hernias. The occurrence of gross hematuria

after seemingly minor trauma to the flank region should

raise the possibility of ADPKD. Renal insufficiency is rare,

but can occur in childhood (286, 344). A renal concen-

trating defect, which may be associated with clinical evi-

dence of polyuria and polydipsia, may be present in up to

58% of children with ADPKD (3, 368) and its presence

correlates with the presence of hypertension by ABPM as

well as the number of renal cysts (369). These findings

suggest that impaired renal concentrating ability may be

another clinical indicator of cystic kidney disease severity

in children with ADPKD. Renal infections are common in

adult patients with ADPKD and can be a presenting

feature in the affected infant and child (229). Pain can

also result from urolithiasis, a common finding in adults

with ADPKD, as well as cyst rupture.

The typical appearance of ADPKD in children by

ultrasonography is one or more renal cyst. ADPKD renal

involvement in children is commonly asymmetric and
may be unilateral in a small minority (370). The Consor-

tium for Radiologic Imaging Studies in Polycystic Kidney

Disease (CRISP) is a longitudinal prospective study of

adult ADPKD patients, which uses high-resolution mag-

netic resonance (MR) imaging (371). This series of studies

has demonstrated that individual cysts, as well as total cyst

and kidney volumes, are well-delineated by magnetic res-

onance imaging (MRI), which can also be used to moni-

tor cyst and kidney growth and blood flow over time (372,

373). These insights have allowed the development of

clinical trials with novel therapeutic agents by providing

a non-invasive means of monitoring response to therapy

over a relatively short (one to three) year period.

The extrarenal cysts seen commonly in adults with

ADPKD (360, 374) are uncommon in pediatric patients.

Although hepatic, pancreatic, or testicular cysts are rarely

detected before puberty, they have been reported in

affected children, even in the first year of life (375, 376).

Although liver cysts (detected by ultrasonography) were

thought to be uncommon in children, a recent MRI study

suggested that liver cysts may be present in up to 55%

of adolescents and young adults (377). The prevalence in

that study was reported to be directly related to the kidney

volume. Liver cysts in children, when present, are not

generally associated with pain, infection, and hepatomeg-

aly as noted in adult patients. Congenital hepatic fibrosis

with severe portal hypertension in children and adults

with ADPKD has been reported rarely (224, 225). The

presence of pancreatic cysts has been found exclusively in

PKD1 patients and do not appear to contribute to mor-

bidity or mortality (378).
Diagnosis

There are no specific clinical diagnostic criteria for chil-

dren with suspected ADPKD. As noted previously,

ADPKD can present in any age group, including fetuses

and neonates. The diagnosis of ADPKD has been made

in utero by ultrasound, and affected newborns can present

with Potter’s phenotype and die from pulmonary hypo-

plasia. Affected infants can be born with large hyperechoic

kidneys with or without macrocysts and variable degrees

of renal insufficiency. Prenatal diagnosis is suggested by

antenatal ultrasound findings of moderately enlarged

hyperechogenic kidneys with or without cysts, with

increased corticomedullary differentiation (379). Howev-

er, these findings may not be evident until the third

trimester (380, 381).

In families with known ADPKD, asymptomatic chil-

dren may be identified by ultrasonographic examination
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or as an incidental finding during evaluation for an unre-

lated problem (> Fig. 36-4b ). In pediatric patients w ith a

50% risk of ADPKD, the finding of one cyst or enlarged

echogenic kidneys w ithout cysts may be considered diag-

nostic ( 4, 286).

Even in families not known to have ADPKD, the

finding of one or more kidney cysts in a fetus or child

should aler t the clinician to the possibilit y of ADPKD,

since approximately 8–10% of patients wi th ADPKD wi ll

have de novo (new) mutations ( 4). Althoug h radiographic

studies may report the presence of a ‘‘simple cyst’’ and

note it as a normal finding , in fact, such cysts are extreme-

ly rare in childhood ( 382). If ADPKD is clinically sus-

pected in a child, the parents (and/or grandparents if the

parents are younger than 30) should be considered for

radiographic evaluation (383). It is not uncommon that

the diagnosis of ADPKD in a child can lead to the diag-

nosis of ADPKD in asy mptomatic adults followi ng paren-

tal radiographic studies. Additional rare causes of solitar y

or even grouped unilateral cysts in a patient wi thout a

family histor y should also be considered. These include

caliceal diver ticula or isolated renal cystic disease (384,

385). In such instances, additional diagnostic studies,

including contrast enhanced CT or IVP can help to ex-

clude these diagnoses ( 385).

Screening evaluations of asy mptomatic children at

risk for ADPKD is currently not recommended. Because

cysts may not be ev ident until adulthood, the finding of a

negative ultrasound may be falsely reassuring ( 386). Con-

versely, there may be significant psychosocial and finan-

cial implications of the diagnosis of ADPKD in an

asy mptomatic patient who may not develop clinical

signs of disease for several decades (387, 388). Some adults

w ith ADPKD choose not to be tested, and testing of

asy mptomatic children eliminates their abilit y to make

that decision as an adult. Thus, it is currently recom-

mended that for ‘‘adult onset’’ genetic diseases such as

ADPKD, screening should not be done unless a there is

anticipated benefit to the child ( 389). With the emergence

of novel, potentially disease-modify ing therapies for

ADPKD, and the passage of legislation in the United

States preventing discrimination against indiv iduals w ith

genetic disorders (Genetic Information Nondiscrimina-

tion Act, or GINA) recommendations regarding screening

are being re-evaluated as previously noted.

Genetic testing (including prenatal testing) is available

for ADPKD. Prev iously, genetic testing was v ia the tech-

nique of linkage analysis ( 229). However, because of the

need for a relatively large number of family members

w illing to be tested, this technique may be appropriate

for fewer than 50% of families (173). With improvement
in mutation detection techniques, direct sequence analysis

is now the more commonly used methodolog y. Current

mutation detection rates are approximately 85% using

this methodolog y ( 331, 390).

While prenatal genetic testing, including preimplan-

tation genetic diagnosis (PGD) (391) is available, it is not

widely used. In the majority of kindreds, fetuses harbor-

ing an ADPKD mutation will not show any obvious renal

or other abnormalities and patients may be asymptomatic

for 2–3 decades. Surveys of ADPKD families indicate that

only 4% would consider pregnancy termination if the

fetus were affected (392). An up-to-date listing of labora-

tory currently performing genetic testing of ADPKD

patients for clinical or research purposes is available at

www.geneclinics.org.
Treatment and Complications

Treatment of ADPKD is primarily focused on detecting

and managing renal and extra-renal complications.

Asymptomatic children at risk for ADPKD should be

followed annually for the development of hypertension,

hematuria (gross or microscopic), polyuria, proteinuria

or palpable abdominal masses. Any of these findings is an

indication for ultrasound examination and close clinical

follow-up.

As with other forms of chronic kidney disease, identi-

fication and treatment of hypertension is essential in

slowing progression to ESRD in ADPKD. In adults with

ADPKD, more intensive blood pressure control (<120/80)

has been reported to have a greater impact on LVH

reduction than standard control (<140/90)(393). It has

been suggested that ACE inhibitors and AII receptor

antagonists (ARB), alone or in combination, may offer

benefits in addition to anti-hypertensive effects (394–

396); however, the data are not entirely conclusive (397).

A longitudinal study of children with ADPKD treated

with ACE inhibitors is currently underway. A larger-

scale multicenter NIH trial (HALT/PKD) is underway to

address the question of whether ACE inhibitor plus ARB

is more beneficial than ACE alone in modifying disease

progression. In addition, a smaller study of 49 hyperten-

sive ADPKD patient: found that treatment with an ARB

appeared to be more favorable than that of a calcium

channel blocker (CCB) in terms of rates of decline in

renal function and proteinuria. As previously noted,

reports in rodent PKD models suggested that CCBs exac-

erbate cystic kidney disease because of depletion of intra-

cellular calcium (398). Although the results of these

animal studies are intriguing, avoidance of CCBs is not

http://www.geneclinics.org
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currently recommended for ADPKD, or as previously

noted, ARPKD (399). It is also notable that reversible

acute renal failure may be precipitated by ACE inhibitors

in ADPKD patients with diminished kidney function and

massive cystic involvement (270). Although acute renal

failure would be extremely unlikely in children (given the

absence of massive cystic involvement and intact renal

function during childhood), it is prudent to obtain fol-

low-up serum chemistries after initiation of ACE and/or

ARB therapy.

Urinary tract infection, in particular, cyst infection

may occur in children and adults with ADPKD. It has

been reported that the risk of pyuria and bacteriuria in

ADPKD increases progressively from 2% in the second

decade to 32% in the seventh decade. Most adult ADPKD

patients have some degree of renal insufficiency when

UTIs develop (213). Although no data are available re-

garding specific features of UTIs or renal cyst infections in

pediatric ADPKD patients, it is reasonable to presume

that their clinical course is similar to that described for

adult ADPKD patients (400). Sterile pyuria is common,

and appropriate cultures are needed to determine whether

an infection is present. Most renal infections are caused by

Gram-negative enteric organisms and can be complicated

by cyst infection. Eradication of cyst infections is often

difficult, despite in vitro sensitivity of responsible organ-

isms; thus, the use of antibiotics that penetrate cyst walls

is mandated (401). Antibiotics that generally penetrate

cyst walls include ciprofloxacin (402) and sulfonamides.

Penicillins and aminoglycosides (standard treatments for

urinary tract infection) are generally ineffective in treating

cyst infection (401, 403). Aggressive antibiotic treatment

is critical because recurrent or ineffectively treated UTIs

appear to be a definite risk factor in progression of renal

disease (404). Occasionally, cyst drainage may be required

to control infection, and MRI or PETscan may be a useful

in identifying which cyst is infected (405, 406). In extreme

cases, nephrectomy may be indicated (401). Prophylactic

antibiotics should be considered before the introduction

of any urinary tract instrumentation in children with

ADPKD.

Episodes of flank pain are unusual in pediatric

patients with few cysts. However, with progressive disease,

particularly in adolescents, flank pain may become a more

prominent feature. In the majority of instances, the pain-

ful episodes will resolve within a few days. Pain relief is

accomplished with acetaminophen or brief courses of oral

narcotics. Non-steroidal anti-inflammatory agents should

be avoided. Long term narcotic use is discouraged, due to

abuse potential. Non-pharmacologic interventions and

referral to a chronic pain management center should be
considered (407). In cases of severe pain, laparoscopic

denervation and nephropexy has been reported to signifi-

cantly relieve pain in adolescents (408, 409). Laparascopic

cyst decortication is an addition therapeutic option, par-

ticularly in instances of recurrent pain and infection

(410). Renal calculi, a common finding in adult patients

with ADPKD (411), and a frequent cause of flank pain,

are rare in childhood.

Hepatic cysts are relatively uncommon in the pediat-

ric population, but have been recognized more frequently

with the increased resolution of imaging studies. Patients

with hepatic cysts may develop cyst infections, which

typically present as right upper quadrant pain, fever,

leukocytosis, and a rise in liver enzymes (412). Antibiotics

alone may be ineffective, and the addition of surgical

drainage is generally recommended (413). Intestinal di-

verticular disease (360) has not been reported in pediatric

ADPKD patients, to date.

Cerebral aneurysms occur in approximately 10% of

ADPKD patients. The risk of rupture of asymptomatic

aneurysms in adults is related to the size, with the risk

ranging from 0.05% per year for those less than 10 mm to

6% within one year for those greater than 25 mm (414).

The risk of rupture for symptomatic aneurysms is about

4% per year (414). Although aneurysms are found in

patients with negative family histories, intrafamilial clus-

tering of aneurysms and aneurismal bleeding has been

reported in ADPKD populations (415–417). Use of mag-

netic resonance angiography (MRA) may permit effective,

noninvasive detection of significant aneurysms (418).

However, routine screening of all ADPKD patients is not

recommended, since many patients are asymptomatic and

the incidence of rupture is low (419). Screening MRAmay

be recommended for patients with symptoms or a posi-

tive family history (415).

The incidence of clinically significant aneurysms and/

or aneurismal rupture in children with ADPKD is thought

to be very low, although data are limited. Ruptured aneur-

ysms have been reported in children as young as 4 years

old (420). Given the intrafamilial clustering of aneurysms,

it is important to obtain a detailed family history. If such a

history is present, and/or the patient complains of head-

ache, further evaluation by MRA should be considered.

There are currently no disease-specific treatments

available for ADPKD. Newer therapies, however, are

being investigated in preclinical studies, and Phase II

and III trials of adults with ADPKD. As previously noted

(see > Fig. 36-2) these include trials of inhibitors of the

EGFR-axis, the vasopressin receptor antagonist, Tolvap-

tan, the mTOR inhibitor, Rapamycin, and the somato-

statin analogue, octreotide (120, 421–423). A regularly
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updated list of clinical trials in the US and around the

world is available at www.clinicaltrials.gov, and www.

pkdcure.org . A number of dietar y inter ventions have

been shown to slow progression of disease in animal

models. These include dietary flaxseed, soy protein or

protein restriction, sodium citrate, or caffeine restriction.

To date, none has proven to significantly alter the clinical

course of disease in humans (424).
Prognosis

The prognosis of ADPKD presenting in the fetus or neo-

nate was once thought to be very poor. However, a num-

ber of recent studies of ‘‘very early onset’’ ADPKD suggest

that it may be compatible with favorable long-term pa-

tient and renal survival (425, 426). Prognosis in the older

child is also very favorable and progression to ESRD in

childhood is rare in ADPKD (427). However, disease

progression does occur in childhood, particularly in chil-

dren with evidence of severe renal enlargement at a young

age (427). Proteinuria has been identified as a potential

early marker of severe cystic disease in children (428).

The CRISP studies confirm that significant cyst growth,

parenchymal damage and volume progression occurs in

ADPKD well before changes in measured GFR are seen.

Thus assessments of renal function, such as serum creati-

nine measurements are poor indicators of overall disease

severity. Recent data, including that of the CRISP investi-

gators, has shown that kidney volume and its rate of

change are the most predictive factors for subsequent

decline in renal function and clinical outcomes (288,

429) (430, 431). The CRISP study established that mean

renal volume increases 5.3% per year in patients with

ADPKD, providing a valuable non-invasive, short term

parameter to monitor effectiveness of new therapies.

Approximately 50% of adult patients with ADPKD

will progress to ESRD. On average, patients with PKD1

typically progress at an earlier age, with a mean age at

ESRD of 53.0 years, whereas those with PKD2 progress to

ESRD at a mean age at ESRD of 69.1 years (293). In light

of the significant inter- and intrafamilial phenotypic het-

erogeneity, it is difficult to predict at what age a given

patient with ADPKD will develop renal failure.
Glomerulocystic Kidney Disease

The term glomerulocystic disease (GCKD), coined by Taxy

and Filmer in 1976, is used to describe the morphologic

appearance of glomerular cysts, which occur in a variety
of conditions (432). GCKD was first described clinically

by Ross in 1941(433). Glomerulocystic kidney disease can

be categorized into three major groups: (a) nonsyndromal

inherited and sporadic forms of GCKD; (b) GCKD as

the major component of congenital malformation syn-

dromes; and (c) glomerular cysts as a minor component

of abnormal or dysplastic kidney disease, some of which

are syndromic.
Epidemiology and Genetics

Primary GCKD with isolated renal involvement can be an

autosomal dominant disease, a familial hypoplastic dis-

ease, as well as a sporadic occurrence. Reports exist of

infants with GCKD who have family members affected

with ADPKD, which raises the question of whether these

two entities are different expressions of the same genetic

defect. Sporadic GCKD and GCKD occurring in the con-

text of familial ADPKD are clinically, sonographically,

and histopathologically indistinguishable. However, sev-

eral recent studies of kindreds with autosomal dominant

inheritance of GCKD excluded mutations in one or more

of the PKD genes, including PKD1, PKD2 and HNF-1beta

(434, 435). Thus, with emerging molecular diagnostic

techniques, the genetic basis for this rare and heteroge-

nous disease may be more fully defined.

An apparently distinct entity is hypoplastic glomeru-

locystic kidney disease, a dominantly inherited disease

reported in only a few families (436, 437). These kidneys,

apart from being glomerulocystic, are small, and imaging

studies show abnormal pyelocaliceal anatomy. Mutations

in the hepatocyte nuclear factor-1beta (HNF-1b) gene

were been identified in 4 kindreds with this hypoplastic

GCKD variant (438).

GCKD can be associated with congenital syndromes

such as orofaciodigital syndrome, type I (439); brachy-

mesomelia–renal syndrome (440); trisomy 13 (441);

Majewski-type short rib–polydactyly syndrome (441);

and Jeune syndrome (442) and can be seen as a compo-

nent of the renal abnormalities in nephronophthisis

(443). Although tubular sclerosis generally includes tubu-

lar cysts, glomerular cysts can be present (443). Glomeru-

lar cysts also occur as a minor component in several other

syndromes including Zellweger cerebrohepatorenal syn-

drome (441, 442) in which the cysts are typically present

but rarely serious enough to affect renal function.

Other syndromes that may be associated with glomer-

ular cysts as a component of renal dysplasia include

Meckel syndrome, glutaric aciduria type II and renal–

hepatic–pancreatic dysplasia (443). The glomerular cysts

http://www.clinicaltrials.gov
http://www.pkdcure.org
http://www.pkdcure.org
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are minor in comparison with the dysplastic components

of the renal disease, although they may be present in

sufficient numbers to create confusion with other glomer-

ulocystic conditions.
Pathogenesis and Pathology

The pathogenesis of GCKD remains unknown. Clinical-

ly, GCKD can be difficult to distinguish from other

cystic kidney diseases. The diagnosis can only be estab-

lished by histologic examination of renal tissue. Sporadic

GCKD in young infants is histopathologically indistin-

guishable from ADPKD-related GCKD. The kidneys in

both the familial and sporadic forms are variably en-

larged, with the degree of renal enlargement related to

the degree of cyst formation (443). The cysts in both

groups may be diffuse but can also be clustered, which

may be responsible for asymmetric and asynchronous

clinical presentations. Diffuse involvement is associated

with interstitial edema, whereas patchy involvement is

associated with better preservation of overall renal struc-

ture and function.

Characteristically, the cysts are dilated Bowman’s

spaces, comprising a sphere lined with cuboidal or colum-

nar cells and containing abortive or primitive-appearing

glomeruli (432), which occur as small scattered cysts

separated by normal parenchyma. The cysts are located

in the cortex, with preservation of the medulla. This lack

of tubular involvement differentiates GCKD from other

cystic diseases in which cysts generally arise from tubular

dilation. In rare cases, they are more diffuse, surrounded

by atrophic and fibrotic parenchyma. They may be found

in association with tubular cysts and dysplasia (443).

The kidneys in sporadic GCKD and the GCKD form

of ADPKD often contain abnormally differentiated pyr-

amids, a type of medullary dysplasia. Both forms of

GCKD are associated with biliary dysgenesis in approxi-

mately 10% of cases (443).
Clinical and Radiographic Features

Most GCKD patients described in the literature have

some degree of renal failure and many have hypertension

at presentation. The typical presentation is that of an

infant with abdominal masses, renal insufficiency, and

enlarged cystic kidneys on sonography. GCKD may man-

ifest in adulthood with hypertension, flank pain, and

hematuria. Variable degrees of renal dysfunction are

seen. Later detection may be consistent with a milder
course (286, 444). Clinically, hepatic cysts have also been

described (443).

Patients with the familial hypoplastic glomerulocystic

kidney disease variant have small kidneys with abnormal

collecting systems and abnormal or absent papillae (436,

437). Family studies show a pattern compatible with

autosomal-dominant inheritance. Most patients appear

to have chronic kidney disease with some degree of renal

impairment early in life but subsequently have stable

courses without progression to ESRD.

Several reports of GCKDdescribe patients with no clear

familial or syndromic association (441, 445, 446). Histo-

logically and clinically, these patients resemble familial

cases with large, hyperechoic kidneys. It remains unclear

whether these sporadic cases are a distinct entity or are

associated with unrecognized syndromal or familial cases.

Reports on an infant with GCKD and multiple cardiac

rhabdomyomas and an infant with severe GCKD who

later developed skin findings consistent with tuberous

sclerosis strongly suggest an association of GCKD with

tuberous sclerosis (447, 448). This, together with the new

information regarding the molecular basis of ADPKD and

tuberous sclerosis and the reported familial association of

GCKD and ADPKD, raises the possibility that autosomal

dominant GCKD, ADPKD, and tuberous sclerosis are

genetically linked in some kindreds. Single case studies

have also reported GCKD in association with Henoch-

Schoenlein purpura (449), hepatoblastoma (450), and as

a sequelae of hemolytic-uremic syndrome (451, 452).

Ultrasonography demonstrates bilateral renal enlarge-

ment without distortion of the renal contour, increased

echogenicity of the cortex and medulla, loss of cortico-

medullary junction differentiation, and small cortical

cysts (445, 453). Radiographically, a feature that can

help distinguish GCKD from ARPKD is abnormal med-

ullary pyramids in the latter. In the future, CTand nuclear

MRI may be of some value in differentiating between

these two diseases (454). Reduced intensity of cortex on

T1-weighted images and abnormalities of corticomedul-

lary differentiation may help confirm the diagnosis.

In summary, GCKD represents a heterogeneous col-

lection of heritable and nonheritable clinical entities. This

clinical course and prognosis is quite variable and often

dependent on the presence of associated disorders.
Polycystic Kidney Disease Associated
with Congenital Syndromes

Many diseases can present with enlarged kidneys or cysts

in the infant and young child and can initially be confused
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w ith PKD ( > Table 36-1 ). Most syndromic and other

inherited disorders can usually be differentiated from

ARPKD and ADPKD by associated clinical features, w ith

the exception of GCKD, occasionally tuberous sclerosis

and von Hippel-Lindau disease ( 1, 5, 455). GCKD can be

a feature of several inherited, sporadic, or syndromic

conditions as discussed above. In addition, GCKD may

be an early histopathologic expression of the ADPKD

gene in young patients. Tuberous sclerosis is an auto-

somal-dominant neurocutaneous disorder, in which

hy perplastic cystic lesions may affect any por tion of the

nephron ( 447). Genetic linkage of the chromosome

16 loci for tuberous sclerosis and ADPKD1 has been

demonstrated (456). The tuberous sclerosis 2 ( TSC2)

gene has been identified and encodes a novel protein,

tuberin. Uncommonly, patients show polycystic renal

involvement w ithout clinical neurocutaneous involve-

ment or positive family histor y. Seve ral k indreds have b een

iden tifie d w ith tu berou s sc le rosis an d severe c hildhood-

onset ADPKD; they have large deletions in the area con-

taining PKD1 and adjacent tuberous sclerosis 2 ( TSC2)

gene (301). Analysis of the deletions indicates that they

inactivate PKD1, in contrast to mutations reported in

ADPKD patients in which abnormal transcripts have

been detected. Von Hippel-Lindau disease is a dominantly

inherited cancer syndrome characterized by renal cell car-

cinoma, pheochromocytoma and hemangioblastomas of

the eye, spine and cerebellum. Cystic kidneys and pancreas

may be seen and, rarely, patients may present with ‘‘typical’’

features of ADPKD (457). To differentiate GCKD, tuber-

ous sclerosis and von Hippel-Lindau from ARPKD and

ADPKD, detailed family histor y, physical examination

and close clinical follow-up are necessar y.
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