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Introduction

The use of animal models has been an essential aspect of

nearly all areas of nephrological research since its earliest

days. Research on kidney formation and malformation,

physiology and pathophysiology, immunological injury,

and tolerance or transplant rejection all depend on the use

of animal experimentation. This chapter will emphasize

genetic approaches that utilize animals, as this area has

shown the great progress in the development of novel

technologies, that have had great impact in all areas of

nephrology.
Institutional Oversight

There is increasing public awareness of the use of animals

in research, and with this comes increasing concern about

the appropriateness of the use of animals, and whether

much of the research that does involve animal models

could be accomplished using non-animal models. There-

fore it is important to note that all animal research in the

United States and presumably in most other countries

must be evaluated by institutional committees before

any experimentation may commence. Furthermore, the

United States Department of Agriculture (USDA) pro-

vides constant oversight through the use of frequent and

usually unannounced visits to animal facilities with re-

search institutions. These regulatory committees and

agencies are charged with evaluating animal protocols to

make certain that animals are used in an ethical manner,

with proper use of anesthetics or analgesics to minimize

or eliminate any source of pain during experimentation.

They are also charged with verifying that animals are

indeed required for the specific research in question,

that large animals are not used when smaller ones would

suffice, and that the investigators are trained and knowl-

edgeable about proper use of animals. Despite these sev-

eral layers of oversight, in the end it is up to the principal

investigator to be thoughtful about whether their

intended experimental approach will yield sufficiently

important and worthwhile results to justify the use of

laboratory animals.
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Animal Models of Kidney Disease

The selection of an animal model for some aspect or type

of kidney disease takes several factors into consideration.

Most importantly, the similarity to human disease that

can be observed in a particular model is taken into ac-

count. Other important factors include the cost of the

animals involved: the cost of maintaining animals larger

than rodents increases dramatically with size, and the

numbers of animals that can be studied consequently

decreases. For this reason, some studies may begin with

a rodent model, and then progress to a larger model once

the rodent model establishes the feasibility of the hypoth-

esis under study. The size of an animal may be important

to the extent that it affects the ability to perform surgical

manipulations or physiological measurements. However,

since it has become increasingly desirable to obtain phys-

iological measurements on various strains of knockout

mice, the equipment available to perform these measure-

ments has improved and become commercially available.
Genetic Models

Animal models of disease that have a genetic basis may

either result from spontaneous or induced mutations.

Spontaneous mutations or phenotypes are those noticed

either by chance or through the directed observation of

large numbers of mice, that were not otherwise treated to

induce a mutation. In contrast, induced mutations are

those resulting from the treatment of mice with irradia-

tion or mutagenic agents known to introduce point muta-

tions or deletions into the genome.

The past 20 years have witnessed an explosion in the

use of genetic approaches to understand development and

physiology, and thus they will receive appropriate empha-

sis in this chapter. Several genetic approaches are available

for use with animal model systems. A gene of interest may

be mutated using gene targeting, or expressed in trans-

genic mice in such a way to interfere with its normal

function. On the other hand, it is possible to start with

a phenotype of interest, which could either be obtained

as a spontaneous mutation or from mice treated with
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a mutagen, and an effort is made to identify the mutated

gene responsible for the phenotype. Genetic approaches

using gene targeted or transgenic mice are useful for a

wide variety of developmental and physiological studies

in which there is a need to study the function of a

known gene.
Genetic Approaches with known
Genes-Genotype to Phenotype

Gene Targeting

Gene targeting was originally used to introduce a deletion

or interruption into a gene of interest, using the scheme

shown in > Fig. 16-1, such that it could be determined

whether mice would be able to develop in the absence of

that gene’s function. In cases where a gene was shown not

to be essential for development, the homozygous mutant

mouse might serve as a useful model in which to study the

role of a specific gene in a physiological or disease process.

For example, targeted deletions of the Wt1 (1), Pax2 (2),

GDNF (3–5), Wnt4 (6), and BMP7 (7, 8), among others,

showed these genes to be essential for various aspects of

early kidney development. On the other hand, the absence

of many immunology-related genes does not result in any

developmental impairment, but these mice have served as

useful models to study the role of the immune system in

transplant rejection.

The advent of gene targeting was made possible

through the use of two technologies developed mainly in

the 1980s. The first was the development of tissue culture

conditions that allowed embryonic stem (ES) cell lines to

be grown indefinitely in culture while retaining their

totipotency (9). ES cells grown in culture could then be

introduced into mouse preimplantation embryos or blas-

tocyts, and become fully integrated into those embryos

such that their descendant cells would give rise to all

developmental lineages that are found in adult mice

(10). The second technology involved the use of homolo-

gous recombination to introduce mutations into mam-

malian genes (11–13). As shown in > Fig. 16-1, when long

stretches of genomic DNA in recombinant DNA con-

structs are introduced into cells in culture, this DNA

will, at variable and often quite low frequency, recombine

into the locus from which the genomic DNA was origi-

nally derived. Therefore homologous recombination of

the correctly designed genomic fragment can be used to

introduce a deletion or insertion into a genomic locus,

that renders the gene unable to be expressed. This ES cell

would in essence be heterozygous for a mutation in the
targeted gene, and heterozygous ES cells can be isolated

and expanded to provide a population for injection into

blastocysts. Therefore, by combining the ES cell techno-

logy and homologous recombination, it became possible

to target mutations into genes in ES cells, and then intro-

duce ES cells carrying these mutations into blastocysts,

finally obtaining a mutant adult mouse.

In a typical experiment, gene targeted ES cells

would contain one mutated allele and one normal or

wild type allele for the gene under study. The targeted

ES cells would be injected into preimplantation blasto-

cysts, and groups of these blastocysts would be introdu-

ced into female mice that were previously hormonally

primed to allow implantation of the injected blastocysts

into their uteri, to begin a pregnancy. The resultant mice

from these injections are termed ‘‘chimeras,’’ because any

specific cell is either derived from an ES cells or the

original injected embryo, i.e., the chimeric mouse essen-

tially has four parents, the male and female that provided

the blastocyst, and the male and female that provided the

embryo from which the ES cell line in use was originally

derived. In the best cases, a chimera might be nearly

entirely derived from the ES cells. Among the tissues

that ES cells contribute to are the germ cells: spermato-

cytes or oocytes. When ES cells heterozygous for a muta-

tion are used to make a chimera, germ cells derived from

the ES cells have a 50% chance of carrying the mutant

rather than the wild type allele. Therefore, mating a

chimeric and wild type mice can result in some of the

offspring being true heterozygotes for the mutated gene.

After obtaining both male and female heterozygotes, they

can be mated to obtain homozygous mutant embryos or

mice, depending on whether or not the gene is essential

for development.
Conditional Gene Targeting

The process described in the preceding section results in

the inactivation of a target gene from the beginning of

embryogenesis. In this situation, an embryo will become

non-viable at the first point at which expression of the

inactivated gene becomes essential for survival. However,

it may be highly desirable to study the function of a gene

product in many later events during development or adult

life. Conditional gene targeting allows the inactivation of

a gene in particular tissues or at particular times during

development or adult life (14–16). This technology has

been developed more recently, and has proved more diffi-

cult to employ on a widespread basis thus far, for reasons

that will be discussed.



. Figure 16-1

Gene targeting in mice. (a) The scheme for targeting a deletion of an exon in embryonic stem cells. Exons are shown as

black boxes along a chromosome. Restriction sites for restriction enzyme BamH1A are shown. The replacement vector is

constructed such that the neomycin resistance gene (neo) is shown as an open box, in place of one of the exons. An

external probe specifically does not overlap with the replacement vector. A double homologous recombination results in

then integration of the vector into the chromosome, thus replacing the exon with the Neo gene. The BamH1 site within the

neo gene results in a shorter BamH1 restriction fragment detected by probe after homologous recombination. (b) ES cells

can be injected through a micropipette into a blastocytst, where they become part of the inner cell mass. The injected

blastocyst is introduced into the uterus of a hormonally primed mouse, and gives rise to a chimeric mouse, partially derived

from the ES cells, and partially from the original inner cell mass cells. If the ES cells and blastocysts are derived from strains

with different coat colors, then the chimeric mouse will have a variegated coat color pattern on its fur, providing an indication

of its overall extent of chimerism. In the best cases, the resultant mouse is nearly entirely derived from ES cells. (c) shows a

possible pattern obtained in a Southern blot, based on the scheme shown in (a), using the external probe. A wild type

mouse shows only the longer band. A heterozygous mouse shows both the wild type and gene targeted band, and the

homozygous mutant shows only the shorter band, due to the presence of the BamH1 site in the neo gene. (d) the mating

involved in obtaining germ line transmission of the mutation and subsequently obtaining homozygous mutant mice.
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The general approach to conditional gene targeting is

shown in > Fig. 16-2. This is a variation on traditional

gene targeting, in that it also relies on homologous recom-

bination to introduce a segment of recombinant DNA into

the locus of a gene in ES cells. However, whereas traditional

gene targeting inactivates the gene, conditional gene tar-

geting must modify the gene such that it can be expressed

until such time as its inactivation is desired. The most

commonly used approach involved the insertion of LOX

sites, which are 34 base pair sites involved in site-specific

recombination by Cre recombinase, and enzyme origi-

nally derived from a bacteriophage (15). Since LOX sites

are rather small, it is usually possible to insert them in

introns where they have no effect on gene expression. By

placing two LOX sites in a gene to flank an exon, Cre can

be used to inactivate a gene by recombining out the DNA

segment containing the exon that was situated between

the two LOX sites, thus inactivating the gene. There are

experimental approaches for expressing Cre in temporally

and spatially specific manners or both. Spatial or lineage

specific expression of Cre is most often obtained by plac-

ing the Cre cDNA downstream of a known tissue specific

promoter. Sometimes this is achieved by using homolo-

gous recombination to insert the Cre gene into the geno-

mic locus of a gene with known tissue specific expression,

such that Cre replaces the first exon of that gene. Tempo-

rally specific expression of Cre has proved more difficult

to obtain. One approach is to regulate Cre using the

tetracycline system for inducible gene expression (17).

The other approach makes use of a fusion protein con-

sisting of Cre and a portion of the estrogen receptor that

confers steroid mediated nuclear localization (18, 19).

The latter is modified to bind tamoxifen or tamoxifen-

derivatives instead of estrogen. The Cre-modified estro-

gen receptor fusion protein will remain in the cytoplasm

and therefore not be able to mediate site-specific recom-

bination of LOX sites, until tamoxifen is administered to

the mouse to induce nuclear translocation of the Cre

fusion protein. This system can be used to induce recom-

bination in embryos, when tamoxifen is administered to

pregnant mice. The major obstacle to employing condi-

tional gene targeting on a widespread basis is the avail-

ability of promoter/enhancer elements that are able to

confer robust tissue or cell-lineage-specific expression of

Cre recombinase. However, an increasing number of

mouse strains are available that express Cre recombinase

in various cell lineages within the developing and adult

kidney (20). It is possible to obtain conditional knockouts

restricted to nephron progenitor cells (21), podocytes

(21, 22–24), proximal tubules (25–27), thick ascending
limb (28), ureteric bud (29), juxtaglomerular cells, and

collecting ducts (30). It is also possible to obtain vascular

knockouts (31–33), though not restricted to the kidney.

As more tissue-promoter elements become available,

conditional gene targeting promises to have a large impact

on genetic approaches to kidney disease. As noted above,

there are many genes expressed both in developing and

adult kidney, where the knockout of the gene results in

embryonic lethality. This precludes study of how that

product of that gene might function in postnatal kidneys,

or why a mutation in that gene leads to kidney disease in

humans. It also raises the question of why humans carry-

ing such mutations are able survive, albeit with a genetic

disease, when mice carrying mutations in the same gene

do not survive embryogenesis. Sometimes this is simply

because mice and humans differ in their respective

requirements for specific genes, but more often, it is

because humans with genetic disease often have point

mutations that lead to partial loss of function, whereas

mouse knockouts often involve complete loss of function

mutations. Conditional gene targeting can sometimes

offer a solution to this problem, by allowing normal

gene expression during embryogenesis, and then inacti-

vating a gene in adult mice. Alternatively, there are

variations on the Cre-LOX approach that allow the intro-

duction of point mutations into mice. The introduction

of point mutations into mice has been greatly facilitated

by recent advancements that facilitate homologous re-

combination into BACs (Bacterial Artificial Chromo-

somes) in E. Coli (> Fig. 16-3) (34–36). BACs are used

as they contain large amounts of genomic DNA, and thus

are ideal for use as gene targeting vectors. The longer length

of BACs compared with shorter genomic clones should

improve the frequency of homologous recombination in

ES cells.
Animal Models using RNAi Approaches

RNAi technologies have had great impact across the

breadth of molecular biology and the study of disease

over the past 10 years (37). RNAi is based on a mechanism

common to both plant and animals whereby a short

strand of RNA, that is associated with a set of proteins

known as the RISC complex, hybridizes to a complemen-

tary sequence in a mRNA, causes degradation or inhibi-

tion of translation of the mRNA (38, 39). In the natural

setting, these small RNAs are encoded in the genome

as microRNAs. The same molecular machinery used by

microRNAs to inhibit expression of mRNAs can be



. Figure 16-2

Conditional gene targeting. The targeting vector is different from the previous figure in that LOX sites flank the exon that

will eventually be deleted, and the Neo gene is flanked by Frt sites. The vector is incorporated into the chromosome

through homologous recombination, and ES cells with this knock-in are used to make chimeric mice, and germline

transmission is obtained. Although the LOX sites should not interfere with expression of the gene, the Neo gene is likely to

interfere with normal gene expression. However, in most cases mice will tolerate one inactive gene, as long as the other

allele is functional. After obtaining heterozygous mice, they are mated with Flp – deleter mice, that express Flp

recombinase in germ cells. Flp will recombine the FRT sites and eliminate the neo gene. Mice without the neo gene, but still

containing the exon flanked by LOX sites, are mated with mice expressing Cre in a particular tissue or cell type, or

expressing an inducible Cre, to obtain the conditional knockout. The breeding scheme shown in the figure is

oversimplified. In the actual experiment, a more complicated breeding scheme is required to obtain a mouse that is

homozygous for alleles with LOX sites, and that also has the Cre-expressing transgene. An alternative is to breed mice with

the conditional allele with mice carrying a traditional knockout. This has the advantage that to obtain the conditional

knockout, Cre must only recombine one, and not two, pairs of LOX sites in each cell.
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. Figure 16-3

Gene targeting using BAC clones. Homologous recombination is done in E. coli instead of in ES cells. In the first step, a DNA

fragment is prepared that contains the kanamycin resistance positive selectable marker and the SacB negative selectable

marker, and which also contains homologous ends (A and B, each about 50–60 bp) is introduced into E. coli. This fragment

can usually be prepared by PCR, using primers that contain the homologies to the genomic region, and also to a vector

containing the selectable markers. Usually, a strain of E. coli is used that allows transient activation of the enzymes required

for homologous recombination. Selection for kanamycin resistance will obtain BAC clones where the selectable markers

have recombined into the BAC. In a second round of homologous recombination, A DNA fragment with the same

homologous ends but containing a mutated exon 2, denoted by the ‘‘X,’’ is introduced into the E. coli containing the BAC.

Selection against SacB will obtain BACs in which the mutated exon 2 has replaced the selectable markers. A third round of

homologous recombination is used to insert the neo gene, flanked by FRT sites, so that the BAC can be used for

homologous recombination in ES cells. As shown, this scheme is used to introduce point mutations or small deletions into a

gene. It can also be used to construct conditional knockout vectors, similar to those shown in > Fig. 16-2. An additional use

is to knock-in a Green Fluorescent Protein (GFP) or b-galactosidase (LacZ) reporter gene into a locus to obtain information

about patterns of gene expression.
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co-opted for use by siRNA (silencing RNA) or shRNA

(short hairpin RNA) that are ectopically expressed in cells.

siRNA refers to RNA duplexes that are usually obtained

commercially and transfected into cells. shRNA refers to

small RNAs that are expressed from plasmids or viral

vectors that are introduced into cells. A major addition

to the arsenal of approaches involving transgenic mice

involves the derivation of transgenic mice that express

shRNA molecules capable of reducing levels of mRNA

for specific genes in specific tissues or cell lineages

(38–41). shRNAs can be expressed either constitutively,

or conditionally using the Cre-Lox system (> Fig. 16-4).

An advantage of shRNA technology over gene knockouts

is that it is quicker and cheaper, as mice do not need to

be bred to homozygosity and also to carry the Cre trans-

gene. Instead, a resulting phenotype can be obtained

by mating a Cre-expressing mouse with a mouse carrying

a conditional shRNA transgene, and examining the first

generation offspring carrying both transgenes. The major

disadvantage in comparison with gene knockouts is that

expression of the target gene may be variably reduced, and

it may be necessary to examine several shRNA transgenic

lines in order to obtain ones that demonstrate efficient

knockdown of the desired gene.
Transgenic Mice

As mentioned above, many mutations that result in

human disease are point mutations that result in ‘‘hypo-

morphic,’’ or partial loss of function alleles of a gene. In

this case a disease state may result from decreased activity

of a gene product. In other cases, a point mutation or

deletion mutation may produce a protein that interferes

with the function of the normal gene; this is referred to as

a dominant negative effect. This could occur in instances

where a protein requires homodimerization for activity,

and dimerization of a wild type and a mutant form of a

protein leads to an inactive complex. Dominant-negative

effects can also be found in cases where two proteins

heterodimerize, and an inactive mutant protein is able

to complex with its partner protein, but as before, the

complex is inactive. Dominant – negative effects can be

studied in animal models using transgenic mice. Although

gene targeted mice discussed in the previous sections can

also be considered to be transgenic, because foreign DNA

is used to disrupt the endogenous gene, here the term

‘‘transgenic’’ is reserved for those mice in which foreign

DNA has been inserted into the murine genome

through pronuclear injection (42–45). In contrast to
gene targeting schemes in which genes are modified in

ES cells, and ES cells are then used to derive chimeric

mice, transgenic strategies, DNA is directly microinjected

into the pronucleus of a fertilized egg or zygote, and the

injected zygotes are then reimplanted into the oviduct of a

hormonally-primed female mouse. The injected DNA is

able to recombine by non-homologous, or illegitimate

recombination into random locations within the genome,

and in variable amounts from zygote to zygote. Once mice

are derived from the injected zygotes, they are tested to

determine if they carry the injected DNA within their

genomes as a transgene, and if they do, whether the

transgene is expressed. By injecting DNA constructs that

contain a tissue-specific promoter and a mutated gene of

interest, it is possible to study whether expression of the

mutant gene leads to an observable phenotype. In other

instances, the gene to be expressed is not mutated, and the

experiment is designed to determine if overexpression or

de novo expression of the gene results in an observable

phenotype or disease model. While the original transgenic

studies used relatively short DNA constructs, more recent

studies have used BAC (bacterial artificial chromsome) or

YAC (yeast artificial chromosome)-based vectors whose

much longer stretches of DNA containing promoters and

other regulatory regions will hopefully confer more faith-

ful patterns of expression of the transgene directed by

those regulatory elements (42, 46). The great majority of

transgenic work has been done in murine models, but

there have been pioneering efforts in other species such as

pigs and rats (47, 48).
Mutagenesis in Zebrafish

Possibly the single most important advancement in

the development of novel animal models for kidney

disease over the past 10 years is the establishment of

zebrafish (Danio rerio) as a major model for understand-

ing the genetic and physiological basis for disease. Zebra-

fish models of glomerular development and disease

and polycystic kidney disease have been particularly use-

ful models for study of human disease (49–55). Zebrafish

are much less expensive to maintain than mice, and

genetic tools to map zebrafish mutations nearly equal

or in some cases extend beyond those available for

mice (56–58). The zebrafish excretory system involves a

pronephric duct and glomus that bears important

similarity to mammalian nephrons, and has already

been the subject of many research studies (49, 59–65).

Two great advantages of Zebrafish are (1) their shorter



. Figure 16-4

Conditional expression of shRNA transgenes. (a) Mice containing a Cre recombinase-expressing transgene and a shRNA

transgene are crossed to obtain embryos or offspring mice containing both transgenes. The shRNA transgene contains a U6

promoter to direct RNA polymerase III mediated transcription, that is terminated by a poly-T sequence. It also contains a

sense and anti-sense sequence, designed to target a mRNA, that will become the double stranded RNA that associates with

the RISC complex to mediate the inhibitory effect on mRNA stability or translation. Therefore, transcription of the shRNA

transgene is interrupted prior to Cre-mediated recombination of the first poly-T sequence. After removal of the first poly-T

sequence by Cre-mediated recombination of the two LoxP sites, the transgene is fully transcribed and terminates at the

second poly-T sequence. The resultant shRNA forms a hairpin loop by base pairing of the sense and ant-sense sequences.

(b) The shRNA associates with DICER, an RNase III class enzyme that removes the hairpin loop. The double stranded RNA

then associates with the RISC complex, the sense strand is removed, and the RISC complex with the anti-sense RNA finds its

target mRNA and suppresses translation or decreases mRNA stability.
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developmental timing, and (2) that development occurs

in nearly transparent embryos that develop outside

the mother, allowing for far greater observation and

intervention than is possible with rodent embryos. The
Zebrafish genome is presently being sequenced at the

Sanger Center (66), and a full set of markers exists for

gene mapping (57, 67, 68). Importantly, Zebrafish are not

inbred like inbred mouse strains and there exists genetic
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heterogeneity between isolates used in different labora-

tories. It is possible to make transgenic Zebrafish, though

gene targeting is not yet possible (69–71). However, there

have been large scale efforts to saturate the Zebrafish

genome through insertional mutagenesis (72–74). An

alternative to gene targeting is the use of morpholio

oligonucleotides that inhibit expression of specific genes

against which the morpholino is targeted; these can be

injected into cells of early embryos, and phenotypes can

be observed at various developmental stages thereafter

(75, 76). In one sense, morpholinos have an advantage

over gene knockouts, in that they can be designed to

block expression of specific alternative splice forms (75),

rather than all forms as is often the case with gene knock-

outs in mice.
Gene Identification- Phenotype to
Genotype

Mutational Screens to Obtain New
Phenotypes and Identify Genes

ENU mutagenesis: At present, several major efforts in

several countries involve the use of N-ethyl-N-nitrosourea

(ENU) to introduce small mutations throughout the

mouse genome (77–82). Similar approaches have been

used with Zebrafish and many interesting phenotypes

have been obtained (83–87). These large genome-scale

approaches, which can involve very large mouse or Zebra-

fish colonies, are justified by the following arguments:

(1) Most disease-related human mutations are caused by

point mutations, therefore a ENU-mutagenic approach

may have a greater chance of producing a phenotype

resembling a human disease than will gene-targeted

mutations that usually completely inactivate a gene; (2)

an ENU-based approach does not rely on previous iden-

tification or cloning of the gene, i.e., any gene is a theo-

retical target, and can be studied, to the extent that some

degree of compromise in the gene product’s activity will

result in an observable phenotype. The obvious disadvan-

tage in comparison with gene targeting is that a large

amount of work lies between the observation of a pheno-

type and the final identification of the mutated gene. (3)

Given a large enough effort, it should be possible to

eventually ‘‘saturate’’ the genome with mutations, i.e.,

examination of several hundred thousand mutagen-

treated mice or Zebrafish is likely to provide the opportu-

nity to observe the effects of placing a mutation in

every gene capable of causing an observable phenotype.

However, one important point remains to be mentioned,
that dramatically increases the labor and expense of an

ENU-based effort. Most observable phenotypes tend to be

genetically recessive instead of dominant, meaning that

they are not apparent in the first generation offspring of

mutagen-treated animals. Instead, it is necessary to breed

a second generation and then backcross it to the first

generation mice (or Zebrafish), resulting in a third gener-

ation (> Fig. 16-5). Doing this on a large scale will result

in many third generation animals that are now homozy-

gous for mutations resulting from the original mutagenic

treatment, and some will have observable phenotypes that

can be studied for biological interest and to map the

responsible gene.

These large scale genetic approaches are not only

suited to study developmental anomalies. Some of the

large-scale efforts on mouse mutagenesis ongoing around

the world will involve performing basic blood work and a

urinalysis on each mouse from the group being screened

for new phenotypes. Thus this approach has the potential

to identify genes involved in disease progression, as well as

those responsible for morphogenetic processes.
Gene Identification

Microsatellite repeats:Mapping sites of induced or sponta-

neous mutations in mice has been greatly aided by the

development of sets of microsatellite repeat markers.

Microsatellite repeats used in mapping are stretches of

CA dinucleotide repeats that are found interspersed

throughout mammalian genomes (88, 89). Typically,

these CA repeats contain 10–20 CA dinucleotides. These

CA repeats are flanked by unique sequences, and thus it is

possible to design pairs of PCR primers that correspond

to these flanking sequences, that will amplify the (CA)n
sequence between the two primers. Within a genetically

inbred strain of mice each individual mouse will contain

the same number of CA dinucleotides at each repeat.

However, similarly to the variation observed between

human individuals, different inbred strains may differ in

the number of CA dinucleotides at any particular repeat.

Additionally, there are species of mice closely related to

mus musculus, such as mus spretus, that provide even

greater differences in the number of CA dinucleotides at

many repeats than are found between the inbred strains of

musmusculus. As depicted in> Fig. 16-6, geneticmapping

using microsatellite markers takes the following approach:

A mouse (or mice) with a phenotype produced by in-

duced or spontaneous mutagenesis is mated with a mouse

from a different inbred strain, or from a different species,

such as mus spretus to produce F1 mice that are now



. Figure 16-5

ENU mutagenesis. A scheme is depicted for finding

recessive phenotypes through ENUmutagenesis. Dominant

phenotypes require a less complicated approach, as

phenotypes will be apparent in the first generation derived

from crossing founders with wild type mice. In this scheme,

a mutagenized male founder that probably carries many

mutations after mutagenesis, is mated with a wild type

mouse to produce heterozygote offspring that carry a

subset of these mutations. These heterozygotes are mated

with wild type mice to produce a second generation, which

will carry a smaller subset of the original mutations. These

are then mated to the original heterozygous offspring of

the founders, and 25% of the offspring of this cross will be

homozygous for any particular mutation that was present

in the second heterozygous generation.
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heterozygous at all loci, containing one allele from each of

the two parental strains, and one mutant allele. In the case

of a recessive phenotype, these F1 mice are now either

backcrossed to the original mutant strain, or intercrossed

among themselves, to produce approximately 100 pro-

geny mice, about 25% of which can be expected to show

the mutant phenotype. For dominant phenotypes, the

backcross can be to a wild type mice of either parental

strain, and 50% will display the phenotype. Importan-

tly, during this back- or intercross, there is independent
segregation of chromosomes, such that each individual

of the 100 mice is genetically unique, in that at any given

locus, it may be homozygous for alleles from a parental

strain, or heterozygous, containing an allele from each

strain. A set of PCR primers corresponding to about

40–50 microsatellite repeats (about 2–3 per mouse chro-

mosome) are used in the first round of analysis. These are

chosen such that the two parental strains are know to differ

in the length of the CA repeat between each primer pair.

DNA samples are now obtained from all the progeny, and

are tested for the length of the CA sequence at each of the

40–50 microsatellites, and these results are correlated with

the observed phenotypes (in practice, a computational

result, called a LOD score is produced).Most of themicro-

satellites will not be genetically linked to the locus contain-

ing the mutation, and there will be no observable

correlation between the strain genotype at a particular

microsatellite and the presence or absence of the pheno-

type. In contrast, if a microsatellite marker is sufficiently

closely linked to the site of a mutation causing a recessive

phenotype, both alleles of the microsatellite marker are

more likely to be derived from the parental strain original-

ly containing the mutation. Thus, the goal of the first

round of screening is to identify at least one marker that

is linked to the mutation. Thereafter, subsequent rounds

will use sets of markers linked to the original positive

marker, with the expectation that it will be possible to

identify a marker or pair of markers very closely linked

to the mutation that will delimit the region of a single

chromosome on which the mutation is located. This can

then be used to initiate either a candidate gene approach

or a chromosome walking approach to eventually identify

the mutated gene.

SNPs and haplotype mapping: Newer more efficient

approaches to mapping genetic elements are presently

replacing the use of microsatellite repeats described in

the previous section. Chief among these are the use of

SNP microarrays. SNPs, or single nucleotide polymorph-

isms, are single base pair differences found between indi-

viduals within a species. Among the human population,

SNPs tend to be found every 100–300 base pairs within

the genome, and can be used as a measure of genetic

relatedness among, for example, ethnic groups, or people

in different geographic areas (90). SNPs are also found in

comparing different inbred strains of mice and between

the commonly used laboratory inbred strains that are all

derived from mus musculus and other mouse strains that

are ‘‘non-musculus’’ that can be intercrossed with mus

musculus strains to aid in genetic mapping, as described

above (91). In contrast, within a particular inbred strain

of mice, there is by definition genetic homogeneity, and



. Figure 16-6

A scheme for mapping a mutation to a genetic locus. (a) depicts the use of microsatellite CA repeats. Strains A and B are two

inbred strains of mice, that differ in the length of many CA repeats, including the one shown here. Strain A has 23 CA

dinucleotide repeats, whereas strain B has 25. They have the same unique 5’ and 3’ sequences flanking the CA repeats, thus

the same PCR primers can be used for both strains, but amplification will yield a longer product from strain B than A. (b) The

mating scheme to begin mapping the mutation. Only chromosome 1 and 2 are shown. Strain A has a homozygous mutation

on chromosome 1, marked as an ‘‘X,’’ that is linked to the CA repeat, here designated by the black inverted triangle. This

recessive mutation yields an observable phenotype. Strain A and B are mated to produce an F1 progeny, which will be

heterozygous at all loci, including the one mutated in strain A. They will also be heterozygous for all CA repeats, including

those on chromosome 2. Thus any CA repeats that differ between the two strains will yield two bands on a PCR reaction

using the flanking unique primers for that CA repeat. F1 mice are backcrossed to Strain A homozygotes, andmany offspring

are examined. 50% of these offspring should be homozygous for X and have the observable phenotype. When these mice

are analyzed for the CA repeat close to the locus for X, most mice with the phenotype will show only the strain A

amplification product, whereas most of those without the phenotype will show both the strain A and strain B bands. In

contrast, amplification of any CA repeats from chromosome 2 or any other chromosome, will not show any correlation of

strain A homozyosity with the observed phenotype.
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. Figure 16-7

SNPs and haplotypes. (a) A highly simplified of schematic of

SNPs and haplotypes is depicted. Fourmouse strains, labeled

at top are compared. A three nucleotide stretch is shown for

haplotypes A and B and four nucleotides for C, though in

reality a haplotype may span megabases and be defined by

hundreds or more SNPs. The sequences in haplotypes A, B

and C are not necessarily contiguous and might even be on

different chromosomes. In haplotype A, SNP1 is present at

the first nucleotide, in haplotype B, SNP2 is present at the

second nucleotide, and in haplotype C, SNP3 is present at the

second nucleotide. (b) Haplotype grouping defined by the

SNPs. For haplotypes A and B, strains 1 and 2 are the same

haplotype, and 3 and 4 define a different haplotype. For

haplotype C, strains 1, 2 and 3 are the same haplotype, and

strain 4 is a different haplotype, suggesting that strain 3

might be more closely related to strains 1 and 2 than is

strain 4. If strains 1 and 2 differ from 3 and 4 for a disease

phenotype, it is more likely that the gene is within the area

covered by haplotypes A and B, than within haplotype C,
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SNPs should not be present between individuals of the

same strain. SNPs are also used to map genes in Zebrafish

(68). See also > Fig. 16-7.

It is now possible to detect SNPs using microarrays

(92, 93), such that thousands of oligonucleotides comple-

mentary to sequences containing known SNPs can be

arrayed on a single microarray chip, and hybridized to

an individual human or animal’s DNA to determine

which of thousands of particular SNPs that individual

has in their genome (94). SNPs can be used as genetic

markers similarly to the microsatellite repeats described in

the previous section. Therefore, a single microarray can

provide the same information as hundreds of PCR reac-

tions. To be used in a genetic mapping experiment, the

same type of inter-specific cross would be performed as

described in the previous section, but instead of using

PCR reactions to analyze the segregation of microsatellite

repeats, a microarray is used for each individual to analyze

the segregation of SNPs, to narrow the interval that con-

tains the gene being mapped.
that is shared between strains 1, 2 and 3.
QTL and Haplotype Analysis

Almost all human disease has a genetic component,

whether it is the relative susceptibility to an infectious

agent, at one end of a spectrum, or a disease that is

primarily due to a genetic mutation in a single gene, at

the other end. Between these two extremes lies most

human disease, whose etiology derives from a combina-

tion of genetic and environmental factors. In many

instances, the genetic component is due to the effects of

more than one gene. In other instances a single gene

might be responsible, but the phenotype is not absolute,

but rather of variable penetrance or severity. A genetic

elements that contributes to a disease phenotype in a

quantitative, as opposed to absolute, manner is referred

to as a quantitative trait locus, or QTL (95). It is probably

not an overstatement to say that most genetic compo-

nents of disease occur as QTLs, and indeed, there are over

2,000 known QTLs that have been reported (96). Herein,

however, lies the difficulty, as there are not standardized

criteria for defining a QTL (95). Moreover, despite this

enormous number of reported QTLs, only in the case of

around 20–30 QTLs, depending on the criteria used to

judge, have the responsible genes been identified and

rigorously proven to be responsible for the disease

phenotype (96). This is both due to the difficulty in iden-

tifying genes responsible for phenotypes in complex gen-

omes, but also because in situations where a phenotype
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may be due to the combined actions of many genes, the

contribution of any individual gene may be modest and

difficult to prove in an experimental setting.

Nevertheless, many animal models of human disease

appear to be caused by one or more QTLs, and the identifi-

cation of the responsible gene(s) is a pursuit ofmany research

laboratories. Importantly, comparisons of syntenic regions

between human and rodent genomes has aided the search

for genes atQTLs, as it is often apparent that aQTL identified

in humans corresponds to a QTL for a similar phenotype

in rodents (97). Comparisons of syntenic regions can also

be complicated, as a region harboring a QTL in a rodent

genome, if not already delimited to a narrow interval, may

be syntenic with several regions of the human genome,

that are found on different chromosomes.

The approach to identifying QTLs is similar to that

used to detect monogenic phenotypes, that involved the

detection of microsatellite repeats or SNPs described

above. However, QTL analysis is much more complicated

than the analysis of monogenic phenotypes, as one is likely

to find multiple regions that appear to be linked to the

phenotype, and no single region will stand out as the

obvious candidate, until much larger numbers of individ-

ual animals or humans are analyzed to obtain statistically

significant genetic data for each of several candidate genes.

Haplotype analysis has the potential to make gene

identification by SNP mapping more efficient (97–99).

Haplotypes are defined as a group of genetic markers

that are physically linked on chromosomes and that

tend to be inherited together more often than might

be predicted if genetic recombination events were evenly

distributed along chromosomes. Perhaps the best know

examples are the major histocompatibility loci, HLA

in humans and H2 in mice. It is now known that haplo-

type units exist throughout mammalian genomes, and

that SNPs can be used as markers to define haplotypes

(97–99). It then follows that inbred mouse strains that

more closely genetically related are likely to have the

same haplotype at a particular genomic location, whereas

more distantly related strains would be more likely to

have different haplotypes (97, 98). Thus, when SNPs

are being analyzed in the progeny of a genetic cross in

an attempt to narrow down the location of a candidate

gene, haplotype analysis provides an alternative to con-

sidering each SNP individually. For example, if strains A

and B are being studied with the aim of identifying a

disease related QTL only present in strain A and strain B

being normal, then genomic areas where strains A and B

share the same haplotype are unlikely to harbor the dis-

ease locus, whereas areas of the genome where they have

differing haplotypes are more likely to have the disease
locus. Therefore, consideration of haplotypes, each of

which may contain hundreds of SNPs, may allow a

means of focusing on candidate genes within differing

haplotypes, and ignoring those located within regions

where the affected and unaffected strains share the same

haplotype, that might otherwise be suggested for further

study through a SNP analysis that did not take haplotypes

into account. In practice, such an analysis may involve

multiple strains of mice and crosses between them in an

effort to narrow a genetic interval and physically locate

a QTL (100, 101).
Implications of Genome Sequencing

Sequencing of the entire human genome was completed

in 2001 (102, 103) and of the mouse genome in 2002

(104). These continue to be refined, with more detailed

reports and annotations of the sequence of specific

human chromosomes published from 2003 to 2006.

As of this writing, the sequences of approximately 180

organisms, including bacteria, plants and animals have

been reported. This rapidly expanding database has trans-

formed modern biology and the study of disease, and

newer high throughput sequencing technologies promise

an even more rapid expansion in of sequence data in the

near future (105). For example, in gene mapping studies

described above, it is no longer the situation that a disease

gene might be mapped to an area within a chromosome

that had never been sequenced, and the hunt for the gene

becomes a large scale sequencing project. Now, once an

area is delimited, the candidate genes in that area are

largely known from prior genome sequencing, allowing

much more directed sequencing to be done in attempts to

find disease-causing mutations. The genome sequences

for most, if not all, animals used as disease models is

also known, greatly accelerating studies such as those

involving disease-related gene identification in animal

models. A major frontier in genome sequencing related

to disease models is not so much the sequencing of addi-

tional species as it is the sequencing of multiple genomes

within a species, so that we can increase our understand-

ing of intra-species genetic variation, and how it relates to

disease susceptibility (105–107).
Other Animals in Nephrology Research

The emphasis on mice and Zebrafish thus far in this

chapter is not meant to overlook the enormous benefit

that has derived from the use of other species. Despite
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some pioneering efforts, gene targeting technology has

not been developed in rats. However, ENU mutagenesis

has been used to obtain rat mutant models of disease and

gene mapping of disease phenotypes in rats has yielded

important insights (108–112). Rats have also been widely

used in studies of nutrition as it related to kidney devel-

opment and disease (113). Furthermore, their larger size

makes rats more amenable to studies that require precise

physiological monitoring or imaging, though the technol-

ogy to perform such studies in murine models, to take

advantage of knockout mouse models, has also improved

dramatically (114–121).

Large animal research have also had an important

legacy in nephrology that continues to this day. Histori-

cally, several animal models have been used to study renal

physiology, including swine, sheep, guinea pigs, rabbits,

rats and mice. Fetal lambs have been a particularly impor-

tant model in which developmental aspects of physiology

have been studied, particularly relating to obstructive

uropathy (122–134). Studies in large animals are also

vital in efforts to use tissue engineering to develop artifi-

cial tissues or in models of tissue regeneration (135–137).

As in other situations, there is a constant need to balance

the advantages of a large animal model with the lower

costs of smaller animals models.
Models of Renal Failure

Approaches to the study of renal failure include acute and

chronic models. Acute renal failure has been induced

using pharmacological agents, antisera against kidney

tissue or other antigens in which immune complex for-

mation leads to glomerular disease (138–144). Ischemia-

reperfusion models of acute renal failure are achieved by

temporarily ligating a renal artery allowing study of the

pathological processes involved in tubular damage, as well

as the effect of various pharmacological treatments on the

pathologic process (e.g., (145–165)). An alternate form of

tubular injury involves temporary obstruction of a ureter

(166–168). Combining these injury models with genetic

models is an emerging frontier in nephrology research.
Models of Immunological Injury

There are many models of autoimmune injury to the

kidney. A traditional model for a lupus-like autoimmune

disease is the NZB mouse, that has been studied for many

years (169–173). These mice develop autoantibodies sim-

ilar to those observed in humans with systemic lupus
erythematosis and other related autoimmune disorders.

More recently, many strains of mice carrying mutations in

genes involved in the regulation of the immune response

have been used to increase our understanding of the role

the immune system plays in the onset and progression of

kidney disease (174–184). These knockout strains have

allowed investigators to begin a genetic dissection of genes

involved in autoimmune and other disorders. Transgenic

technologies have also had an important impact in the

development of new immunological models. One partic-

ular contribution is the use of live-cell imaging that

exploits fluorescent transgenic reporter genes which

mimic the expression of genes expressed in specific

immunological cell types (185, 186). These can be used

either to trace the location of these cells in animals, or to

show evidence of gene expression in an in vivo setting.
Transplant Models

Animal models have been used extensively to study trans-

plant rejection, and in efforts to understand how toler-

ance to transplanted tissue may be improved. Over the

past 20 years there has been an extraordinary advance-

ment in our mechanistic understanding of the immune

function, and this has been brought to bear on the study

of transplant rejection and tolerance (187–193). Impor-

tant models under study include skin and heart trans-

plants in mice, and kidney transplants in rats (194–201).

Additionally, it is possible to produce ‘‘humanized’’ mice

by transplanting human tissue into immunodeficient or

irradiated mice whose immune system has been recon-

stituted with human lymphocytes, thus allowing the

study of human immune function in an animal model

(202–205). One area of research that remains controver-

sial is that involving xenografts (206, 207). Since the

supply of human kidneys and other organs for transplants

continues to fall far short of the demand, there is a

desirability of determining whether non-human animals

provide an alternative source of organs for transplanta-

tion. The major concerns here include the strong immu-

nological rejection to a xenograft that must be overcome,

and the danger that xenografts might serve as vectors for

the introduction of novel infectious agents into the

human population.
Summary

Animal models are of increasing importance in the study

of kidney disease. An important shift over the past 10 or
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more years is the use of rodent models, and the use

of genetic models. Large animal use remains an impor-

tant aspect of these studies. The use of large versus

small animals must take into account cost and ethical

considerations.
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