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Abstract. As an increasing number of applications on the web contain some 
elements of spatial data, there is a need to efficiently integrate Semantic Web 
technologies and spatial data processing. This paper describes a prototype sys-
tem for storing spatial data and Semantic Web data together in a SPatially-
AUgmented Knowledgebase (SPAUK) without sacrificing query efficiency.  
The goals are motivated through use several use cases.  The prototype’s design 
and architecture are described, and resulting performance improvements are 
discussed. 

1   Introduction 

With the advent of social networking sites, wikis, and other web environments that 
fall under the umbrella of web collaboration technologies, exposing the data behind 
web sites in machine-readable formats is becoming ever more popular. Much of the 
information linked and shared across the Web becomes more useful when combined 
with its spatial context. Crime statistics, real-estate information, and restaurant re-
views are examples of information that is more useful when consumed from a spatial 
perspective. Using Web 2.0 techniques, web sites commonly referred to as “mash-up” 
sites are able to display information spatially. For example, one site may overlay 
crime statistics on a map using Google Maps1 while another site displays houses for 
sale on Google Maps. In both cases, the combination of data and capabilities is prede-
fined by the mash-up site and is only used for display purposes. 

Semantic Web technologies, such as the Resource Description Framework (RDF)  
and the SPARQL Protocol and RDF Query Language (SPARQL) are beginning to 
eliminate this limitation. The graph structure of RDF along with the graph query ca-
pabilities of SPARQL make them ideal candidates for representing and searching the 
ever-changing, interlinked, flexible data of the Web, which is not easily done using a 
traditional relational database [1]. 

RDF databases, sometimes called triplestores, offer significant advantages over tra-
ditional structured databases for Semantic Web data [2], but are not optimized for 
spatial information such as geographic coordinates. In this paper, we describe a Spa-
tially AUgmented Knowledgebase (SPAUK) that provides the high-performance 
graph query capabilities needed for searching webs of data, without sacrificing  
the spatial indexing and processing capabilities necessary for performing searches  
                                                           
1 http://maps.google.com 
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involving spatial extents and operators. Here we describe our motivations and exam-
ple use cases for the augmented knowledge base as well as the design and implemen-
tation results. Finally, we discuss the status of the prototype and future direction. 

2   Motivation 

While RDF and modern triple stores are efficient at storing and querying data linked 
across multiple sources of information, they are poor performers when it comes to 
spatial processing. The current standard for storing spatial data generally involves us-
ing an object-relational database augmented with spatial capabilities, such as Oracle 
Spatial. While this approach has proven effective within a predominantly spatial envi-
ronment, the object-relational model lacks the flexibility of RDF and triple-stores that 
make them attractive for searching linked data across multiple sources. The goal of 
SPAUK here is to provide efficient storage and query of spatial data without sacrific-
ing the flexibility and graph search ability of RDF and triplestores. 

2.1   Use Cases 

Query Mash-ups  
Online communities, specifically social networking sites, have led to a surge in avail-
able data about relationships between people. In many cases, a person will own an 
identity on several sites and provide location information about where they live or 
work. The graph structure of RDF makes it natural for representing the information 
distributed across these sites. Combining the graph query capabilities enabled by RDF 
with efficient spatial processing allows us to search for people based on profile data 
from multiple online identities, filtered within a particular spatial boundary. As a de-
veloper, I may be organizing a working group and wish to find other developers near 
me with similar interests. A graph search supplemented with spatial information al-
lows me to search for all employees of companies located within 2 miles of my com-
pany who are developers on SemWebCentral2 and have listed their employers on their 
Facebook3 account. Given location information about local coffee shops, I can also 
search for a coffee shop centrally located between us where we can meet. Searches 
like these require the ability to link and search information from multiple online 
sources while bounding the query and results within spatial constraints. Without spa-
tial query techniques, graph queries like these may waste time processing all coffee 
shops, all SemWebCentral users, or all Facebook users before testing the location in-
formation to determine if they match the query. 

Spatial Annotation  
Web sites exist that allow users to submit reviews about all kinds of topics, including 
movies, books, and restaurants. In the latter case, the geospatial information is impor-
tant when it is time to search reviews. A user will most likely only be interested in  
|reviews of restaurants within a particular boundary or near a particular event.  

                                                           
2 http://www.semwebcentral.org 
3 http://www.facebook.com 
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A knowledge base that allows efficient storage and search of interlinked data along 
with geospatial data enables an application that allows users to annotate restaurants on 
a map, review the restaurant, and provide details about the restaurant by linking to 
other data or reviewers on the Web. Such an application would allow a search for 
good restaurants near a particular conference. 

2.2   Query Types 

In order to support the combination of semantic and spatial data, one must consider 
several different types of queries.  The work [3] of Egenhofer on spatial query lan-
guages based on SQL defined three types of queries: 

− Queries about spatial properties 
− Queries about non-spatial properties 
− Queries about both spatial and non-spatial properties 

Applying these straightforward concepts to a Semantic Web system yields three 
analogous query classes: 

− Queries about spatial properties 
− Queries about ontological properties 
− Queries about both spatial and ontological properties 

Among the spatial properties that can be queried over, several types of spatial queries 
have been identified: 

− Queries about the spatial properties of an individual 
− Queries that relate individuals to a known location (point and range queries) 
− Queries that relate individuals to one another (spatial join, nearest neighbor 

queries) 
− Queries that spatially aggregate individuals 

We will now explore each of these types of spatial queries individually, as applied to 
a storage mechanism that also supports ontological data.  

The simplest type of spatial queries is queries for the location of a known  
object: “Where is the location of Jimmy’s Pizza Parlor?”  This type of query is essen-
tially straightforward data retrieval, and does not necessarily require any specialized 
spatial processing.  As such, a semantic system could support these queries without 
modification. 

The second type of spatial queries relates individuals to a known location.  This 
location could be another specific object in the knowledge base, i.e.: “Which gas sta-
tions are within 1 mile of Jimmy’s Pizza Parlor?” or an absolute location, i.e.: 
“Which gas stations are within 1 mile of  38°N, 77°W?”.  Naturally, these queries 
must be crossed with ontological inference as well: “Which restaurants are within 1 
mile of Gus’s Gas?” where ‘restaurants’ must include entities defined not specifically 
as restaurants, but those defined as Pizza Parlors, Sub Shops, etc., also. 

The third type of spatial queries relates individuals to one another. This class  
includes both spatial joins and nearest neighbor queries.  For example, “Where can I 
go to buy bananas, milk, and a drill within a 2 mile radius?” involves not only the  
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spatial join between the individual places, but also the ontological inference of the 
types of stores that sell the items in question. 

Our spatial semantic knowledge base must be able to support all of these types of 
queries, and combinations thereof, efficiently. 

3   Related Work 

Significant research has gone into creating various types of efficient spatial index 
structures.  These index structures are generally used as a supplemental index to an 
object-relational database. Adding the supplemental indices allows the object-
relational databases to significantly increase their performance with respect to spatial 
queries.  The indices are attached to a column or columns defined as a spatial 
datatype. 

A wide variety of useful spatial index structures exist, each with its own positive 
and negative characteristics.  Most fall within a small number of major families, how-
ever.  These are R-trees [4], quadtrees [5], and grid files [6].  Since we will not be at-
tempting to enhance these index structures in any way, our discussion in this area will 
focus on which is appropriate to attach to a semantic knowledgebase. 

4   Design 

The primary goal of SPAUK is to provide efficient spatial processing for spatial se-
mantic systems.  We can leverage the significant work that has gone into optimizing 
database systems for spatial data processing.  These systems typically employ a sup-
plementary spatial index to provide efficient spatial queries.  As such, we chose to  
design SPAUK as a semantic knowledgebase capable of supporting supplementary 
spatial (and other) indices.   

A secondary goal was to design a system such that the addition of spatial process-
ing to the system is as transparent as possible to the user.  This means that from a cli-
ent’s point of view, all of the data, both the semantic data and the spatial data, is still 
presented as a graph.  To do this, the knowledge base presents itself as a standard 
SPARQL endpoint.  This allows any clients capable of interfacing via the SPARQL 
protocol to utilize SPAUK.   

Thus, the design must present one conceptual graph to its clients, and queries over 
this graph must be divided appropriately into sub-queries which can be answered by 
the various parts of the knowledgebase.  Spatial parts of the query, including locations 
and spatial relationships, must be sent to the spatial index and query processor.  Non-
spatial components of the query must be sent to the underlying triplestore.  Results 
must be combined from the two parts to form a coherent answer.  Moreover, data 
which is inserted must find its way into the appropriate parts of the knowledge base. 

4.1   Interface 

As noted before, SPAUK’s external interface utilizes the SPARQL protocol for query 
access.  However, mapping queries that include spatial instances and relationships to 
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SPARQL is not necessarily straightforward. There are many possible ways that one 
could use SPARQL for spatial data, and the ideal way has yet been attained [7]. For 
our prototype, we stayed within the bounds of SPARQL as it is currently defined.  
While this did not necessarily provide the cleanest possible spatial-semantic query in-
terface, it did allow us to utilize other semantic web software without modification.   

In order to do this, we needed to define a set of classes and properties to represent 
objects, attributes, and relationships that the knowledgebase could understand.  Nu-
merous candidate representations already exist.  GeoRSS is a good choice for repre-
senting spatial extents because it is simple, it already has an RDF syntax, and it is 
based on the Open Geospatial Consortium’s standard for representing spatial extents, 
Geography Markup Language (GML) [8].  Using another representation, such as the 
spatial portions of a commonly used upper ontology, could have worked just as well.  
For the spatial relationships, we decided to start with a set of qualitative topological 
relationships based on the Region Connection Calculus [9].  First, we look at an ex-
ample of a Gas Station expressed using these concepts: 

[] a gas:GasStation; 
 gas:name “Gus’s Gas”; 
 gas:brand gas:Exxon; 
 gas:numberOfPumps “8”; 
 georss:where [ 
  a gml:Point; 
  gml:pos “38 -77” 
 ]. 
]. 

The following is an example of the query, “Which gas stations are within 1 mile of 
38°N, 77°W?” encoded as described. 

SELECT ?x 
WHERE { 
 ?x a gas:GasStation; 
  georss:where ?y. 
 ?y rcc:part [ 
  a gml:Buffer; 
  gml:radius “1”; 
  gml:bufferGeometry [ 
   a gml:Point; 
   gml:pos “38 -77” 
  ]. 
 ]. 
} 

This provides an interface for querying, but does not allow for insertion or deletion 
of triples.  Since this is a necessary for our system and is not yet part of the SPARQL 
specification, we added HTTP interface methods for both insertion and deletion.  
These methods merely require a set of RDF triples being posted to the appropriate 
URLs.  Together with the SPARQL methods, these methods define the entirety of the 
external interface of SPAUK. 
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4.2   Architecture 

In order to facilitate interoperability and leverage existing semantic web software, the 
architecture of SPAUK is based on the Jena Semantic Web Framework4 and Joseki5.  
Utilizing these tools allowed us to focus on the core query-splitting and spatial com-
ponents of SPAUK.   

The basic idea of the architecture is to have a specialized SPAUKGraph implemen-
tation of  the com.hp.hpl.jena.graph.Graph Java interface that deals with the splitting 
and combining of the information that goes in and out of the knowledgebase.  
SPAUKGraph deals directly with some set of IndexProcessors, which represent the 
interface to the data stored in 1 or more supplemental indices.  We address how the 
Graph handles queries and insertion below. 

 

Fig. 1. Class diagram for the SPAUKGraph and its relation to the IndexProcessors 

4.2.1   Data Insertion 
The underlying triplestore continues to be the master copy of all information in 
SPAUK.  All data inserted is in the form of statements, which are inserted directly 
into the underlying triplestore.   

There is an important dichotomy between the statements in the triplestore and the 
contents of the supplemental indices. While the data in the tirplestore is a graph, the 
data that goes in the supplemental indices are sets of discrete objects, i.e. spatial ex-
tents. This makes knowing when to insert an object into the supplemental index 
somewhat tricky. The insertion interface sees the statements being added one at a 
time, and must combine sets of them to form objects to be inserted.  We accomplished 
this through the use of Jena’s InfGraph.  For each type of object that the system must 

                                                           
4 http://jena.sourceforge.net/ 
5 http://www.joseki.org/ 
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watch for, a rule is added to an InfGraph layer above the underlying triplestore.  The 
head of the rule is a function that connects to the appropriate IndexProcessor to add an 
object to the index.  The rule will not fire until all required components are available.  
This rule, for example, adds points to the spatial index processor when they are  
inserted: 

[point: 
   (?x rdf:type gml:Point)(?x gml:pos ?pos) ->  
 point(?x, ?pos)  
] 

This scheme allows for the insertion of objects into the indices without concerning 
us with the transactionality of the data store.  In fact, if part of a geometry definition is 
inserted at some point, and then much later the rest of the definition is inserted, the 
geometry will be indexed successfully at the later point.  However, it does not account 
for updates or deletions of statements corresponding to indexed objects.  As such, in-
dexed objects are treated as immutable within the system.  If the location of a restau-
rant changes, rather than changing the properties of the location object to which the 
restaurant is attached, the restaurant must be severed from the location and a new lo-
cation created. 

4.2.2   Querying 
Querying the combined data storage is the most complicated part of the system.  The 
appropriate parts of the query must be partitioned among the underlying triplestore 
and the supplemental indices, depending upon which parts are capable of most effi-
ciently answering each piece of the query. 

When the SPAUKGraph receives the query, it first splits the query based on the 
namespaces of the  associated with the attached IndexProcessors.  For each triple, the 
namespace of the predicate or the Class (for rdf:type statements) is matched against 
the namespaces associated with the IndexProcessors.  If a namespace is not associ-
ateed with an IndexProcessor, it defaults to association with the underlying triplestore. 
For instance, in the following query, the portion that must be processed by the spatial 
index processor has been italicized: 

SELECT ?x 
WHERE{ 
 ?x a gas:GasStation; 
  georss:where ?y. 
 ?y rcc:part [ 
  a gml:Buffer; 
  gml:radius “1”; 
  gml:bufferGeometry [ 
   a gml:Point; 
   gml:pos “38 -77” 

  ]. 

 ]. 

} 
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Unfortunately, this assigns artificial meaning to the namespaces of which the query 
processor is aware.  This could lead to errors in processing if the users attempted to 
extend the spatial ontologies in a way that the system did not understand.  Since no 
better way to divide the statements at the query level has yet come to light, this is the 
method that the SPAUK prototype uses. 

Once the query has been divided into appropriate parts, the SPAUKGraph must 
make a best-effort attempt to determine which part of the query is the most selective.  
Since it does not have any information about the selectivity of the query parts directly, 
it must ask the underlying triplestore and the IndexProcessors to approximate the se-
lectivity of their parts of the query as an estimated number of results.  Developing an 
appropriate cost model for this is an area of future work.  In the current implementa-
tion, if the spatial query processor receives a query for objects within a specified area, 
it returns the highest possible selectivity and thus is chosen first.  In all other cases, 
the system defaults to allowing the triplestore to bind first.  Other possibilities include 
attempting to execute the different parts in parallel, however this was beyond the 
scope of our prototype. 

An initial subquery is chosen and then executed by either the underlying triplestore 
or an IndexProcessor as appropriate.  The bindings from this subquery are then ap-
plied to the other subqueries as they are executed.  Since the linkage objects between 
the spatial and non-spatial portions are bound at this point, it is expected that the se-
lectivity of the remaining bound subqueries should be extremely high. 

Though SPAUK supports SPARQL, the SPARQL support is provided exclusively 
by the ARQ component of Jena.  Thus our system deals only with queries in the form 
of simple graph patterns.  This drastically reduces the amount of query processing 
work that needs to be done; however, there are cases where this design creates 
SPARQL queries that could not be properly optimized using the index.  This could 
happen if the definition of the range in a range query were split over an OPTIONAL 
clause.  Since these cases are primarily connected to poor query construction, we cur-
rently ignore them in the design.   

4.3   Indices 

The spatial index used in the prototype was a simple in-memory gridfile.  This is not a 
particularly sophisticated spatial index; however, the software was designed such that 
substituting another indexing mechanism should be straightforward.   

Ideally, we would like to add either a quadtree or R-tree indexing mechanism to 
SPAUK.  Having both available to spatial applications is ideal, since both have 
strengths and weaknesses depending on the distribution of the data being stored.  Par-
ticularly, quadtrees function better than R-trees when data is more evenly spatially 
distributed, and R-trees function better when data is more spatially clustered.  Since 
there are applications which could potentially make use of both types of indices, the 
option of both should exist.  This is analogous to the spatial index support provided in 
common spatial relational databases such as Oracle Spatial 10g.   

5   Results 

The SPAUK system was successfully implemented for a subset of the desired prob-
lem.  Processing was implemented for two major types of spatial geometries: Points 
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and Polygons defined by an exterior linear ring.  Rules were created to detect these 
geometries and insert them into the index.  Two spatial relationships were imple-
mented over these polygons, connected and part.  These allowed us to sufficiently test 
the query splitting mechanism.   

Unfortunately, without the creation of spatial semantic benchmarks, we do not yet 
have a way to empirically test the performance of the SPAUK system.  However, 
consideration of the prior art in the object-relational database realm and a careful look 
at the index structures demonstrates that the technique is superior. 

Consider attempting to build a system for spatial semantic data without any spatial 
indexing.  A query for all restaurants that are in a 2 mile radius from a given point 
would clearly be O(n) in the number of restaurants, since the system would have to 
compare each and every restaurant’s location to the spatial buffer area.  However, if a 
quadtree was used for spatial indexing, we would expect the time to find objects in 
the radius to be logarithmic.   

6   Conclusion 

While we have not yet done formal analysis of the performance improvement caused 
by using a supplemental spatial index, examples of the technique in the object-
relational database world, simple analysis of the algorithms involved, and preliminary 
usage of the SPAUK system have shown that the approach is indeed valid.  Attaching 
a semantic GIS client to the SPAUK system provides responsive spatial semantic 
query capability.  We believe that this type of system enables a new class of semantic 
applications whose full potential cannot yet be conceived.  Waldo Tobler’s “first law 
of geography” states, “Everything is related to everything else, but near things are 
more related than distant things.” [10]  Since a goal of the Semantic Web is to maxi-
mize the meaning of relationships, spatial information processing cannot be ignored. 

7   Future Work 

The first major piece of future work for the SPAUK system will be to fully implement 
the GeoRSS geometry types and the RCC8 spatial relations.  This will provide a fully 
usable system for experimentation with spatial semantic data storage, and hopefully 
provide others with a method of building spatial semantic applications when it soon 
becomes open source. 

The second piece of future work involves significantly more formal performance 
testing.  However, this will require several other advancements.  First, a benchmark 
for spatial semantic data must be created.  This could very well be an enhancement of 
the Lehigh University Benchmark (LUBM) [11].  Secondly, SPAUK would need to 
be attached to a more robust spatial index, such as a persistent R-tree.  With these 
modifications in place, SPAUK will be formally compared to a semantic spatial sys-
tem in which spatial calculations are performed only as function calls in rules. 

Finally, extending the SPAUK implementation with a temporal index or other indi-
ces is very desirable.  The architecture is built not just for one supplemental index, but 
for many; hopefully it can provide benefit for a wide variety of application areas. 
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