
SPARK: Adapting Keyword Query to Semantic
Search

Qi Zhou, Chong Wang, Miao Xiong, Haofen Wang, and Yong Yu

Apex Data and Knowledge Management Lab�

Department of Computer Science and Engineering,
Shanghai JiaoTong University, 200240, Shanghai, P.R. China

{jackson,wangchong,xiongmiao,whfcarter,yyu}@apex.sjtu.edu.cn

Abstract. Semantic search promises to provide more accurate result
than present-day keyword search. However, progress with semantic search
has been delayed due to the complexity of its query languages. In this pa-
per, we explore a novel approach of adapting keywords to querying the se-
mantic web: the approach automatically translates keyword queries into
formal logic queries so that end users can use familiar keywords to perform
semantic search. A prototype system named ‘SPARK’ has been imple-
mented in light of this approach. Given a keyword query, SPARK outputs
a ranked list of SPARQL queries as the translation result. The translation
in SPARK consists of three major steps: term mapping, query graph con-
struction and query ranking. Specifically, a probabilistic query ranking
model is proposed to select the most likely SPARQL query. In the exper-
iment, SPARK achieved an encouraging translation result.

1 Introduction

In the next stage of web revolution, termed the semantic web, web resources will
be made available with various kinds of metadata described in ontologies1. Cor-
respondingly, many semantic query languages (e.g. RQL [1], RDQL 2, SquishQL
[2] and SPARQL 3) have been proposed for querying these ontologies. However,
in order to use these semantic query languages, end users have to master com-
plex formal logic representations and be familiar with the underlying ontologies.
This has become a critical gap between semantic search and end users [3][4].
Meanwhile, most users have been accustomed to the traditional keyword search
for years. Therefore, it is valuable to enable the users to carry out semantic
search by inputting keyword query. However, keyword query is very different
from semantic search. To adapt keyword query to semantic search, we have to
overcome the following obstacles: 1) Vocabulary Gap: Casual web users usually

� This work is funded by IBM China Research Lab.
1 In this paper, ontology refers to a knowledge base (KB) that includes concepts,

relations, instances and instance relations that together model a domain.
2 http://www.w3.org/Submission/RDQL/
3 http://www.w3.org/TR/rdf-sparql-query/

K. Aberer et al. (Eds.): ISWC/ASWC 2007, LNCS 4825, pp. 694–707, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

SPARK: Adapting Keyword Query to Semantic Search 695

have no knowledge of the underlying ontology, so the words in their queries may
be quite different from those in the ontology. 2) Lack of Relation: Relations
between concepts/instances are required to be explicitly stated in formal logic
queries, which are often missing in keyword queries [5]. How to automatically dis-
cover these missing relations becomes a big problem. 3) Query Ranking: Due to
the ambiguity of keyword query, there may be multiple formal queries produced
from one keyword query. How to rank these queries is a big challenge [6].

Faced with these difficulties, we present our novel approach in SPARK sys-
tem. SPARK can automatically translate keyword queries into corresponding
SPARQL queries under the domain ontology, with the aim of adapting keyword
query to semantic search. The main translation steps are: term mapping, query
graph construction and query ranking. Term mapping maps the terms of a key-
word query to the resources of the knowledge base to narrow the vocabulary
gap. After that, query graph construction links the mapped resources so that
the missing relations and concepts can be obtained and a complete query graph
can be constructed. Finally, the probabilistic query ranking model estimates the
most likely SPARQL query among all the candidate queries. In this way, the end
users can keep the habit of typing keywords and querying the semantic web data
transparently, which increases the social utilization of semantic search. From the
evaluation of 750 various keyword queries over three ontologies, SPARK achieved
an encouraging MRR 4 score of 0.677.

The rest of this paper is organized as follows: Section 2 defines the problem
of formal query construction. Section 3 details the main steps of formal query
construction in SPARK. The implementation and experimental result are pre-
sented in Section 4. Section 5 outlines the related work. We give the conclusion
and future work in the last section.

2 From Keywords to Formal Query

Answering many kinds of semantic query can be formulated as a problem of
finding a group of objects which are connected by certain relationships and
restrictions. In ontology, a semantic query is equal to a query graph with con-
strained object nodes and property arcs. An example query is “Find all the states
that the mississippi river runs through and border texas” querying the geography
ontology (Fig. 1). It can be rewritten as an equivalent conjunctive formal logic
expression:

?x ← (?x, is, State)∩(Mississippi River, runThrough, ?x)∩(?x,border,Texas)

where class ‘State’, instance ‘Mississippi River ’ and ‘Texas ’ are ontological re-
strictions on nodes while ‘border ’ and ‘runThrough’ are the required connecting
arcs in the pattern. ‘?x’ is the variable passing these restrictions on the query. So
we can reduce the problem of translating keyword queries into formal queries to
the problem of constructing equivalent query graphs from keywords. To clarify
the problem, we give the formal definitions as follows:
4 MRR: Mean Reciprocal Rank [16].

696 Q. Zhou et al.

-hasName : string
-hasPopulation : long

City

Capital

-hasName : string
-hasArea : long

Lake

-hasName : string
-hasNumber : string
-hasAbbreviation : string
-hasArea : long
-hasPopulation : long
-hasHeighestPoint : string
-hasHeighestEvaluation : long
-hasLowestPoint : string
-hasLowestEvaluation : string

State
inState

inState

inState

runThrough

runThrough

border

subClassOf
hasCities

-hasNumber : long
Road

-hasHeight : int
-hasName : string

Mountain

-hasName : string
-hasLength : long

River

hasCapital

-hasName : string
-hasHeight : long

hasRiver

Fig. 1. Geography Ontology (Schema)

Knowledge base D : 〈C, I, L, R, τ〉 is a directed graph GD where: C and R
define the sets of class and relation. I and L are the sets of instance and literal
5. Function τ : (C∪I)×(C∪I∪L) → R defines all the triples in D. Additionally,
we use symbol resource {e} : {C ∪ R ∪ I ∪ L} to represent all classes, relations,
instances and literals.

Keyword query K is a bag of terms {t}. In our assumption, the end users
can have no knowledge of the underlying ontology and any arbitrary keyword
queries can be issued by the users.

Formal query F : 〈C ′
, R

′
, I

′
, L

′
, V, τ

′ 〉 over D is a graph GF subsumed by
GD. V is the set of variable nodes which conjunct the relations and nodes.
τ

′
: (I

′ ∪ C
′ ∪ V) × (I

′ ∪ C
′ ∪ V ∪ L

′
) → R defines all the triples in F .

From the definitions above, the formal query construction problem can be
modeled as:

Under knowledge base D, given a keyword query K, constructing and
ranking candidate formal queries {F}� such that the most likely query
is among the highest ranked ones.

For example, assume that a web user intends to express the information need
“Show me the states which the mississippi river runs through?”. He may type
“mississippi river state” as his keyword query. In SPARK, the formal query con-
struction process will map these keywords into knowledge base and complete the
candidate formal query graphs under D. In resolving the ambiguity (term ‘mis-
sissippi ’ may refer to ‘mississippi state’ or ‘mississippi river ’) and information
loss (lack of relations among terms), there are many candidate formal queries
with different senses as the construction results. The query ranking process then
estimates a confidence score for each candidate formal query so that the more
likely formal queries are ranked higher. Take the formal queries in Table 1 as an
example, each one is assigned a ranking score (Column ‘Total’). In the following
section, we will illustrate the detailed approach in SPARK framework for formal
query construction.

5 To simplify the problem, we will treat all literal as instance in later sections.

SPARK: Adapting Keyword Query to Semantic Search 697

Table 1. Some formal queries translated from keyword query ‘mississippi river state’

Formal Logic Representation KQM KBM Total Rank
?x ← (?x, is,State) 0.160 0.495 0.0792 7
?x ← (?x, is,River) 0.160 0.544 0.0870 6

?x ← (?x, is,State) ∩ (Mississippi River, runThrough, ?x) 0.333 0.653 0.2898 1
?x, ← (?x, is,State) ∩ (?x,border,Mississippi State) 0.246 0.854 0.2100 3

?x ← (?x, is,River) ∩ (?x, runThrough,Mississippi State) 0.289 0.877 0.2534 2
?x ← (?x, is,State) ∩ (?x,hasCities, Fall-River City) 0.211 0.891 0.1880 4
?x ← (?x, is,State) ∩ (?x,hasCities, Fall-River City)

∩(Mississippi River, runThrough, ?x) 0.129 0.979 0.1263 5

3 The SPARK Approach

The framework of SPARK consists of two modules (Fig. 2): ontology processing
module and formal query construction module. When an ontology is selected as
the underlying knowledge base, the ontology processing module automatically
indexes its resources. The formal query construction module takes keywords as
input, and returns a ranked list of SPARQL queries as output.

Once a user inputs a keyword query, the term mapping step uses a group of
mapping methods to find the corresponding resources in the knowledge base ac-
cording to user’s keywords. Then, the query graph construction step enumerates
all possible query combinations and applies Minimum Spanning Tree algorithm
[7] to construct complete query graphs with different senses from the mapped re-
sources, during which some missing relations or concepts will be made up in the
query. Finally, the query ranking step evaluates the constructed formal queries
from two perspectives: the keyword query model (KQM) and the knowledge base
model (KBM). A ranked list of SPARQL queries will be given back to the end
user. In the next three sections, we will detail the term mapping and query graph
construction steps, and model the query ranking problem.

Term
Mapping

 Query
Ranking

IndexingOntology K.B.

Query Graph
Construction

Mapped
Resources

Query
Graphs

Formal Query Construction

Ontology Processing

Keywords

SPARQL

Fig. 2. SPARK Framework

698 Q. Zhou et al.

3.1 Term Mapping

The purpose of term mapping is to find corresponding ontology resources (i.e.
classes, instances, properties and literals) for each term in the keyword query.
The names and labels of ontology resources are used for mapping. In our im-
plementation, two types of mapping methods are employed: 1) morphological
mapping employs string comparison techniques such as stemming, Sub-String,
Edit-Distance, and I-Sub [8] to find morphologically similar words; 2) semantic
mapping mainly utilizes general dictionaries like WordNet [11] to find seman-
tically relevant words (e.g. synonyms). During a term mapping process, each
term in K is matched against the knowledge base with different mapping meth-
ods, e.g. term ‘river’ can be mapped to two ontology resources: class ‘River’
by direct mapping and instance ‘Fall-River City’ by Sub-String mapping. We
assign a pre-defined confidence value P (e|t)(P (e|t) ∈ (0, 1]) to each mapping
method to determine the mapping quality. Generally, the confidence value for a
direct matching is higher than that for a synonym-based matching. Term map-
ping associates each term in keyword query with senses under the knowledge
base. Therefore, after the term mapping process, a term is no longer a lexical
string but represents a list of resources indicating what kinds of elements the
user wants. In the next section, query graph construction process will construct
candidate formal query graphs with different query senses from these mapped
ontology resources.

3.2 Query Graph Construction

The query graph construction process builds up candidate query graphs with
the ontology resources mapped above. Firstly, the mapped resources are split
into different query sets. Then, Minimum Spanning Tree algorithm is applied to
construct possible query graphs for each query set. Finally, each query graph is
interpreted into a SPARQL query by conversion rules.

River
Fall-River City

Mississippi State

State

Mississippi River

Mississippi

River

State

Fall-River CityState

hasCity
runThrough

Mississippi River

is
?x

Term Mapping

State
Mississippi State

River

Mississippi River
River

State
Mississippi River

State

Fall-River City

River

Fall-River CityState

hasCityis
?x

runThrough

Mississippi State

is

?x

State

runThrough

Mississippi River

is

?x

split query set construct candidate query graphsStep 1 Step 2

convert into SPARQL queryStep 3

candidate formal queries

{F1, F2, F3, F4, , Fn}

Fig. 3. Query Graph Construction

SPARK: Adapting Keyword Query to Semantic Search 699

In the step of query set split: for each term ti in K, if there is only one resource
mapped from ti, we directly add it into every F of query set {F}; otherwise
we duplicate the original query set {F} and add each mapped resource of ti
into every F in different sets. The purpose of query split is to assign a definite
query sense to each formal query, which is a process of enumerating all possible
combinations from different senses of each term.

After enumerating possible query set {F}, SPARK uses the Kruskal’s Min-
imum Spanning Tree algorithm [7] to join these mapped resources of F into a
complete query graph for each F in query set. Besides SPARK, the Minimum
Spanning Tree has been introduced for inferring SQL query by DBExplorer [9].
In the query graph construction, SPARK makes up the missing relations and
concepts for each query set by exploring its schema graph. Take the keyword
query ‘state mississippi river’ for example: there is no explicit relation between
‘state’ and ‘mississippi river’ expressed. From the schema graph of Geography
Ontology (Fig. 1), one relation ‘runThrough’ entails between instance ‘Missis-
sippi River’ and class ‘State’. So this edge is introduced to construct our final
query graph. We use these discovered nodes as variable nodes pointing to edges
of query graph and discovered edges are added into the query graph. If a con-
nected query graph can be joined with all resources in query set F , we directly
regard it as the candidate formal query; otherwise we take the largest component
instead.

Finally, we generate the query graph according to the following rules: 1) Re-
source class mapped by terms or discovered by graph exploration are regarded
as variable nodes. 2) Resource instance and literal are regarded as end nodes. 3)
Resource property are regarded as the edges of query graph. Since SPARQL is a
graph pattern based query language, it is straightforward to convert the query
graph into corresponding SPARQL query string.

3.3 Query Ranking

After the term mapping step and query graph construction step, multiple can-
didate formal queries will be produced from the original keyword query. There
comes the problem: how to pick up the most likely formal query for the end
users? In this section, query ranking is used to solve the problem. We model
query ranking as: “In knowledge base D, what is the probability of a constructed
formal query F being a user issued query from the given keyword query K?”.
That is, we determine P (F |D, K): the probability of generating event F under
event D and K, which is the core idea of treating the query ranking problem as
conditional probability event. The challenge turns to how to estimate this prob-
ability. Instead of estimating this probability directly, we apply Bayes’ Theorem
and obtain

P (F |D, K) =
P (D, K|F)P (F)

P (D, K)
(1)

where P (F) is the priori probability of formal query F . P (D, K|F) is the prob-
ability of generating knowledge base and keyword from the constructed formal

700 Q. Zhou et al.

query. We assume that the keyword query K and knowledge base D are in-
dependent events. Accordingly, P (D, K|F) can be divided into two parts, and
P (F |D, K) can be written as:

P (F |D, K) =
P (D|F)P (K|F)P (F)

P (D)P (K)
(2)

Formula 2 is not intuitive, so we apply Bayes’ Theorem again into P (D|F) and
P (K|F) in Formula 2)and obtain a more intuitive formula:

P (F |D, K) =
P (F |D)P (F |K)

P (F)
∝ P (F |D)P (F |K) (3)

P (F |D) is the probability of generating F from D. P (F |K) is the probability
of generating F from K. P (F) is the priori probability of F . In this paper,
we assume all the formal queries are in uniform distribution and P (F) is equal
among all candidate formal queries. Thus, the query ranking model is propor-
tional to two sub probabilistic models: the keyword query model P (F |K) and
the knowledge base model P (F |D). The next two sub-sections will illustrate the
estimation of the two models in SPARK.

Keyword Query Model (KQM). The keyword query model reflects the prob-
ability of generating a formal query from a keyword query. Generally, there are
two intuitive properties.

– Mapping Proximity: The ranking function should take keyword mapping
proximity into account. In the keyword mapping, for every term ti in K, the
mapping probability is introduced to indicate the similarity between terms
of K and resources of D. A formal query with resources of higher mapping
scores should be given a higher priority than those with lower mapping score.

– Relevance to Keyword Query: The ranking function should rank the for-
mal queries higher which are more relevant to user’s keyword. The concepts
mentioned in formal query with more keywords from user should be given a
higher score.

Take the constructed queries in Table 1 for example, the third and the fourth
queries are more reasonable from the perspective of the keyword query while
the rest queries either have too few of user’s expressed resources or add too
many resources from the knowledge base. We define the captured information
need of K by the distance measurement between K and F . To calculate the
distance, we resolve the distance into two features: keyword mapping proximity
proximity(F, K) and query relevance relevance(F, K):

Keyword mapping proximity score proximity(F, K) bases on the average term
mapping proximity P (e|t) score. A higher proximity(F, K) indicates that F is
more relevant to user’s terms.

proximity(F, K) =

∑
ei∈F p(ei|t)
|t ∈ K| (4)

SPARK: Adapting Keyword Query to Semantic Search 701

Query relevance score relevance(K, F) is determined by the proportion of com-
mon resources in F and K. The proportion of common resources for K reflects
how many resources in F are directly mapped from K. And the proportion of
common resources for F reflects how many resources mapped from K contained
in F .

relevance(F, K) =
|(e ∈ F) ∩ (P (e|t) > 0)|

|t ∈ K| · |(e ∈ F) ∩ (P (e|t) > 0)|
|e ∈ F | (5)

Thus, the overall keyword query model is interpreted as:

P (F |K) ∝ proximity(F, K) · relevance(F, K) (6)

Knowledge Base Model (KBM). We measure P (F |D) for each formal query
with its information content. Information content has been used by [10][12] for
ranking the semantics of query. In information theory, information contained in
an event is measured by the negative logarithm of the occurrence probability
of the event. For example, given that {xi} is a discrete random event set with
probabilities (p1,. . . ,pn and

∑
pi=1) of their occurrence, the information content

of event xi is given by information(X = xi) = − ln pi.
In query graph, we measure the information content by its query graph pat-

terns. Take the query graphs in Fig. 4 for example, the right one employs a more
complex structure than that of the left one. Its question node ?x is not only con-
strained by the instance ‘Fall-River City’ but also the instance ‘Mississippi River’.
Obviously, its query result contains more information than those of the left query
graph. In the query graph FG, question node (?x) is modeled as the overall event

Fall-River City

?x

Mississippi
River

borderrunThrough

?state
hasCity

chain1
?x

Fall-River City

chain

single chain query graph multi-chain query graph

hasCityis

State

is

State
triple

chain2
tripletriple

Fig. 4. Triple chain in query graph

and the path from it to end instance is viewed as a chain of events. Each event is a
statement triple τ

′
like (?state, hasCity, Fall-River City). The right query graph

in Fig. 4 consists of two chains. chain1 : (?x, hasCity, Fall-River City) and chain2 :
(?x, border, ?state) (?state, hasCity, Fall-River City). Each τ

′
states an isolated

event: given a resource (Fall-River City) or a variable node (?state), the proba-
bility of choosing the relation stated in τ

′
among all other relations is modeled as

an event. The lower probability of choosing certain relation, the more information
contained in τ

′
. Assuming a resource has a set of relations {R

′}, the probability

702 Q. Zhou et al.

of choosing relation r
′ ∈ {R

′} to construct τ
′
is modeled as the probability of the

event τ
′
. To determine the weight of relation, we assign the probability of choos-

ing r
′
as its frequency in D. Frequency reflects the importance of the relation in

knowledge base: the more triples share the relation, the more common the relation
is. Therefore, the probability of event τ

′
is:

P (τ
′
) =

freq(r
′
)

∑
ri∈{R′} freq(ri)

(7)

Given a chain with triples (τ
′ ∈ chain) from the question node to the end

node. We assign the probability of the chain as its triple with lowest probability
P (chain) = min{P (τ

′
)}τ ′∈chain. If multi-chain exists in F (Fig. 4), the event for

the join variable node is determined by the overall probability of these separated
event chain: P (EventF) = P (chain1)·P (chain2). Thus, the information content
can be computed by:

I(F) = − ln(P (EventF)) = − ln
∏

chaini∈F

P (chaini) (8)

After computing the information content score of the query,we use sigmod function
to adjust the information content score and estimate its probability P (F |D) by.

P (F |D) ∝ |α − 1
1 + e−I(F) | (9)

Using information content biases the formal queries with lower-probability. To
balance the information content, we use a parameter α(α ∈ (0, 1)) for adjust-
ing the ranking threshold. If the user wants the frequently-asked query, he can
adjust α with corresponding slider in SPARK’s web page. In the end, the query
ranking process sorts these candidate formal queries by its overall probability
score P (F |K, D) from two sub-models.

4 Implementation and Experiment

SPARK is implemented in Java and Jena6 API. It has a web interface7 for
online users. A user can choose the domain ontology, type his keywords and get
a ranked list of SPARQL queries. These translated SPARQL queries can also
be directly sent to ARQ8 search engine to find related resources. Additionally,
each SPARQL query has an automatically translated natural language query to
clarify their information need.

In the rest of this section, we describe the experiments to validate the perfor-
mance of SPARK and exploit its usability in querying various ontologies. Our
goal is to observe the performance of the query ranking model as well as the query
construction capability under different ontologies with various keyword queries.
Additionally, we will also discuss the usability of SPARK from the experiences
of end users.
6 http://jena.sourceforge.net/
7 http://spark.apexlab.org
8 http://jena.sourceforge.net/ARQ/

SPARK: Adapting Keyword Query to Semantic Search 703

4.1 Experiment Setup

Our experiment was performed on a PC with 3.2GHz Pentium(D) CPU and
2GB Memory. As far as we know, there is no test data specially designed for
translating keyword queries on ontology. Therefore, we manually constructed
these test knowledge base and keyword queries from Mooney Natural Language
Learning Data [14], which has been used by many database and ontology-based
querying experiments [3][13][15]. Firstly, we converted the test dataset (geogra-
phy, job and restaurant) into RDFS ontologies. Then, we manually translated
its natural language query into keyword queries for two purposes: to set up a
test data set for similar applications and to make the evaluation more realistic.
In the translating process, each natural language query was re-written as mul-
tiple short keywords query according to the understanding on it. For example:
the keyword query ‘state ohio river flow ‘ was translated from the natural lan-
guage query ‘show me all the states that river ohio runs through?’. Then, these
translated keyword queries were sent to SPARK and the constructed SPARQL
queries were evaluated with the gold-standard SPARQL query created by its
original natural language query. If the constructed SPARQL is not semantically
equivalent to the gold-standard one, it is considered wrong.

We took two metrics in the evaluation: Recall and MRR. Recall indicates
whether SPARK can construct at least one proper SPARQL query in its can-
didate queries while MRR focuses on the overall performance of SPARK. For
each set of the constructed SPARQL queries by SPARK, we computed the per-
formance by Reciprocal Rank (RR) of the first correct answer. If none of the
SPARQL queries is correct, a score of 0 is given. Otherwise, the score is equal to
the reciprocal of the rank of the first correct one. We calculated the mean recip-
rocal rank of all test keyword queries as MRR which is widely used in evaluating
question-answering tasks [16].

4.2 Experiment Result

We used 250 keyword queries for each ontology. From the result in Table 2,
the recall is 0.846, 0,824, 0.711 and the MRR is 0.755, 0.764, 0.513 for geogra-
phy, restaurant and job ontology respectively, which is rather encouraging. The
right constructed query is ranked as the first (MRR=1) or the second query
(MRR=0.5) on average. From the evaluation result, SPARK can process most
of the keyword queries entailing conjunctive relations such as ‘city in virginia’,
‘capital of the states, border new mexico’. However, due to the limitation of key-
word query, some of the semantics in keyword query can not be handled. For
example: given ‘area’ and ‘population’ in ontology, we can’t find a correct formal
query for the keyword query ‘state of smallest population density’. Negation and
superlative forms in keyword queries are inscrutable to be understood in current
implementation, which is the main cause to loss in recall.

The ambiguity of keyword queries has been a big challenge since the invention
of keyword search. To exploit the ability of processing ambiguous keyword query,
we made an analysis of our test keywords and picked up those with ambiguous

704 Q. Zhou et al.

Table 2. Evaluation Result over Geography, Restaurant, Job Ontology. (Query Total:
count of all keyword query; AMB: count of ambiguous keyword query; AVL: average
keyword query length.)

Knowledge Base Query Result Time
Ontology Concept Relation Instance Triple Total AMB AVL Recall MRR Avg(sec)
Geography 7 16 1018 3748 250 60 3.204 0.846 0.755 0.191
Restaurant 7 10 4315 108817 250 75 6.79 0.824 0.764 0.235

Job 12 19 11018 56868 250 49 6.24 0.711 0.513 0.249
Average - - - - - - - 0.793 0.677 0.225

terms. There are 60(24%), 75(30%), 79(31.6%) ambiguous keyword queries in
the evaluation set respectively. From the result, there is no obvious differences
between unambiguous and ambiguous keyword queries. This is due to the tight
coupling between the resources in query graph: the triple relation fit in with
the intuition that resources with strong semantic meanings have other resources
to reinforce one another. For the keyword query: ‘mississippi city’, term ‘Mis-
sissippi’ may refer to the instance ‘Mississippi River’ or instance ‘Mississippi
State’. In the knowledge base, ‘ Mississippi State’ has a relation property ‘hasC-
ity’ while ‘Mississippi River’ does not. Therefore, the final formal query with
instance ‘Mississippi State’ is ranked with higher overall score.

1 2 3 4 5 6 7 8 8+
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Query Length

M
R

R

KQM
KBM
KQM+KBM

(a) Geography Ontology

1 2 3 4 5 6 7 8 8+
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Query Length

M
R

R

KQM
KBM
KQM+KBM

(b) Restaurant Ontology

1 2 3 4 5 6 7 8 8+
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Query Length

M
R

R

KQM
KBM
KQM+KBM

(c) Job Ontology

Fig. 5. MRR score for keyword query model (KQM), knowledge base model (KBM)
and integration of two models (KQM+KBM)

In Fig. 5 we present comparison of ranking performance of keyword query
model (KQM) and knowledge base model (KBM). As we can see, based on the
integration of the two models, SPARK outperforms the best. Compared to the
knowledge base model, the keyword query model contributes to the ranking
performance more. However, with the increase in query length, the performance
of keyword query model decreases. In that case, the knowledge base query can
smooth the performance of the overall ranking score. The overall performance
on keyword query of different length indicates that our query ranking model
works best on the medium and short sized keyword queries (2-6 terms), which
are the most frequently-used in today’s web search engine. From the statistics

SPARK: Adapting Keyword Query to Semantic Search 705

on time cost (Table 2), the time to process a keyword query takes 0.225 second
on average, which is efficient for the implementation.

Besides the evaluation on test data set, we also made a study on the user
experience of SPARK. From the feedback of 50 online users in two months,
SPARK can construct correct SPARQL queries from their keywords most of
the time. They thought that it is very easy for them to locate their desired
information in ontologies quickly. The query ranking is effective: almost all of the
right SPARQL queries can be found within the first three queries. Additionally,
SPARK can handle abbreviated query. For example, query ‘hill of nm’ issued
by user can be easily translated into a formal query representing ‘Show me all
the mountains in the state of New Mexico’ in SPARK.

5 Related Work

In the last few years, there has been increasing interest in applying keyword
query to structured data such as XML [17] and Relational Database [9][18][19].
The attractions are that users can keep the habit in traditional web search
and do not need to know about the data schema. Banks [18] works by starting
shortest-path search on each matching element in order to find out a join tree.
DBExplorer [9] and Discover [19] take advantage of data schema to compute a
set of possible join networks. In the context of semantic web, there has been
little work on inferring candidate query graphes from keywords, which is very
important to semantic search.

Faced with the gap between the formal logic based semantic query and the end
users, some communities have proposed various solutions to narrow it: Bernstein
et al. explore providing controlled language [15] and guided natural language
interface [3]. From the perspective of query refinement [12] [20], the gap between
users’ information needs and its semantic querying is quantified by measuring
several types of query ambiguities through incremental interaction. Graphical
based search [21] also contributes a way, by building graph queries through
browsing and selection on ontology.

Compared to these semantic search methodologies, using keywords lowers
the formal scaffolding of semantic search. SemSearch [6] has a little-structured
keyword query interface to hide the complexity of semantic search. Avatar Se-
mantic Search [22] is a prototype search engine that exploits annotations in
the context of classical keyword search. Another representative keyword based
semantic search application is OntoLook [5]: a prototype relation-based search
engine. OntoLook mentioned the weakness of keyword query in the context of
semantic web and inferred possible relations among keywords to improve the
precision of the search. Compared to these applications, SPARK not only covers
the relation and concept missing problem but also gives solutions to the problems
of query ranking and semantic matching proposed in SemSearch.

Many methodologies on deciding the best query have been proposed before
SPARK: Ontologer [23] builds a query mechanism by recording user’s behaviors
in an ontology and recall it for ranking. Banks [18] incorporates different weight

706 Q. Zhou et al.

on vectors into the relevance score. SemRank [10] uses information gain theory
to rank the discovered path between two resources. To the best of our knowledge,
most of the ranking approaches are feature based and there is no work today
addressing the query ranking problem systematically. In this paper, we give
definition of the problem and present an effective query ranking implementation.

6 Conclusion and Future Work

In this paper, we formalize the formal query construction problem and present an
effective approach in SPARK to resolve it. SPARK aims at translating keyword
queries into SPARQL queries to narrow the gap between formal logic based
semantic search and end users. Additionally, the probabilistic ranking model
implemented in SPARK can well explain what the desired properties are for a
likely constructed formal query translated from keywords.

The main contributions of this paper are: 1) it puts forward the problem
of translating keywords into formal logic based queries for semantic search; 2)
it presents a novel solution to this problem which is implemented as SPARK
that translates keywords into SPARQL queries; 3) it provides a probabilistic
query ranking model for picking most likely translated formal queries from key-
words. From the evaluation of 750 keyword queries over three ontologies, SPARK
achieved an encouraging translation result.

In future work, we consider to enhance SPARK in two ways: 1) enlarge its
query scope by introducing some structured operators (e.g. NOT, OR, etc) and
improving human interaction support to translate more complicated information
needs. 2) extend SPARK’s approach to multiple ontologies for web-scaled usage.

References

1. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.:
RQL: A Declarative Query Language for RDF. In: WWW 2002. Proceedings of
the 11th international conference on World Wide Web, Honolulu, Hawaii, USA,
pp. 592–603. ACM Press, New York (2002)

2. Miller, L., Seaborne, A., Reggiori, A.: Three Implementations of SquishQL, a Sim-
ple RDF Query Language. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS,
vol. 2342, Springer, Heidelberg (2002)

3. Bernstein, A., Kaufmann, E.: GINO - A Guided Input Natural Language Ontology
Editor. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P.,
Uschold, M., Aroyo, L. (eds.) ISWC 2006. LNCS, vol. 4273, Springer, Heidelberg
(2006)

4. Chakrabarti1, S.: Breaking Through the Syntax Barrier: Searching with Entities
and Relations. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.)
PKDD 2004. LNCS (LNAI), vol. 3202, pp. 9–16. Springer, Heidelberg (2004)

5. Li, Y., Wang, Y., Huang, X.: A Relation-Based Search Engine in Semantic Web.
Proceedings of IEEE Transactions on Knowledge and Data Engineering 19(2), 273–
282 (2007)

6. Lei, Y., Uren, V., Motta, E.: SemSearch: A Search Engine for the Semantic Web.
In: Proceedings of EKAW 2006, pp. 238–245 (2006)

SPARK: Adapting Keyword Query to Semantic Search 707

7. Kruskal, J.: On the Shortest Spanning Subtree of a Graph and the Traveling Sales-
man Problem. In: Amer. Math. Soc. (1956)

8. Stoilos, G., Stamou, G., Kollias, S.: A String Metric for Ontology Alignment.
In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS,
vol. 3729, pp. 623–637. Springer, Heidelberg (2005)

9. Chaudhuri, S., Das, G., Narasayya, V.: DBExplorer: A System for Keyword Search
over Relational Databases. In: Proceedings of Data Engineering 2002 (2002)

10. Anyanwu, K., Maduko, A., Sheth, A.: SemRank: ranking complex relationship
search results on the semantic web. In: Proceedings of WWW 2005, Chiba, Japan,
pp. 117–127. ACM Press, New York (2005)

11. Miller, G.A.: Wordnet: a lexical database for english. Commun. ACM 38(11), 39–41
(1995)

12. Stojanovic, N., Stojanovic, L.: A Logic-based Approach for Query Refinement in
Ontology-based Information Retrieval Systems. In: Proceedings of the 16th IEEE
Int. Conf. on Tools with Artifical Intelligence, Illinois USA, IEEE Computer Society
Press, Los Alamitos (2004)

13. Popescu, A.M., Etzioni, O., Kautz, H.A.: Towards a theory of natural language
interfaces to databases. In: IUI, pp. 149–157 (2003)

14. Tang, L.R., Mooney, R.J.: Using Multiple Clause Constructors in Inductive Logic
Programming for Semantic Parsing. In: Flach, P.A., De Raedt, L. (eds.) ECML
2001. LNCS (LNAI), vol. 2167, Springer, Heidelberg (2001)

15. Bernstein, A., Kaufmann, E., Gohring, A., Kiefer, C.: Querying ontologies: A con-
trolled English interface for end-users. In: Gil, Y., Motta, E., Benjamins, V.R.,
Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, Springer, Heidelberg (2005)

16. Voorhees, E.: Overview of the TREC 2001 Question Answering Track. In: Proceed-
ings of TREC-X, Gaithersburg, Maryland, pp. 157–165 (2001)

17. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: Ranked Keyword
Search over XML Documents. In: Proceedings of SIGMOD 2003, San Diego, Cali-
fornia, pp. 16–27. ACM Press, New York (2003)

18. Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword
Searching and Browsing in Databases Using BANKS. In: Proceedings of ICDE
2002, Illinois USA, ACM Press, New York (2002)

19. Hristidis, V., Papakonstantinou, Y.: DISCOVER: Keyword Search in Relational
Databases. In: Proceedings of VLDB 2002 (2002)

20. Carlos A. Hurtado, A.P., Wood, P.T.: A Relaxed Approach to RDF Querying. In:
Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M.,
Aroyo, L. (eds.) ISWC 2006. LNCS, vol. 4273, Springer, Heidelberg (2006)

21. N Athanasis, V.C., Kotzinos, D.: Generating On the Fly Queries for the Semantic
Web: The ICS-FORTH Graphical RQL Interface (GRQL). In: McIlraith, S.A.,
Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, Springer,
Heidelberg (2004)

22. Kandogan, E., Krishnamurthy, R., Raghavan, S., Vaithyanathan, S., Zhu, H.:
Avatar Semantic Search: A Database Approach to Information Retrieval. In: Pro-
ceedings of SIGMOD 2006, pp. 790–792. ACM Press, New York (2006)

23. Stojanovic, N., Gonzalez, J., Stojanovic, L.: Ontologer: A System for Usage-Driven
Management of Ontology-Based Information Portals. In: Proceedings of L-CAP
2003 (2003)

	SPARK: Adapting Keyword Query to Semantic Search
	Introduction
	From Keywords to Formal Query
	The SPARK Approach
	Term Mapping
	Query Graph Construction
	Query Ranking

	Implementation and Experiment
	Experiment Setup
	Experiment Result

	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

