
OBO and OWL: Leveraging Semantic Web
Technologies for the Life Sciences

Christine Golbreich1, Matthew Horridge2, Ian Horrocks3, Boris Motik3,
and Rob Shearer3

1University of Versailles Saint-Quentin
55 avenue de Paris, 78035 Versailles, France

Christine.Golbreich@uvsq.fr
2School of Computer Science, University of Manchester

Oxford Road, Manchester, M13 9PL, UK
horridge@cs.man.ac.uk

3Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

{Ian.Horrocks,Boris.Motik,Rob.Shearer}@comlab.ox.ac.uk

Abstract. OBO is an ontology language that has often been used for
modeling ontologies in the life sciences. Its definition is relatively infor-
mal, so, in this paper, we provide a clear specification for OBO syntax
and semantics via a mapping to OWL. This mapping also allows us to
apply existing Semantic Web tools and techniques to OBO. We show
that Semantic Web reasoners can be used to efficiently reason with OBO
ontologies. Furthermore, we show that grounding the OBO language in
formal semantics is useful for the ontology development process: using an
OWL reasoner, we detected a likely modeling error in one OBO ontology.

1 Introduction

The Open Biomedical Ontologies (OBO) repository is a large library of ontolo-
gies from the biomedical domain hosted by the National Center for Biomedical
Ontology (NCBO).1 The majority of the ontologies in that repository are writ-
ten in OBO Flat File Format2—an ontology language originally designed for
the Gene Ontology (GO) [1]. This language (from now on called simply OBO)
uses a simple textual syntax that was designed to be compact, readable by hu-
mans, and easy to parse. The OBO community has dedicated significant effort to
developing tools such as OBO-Edit3—an integrated OBO editor and reasoner.

In parallel with the OBO effort, the Semantic Web community has developed
the Web Ontology Language (OWL). Three dialects of the language have been
defined, two of which are based on Description Logics—a well-understood family
of knowledge representation formalisms with desirable computational properties.

1 http://www.bioontology.org/repositories.html
2 http://www.geneontology.org/GO.format.obo-1 2.shtml
3 http://oboedit.org/

K. Aberer et al. (Eds.): ISWC/ASWC 2007, LNCS 4825, pp. 169–182, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.bioontology.org/repositories.html
http://www.geneontology.org/GO.format.obo-1_2.shtml
http://oboedit.org/

170 C. Golbreich et al.

Formal semantics and the availability of efficient and provably correct reason-
ing tools have made the OWL DL dialect of OWL the language of choice for
ontology development in fields as diverse as biology [22], medicine [5], geogra-
phy [6], astronomy [2], geology,4 agriculture [24], and defense [14]. Furthermore,
OWL has been used to develop several large biomedical ontologies, such as the
Biological Pathways Exchange (BioPAX) ontology [21], the GALEN ontology
[20], the Foundational Model of Anatomy (FMA) [5], and the National Cancer
Institute thesaurus [9]. Recently, the community of OWL users and developers
proposed an extension of OWL called OWL 1.1 [18], which has been accepted as
a member submission by the W3C. At the same time, a number of OWL-based
tools have been developed, such as the Protégé [13] and SWOOP [11] editors,
and the FaCT++ [25], RACER [8], and Pellet [23] reasoners.

In Section 2, we argue that there are many benefits in applying the tools and
techniques of the Semantic Web to OBO. For example, Semantic Web reasoners
could be used to provide guidance during ontology development; furthermore,
modularization techniques for OWL [7] could simplify the reuse of existing OBO
ontologies. This has been difficult up to now, however, since the OBO and Se-
mantic Web communities have been largely disjoint.

To enable interoperability between OBO and Semantic Web tools and systems,
we establish in Section 3 an exact relationship between OBO and OWL. This
has not been straightforward, mainly because the OBO specification is quite
informal. The syntax of the OBO language has not been formally specified, so
our first step was to formalize the syntax of OBO itself; we discuss the results
in Section 3.1. Likewise, there is no formal specification of OBO’s semantics:
the effects of different constructs have been described using natural language.
We resolved ambiguities in these descriptions through extensive discussions with
OBO developers. Hence, our mapping, presented in Section 3.2, formalizes the
consensus interpretation in the OBO community. We also relate our mapping to
several existing mappings from OBO to OWL.

In Section 4, we discuss how our mapping is used in practice. In Section 4.1 we
discuss the technical aspects of our implementation. The complete replacement
of OBO with OWL is not desirable for the OBO community, as many OBO
users are familiar with both OBO-Edit and the OBO language, and find them
convenient to use. Therefore, instead of simply implementing a translator from
OBO to OWL, we have embedded support for OBO into existing Semantic Web
ontology management infrastructure. In particular, we extended the well-known
OWL API [10] with an OBO parser and serializer. All tools built on top of the
OWL API can thus directly load, process, and save OBO ontologies. Moreover,
tools such as OBO-Edit could use the new API to provide similar features,
including direct access to OWL reasoners.

In Section 4.2, we show that reasoners implementing the formal semantics
of OWL can derive subsumption inferences that are missed by OBO-Edit’s rea-
soner. In fact, on one of the OBO ontologies, our reasoner derived a new inference
that highlights a probable modeling error.

4 http://sweet.jpl.nasa.gov/ontology/

http://sweet.jpl.nasa.gov/ontology/

OBO and OWL: Leveraging Semantic Web Technologies 171

Classifying large biomedical ontologies requires optimized reasoners. In Sec-
tion 4.3, we show that OWL-based tools can be used to efficiently reason with
OBO ontologies. To this end, we classified a number of OBO ontologies using the
FaCT++ [25] and Pellet [23] systems, as well as the novel hypertableau-based rea-
soner HermiT [17].5 The design of HermiT was motivated by an analysis of the
structure of biomedical ontologies such as GALEN and NCI. Our results show that
HermiT’s improved handling of GALEN is applicable to OBO ontologies as well:
on several ontologies containing complex cyclic definitions of terms, HermiT out-
performs the other reasonersby orders ofmagnitude. Thus, ourmapping allows the
OBO community to benefit from current and future advances in reasoning tech-
nology while continuing to use their familiar ontology language and tools.

2 Why Map OBO to OWL 1.1?

2.1 OBO at a Glance

An OBO ontology is a collection of stanzas, each of which describes one element
of the ontology. A stanza is introduced by a line containing a stanza name that
identifies the type of element being described. The rest of the stanza consists of
lines, each of which contains a tag followed by a colon, a value, and an optional
comment introduced by “!”.

The following is an example of an OBO stanza defining the term (the OBO
equivalent of a class) GO:0001555 with name oocyte growth. This term is a
subclass of the term GO:0016049. (The comment tells us that GO:0016049 is
named cell growth.) Furthermore, GO:0001555 has a part of relationship
to the term GO:0048601 (which is named oocyte morphogenesis). Finally,
GO:0001555 is defined as an intersection of GO:0040007 (growth) and of a rela-
tionship has central participant to CL:0000023 (oocyte).

[Term]
id: GO:0001555
name: oocyte growth
is_a: GO:0016049 ! cell growth
relationship: part_of GO:0048601 ! oocyte morphogenesis
intersection_of: GO:0040007 ! growth
intersection_of: has_central_participant CL:0000023 ! oocyte

The following stanza defines the relationship type (the OBO equivalent of
a property) propreo:is described by. The terms propreo:chemical entity
and Description177 are used as the domain and range, respectively, of the
relationship type being defined.

[Typedef]
id: propreo:is_described_by
domain: propreo:chemical_entity
range: __Description177

5 http://www.cs.man.ac.uk/∼bmotik/HermiT/

http://www.cs.man.ac.uk/~bmotik/HermiT/

172 C. Golbreich et al.

Finally, the following stanza defines the instance (the OBO equivalent of an
individual) propreo:water molecule. The instance is a member of the term
propreo:inorganic solvent molecule and has propreo:CHEBI 15377 for the
value of the relationship propreo:is described by.

[Instance]
id: propreo:water_molecule
instance_of: propreo:inorganic_solvent_molecule
property_value: propreo:is_described_by propreo:CHEBI_15377

2.2 Why Formalize OBO Syntax?

The line-oriented syntax of OBO makes parsing ontologies into stanzas and tag-
value pairs straightforward. The tag values, however, usually have a structure
that depends on the tag type. This structure is described in the OBO specifi-
cation in natural language. For example, the structure of intersection of tag
values is described as follows:

This tag indicates that this term represents the intersection of several
other terms. The value is either a term id, or a relationship type id, a
space, and a term id. [...]

This style of description is quite informal and it does not make the conceptual
structure of the OBO language clear. For example, the above description does
not provide any intuition behind the distinction between the two alternative
structures of allowed values. Furthermore, the specification of the structure is
conflated with low-level lexical issues, such as whitespace handling. As a result,
neither aspect of the language is robustly addressed; for example, the treatment
of escape characters is dependent on the structure of tag values. These issues
make the implementation of an OBO parser quite difficult in practice.

2.3 Why Formalize OBO Semantics?

The semantics of OBO is also defined informally, by providing natural-language
descriptions for different types of tag-value pairs. For example, the OBO speci-
fication defines the semantics of the relationship tag as follows:

This tag describes a typed relationship between this term and another
term. [...] The necessary modifier allows a relationship to be marked as
“not necessarily true”. [...]

Such a description is clearly ambiguous and informal. The notion of a rela-
tionship being “necessarily true” is completely undefined; in fact, the notion of
a relationship has not been formalized either. Computational logic can be used
to provide an unambiguous interpretation for such statements. For example, the
relation tag from the stanza for the term GO:0001555 from Section 2.1 can be
interpreted in at least three different ways:

OBO and OWL: Leveraging Semantic Web Technologies 173

– Existantial interpretation: Each instance of the term GO:0001555 must have
at least one part of relationship to an instance of the term GO:0048601. This
reading corresponds to the DL axiom GO:0001555 � ∃ part of.GO:0048601.

– Universal interpretation: Instances of GO:0001555 can be connected through
part of relationships only to instances of GO:0048601. This reading corre-
sponds to the DL axiom GO:0001555 � ∀ part of.GO:0048601.

– Constraint interpretation: Instances of the term GO:0001555 can be con-
nected through part of relationships; furthermore, the end-points of the
relationship must be known to be instances of GO:0048601. Such a state-
ment cannot be formalized in standard DLs; however, it can be expressed in
various extensions of DLs [15,3].

As another example, consider the natural-language explanation of the seman-
tics for the intersection of tag:

[...] For example:
intersection of: GO:00001
intersection of: part of GO:00002

This means that the term is a subclass of any term that is both a subclass
of GO:00001 and has a part of relationship to GO:00002. [...]

Here, it is not clear whether the defined term is equivalent to or a subclass of
the intersection of the other terms. The textual description has a “procedural”
flavor: it says that the defined term should be inferred to be a subclass of other
terms, so one might conclude that the subclass relationship is the proper reading.
Our discussions with the OBO developers, however, revealed that the intended
interpretation is equivalence. The union of tag suffers from analogous problems.

The description of OBO-Edit’s reasoner provides an insight into the intended
semantics of OBO. The OBO-Edit User’s Guide6 defines the following three
reasoning rules:

1. For each transitive relationship R (such as is a or part of), whenever
the ontology contains a → R → b and b → R → c, an implied relationship
a → R → c is added.

2. For each term a defined as an intersection of terms b1 and b2, implied rela-
tionships a → is a → b1 and a → is a → b2 are added.

3. For each term a defined as an intersection of terms b1 and b2, whenever
some term c has relationships c → is a → b1 and c → is a → b2, an implied
relationship c → is a → a is added.

This definition is procedural, and it misses important inferences. Consider the
following example:

[Term] [Term]
id: A id: B
relationship: R B is a: C

6 Available as part of the OBO-Edit distribution.

174 C. Golbreich et al.

This simple OBO ontology says that A has an R-relationship to B, and that B
is a subclass of C. Regardless of which of the three previously suggested inter-
pretations for the relationship tag we choose, we should derive that A has
an R-relationship to C; however, OBO-Edit’s reasoning procedure does not de-
rive that. Furthermore, the second and third inference rules clearly state that
intersection of is interpreted as equivalence, which may be in conflict with
the natural-language description of the semantics.

To sum up, OBO suffers from problems very similar to those identified in
semantic networks [19]. The DL family of ontology languages was developed pre-
cisely to address such problems—that is, to unambiguously specify the semantic
properties of all ontology constructs. A mapping of OBO into OWL lends itself
as an obvious way of providing formal semantics to OBO, and it allows for the
application of sound and complete reasoning algorithms.

2.4 Why Use OWL 1.1?

In OBO, it is possible to make a property reflexive and/or (anti-)symmetric, as
well as to say that one property is “transitive over” another: if P1 is transitive
over P2, then for any individuals x, y, and z, the relationships x → P1 → y
and y → P2 → z imply the relationship x → P1 → z. Such axioms cannot be
expressed in OWL DL; however, they can be expressed in the 1.1 extension of
OWL. Thus, by using OWL 1.1 as the target language, we can capture a larger
subset of OBO.7 Since OWL 1.1 is fully backwards compatible with OWL, OBO
ontologies that do not use any of the additional features of OWL 1.1 are mapped
into OWL DL ontologies.

2.5 Reusing Existing Tools

An obvious practical benefit of a mapping from OBO to OWL is that it allows
OBO users to exploit the multitude of existing OWL tools and services, instead
of reimplementing the same functionality from scratch.

The foundation of many Semantic Web tools is provided by various APIs
that provide means for the programmatic manipulation of ontologies. The OWL
API [10] is a prominent example of such an API that is now very widely used.
Recently, it has been completely reengineered and made compliant with the
OWL 1.1 version of the language. Jena8 is a similar API that is comparable in
its functionality with the OWL API and also has a large user base.

The OWL API has been used as the core data model for several ontology
editors. For example, Protégé [13] is a well-known editor that can be used to edit
OWL ontologies. Its newest incarnation, Protégé 4, supports all of OWL 1.1 and
is based on the new OWL API. SWOOP [11] is another OWL editor that is based

7 Our translation captures all of the OBO 1.2 specification except for cyclic proper-
ties (the semantics of which is not completely clear) and negative assertions about
properties (e.g., the assertion that a property is not transitive).

8 http://jena.sourceforge.net/

http://jena.sourceforge.net/

OBO and OWL: Leveraging Semantic Web Technologies 175

on the OWL API. These editors have been developed over years and are de facto
standards for ontology editing. Furthermore, they are imbued with functionality
that can provide guidance to the user during the ontology development and
maintenance processes; for example, SWOOP supports ontology debugging [12]
and modularization [7]. Finally, a number of plug-ins have been written for
Protégé, implementing features such as UML-based ontology editing and graph-
based ontology visualization.

Several highly optimized, sound, and complete reasoners for OWL exist. Pel-
let 1.4 [23] is built around the OWL API and is tightly integrated into SWOOP,
and RacerPro [8], FaCT++ [25], and KAON2 [16] can be used with ontology
editors through the Description Logics Implementors Group (DIG) protocol.9

These reasoners can be used to classify an ontology and detect inconsistencies in
class definitions, which is valuable during ontology development. Furthermore,
reasoners can be used for query answering, which is the core inference underpin-
ning many applications of OWL and OBO.

Apart from leveraging existing results, our integration allows the OBO com-
munity to reap the benefits of the future Semantic Web research. Conversely,
OBO can provide to the OWL community significant user input as well as a
growing library of OWL ontologies.

3 Providing a Formal Specification for OBO

In this section, we present a formal specification of the syntax and semantics
of OBO. Due to space limitations, we highlight in this paper only the salient
points; the full specification is available online.10

3.1 Formalization of OBO Syntax

We have formalized the OBO syntax by defining a BNF grammar, which main-
tains backward compatibility with the original OBO specification. Our grammar
has been specifically designed to provide a conceptual description of the structure
of OBO ontologies. To this end, it includes nonterminal symbols that identify
and group certain OBO structures. Additionally, the grammar can be used to
generate OBO parsers using automated tools.

For example, consider the definition of the intersection of tag in BNF:

intersection := intersection of: termOrRestr
termOrRestr := term-id | restriction

restriction := relationship-id term-id

As explained in Section 2.2, the value of the intersection of tag can be either
a term, or a relationship type followed by a term. Our grammar introduces
structure to such a “flat” definition as follows. We introduce a nonterminal
9 http://dl.kr.org/dig/

10 http://www.cs.man.ac.uk/∼horrocks/obo/

http://dl.kr.org/dig/
http://www.cs.man.ac.uk/~horrocks/obo/

176 C. Golbreich et al.

term-id , which denotes a “named” term (mimicking OWL’s named classes),
and a nonterminal restriction , which denotes a “restricted term” (mimicking
OWL’s restriction classes). Then, we introduce the nonterminal termOrRestr
(mimicking OWL’s complex classes). Finally, we say that the value of the in-
tersection tag is a termOrRestr (mimicking OWL’s intersection classes that
can contain arbitrary classes as conjuncts).

3.2 Mapping OBO to OWL

Our conceptualization of OBO’s underlying model (described in Section 3.1)
is quite similar to that of OWL, so the mapping between the two is relatively
straightforward. We map OBO terms to OWL classes, OBO relationship types
to OWL properties, and OBO instances to OWL individuals. The id assigned to
each of these elements is used in OBO to uniquely identify each term, relationship
type, and instance; hence, we use the value of id as the URI of the corresponding
OWL element. The value of the name tag provides a human-readable description
of OBO ontology elements, so it is translated into an OWL label.

Unlike OBO, OWL requires a strict separation between object properties (that
relate individuals to each other) and data properties (that associate individuals
with data values). To map OBO to OWL, we must infer which kind of property
is appropriate for each OBO relationship type. If the range of a relationship
type R is specified to be an XML datatype, or if R is asserted to be a subtype
of another relationship type with such a range, then we translate R as an OWL
datatype property; otherwise, we translate R as an object property.

OBO constructs such as is a, disjoint from, domain, and range have ob-
vious equivalents in OWL and are translated in the straightforward manner.
As discussed in Section 2.3, the official specification of the OBO language allows
for several interpretations of the intersection of, union of, and restriction
tags; hence, our mapping into OWL must pick the appropriate one.

Our discussions with OBO developers, as well as a survey of existing OBO
ontologies, revealed that the existential interpretation (see Section 2.3) cap-
tures the intention behind the relationship tag. Hence, we translate the state-
ment relationship: R B in a stanza defining the term A to the OWL axiom
SubClassOf(A ObjectSomeValuesFrom(R B)).

Similarly, we concluded that the intersection of tags should be interpreted
as equivalences between classes (see Section 2.3). Furthermore, values for the
intersection of tag that consist of a relationship type and a term should be
interpreted as existential constraints, just like relationship tags. Hence, we
translate the statements intersection of: C and intersection of: R D in a
stanza defining the term A to the following OWL axiom:

EquivalentClasses(A
ObjectIntersectionOf(C ObjectSomeValuesFrom(R D)))

There was no consensus on the formal semantics of several OBO constructs,
such as the not necessary modifier to the relationship tag and the use of

OBO and OWL: Leveraging Semantic Web Technologies 177

EntityAnnotation(OWLClass(GO_0001555) Label("oocyte_growth"))
SubClassOf(GO_0001555 GO_0016049) SubClassOf(GO_0001555
ObjectSomeValuesFrom(part_of GO_0048601))
EquivalentClasses(GO_0001555 ObjectIntersectionOf(

GO_0040007 ObjectSomeValuesFrom(
has_central_participant CL_0000023)))

ObjectPropertyDomain(propreo_is_described_by chemical_entity)
ObjectPropertyRange(propreo_is_described_by Description177)

ClassAssertion(propreo_water_molecule inorganic_solvent_molecule)
ObjectPropertyAssertion(

is_described_by propreo_water_molecule CHEBI_15377)

Fig. 1. The OWL Interpretation of the Stanzas from Section 2.1

relationship tags in Typedef stanzas. In fact, these tags are likely to be dep-
recated in future releases of OBO, and are currently treated as annotations by
our mapping.

Figure 1 shows the translation of the stanzas from Section 2.1.

Related Work. Other mappings between the OBO Flat File Format and OWL
exist, and a summary can be found online.11 None of these mappings are based on
a formal analysis of OBO. The Common Mapping—a new version of a mapping
originally developed by Chris Mungall—is defined via an XSLT style sheet,12

and has been implemented as a Protégé plug-in. Common Mapping differs from
our mapping in several important respects. For example, it reifies OBO annota-
tion values and turns them into first-class elements of the interpretation domain
subject to consistency checking and inferencing; in contrast, our translation sim-
ply encodes them as OWL 1.1 annotations. Common Mapping translates neither
reflexive nor transitive over tags, whereas our encoding preserves their se-
mantics. Finally, for several OBO ontologies, Common Mapping produces OWL
Full ontologies, which cannot be efficiently processed by existing Semantic Web
tools. In contrast, our translation produces OWL 1.1 ontologies, which can be
processed by existing tools without problems.

4 Integrating OBO with the Semantic Web

4.1 Extending Semantic Web Tools to Support OBO

As mentioned in Section 1, simply replacing the OBO language with OWL would
not be desirable for the OBO community—OBO users are familiar with the
existing syntax of the language and the available tools, and want to continue to

11 http://spreadsheets.google.com/ccc?key=pWN 4sBrd9l1Umn1LN8WuQQ
12 http://www.godatabase.org/dev/xml/xsl/oboxml to owl.xsl

http://spreadsheets.google.com/ccc?key=pWN_4sBrd9l1Umn1LN8WuQQ
http://www.godatabase.org/dev/xml/xsl/oboxml_to_owl.xsl

178 C. Golbreich et al.

Fig. 2. A Screenshot of the Example From Section 2.1 Viewed in Protégé 4

use them. Therefore, we adopted a less intrusive path of integration and have
extended existing OWL tools with support for OBO.

As we discussed in Section 2.5, the OWL API lies at the core of many Se-
mantic Web tools and supports fundamental tasks such as reading, saving, and
manipulating ontologies. We extended the OWL API with an OBO parser and
serializer, thus making OBO just another format supported by the API. This
conveniently extends all applications based on the OWL API with support for
OBO. For example, Protégé 4 can automatically read, edit, and save OBO on-
tologies; see Figure 2. Furthermore, the OWL API can be used to convert OBO
files into OWL and vice versa by simply loading the file in one format and saving
it in another. This functionality can be used to import OBO ontologies into tools
that are not based on the OWL API and use custom OWL parsers.

The central new component in the API is an OBO parser, which consists of two
distinct parts. The lower-level part is concerned with recognizing the syntax of
OBO flat files, and it has been generated automatically from the BNF grammar
described in Section 3.1. The upper-level part accepts different constructs from
the OBO language and translates them into corresponding OWL 1.1 axioms
according to the mapping described in Section 3.2.

4.2 Reasoning Support for OBO

An immediate benefit of our work is that it allows the application of Semantic
Web reasoners to OBO ontologies. These reasoners are based on well-known algo-
rithms with well-understood formal properties; furthermore, they provide formal
guarantees about the completeness of reasoning, which makes the interpretation
of derived results much easier. This can be quite useful in practice: on the OBO

OBO and OWL: Leveraging Semantic Web Technologies 179

ontology so.obo, we used an OWL reasoner to detect a probable modeling er-
ror that is not detected by the OBO-Edit reasoner. This ontology contains the
following stanzas that define the terms SO:0000992 and SO:0000914:

[Term] [Term]
id: SO:0000992 id: SO:0000914
name: BAC cloned genomic insert name: cloned genomic insert
intersection of: SO:0000914

Note that the stanza for SO:0000992 contains only one intersection of tag.
This seems to be a modeling error: presumably, the author simply forgot to add
another intersection of tag-value pair.

According to the mapping from Section 3.2, intersection of defines a term
to be equivalent to the intersection of other terms. Because the above inter-
section contains only one term, it effectively makes SO:0000992 equivalent to
SO:0000914. Indeed, OWL reasoners (correctly) derive that SO:0000992 is a sub-
class of SO:0000914 and vice versa. OBO-Edit’s reasoner, however, only derives
that SO:0000992 is a subclass of SO:0000914, so the error remains undetected.

It is instructive to examine why OBO’s reasoner does not derive the re-
quired inference. Namely, this inference could potentially be derived by apply-
ing the third inference rule from Section 2.3 on page 173 for a = SO:0000992
and b1 = b2 = c = SO:0000914; however, for the rule to be applicable, we would
need an is a relationship from SO:0000914 to itself. Semantically, each class is
a subclass of itself; this fact, however, is not represented explicitly in the OBO
ontology model, so the mentioned inference rule is not applicable.

This error might have been detected by checking whether each stanza contains
at least two intersection of tags. Since the syntax of the OBO language, how-
ever, has not been formally specified, it is hard to implement a comprehensive
set of such checks, so errors often fall thorough to the semantic level. Further-
more, if our example stanza contained two intersection of tags with the same
value, the ontology would be syntactically correct, but would imply the same
consequence. The OBO-Edit reasoner does not derive all inferences even with
respect to the informal semantics, so such an error would not be detected at the
semantic level either. In contrast, the syntax and the semantics of OWL 1.1 have
been formally specified, which makes the detection of errors easier.

4.3 Performance of Reasoning with OBO

Ontologies for the life sciences frequently contain many highly interconnected
axioms with “cyclic definitions” of ontology terms. Such ontologies pose signifi-
cant challenges to state-of-the-art tableau-based OWL reasoners [4,17]. Hence, it
is interesting to see whether the OBO ontologies can be effectively handled using
modern Semantic Web reasoning tools. Our mapping would clearly be much less
useful if OWL reasoners were unable to process OBO ontologies.

Therefore, we conducted several reasoning experiments using different OBO
ontologies and tools. In particular, we measured the times needed to compute the
subsumption hierarchy of a large set of OBO ontologies. We used the well-known

180 C. Golbreich et al.

Table 1. Performance of Reasoning with OBO Ontologies

Tools
No. of ontologies classified in

200 ms 1 s 5 s 25 s 53 s 163 s 3925 s
Pellet 2 13 36 51 59 64 79
FaCT++ 25 58 72 77 78 80 80
HermiT 48 65 74 81 82 82 82

reasoners Pellet and FaCT++, and a new reasoner HermiT. The latter reasoner
employs novel reasoning algorithms based on hypertableau and hyperresolution
[17]. The development of these algorithms has been motivated by an analysis
of the structure of GALEN—the well-known biomedical terminology for which
reasoning has proved to be quite hard. HermiT is currently the only reasoner
that can classify the original version of GALEN [17].13

Although the reasoning algorithms from [17] support most of the OWL lan-
guage, currently only the so-called Horn subset of OWL has been implemented
in HermiT. Of the 88 ontologies available in the OBO repository, 83 fall into the
supported fragment, so we used these ontologies in our performance tests. The
ontologies are of varying sizes: the smallest one contains 166 axioms, whereas
the largest one contains 37,943 axioms.

We summarize the times needed to classify these ontologies in Table 1. Because
of the large number of ontologies, we do not present individual times for each
ontology; instead, we just show how many ontologies each tool can classify within
a certain time limit. The first four times were selected arbitrarily, whereas the
last three times were chosen to show how long it takes for each tool to process
the hardest ontology that it can classify.

Our results show that HermiT efficiently deals with all but one ontology—
that is, it classifies them in at most 53 seconds. FaCT++ exhausts the available
resources on two ontologies that HermiT can classify. Thus, HermitT’s novel
reasoning techniques seem to be critical in dealing with complex ontologies. In
the future, similar advances are likely to follow. By defining OBO in terms of a
mapping to OWL, the OBO community can reap the benefits of these advances
while continuing to enjoy the existing OBO syntax and tool set.

5 Conclusion

OBO is a language that has been extensively used for ontology modeling in
the life sciences. Until now, the OBO language, as well as accompanying tools,
have been developed independently from Semantic Web languages and tools. We
argue that much can be gained from bringing the two languages closer together.

13 The original version of GALEN could not be processed by existing reasoners. There-
fore, different versions of GALEN were derived from the original one by removing
several cyclic definitions. Please refer to HermiT’s web page for more information
on this issue.

OBO and OWL: Leveraging Semantic Web Technologies 181

On the one hand, this allows the OBO community to reuse OWL tools, while
on the other hand, it provides new requirements and makes a large new corpus
of ontologies available to the Semantic Web community.

The official specification of OBO is relatively informal. To obtain an unam-
biguous specification that can be easily implemented, we first formalized the
syntax of the OBO language by capturing it in BNF. To capture the seman-
tics, we developed a mapping between OBO and OWL. We have implemented
this transformation in a new parser that we integrated into the OWL API, thus
allowing numerous Semantic Web applications to use OBO as a native format.
Finally, we showed that existing Semantic Web reasoners, such as HermiT, can
be used to efficiently reason with OBO ontologies and can even identify likely
modeling errors.

Acknowledgment

We thank Chris Mungall and John Day-Richter for their invaluable input on the
definition and common usage of the OBO language.

References

1. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M.,
Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-
Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M.,
Rubin, G.M., Sherlock, G.: Gene Ontolgy: Tool for the Unification of Biology.
Nature Genetics 25(1), 25–29 (2000)

2. Derriere, S., Richard, A., Preite-Martinez, A.: An Ontology of Astronomical Object
Types for the Virtual Observatory. In: Proc. of the 26th meeting of the IAU:
Virtual Observatory in Action: New Science, New Technology, and Next Generation
Facilities, Prague, Czech Republic, August 21–22, 2006, pp. 17–18 (2006)

3. Donini, F.M., Nardi, D., Rosati, R.: Description Logics of Minimal Knowledge and
Negation as Failure. ACM Transactions on Computational Logic 3(2), 177–225
(2002)

4. Gardiner, T., Horrocks, I., Tsarkov, D.: Automated Benchmarking of Description
Logic Reasoners. In: Proc. of DL 2006. CEUR, vol. 189 (2006)

5. Golbreich, C., Zhang, S., Bodenreider, O.: The Foundational Model of Anatomy
in OWL: Experience and Perspectives. Journal of Web Semantics 4(3), 181–195
(2006)

6. Goodwin, J.: Experiences of using OWL at the Ordnance Survey. In: Proc. of
OWL-ED 2005. CEUR, vol. 188 (2005)

7. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Just the Right Amount: Ex-
tracting Modules from Ontologies. In: Proc. of WWW 2007, pp. 717–726 (2007)

8. Haarslev, V., Möller, R.: RACER System Description. In: Goré, R.P., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701–706. Springer,
Heidelberg (2001)

9. Hartel, F.W., de Coronado, S., Dionne, R., Fragoso, G., Golbeck, J.: Modeling a
Description Logic Vocabulary for Cancer Research. Journal of Biomedical Infor-
matics 38(2), 114–129 (2005)

182 C. Golbreich et al.

10. Horridge, M., Bechhofer, S., Noppens, O.: Igniting the OWL 1.1 Touch Paper: The
OWL API. In: Proc. OWL-ED 2007. CEUR, vol. 258 (2007)

11. Kalyanpur, A., Parsia, B., Hendler, J.: A Tool for Working with Web Ontolo-
gies. International Journal on Semantic Web and Information Systems 1(1), 36–49
(2005)

12. Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.: Debugging Unsatisfiable Classes
in OWL Ontologies. Journal of Web Semantics 3(4), 243–366 (2005)

13. Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.: The Protégé OWL Plu-
gin: An Open Development Environment for Semantic Web Applications. In: McIl-
raith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298,
pp. 229–243. Springer, Heidelberg (2004)

14. Lacy, L., Aviles, G., Fraser, K., Gerber, W., Mulvehill, A., Gaskill, R.: Experiences
Using OWL in Military Applications. In: Proc. of OWL-ED 05. CEUR, vol. 188
(2005)

15. Motik, B., Horrocks, I., Sattler, U.: Bridging the Gap Between OWL and Relational
Databases. In: Proc. of WWW 2007, pp. 807–816 (2007)

16. Motik, B., Sattler, U.: A Comparison of Reasoning Techniques for Querying Large
Description Logic ABoxes. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006.
LNCS (LNAI), vol. 4246, pp. 227–241. Springer, Heidelberg (2006)

17. Motik, B., Shearer, R., Horrocks, I.: Optimized Reasoning in Description Logics
using Hypertableaux. In: Proc. of CADE-21. LNCS (LNAI), vol. 4603, pp. 67–83.
Springer, Heidelberg (2007)

18. Patel-Schneider, P.F., Horrocks, I.: OWL 1.1 Web Ontology Language Overview.
W3C Member Submission (December 19, 2006), Available at
http://www.w3.org/Submission/owl11-overview/

19. Quillian, M.R.: Semantic Memory. In: Minsky, M. (ed.) Semantic Information Pro-
cessing, pp. 216–270. MIT Press, Cambridge, MA, USA (1968)

20. Rector, A., Rogers, J.: Ontological and Practical Issues in Using a Description Logic
to Represent Medical Concept Systems: Experience from GALEN. In: Reasoning
Web, Second International Summer School, Tutorial Lectures, Lisbon, Portugal,
September 4–8 2006, pp. 197–231 (2006)

21. Ruttenberg, A., Rees, J., Luciano, J.: Experience Using OWL DL for the Exchange
of Biological Pathway Information. In: Proc. of OWL-ED 2005. CEUR, vol. 188
(2005)

22. Sidhu, A., Dillon, T., Chang, E., Sidhu, B.S.: Protein Ontology Development using
OWL. In: Proc. of OWL-ED 2005. CEUR, vol. 188 (2005)

23. Sirin, E., Parsia, B.: Pellet: An OWL DL Reasoner. In: Proc. of DL 2004. CEUR,
vol. 104 (2004)

24. Soergel, D., Lauser, B., Liang, A., Fisseha, F., Keizer, J., Katz, S.: Reengineer-
ing Thesauri for New Applications: The AGROVOC Example. Journal of Digital
Information 4(4) (2004)

25. Tsarkov, D., Horrocks, I.: FaCT++ Description Logic Reasoner: System Descrip-
tion. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130,
pp. 292–297. Springer, Heidelberg (2006)

http://www.w3.org/Submission/owl11-overview/

	OBO and OWL: Leveraging Semantic Web Technologies for the Life Sciences
	Introduction
	Why Map OBO to OWL 1.1?
	OBO at a Glance
	Why Formalize OBO Syntax?
	Why Formalize OBO Semantics?
	Why Use OWL 1.1?
	Reusing Existing Tools

	Providing a Formal Specification for OBO
	Formalization of OBO Syntax
	Mapping OBO to OWL

	Integrating OBO with the Semantic Web
	Extending Semantic Web Tools to Support OBO
	Reasoning Support for OBO
	Performance of Reasoning with OBO

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

