
GOORE : Goal-Oriented and Ontology Driven
Requirements Elicitation Method

Masayuki Shibaoka1, Haruhiko Kaiya2, and Motoshi Saeki1

1 Dept. of Computer Science, Tokyo Institute of Technology
Ookayama 2-12-1, Meguro-ku, Tokyo 152, Japan
2 Dept. of Computer Science, Shinshu University

Wakasato 4-17-1, Nagano 380-8553, Japan
saeki@se.cs.titech.ac.jp,kaiya@cs.shinshu-u.ac.jp

Abstract. Goal oriented modeling methods are one of the promising approaches
to elicit requirements. However, the difficulties in goal decomposition during re-
quirements elicitation processes and a lack of the technique to utilize domain
knowledge are obstacles to make them widely used in industry community. This
paper proposes a method call GOORE where a domain ontology is utilized to
support goal decomposition as domain knowledge to support goal decomposi-
tion. Although the experimental case study of feed readers suggested some points
necessary to be improved, our approach can make goal oriented approach more
powerful and more widely used.

1 Introduction

Goal-oriented modeling is one of the promising methodologies for requirements elic-
itation. In this methodology, customers’ needs are modeled as goals, and the goals
are decomposed and refined into a set of more concrete sub-goals. After finishing
goal-oriented requirements analysis, the analyst obtains an acyclic (cycle-free) directed
graph called goal graph. I There are several excellent studies on goal oriented methods
such as I* [7], Tropos [2], KAOS [9], AGORA [4] etc. and their results are being put into
practice. However, almost of them focused on languages including graphical languages
and supporting tools. One of the obstacles to be spread to industries is a lack of powerful
support of goal decomposition and refinement processes, i.e. supports for creating sub-
goals of high quality. In these processes, stakeholders performing goal oriented analysis
need high level of knowledge. For example, in early requirements elicitation phases for
modeling business processes whether they are as-is or to-be [10], knowledge of a prob-
lem domain such as banking business is necessary, while the analysts should have much
knowledge on the domain of software technology and an application such as Web com-
puting and cryptography algorithms. Utilizing this kind of knowledge effectively allows
us to perform goal decomposition and refinement processes of high quality.

This paper proposes two points; one is the technique to represent knowledge of a
specific domain (domain knowledge) as an ontology and another is to embed the on-
tological system with goal-oriented analysis processes. We consider that an ontology
consists of a set of concepts represented with a thesaurus and inference rules on them.
By using inference rules, the sub-goals are deduced and suggested to the analysts. The

J.-L. Hainaut et al. (Eds.): ER Workshops 2007, LNCS 4802, pp. 225–234, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

226 M. Shibaoka, H. Kaiya, and M. Saeki

rest of the paper is organized as follows. The next section presents the basic idea and
the structure of our ontologies. In sections 3, we show our method GOORE (Goal Ori-
ented and Ontology driven Requirements Elicitation) and its supporting tool. Section 4
presents a case study of developing a feed reader to assess our approach.

2 Basic Idea

2.1 Goal Graph

Goal oriented methods are for supporting hierarchical decomposition and refinement
of customers’ requirements as the goals to be achieved. Basically, the resulting artifact
after performing this method is an AND-OR graph whose nodes are elicited goals. Each
goal is decomposed and refined into more concrete goals, sub-goals during the process.
We have two types of goal decomposition; one is AND decomposition and another is
OR. In AND decomposition, if all of the sub-goals are achieved, their parent goal can
be achieved or satisfied. On the other hand, in OR decomposition, the achievement of
at least one sub-goal leads to the achievement of its parent goal. Figure 1 illustrates
a part of the goal graph of a software music player which can play the sound files of
MP3, WPA etc, like Windows Media Player. The edges attached with an arc outgo-
ing from a parent node show an AND decomposition, and for example, all of three
goals “Control Playing”, “Have Visualization Effects” and “Lightweight Processing”
should be achieved in order to achieve their parent goal “Music Player” in the figure.
On the other hand, either “Use Skins” or “Visualize Music”, or both are necessary for
the achievement of “Have Visualization Effects”.

Stop

Pause

Control Playing

Play

Forward

Rewind

Music Player

Use Skins

Have
Visualization Effects

Visualize Music

Lightweight
Processing

AND-decomposition

OR-decomposition

conflict

Fig. 1. An Example of a Goal Graph for Music Players

2.2 Using a Domain Ontology

As discussed in [6], we consider an ontology as a thesaurus of words and inference
rules on it, where the words in the thesaurus represent concepts and the inference rules
operate on the relationships on the words. Each concept of a domain ontology can be
considered as a semantic atomic element that anyone can have the unique meaning in
a problem domain. The content of each goal is written in natural language and we use
semantic processing of the goal content using a domain ontology.

GOORE : Goal-Oriented and Ontology Driven Requirements Elicitation Method 227

C D

A

E

B

require

A Goal Graph “G”

Domain Ontology “O” (thesaurus part only)

aaa

cccbbb

Fig. 2. Mapping from a Goal Graph to an Ontology

The words appearing in a goal description are mapped into words of the thesaurus
part of the ontology, as shown in Figure 2. In the figure, the ontology is written in the
form of class diagrams. Suppose that the goal description “bbb” contains the concepts
A and B or their synonyms. The goal of “bbb” is mapped into the words A and B of
the ontology, as shown in the figure. The logical inference on the ontology suggests
to the analyst how to evolve his or her goal graph G. In the figure, although the graph
G includes the goal node “bbb” mapped into the concept A, it has none of the goals
mapped into the concept C, which is required by A. The inference resulted from “C is
required by A” and “A is included” suggests to the analyst that a goal having C should
be added to the graph G, say as a sub-goal shown in a grayed goal of the figure. In
our technique, it is important what kind of relationship like “required by” should be
included in a domain ontology for inference, and we will discuss this issue in the next
sub section.

2.3 Domain Ontology

Figure 3 (a) shows the overview of a meta model of the thesaurus part of our ontolo-
gies. Thesauruses consist of concepts and relationships among the concepts, and they
have varies of subclasses of “concept” class and “relationship”. In the figure, “object”
is a sub class of a concept class and a relationship “apply” can connect two concepts.
Concepts and relationships in Figure 3 are introduced so as to easily represent the se-
mantics in software systems. Intuitively speaking, the concepts “object”, “function”,
“environment” and their subclasses are used to represent functional requirements. On
the other hand, the concepts “constraint” and “quality” are used to represent non-
functional requirements. The concept “constraint” is useful to represent numerical
ranges, e.g., speed, distance, time expiration, weight and so on. The figure also in-
cludes a part of the inference rules. For example, the first and second rules express the
reflectivity of synonym relationship and the inheritance of require relationship to a sub
concept, respectively. Figure 3 (b) illustrates a part of the thesaurus for the domain of
music players.

228 M. Shibaoka, H. Kaiya, and M. Saeki

Concept

quality

function

object

environment

constraint

actor

platform

Relationship

is-a
(generalize)

has-a
(aggregate)

synonym

antonym

contradict

apply

require

perform

2 1
{ordered}

symmetric reflective transitive

ambiguity

(a) Meta Model of Ontologies

Inference Rules

),(),(ABsynonymBAsynonym →

),(),(),(BCrequireACis-aBArequire →∧ <<require>>

Music

OperateUsable

PlayStop

<<object>>

<<function>><<quality>>

<<function>> <<function>>

<<apply>>

(b) An Example of Ontologies

Fig. 3. Ontology Meta model

3 GOORE Method and Supporting Tool

3.1 Elicitation Process

We call our method GOORE (Goal-Oriented and Ontology Driven Requirements Elici-
tation) and Figure 4 sketches the process for eliciting requirements following GOORE.
The tasks to be preformed during the GOORE process can be divided into two cate-

Fig. 4. GOORE Process

gories; one is a set of the activities that human requirements analysts should perform
and another is the task that can be automated. The lower part, gray-shaded area of the
figure expresses the automated tasks. The inputs of the automated task are a domain
ontology and a goal graph in-progress that will be developed and evolved further. In the
first step of the automated task, the natural language sentences of a goal description are

GOORE : Goal-Oriented and Ontology Driven Requirements Elicitation Method 229

semantically analyzed by using a morphological analyzer1. The morphological analyzer
also tells the part of speech of a morpheme (lexical categories such as nouns, verbs, ad-
jectives, etc.), several morphemes that are not so significant can be removed from the
sentences. For example, articles such as “a” or “the” are removed in general. After fil-
tering out morphemes and identifying words and their parts of speech, the tool finds cor-
responding ontological concepts to each morpheme using a synonym dictionary. Thus
mapping from the sentences into thesaurus part of the ontology is semi-automatically
constructed. In the example of Figure 5 (a), the sentence of a goal includes the word
“play” and it can be mapped into the ontological concept “play”.

After constructing mappings, the inference mechanism on the ontology deduces and
detects a set of the ontological concepts that should be added to the goal graph. The
inference rules are described as a Prolog program. In Figure 5, the current version of
the goal graph does not include a goal related to “stop”, even though there is a require-
relationship between Play and Stop in the ontology. Thus, the goal presenting Stop
operation should be added to the goal graph shown in the left part of the figure. In
addition, since the generalized concept Operate of Play has a quality concept Usable,
the goal presenting the quality “Usable” can be suggested to add to the goal graph. Our
inference rules are used for tracing the ontological relationships between the concepts
and for detecting ones missing out of the goal descriptions. On account of space, the
details of the rules are omitted and for the readers who have an interest to them, refer
to [3].

require :

has-a :

<<object>>

Music

<<quality>>

Usable

<<function>>

Play
<<function>>

Stop

<<apply>>

<<require>>

Music Player

Control

Play Forward

<<function>>

Operate

Goal Graph Ontology

mapping

(a) Deducing Candidates

require
has-a

1. require :

2. has-a :

<<object>>

Music

<<quality>>

Usable

<<function>>

Play
<<function>>

Stop

<<apply>>

<<require>>

Music Player

Control

Play Forward

<<function>>

Operate

Goal Graph Ontology

mapping

(b) Prioritizing Candidates

Fig. 5. Deducing and Prioritizing Candidates

Until the above steps, we can get several candidates to be added to the goal graph,
e.g. Stop and Usable. Generally, there can be much more candidates suggested to the
requirements analysts, as the goal graph becomes larger. The next step is prioritiza-
tion. To avoid the explosion of candidates suggested, we attach priority to the deduced
candidates and the candidates having high priority are selectively suggested. The pri-
ority can be calculated from numerical degrees attached to ontological elements, the
structure of the goal graph being constructed, the inference process and records of the

1 Since our supporting tool is currently Japanese version, we use Japanese morphological ana-
lyzer called SEN (https://sen.dev.java.net) written in Java.

230 M. Shibaoka, H. Kaiya, and M. Saeki

analyst’s selection activities. This calculation mechanism is embedded into the Prolog
program and during the inference on the ontology, a candidate and its priority are si-
multaneously calculated. In the example of Figure 5 (b), consider that two candidates
“Stop” and “Usable” are deduced from “Play”. We attach to relationship type “require”
higher priority degree rather than “has (aggregation)”. Furthermore the relationship “is
(generalization)” is used to deduce the “Usable”. That is to say, to reach “Usable”, two
relationships “is” and “has” should be traced, while only one relationship is used for
getting “Stop”. The case where the fewer relationships are used for getting deduction
results has the higher priority. Thus, the candidate “Play” is listed with higher priority
than “Usable”, as shown in Figure 5 (b). According to the ontological relationships and
concepts, we provide constant numerical values as priority degrees, e.g. “require” has 5
and “has” has 3 etc. And the priority degree is also attached to each inference rule, and
whenever the rule is used for deducing a candidate, its priority degree is numerically
added. The number of inference steps is a factor to calculate the priority and the fewer
step gives the higher priority value. The priority value is dynamically calculated and
changed. Suppose that the analyst does not select the highest priority “Stop” in Figure
5 (b). At the next calculation, the priority degree of the candidate “Stop” is reduced.
One of the benefits of using Prolog is flexibility of calculation rules of priority degrees.

3.2 Using a Supporting Tool

We have developed a prototype of the supporting tool for GOORE method. It architec-
turally consists of two parts; an editor of goal graphs and an inference engine to deduce
and prioritize candidates. The former part was implemented as Java program, while in the
latter Prolog was used. Thus, our ontologies are defined as facts of a Prolog program. In
the example of Figure 3, the concepts Play and Stop and their require-relationship can be
represented as a Prolog fact require(function(Play), function(Stop)).
Each ontological concept is defined using a Prolog functor labeled with its type and
the concept, e.g. function(Play) and quality(Usable), while a relationship
corresponds to a binary predicate like require(x,y) and has(z,w).

The tool has the functions; 1) inputting and editing goal graphs in graphical form,
i.e. a graphical editor for goal graphs, 2) getting an ontology described in Prolog, 3) de-
ducing candidates and prioritizing them as background tasks of Prolog execution, and
4) showing a list of the candidates following their priorities to an analyst as a menu so
as to make him or her select suitable ones out of them. The tasks of deducing, prioritiz-
ing and showing the candidates are done in real-time during the analyst’s activities of
inputting and editing the goal graph.

Figure 6 illustrates a screenshot of the tool. In the figure, an analyst is constructing
a goal graph of a feed reader (news aggregator), which is a client software to retrieve
frequently updated Web contents of certain topics from blogs and mass media web sites
etc. She uses the ontology of Feed Reader and is refining the goal “User Registration”
(for the feed reader). The candidates of newly added goals related to “User Registra-
tion” are shown in a small window. The mark �+ attached to a goal shows the existence
of the deduced candidates, and she can get the candidate list if she clicks this mark.
Figure 7 shows the process of selecting a candidate as a sub-goal of “User Registration”.

GOORE : Goal-Oriented and Ontology Driven Requirements Elicitation Method 231

As shown in the left screen, the analyst selects as a sub-goal the candidate “Setting a
Personal Profile”, which has the second priority in the candidate list, and gets a new
goal graph shown in the right screen of the figure.

Fig. 6. Screen of the Supporting Tool

Fig. 7. Selecting a Candidate on the Supporting Tool

4 Case Study

We had a small experimental case study to investigate the usefulness of our approach.
We used the example of Feed Reader, which was mentioned in the previous section,
and asked our subjects to construct its goal graph. Before starting this experiment, we

232 M. Shibaoka, H. Kaiya, and M. Saeki

developed a domain ontology of Feed Reader. It consists of 593 concepts and 1023
relationships as a thesaurus part, and has 8 types of inference rules and 10 types of
calculation rules for prioritizing candidates. Our supporting tool is set to suggest 16
candidates at a time for each goal.

Figure 8 illustrates the process of our experimental case study. One of us, the expert of
Feed Reader, completed its requirements specification in the form of itemized sentences
as a right answer of this example problem. This specification included 93 requirements
items. In addition to this specification, he composed an initial requirements list having
10 items and provided it for our subjects as a customer’s initial requirements. We had
four subjects, two of them did not have sufficient knowledge of feed readers, while two
of them used our GOORE method and the supporting tool. After they got the initial re-
quirements list, they constructed goal graphs in an hour and then extracted requirements
specifications from their constructed graphs. We recorded their activities including tool
manipulations with a video camera and a screen recorder. They could communicate with
one of us, who played a role of customers, in order to resolve their unclear points. After
they finished these construction tasks, we had interviews and questionnaires to evalu-
ate usability of our method and tool. In addition, to check the quality of resulting goal
graphs, we compared them with the right answer that the expert developed before.

Initial

Description

(10 items)

Complete

specification

(93 items)

Goal Graph

Records of

Activities

Interview

Questionnaire

Requirements Elicitation

(1 hour)

Customer

Requirements

Analysts (Subjects)

Communication

Before Elicitation After Elicitation

Fig. 8. Experiment

Table 1 summarizes the experimental result. Each column from the second expresses
the result of a subject. In the example of the third column, the subject (No, Yes) means
that the subject had no knowledge of feed readers and used our supporting tool. He got
43 goals, 10 of which resulted from the candidates suggested by the tool. He selected
the candidate of rank average 5.9 out of 16 suggested candidates, and it shows that our
adopted priority calculation would be reasonable. Furthermore 40 requirements items
could be extracted from the 43 goals, and 34 of them could be considered as right
answers because these 34 were also included in the complete specification. 9 of the 10

GOORE : Goal-Oriented and Ontology Driven Requirements Elicitation Method 233

Table 1. Experimental Result

Evaluation Items
Result of a Subject†

(No, No) (No, Yes) (Yes, No) (Yes, Yes)
#Goals 42 43 63 48

#Goals obtained by Suggesting Candidates — 10 — 13

#Goal Relationships by Suggesting Candidates — 0 — 0

Average of Ranks of Adopted Goals
(in 16 items)

— 5.9 — 2.4

Requirements Items included in the Goal Graph‡ 38 40 (10) 71 60 (11)

Requirements Items included in the Goal Graph
and the Completed Artifacts‡ 32 34 (9) 56 55 (10)

Expiration Time for Constructing a Goal 70sec. 76sec. 55sec. 75sec.
Longest Time for Deducing Candidates — 23sec. — 68sec.
† (having domain knowledge or not, using a GOORE method & a tool or not)
‡ the number in () stands for the requirements items included in the adopted candidates

adopted candidates were also included in the completed specification, and it shows that
the suggested candidates had high quality. In the case of another subject using the tool,
i.e. (Yes, Yes), the reasonability of prioritization (rank 2.4) and the high quality of the
suggested candidates were clearer.

Negative results are that 1) the tool users did not find goals much more than non-users
and 2) the tool users spent longer time for constructing a goal.

5 Conclusion and Future Work

In this paper, we presented an extended version of a goal oriented modeling method
which was combined with an ontological technique to utilize domain knowledge. Fur-
thermore we developed a supporting tool following the proposed method and had a
experimental case study. From the results of the case study, although our approach has
still some deficiencies, we found that we should keep our approach, GOORE. The future
research agenda can be listed as follows.

1. Combining GOORE with other methods, in particular scenario based approach
Since our approach uses natural-language description, it would be more effective
in the cases when more natural-language sentences are described such as scenario
oriented methods [8].

2. Improving how to suggest deduced candidates to analysts
The current version of the tool shows the candidates in the form of words and
phases only. In our case study, the subjects could not understand the correct mean-
ings of the suggested words and phases, and were sometime confused to hold pre-
cise intents of the suggestions. This shortcoming caused longer time consumption
for the tool users to construct their goal graphs in our experiment. Ontologies can
include this kind of information.

234 M. Shibaoka, H. Kaiya, and M. Saeki

3. Constructing ontologies of high quality
Constructing an ontology by hand is time-consuming. Currently, we consider the
application of text mining techniques to extract ontological elements from natural-
language documents in a domain [1,5].

References

1. KAON Tool Suite, http://kaon.semanticweb.org/
2. Castro, J., Kolp, M., Mylopoulos, J.: A Requirements-Driven Development Methodology. In:

Dittrich, K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 108–123.
Springer, Heidelberg (2001)

3. Kaiya, H., Saeki, M.: Using domain ontology as domain knowledge for requirements elicita-
tion. In: RE 2006. Proc. of 14th IEEE International Requirements Engineering Conference,
pp. 189–198. IEEE Computer Society Press, Los Alamitos (2006)

4. Kaiya, H., Horai, H., Saeki, M.: AGORA: Attributed Goal-Oriented Requirements Analysis
Method. In: RE 2002. IEEE Joint International Requirements Engineering Conference, pp.
13–22. IEEE Computer Society Press, Los Alamitos (2002)

5. Kitamura, M., Hasegawa, R., Kaiya, H., Saeki, M.: An Integrated Tool for Supporting On-
tology Driven Requirements Elicitation. In: ICSOFT 2007. Proc. of 2nd International Con-
ference on Software and Data Technologies (2007)

6. Maedche, A.: Ontology Learning for the Semantic Web. Kluwer Academic Publishers,
Boston (2002)

7. Mylopoulos, J., Chung, L., Yu, E.: From Object-Oriented to Goal-Oriented Requirements
Analysis. Communications of the ACM 42(1), 31–37 (1999)

8. Rolland, C., Souveyet, C., Achour, C.B.: Guiding Goal Modeling Using Scenarios. IEEE
Transaction on Software Engineering 24(12), 1055–1071 (1998)

9. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour. In: RE
2001, pp. 249–263 (August 2001)

10. Yu, E.: Towards Modeling and Reasoning Support for Early-Phase Requirements Engineer-
ing. In: RE 1997. Proc. of 3rd IEEE International Symposium on Requirements Engineering,
pp. 226–235. IEEE Computer Society Press, Los Alamitos (1997)

http://kaon.semanticweb.org/

	GOORE : Goal-Oriented and Ontology Driven Requirements Elicitation Method
	Introduction
	Basic Idea
	Goal Graph
	Using a Domain Ontology
	Domain Ontology

	GOORE Method and Supporting Tool
	Elicitation Process
	Using a Supporting Tool

	Case Study
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

