
6 Fuzzy Monte Carlo Method

6.1 Introduction

This chapter introduces our fuzzy Monte Carlo method. We will be working with
a very simple linear programming problem. The crisp linear program is presented
in the next section. Then we fuzzify the linear program in the third section. We
make some of the parameters in the problem triangular fuzzy numbers and allow
all the variables to be triangular shaped fuzzy numbers. We will need to decide
on a definition of ≤ between fuzzy numbers and we will use Kerre’s method
(Section 2.6.2 of Chapter 2) first and then Chen’s method (Section 2.6.3 of
Chapter 2) second. This chapter, and Chapters 7 and 8, are based on ([5],[6]),
see also ([3],[4]).

Fuzzy linear programming has become a very large area of research. Put “fuzzy
linear programming” into your search engine and obtain over 17, 000 web sites
to visit. Obviously we can not search all of these sites. A few recent references to
this topic are the papers ([10]-[16],[18],[20],[22]-[25],[27]) and books (or articles
in these books) ([1],[2],[7]-[9],[17],[19],[21],[26]).

6.2 Crisp Linear Program

Consider the optimization problem

max Z = (2x1 + 3x2), (6.1)

subject to
x1 + 2x2 ≤ 6, (6.2)

2x1 + x2 ≤ 6, (6.3)

0 ≤ x1, x2 ≤ M, (6.4)
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Fig. 6.1. Linear Programming Problem

Table 6.1. Solution to the Linear Program

Vertex Coordinates Objective Function
A (0, 0) Z = 0.0
B (3, 0) Z = 6
C (2, 2) Z = 10
D (0, 3) Z = 9

for some positive constant M . The positive constant M is for later on in the
chapter and we will not get to use it in this section. Figure 6.1 shows the con-
straints and the feasible set F . We know that the optimal solution will be at
a vertex point of the feasible set. The values of the objective function at these
vertex points is shown in Table 6.1 and we see that maxZ = 10 at x1 = x2 = 2.

6.3 Fuzzy Linear Program

Now we allow the parameters in the objective function and the constants on the
right side of the inequalities to be fuzzy. The fuzzy linear program is

max Z = (C1X1 + C2X2), (6.5)

subject to
X1 + 2X2 ≤ B1, (6.6)

2X1 + X2 ≤ B2, (6.7)

0 ≤ X1, X2 ≤ M, (6.8)
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where C1 = (1/2/3), C2 = (2/3/4), B1 = (5/6/7), B2 = (5/6/7) and X1 ≈
(x11/x12/x13), X2 ≈ (x21/x22/x23). The fuzzy parameters are all triangular
fuzzy numbers but the variables will be Bézier (quadratic) fuzzy numbers
(QBGFNs in Chapter 4).

Now we will look at two cases for evaluating ≤ between fuzzy numbers. Both
of these methods are needed in the next two chapters, but they will not be used
after Chapter 8. The first is Kerre’s method from Section 2.6.2 in Chapter 2.

6.3.1 Kerre’s Method

We will randomly generate, from Chapter 4, vectors V = (X1, X2) and first
check to see if they satisfy equations (6.6) and (6.7) using Kerre’s ≤. If these
equations are satisfied, then V is feasible and we evaluate Z = C1X1 + C2X2.
Let the previous best (max) value of Z be Z

∗
and the current value of Z = Z0

from the recent feasible V . If Z
∗

< Z0, then set Z
∗

to be Z0, otherwise discard
Z0 and generate the next random V . We are looking for an optimal solution and
not all the V that produce the best Z value.

Next we need to determine intervals Ii = [0, Mi], Mi > 0, i = 1, 2, for the
Xi, i = 1, 2, respectively. A good selection of these intervals will make the fuzzy
Monte Carlo process more efficient. If an interval is too big, then too many V
will be rejected as not being feasible. If an interval is too small we can miss the
optimal solution. There is no natural upper bound on x13 (x23) so that V is
feasible. See Figure 6.2. Also see Figure 2.7 in Chapter 2. Here E ≈ (e1/e2/e3)
represents X1 + 2X2 or 2X1 + X2 and let B = (0.5/1.5/2.5). We changed B
from (5/6/7) to this value for this figure. Then e3 = x13 + 2x23 or 2x13 + x23.
In Figure 6.2 E ≈ (0/1/5). We see that d(E, max) is the area of regions A1 and
A2 and d(B, max) is the area of A3. Since area(A3) < area(A1) + area(A2)
we get E < B and V is feasible even as e3 grows larger and larger. In practical
problems there is going to be an upper bound for the variables which will produce
an upper bound for e3. Management will decide on practical upper bounds for
the xi giving the upper bounds for the Mi in the intervals Ii. Sometimes the
optimization problem will dictate the upper bounds, but in this case we get them
for experts familiar with the problem. Let us assume that Ii = [0, 5], i = 1, 2,
which implies that E < 15.

So we now randomly generate a sequence V k = (X1k, X2k) with Xik ∈ [0, 5]
all i and all k. Using our Sobol quasi-random number generator we produce
sequences of random vectors v1k = (x1k1, ..., x1k5), v2k = (x2k1, ..., x2k5), k =
1, 2, 3, .... The sequence v1k is used to get the sequence of quadratic fuzzy num-
bers X1k, recall that we only require vectors of length five for these fuzzy num-
bers (see Chapter 4), and the other sequence v2k constructs the sequence of
quadratic fuzzy numbers X2k, k = 1, 2, 3, .... However, because we use vectors
V = (X1, X2) we choose our stream of quasi-random numbers generated 10 at
a time to get the two pairs of 5. If V k is feasible we compute

Zk = C1X1k + C2X2k, (6.9)
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Fig. 6.2. Finding the Intervals for the Xi Using Kerre’s Method

for k = 1, 2, 3, ..., N , where N is the predetermined total number of iterations.
We want to find a k value, and hence a V k, to solve

max{Zk|k = 1, 2, 3, ..., N}. (6.10)

With N = 100, 000 pairs of QBGFNs (v1k,v2k), the results of the fuzzy Monte
Carlo method are shown in Table 6.2, and Figures 6.3 & 6.4. All the fuzzy
numbers in Table 6.2 are triangular shaped fuzzy numbers. X1 and X2 are
QBGFNs. The notation we use for these fuzzy numbers was explained in Section
4.3.2. We define a QBGFN as (a, b, c, d, e) where: (1) the support is the interval
[a, c]; (2) the vertex is at x = b; (3) the three numbers a, d, b define the quadratic
function for the left side of the fuzzy number; and (4) the three numbers b, e, c
specify the quadratic function for the right side of the fuzzy number. Since
maxZ is not necessarily, or likely to be a QBGFN, we only give the support
and core for maxZ. Our approximate solution to this fuzzy linear program are
the fuzzy numbers determined by this Monte Carlo program. In the following
three chapters we may have another solution, using an evolutionary algorithm,
to compare to our fuzzy Monte Carlo solution.

Table 6.2. Monte Carlo Solution to the Fuzzy Linear Program, Kerre’s Method,
QBGFNs, N=100,000

type maxZ Xi

random
Sobol ≈ (2.70/8.67/33.74) X1 = (1.28, 1.49, 4.97,−0.42, 3.61)

X2 = (0.71, 1.90, 4.70,−0.32, 2.69)
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Fig. 6.3. Monte Carlo Solution to the Fuzzy Linear Program, maxZ, Kerre’s Method,
QBGFNs, N=100,000

Fig. 6.4. Monte Carlo Solution to the Fuzzy Linear Program, X1 & X2 Kerre’s
Method, QBGFNs, N=100,000

6.3.2 Chen’s Method

We randomly generate vectors V = (X1, X2) and check to see if they satisfy
equations (6.6) and (6.7) using Chen’s ≤. If these equations are satisfied, then V

is feasible and we evaluate Z. Let the previous best (max) value of Z be Z
∗

and
the current value of Z = Z0 from the recent feasible V . If Z

∗
< Z0 using Chen’s

<, then set Z
∗

to be Z0, otherwise discard Z0 and generate the next random V .
Now we need to determine intervals Ii = [0, Mi], Mi > 0, i = 1, 2, for the Xi,

i = 1, 2, respectively. There is no natural upper bound on x13 (x23) so that V is
feasible. See Figure 6.5. Also see Figure 2.8 in Chapter 2. Here E ≈ (e1/e2/e3)
represents X1 + 2X2 or 2X1 + X2 and let B = (0.5/1.5/2.5). We changed B
from (5/6/7) to this value for this figure. Then e3 = x13 + 2x23 or 2x13 + x23.
In Figure 6.5 E ≈ (0/1/5). Consulting Figures 2.8 and 6.5 we see that the y
coordinate at: (1) LE is 0.8; (2) LB is 0.7; (3) RE is 0.3; and (4) RB is 0.4. So,
from equation (2.53) in Chapter 2 we compute

µT (E) = 0.5(0.3 + (1 − 0.8)) = 0.25, (6.11)

and
µT (B) = 0.5(0.4 + (1 − 0.7)) = 0.35, (6.12)



62 Fuzzy Monte Carlo Method

and
µT (E) < µT (B), (6.13)

implying that E < B and V is feasible even as e3 grows larger and larger.
In practical problems there is going to be an upper bound for the variables
which will produce an upper bound for e3. Management will decide on practical
upper bounds for the xi giving the upper bounds for the Mi in the intervals
Ii. Sometimes the optimization problem will dictate the upper bounds, but in
this case we get them for experts familiar with the problem. Let us assume that
Ii = [0, 5], i = 1, 2, so that E < 15.

So we now randomly generate a sequence V k = (X1k, X2k) with Xik ∈ [0, 5]
all i and all k. Using our Sobol quasi-random number generator we produce
sequences of random vectors v1k = (x1k1, ..., x1k5), v2k = (x2k1, ..., x2k5), k =
1, 2, 3, .... The sequence v1k is used to get the sequence of quadratic fuzzy num-
bers X1k and the other sequence v2k constructs the sequence of quadratic fuzzy
numbers X2k, k = 1, 2, 3, .... However, because we use vectors V = (X1, X2) we
choose our stream of Sobol quasi-random numbers generated 10 at a time to get
the two pairs of 5. If V k is feasible we compute

Zk = C1X1k + C2X2k, (6.14)

for k = 1, 2, 3, ..., N , where N is the predetermined total number of iterations.
We want to find a k value, and hence a V k, to solve

max{Zk|k = 1, 2, 3, ..., N}. (6.15)

With N = 100, 000 the results of the fuzzy Monte Carlo method are shown
in Table 6.3, and Figures 6.6 & 6.7. All the fuzzy numbers in Table 6.3 are
triangular shaped fuzzy numbers. X1 and X2 are QBGFNs. The notation we
use for these fuzzy numbers was explained above and in Section 4.3.2. Since
maxZ is not necessarily or likely to be a QBGFN, we only give the support
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Fig. 6.5. Finding the Intervals for the Xi Using Chen’s Method
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Table 6.3. Monte Carlo Solution to the Fuzzy Linear Program, Chen’s Method,
QBGFNs, N=100,000

type maxZ Xi

random
Sobol ≈ (1.37/5.07/34.84) X1 = (0.08, 0.50, 4.99,−0.96, 4.69)

X2 = (0.64, 1.36, 4.97, 0.51, 2.72)

Fig. 6.6. Monte Carlo Solution to the Fuzzy Linear Program, maxZ, Chen’s Method,
QBGFNs, N=100,000

Fig. 6.7. Monte Carlo Solution to the Fuzzy Linear Program, X1 & X2 Chen’s Method,
QBGFNs, N=100,000

and core for maxZ. Our approximate solution to this fuzzy linear program are
the fuzzy numbers determined by this Monte Carlo program. In the following
three chapters we may have another solution, using an evolutionary algorithm,
to compare to our fuzzy Monte Carlo solution.

6.3.3 Comparison of Solutions

All of these software efforts were performed on Windows-based PCs. For these
fuzzy Monte Carlo optimizations, several computers were used, all Dell Optiplex
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GX270’s, 3.0GHz, 1GB RAM. The Kerre/Sobol running time was 2:27:50; the
Chen/Sobol finished in 2:31:10.

The Kerre comparison method found 2, 864 feasible sets in a stream of 100, 000
(X1k,X2k); 15 of them had triggered new maximums. The Chen comparison
method found 17, 047 feasible sets in the same stream of 100, 000 (X1k,X2k); 12
of them had triggered new maximums. The 341st (X1k,X2k) was a new maximum
by both methods; the 4th new maximum under Kerre, the 6th new maximum
under Chen. The last maximum by the Kerre method was found at the 15, 251st

(X1k,X2k) (it was the 2, 864th, the last, feasible set). The last maximum by the
Chen method was found at the 48, 798th (X1k,X2k) (the 8, 322nd feasible set).

For our Monte Carlo solution using Sobol quasi-random numbers, we compare
Kerre’s method results and Chen’s method results to find that the maxZ from
Kerre’s method is greater than the maxZ from Chen’s method solution (regard-
less which of Buckley’s method, Kerre’s method, or Chen’s method is used to
compare the maximums). It appears that Kerre’s method produced a solution
closest to the crisp solution x1 = x2 = 2, maxZ = 10.
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