
4 Random Fuzzy Numbers and Vectors

4.1 Introduction

We first discuss how we plan to produce random triangular (trapezoidal) fuzzy
numbers. Then we define quadratic fuzzy numbers and show how we can produce
random sequences of these fuzzy numbers using sequences of random vectors of
real numbers. Random quadratic fuzzy numbers are used in Chapters 10 and
27. In the last section we consider producing random sequences of fuzzy vectors
V = (X1, ..., Xn) where the X i are triangular/trapezoidal fuzzy numbers or
quadratic fuzzy numbers. These random sequences of fuzzy vectors have appli-
cations throughout these chapters; triangular fuzzy numbers (TFNs) in Chapters
11-12, 15-17; trapezoidal fuzzy numbers (TrFNs) in Chapter 13; and QBGFNs
(defined below) in Chapters 6-10, 19 and 27. We also abbreviate “fuzzy num-
bers” as FNs. Trapezoidal shaped fuzzy numbers have applications in Chapters
13, 20-22 and 26.

4.2 Random Triangular/Trapezoidal Fuzzy Numbers

First consider producing a random sequence of triangular fuzzy numbers in an
interval [a, b]. We want to create the sequence Xi = (xi1/xi2/xi3), i = 1, 2, 3, ...,
with X i ∈ [a, b] all i. Using our Sobol quasi-random number generator (Chapter
3), we take three consecutively generated numbers and order them. Thus we
make a sequence of random vectors vi = (zi1, zi2, zi3), zi1 < zi2 < zi3, i =
1, 2, 3, ... in [0, 1]3. Then set xij = (b − a)zij + a, j = 1, 2, 3 and i = 1, 2, 3, ....

Now consider making a random sequence of trapezoidal fuzzy numbers in
[a, b]. Assume the sequence is Xi = (xi1/xi2, xi3/xi4), i = 1, 2, 3, .... Using our
Sobol quasi-random number generator (Chapter 3) we take four consecutively
generated numbers and order them. Thus we make a sequence of random vectors
vi = (zi1, zi2, zi3, zi4), zi1 < zi2 < zi3 < zi4, i = 1, 2, 3, ... in [0, 1]4. Then set
xij = (b − a)zij + a, j = 1, 2, 3, 4 and i = 1, 2, 3, .... We will use these random
FNs in Section 4.5.
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Fig. 4.1. Random Quadratic Fuzzy Number N : Case 1

4.3 Random Quadratic Fuzzy Numbers

4.3.1 Generated from Implicit Quadratic Functions

Let N ≈ (n1/n2/n3), or ≈ (n1/n2, n3/n4), in [0, 1] be a triangular/trapezoidal
shaped fuzzy number. In this section we will discuss how we plan to produce a
sequence of random triangular/trapezoidal shaped fuzzy numbers in some inter-
val [a, b]. We first make N in [0, 1] and multiply by b − a and add a to get it
into [a, b]. We always start out trying to make a triangular shaped fuzzy number
but sometimes, as we show below, it turns out to be a trapezoidal shaped fuzzy
number.

Let y = f1(x) denote the function that makes the left side of the membership
function y = N(x), 0 ≤ y ≤ 1, n1 ≤ x ≤ n2. We assume that f1(x) is continuous
and strictly increasing with f1(n1) = 0 and f1(n2) = 1. Next let y = f2(x) denote
the function that makes the right side of the membership function y = N(x),
0 ≤ y ≤ 1, n2 ≤ x ≤ n3. We assume that f2(x) is continuous and strictly
decreasing with f2(n2) = 1 and f2(n3) = 0. Notice that if we substitute α for y
an α-cut of N can be written [f−1

1 (α), f−1
2 (α)].

In this chapter we will use quadratic functions for the fi(x). Let ai1x
2+ai2x+

ai3 = fi(x), i = 1, 2. We may extend the results to higher order polynomials.
Now choose n11 and n21 so that n1 < n11 < n2, n2 < n21 < n3, and then choose
y1, y2 in (0, 1). The left side of N will be determined by the three points (n1, 0),
(n11, y1), (n2, 1) because these three points, assuming they do not lie in a straight
line, uniquely determine the a1j in y = a11x

2 + a12x + a13. The right side of
N will be determined by the three points (n2, 1), (n21, y2), (n3, 0) because these
three points, assuming they do not lie in a straight line, uniquely determine the
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Fig. 4.2. Random Quadratic Fuzzy Number N : Case 2

a2j in y = a21x
2 + a22x + a23. So we require the seven numbers n1, n11, y1,

n3, n21, y2 and n3 to construct our triangular shaped fuzzy number N . We will
call these fuzzy numbers quadratic fuzzy numbers because they have quadratic
membership functions. In the case of Figure 4.1 it is also a triangular shaped
fuzzy number. As shown in Figure 4.2 this method may result in a trapezoidal
shaped fuzzy number or a triangular shaped fuzzy number. One can identify
nine different cases of quadratic fuzzy numbers; we have shown one case which
results in a trapezoidal shaped fuzzy number for which the left support and the
right extent of the core must yet be determined.

To randomly generate a Case 1 N in [0, 1] we randomly produce random num-
bers x1, ..., x7 in [0, 1], using our Sobol quasi-random number generator (Chapter
3), giving the random vector w = (x1, ..., x7) ∈ [0, 1]7. In w first randomly choose
two values say, for example, x3 and x6. Then set y1 = x3 and y2 = x6. Now or-
der the remaining five numbers from smallest to largest giving, for example,
x5 < x2 < x7 < x1 < x4. Then define n1 = x5, n11 = x2, n2 = x7, n21 = x1 and
n3 = x4. We now have the five points to get triangular shaped fuzzy number N .
See Figure 4.1.

However, there are problems with constructing quadratic fuzzy numbers this
way. The graph of the left side of the quadratic fuzzy number between n1 and
n2 in Figure 4.1 may go above y = 1 or below y = 0, but not both. This may
happen as in Figure 4.2. Then we use either min{f1(x), 1} or max{f1(x), 0} for
the left side. Also, the graph of the right side of the quadratic fuzzy number
between n2 and n3 in Figure 4.1 may go above y = 1 or below y = 0, but not
both. This may happen as in Figure 4.2. Then we use either min{f2(x), 1} or
max{f2(x), 0} for the right side. This produces eight more cases of quadratic
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fuzzy numbers, some trapezoidal shaped fuzzy numbers having quadratic sides,
some triangular shaped fuzzy numbers with quadratic sides. But in all cases
the sides of the fuzzy number are described by quadratic functions. These cases
make up all our quadratic fuzzy numbers to be randomly generated from random
vectors w = (x1, ..., x7).

Because of the problems discussed above, curves going above (below) the
horizontal line y = 1 (y = 0), we will not use this method of generating random
quadratic fuzzy numbers in this book. Instead, we will employ the procedure
outlined in the next section.

4.3.2 Generated from Parametric Quadratic Functions, Bézier
Fuzzy Numbers

We now show that we can also generate random triangular shaped fuzzy numbers
using random vectors w = (x1, ..., x5) ∈ [0, 1]5 of length five. The definition and
properties of Bézier generated fuzzy numbers (BGFNs) is a result of research on
random fuzzy numbers done by Leonard Jowers at the University of Alabama at
Birmingham [2]. Bézier generated fuzzy numbers have a 100% yield of triangular
shaped FNs. What happened in Figure 4.2 will not occur now. Methods for two
types of BGFNs are given in [3]. Here we only discuss those which result in FNs
which have quadratic membership functions, quadratic Bézier generated fuzzy
numbers (QBGFNs) are FNs whose membership functions, left and right, are
defined by parabolas generated from Bézier curves [1]. Yet another representa-
tion having membership functions consisting of hyperbolas, ellipses, a line and
a parabola may be generated from weighted quadratic rational Bézier curves;
however, those conic Bézier generated fuzzy numbers (CBGFNs) do not gener-
ate quadratic membership functions in their explicit forms and are not used in
this book.

A full explanation of QBGFNs is lengthy and beyond the scope here. How-
ever, a full explanation is available in [3], which includes how one may generate
QBGFNs (parabolic) or CBGFNs, and recover their explicit forms.

Creation of Bézier curves can be visualized through de Castlejau’s Algorithm
[1]. Given three control points, b0, b1, b2, we create a curve as a moving point,
b2
0 (Figure 4.3), on a moving line, b1

0b
1
1. Both move, maintaining the relationship

b0b1
0 is to b1

0b1, as b1b1
1 is to b1

1b2, as b1
0b

2
0 is to b2

0b
1
1. The point b2

0 is determined
by repeated linear interpolation.

A quadratic Bézier curve is an arc length parameterization, t restricted to

[0, 1], of a parabola. Where bi is
[
xi yi

]T

, we have
⎡
⎣x(t)

y(t)

⎤
⎦ = (1 − t)2b0 + 2(1 − t)tb1 + t2b2. (4.1)

b0, b1, and b2 are coefficients to Bernstein polynomials, Bk,n(t) =
(
n
k

)
tk(1 −

t)n−k, of degree 2; that is, B0,2 = (1 − t)2, B1,2 = 2(1 − t)t, and B2,2 = t2.
Bernstein polynomials of degree n are the terms of the expansion of [(1− t)+ t]n.
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Fig. 4.3. A point, b2
0, in de Castlejau’s Algorithm

We now define quadratic Bézier generated fuzzy numbers (QBGFNs) as fuzzy
numbers (FNs) whose membership function is a pair of quadratic Bézier curves
[2]. This representation requires a vector of length 5. We produce a quadratic
fuzzy number from a “random” vector v = (z1, ..., z5) generated from some
‘random’ method. Three elements of a vector of length 5 define a TFN template
of a QBGFN. The two additional elements define the shape of the left and right
membership functions.

First we specify the range over which we allow the support, which we now
assume to be [0, M ], M > 0. A stream of crisp random integers gives a vector v of
length 5 and we first map each component into [0,1]. So assume v = (z1, ..., z5),
zi ∈ [0, 1] all i. Let the final “random” vector, used for the quadratic fuzzy
number A be w = (x1, ..., x5). However, our construction is to first determine
the support and vertex of a TFN, then a parameter for left (right) side of the
membership function. The first three elements of the vector v are sorted to create
z2 < z1 < z3, then x1 = Mz2, x2 = Mz1, x3 = Mz3 and the TFN is (x1/x2/x3)
in [0, M ]. Next z4 (z5) are transformed into x4 (x5) which produce the quadratic
membership function for the left (right) side the quadratic fuzzy number A.

The left membership function is defined in the following manner. z4 is mapped
to x4 by x4 = (2z4 − 1) × ((x2 − x1) + 1) (similarly, x5 is computed from z5 as
x5 = (2z5−1)×((x3−x2)+1)). x4 will be in [−(x2−x1+1),(x2−x1+1)]. If x4 < 0,
x4 defines a Bézier control point on the path counterclockwise from (x1, 0) to
(x2, 0) to (x2, 1). |x4| is the Manhattan distance from (x1, 0) along that path.
See b0, b1 and b2 in Figure 4.4, the Bézier control points for the left membership
function. One may see that, if x4 < 0, the Bézier control points of the left
membership are either {(x1, 0), (|x4|, 0), (x2, 1)} for |x4| the distance between
(x1, 0) and (x2, 0), or {(x1, 0), (x2, |x4 − (x2 −x1)|), (x2, 1)} for |x4| greater than
the distance between (x1, 0) and (x2, 0), Otherwise, x4 ≥ 0 similarly defines a
Bézier control point on the path clockwise from (x1, 0) to (x1, 1) to (x2, 1).
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Fig. 4.4. A Parabolic QBGFN Fuzzy Number A

The same process is used to determine the Bézier control points b′0, b′1 and b′2
(see Figure 4.4) for the right membership function.

In [3] we show how a Bézier curve may be converted into its implicit form;
i.e., y = f(x). Additionally there, we show a quadratic Bézier is converted to an
implicit quadratic polynomial function.

These QBGFNs are used extensively in Chapters 6-10 and their use is pro-
posed in Chapters 19 and 27.

4.4 Comparison of Random Fuzzy Vectors

In our evaluation of streams of FNs, to be continued in the next chapter, we
investigated our algorithms for comparing fuzzy numbers. For Buckley’s method
(Section 2.6.1) we evaluated the effect of choices of threshold values. Buckley
thresholds of 0.7, 0.8, and 0.9 were evaluated. 0.7 generated an excessive num-
ber of “equal” results. 0.9 appeared too much like a vertex comparison. We
determined that a Buckley threshold of 0.8 provided an acceptable comparison.

We also investigated differences among our three chosen comparison methods,
Buckley, Kerre (Section 2.6.2), and Chen (Section 2.6.3). 10, 000 FNs created
using various crisp input streams were evaluated. In Table 4.1 “Type FN” refers
to the type of input stream; for example, “Sobol 10” is for QBGFNs generated
from Sobol quasi-random numbers which had been generated 10 at a time (as
10-tuples). Given two fuzzy numbers M and N , using any one of the three
comparison methods, only one of the ordering results M < N , or M ≈ N , or
M > N can be true. “All Agree” are the number times all three methods agreed
upon the order of a pair of FNs. “Non-agree” represents the rest of the 10, 000.
“B&K agree” are the number of times that Buckley and Kerre agree when Chen
did not. “B&C agree” are the number of times that Buckley and Chen agree
when Kerre did not. “K&C agree” are the number of times that Kerre and
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Table 4.1. Comparison of Buckley (0.8), Kerre, and Chen Methods

All Non- B&K B&C K&C All
Type FN agree agree agree agree agree disagree
QBGFN
Pseudo 7984 2016 289 267 1424 36
True 8032 1968 249 309 1384 26
Faure 5 6402 3598 105 100 3363 30
Halton 5 8151 1849 240 275 1284 50
Niederreiter 5 8471 1529 180 176 1157 16
Sobol 5 8667 1333 86 121 1109 17
Faure 10 8019 1981 280 257 1410 34
Halton 10 8039 1961 275 259 1390 37
Niederreiter 10 7953 2047 286 267 1472 22
Sobol 10 7956 2044 283 288 1440 33
Faure 15 8155 1845 200 264 1356 25
Halton 15 7977 2023 307 270 1417 29
Niederreiter 15 7961 2039 300 270 1425 44
Sobol 15 8022 1978 276 267 1398 37
TFN
Pseudo 8499 1501 203 202 1050 46
True 8461 1539 211 236 1065 27

Chen agree when Buckley did not. “All disagree” are the number of times that
each gave a different result. An example of an “All disagree” situation could be:
Buckley’s method says M < N , Kerre’s procedure implies M ≈ N , but Chen’s
way gives M > N .

Table 4.1 shows that results did not greatly vary among FNs generated from
our various streams of crisp random numbers. We also found that results did
not vary greatly between QBGFNs and TFNs. We found that Kerre’s method
(Section 2.6.2) and Chen’s method (Section 2.6.3) agreed on average for almost
95% of the comparisons. In Table 4.1, one may add columns “All agree” and
“K&C agree”, for any row, to see that for the 10, 000 comparisons about 9, 500
show the same result for Kerre’s and Chen’s methods. Now both Kerre’s method
and Chen’s method are used in Chapters 6-8, so we will not be too surprised if
they give similar results. Buckley’s method is not used in Chapters 6-8 but will
be employed in the rest of the book.

4.5 Random Fuzzy Vectors

We first look at obtaining sequences of random fuzzy vectors whose components
are all quadratic fuzzy numbers. Suppose we want V i = (X i1, Xi2, Xi3), i =
1, 2, 3, .... Using our quasi-random number generator we get a sequence of random
vectors vi = (xi1, ..., xi5), i = 1, 2, 3, .... We take v1 for X11, v2 for X12, v3 for
X13, etc. We could also make vi have length 15 and take the first five components



42 Random Fuzzy Numbers and Vectors

for X i1, the second five components for Xi2, etc. We will usually use the first
method.

If we wanted a sequence of random fuzzy vectors V i whose components are
all TFNs we may use random crisp vectors vi of length nine. Take the first three
components to make X i1, etc. For random fuzzy vectors of trapezoidal fuzzy
numbers we can use random crisp vectors of length 12 using the first four for
Xi1, etc.
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Graduate Student Research Day 2005, Birmingham, AL (March 4, 2005)

3. Jowers, L.J., Buckley, J.J., Reilly, K.D.: Representation of Conic and Parabolic
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