
3 Crisp Random Numbers and Vectors

3.1 Introduction

In this chapter we first discuss different ways to generate sequences of “random”
numbers in some interval [a, b]. Usually the random numbers are first produced in
[0, 1] and then we perform a linear transformation to get them into [a, b]. Next we
consider making sequences of random non-negative integers. We wish to produce
sequences of random vectors v = (x1, ..., xn) where the xi are real numbers, and
the randomness here means that the v will uniformly fill the space [a, b]n. These
random vectors will be used in the next chapter to generate sequences of random
fuzzy numbers.

Subsequently, vectors of so-generated random fuzzy numbers are used for
streams to feed fuzzy Monte Carlo optimization. As is shown in Chapter 4,
with a 5-tuple we can generate a fuzzy number with quadratic membership
functions. In some cases we evaluate using a vector of two or three fuzzy numbers
generated from 5-tuples. In Chapters 6 and 9, we generate pairs of fuzzy numbers
from Sobol quasi-random 10-tuples. In Chapters 7 and 8, vectors of three fuzzy
numbers generated from Sobol 15-tuples are used. Other applications are in
Chapters 10-16.

3.2 Random Numbers

We could have chosen to generate fuzzy numbers whenever they are needed;
however, we wish to study the crisp numbers from which they are made, and we
wish to study fuzzy numbers generated in various ways from those streams of
crisp numbers. We expand upon a computer program from [2] to create streams of
crisp numbers for which we simultaneously evaluate randomness. Our application
from [2], RNGenerator, has several new features noted below. RNGenerator may
be linked with any of several random number (RN) generator subroutines. The
ones which we used were:

1. True Random: A million 8-bit (in binary notation) true random numbers
were downloaded from http://www.random.org. This routine supplies one
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16-bit true random integer (concatenate two 8-bit bytes), sequentially from
that list, with each call.

2. Pseudo-Random: This routine supplies one 16-bit pseudo-random integer.
From the C library’s rand() function (Visual C++) with each call, we first
obtain a pseudo-random integer in the interval [0,32767]. We multiply that
value times 2 to create an even integer in [0,65534]. Since we will be scaling
further to [0,1) for a χ2 test, having even pseudo-random integers is not a
concern.

3. Quasi-Random: Several quasi-random number routines from Burkardt [12]
were used as the bases for quasi-random integer generators (Section 7.7,
“Quasi-Random Sequences,” from [10] provides background to Sobol se-
quences).
The routines are designed to create n-tuples of crisp 16-bit integers, where
n is user specified. To make their use compatible with the other random
number generators, our generators release integers one at a time with each
call. We are particularly interested in Sobol quasi-random integers because
of our prior work ([1],[2]), and because Sobol sequences are reasonably well
known and we have used them with MATLAB [9].

3.2.1 Quasi-random Sequences

Quasi-random numbers are also known as Low Discrepancy Points (LDP) or
low discrepancy sequences. They are called quasi-random because they possess
many attributes of random numbers, but they are truly not random. Rather
they are designed to be less random and more uniformly distributed than Linear
Congruential Generated (LCG) pseudo-random numbers. Their other name, Low
Discrepancy Points, may be more appropriate though less catchy. The following
excerpt from [7] is instructive to the goal of LDPs:

[Begin] with a unit hypercube that is, a cube of more than three di-
mensions. Each edge of the cube has a length of 1 unit, so its volume
is 1. Lets assume a large number of points are to be distributed within
the cube. How can these points be distributed in such a way that, if
any volume in the cube is selected, the proportion of the points within
the volume is as close to the volume itself? . . . Points that provide, on
average, a close fit between the volume and proportion numbers provide
a low discrepancy thus, their name.

Many quasi-random number algorithms have been designed. The Van der
Corput Sequence (1935) [11] generates LDPs in just one dimension [6]. Others
have since been designed to provide LDPs in higher dimensions. Some of the best
known are Halton (1960), Hammersley (1960), Sobol (1967), Faure (1980), and
Niederreiter (1987) [11] Because quasi-random numbers provide more uniform
coverage to a space than pseudo-random numbers, they are “at the forefront
of financial mathematics” [8]. Algorithms for them are available from various
sources including the Association for Computing Machinery (ACM).
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Table 3.1. Random Number Generator χ2 Tests, N=500,000, bins=10, 9 df

type tuples χ2 Min Max Equal Pairs
Pseudo 1 9.793000 0 65534 10
True 1 7.073160 0 65535 6
Faure 2 0.007280 0 65534 829
Halton 2 0.011480 0 65534 10

Neiderreiter 2 0.007520 0 65534 864
Sobol 2 0.007600 0 65534 865
Faure 3 0.020880 0 65534 352
Halton 3 0.017680 0 65534 10

Neiderreiter 3 0.007400 0 65534 529
Sobol 3 0.006840 0 65534 530
Faure 5 0.082480 0 65534 339
Halton 5 0.017280 0 65534 10

Neiderreiter 5 0.003800 0 65534 332
Sobol 5 0.006520 0 65534 349
Faure 6 0.060400 0 65533 0
Halton 6 0.031800 0 65534 14

Neiderreiter 6 0.009360 0 65534 332
Sobol 6 0.014720 0 65534 411
Faure 9 0.700920 0 65531 0
Halton 9 0.057960 0 65533 11

Neiderreiter 9 0.007440 0 65534 356
Sobol 9 0.021720 0 65534 423
Faure 10 0.456000 0 65531 0
Halton 10 0.067400 0 65533 11

Neiderreiter 10 0.007840 0 65534 365
Sobol 10 0.013440 0 65534 411
Faure 15 4.328640 0 65534 0
Halton 15 0.203560 0 65533 13

Neiderreiter 15 0.020840 0 65534 411
Sobol 15 0.039640 0 65533 470

3.2.2 Random Number Generator

RNGenerator does statistics on the stream of RNs it generates. The 16-bit inte-
gers are scaled to [0,1) by division by 65536. A chi-square test is done for 10 bins
(9 degrees of freedom) on 500,000 random numbers generated by each method.
Though we do not use many of the streams later in this book, we provide our
findings for comparison. In Table 3.1: (1) “type” is the type of generator used
for the stream; (2) “tuple” is the number of integers the generator creates at a
time; (3) “χ2” is the value of the chi-square statistic; (4) “Min” is the small-
est random number produced; (5) “Max” is the value of the largest random
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number generated; and (6) “Equal Pairs” means that two consecutively gener-
ated random numbers were equal.

The chi-square test was the standard randomness test applied to sequences
of real numbers. The null hypothesis is H0 that the sequence is random and the
alternate hypothesis is H1 that the sequence is not random. The significance
level of the test was γ = 0.05. We place the random numbers into 10 equally
spaced bins where, assuming H0 is true, the expected number in each bin would
be 500, 000/10. The critical value is χ2 = 16.9190 for 9 degrees of freedom. So
the true random numbers and the pseudo-random numbers pass the randomness
test (do not reject H0). Moreover, the quasi-random numbers also pass the ran-
domness test (do not reject H0). The use of the quasi-random numbers will be
explained in Section 3.4.

3.3 Random Non-negative Integers

Suppose we want a random sequence z1, z2, z3, ... of non-negative integers in
some interval [a, b], a ≥ 0. We can use a pseudo-random number generator to
first get a random sequence x1, x2, x3, ... in [0, 1). We next transform the xi into
the interval [a−0.5, b+0.5]. Let yi = (b−a+1)xi +(a−0.5), i = 1, 2, 3, .... If the
decimal part of yi is less than 0.5 round yi down to zi and if the decimal part of yi

is greater than 0.5 round yi up to zi, i = 1, 2, 3, .... In case the decimal part of yi

equals 0.5 round yi to the nearest even integer for zi. Even non-negative integers
are 0, 2, 4, .... Random sequences of vectors whose components are non-negative
integers, is discussed in Section 3.5.

3.4 Random Vectors: Real Numbers

Using quasi-random numbers in [0, 1] we make vectors v = (x1, ..., xn) that
should uniformly fill the region [0, 1]n. We can then easily adjust these vectors
so that they uniformly fill the space [a, b]n. It is well known ([3],[4],[10]) that
if a pseudo-random number generator is used to produce sequences of vectors
v ∈ [a, b]n, and we plot their values, then there will be clusters and vacant regions
in [a, b]n. Quasi-random number generators are designed to avoid this problem
and uniformly fill the space [a, b]n.

Put “quasi-Monte Carlo simulation” into your search engine and get almost
700 web sites to visit. Another search phrase “low discrepancy numbers” could
be used. We downloaded a MATLAB program for Sobol quasi-random vectors
from [12]. When you run this program with small initial seeds it obviously does
not start off “random”. You need to discard the first few vectors and in [13] it
is recommended that you delete the first 64 vectors. With large initial seeds we
did not have this problem. We now generated N quasi-random vectors of length
7 using this MATLAB program, to be used in Chapter 4 to produce a random
sequence of quadratic fuzzy numbers, and tested them for randomness.
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We divided [0, 1] up into four equal intervals, in each of the seven dimensions
in [0, 1]7, and we call these intervals I1 = [0.00, 0.25), I2 = [0.25, 0.5), I3 =
[0.5, 0.75) and I4 = [0.75, 1.00]. We then construct K = 47 boxes

B(ijklmnp) = Ii × Ij × ... × Ip, (3.1)

in [0, 1]7. Each vector v = (x1, ..., x7) will fall into a unique box and for N vectors
let O(ijklmnp) be the number of vectors that were in box B(ijklmnp). In this
statistical test the null hypothesis is H0 that the sequence of vectors is random
and the alternative hypothesis H1 is that the sequence is not random. Let the
significance level γ of the test be 0.05. This will be a chi-square goodness of fit
test.

Under the randomness assumption of the null hypothesis the probability of an
xi in v being in an interval Iq, q = 1, 2, 3, 4, is 1

4 , for i = 1, ..., 7. So the expected
number of vectors in any box is

E =
N

47
. (3.2)

For the chi-square test we would like E to be at least five so we choose N =
100, 000.

Let θ be the degrees of freedom of the test and then the critical value for the
test will be cv so that the probability of a chi-square random variable χ2, with
degrees of freedom θ, exceeding cv is equal to γ = 0.05. The chi-square random
variable for this test is

χ2 =
∑

boxes

(O(ijklmnp) − E)2

E
. (3.3)

Next we need to determine the degrees of freedom θ and the critical value cv.
Now [5]

θ = (47 − 1) − [(7)(3)] = 16362, (3.4)

because: (1) we loose one degree of freedom because the sum of the O(ijklnmp)
must equal N ; and (2) we loose three degrees of freedom for each dimension
because we must specify three of the probabilities, since their sum is one, pi =
the probability of xi being in Ii, i = 1, 2, 3. Since the degrees of freedom is so
large we must use the approximation [5]

cv = 0.5(z +
√

2θ − 1)2, (3.5)

where z is the corresponding critical value of the standard normal distribution.
We calculate cv = 16718.

We wrote a program in MATLAB to run this test. The value we obtained
for the test statistic χ2 was 9935.7 < cv and we do not reject H0. We ran the
program again but this time the seed used to produce the vector of length seven
was computed from the clock in the computer. The result was χ2 = 10, 036 < cv
with no rejection of the null hypothesis. This does not prove “randomness” but
it gives us confidence to use this MATLAB program to produce sequences of
vectors in [0, 1]n, n ≥ 2, for our fuzzy Monte Carlo studies.
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3.5 Random Vectors: Non-negative Integers

Now we want sequences of vectors v = (x1, ..., xn), where each xi is a non-
negative integer in [a, b], so that the v should uniformly fill the region I ∩ [a, b]n,
a ≥ 0, where I denotes integers. This may be used in Chapters 18, 20-23, and
25-26. Use a quasi-random number generator to get v with each xi ∈ [0, 1). Set
w = (a− b +1)v + (a− 0.5) which puts each xi ∈ [a− 0.5, b+ 0.5]. Round the xi

to integers as follows: (1) if the decimal part of xi is less than 0.5 round down to
yi; (2) if the decimal part of xi is greater than 0.5 found up to yi; and (3) if the
decimal part of xi equals 0.5 round to the nearest even integer yi. The vector
u = (y1, ..., yn) is what we want.
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