
2 Fuzzy Sets

2.1 Introduction

In this chapter we have collected together the basic ideas from fuzzy sets and
fuzzy functions needed for the book. Any reader familiar with fuzzy sets, fuzzy
numbers, the extension principle, α-cuts, interval arithmetic, and fuzzy functions
may go on and have a look at Sections 2.5-2.7. In Section 2.5 we present a method
that we have used in the past of maximizing/minimizing a fuzzy number Z which
represents the value of some objective function in a fuzzy optimization problem.
In Section 2.6 we are concerned with ordering a finite set of fuzzy numbers
from smallest to largest to be used in our fuzzy Monte Carlo studies. Basically,
given two fuzzy numbers M and N , we need a method of deciding which of the
following three possibilities is true: M < N , M ≈ N , M > N . Three methods
are discussed in Section 2.6. Section 2.7 discusses dominated and undominated
fuzzy vectors needed in Chapter 9. Fuzzy vectors are vectors made up of fuzzy
numbers. A good general reference for fuzzy sets and fuzzy logic is [4] and [19].

Our notation specifying a fuzzy set is to place a “bar” over a letter. So A,
B, . . ., X , Y , . . ., α, β, . . . , will all denote fuzzy sets.

2.2 Fuzzy Sets

If Ω is some set, then a fuzzy subset A of Ω is defined by its membership function,
written A(x), which produces values in [0, 1] for all x in Ω. So, A(x) is a function
mapping Ω into [0, 1]. If A(x0) = 1, then we say x0 belongs to A, if A(x1) = 0
we say x1 does not belong to A, and if A(x2) = 0.6 we say the membership value
of x2 in A is 0.6. When A(x) is always equal to one or zero we obtain a crisp
(non–fuzzy) subset of Ω. For all fuzzy sets B, C, . . . we use B(x), C(x), . . . for
the value of their membership functions at x. Most of the fuzzy sets we will be
using will be fuzzy numbers.

The term “crisp” will mean not fuzzy. A crisp set is a regular set. A crisp num-
ber is just a real number. A crisp matrix (vector) has real numbers as its com-
ponents. A crisp function maps real numbers (or real vectors) into real numbers.
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10 Fuzzy Sets

A crisp solution to a problem is a solution involving crisp sets, crisp numbers,
crisp functions, etc.

2.2.1 Fuzzy Numbers

A general definition of a fuzzy number may be found in ([4],[19]), however
our fuzzy numbers will be almost always triangular (shaped), or trapezoidal
(shaped), fuzzy numbers. A triangular fuzzy number (TFN) N is defined by
three numbers a < b < c where the base of the triangle is the interval [a, c] and
its vertex is at x = b. Triangular fuzzy numbers will be written as N = (a/b/c).
A triangular fuzzy number N = (1.2/2/2.4) is shown in Figure 2.1. We see that
N(2) = 1, N(1.6) = 0.5, etc.
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Fig. 2.1. Triangular Fuzzy Number N

A trapezoidal fuzzy number M is defined by four numbers a < b < c < d
where the base of the trapezoid is the interval [a, d] and its top (where the
membership equals one) is over [b, c]. We write M = (a/b, c/d) for trapezoidal
fuzzy numbers. Figure 2.2 shows M = (1.2/2, 2.4/2.7).

A triangular shaped fuzzy number P is given in Figure 2.3. P is only partially
specified by the three numbers 1.2, 2, 2.4 since the graph on [1.2, 2], and [2, 2.4], is
not a straight line segment. To be a triangular shaped fuzzy number we require
the graph to be continuous and: (1) monotonically increasing on [1.2, 2]; and
(2) monotonically decreasing on [2, 2.4]. For triangular shaped fuzzy number P
we use the notation P ≈ (1.2/2/2.4) to show that it is partially defined by
the three numbers 1.2, 2, and 2.4. If P ≈ (1.2/2/2.4) we know its base is on
the interval [1.2, 2.4] with vertex (membership value one) at x = 2. Similarly
we define trapezoidal shaped fuzzy number Q ≈ (1.2/2, 2.4/2.7) whose base is
[1.2, 2.7] and top is over the interval [2, 2.4]. The graph of Q is similar to M in
Figure 2.2 but it has continuous curves for its sides.
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Fig. 2.2. Trapezoidal Fuzzy Number M
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Fig. 2.3. Triangular Shaped Fuzzy Number P

We will use special triangular shaped fuzzy numbers where their sides are
defined by quadratic functions. These will be called quadratic fuzzy numbers
(coded QBGFNs) and they are defined in Chapter 4.

Although we will be using triangular, trapezoidal(shaped) and quadratic fuzzy
numbers throughout the book, many results can be extended to more general fuzzy
numbers, but we shall be content to work with only these special fuzzy numbers.

2.2.2 Alpha-Cuts

Alpha-cuts are slices through a fuzzy set producing regular (nonfuzzy) sets. If A
is a fuzzy subset of some set Ω, then an α-cut of A, written A[α] is defined as
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A[α] = {x ∈ Ω|A(x) ≥ α}, (2.1)

for all α, 0 < α ≤ 1. The α = 0 cut, or A[0], must be defined separately.
Let N be the fuzzy number in Figure 2.1. Then N [0] = [1.2, 2.4]. Notice that

using equation (2.1) to define N [0] would give N [0] = all the real numbers.
Similarly, M [0] = [1.2, 2.7] from Figure 2.2 and in Figure 2.3 P [0] = [1.2, 2.4].
For any fuzzy set A, A[0] is called the support, or base, of A. Many authors
call the support of a fuzzy number the open interval (a, b) like the support of N
in Figure 2.1 would then be (1.2, 2.4). However in this book we use the closed
interval [a, b] for the support (base) of the fuzzy number.

The core of a fuzzy number is the set of values where the membership value
equals one. If N = (a/b/c), or N ≈ (a/b/c), then the core of N is the single
point x = b. However, if M = (a/b, c/d), or M ≈ (a/b, c/d), then the core of
M = [b, c].

For any fuzzy number Q we know that Q[α] is a closed, bounded, interval for
0 ≤ α ≤ 1. We will write this as

Q[α] = [q1(α), q2(α)], (2.2)

where q1(α) (q2(α)) will be an increasing (decreasing) function of α with q1(1) ≤
q2(1). If Q is a triangular shaped or a trapezoidal shaped fuzzy number then:
(1) q1(α) will be a continuous, monotonically increasing function of α in [0, 1];
(2) q2(α) will be a continuous, monotonically decreasing function of α, 0 ≤ α ≤
1; and (3) q1(1) = q2(1) (q1(1) < q2(1) for trapezoids). We sometimes check
monotone increasing (decreasing) by showing that dq1(α)/dα > 0 (dq2(α)/dα <
0) holds.

For the N in Figure 2.1 we obtain N [α] = [n1(α), n2(α)], n1(α) = 1.2 + 0.8α
and n2(α) = 2.4 − 0.4α, 0 ≤ α ≤ 1. Similarly, M in Figure 2.2 has M [α] =
[m1(α), m2(α)], m1(α) = 1.2 + 0.8α and m2(α) = 2.7 − 0.3α, 0 ≤ α ≤ 1.
The equations for ni(α) and mi(α) are backwards. With the y–axis vertical and
the x–axis horizontal the equation n1(α) = 1.2 + 0.8α means x = 1.2 + 0.8y,
0 ≤ y ≤ 1. That is, the straight line segment from (1.2, 0) to (2, 1) in Figure 2.1
is given as x a function of y whereas it is usually stated as y a function of x.
This is how it will be done for all α-cuts of fuzzy numbers.

2.2.3 Inequalities

Let N = (a/b/c). We write N ≥ δ, δ some real number, if a ≥ δ, N > δ when
a > δ, N ≤ δ for c ≤ δ and N < δ if c < δ. We use the same notation for
triangular shaped and trapezoidal (shaped) fuzzy numbers whose support is the
interval [a, c].

If A and B are two fuzzy subsets of a set Ω, then A ≤ B means A(x) ≤ B(x)
for all x in Ω, or A is a fuzzy subset of B. A < B holds when A(x) < B(x),
for all x. There is a potential problem with the symbol ≤. In some places in the
book, for example see Section 2.6, M ≤ N , for fuzzy numbers M and N , means
that M is less than or equal to N . It should be clear on how we use “≤” as to
which meaning is correct.
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2.2.4 Discrete Fuzzy Sets

Let A be a fuzzy subset of Ω. If A(x) is not zero only at a finite number of x
values in Ω, then A is called a discrete fuzzy set. Suppose A(x) is not zero only
at x1, x2, x3 and x4 in Ω. Then we write the fuzzy set as

A = {μ1

x1
, · · · ,

μ4

x4
}, (2.3)

where the μi are the membership values. That is, A(xi) = μi, 1 ≤ i ≤ 4, and
A(x) = 0 otherwise. We can have discrete fuzzy subsets of any space Ω. Notice
that α-cuts of discrete fuzzy sets of IR, the set of real numbers, do not produce
closed, bounded, intervals.

2.3 Fuzzy Arithmetic

If A and B are two fuzzy numbers we will need to add, subtract, multiply and
divide them. There are two basic methods of computing A+B, A−B, etc. which
are: (1) extension principle; and (2) α-cuts and interval arithmetic.

2.3.1 Extension Principle

Let A and B be two fuzzy numbers. If A+B = C, then the membership function
for C is defined as

C(z) = sup
x,y

{min(A(x), B(y))|x + y = z}. (2.4)

If we set C = A − B, then

C(z) = sup
x,y

{min(A(x), B(y))|x − y = z}. (2.5)

Similarly, C = A · B, then

C(z) = sup
x,y

{min(A(x), B(y))|x · y = z}, (2.6)

and if C = A/B,

C(z) = sup
x,y

{min(A(x), B(y))|x/y = z}. (2.7)

In all cases C is also a fuzzy number [19]. We assume that zero does not belong
to the support of B in C = A/B. If A and B are triangular (trapezoidal) fuzzy
numbers then so are A + B and A − B, but A · B and A/B will be triangular
(trapezoidal) shaped fuzzy numbers.

We should mention something about the operator “sup” in equations (2.4) –
(2.7). If Ω is a set of real numbers bounded above (there is a M so that x ≤ M ,
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for all x in Ω), then sup(Ω) = the least upper bound for Ω. If Ω has a maximum
member, then sup(Ω) = max(Ω). For example, if Ω = [0, 1), sup(Ω) = 1 but if
Ω = [0, 1], then sup(Ω) = max(Ω) = 1. The dual operator to “sup” is “inf”. If Ω
is bounded below (there is a M so that M ≤ x for all x ∈ Ω), then inf(Ω) = the
greatest lower bound. For example, for Ω = (0, 1] inf(Ω) = 0 but if Ω = [0, 1],
then inf(Ω) = min(Ω) = 0.

Obviously, given A and B, equations (2.4) – (2.7) appear quite complicated
to compute A + B, A − B, etc. So, we now present an equivalent procedure
based on α-cuts and interval arithmetic. First, we present the basics of interval
arithmetic.

2.3.2 Interval Arithmetic

We only give a brief introduction to interval arithmetic. For more information the
reader is referred to ([21],[22]). Let [a1, b1] and [a2, b2] be two closed, bounded,
intervals of real numbers. If ◦ denotes addition, subtraction, multiplication, or
division, then [a1, b1] ◦ [a2, b2] = [α, β] where

[α, β] = {a ◦ b|a1 ≤ a ≤ b1, a2 ≤ b ≤ b2}. (2.8)

If ∗ is division, we must assume that zero does not belong to [a2, b2]. We may
simplify equation (2.8) as follows:

[a1, b1] + [a2, b2] = [a1 + a2, b1 + b2] , (2.9)
[a1, b1] − [a2, b2] = [a1 − b2, b1 − a2] , (2.10)

[a1, b1] / [a2, b2] = [a1, b1] ·
[

1
b2

,
1
a2

]
, (2.11)

and
[a1, b1] · [a2, b2] = [α, β], (2.12)

where

α = min{a1a2, a1b2, b1a2, b1b2}, (2.13)
β = max{a1a2, a1b2, b1a2, b1b2}. (2.14)

Multiplication and division may be further simplified if we know that a1 > 0
and b2 < 0, or b1 > 0 and b2 < 0, etc. For example, if a1 ≥ 0 and a2 ≥ 0, then

[a1, b1] · [a2, b2] = [a1a2, b1b2], (2.15)

and if b1 < 0 but a2 ≥ 0, we see that

[a1, b1] · [a2, b2] = [a1b2, a2b1]. (2.16)

Also, assuming b1 < 0 and b2 < 0 we get

[a1, b1] · [a2, b2] = [b1b2, a1a2], (2.17)

but a1 ≥ 0, b2 < 0 produces

[a1, b1] · [a2, b2] = [a2b1, b2a1]. (2.18)
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2.3.3 Fuzzy Arithmetic

Again we have two fuzzy numbers A and B. We know α-cuts are closed, bounded,
intervals so let A[α] = [a1(α), a2(α)], B[α] = [b1(α), b2(α)]. Then if C = A + B
we have

C[α] = A[α] + B[α]. (2.19)

We add the intervals using equation (2.9). Setting C = A − B we get

C[α] = A[α] − B[α], (2.20)

for all α in [0, 1]. Also
C[α] = A[α] · B[α], (2.21)

for C = A · B and
C[α] = A[α]/B[α], (2.22)

when C = A/B, provided that zero does not belong to B[α] for all α. This
method is equivalent to the extension principle method of fuzzy arithmetic [19].
Obviously, this procedure, of α-cuts plus interval arithmetic, is more user (and
computer) friendly.

Example 2.3.3.1

Let A = (−3/− 2/− 1) and B = (4/5/6). We determine A ·B using α-cuts and
interval arithmetic. We compute A[α] = [−3+α,−1−α] and B[α] = [4+α, 6−α].
So, if C = A · B we obtain C[α] = [(α − 3)(6 − α), (−1 − α)(4 + α)], 0 ≤ α ≤ 1.
The graph of C is shown in Figure 2.4.

0

0.2

0.4

0.6

0.8

1

α

–18 –16 –14 –12 –10 –8 –6 –4x

Fig. 2.4. The Fuzzy Number C = A · B
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2.4 Fuzzy Functions

In this book a fuzzy function is a mapping from fuzzy numbers into fuzzy num-
bers. We write H(X) = Z for a fuzzy function with one independent variable X .
Usually X will be a triangular (trapezoidal) fuzzy number and then we usually
obtain Z as a triangular (trapezoidal) shaped fuzzy number. For two independent
variables we have H(X, Y ) = Z.

Where do these fuzzy functions come from? They are usually extensions of
real–valued functions. Let h : [a, b] → IR. This notation means z = h(x) for x
in [a, b] and z a real number. One extends h : [a, b] → IR to H(X) = Z in two
ways: (1) the extension principle; or (2) using α-cuts and interval arithmetic.

2.4.1 Extension Principle

Any h : [a, b] → IR may be extended to H(X) = Z as follows

Z(z) = sup
x

{
X(x) | h(x) = z, a ≤ x ≤ b

}
. (2.23)

Equation (2.23) defines the membership function of Z for any triangular (trape-
zoidal) fuzzy number X in [a, b].

If h is continuous, then we have a way to find α-cuts of Z. Let Z[α] =
[z1(α), z2(α)]. Then [8]

z1(α) = min{ h(x) | x ∈ X[α] }, (2.24)
z2(α) = max{ h(x) | x ∈ X[α] }, (2.25)

for 0 ≤ α ≤ 1.
If we have two independent variables, then let z = h(x, y) for x in [a1, b1], y

in [a2, b2]. We extend h to H(X, Y ) = Z as

Z(z) = sup
x,y

{
min

(
X(x), Y (y)

) | h(x, y) = z
}

, (2.26)

for X (Y ) a triangular or trapezoidal fuzzy number in [a1, b1] ([a2, b2]). For
α-cuts of Z, assuming h is continuous, we have

z1(α) = min{ h(x, y) | x ∈ X[α], y ∈ Y [α] }, (2.27)
z2(α) = max{ h(x, y) | x ∈ X[α], y ∈ Y [α] }, (2.28)

0 ≤ α ≤ 1.

Applications

Let f(x1, ..., xn; θ1, ..., θm) be a continuous function. Then

I[α] = {f(x1, ..., xn; θ1, ..., θm)| S }, (2.29)

for α ∈ [0, 1] and S is the statement “θi ∈ θi[α], 1 ≤ i ≤ m”, for fuzzy num-
bers θi, 1 ≤ i ≤ m, defines an interval I[α]. The endpoints of I[α] may be
found as in equations (2.24),(2.25) and (2.27),(2.28). I[α] gives the α-cuts of
f(x1, ..., xn; θi, ..., θm).
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2.4.2 Alpha-Cuts and Interval Arithmetic

All the functions we usually use in engineering and science have a computer al-
gorithm which, using a finite number of additions, subtractions, multiplications
and divisions, can evaluate the function to required accuracy [7]. Such functions
can be extended, using α-cuts and interval arithmetic, to fuzzy functions. Let
h : [a, b] → IR be such a function. Then its extension H(X) = Z, X in [a, b]
is done, via interval arithmetic, in computing h(X[α]) = Z[α], α in [0, 1]. We
input the interval X [α], perform the arithmetic operations needed to evaluate
h on this interval, and obtain the interval Z[α]. Then we put these α-cuts to-
gether to obtain the value Z. The extension to more independent variables is
straightforward.

For example, consider the fuzzy function

Z = H(X) =
A X + B

C X + D
, (2.30)

for triangular fuzzy numbers A, B, C, D and triangular fuzzy number X in
[0, 10]. We assume that C ≥ 0, D > 0 so that C X + D > 0. This would be the
extension of

h(x1, x2, x3, x4, x) =
x1x + x2

x3x + x4
. (2.31)

We would substitute the intervals A[α] for x1, B[α] for x2, C[α] for x3, D[α]
for x4 and X[α] for x, do interval arithmetic, to obtain interval Z[α] for Z.
Alternatively, the fuzzy function

Z = H(X) =
2X + 10
3X + 4

, (2.32)

would be the extension of
h(x) =

2x + 10
3x + 4

. (2.33)

2.4.3 Differences

Let h : [a, b] → IR. Just for this subsection let us write Z
∗

= H(X) for the
extension principle method of extending h to H for X in [a, b]. We denote Z =
H(X) for the α-cut and interval arithmetic extension of h.

We know that Z can be different from Z
∗
. But for basic fuzzy arithmetic in

Section 2.3 the two methods give the same results. In the example below we
show that for h(x) = x(1−x), x in [0, 1], we can get Z

∗ 	= Z for some X in [0, 1].
What is known ([8],[21]) is that for usual functions in science and engineering
Z

∗ ≤ Z. Otherwise, there is no known necessary and sufficient conditions on h
so that Z

∗
= Z for all X in [a, b]. See also [20].

There is nothing wrong in using α-cuts and interval arithmetic to evaluate
fuzzy functions. Surely, it is user, and computer friendly. However, we should
be aware that whenever we use α-cuts plus interval arithmetic to compute
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Z = H(X) we may be getting something larger than that obtained from the
extension principle. The same results hold for functions of two or more indepen-
dent variables.

Example 2.4.3.1

The example is the simple fuzzy expression

Z = (1 − X) X, (2.34)

for X a triangular fuzzy number in [0, 1]. Let X[α] = [x1(α), x2(α)]. Using
interval arithmetic we obtain

z1(α) = (1 − x2(α))x1(α), (2.35)
z2(α) = (1 − x1(α))x2(α), (2.36)

for Z[α] = [z1(α), z2(α)], α in [0, 1].
The extension principle extends the regular equation z = (1−x)x, 0 ≤ x ≤ 1,

to fuzzy numbers as follows

Z
∗
(z) = sup

x

{
X(x)|(1 − x)x = z, 0 ≤ x ≤ 1

}
. (2.37)

Let Z
∗
[α] = [z∗1(α), z∗2(α)]. Then

z∗1(α) = min{(1 − x)x|x ∈ X [α]}, (2.38)
z∗2(α) = max{(1 − x)x|x ∈ X[α]}, (2.39)

for all 0 ≤ α ≤ 1. Now let X = (0/0.25/0.5), then x1(α) = 0.25α and x2(α) =
0.50− 0.25α. Equations (2.35) and (2.36) give Z[0.50] = [5/64, 21/64] but equa-
tions (2.38) and (2.39) produce Z

∗
[0.50] = [7/64, 15/64]. Therefore, Z

∗ 	= Z. We
do know that if each fuzzy number appears only once in the fuzzy expression, the
two methods produce the same results ([8],[21]). However, if a fuzzy number is
used more than once, as in equation (2.34), the two procedures can give different
results.

2.5 Min/Max of a Fuzzy Number

In some fuzzy optimization problems we will want to determine the values of
some decision variables y = (x1, ..., xn) that will minimize (or maximize) a fuzzy
function E(y). For each value of y we obtain a fuzzy number E(y). We have
employed the method described below in previous publications and we will not
use it in this book. We have included it so that the reader may understand our
previous solution method when we compare it to our new fuzzy Monte Carlo
procedure.

We can not minimize a fuzzy number so what we are going to do, which we have
done before ([6],[9]-[13]), is first change minE(y) into a multiobjective problem
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Fig. 2.5. Computations for the Minimum of a Fuzzy Number

and then translate the multiobjective problem into a single objective problem.
This strategy is adopted from the finance literature where they had the problem
of minimizing a random variable X whose values are constrained by a probability
density function g(x). They considered the multiobjective problem: (1) minimize
the expected value of X ; (2) minimize the variance of X ; and (3) minimize the
skewness of X to the right of the expected value. For our problem let: (1) c(y) be
the center of the core of E(y), the core of a fuzzy number is the interval where the
membership function equals one, for each y; (2) L(y) be the area under the graph
of the membership function to the left of c(y); and (3) R(y) be the area under
the graph of the membership function to the right of c(y). See Figure 2.5. For
minE(y) we substitute: (1) min[c(y)]; (2) maxL(y), or maximize the possibility
of obtaining values less than c(y); and (3) minR(y), or minimize the possibility of
obtaining values greater then c(y). So for minE(y) we have

V = (maxL(y), min[c(y)], minR(y)). (2.40)

First let M be a sufficiently large positive number so that maxL(y) is equiva-
lent to minL∗(y) where L∗(y) = M −L(y). The multiobjective problem become

minV ′ = (minL∗(y), min[c(y)], minR(y)). (2.41)

In a multiobjective optimization problem a solution is a value of the decision
variable y that produces an undominated vector V ′. Let V be the set of all
vectors V ′ obtained for all possible values of the decision variable y. Vector
va = (va1, va2, va3) dominates vector vb = (vb1, vb2, vb3), both in V , if vai ≤ vbi,
1 ≤ i ≤ 3, with one of the ≤ a strict inequality <. A vector v ∈ V is undominated
if no w ∈ V dominates v. The set of undominated vectors in V is considered the
general solution and the problem is to find values of the decision variables that
produce undominated V ′. The above definition of undominated was for a min
problem, obvious changes need to be made for a max problem.
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One way to explore the undominated set is to change the multiobjective prob-
lem into a single objective. The single objective problem is

min(λ1[M − L(y)] + λ2c(y) + λ3R(y)), (2.42)

where λi > 0, 1 ≤ i ≤ 3, λ1 + λ2 + λ3 = 1. You will get different undominated
solutions by choosing different values of λi > 0, λ1 + λ2 + λ3 = 1. It is known
that solutions to this problem are undominated, but for some problems it will
be unable to generate all undominated solutions [17]. The decision maker is to
choose the values of the weights λi for the three minimization goals. Usually
one picks different values for the λi to explore the solution set and then lets the
decision maker choose an optimal y∗ from this set of solutions.

2.6 Ordering Fuzzy Numbers

Given a finite set of fuzzy numbers A1, ..., An we would like to order them from
smallest to largest. For a finite set of real numbers there is no problem in ordering
them from smallest to largest. However, in the fuzzy case there is no universally
accepted way to do this. There are probably more than 40 methods proposed
in the literature of defining M ≤ N , for two fuzzy numbers M and N . Here
the symbol ≤ means “less than or equal” and not “a fuzzy subset of”. A few
key references on this topic are ([1],[14]-[16],[18],[23],[24]) where the interested
reader can look up many of these methods and see their comparisons.

In this section we will present three methods of defining M < N , M ≈ N and
M ≤ N for two fuzzy numbers M and N which we will be using in this book.

2.6.1 Buckley’s Method

For this book we have named this procedure Buckley’s Method because we have
used it before ([2],[3]). But note that different definitions of ≤ between fuzzy
numbers can give different orderings. We first define < between two fuzzy num-
bers M and N . Define

v(M ≤ N) = max{min(M(x), N (y))|x ≤ y}, (2.43)

which measures how much M is less than or equal to N . We write N < M if
v(N ≤ M) = 1 but v(M ≤ N) < η, where η is some fixed fraction in (0, 1]. In
this book we will usually use η = 0.8 or η = 0.9. Then N < M if v(N ≤ M) = 1
and v(M ≤ N) < 0.8. We then define M ≈ N when both N < M and M < N
are false. M ≤ N means M < N or M ≈ N . Now this ≈ may not be transitive.
If N ≈ M and M ≈ O implies that N ≈ O, then ≈ is transitive. However, it
can happen that N ≈ M and M ≈ O but N < O because M lies a little to the
right of N and O lies a little to the right of M but O lies sufficiently far to the
right of N that we obtain N < O.

But this ordering is still useful in partitioning the set of fuzzy numbers Ai,
1 ≤ i ≤ n, up into disjoint sets H1, ..., HK where ([2],[3]): (1) given any Ai and
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Fig. 2.6. Determining v(N ≤ M)

Aj in Hk, 1 ≤ k ≤ K, then Ai ≈ Aj ; and (2) given Ai ∈ Hi and i < j, there
is a Aj ∈ Hj with Ai < Aj . We say a fuzzy number Ai is dominated if there is
another fuzzy number Aj so that Ai < Aj . So HK will be all the undominated
Ai. Now HK is nonempty and if it does not contain all the fuzzy numbers we
then define HK−1 to be all the undominated fuzzy numbers after we delete all
those in HK . We continue this way to the last set H1. Then the highest ranked
fuzzy numbers lie in HK , the second highest ranked fuzzy numbers are in HK−1,
etc. This result is easily seen if you graph all the fuzzy numbers on the same
axis then those in HK will be clustered together farthest to the right, proceeding
from the HK cluster to the left the next cluster will be those in HK−1, etc.

There is an easy way to determine if M < N , or M ≈ N , for many fuzzy
numbers. This will be all we need in randomness tests and Monte Carlo studies.
First, it is easy to see that if the core of N lies completely to the right of the core
of M , then v(M ≤ N) = 1. Also, if the core of M and the core of N overlap,
then M ≈ N . Now assume that the core of N lies to the right of the core of M ,
as shown in Figure 2.6 for triangular fuzzy numbers, and we wish to compute
v(N ≤ M). The value of this expression is simply y0 in Figure 2.6. In general,
for triangular (shaped), and trapezoidal (shaped), fuzzy numbers v(N ≤ M) is
the height of their intersection when the core of N lies to the right of the core
of M .

2.6.2 Kerre’s Method

We first need to present the fuzzy max (written max) of two fuzzy numbers. If
O = max(M, N), then

O(z) = sup
{
min(M(x), N (y))|max(x, y) = z

}
. (2.44)

The authors in [19] give a detailed study of the properties of max and min (fuzzy
min).
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Next we define the Hamming distance between M and N . The Hamming
distance, d(M, N), is defined as

d(M, N) =

∞∫
−∞

|M(x) − N(x)|dx. (2.45)

Clearly, d is a metric (distance measure) on the space of continuous fuzzy num-
bers (those whose membership function is continuous).

Then we say M < N is true whenever

d(N, max(M, N)) < d(M, max(M, N)). (2.46)

This is simply a fuzzification of x < y if and only if max(x, y) = y for real x 	= y.
We write M ≈ N if you get equality in equation (2.46) and M ≤ N means
M < N or M ≈ N . A numerical example showing M ≤ N by this method is
in ([19], p. 407 - 408). We call this procedure for evaluating fuzzy inequalities
Kerre’s method [15].

Figure 2.7 shows the fuzzy max of two fuzzy numbers. We see that d
(M, max(M, N)) is the area of regions A1 plus A3 and d(N, max(M, N)) is
the area of region A2. It appears that the area of region A2 is less than the area
of regions A1 plus A3 so M < N .

We point out from [23] that Kerre’s ≤ is transitive.

2.6.3 Chen’s Method

A third method of ranking fuzzy numbers we focus on was presented by Chen
in [15]. A score is computed for each fuzzy number which is needed for ranking.
The fuzzy set with the highest score is the largest fuzzy number. In order to
rank triangular shaped fuzzy numbers N ≈ (n1/n2/n3) and M ≈ (m1/m2/m3)
Chen defined a fuzzy max and a fuzzy min where the supports of fuzzy max and
min is [xmin, xmax] where
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Fig. 2.8. Ranking Fuzzy Numbers Based on Chen’s Method

xmin = min(n1, m1), (2.47)
xmax = max(n3, m3). (2.48)

Fuzzy min and fuzzy max are triangular fuzzy numbers with membership degree
one at the left and the right limit of the support, respectively (see Figure 2.8).
The membership functions are

μmin(x) =

⎧⎨
⎩

x−xmax
xmin−xmax

: xmin ≤ x ≤ xmax,

0 : otherwise
(2.49)

μmax(x) =

⎧⎨
⎩

x−xmin
xmax−xmin

: xmin ≤ x ≤ xmax,

0 : otherwise.
(2.50)

The intersection points between fuzzy max and M and N as well as the
intersection points between fuzzy min and M and N are needed for computing
the final scores. We compute

μR(M) = sup
x

(min(μmax(x), M (x))), (2.51)

and
μL(M) = sup

x
(min(μmin(x), M(x))), (2.52)

where μR(M) indicates the max of the intersection point between fuzzy max and
M and μL(M) stands for the left score which is given by the max intersection
point with fuzzy min. The larger μR(M) is, the higher M should be ranked. On
the other hand a high value of μL(M) and M is close to the fuzzy min, and
therefore should be ranked lower. By combining both scores we get the final
rating

μT (M) =
1
2

(
μR(M) + (1 − μL(M)

)
. (2.53)
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Similarly, we get μT (N). We then say that M < N is true if μT (M) < μT (N).
In Figure 2.8 we used the notation Lm = μL(M), Rm = μR(M), Ln = μL(N)
and Rn = μR(N ). The labeling of Lm, Rm, Ln and Rn in Figure 2.8 may be a
little misleading. These numbers are the y coordinates of the point indicated in
the figure.

We write M ≈ N when μT (M) = μT (N) and as usual M ≤ N means M < N
or M ≈ N .

We point out from [23] that Chen’s ≤ is transitive.

2.6.4 Breaking Ties

We first adopt some method of deciding on ≤, < and ≈ between fuzzy numbers.
Assume we will use Buckley’s Method. Sometimes in a fuzzy optimization prob-
lem, assume a max problem, we may get too many ties for maximum. Suppose we
wish to maxZ = f(X1, ..., Xn) where the X i are triangular fuzzy numbers and
Z is a triangular shaped fuzzy number. Using our fuzzy Monte Carlo method
we will generate a sequence Zj , j = 1, 2, 3, .... Let HK be the highest ranked
fuzzy numbers in the sequence (Section 2.6.1). But HK could contain 10, or
20, or 100 fuzzy numbers. Given Za and Zb in HK we know that Za ≈ Zb.
What we can now do is rank the fuzzy numbers in HK by their vertices. Let
Za ≈ (za1/za2/za3) and Zb ≈ (zb1/zb2/zb3). We say Za < Zb if za2 < zb2,
Za > Zb if za2 > zb2, and Za ≈ Zb if za2 = zb2. The resulting highest ranked
fuzzy numbers H∗

K should be more manageable. If we require a unique solution
and we still have “ties” then we use the left (right) end points of the support.
For example, if Za ≈ Zb and: (1) zb2 = za2 but zb1 < za1 we say Zb < Za; (2)
zb2 = za2, zb1 = za1 and zb3 < za3 we say Zb < Za; (3) zb2 = za2, zb1 = za1,
zb3 = za3 we randomly discard one of them and declare the other the max (or
min).

2.7 Undominated Fuzzy Vectors

We will first review the concept of undominated for crisp vectors. Consider a
multiobjective optimization problem

max v = (v1 = f1(x), ..., vm = fm(x)), (2.54)

where x = (x1, ..., xn) is in the feasible set F . Usually the xi are non-negative.
The optimization problem has constraints on the variables xi and F is all x
which satisfy these constraints. There will be certain changes for a min problem.

Let V be all vectors v from equation (2.54) obtained using all the x ∈ F .
Given va = (va1, ..., vam) and vb = (vb1, ..., vbm) in V we say va dominates vb if
vai ≥ vbi all i with at least one of the ≥ is equal to >. The solution set S to the
multiobjective max problem is all undominated v ∈ V . The decision maker(s),
depending on their preferences, would now choose certain v ∈ S as solutions to
the optimization problem.
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A way to generate undominated solutions is to consider the single objective
optimization problem

max( λ1f1(x) + ... + λmfm(x) ), (2.55)

for the λi ∈ (0, 1) all i and λ1 + ... + λm = 1. It is known that all solutions
are undominated but in certain problems we may not be able to obtain all
undominated solutions by varying the values of the λi [17].

Now, as in Chapter 9, we consider a fuzzy multiobjective optimization problem

max V = (V 1 = f1(X), ..., V m = fm(X)), (2.56)

where X = (X1, ..., Xn) is in the feasible set F . Assume we are using one of
the three methods discussed above for evaluating ≤, < and ≈ between fuzzy
numbers. Usually the X i ≥ 0 all i.

Let V be all vectors V from equation (2.56) obtained using all the X ∈ F .
Given V a = (V a1, ..., V am) and V b = (V b1, ..., V bm) in V we say V a weakly dom-
inates V b if V ai ≥ V bi all i with at least one of the ≥ equal to >. We will call
this definition of dominance “weak dominance”. We will say V a strongly domi-
nates V b if V ai > V bi all i. We will employ both definitions of dominance. The
solution set S to the fuzzy multiobjective max problem is all (weakly, strongly)
undominated V ∈ V . Of course, we would like to show that this undominated
set is nonempty.

Next we change the fuzzy multiobjective optimization problem into a single
objective

max( λ1V 1 + ... + λmV m ), (2.57)

for λi > 0 all i and λ1+...+λm = 1. We would now like to argue that any solution
to equation (2.57) is (weakly, strongly) undominated. The argument depends on
what definition for ≤, < and ≈ you are using between fuzzy numbers. All that
is needed is that if V a (weakly, strongly) dominates V b then

m∑
i=1

λiV ai >

m∑
i=1

λiV bi. (2.58)

If this is true one can easily obtain the desired result. Let us now prove this
result for the special case of m = 2 and then we consider this problem for the
three methods of defining <, ≤ and ≈ between fuzzy numbers discussed above.

We still consider the max problem with obvious changes for the min problem.
Suppose the solution to

max( λ1X1 + λ2X2 ) (2.59)

is X
∗
1 and X

∗
2 for given (and fixed) 0 < λi < 1, i = 1, 2 and λ1 +λ2 = 1. Assume

V
∗

= (X
∗
1, X

∗
2) is not (weakly, strongly) undominated but W ∈ F (weakly,

strongly) dominates V
∗
. We now consider the two cases of weak and strong

domination.



26 Fuzzy Sets

First we assume weak domination. So X
∗
1 < W 1 and X

∗
2 ≤ W 2. Assume we

are using a method of defining ≤, < and ≈ between fuzzy numbers so that the
following two results are true.

λ1X
∗
1 < λ1W 1, λ2X

∗
2 ≤ λ2W 2, (2.60)

λ1X
∗
1 + λ2X

∗
2 < λ1W 1 + λ2W 2. (2.61)

Then V
∗

is not the optimal solution. A contradiction. So if ≤, < and ≈ has the
properties in equations (2.60) and (2.61) we get that the optimization problem
in equation (2.59) only produces weakly undominated solutions.

Next we look at strong domination. So X
∗
1 < W 1 and X

∗
2 < W 2. Assume we

are using a method of defining ≤, < and ≈ between fuzzy numbers so that the
following two results are true.

λ1X
∗
1 < λ1W 1, λ2X

∗
2 < λ2W 2, (2.62)

λ1X
∗
1 + λ2X

∗
2 < λ1W 1 + λ2W 2. (2.63)

Then V
∗

is not the optimal solution. A contradiction. So if ≤, < and ≈ has the
properties in equations (2.62) and (2.63) we get that the optimization problem
in equation (2.59) only produces strongly undominated solutions.

2.7.1 Buckley’s Method

We will use strong domination and show equation (2.63) is true for Buckley’s
Method. Let X

∗
i ≈ (xi1/xi2/xi3) and W i ≈ (wi1/wi2/wi3) for i = 1, 2. Assume

that x12 < w12 and x22 < w22 as in Figure 2.6 and we are using η = 0.8. Then
v(X

∗
i , W i) = ηi < 0.8 and v(W i, X

∗
i ) = 1 for i = 1, 2. Assume that η1 ≤ η2.

Now let X
∗
i [η2] = [xi1(η2), xi2(η2)] and W i[η2] = [wi1(η2), wi2(η2)] for i = 1, 2.

We know that x22(η2) = w21(η2) and x12(η2) ≤ w11(η2). Now let X
∗

=
λ1X

∗
1 + λ2X

∗
2 and W = λ1W 1 + λ2W 2. We see that

X
∗
[η2] = [λ1x11(η2) + λ2x21(η2), λ1x12(η2) + λ2x22(η2)], (2.64)

and
W [η2] = [λ1w11(η2) + λ2w21(η2), λ1w12(η2) + λ2w22(η2)]. (2.65)

Therefore X
∗

< W since

λ1x12(η2) + λ2x22(η2) < λ1w11(η2) + λ2w21(η2). (2.66)

Now we can explain why we did now use weak domination. Because we can
have X

∗
1 ≈ W 1, so X

∗
1 ≤ W 1 is true, and X

∗
2 < W 2 but for certain values of the

λi we get X
∗ ≈ W so X

∗
< W is not true.



Undominated Fuzzy Vectors 27

2.7.2 Kerre’s Method

First assume that we are using weak dominance. It was shown in [23] that if
X

∗
1 < W 1 and X

∗
2 ≤ W 2, then X

∗
1 + X

∗
2 < W 1 + W 2 may not be true. For

this reason we will not use Kerre’s Method in fuzzy multiobjective optimization
problems in Chapter 9.

2.7.3 Chen’s Method

First assume that we are using weak dominance. It was shown in [23] that if
X

∗
1 < W 1 and X

∗
2 ≤ W 2, then X

∗
1 + X

∗
2 < W 1 + W 2 may not be true. For

this reason we will not use Chen’s Method in fuzzy multiobjective optimization
problems in Chapter 9.
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