
16 Fuzzy Queuing Models

16.1 Introduction

This chapter is based on, and expanded from, Chapters 11, 12 and 14 of [4]
which is about using fuzzy probabilities and fuzzy sets in web site planning. So
the queuing network considered in this chapter is within a web site. For other
papers/chapters in books, on this topic of fuzzy queuing theory, we refer the
reader to ([2],[3],[6],[7],[10]) and the references in these papers/books. In the
next section we discuss the crisp queuing optimization problem and then we
fuzzify the optimization problem in the third section. In the fourth section we
present our fuzzy Monte Carlo method and how we will generate sequences of
random fuzzy vectors. Our fuzzy Monte Carlo solution to the fuzzy queuing
optimization problem is the fifth section and the last section has a summary and
our conclusions. All the fuzzy numbers used in this chapter, except fuzzy profit
starting in Section 16.3, will be non-negative. We will program our fuzzy Monte
Carlo method in MATLAB [8]. This chapter is also based on [1].

16.2 Queuing Model

We will model the queuing system using the arrival rate λ and the service rate μ
for any server. This is a common method used in queuing theory ([9],[11]). The
system has c parallel and identical servers, system capacity M (in the servers
and in the queue, c ≤ M) and an infinite calling source. If the system is full,
new arrivals are turned away and lost from the system. The λ rate will be state
independent, which means that λ does not depend on how many customers are
in the system. But if there are n customers in the system, then the rate of
departure from the whole system is μn = nμ, for 0 ≤ n < c and μn = cμ for
c ≤ n ≤ M .

A basic assumption is that we are in steady-state, all transient behavior has
died down and can be neglected, and the time interval δ is sufficiently small so
that the probability of two or more events occurring during δ is zero. If we are
in state n, or there are n customers in the system with 0 < n < M , we can

J.J. Buckley et al.: Monte Carlo Meth. in Fuzzy Optimization, STUDFUZZ 222, pp. 175–184, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

176 Fuzzy Queuing Models

have only two events occurring: (1) one customer arrives and we have n + 1 in
the system; or (2) one customer finishes service and leaves and we have n − 1
left in the system. Usually for steady-state we assume that λ ≤ μ when we have
infinite capacity. However, since we have finite system capacity we do not need
to assume that λ ≤ μ. If we are in state zero (n = 0), we can only go to n = 1
and we can get to state n = 0 from n = 1 when a customer leaves service. We
can get to state n = M only from n = M − 1 with an arrival and we can leave
state n = M to state M − 1 when a customer leaves service.

The first objective is to compute the steady-state probabilities wi, 0 ≤ i ≤ M ,
from which we may determine various measures of system performance.

Using a transition rate diagram, the expected rate of flow into state n is

λwn−1 + μn+1wn+1, (16.1)

and the expected rate of flow out of state n is

λwn + μnwn, (16.2)

for 0 < n < M . We set these two equal to get the balance equation

λwn−1 + μn+1wn+1 = λwn + μnwn, (16.3)

for 0 < n < M . The balance equation for state n = 0 is simply λw0 = μ1w1

and for n = M it is λwM−1 = μMwM . We solve these balance equations for wi,
1 ≤ i ≤ M , functions of w0 and then use the fact that the sum of all the wi must
equal one to obtain a formula for w0. The final result is that wi = Fi(λ, μ, c, M),
0 ≤ i ≤ M . That is, the steady-state probabilities are function of λ, μ, c and M
([9],[11]).

Now we can determine measures of system performance such as U=server
utilization and N=expected number of customers in the system. All we will
need in this chapter is

N =
M∑

k=0

kwk. (16.4)

We next wish to consider the optimal queuing network maximizing profit with
variables λ, μ, c and M .

There are many types of servers each with associated service rate μ ∈ [0, 10].
Let C = K1μ be the cost, in $ per unit time, of operating a server having
corresponding service rate μ for some constant K1 > 0. Determining the cost of
a server per unit time is a difficult number to estimate so we later assign a fuzzy
number to its value.

There is a cost involved in maintaining the queue, or those in the system but
not yet in a server. Let Q be the cost, in $ per unit time, of having one space
available in the queue. So the queue cost is Q(M − c). Q is also difficult to
estimate exactly so we will later model it as fuzzy.

There will be certain fixed costs associated with maintaining the web site
which do not depend on the decision variables. Since they do not depend on
M ,c,λ and μ they can be omitted for the model.

Fuzzy Queuing Model 177

We will assume that we can affect the arrival rate λ through advertising. Let
A = K2λ be the advertising level in $ per unit time that is expected to produce
arrival rate λ for constant K2 > 0. This cost A will be hard to know precisely so
it too will become fuzzy. The web site pays for these advertisements but other
advertisers will pay the web site, to place their ads, depending on the number
of customers in the queue who can see their (pop-up) adds.

Revenue from advertisers is assumed to be proportional to the average number
of customers in the system N . If T is the revenue, in $ per unit time, per customer
in the system, then total revenue per unit time is TN .

Profit per unit time, to be maximized, is

Profit = TN − [K2λ + Q(M − c) + K1μ c], (16.5)

We will next model all the cost/income parameters as fuzzy numbers, and if
any are known exactly, then we would use their exact values. The variables are
c = 1, 2, .., 10 and M = c, c + 1, ..., 30, λ ∈ [0, 10] and μ ∈ [0, 10].

We could consider a budget constraint, only so much money available per
unit time, but we will not do this here. The above profit equation gives us only
one goal, maximize profit. We could add other goals [4] such as maximize server
utilization, minimize number of lost customers due to system capacity M , etc.

There are many other costs associated with the system, such as startup costs
and operating costs ([9], Chapter 5), which we have not incorporated into the
model. Many of these costs are independent from our variables, so can be clas-
sified as fixed costs in our model, and hence omitted.

16.3 Fuzzy Queuing Model

The arrival rate would need to be estimated and we will use a fuzzy estimator
λ ([4], Chapter 3). Assume that we gather data to estimate the arrival rate.
Then we can construct (1− γ)100% confidence intervals for λ. If we place these
confidence intervals one on top of another, 0.001 ≤ γ ≤ 1, we obtain a fuzzy
number λ. We can easily change the MATLAB program to use a crisp value
for λ but in this chapter we will use a fuzzy λ. Also, the service rate has to
be estimated so we have a fuzzy estimator μ ([4], Chapter 3). We get μ as
described above from the (1 − γ)100% confidence intervals, 0.001 ≤ γ ≤ 1. The
fuzzy numbers obtained from the confidence interval method will be triangular
shaped fuzzy numbers but in this chapter we will use triangular fuzzy numbers
for λ and μ. The server cost automatically becomes fuzzy C = K1μ for crisp
constant K1 > 0. Also, the advertising cost is fuzzy A = K2λ for crisp K2 > 0.
The fuzzy queue cost is Q > 0 and the fuzzy revenue from advertisers is T > 0.
All these crisp and fuzzy constants are given in Table 16.1. The fuzzy constants
are all triangular fuzzy numbers. The constants K1, K2, Q and T might be
obtained from expert opinion (Section 3.4 in [4]).

The fuzzy optimization problem is to find integer c ∈ [1, 10], integer M ∈
[1, 30] with c ≤ M and λ, μ ∈ [0, 10] to maximize fuzzy profit

Π = T N − [K2λ + Q(M − c) + K1μc]. (16.6)

178 Fuzzy Queuing Models

Table 16.1. Crisp/Fuzzy Parameters in the Fuzzy Optimization Problem

Constant α = 0 Cut
K1 0.04
K2 0.03
Q (0.04/0.07/0.10)
T (3.15/3.45/3.80)

Given the values of the variables the next thing to do is to get the fuzzy steady-
state probabilities wk, 0 ≤ k ≤ M . We will first discuss computing the crisp
steady-state probabilities and then fuzzify them using the extension principle.
Let ρ = λ/μ and [11]

wk = Fk(λ, μ, c, M) =
ρk

k!
w0, 1 ≤ k ≤ c, (16.7)

and

wk = Fk(λ, μ, c, M) =
ρk

c!ck−c
w0, c ≤ k ≤ M. (16.8)

Now w0 = F0(λ, μ, c, M) where

w0 = [
c−1∑

n=0

ρn

n!
+

ρc(1 − (ρ/c)M−c+1)
c!(1 − ρ/c)

]−1, ρ/c �= 1, (16.9)

and

w0 = [
c−1∑

n=0

ρn

n!
+

ρc

c!
(M − c + 1)]−1, ρ/c = 1. (16.10)

The test ρ/c �= 1 and ρ/c = 1 in equations (16.9) and (16.10) will be difficult
to do when λ and μ are fuzzy numbers. So we combine both of these equations
into one equation eliminating the two tests on ρ/c. Let s = M − c + 1 and do
the division in equation (16.9) producing

w0 = [
c−1∑

n=0

ρn

n!
+

ρc

c!cs−1
P (c, s, ρ)]−1, (16.11)

where
P (c, s, ρ) = cs−1 + cs−2ρ + cs−3ρ2 + . . . + ρs−1. (16.12)

We will use equations (16.11) and (16.12) to determine the steady-state proba-
bility w0. Then

wk = Fk(λ, μ, c, M), (16.13)

for 0 ≤ k ≤ M , evaluated using the extension principle. Let wk[α] = [wk1(α),
wk2(α)], k = 0, . . . , M , 0 ≤ α ≤ 1. Then we know how to get the α-cuts of the
wk as [5]

wk1(α) = min{Fk(λ, μ, c, M) | λ ∈ λ[α], μ ∈ μ[α]}, (16.14)

Fuzzy Queuing Model 179

and
wk2(α) = max{Fk(λ, μ, c, M) | λ ∈ λ[α], μ ∈ μ[α]}, (16.15)

for all k and α. Let us change equations (16.14) and (16.15) to Fk a function of
ρ, c and M . Let λ[α] = [λ1(α), λ2(α)] and μ[α] = [μ1(α), μ2(α)]. Then ρ = λ/μ
so that ρ[α] = [λ1(α)/μ2(α), λ2(α)/μ1(α)]. Then

wk1(α) = min{Fk(ρ, c, M) | ρ ∈ ρ[α]}, (16.16)

and
wk2(α) = max{Fk(ρ, c, M) | ρ ∈ ρ[α]}, (16.17)

for all k and α. We solve these optimization problems, equations (16.16) and
(16.17), using the Optimization Toolbox in MATLAB [8].

Next we find N as

N [α] = {
M∑

k=0

kwk| S}, (16.18)

all α ∈ [0, 1], where S is the statement “wk ∈ wk[α], 0 ≤ k ≤ M, w0 + ...+wM =
1”. If N [α] = [n1(α), n2(α)] then

n∗
1(α) = min{

M∑

k=0

kwk| S}, (16.19)

and

n∗
2(α) = max{

M∑

k=0

kwk| S}. (16.20)

Then since n∗
i (α), i = 1, 2, could exceed M we set

n1(α) = min{n∗
1(α), M}, (16.21)

and
n2(α) = min{n∗

2(α), M}, (16.22)

Equations (16.19) and (16.20) are linear programming problems which can be
solved using the Optimization Toolbox in MATLAB.

Now we can compute the fuzzy profit Π. We will use α-cuts and interval arith-
metic because in this case it produces the same result as the extension principle.
Let Π [α] = [π1(α), π2(α)]. Also let T [α] = [t1(α), t2(α)], N [α] = [n1(α), n2(α)],
λ[α] = [λ1(α), λ2(α)], Q[α] = [q1(α), q2(α)], μ[α] = [μ1(α), μ2(α)]. Then

Π [α] = [t1(α)n1(α), t2(α)n2(α)] − [s, t], (16.23)

where

[s, t] = [K2λ1(α)+q1(α)(M−c)+K1μ1(α)c, K2λ2(α)+q2(α)(M−c)+K1μ2(α)c],
(16.24)

and
Π[α] = [t1(α)n1(α) − t, t2(α)n2(α) − s]. (16.25)

180 Fuzzy Queuing Models

16.4 Fuzzy Monte Carlo Method

We plan to produce (approximate) solutions to the fuzzy optimization problem in
equation (16.6) using our fuzzy Monte Carlo method. We will randomly generate
fuzzy vectors

Vk = (λk, μk, ck, Mk), (16.26)

with λk, μk ∈ [0, 10], integer ck in [1, 10] and integer Mk in [ck, 100], for k =
1, 2, . . . , P . We evaluate fuzzy profit Πk for each V k and find the V k to maximize
Πk. With P = 100, 000 we should get a good estimate of maximum fuzzy profit.
So we need to do two things: (1) describe how to get random sequences of the
vectors V k; and (2) how we will determine the maximum of the set Λ = {Πk | k =
1, 2, . . . , P}. We first consider V k and how to produce the fuzzy values for λ and
μ and then separately generate c and M . Then we discuss finding the maximum
of Λ.

16.4.1 Random Sequence V k

To obtain random sequences V k1 = (λk, μk), k = 1, 2, ..., P , where the λk and
μk are triangular fuzzy numbers, we first randomly generate crisp vectors vk =
(xk1, ..., xk6), using our Sobol quasi-random number generator (Chapter 3), with
all the xki in [0, 1], k = 1, 2, .., P . We choose the first three numbers in vk and
order them from smallest to largest. Assume that xk3 < xk1 < xk2. Then the
first triangular fuzzy number λk = (xk3/xk1/xk2). Continue with the next three
numbers in vk making μk. However the λk and μk we want need to be in [0, 10].
Since λk and μk start out in [0, 1] we may easily map them into [0, 10] by using
10λk (10μk) for fuzzy λ (μ).

Next we need to randomly get the sequence of integers ck ∈ [1, 10]. Randomly
generate ν ∈ [0, 1] and then define π = 0.5 + 10ν making π ∈ [0.5, 10.5]. Then
round π off to the nearest integer producing c. We round 0.5 to one and 10.5
to 10. Use a pseudo-random number generator for ν. Finally randomly produce
ξ ∈ [0, 1] and then define σ = (c − 0.5) + (31 − c)ξ putting σ ∈ [c − 0.5, 30.5].
Round σ off to the nearest integer giving M . Also use a pseudo-random number
generator for ξ.

16.4.2 Maximum of Fuzzy Profit

Given a finite set of fuzzy numbers Π1, ..., ΠP we want to order them from
smallest to largest. For a finite set of real numbers there is no problem in ordering
them from smallest to largest. However, in the fuzzy case there is no universally
accepted way to do this. There are probably more than 50 methods proposed in
the literature of defining U ≤ V , for two fuzzy numbers U and V .

Here we will use only one procedure for ordering fuzzy numbers which is Buck-
ley’s Method in Section 2.6.1. We will now use η = 0.9 in Buckley’s Method to
help reduce the number of fuzzy profits that could be considered approximately
equal for the maximum fuzzy profit. But note that different definitions of ≤

Fuzzy Monte Carlo Solution 181

between fuzzy numbers can give different orderings and therefore different final
answers to the fuzzy optimization problem.

Now apply this to Π1, . . . , ΠP . These are all triangular shaped fuzzy numbers.
We want HK the set of undominated fuzzy profits. We then present HK , together
with the corresponding values for λ,μ, c and M , to management for their decision.
It is usually better to present multiple optimal solutions then one unique optimal
solution. Managers are decision makers and if you give then one optimal solution
they essentially have almost no decision: accept it or reject it. However, with
multiple solutions the manager can study them, bringing in new information
etc., to make their final decision. However, with P = 100, 000 HK could be
too large, like 100 − 200 fuzzy sets. We need to restrict the size of HK and in
this chapter we decide that the maximum size of HK will be three fuzzy sets.
Whenever we have more than three fuzzy sets to be in HK we pick the three
with largest vertex points. Therefore, the maximum of Λ will be HK .

Now we need to incorporate this into the iterations in our fuzzy Monte Carlo
method. Suppose at some point in the iterations HK = {Πa, Πb, Πc}. The
next iteration produces fuzzy profit Π0. We then compare Π0 to Πi, for i =
a, b, c. There are nine possible outcomes. For example Π0 ≈ Πc, Π0 > Πb

and Π0 ≈ Πa is one possible result. Then HK = {Π0, Πa, Πc}. Any fuzzy set
which is dominated can not be in HK and all the fuzzy sets in HK must be
equivalent (≈).

16.5 Fuzzy Monte Carlo Solution

We will describe our fuzzy Monte Carlo program. The program is written in
MATLAB. We first generate V k, k = 1, . . . , P . We compute the fuzzy numbers
using the α-cuts α = 0.00, 0.30, 0.60, 0.90, 1.00. We have our first file

F1 = {(λ[α], μ[α], ck, Mk) | α = 0, 0.30, 0.60, 0.90, 1; k = 1, . . . , P}. (16.27)

Using this file we determine the fuzzy steady-state probabilities wjk, j = 0, . . . , M ,
k = 1, . . . , P , from equations (16.16) and (16.17), using the Optimization Toolbox.
This makes our second file

F2 = {(w0k[α], . . . , wM,k[α]) | α = 0, 0.30, 0.60, 0.90, 1; k = 1, . . . , P }. (16.28)

Using file F2 we determine Nk[α] from equations (16.19)-(16.22) using the Op-
timization Toolbox. This produces file

F3 = {Nk[α] | α = 0, 0.30, 0.60, 0.90, 1; k = 1, . . . , P }. (16.29)

Now we are ready to find fuzzy profit Πk[α], α = 0, 0.30, 0.60, 0.90, 1, k =
1, . . . , P , from equations (16.23)-(16.25).

The results of the Monte Carlo method, after P = 100, 000 iterations, gave
us the three (approximate) optimal solutions shown in Table 16.2. The graph of
the three maximum fuzzy profits in the final HK are shown in Figure 16.1. For

182 Fuzzy Queuing Models

Table 16.2. Optimal Numerical Results from the Fuzzy Monte Carlo Method

Solution λ μ c M Π

1 (4.81/5.85/6.59) (2.40/3.28/4.00) 1 30 ≈ (16.83/96.75/112.54)

2 (4.52/7.16/7.46) (3.25/4.18/4.18) 1 30 ≈ (−0.62/96.25/108.77)

3 (7.96/9.72/9.78) (1.91/2.33/2.36) 2 29 ≈ (83.57/94.51/103.18)

�

�

0 25 50 75 100 125 x

1
0.9

y

Π1

Π2

Π3

Fig. 16.1. Optimal Fuzzy Profits from the Fuzzy Monte Carlo Method

simplicity the graphs in Figure 16.1 are triangular fuzzy numbers, using only
their base and vertex, where they are really triangular shaped fuzzy numbers.

Let us now compare the results above for our fuzzy Monte Carlo method to
those in Chapter 14 of [4]. Both basically consider the same problem of maxi-
mizing (almost the same) fuzzy profit with variables fuzzy arrival rate λ, fuzzy
service rate μ, number of servers c and system capacity M . Because of the com-
putational burden of calculating fuzzy profit in [4] the author only considered
16 cases. For example, λ = (4/5/6), μ = (5/6/7), c = 2, M = 10 was one
of the cases. The author of [4], at that time, could not look at P = 100, 000
random cases. In [4] HK = {Πa, Πb, Πc} where Πa ≈ (−0.8/0.7/4.6), Πb ≈
(−0.5/1.9/6.3) and Πc ≈ (−0.8/0.9/4.3). The graphs of these fuzzy profits, as
triangular fuzzy numbers, are shown in Figure 16.2 for comparison to Figure
16.1. Now let us briefly summarize the model in Chapter 14 of [4] to compare to
the model in this chapter.

The fuzzy profit function in [4] was

Π = TN − [Au + Q(M − c) + Cvc]. (16.30)

In [4] the author considered only two fuzzy arrival rates λi and only two fuzzy
service rates μi, i = 1, 2, in their 16 cases. Then Au = Ai when λ = λi, i = 1, 2. In
this chapter we used K2λ since we could not use P = 100, 000 different constants
for that many different fuzzy arrival rates. Also, Cv = Ci when μ = μi, i = 1, 2.

Summary and Conclusions 183

Π2

Π14

Π10

�

�

-1 0.5 2 3.5 5 6.5 x

1

0.8

y

Fig. 16.2. Optimal Fuzzy Profits from Chapter 14 of [4]

In this chapter we used K1μc since we could not use P = 100, 000 different
constants for that many different fuzzy service rates. The Q(M − c) is the same
in both models. In this chapter our T is greater then the fuzzy T value used in
[4] because the Π ≈ (π1/π2/π3) in [4] had too many results with negative π2

values. Finally, in [4] they used η = 0.8 in the comparison of fuzzy numbers and
in this chapter we used η = 0.9 to help in reducing the size of the set HK .

We see from Figures 16.1 and 16.2 that the results are similar: three fuzzy
sets clustered together approximating maximum fuzzy profit. However, those in
Figure 16.1 would present a better approximation since they are the result of
100, 000 random choices for the variables. The fuzzy profits in Figure 16.1 will
all lie to the right of those in Figure 16.2 because T used in this chapter is
approximately three plus the T used in Chapter 14 of [4].

16.6 Summary and Conclusions

In this chapter we introduced our new fuzzy Monte Carlo procedure. The ba-
sic requirement of any fuzzy Monte Carlo method is to be able to randomly
produce fuzzy/crisp vectors to uniformly fill the search space. We suggested us-
ing a quasi-random number generator to make these random fuzzy/crisp vectors.
Theoretically, given enough iterations of the fuzzy Monte Carlo technique, it will
produce a very good approximate solutions to the fuzzy optimization problem.

We applied our fuzzy Monte Carlo method to a fuzzy optimization problem
from fuzzy queuing theory. For all our Monte Carlo calculations, we used a Dell
Optiplex GX 250 with a dual core and a 64-bit pentium D 2.8 GHz processor
running on Windows XP. The computer time for 100, 000 iterations was approxi-
mately 52.5 hours. To construct file F2 (equation (16.29)) using the Optimization
Toolbox the computer time was approximately 47 hours and then to finish the
program it was approximately 5.5 hours.

It would be nice to try 1, 000, 000 iterations, but the computing time on one
office PC would be too excessive. However, if we could run the fuzzy Monte Carlo

184 Fuzzy Queuing Models

program 100, 000 iterations simultaneously on ten separate machines, comput-
ing over the weekend, and then combine the results, we could go to 1, 000, 000
iterations. The MATLAB program is available from the authors.

References

1. Abdalla, A., Buckley, J.J.: Monte Carlo Methods in Fuzzy Queuing Theory (under
review)

2. Buckley, J.J.: Elementary Queuing Theory Based on Possibility Theory. Fuzzy Sets
and Systems 37, 43–52 (1990)

3. Buckley, J.J.: Fuzzy Probabilities: New Approach and Applications. Springer, Hei-
delberg (2003)

4. Buckley, J.J.: Fuzzy Probabilities and Fuzzy Sets for Web Planning. Springer,
Heidelberg (2004)

5. Buckley, J.J., Qu, Y.: On Using α-cuts to Evaluate Fuzzy Equations. Fuzzy Sets
and Systems 38, 309–312 (1990)

6. Buckley, J.J., Eslami, E., Feuring, T.: Fuzzy Mathematics in Economics and En-
gineering. Physica-Verlag, Heidelberg (2002)

7. Buckley, J.J., Feuring, T., Hayashi, Y.: Fuzzy Queuing Theory Revisited. Int. J.
Uncertainty, Fuzziness and Knowledge Based Systems 9, 527–538 (2001)

8. MATLAB, The MathWorks, http://www.mathworks.com
9. Menasce, D.A., Almeida, V.A.F.: Capacity Planning for Web Performance. Pren-

tice Hall, Upper Saddle River, N.J. (1998)
10. Pardo, M.J., de la Fuente, D.: Optimizing a Priority-Discipline Queueing Model

Using Fuzzy Set Theory. Computers & Math. with Applications 54, 267–281 (2007)
11. Taha, H.A.: Operations Research, 5th edn. Macmillan, N.Y. (1992)

http://www.mathworks.com

	Fuzzy Queuing Models
	Introduction
	Queuing Model
	Fuzzy Queuing Model
	Fuzzy Monte Carlo Method
	Random Sequence \overline{V}_k
	Maximum of Fuzzy Profit

	Fuzzy Monte Carlo Solution
	Summary and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

