
15 Fuzzy Two-Person Zero-Sum Games

15.1 Introduction

In this chapter we use fuzzy Monte Carlo methods to get approximate optimal
fuzzy mixed strategies for fuzzy two-person zero-sum games. In the next sec-
tion we briefly review the results for crisp two-person zero-sum games. Then in
Section 15.3 we fuzzify the games and define optimal fuzzy values for the players
and optimal fuzzy mixed strategies. In the fourth section we introduce our fuzzy
Monte Carlo method and use it on an example problem to generate approximate
solutions. The last section contains our conclusions and suggestions for future
research. Our fuzzy Monte Carlo method will be programmed in MATLAB [6].
This chapter is based on [1].

15.2 Two-Person Zero-Sum Games

There are two players named Player I and Player II. A is a m × n matrix of
real numbers aij . Player I has pure strategies i = 1, 2, 3, ..., m, the row labels,
and Player II has pure strategies j = 1, 2, 3, ..., n, the labels for the columns. If
Player I chooses pure strategy i and Player II chooses pure strategy j, then the
payoff from Player II to Player I is aij when aij > 0. If aij < 0, then the payoff
is −aij from Player I to Player II.

Sometimes the games have optimal strategies for both players in pure strate-
gies. This is when the game has a saddle point. Suppose aij is both the maximum
entry in its column and the minimum entry in its row. We have a saddle point
and the pure strategy i for Player I and pure strategy j for Player II are optimal
strategies for both players. So assume that the game has no saddle points. We
now consider mixed strategies.

A mixed strategy for Player I is a probability vector x = (x1, ..., xm), xi ∈ [0, 1]
all i, and

∑m
i=1 xi = 1. A mixed strategy for Player II is also a probability vector

y = (y1, ..., yn), yj ∈ [0, 1] all j,
∑n

j=1 yj = 1. Player I chooses pure strategy i
with probability xi and Player II will choose pure strategy j with probability yj .
The expected payoff to Player I will be
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E = xAyt, (15.1)

where yt is the transpose of row vector y.
Let X (Y ) be the set of all mixed strategies for Player I (II). For a fixed x ∈ X

let
v(x) = min{xAyt|y ∈ Y }, (15.2)

and
vI = max{v(x)|x ∈ X}. (15.3)

The value of the game for Player I is vI and a mixed strategy x∗ in X solving
equation (15.3) is an optimal mixed strategy for Player I. For a fixed y ∈ Y
define

v(y) = max{xAyt|x ∈ X}, (15.4)

and
vII = min{v(y)|y ∈ Y }. (15.5)

The value of the game for Player II is vII and a mixed strategy y∗ in Y solving
equation (15.5) is an optimal mixed strategy for Player II. The minimax theorem
says that vI = vII .

The details on two-person zero-sum games are in many books and two ref-
erences are ([8],[10]). We now consider the probability vectors and the payoff
matrix becoming fuzzy.

15.3 Fuzzy Two-Person Zero-Sum Games

There have been some papers/chapters in books, about fuzzy two-person zero-
sum games which consider fuzzy payoffs, and sometimes fuzzy goals for the fuzzy
payoffs ([2],[4],[5],[7],[9],[11],[12]), but not with fuzzy mixed strategies. We will
allow both fuzzy payoffs and fuzzy mixed strategies.

We first fuzzify the payoff matrix A = (aij) where the aij are trapezoidal
fuzzy numbers, or real numbers. Some of the payoffs can be real numbers but
we still write all of them as fuzzy numbers. For example, if a23 = 20 we write
a23 = 20. The fact that a aij is fuzzy represents any uncertainty in the exact
value of the payment.

How do we get these trapezoidal fuzzy numbers. We could employ expert
opinion if we do not have any historical/statistical data to estimate these pa-
rameters. Suppose a34 is an uncertain payoff value in the fuzzy matrix A. First
assume we have only one expert and he/she is to estimate the value of some
aij . We can solicit this estimate from the expert as is done in estimating job
times in project scheduling ([10], Chapter 13). Let a = the “pessimistic” value
of aij , or the smallest possible value, let d = the “optimistic” value of aij , or
the highest possible value, and let [b, c] be the interval of the most likely values
of aij . We then ask the expert to give values for a, b, c, d and we construct the
trapezoidal fuzzy number a34 = (a/b, c/d) for a34. If we have a group of experts
all to estimate the value of some aij we would average their response.
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We define a saddle point for the fuzzy games the same way it was defined for
the crisp game. Adopt the definitions of <, ≈ and > between fuzzy numbers
discussed in Section 15.4.2. We say the fuzzy game has a saddle point at a34 if
a34 ≥ ai4, i = 1, 2, . . . , n and a34 ≤ a3j , j = 1, 2, . . . , m. A ≤ (≥) between fuzzy
numbers means < or ≈ (> or ≈). If a34 is a saddle point the players have optimal
strategies in pure strategies: Player I chooses the third row and Player II picks
the fourth column. So assume that the fuzzy game does not have a saddle point.

Next the probability vectors for mixed strategies become fuzzy probabilities
[3]. A fuzzy mixed strategy for Player I is x = (x1, ..., xm) where xi ∈ [0, 1]
is a triangular fuzzy number or a real number, all i, and there are xi ∈ xi[1]
so that

∑m
i=1 xi = 1. The last constraint says that for any α ∈ [0, 1] we can

find xi ∈ xi[α], 1 ≤ i ≤ m, so that x1 + ... + xm = 1. Similarly we define
a fuzzy mixed strategy y for Player II. For example if m = 4 we could have
x = (0.2, x2, x3, 0.3) where x1 = 0.2, x2 = (0/0.1/0.2), x3 = (0.3/0.4/0.5) and
x4 = 0.3. In this example we could use (0.2, 0.2, 0.3, 0.3) when α = 0 for a crisp
mixed strategy. Let X (Y) be all fuzzy mixed strategies for Player I (Player II).
We wish to define, and find, optimal x∗ ∈ X (y∗ ∈ Y) for Player I (Player II).
We could consider trapezoidal fuzzy numbers for the xi in x but we will use
triangular fuzzy numbers in this chapter.

The fuzzy expected payoff E from the fuzzy game is determined by its
α-cuts [3]

E(x, y)[α] = {
m∑

i=1

n∑

j=1

xiaijyj | S }, (15.6)

where S denotes the statement “ x ∈ X , xi ∈ xi[α] all i, x1 + ... + xm = 1,
y ∈ Y, yj ∈ yj [α] all j, y1 + ... + yn = 1 and aij ∈ aij [α] all i, j ”. This is how
we will compute with fuzzy probabilities: for any α-cut we always choose only
crisp probability distributions [3]. We may find these α−cuts as follows

e(x, y)1(α) = min{
m∑

i=1

n∑

j=1

xiaijyj| S }, (15.7)

and

e(x, y)2(α) = max{
m∑

i=1

n∑

j=1

xiaijyj | S }, (15.8)

where E(x, y)[α] = [e(x, y)1(α), e(x, y)2(α)]. We will need to solve this optimiza-
tion problem using the Optimization Toolbox in MATLAB [6]. Also, this is the
way we compute with fuzzy probabilities. We use “complete” crisp probabilities
selected from the fuzzy numbers xi, 1 ≤ i ≤ m (yj , 1 ≤ j ≤ n). Equation
(15.6) defines the α−cuts of trapezoidal shaped fuzzy number E(x, y). Notice
that E(x, y) was not evaluated using the extension principle nor by α-cuts and
interval arithmetic.

Now we define optimal fuzzy mixed strategies and consider a fuzzy minimax
theorem. X (Y) is the set of fuzzy mixed strategies to be used by Player I
(Player II). These could be finite, or some other infinite restricted set of fuzzy
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probabilities, and are not necessarily all possible fuzzy probabilities. Let us first
assume that X (Y) is all fuzzy mixed strategies for Player I (Player II). We
will use some method of defining ≤, < and ≈ between fuzzy numbers, and in
choosing the maximum/minimum of a (finite) set of fuzzy numbers, which will
be defined and discussed in the next section. For each x ∈ X define the fuzzy
function

V (x) = min{E(x, y) | y ∈ Y }. (15.9)

Then the fuzzy value for the game for Player I is

V I = max{V (x) | x ∈ X }. (15.10)

But we are unable to determine the fuzzy function V (x) = z, z a trapezoidal
shaped fuzzy number. For this reason we will employ our fuzzy Monte Carlo
method to approximate V I (V II) for Player I (Player II). This means that we
will restrict X and Y to be finite sets of fuzzy mixed strategies.

In order for the notation here to match that in the next section on our Monte
Carlo method we will now assume that X and Y are finite. Let X = {xi | i =
1, . . . , N } and Y = {yj | j = 1, . . . , N }. We have changed our notation where
now xi (yj) is the whole fuzzy mixed strategy for Player I (II) and not a compo-
nent of a fuzzy mixed strategy. That is, now xi = (xi1, . . . , xim), i = 1, . . . , N ,
and a similar expression for yj . Pick and fix xi ∈ X . Let

E(xi, yj) = U ij , (15.11)

for j = 1, . . . , N . Next compute

U i = min{U ij | j = 1, . . . , N }. (15.12)

We do this for each i = 1, 2, . . . , N .
Next we determine

U
∗

= max{U i | i = 1, . . . , N }. (15.13)

Now U
∗

will equal U i for some i. If U
∗

= U143, then set x∗ = x143. The fuzzy
value for the game for Player I is V I = U

∗
and his/her optimal fuzzy mixed

strategy is x∗. Now we do similar calculations for Player II.
Pick and fix yj in Y. Let

E(xi, yj) = V ij , (15.14)

for i = 1, . . . , N . Next compute

V
∗
j = max{V ij | i = 1, . . . , N }. (15.15)

We do this for each j = 1, 2, . . . , N .
Next we determine

V
∗

= min{V j | j = 1, . . . , N }. (15.16)
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Now V
∗

will equal V j for some j. If V
∗

= V 643, then set y∗ = y643. The fuzzy
value for the game for Player II is V II = V

∗
and his/her optimal fuzzy mixed

strategy is y∗.
Now compare U

∗
and V

∗
both are trapezoidal shaped fuzzy numbers. Can

they be equal? This would be the fuzzy minimax theorem. We will investigate this
possibility using our fuzzy Monte Carlo method discussed in detail in the next
section. However we do have the following result. We assume that we are using
definitions of <, ≤ and ≈ between fuzzy numbers (see Section 15.4.2) so that:
(1) we may find a unique solution to max{Aτ | τ ∈ Υ} and to min{Aτ | τ ∈ Υ}
for the Aτ fuzzy numbers and Υ an index set; and (2) given two fuzzy numbers
M and N one and only one of the following is true M < N , M ≈ N , M > N .

Theorem 15.1. V I ≤ V II .

Proof
For y ∈ Y consider

max{E(x, y) | x ∈ X } = V (y). (15.17)

This defines a mapping from each y ∈ Y to an x∗ in X so that E(x∗, y) = V (y).
We write x∗ = f(y) so that E(f(y), y) = V (y). Then

E(x, y) ≤ E(f(y), y), (15.18)

for all x and all y. It follows that

min{E(x, y) | y ∈ Y } ≤ min{E(f(y), y) | y ∈ Y }, (15.19)

for all x. But the right side of equation (15.19) is V II . Hence

min{E(x, y) | y ∈ Y } ≤ V II , (15.20)

for all x. Now take the max on x ∈ X of the left side of equation (15.20) and
the result follows. �

A complete fuzzy Monte Carlo study would generate N fuzzy mixed strategies
x ∈ X and N fuzzy mixed strategies y ∈ Y, for l = 1, 2, 3, . . . , L. Each study
would produce fuzzy values V

(l)

I , V
(l)

II , and optimal fuzzy mixed strategies x∗
(l),

y∗
(l), l = 1, 2, . . . , L. Then we would compare these fuzzy values to choose our

final approximations to the fuzzy value of the game for the players and their
optimal fuzzy mixed strategies. However, because of the long computer time to
accomplish each fuzzy Monte Carlo study, we will be able to do only one of them
in the example in Section 15.4.3.

15.4 Fuzzy Monte Carlo

Assume that the fuzzy payoff matrix A is given. We first need to do two things:
(1) describe how to get random sequences of fuzzy mixed strategies xk and yk,
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k = 1, . . . , N ; and (2) how we will determine the maximum/minimum of a fi-
nite set of fuzzy numbers. We first consider random sequences of fuzzy mixed
strategies and then the max/min of a finite set of fuzzy numbers (equations
(15.12),(15.13),(15.15),(15.16)). Then we can outline our fuzzy Monte Carlo
method for producing an approximate solution to the problem discussed above
and consider an example problem.

15.4.1 Random Sequences of Fuzzy Mixed Strategies

To obtain a random sequence xk = (xk1, . . . , xkm), k = 1, 2, ..., N , where each
xkj is a triangular fuzzy number in [0, 1] and

∑m
j=1 xkj [1] = 1, we first randomly

generate crisp vectors vk = (ak1, ..., ak,3m) with all the aki in [0, 1], k = 1, 2, .., N .
We obtain the sequence vk using our Sobol quasi-random number generator
discussed in Chapter 3. We choose the first three numbers in vk and order them
from smallest to largest. Assume that ak3 < ak1 < ak2. Then the first triangular
fuzzy number zk1 = (ak3/ak1/ak2). Continue with the next three numbers in vk,
making zk2, etc. Assume zkj = (zkj1/zkj2/zkj3), all k and j. Let Lk =

∑m
j=1 zkj2.

Then the final xk is xkj = (1/Lk)zkj all k and j. If xkj = (xkj1/xkj2/xkj3) we
now have

∑m
j=1 xkj2 = 1. We construct the random sequence of fuzzy mixed

strategies yk for Player II the same way.

15.4.2 Max/Min of Fuzzy Numbers

Given a finite set of fuzzy numbers U1, ..., UN we want to find the maximum and
the minimum. For a finite set of real numbers there is no problem in ordering
them from smallest to largest. However, in the fuzzy case there is no universally
accepted way to do this. There are probably more than 50 methods proposed in
the literature of defining M ≤ N , for two fuzzy numbers M and N .

Here we will use only Buckley’s Method presented in Section 2.6.1. We will
now use η = 0.9 in Buckley’s Method to help reduce the number of fuzzy numbers
that could be considered approximately equal for the maximum/minimum of a
set of fuzzy numbers. But note that different definitions of ≤ between fuzzy
numbers can give different orderings and therefore different final answers to the
fuzzy game theory problem.

Now apply this to U ij , j = 1, . . . , N , in equation (15.12). We will find the
minimum sequentially. Suppose we are at stage j = T − 1 and the current
minimum of U ij , 1 ≤ j ≤ T − 1, is S. The next step computes U iT = R. There
are three possibilities: (1) if S < R, then min remains S go on to the next
step; (2) if S > R, then the new min is R; and (3) if S ≈ R, there are three
more cases. Let S ≈ (s1/s2, s3/s4) and R ≈ (r1/r2, r3/r4) since they will be
trapezoidal shaped fuzzy numbers. The next three cases are: (1) if s2 < r2, then
min remains S; (2) if s2 > r2, the min is now R; and (3) if s2 = r2, there are
three more cases. At this point S ≈ R and s2 = r2. The three new cases are:
(1) if s3 < r3, the min remains S; (2) if s3 > r3, then the min is R; and (3) if
s3 = r3, there are three more cases. We are at S ≈ R, s2 = r2 and s3 = r3. The
next three cases are: (1) if s1 < r1, then the min remains S; (2) if s1 > r1, then
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the min is R; and (3) if s1 = r1, then we have a final three cases to consider.
We are at S ≈ R, s2 = r2, s3 = r3 and s1 = r1. The final three cases are: (1) if
s4 < r4, then the minimum remains S; (2) if s4 > r4, then the minimum is R;
and (3) if s4 = r4, then randomly delete one of them and the other is the min.
We do this so that there will be one and only one minimum. It is clear what
changes are needed for a maximum.

15.4.3 Fuzzy Monte Carlo Solution Method

The basic program was written in MATLAB [6]. We must decide on N , the
number of random fuzzy mixed strategies for each player and the number of
α-cuts we need to determine for all the fuzzy numbers. For the α-cuts we need
α = 0, 1 and α = 0.9 for the comparison of two fuzzy numbers (Section 15.4.2).
We will use one more α-cut between zero and 0.9 so the α-cuts will be α =
0, 0.4, 0.9, 1. After generating the random fuzzy mixed strategies xk and yk,
k = 1, . . . , N , we need to evaluate equation (15.11) N2 times. Also, each one is
done four times for the α-cuts. So to get to equation (15.13) we compute equation
(15.6) 4N2 times. For y∗ also 4N2 times. A total of 8N2. With N = 1000 that
equals 8, 000, 000. That seems like the absolute max for our computer. So for the
example below we will pick the smallest A, a 2 × 2 fuzzy payoff matrix.

Before we consider the example let us look more closely at our MATLAB
program. Let E(xi, yj) = W ij . We previously called this U ij in equation (15.11)
and then V ij in equation (15.14). Now we call it just W ij , a trapezoidal shaped
fuzzy number evaluated at α-cuts, α = 0, 0.4, 0.9, 1. We compute these α-cuts as
in equations (15.7) and (15.8) using the Optimization Toolbox in MATLAB. Now
form a N ×N matrix rows labeled xi, columns labeled yj , whose ijth element is
the α-cuts of W ij . For each row xi scan the row j = 1, . . . , N for the minimum
U i producing column vector (U1, . . . , UN )t. Now scan this column vector for
the maximum V I . Next for each column yj scan the row i = 1, . . . , N for the
maximum V j producing the row vector (V 1, . . . , V N ). Scan this row vector for
its minimum V II .

Example 15.4.3.1

The fuzzy payoff matrix A will be 2 × 2 with trapezoidal fuzzy numbers a11 =
(0/1, 2/3), a12 = 0, a21 = (−2/ − 1, 0/1) and a22 = (1/2, 3/4). Now we want to
estimate the fuzzy values of the game using A and random fuzzy mixed strategies
for both players. The results are in Table 15.1 and Figure 15.1. In Figure 15.1 we
approximated the trapezoidal shaped fuzzy numbers V I and V II by trapezoidal
fuzzy numbers using only the support and core.

We see that the intersection of the core of V I with the core of V II is non-
empty. Then from our definition of < and ≈ between fuzzy numbers at the
beginning of Section 15.4.2 we get V I ≈ V II . However, if we also use the rest
of Section 15.4.2 where we “fine tuned” < between fuzzy numbers to obtain a
unique max/min of a set of fuzzy numbers, we have V I < V II . Our Monte Carlo
study showed V I ≤ V II which is the theorem in Section 15.3.
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Table 15.1. Optimal Results from the Fuzzy Monte Carlo Method

Player I Player II

x∗
1 = (0.0398/0.7491/1.3658) y∗

1 = (0.5247/0.5842/0.6245)

x∗
2 = (0.1432/0.2509/2.5463) y∗

2 = (0.3454/0.4158/0.5953)

V I ≈ (−1.8958/0.4983, 1.4671/2.6918) V II ≈ (−0.4976/0.7383, 1.7183/2.9469)

�

�

-2 -1 0 1 2 3 x

1
0.9

y

V I V II V I V II

Fig. 15.1. Fuzzy Values V I and V II for the Players from the Monte Carlo Method

15.5 Conclusions and Future Research

In this chapter we considered a two-person zero-sum game with fuzzy payoffs and
fuzzy mixed strategies for both players. We defined the fuzzy value of the game
for both players (V I ,V II) and also defined an optimal fuzzy mixed strategy for
both players. We showed that V I ≤ V II . We then employed our fuzzy Monte
Carlo method to produce approximate solutions, to an example fuzzy game with
no (fuzzy) saddle point, for the fuzzy values V I for Player I and V II for Player
II; and also approximate solutions for the optimal fuzzy mixed strategies for
both players. We then looked at V I and V II to see if there could be a Minimax
theorem (V I = V II) for this fuzzy game. All our Monte Carlo study showed
was V I ≤ V II which was the theorem in Section 15.3. So, it remains an open
question will V I = V II for these fuzzy games?

For all our Monte Carlo calculations, we used a Dell Optiplex GX 250 with a
dual core and a 64-bit pentium D 2.8 GHz processor running on Windows XP.
The computer time for N = 100, 000 random fuzzy mixed strategies for both
players was approximately 68 hours.

It would be nice to try 1, 000, 000 random fuzzy mixed strategies for both play-
ers, but the computing time would be too excessive. However, if we could run the
fuzzy Monte Carlo program with N = 100, 000 random fuzzy mixed strategies
for each player simultaneously on ten separate machines and then combine the
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results, we could go to 1, 000, 000. The MATLAB program is available from the
authors.
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