
11 Fuzzy Linear Regression I

11.1 Introduction

This is the first of four chapters on fuzzy regression. This chapter and Chapter
14 are about fuzzy linear regression and Chapters 12 and 13 consider fuzzy
nonlinear regression. In this chapter the independent (predictor, explanatory)
variables are crisp but the dependent (response) variable is fuzzy. In Chapter
14 both the independent variables and the dependent variable are fuzzy. This
chapter is based on [1].

Fuzzy linear regression has become a very large area of research. Put “fuzzy
regression” into your search engine and you can get too many web sites to
visit.“Fuzzy linear regression” will eliminate a lot of web sites but the list is
still quite long. We have selected a few recent and key references on fuzzy linear
regression which are: (1) books (or articles in these books) ([4],[8],[14]); and
(2) papers ([2],[3],[5],[9],[10],[12],[13],[15],[19]-[24],[27]-[32]). As far as the authors
know our research is the only research on using Monte Carlo techniques in fuzzy
linear regression. However, there have been other approaches employing random
search (genetic algorithms) and others using neural nets. If we put “genetic
algorithms” and “fuzzy linear regression” into the search engine there are less
than 200 references. A recent reference is [11]. We feel that one problem with
using a GA is that it can converge to a local minimum and to avoid this you
need to start it with many different randomly generated initial populations.
Also, we believe that our Monte Carlo method is easier to apply than a genetic
algorithm, once you have a quasi-random number generator in your computer.
Next we searched for “neural nets” and “fuzzy linear regression” getting less
than 100 references. A key reference on this topic is [6].

Consider a fuzzy linear regression model

Y = A0 + A1x1 + ... + Amxm, (11.1)

where the x1, ..., xm are crisp real numbers and the A0, ..., Am and Y are all
triangular fuzzy numbers. In this model the independent (predictor, explanatory)
variables are crisp but the dependent (response) variable is fuzzy. The data will
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be ((x1l, ..., xml), Y l), 1 ≤ l ≤ n, for the xil given real numbers and Y l are given
triangular fuzzy numbers. The best way to fit the model to the data is to have
the Aj , 0 ≤ j ≤ m, also triangular fuzzy numbers. Given the data the objective
is to find the “best” Aj , 0 ≤ j ≤ m. We propose to employ Monte Carlo methods
to approximate the “best” values for the Aj , j = 0, 1, ..., m.

In Monte Carlo we randomly generate a possible solution, evaluate how “good”
it is, discard inferior solutions, and continue N times. N is usually large like
10, 000 or 100, 000. In the next section we discuss how to randomly produce
vectors V k = (A0k, ..., Amk), k = 1, 2, 3, ..., N . Using the V k we determine the
predicted values

Y
∗
lk = A0k + A1kx1l + ... + Amkxml, (11.2)

for k = 1, 2, 3, .., N and l = 1, 2, ..., m. To see how good this V k is we find the
error between the given values Y l and the predicted values Y

∗
lk. We will have

two error measures in this chapter. The first error measure is

E1k(E1) =
n∑

l=1

[
∫ ∞

−∞
|Y l(x) − Y

∗
lk(x)|dx]/[

∫ ∞

−∞
Y l(x)dx], (11.3)

where the integrals are really only over interval(s) containing the support of the
fuzzy numbers. Let Y l = (yl1/yl2/yl3) and Y

∗
lk = (ylk1/ylk2/ylk3) all triangular

fuzzy numbers. Then our second error measure is

E2k(E2) =
n∑

l=1

[|yl1 − ylk1| + |yl2 − ylk2| + |yl3 − ylk3|]. (11.4)

So we calculate V k, E1k and E2k for k = 1, 2, ..., N . A “best” solution is a
value of V k that minimizes E1k (E2k) for all k. An approximate “best” solution
is a V ∈ {V 1, ..., V N} that minimizes an error measure. So we can have two
approximate “best” solutions one with respect to E1 and an other for E2. Next
we see how we will produce sequences of random vectors V k, k = 1, 2, 3, .., N .

11.2 Random Fuzzy Vectors

To obtain random sequences V k = (X0k, ..., Xmk), where the Xik are all triangu-
lar fuzzy numbers, we first randomly generate crisp vectors vk = (x1k, ..., x3m+3,k)
using our Sobol quasi-random number generator (Chapter 3) with all the xik in
[0, 1], k = 1, 2, .., N . We choose the first three numbers in vk and order them from
smallest to largest. Assume that x3k < x1k < x2k. Then the first triangular fuzzy
number X0 = (x3k/x1k/x2k) which becomes A0. Continue with the next three
numbers in vk, etc. making Xi = Ai, i = 1, 2, ..., m.

However the Ai will need to be in certain intervals. Suppose Ai is to be in
interval Ii = [ai, bi], i = 0, 1, 2, ..., m. These intervals are very important to the
Monte Carlo process because: (1) if they are wrong and/or too small we can miss
a “good” solution; and (2) if they are too big the simulation can spend too much
time looking at situations that will not produce a “good” solution. Since each
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Table 11.1. Data for the Application

Fuzzy Output Y l x1l x2l x3l

(2.27/5.83/9.39) 2.00 0.00 15.25
(0.33/0.85/1.37) 0.00 5.00 14.13

(5.43/13.93/22.43) 1.13 1.50 14.13
(1.56/4.00/6.44) 2.00 1.25 13.63
(0.64/1.65/2.66) 2.19 3.75 14.75
(0.62/1.58/2.54) 0.25 3.50 13.75
(3.19/8.18/13.17) 0.75 5.25 15.25
(0.72/1.85/2.98) 4.25 2.00 13.50

Xi starts out in [0, 1] we may easily put it into [ai, bi] by Ai = ai + (bi − ai)X i,
i = 0, 1, ..., m.

11.3 Application

The data for this application was taken from [16] and is shown in Table 11.1.
There are three (m = 3) independent variables x1, x2 and x3. Also, there are only
eight (n = 8) items in the data set. We will need to find intervals Ii, i = 0, 1, 2, 3,
as explained above for the Ai. We will solve for these intervals two ways: (1) first,
in the next subsection, using the solutions for the Ai, i = 0, 1, 2, 3, from [7]; and
(2) secondly, in the second subsection, we use two optimization procedures to
determine these intervals.

The authors in [16] compared their method, applied to the data in Table 11.1,
to that in [25] and [26] applied to the same data set, in their Table 5. They give the
predicted values for the dependent variable using the three methods. We have also
studied this data set in [7] and obtained predicted values for the dependent vari-
able using a least absolute values estimator. In this chapter we apply our Monte
Carlo method to compute predicted values and compare our new results to the
other four methods using error measures E1 and E2. All programs were written
in MATLAB [18]. A copy of the MATLAB program may be obtained from the
authors. For all our calculations, we used a Pentium III, Processor: 933 MHz.

11.3.1 First Choice of Intervals

After studying the solutions for the Ai using the methods in [7] we first decided
on the following intervals for our fuzzy Monte Carlo method: (1) [−1, 0] for
A0; (2) [−1, 0] for A1; (3) [−1.5,−0.5] for A2; and (4) [0, 1] for A3. The exact
solutions in [7] for the Ai are given below.

Using our Sobol quasi-random number generator we produced 70, 000 vectors
vk = (x1k, ..., x12,k) which defined the Ai, i = 0, 1, 2, 3, as described in Section
11.2. Results for the Ai are shown in Table 11.2 with minimum error values in
Table 11.8. Since we will have four Monte Carlo studies on this data we call this
one MCI.
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Table 11.2. Results of the Monte Carlo (MCI) Method, First Choice of Intervals, to
Minimize the Error

Coefficient MCI E1 MCI E2

A0 (−0.4953/ − 0.4306/ − 0.3393) (−0.8902/ − 0.6815/ − 0.3355)

A1 (−0.5005/ − 0.4656/ − 0.0059) (−0.6808/ − 0.5436/ − 0.5194)

A2 (−0.7965/ − 0.7864/ − 0.7165) (−1.0640/ − 1.0476/ − 0.8578)

A3 (0.3335/0.3540/0.3920) (0.4756/0.5379/0.6112)

Table 11.3. Results of the Monte Carlo (MCII) Method, First Choice of Intervals, to
Minimize the Error

Coefficient MCII E1 MCII E2

A0 (0.2464/0.4892/0.7266) (0.0285/0.3569/0.8847)

A1 (−0.4815/ − 0.2852/ − 0.1398) (−0.5654/ − 0.5329/ − 0.3708)

A2 (−0.8760/ − 0.8303/ − 0.7575) (−1.0999/ − 1.0600/ − 0.9360)

A3 (0.3174/0.3361/0.3398) (0.4052/0.4381/0.5280)

Next we experimented with other intervals. We started with larger intervals,
shifted them and shortened them, until we arrived at: (1) [0, 1] for A0; (2) [−1, 0]
for A1; (3) [−1.5,−0.5] for A2; and (4) [0, 1] for A3. The only difference is for A0.
After another run of 70, 000 quasi-random vectors the results for the Ai are in
Table 11.3 with minimum error values in Table 11.8. This Monte Carlo study is
called MCII. For these choices of intervals, in MCI and MCII, the computational
time was between 25 and 28 minutes.

11.3.2 Second Choice of Intervals

The first thing to do is to determine the intervals Ii = [ai, bi] for the Ai, 0 ≤ i ≤
3. We first describe an optimization method used to determine these intervals.
This procedure will be called MCIII. A second optimization method will be
used and it will be described below. Let

[Ll, Rl] = I0 + I1x1l + I2x2l + I3x3l, (11.5)

evaluated using interval arithmetic, for l = 1, 2, ..., 8. Recall the data Y l =
(yl1/yl2/yl3). Define

W =
8∑

l=1

(Ll − yl1)2 +
8∑

l=1

(Rl − yl3)2. (11.6)

The optimization problem is to minimize W subject to ai ≤ bi all i. We want
to find the intervals that make Ll and Rl closest, in the sense of minimizing
W , to the end points of the bases of the dependent fuzzy numbers Y l in the
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Table 11.4. First Method of Determining the Intervals (MCIII) for Monte Carlo

Interval Value
I0 [−18.174,−18.174]
I1 [−1.083,−1.083]
I2 [−1.150,−1.150]
I3 [1.733, 2.149]

Table 11.5. Results of the Monte Carlo Method (MCIII), Second Choice of Intervals,
to Minimize the Error

Coefficient MCIII E1 MCIII E2

A0 −18.174 −18.174
A1 −1.083 −1.083
A2 −1.150 −1.150
A3 (1.736/1.752/1.792) (1.733/1.799/1.958)

data. We solved this using Maple [17]. The results, rounded to three decimal
places, are in Table 11.4. It is very interesting that the first three “intervals” are
degenerate and are just real numbers. Using these intervals A0 = A0 = −18.174,
A1 = A1 = −1.083, A2 = A2 = −1.150 and the support of A3 is a subset of
[1.733, 2.149] with only one fuzzy number.

We now produce a sequence of random crisp vectors vk = (x1k, ..., x3k),
k = 1, 2, ..., N , using our Sobol quasi-random number generator as described
in Section 11.2, to get a sequence of triangular fuzzy numbers A3k and com-
puted E1k and E2k. After a run of N = 70, 000 the smallest E1 value and the
minimum E2 value found are shown in Table 11.8 with corresponding A3 shown
in Table 11.5.

We also investigated a second optimization procedure for finding the intervals.
Ll and Rl are defined as above. This method is called MCIV. Let

W =
8∑

l=1

(yl1 − Ll) +
8∑

l=1

(Rl − yl3). (11.7)

The linear programming problem is to minimize W subject to the constraints:
(1) Ll ≤ yl1 all l; (2) Rl ≥ yl3 all l; and (3) ai ≤ bi all i. We solved this problem
using Maple [17] and the results are in Table 11.6. It is again interesting that
the last three “intervals” are degenerate and are just real numbers. Using these
intervals with the support of A0 a subset of [28.000, 47.916], A1 = A1 = −2.542,
A2 = A2 = −2.323 and A3 = A3 = −1.354 with only one fuzzy number.

We now produce a sequence of random crisp vectors vk = (x1k, ..., x3k), k =
1, 2, ..., N , using a quasi-random number generator as described in Section 11.2,
to get a sequence of triangular fuzzy numbers A0k and computed E1k and E2k.
After a run of N = 70, 000 the smallest E1 value and the minimum E2 value
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Table 11.6. Second Method of Determining the Intervals (MCIV) for Monte Carlo

Interval Value
I0 [28.000, 47.916]
I1 [−2.542,−2.542]
I2 [−2.323,−2.323]
I3 [−1.354,−1.354]

Table 11.7. Results of the Monte Carlo Method (MCIV), Second Choice of Intervals,
to Minimize the Error

Coefficient MCIV E1 MCIV E2

A0 (35.842/36.030/36.030) (31.062/33.336/36.228)
A1 −2.542 −2.542
A2 −2.323 −2.323
A3 −1.354 −1.354

found are shown in Table 11.8 with corresponding A0 shown in Table 11.7. The
total computational time for the second choice of intervals, MCIII and MCIV,
was between 15 and 18 minutes.

11.3.3 Comparison of Solutions

Table 5 in [16] gives the predicted values for the dependent variable for the
techniques used in [16],[25] and [26]. The predicted values were not given in [7]
but we know the optimal solution for the Ai: A0 = (−0.71/ − 0.539/ − 0.524),
A1 = (−0.61/ − 0.473/ − 0.472), A2 = (−1.09/ − 1.089/ − 1.088) and A3 =
(0.459/0.487/0.68). From this we may compute the predicted values. From the
Monte Carlo methods discussed above we take the solutions for the Ai and deter-
mine the predicted values. From the predicted values we can find E1 (equation
(11.3)) and E2 (equation (11.4)). The results are shown in Table 11.8.

The dependent variable represents “response time” and can not be negative. If
a predictive value is (−1.15/2.33/3.04) the authors in [16] round up the negative
to zero and present (0/2.33/3.04) as the predicted response time in their Table
5. Since we did not have access to the original predicted values we used those
in their Table 5 with the zero value in our calculations for our Table 11.8. By
rounding the negative left end point up to zero E2 will decrease and E1 may
decrease or increase.

We see from Table 11.8 that our Monte Carlo method obtained the smallest
values for error measure E1. However, our Monte Carlo procedure did not get
the smallest values for E2. The smallest value for E2 was gotten by [7]. Let us
explain why we did not expect Monte Carlo to do better than [7] on E2.
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Table 11.8. Error Measures in the Application

Error [25] [26] [16] [7] MCI MCII MCIII MCIV

E1 53.82 48.79 16.98 9.26 6.169 5.812 7.125 8.201

E2 143.45 131.83 70.99 61.86 64.878 63.590 66.463 94.092

Let Ai = (ai1/ai2/ai3), i = 0, 1, 2, 3. Also let LLl = a01 +
∑3

i=1 ai1xil,Cl =
a02 +

∑3
i=1 ai2xil and RRl = a03 +

∑3
i=1 ai3xil. In [7] they first solve

min

8∑

l=1

|Cl − yl2|, (11.8)

for the ai2, i = 0, 1, 2, 3. Let the solution be a∗
i2, i = 0, 1, 2, 3. Then they solve

for the ai1 from

min

8∑

l=1

|LLl − yl1|, (11.9)

subject to ai1 ≤ a∗
i2 all i, and solve for the ai3 from

min

8∑

l=1

|RRl − yl3|, (11.10)

subject to ai3 ≥ a∗
i2 all i. This is like finding the Ai to minimize E2. Hence, we

expected [7] to have a minimum value for E2.

11.4 Summary and Conclusions

In this chapter we studied the fuzzy linear regression problem given in equation
(11.1). We employed our fuzzy Monte Carlo method to approximate the “best”
solutions for the coefficients Ai, 0 ≤ i ≤ m. Best will be measured by two
error measures E1 (equation (11.3)) and E2 (equation (11.4)). We showed in an
example problem that our Monte Carlo method was best according to E1 with
respect to the results on the same data set in four other publications. Monte
Carlo did not get the smallest E2 value, but MCI and MCII came close, and
we explained above why [7] was expected to show the smallest E2 value. Given
any error measure E∗ we conjecture that our Monte Carlo method, allowing the
number of iterations N to be sufficiently large, will be best (minimizing E∗),
or approximately best. If this conjecture is true, then the estimation technique
in fuzzy linear regression may become Monte Carlo. We can easily extend out
method to trapezoidal fuzzy numbers, quadratic fuzzy numbers and other more
general fuzzy numbers.
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