
10 Solving Fuzzy Equations

10.1 Introduction

We start in the next Section 10.2 with looking at possible solutions to the simple
fuzzy linear equation A ·X +B = C. We discuss three different types of solution
which we have studied before in solving fuzzy equations. Then we present a
fourth type of solution, based on our fuzzy Monte Carlo method, in Section
10.2.2. This new solution is based on random fuzzy numbers. In Section 10.3
we look at only “classical” solutions to the fuzzy quadratic equation and apply
our fuzzy Monte Carlo method to obtain new solutions. Then in Section 10.4 we
consider the fuzzy matrix equation A · X = B and a number of solution types
for X and then another solution based on fuzzy Monte Carlo techniques. The
last section contains a brief summary and our conclusions.

In this chapter M ≤ N will mean that M is a fuzzy subset of N (Section
2.2.3) and not that M is less than or equal to N . Solving fuzzy equations has
always been an active area of research. Some recent references on this topic are
([1]-[4],[16]-[18],[21],[22]).

10.2 A X + B = C

A, B and C will be triangular fuzzy numbers so let A = (a1/a2/a3), B =
(b1/b2/b3) and C = (c1/c2/c3). X, if it exists, will be a triangular shaped fuzzy
number so let X ≈ (x1/x2/x3). In the crisp equation

ax + b = c, (10.1)

we immediately obtain X = (c − b)/a, if a �= 0. We used the important facts
b − b = 0 and (1/a)a = 1 from real numbers to get the solution.

We try this same approach with the fuzzy equation

A X + B = C, (10.2)

we get
(1/A)(A X + (B − B)) = (1/A)(C − B). (10.3)
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But the left side of the equation (10.3) does not equal X since B − B �= 0 and
(1/A)(A) �= 1. For example, if B = (1/2/3), then B − B = (−2/0/2) not zero.
Also, if A = (1/2/3), (1/A)(A) ≈ (1

3/1/3), a triangular shaped fuzzy number,
not (1/1/1).

This shows a major problem in solving fuzzy equations: some basic operations
we used to solve crisp equations do not hold for fuzzy equations. Actually, this
comes as no great surprise because this also happens in probability theory. If X
is a random variable with positive variance, then X −X �= 0 and X/X �= 1 since
both X − X and X/X will have positive variance.

We now introduce our first solution method, called the classical method, pro-
ducing solution Xc (when it exists). This procedure employs α-cuts and interval
arithmetic (Section 2.4.2) to solve for Xc. Let A[α] = [a1(α), a2(α)], B[α] =
[b1(α), b2(α)], C[α] = [c1(α), c2(α)] and Xc[α] = [x1(α), x2(α)], 0 ≤ α ≤ 1.
Substitute these into equation (10.2) producing

[a1(α), a2(α)][x1(α), x2(α)] + [b1(α), b2(α)] = [c1(α), c2(α)]. (10.4)

We now use interval arithmetic (Section 2.3.2) to solve equation (10.4) for x1(α)
and x2(α). We say that this method defines solution Xc when [x1(α), x2(α)]
defines the α-cuts of a fuzzy number. For the x1(α), x2(α) to specify a fuzzy
number we need:

1. x1(α) monotonically increasing, 0 ≤ α ≤ 1;
2. x2(α) monotonically decreasing, 0 ≤ α ≤ 1; and
3. x1(1) ≤ x2(1).

We did not mention anything about the xi(α) being continuous because through-
out this chapter x1(α), x2(α) will be continuous.

Example 10.2.1

Let A = (1/2/3), B = (−3/−2/−1) and C = (3/4/5). Then A[α] = [1+α, 3−α],
B[α] = [−3 + α,−1−α], C[α] = [3 + α, 5−α]. Since A > 0 and C > 0, we must
have Xc > 0, and equation (10.4) gives

[a1(α)x1(α) + b1(α), a2(α)x2(α) + b2(α)] = [c1(α), c2(α)], (10.5)

or

x1(α) =
6

1 + α
, (10.6)

x2(α) =
6

3 − α
, (10.7)

after substituting for a1(α), . . ., c2(α) and solving for xi(α). But x1(α) is de-
creasing and x2(α) is increasing. So, Xc does not exist.
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Example 10.2.2

Now set A = (8/9/10), B = (−3/ − 2/ − 1) and C = (3/5/7). So A[α] =
[8 + α, 10−α], B[α] = [−3 + α,−1−α], C[α] = [3 + 2α, 7− 2α]. Again we must
have Xc > 0 so we obtain

x1(α) =
6 + α

8 + α
, (10.8)

x2(α) =
8 − α

10 − α
. (10.9)

We see that x1(α) is increasing (its derivative is positive), x2(α) is decreasing
(derivative is negative) and x1(1) = 7/9 = x2(1). The solution Xc exists, with
α-cuts [x1(α), x2(α)], shown in Figure 10.1.
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Fig. 10.1. Solution to Example 10.2.2, Xc ≈ (0.75/0.777/0.8)

Working more examples, like Examples 10.2.1 and 10.2.2 above, we conclude
that too often fuzzy equations have no solution (Xc). This motivated the authors
in ([5]-[15]) to propose other solutions for fuzzy equations. These new solutions
will be introduced in the next section. The classical solution, plus the new solu-
tions, will be used throughout this chapter.

10.2.1 Other Solutions

We continue working with the fuzzy equation A X +B = C. The other solutions
simply fuzzify the crisp solution (c − b)/a, a �= 0. The fuzzified crisp solution is

(C − B)/A, (10.10)
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where we assume zero does not belong to the support of A. There are two ways
to evaluate equation (10.10). The first method is the extension principle. If Xe

is the value of equation (10.10) using the extension principle, then

Xe(x) = max {π(a, b, c) | (c − b)/a = x } , (10.11)

where
π(a, b, c) = min

{
A(a), B(b), C(c)

}
. (10.12)

Since the expression (c − b)/a, a �= 0, is continuous in a, b, c we know how to
find α-cuts of Xe (Section 2.4.1)

xe1(α) = min
{
(c − b)/a | a ∈ A[α], b ∈ B[α], c ∈ C[α]

}
, (10.13)

xe2(α) = max
{
(c − b)/a | a ∈ A[α], b ∈ B[α], c ∈ C[α]

}
, (10.14)

where
Xe[α] = [xe1(α), xe2(α)], (10.15)

0 ≤ α ≤ 1. Xe will be a triangular shaped fuzzy number when A, B, C are
triangular fuzzy numbers. It is not difficult to show that if Xc exists, Xc ≤ Xe.
In this chapter Xc ≤ Xe means that Xc is a fuzzy subset of Xe (Section 2.2.3).

An important fact about Xc is that it will satisfy the fuzzy equation. That is
A ·Xc +B = C holds using α-cuts and interval arithmetic. However, Xe may, or
may not, satisfy the fuzzy equation. However, Xe will always exist but Xc may
fail to exist.

The second way to evaluate equation (10.10) is to use α-cuts and interval
arithmetic. If the result is XI , we have

XI [α] =
C[α] − B[α]

A[α]
, (10.16)

to be simplified by interval arithmetic, 0 ≤ α ≤ 1. It is also not too difficult to
argue that Xe ≤ XI .

XI may or may not satisfy the fuzzy equation. XI will be a triangular shaped
fuzzy number when A, B, C are all triangular fuzzy numbers. We summarize
these results as:

1. If Xc exists, then Xc ≤ Xe ≤ XI ;
2. Xc always satisfies the fuzzy equation;
3. Xe ≤ XI .

Up to now our general strategy for solving fuzzy equations will be:

1. the solution is Xc when it exists;
2. if Xc fails to exist, the solution is Xe; and
3. if Xc fails to exist and Xe is difficult to construct, use XI as the (approxi-

mate) solution.

For more complicated fuzzy equations Xe will be difficult to compute. However,
XI is usually easily constructed, since it uses only max, min and the arithmetic
of real numbers. For this reason we suggest approximating Xe by XI when we
do not have Xe.
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Example 10.2.1.1

This continues Example 10.2.1 where Xc does not exist. To calculate Xe we need
to evaluate equations (10.13) and (10.14). But this is easily done since (c− b)/a
is increasing in c and decreasing in both b and a. So

xe1(α) =
c1(α) − b2(α)

a2(α)
=

4 + 2α

3 − α
, (10.17)

xe2(α) =
c2(α) − b1(α)

a1(α)
=

8 − 2α

1 + α
. (10.18)

Xe is shown in Figure 10.2.
In calculating XI [α] we get

XI [α] = [c1(α) − b2(α), c2(α) − b1(α)]
[

1
a2(α)

,
1

a1(α)

]
, (10.19)

which is the same as Xe[α] because intervals in equation (10.19) are positive. In
this example, we get Xe = XI , whose support Xe[0] = [43 , 8].
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Fig. 10.2. Solution to Example 10.2.1.1, Xe = XI ≈ ( 4
3
/3/8)

Example 10.2.1.2

This continues Example 10.2.2. We notice that, since A > 0 and C − B > 0,
∂
∂c [

c−b
a ] = 1

a > 0, ∂
∂b [

c−b
a ] = − 1

a < 0 and ∂
∂a [ c−b

a ] = b−c
a2 < 0. This means that

the expression c−b
a is increasing in c but decreasing in a and b. Then equations

(10.13) and (10.14) become

xe1(α) =
c1(α) − b2(α)

a2(α)
=

4 + 3α

10 − α
, (10.20)
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xe2(α) =
c2(α) − b1(α)

a1(α)
=

10 − 3α

8 + α
. (10.21)

As in Example 10.2.1.1 we obtain XI = Xe. Xc and Xe are shown in Figure
10.3. The support of Xe = XI is Xe[0] = [0.4, 1.25].
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Fig. 10.3. Solutions to Example 10.2.1.2, Xc ≈ (0.75/0.777/0.8) and Xe ≈
(0.4/0.777/1.25)

10.2.2 Fuzzy Monte Carlo Method

Let Q be the set of triangular fuzzy numbers and the set of quadratic fuzzy
numbers (Section 4.3.2 called QBGFNs). Let D be some metric on Q. Then D
has the following properties: for M , N and P in Q

1. D(M, N) ≥ 0;
2. D(M, N) = 0 implies that M = N ;
3. D(M, N) = D(N, M); and
4. D(M, N) ≤ D(M, P ) + D(P , N).

Then our new solution will be X
∗

that solves the minimization problem

min{D(A · X + B, C)|X ∈ Q}. (10.22)

That is, X
∗

is a fuzzy number from Q that makes A ·X∗
+B as close as possible

to C, where the distance is measured by the metric D.
Our fuzzy Monte Carlo method may be applied to approximate X

∗
. Randomly

generate a sequence X1, X2,... from Q, compute the distance D between A·X i+
B and C, and keep the Xi that makes this distance the smallest. In this way we
may compute better and better, for longer and longer sequences, approximations
to X

∗
.

Now we will rework the examples in the previous section using our fuzzy Monte
Carlo method and compare the results. But first we need to select a metric D.
Of course, the answers can vary depending on the choice of D. Metrics on fuzzy
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numbers were discussed in [8]. We first give an example of a “horizontal” metric
and then an example of a “vertical” metric.

Let M [α] = [m1(α), m2(α)], N [α] = [n1(α), n2(α)], L(α) = |m1(α) − n1(α)|
and R(α) = |m2(α) − n2(α)|. Then

D(M, N) = max{max(L(α), R(α))|0 ≤ α ≤ 1}, (10.23)

is a metric. In [8] the authors show that D(M, N) = 1 for M = (1/2/4) and
N = (1/3/4). For triangular/trapezoidal fuzzy numbers it is easy to compute
the distance between them using equation (10.23). It is

D(M, N) = max{|m1(0) − n1(0)|, |m1(1) − n1(1)|, |m2(0) − n2(0)|}, (10.24)

Also, the Hamming distance measure in equation (2.45) in Chapter 2 is a metric.
Also in [8] the authors argue that the Hamming distance between M = (1/2/4)
and N = (1/3/4) is 0.75. Let us use the first metric, the “horizontal metric” in
our fuzzy Monte Carlo studies.

We will use the metric defined by equation (10.23) in equation (10.22). Let
D(X) = D(A · X + B, C) and let ε ∈ (0, 1] be the “threshold”. If the fuzzy
Monte Carlo method produces a X so that D(X) < ε we will say that we have
found an acceptable approximate solution X

∗
a = X with X

∗
a ≈ X

∗
. We begin

with D(X) very large (100) and will accept a solution only if it minimizes to
D(X) < ε = 0.5.

Example 10.2.2.1

This continues Examples 10.2.1 and 10.2.1.1. We wish to use our fuzzy Monte
Carlo method to compute X

∗
a ≈ X

∗
and then compare X

∗
a to the other solution

Xe = XI . Recall that in this example the classical solution Xc does not exist
and X

∗
a is in Q and must satisfy D(X

∗
a) small; e.g., D(X

∗
a) < ε = 0.5.

We have already generated and studied 100,000 crisp random vectors v =
(x1, ..., x5) in [0, 1]5 using a Sobol quasi-random number generator (Chapter 3).
In Section 4.3.2 we relate how we create our vectors v. Next we determine an
interval [a, b], which will depend on the application, for the random quadratic
fuzzy numbers. Then we map v into a QBGFN.

To map v into a QBGFN (Figure 4.4), first we sort, translate and transform
{x1, x2, x3} to {z1, z2, z3} using zi = (b−a)xi+a, i = 1, 2, 3. Additionally we map
x4, x5 into parameters for the left and right membership functions, respectively,
using z4 = (2x4 − 1)(z2 − z1 + 1) and z5 = (2x5 − 1)(z3 − z2 + 1). In Section 5.3
we explain why we know these QBGFNs will cover our search space.

We modified the fuzzy Monte Carlo program used for Chapters 6-9 to optimize
the minimization problem of equation (10.22). Since for this problem the classical
solution does not exist, we choose [a, b] as the support of Xe = XI , which is
[43 , 8]. To compute D(A · X + B, C), we compute 100 α-cuts of A · X + B and
C for given A, B and C, where X is one of 30,000 generated random quadratic
fuzzy numbers.
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Table 10.1. (1/2/3) · X + (−3/ − 2/ − 1) = (3/4/5), Example 10.2.1, First Interval

Solution X A · X + B

Xc does not exist (3/4/5) = C

XI = Xe ≈ (1.333/3/8) ≈ (−1.666/4/23)
X

∗
a, (2.9655/2.9980/3.0176/0.1286/0.6457), ≈ (−0.03/4.00/8.05)

D(X) = 3.0527

Fig. 10.4. X
∗
a of Example 10.2.2.1

Fig. 10.5. A · X∗
a + B of Example 10.2.2.1

We allow our program to execute for 30, 000 iterations and obtain the results
shown in Table 10.1.

Searching for X in the interval [1.33, 8.00], the smallest “horizontal” distance
for equation (10.23) that we got was 3.0527. Increasing the numbers of fuzzy
numbers to 50, 000 does not produce a change. In other words we obtained a
quadratic fuzzy number X

∗
a ≈ (2.9655/2.9980/3.0176) (Figure 10.4) such that

D(A · X
∗
a + B, C) ≈ 3.0527. The graph of X

∗
a is nearly crisp. A · X

∗
a + B ≈

(−0.03/4.00/8.05). But this error is too large.
We changed the interval [a, b] and saw that there is a good reduction in the dis-

tance between A·X+B and C. From an optimization over [0, 5] we minimized at
D(A · X + B, C) = 2.00 for X = X

∗
a = (2.5000, 2.5000, 2.5000,−0.0000, 0.5000).

This error is still too large with ε = 2.00 and A · X
∗
a + B ≈ (1.00/3.00/5.00)

(Figure 10.5).
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Our fuzzy Monte Carlo method was unable to get an acceptable approximate
solution to this fuzzy equation. We believe that no quadratic fuzzy number X
can make D(X) < ε = 0.5.

Example 10.2.2.2

This continues Examples 10.2.2 and 10.2.1.2. We apply our fuzzy Monte Carlo
method to compute X

∗
a ≈ X

∗
and then compare X

∗
a to the other solutions Xc

and Xe = XI . Recall that in this example the classical solution exists and is
shown in Figure 10.1. The constraints are still X

∗
a ∈ Q and it must satisfy D(X

∗
a)

small; e.g., D(X
∗
a) < ε = 0.5. As in Example 10.2.2.1 we generate a solution

using a Sobol quasi-random number generator to produce random quadratic

Table 10.2. (8/9/10) · X + (−3/ − 2/ − 1) = (3/5/7), Example 10.2.2.2

Solution X A · X + B

Xc ≈ (0.75/0.777/0.80) ≈ (3/5/7) = C

XI = Xe ≈ (0.4/0.777/1.25) ≈ (0.2/5/11.5)
X

∗
a, (0.7523, 0.7786, 0.7999, 0.7788, 0.7816), ≈ (3.02/5.01/7.00)

D(X) = 0.083976

Fig. 10.6. X
∗
a of Example 10.2.2.2

Fig. 10.7. A · X∗
a + B of Example 10.2.2.2
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fuzzy numbers determined by vectors of length 5. We consider fuzzy numbers in
[0.4, 1.25] which is the support of Xe = XI .

We allow our program to execute for 50, 000 iterations and obtain the results
shown in Table 10.2. X

∗
a (Figure 10.6) is very close to Xc (Figure 10.1). Note

too how A · X∗
a + B (Figure 10.7) matches ≈ (3/5/7). Our fuzzy Monte Carlo

method found an acceptable solution.

10.3 Fuzzy Quadratic Equation

In this section we wish to discuss solutions to

A · X2
+ B · X + C = D, (10.25)

for triangular fuzzy numbers A, B, C, D and X a triangular shaped fuzzy num-
ber. We know a crisp quadratic equation can have real number solutions and
complex number solutions. The same is true of the fuzzy quadratic. However, we
will not consider fuzzy complex numbers in this book so we will only work
with fuzzy quadratics that have no solution or the solutions are real trian-
gular shaped fuzzy numbers. In Section 10.2 we looked at three possible so-
lutions to the fuzzy linear equation: classical (Xc), extension principle (Xe)
and the interval arithmetic (XI). In this section we only consider the classical
solution.

Let A[α] = [a1(α), a2(α)], B[α] = [b1(α), b2(α)], C[α] = [c1(α), c2(α)], D[α] =
[d1(α), d2(α)], and X [α] = [x1(α), x2(α)]. We use α−cuts and interval arithmetic
to solve for x1(α) and x2(α). Equation (10.25) becomes

[a1(α), a2(α)][x1(α), x2(α)]2 + [b1(α), b2(α)][x1(α), x2(α)] +
+[c1(α), c2(α)] = [d1(α), d2(α)], (10.26)

for all α. We do the interval arithmetic (Section 2.3.2), which depends on A, B
and X being positive or negative, and solve for x1(α) and x2(α). We have a
solution if x1(0) < x1(1) ≤ x2(1) < x3(0) and dx1(α)/dα > 0, dx2(α)/dα < 0.

Now we look at two examples where the first has a solution and the second
does not have a solution. More details on the fuzzy quadratic can be found in
([6]-[9],[11],[13]). Then we turn to our fuzzy Monte Carlo method to see what
approximate answers it can give.

Example 10.3.1

Let A = (3/4/5), B = (1/2/3), C = (0/1/2) and D = (1/3/5). We will look for
a solution where X ≥ 0. Then equation (10.26) becomes

[3 + α, 5 − α][x2
1(α), x2

2(α)] + [1 + α, 3 − α][x1(α), x2(α)]
+[α, 2 − α)] = [1 + 2α, 5 − 2α)], (10.27)
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for α ∈ [0, 1]. If X ≈ (x1/x2/x3) we first solve for the xi getting x1 = 0.4343 <
x2 = 0.5000 < x3 = 0.5307. Looks like we will get a solution. Next we look at
x1(α) which is

x1(α) =
−(1 + α) +

√
5α2 + 18α + 13

6 + 2α
, (10.28)

and then x2(α)

x2(α) =
−(3 − α) +

√
5α2 − 38α + 69

10 − 2α
, (10.29)

for 0 ≤ α ≤ 1. We find that dx1(α)/dα > 0 and dx2(α)/dα < 0 and X is a
solution. The graph of this solution is in Figure 10.8.
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Fig. 10.8. Solution to Example 10.3.1, Xc ≈ (0.4343/0.5/0.5307)

Example 10.3.2

This example will have no (classical) solution for X. Let A = (2/4/6), B =
(0/2/4), C = 0, D = (0.5/1/1.5) and X a non-negative triangular shaped fuzzy
number. Let X ≈ (x1/x2/x3). So x1(0) = x1 and x2(0) = x3. Now we set up an
equation, like equation (10.27), for α = 0 and obtain two equations to solve

2x2
1(0) = 0.5, (10.30)

and
6x2

2(0) + 4x2(0) = 1.5. (10.31)

If Xwere a solution, its support would be [x1(0), x2(0)]. However [x1(0), x2(0)] =
[0.5, 0.2676]; i.e., x2(0) < x2(0). Thus there is no classical solution.
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10.3.1 Fuzzy Monte Carlo Method

We follow the same strategy as outlined in Section 10.2.2 for generating ap-
proximate solutions to fuzzy linear equations using fuzzy Monte Carlo methods.
Q will be the same set of fuzzy numbers and we use the same metric between
fuzzy numbers given in equation (10.23). We call our new solution X

∗
, the fuzzy

number in Q that minimizes the distance D(X) between A · X
2

+ B · X + C

and D. Using our fuzzy Monte Carlo method we obtain X
∗
a an approximation

to X
∗
. We use the same “threshold” ε discussed in Section 10.2.2. If the fuzzy

Monte Carlo method produces a X so that D(X) < ε we will say that we have
found an acceptable approximate solution X

∗
a = X with X

∗
a ≈ X

∗
. We begin

with D(X) very large (100) and will accept a solution only if it minimizes to
D(X) < ε = 0.5.

Now we will rework Examples 10.3.1 and 10.3.2 using our fuzzy Monte Carlo
method.

Example 10.3.1.1

This continues Example 10.3.1. We wish to use our fuzzy Monte Carlo method to
compute X

∗
a ≈ X

∗
and then compare X

∗
a to the classical solution Xc in Figure

10.8. Recall that in this example the classical solution Xc exists and X
∗
a is in Q

and must satisfy D(X
∗
a) < ε = 0.5. We follow the same procedure discussed in

Example 10.2.2.1.
We have already generated and studied 100,000 crisp random vectors v =

(x1, ..., x5) in [0, 1]5 using a Sobol quasi-random number generator (Chapter 3).
In Section 4.3.2 we relate how we create our vectors v. Next we determine an
interval [a, b], which will depend on the application, for the random quadratic
fuzzy numbers. Then we map v into a QBGFN.

Since for this problem the classical solution does exist, we choose [a, b] as the
support of Xc, which is [0.4343, 0.5307]. To compute D(A ·X2

+ B ·X + C, D),
we compute 100 α-cuts of A · X2

+ B · X + C and D for given A, B, C and D,
where X is one of 50,000 generated random quadratic fuzzy numbers.

Searching for X in the interval [0.4343, 0.5307], the smallest “horizontal” dis-
tance for equation (10.23) that we got in 50, 000 iterations was 0.014840 (Table
10.3), in the 19931th iteration. However, we found D(X) < 0.20 on the 7th

iteration. Figure 10.9 shows X
∗
a; Figure 10.10 shows A · X

2
+ B · X + C for

X = X
∗
a.

Wanting to investigate how a change in the interval [a, b] might affect our
result, we executed a test using [a, b] = [0, 1]. and also saw a very good reduction
in the distance between A · X

2
+ B · X + C and D. The graphs of these two

solutions are so similar that we do not show graphs for this follow-up experiment.
As early as the 637th iteration, an acceptable solution with D(X) = 0.193726
was found. Although we performed 50, 000 iterations, our acceptable solution was
found on the 20, 726th iteration. From an optimization over [0, 1] we minimized
at D(X) = 0.036417 (Table 10.3).
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Fig. 10.9. X
∗
a of Example 10.3.1.1

Table 10.3. (3/4/5) · X2
+ (1/2/3) · X + (0/1/2) = (1/3/5), Example 10.3.1.1

Solution X A · X2
+ B · X + C

Xc ≈ (0.4343/0.5/0.5307) ≈ (1/3/5) = D

[a, b] = [0.4343, 0.5307]
X

∗
a, (0.4348, 0.5016, 0.5306,−0.0074, 0.8749), ≈ (1.00/3.01/5.00)

D(X) = 0.014840
[a, b] = [0.0, 1.0]

X
∗
a, (0.4419, 0.5021, 0.5341, 0.0980, 0.9120), ≈ (1.03/3.01/5.03)

D(X) = 0.036417

Fig. 10.10. A · X2
+ B · X + C for X = X

∗
a of Example 10.3.1.1

Example 10.3.1.2

This continues Examples 10.3.2. We apply our fuzzy Monte Carlo method to
compute X

∗
a ≈ X

∗
. Recall that in this example the classical solution does not

exist. The constraints are still X
∗
a ∈ Q and it must satisfy D(X

∗
a) < ε = 0.5. We

follow the same procedure discussed in Example 10.3.1.1.
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Table 10.4. (2/4/6) · X2
+ (0/2/4) · X + (0/0/0) = (0.5/1/1.5), Example 10.3.2

Solution X A · X2
+ B · X + C

Xc does not exist (0.5/1/1.5) = D

X
∗
a, (0.3058, 0.3088, 0.3107,−0.3767,−0.8683), ≈ (0.19/1.00/1.82)

D(X) = 0.321659

Fig. 10.11. X
∗
a of Example 10.3.1.2

Fig. 10.12. A · X2
+ B · X + C for X = X

∗
a of Example 10.3.1.2

Now we need to find an interval [a, b] for our random quadratic fuzzy numbers.
The classical solution does not exist. Choose the vertex values for the A,...,D
and consider 4x2 + 2x + 0 = 1 which has positive solution x = 0.3090. We
begin with intervals centered at this value so we begin with the interval I =
[0, 0.6180].

To compute D(A·X2
+B·X+C, D), we compute 100 α-cuts of A·X2

+B·X+C
and D for given A, B, C and D, where X is one of 50,000 generated random
quadratic fuzzy numbers.

From an optimization over [0, 0.6180] we minimized at D(X) = 0.3217
(Table 10.4 and Figure 10.12). Our fuzzy Monte Carlo result generated an
“acceptable” solution. Perhaps we could reduce the error measure with more
iterations.
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10.4 Fuzzy Matrix Equation

This section is based on ([6],[8],[12],[13]). Let A = [aij ] be a n × n matrix of
triangular fuzzy numbers aij , B

t
= (b1, . . . , bn) a n × 1 vector of triangular

fuzzy numbers bi and X
t

= (x1, . . . , xn) a n × 1 vector of unknown triangular
shaped fuzzy numbers xj . Set aij = (aij1/aij2/aij3), bi = (bi1/bi2/bi3), and
xj ≈ (xj1/xj2/xj3). We wish to solve

A X = B, (10.32)

for X.
We need to introduce some more notation. Define

a[α] =
n∏

i,j=1

aij [α], (10.33)

b[α] =
n∏

i=1

bi[α], (10.34)

for 0 ≤ α ≤ 1. Let v = (a11, a12, . . . , ann) ∈ IRk, k = n2, be a vector in a[0]. Each
v ∈ a[0] determines a crisp n × n matrix A = [aij ]. Also, bt = (b1, . . . , bn) ∈ IRn

is a vector in b[0]. As in our previous research on this topic we assume A−1 exists
for all v in a[0]. The existence of A−1 over a[0] simplifies the discussion of the
joint solution to be introduced below.

The joint solution XJ , a fuzzy subset of IRn, is based on the extension principle

XJ (x) = max
{

π(v, b) | x = A−1b
}

, (10.35)

where
π(v, b) = min

{
aij(aij), bi(bi) | all i, j

}
. (10.36)

The vertex of XJ(x), where the membership value is equal to one, is at x = A−1b
for v = (a112, a122, . . . , ann2), bt = (b12, . . . , bn2). In the crisp case the solution
to Ax = b is a vector x = A−1b in IRn, so for the fuzzy case A X = B, the
(joint) solution is a fuzzy vector about the crisp solution A−1b, for v and b at
the vertex values of all the triangular fuzzy numbers.

In the crisp case the marginals, the xi, are just the components of the vector
x = A−1b. In the fuzzy case we obtain the marginals XJi by projecting XJ onto
the coordinate axes. Then

XJi(w) = max
{
XJ (x) | x ∈ IRn, xi = w

}
, (10.37)

for 1 ≤ i ≤ n. Obviously, it will be difficult to compute XJ and XJi, 1 ≤ i ≤
n, for n ≥ 4. We will determine the joint solution, and its marginals, in two
examples at the end of this section for n = 2.

Since XJ is difficult to determine we now turn to methods of finding the
marginals directly without first computing the joint solution. As in the
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Section 10.2 there will be three solutions: (1) the classical solution Xci; (2) the
extension principle solution Xei; and (3) the interval arithmetic solution XIi.

The classical solution is determined by substituting the intervals aij [α], bi[α]
and X i[α] = [xi1(α), xi2(α)] into A X = B and solving for the xi1(α), xi2(α),
1 ≤ i ≤ n. The resulting equations are evaluated using interval arithmetic. If
the intervals [xi1(α), xi2(α)] define a triangular shaped fuzzy number Xi for
0 ≤ α ≤ 1, 1 ≤ i ≤ n, then this solution is called the classical solution and we
write Xci = X i, 1 ≤ i ≤ n. The conditions for [xi1(α), xi2(α)] to define Xci were
discussed in Section 10.2. The equations to solve for xi1(α) and xi2(α) are

n∑

j=1

[aij1(α), aij2(α)][xj1(α), xj2(α)] = [bi1(α), bi2(α)], (10.38)

for 1 ≤ i ≤ n, where aij [α] = [aij1(α), aij2(α)], bi[α] = [bi1(α), bi2(α)]. After
using interval arithmetic we obtain a (2n) × (2n) system to solve for xi1(α),
xi2(α), 0 ≤ α ≤ 1.

Too often the Xci fail to exist. We only need Xci, for one value of i, to fail to
exist for the classical solution to not exist. When the classical solution does not
exist we turn to Xei, 1 ≤ i ≤ n.

We will use Cramer’s rule on Ax = b to solve for each xi. A comes from
v ∈ a[0] and let b ∈ b[0]. Let Aj be A with its j–th column replaced by b. Then

xj =
|Aj |
|A| , (10.39)

1 ≤ j ≤ n, where | · | denotes the determinant. We fuzzify equation (10.39), using
the extension principle, to get

Xej(xj) = max {π(v, b) | xj = |Aj |/|A| } , (10.40)

1 ≤ j ≤ n. If Xej [α] = [xej1(α), xej2(α)], we may find the α-cuts of Xej as
(Section 2.4.1)

xej1[α] = min
{ |Aj |

|A| | v ∈ a[α], b ∈ b[α]
}

, (10.41)

xej2[α] = max
{ |Aj |

|A| | v ∈ a[α], b ∈ b[α]
}

, (10.42)

To get the XIj we evaluate equation (10.39) using α-cuts and interval arith-
metic. Substitute intervals aij [α] and bi[α] for aij and bi in |Aj |/|A|, evaluate
using interval arithmetic, and the result is XIj [α], 0 ≤ α ≤ 1, 1 ≤ j ≤ n.

We have the following result: If the Xci exist, 1 ≤ i ≤ n, then Xci ≤ XJi ≤
Xei ≤ XIi, 1 ≤ i ≤ n.

Our solution strategy is: (1) use Xci, 1 ≤ i ≤ n, if it exists; (2) if the classical
solution does not exist use XJi, 1 ≤ i ≤ n. However, if the joint solution is too
difficult to compute use Xei, 1 ≤ i ≤ n. Equations (10.41) and (10.42) may be
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hard to evaluate to get the Xei. One can always use the XIi because they are
the easiest to calculate. Notice how the fuzziness grows (the supports do not
decrease) as we go from Xci to XIi. The only solution guaranteed to satisfy the
fuzzy equations is the classical solution.

In the following two examples we only consider 2×2 fuzzy matrices since then
we can easily see pictures of α-cuts of the joint solution. It is known that, in
general, α-cuts of the joint solution need not be convex ([19],[20]). For example,
in two dimensions XJ [α] need not be a rectangle.

Example 10.4.1

Let

A =

⎛

⎝a11 0

0 a22

⎞

⎠ , (10.43)

and B
t

= (b1, b2), where a11 = (4/5/7), a22 = (6/8/12), b1 = (1/2/3) and
b2 = (2/5/8).

Then a11[α] = [4+ α, 7− 2α], a22[α] = [6 + 2α, 12− 4α], b1[α] = [1+ α, 3−α]
and b2[α] = [2 + 3α, 8 − 3α]. Since all the fuzzy numbers are positive we will
solve for Xci > 0, i = 1, 2. The equations are

[4 + α, 7 − 2α] · [xc11(α), xc12(α)] = [1 + α, 3 − α] , (10.44)
[6 + 2α, 12 − 4α] · [xc21(α), xc22(α)] = [2 + 3α, 8 − 3α] , (10.45)

which define triangular shaped fuzzy numbers,

Xc1[α] =
[
1 + α

4 + α
,

3 − α

7 − 2α

]
, (10.46)

Xc2[α] =
[
2 + 3α

6 + 2α
,

8 − 3α

12 − 4α

]
, (10.47)

0 ≤ α ≤ 1.
We have shown before that a way to find α-cuts of XJ is

XJ [α] = {A−1b | v ∈ a[α], b ∈ b[α] }. (10.48)

Now A−1b = (b1/a11, b2/a22)t so that

XJ [α] =
b1[α]
a11[α]

× b2[α]
a22[α]

, (10.49)

which is a rectangle in IR2 for all 0 ≤ α ≤ 1.
XJ [α] is expressed in equation (10.49) as the product of two factors. The first

factor of XJ [α] is XJ1[α] and XJ2[α] is the second. Then

XJ1[α] =
[

1 + α

7 − 2α
,
3 − α

4 + α

]
, (10.50)
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XJ2[α] =
[

2 + 3α

12 − 4α
,
8 − 3α

6 + 2α

]
, (10.51)

0 ≤ α ≤ 1.
Next we find that |A1|/|A| = b1/a11 and |A2|/|A| = b2/a22. From equations

(10.41) and (10.42) we obtain Xei = XJi, i = 1, 2.
Finally, we substitute the intervals a11[α], a22[α], b1[α] and b2[α] into x1 =

b1/a11 and x2 = b2/a22 and we see that XIi = Xei, i = 1, 2.
For this 2 × 2 fuzzy diagonal matrix A we get

Xci⊆/ XJi = Xei = XIi, (10.52)

i = 1, 2. The graphs of Xci and XJi, i = 1, 2 are in Figures 10.13 and 10.14.

�
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Fig. 10.13. Xc1 ≈ ( 1
4
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5
/ 3

7
) and XJ1 ≈ ( 1

7
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5
/ 3
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) in Example 10.4.1
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Xc2 XJ2

Fig. 10.14. Xc2 ≈ ( 1
3
/ 5

8
/ 3

4
) and XJ2 ≈ ( 1

6
/ 5

8
/ 4

3
) in Example 10.4.1
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Example 10.4.2

Let

A =

⎛

⎝a11 0

1 a22

⎞

⎠ , (10.53)

and B
t

= (b1, b2), where a11 = (1/2/3), a22 = (2/5/8), b1 = (4/5/7) and
b2 = (6/8/12). Then a11[α] = [1 + α, 3 − α], a22[α] = [2 + 3α, 8 − 3α], b1[α] =
[4 + α, 7 − 2α] and b2[α] = [6 + 2α, 12 − 4α].

As in Example 10.4.1 we solve for Xc1 > 0 and obtain
[
4 + α

1 + α
,
7 − 2α

3 − α

]
, (10.54)

which does not define a fuzzy number since ∂/∂α[(4 + α)/(1 + α)] < 0, or
(4 + α)/(1 + α) is a decreasing function of α in [0, 1]. The classical solution does
not exist.

We find α-cuts of XJ using equation (10.48). We only go through the details
for α = 0 and α = 1. An equivalent expression to equation (10.48) is

XJ [α] = { x ∈ IRn | Ax = b, v ∈ a[α], b ∈ b[α]} . (10.55)

For α = 1 we get x = (2.5, 1.1). For α = 0 first assume x1 ≥ 0, x2 ≥ 0. Then we
want all solutions for x1 and x2 so that

([1, 3]x1 + [0, 0]x2) ∩ [4, 7] �= ∅, (10.56)
([1, 1]x1 + [2, 8]x2) ∩ [6, 12] �= ∅. (10.57)

We have used the α = 0 cuts of a11, a22, b1 and b2. This means

x1 ≤ 7, (10.58)
3x1 ≥ 4, (10.59)

x1 + 2x2 ≤ 12, (10.60)
x1 + 8x2 ≥ 6, (10.61)

for x1 ≥ 0, x2 ≥ 0 in the first quadrant. Now x1 must be non–negative so we
can now only consider the fourth quadrant.

Assume x1 ≥ 0 and x2 ≤ 0. Then the equations become

x1 ≤ 7, (10.62)
3x1 ≥ 4, (10.63)

x1 + 8x2 ≤ 12, (10.64)
x1 + 2x2 ≥ 6, (10.65)

for x1 ≥ 0, x2 ≤ 0. The solution XJ [0] is shown in Figure 10.15. It is not
convex since the line joining (4/3, 7/12) and (7,−1/2) is not entirely in XJ [0].
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� x10 6 12
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x1 + 2x2 = 12
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�XJ [1]

Fig. 10.15. Support of the Joint Solution in Example 10.4.2
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Fig. 10.16. Xe1 = XI1 = XJ1 ≈ ( 4
3
/ 5

2
/7) in Example 10.4.2

Projecting XJ onto the xi–axes produces XJi, i = 1, 2. These marginals are in
Figures 10.16 and 10.17.

We find the α-cuts of the XJi as follows: (1) we first construct a diagram
like Figure 10.15 for XJ [α] for each 0 ≤ α ≤ 1; (2) project the diagram onto
the x1-axis to get XJ1[α]; and (3) project the picture onto the x2-axis to obtain
XJ2[α]. It turns out, for this example, that XJ1 = Xe1 and XJ2 = Xe2.

Using equations (10.41) and (10.42) we find α-cuts of Xej , j = 1, 2. It is easy
to see that

Xe1[α] =
[
4 + α

3 − α
,
7 − 2α

1 + α

]
, (10.66)
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Fig. 10.17. Xe2 = XJ2, XI2 ≈ (− 1
2
/ 11

10
/16) in Example 10.4.2

0 ≤ α ≤ 1. However, Xe2[α] is a little more difficult since we need to find the
max and min of

a11b2 − b1

a11a22
, (10.67)

for a11 ∈ a11[α], a22 ∈ a22[α], b1 ∈ b1[α] and b2 ∈ b2[α]. We did this and Xe2 is
shown in Figure 10.17.

Lastly, we see that XI1 = Xe1 and

XI2[α] = [xI21(α), xI22(α)] , (10.68)

with xI21(α) = N1(α)/D2(α), 0 ≤ α ≤ 0.0981 = (
√

108 − 10)/4, xI21(α) =
N1(α)/D1(α) for 0.0981 ≤ α ≤ 1 and xI22(α) = N2(α)/D2(α) for all α and

N1(α) = (1 + α)(6 + 2α) − (7 − 2α), (10.69)

N2(α) = (3 − α)(12 − 4α) − (4 + α), (10.70)

D1(α) = (3 − α)(8 − 3α), (10.71)

D2(α) = (1 + α)(2 + 3α). (10.72)

The reason for the change in the denominator for xI21(α) is that N1(α) is neg-
ative for 0 ≤ α ≤ 0.0981. We used the fact that [a, b][c, d] = [ad, bd] if a < 0 < b
and 0 < c < d but [a, b][c, d] = [ac, bd] when 0 < a and 0 < c. Xei and XIi are
in Figures 10.16 and 10.17 for i = 1, 2.



110 Solving Fuzzy Equations

10.4.1 Fuzzy Monte Carlo Method

We follow the same strategy as outlined in Section 10.2.2 for generating approx-
imate solutions to fuzzy linear equations using fuzzy Monte Carlo methods. Q
will be the same set of fuzzy numbers and we use the same metric between fuzzy
numbers given in equation (10.23). But now we need to extend that metric to a
distance measure between fuzzy vectors. Let X

t
= (x1, ..., xn) and

W i = ai1x1 + ... + ainxn, (10.73)

for i = 1, 2, ..., n. Then A X = B is the same as W = B where W
t

=
(W 1, ..., Wn). Given a X the distance between W = A X and B will be

D(W, B) = max{D(W i, bi)|i = 1, 2, ..., n}, (10.74)

where D(W i, bi) is from equation (10.23). Our new solution X
∗
, whose elements

x∗
i are fuzzy numbers in Q, solves

min{D(W, B)|xi ∈ Q all i}. (10.75)

Let (X
∗
)t = (x∗

1, ..., x
∗
n). Let D(X) = D(W, B). Using our fuzzy Monte Carlo

method we obtain X
∗
a an approximation to X

∗
. Let X

∗
a = (x∗

a1, ..., x
∗
an). We use

the same “threshold” ε discussed in Section 10.2.2. If the fuzzy Monte Carlo
method produces a X so that D(X) < ε we will say that we have found an
acceptable approximate solution X

∗
a = X with X

∗
a ≈ X

∗
. We begin with D(X)

very large (100) and will accept a solution only if it minimizes to D(X) < ε = 0.5.
Now we will rework Examples 10.4.1 and 10.4.2 using our fuzzy Monte Carlo

method.

Example 10.4.1.1

This continues Example 10.4.1. We wish to use our fuzzy Monte Carlo method to
compute X

∗
a ≈ X

∗
and then compare X

∗
a to Xc = (Xc1, Xc2) shown in Figures

10.16 and 10.17. Recall that in this example the classical solution Xc exists and
the components of X

∗
a = (x∗

a1, x
∗
a2) are in Q and we must have D(X

∗
a) < ε = 0.5.

The fuzzy matrix equation in this example may be written a11 x1 = b1 and
a22 x2 = b2; hence, we can solve for the xi, i = 1, 2, separately. However, we
choose to solve for them simultaneously. Although we may determine individually
lower D(x∗

ai) (having only to satisfy them one at a time), it is more algorith-
mically convenient to solve them simultaneously as we will do for this Example
and for Example 10.4.1.2 discussed below. The difference between the methods
will be whether we take crisp quasi-random numbers as 5-tuples for each xi, or
as 10-tuples for (x1, x2).

We solve for the “best” x1 and x2 simultaneously. We generate a Sobol quasi-
random number 10-tuple with which we generate x1 with the first five and x2

with the last five. Using X = (x1, x2) we compute W 1 = a11x1 + a12x2, and
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W 2 = a21x1 + a22x2 (even though for Example 10.4.1 a12 = 0 and a21 = 0).
Then D(W, B) = max{D(W 1, b1), D(W 2, b2)} is determined for this X . As we
evaluate these X’s we find the least D(W, B), capturing its X as X

∗
a.

Next we determine intervals, which will depend on the application, for the ran-
dom quadratic fuzzy numbers (QBGFNs). We modified the fuzzy Monte Carlo
program to optimize the minimization problem of equations (10.74) and (10.75)
for fuzzy matrix equations. For this problem the classical solution does exist. For
x1 we choose [a, b] = [0.1429, 0.7500] which is approximately the support of XJ1.
For x2 we choose [a, b] = [0.1666, 1.3333] which is approximately the support
of XJ2.

To compute D(A ·X, B), we used 100 α-cuts of A ·X and B for given A and
B, where X is one of 50,000 pairs of random quadratic fuzzy numbers.

The smallest D(W, B) we obtained was 0.302329. The X that produced
this value we had saved as X

∗
a = (x∗

a2, x
∗
a2). x∗

a1 and x∗
a2 are displayed in

Figure 10.18. As one can see in Table 10.5, solutions of [ (4/5/7) 0
0 (6/8/12) ] · X =

[ (1/2/3)
(2/5/8) ], we have acceptable solutions for x∗

a1 and x∗
a2. Figure 10.19 and Figure

10.20 are graphs for A · X.

Table 10.5. Solutions for Example 10.4.1, A · X = B

Solution X A · X
Xc1 ≈ (0.25/0.4/0.4286) ≈ (1/2/3) = b1

Xc2 ≈ (0.3333/0.625/0.75) ≈ (2/5/8) = b2

XJ1 ≈ (0.1429/0.4/0.75) ≈ (0.5716/2/5.25)
XJ2 ≈ (0.1666/0.625/1.3333) ≈ (1/5/20)
x∗

a1, (0.2473, 0.3973, 0.4436,−0.7088, 0.4686), ≈ (0.99/1.99/3.11)
D(W 1, b1) = 0.119918

x∗
a2, (0.3646, 0.6203, 0.6908,−0.0618, 0.0208), ≈ (2.19/4.96/8.29)

D(W 2, b2) = 0.302329 (min)

Fig. 10.18. x∗
a1 and x∗

a2 of Example 10.4.1.1
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Fig. 10.19. (4/5/7) · x∗
a1 of Example 10.4.1.1

Fig. 10.20. (6/8/12) · x∗
a2 of Example 10.4.1.1

Example 10.4.1.2

This continues Examples 10.4.2. We apply our fuzzy Monte Carlo method to
compute X

∗
a ≈ X

∗
. Recall that in this example the classical solution does not

exist but we do have Xe, XJ and XI shown in Figures 10.16 and 10.17. The
constraints are still that the components of X

∗
a are in Q and it must satisfy

D(X
∗
a) < ε = 0.5.

Table 10.6. Solutions for Example 10.4.2, A · X = B

X A · X
Xc does not exist ≈ [(4/5/7) (6/8/12)]t

XI1 ≈ (1.3333/2.5/7) ≈ (1.3333/5/21)
XI2 ≈ (−0.5/1.1/16) ≈ (1.3333/8/135)
x∗

a1, (1.5847, 1.6205, 3.3639, 0.6678,−2.6900), ≈ (1.58/3.24/10.09)
D(W 1, b1) = 3.091642

x∗
a2, (0.4937, 0.7202, 1.3369,−0.8838,−1.1810), ≈ (2.57/5.22/14/06)

D(W 1, b1) = 3.427969 (min)
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Fig. 10.21. x∗
a1 and x∗

a2 of Example 10.4.1.2

Fig. 10.22. (1/2/3) · x∗
a1 of Example 10.4.1.2

Fig. 10.23. x∗
a1 + (2/5/8) · x∗

a2 of Example 10.4.1.2

For this problem the classical solution does not exist. For x1 we choose [a, b] =
[1.3333, 7] which is approximately the support of XI1. For x2 we choose [a, b] =
[0, 16] which covers the positive portion of the support of XI2.

To compute D(A ·X, B), we used 100 α-cuts of A ·X and B for given A and
B, where X is one of 50,000 pairs of random quadratic fuzzy numbers.

The distance measure D is given in equations (10.74) and (10.75). The small-
est D(W, B) we obtained was 3.427969. The X that produced this value we
had saved as X

∗
a = (x∗

a1, x
∗
a2). X

∗
a is shown in Figure 10.21. (1/2/3) · x∗

a1

is shown in Figure 10.22. The corresponding x∗
a1 + (2/5/8) · x∗

a2 is shown in
Figure 10.23.
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Our fuzzy Monte Carlo method was unable to get an acceptable approximate
solution to this fuzzy matrix equation. Table 10.6 lists solutions of [ (1/2/3) 0

1 (2/5/8) ]·
X = [ (4/5/7)

(6/8/12) ] for Example 10.4.2. As our value of D(X) indicates, we do not
have good correspondence with the right had side of our fuzzy matrix equation.
We believe that no fuzzy quadratic fuzzy vector X can make this D(X) < ε = 0.5.

10.5 Summary and Conclusions

Through several examples of three types of fuzzy equations ( fuzzy linear equa-
tions A ·X +B = C, fuzzy quadratic equations A ·X2

+B ·X +C = D, and fuzzy
matrix equations A ·X = B) we have demonstrated a use of fuzzy Monte Carlo
optimization to obtain solutions. Where possible we demonstrated computation
of the “classical” solution. We showed how one may compute an “extension prin-
ciple” solution; and we showed how one may determine a “interval arithmetic”
solution.

Also, for every example we used fuzzy Monte Carlo optimization to produce
some solution. In those examples where a “classical” solution could be computed,
fuzzy Monte Carlo found an acceptable solution. In one case, Example 10.3.1.2,
were no classical solution existed, fuzzy Monte Carlo determined an acceptable
approximate solution.

This study supports the viability of this method for solving fuzzy equations.
Our choice of a value ε, and performance of D(X) during simulations, indicates
we may in the future choose a smaller ε = 0.2 to differentiate “tight” solutions
from “loose” ones.

These optimizations were performed on various Windows XP machines run-
ning in the 2Ghz range with over 1GB RAM.

A·X+B = C completed 50, 000 iterations in about 1.5 hours. Fuzzy quadratic
exercises and fuzzy matrix equations completed 50, 000 iterations in 2−3 hours.
Convergence to an acceptable D(X) was evident within a few hundred iterations.
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