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1 Introduction

1.1 Introduction

The objective of this book is to introduce Monte Carlo methods to find good
approximate solutions to fuzzy optimization problems. Many crisp (nonfuzzy)
optimization problems have algorithms to determine solutions. This is not true
for fuzzy optimization. There are other things to discuss in fuzzy optimization,
which we will do later on in the book, like ≤ and < between fuzzy numbers since
there will probably be fuzzy constraints, and how do we evaluate max/minZ
for Z the fuzzy value of the objective function.

This book is divided into four parts: (1) Part I is the Introduction containing
Chapters 1-5; (2) Part II, Chapters 6-16, has the applications of our Monte
Carlo method to obtain approximate solutions to fuzzy optimization problems;
(3) Part III, comprising Chapters 17-27, outlines our “unfinished business” which
are fuzzy optimization problems for which we have not yet applied our Monte
Carlo method to produce approximate solutions; and (4) Part IV is our summary,
conclusions and future research.

1.1.1 Part I

First we need to be familiar with fuzzy sets. All you need to know about fuzzy
sets for this book comprises Chapter 2. For a beginning introduction to fuzzy
sets and fuzzy logic see [2]. Three other items related to fuzzy sets, needed in
this book, are also in Chapter 2: (1) in Section 2.5 we discuss how we have dealt
in the past with determining max/min(Z) for Z a fuzzy set representing the
value of an objective function in a fuzzy optimization problem; (2) in Section 2.6
we present the three methods we will use in this book to determine which of the
following possibilities M < N , M > N or M ≈ N is true, for two fuzzy numbers
M , N ; and (3) in Section 2.7 we investigate dominated, and undominated, fuzzy
vectors.

Chapter 3 introduces the random number generators that we will be using
in the rest of the book. We will need sequences of crisp random vectors v =

J.J. Buckley et al.: Monte Carlo Meth. in Fuzzy Optimization, STUDFUZZ 222, pp. 3–7, 2008.
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4 Introduction

(x1, ..., xn) with xi ∈ [0, 1], n ≥ 3. If we use a pseudo-random number generator
to produce the v it is well known (see Chapter 3) that when we plot these points
in [0, 1]n we can get empty regions and clustering. We need a method of getting
sequences of v that will uniformly fill [0, 1]n. Such a method already exists.
They are called quasi-random number generators, introduced and discussed in
Chapter 3.

Next we need to randomly generate sequences of fuzzy numbers and sequences
of fuzzy vectors. We usually use triangular fuzzy numbers (TFNs) and quadratic
fuzzy numbers (Section 2.2.1). The quadratic fuzzy numbers we use are called
quadratic Bézier generated fuzzy numbers (QBGFNs) which are defined in Chap-
ter 4. We show in this chapter how we use the sequences v = (x1, ..., xn), from
a quasi-random number generator, to get sequences of TFNs/QBGFNs and se-
quences of vectors of TFNs/QBGFNs. We use these results to show that the
three methods of evaluating ≤ and < between fuzzy numbers given in Sections
2.6.1 - 2.6.3 quite often give the same results.

Chapter 5 is about testing our sequences of fuzzy numbers/vectors for ran-
domness. There are many tests for randomness for sequences of crisp numbers,
but most are not applicable to fuzzy numbers. However, the run test can be
extended to fuzzy numbers and our results are presented in this chapter. We
have one randomness test for sequences of fuzzy vectors. But we do argue that
our method of producing sequences of fuzzy vectors will uniformly fill the search
space in a fuzzy optimization problem. That is exactly what is needed for a
sequence of fuzzy vectors used to get an approximate solution to a fuzzy opti-
mization problem.

1.1.2 Part II

Part II contains our applications of Monte Carlo methods to generating approx-
imate solutions to fuzzy optimization problems. Fuzzy linear programming is in
Chapters 6-9. Getting solutions, or approximate solutions, to fuzzy equations is
the topic of Chapter 10. Applications to fuzzy regression is the theme for Chap-
ters 11-14. The last two applications are to fuzzy game theory (Chapter 15) and
to fuzzy queuing theory (Chapter 16).

1.1.3 Part III

The chapters here describe more fuzzy optimization problems that do not have
algorithms that give an exact fuzzy solution. Therefore they are candidates for an
approximate Monte Carlo solution. In each case we first outline the problem and
then discuss how we might use Monte Carlo to generate approximate solutions,
but we do not do it. We leave it for future research by the authors or interested
readers.

1.1.4 Part IV

This consists of one short chapter containing a summary, our suggestions for
future research and our conclusions.
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1.2 Notation

It is difficult, in a book with a lot of mathematics, to achieve a uniform notation
without having to introduce many new specialized symbols. Our basic notation
is presented in Chapter 2. What we have done is to have a uniform notation
within each chapter. What this means is that we may use the letters “a” and
“b” to represent a closed interval [a, b] in one chapter but they could stand for
something else in another chapter. We will have the following uniform notation
throughout the book: (1) we place a “bar” over a letter to denote a fuzzy set (A,
B, etc.), and all our fuzzy sets will be fuzzy subsets of the real numbers; and (2)
an α-cut of a fuzzy set (Chapter 2) is always denoted by “α”.

We use the abbreviations: FN for fuzzy number; TFN for triangular fuzzy
number; TrFN for trapezoidal fuzzy number, and QBGFN for quadratic Bézier
generated fuzzy number (defined in Chapter 4). All fuzzy arithmetic is per-
formed using α-cuts and interval arithmetic and not by using the extension
principle (Chapter 2).We also use TBC to mean “to be completed” in Part III.

The term “crisp” means not fuzzy. A crisp set is a regular set and a crisp
number is a real number. There is a potential problem with the symbol “≤”. It
sometimes means “fuzzy subset” as A ≤ B stands for A is a fuzzy subset of B
(defined in Chapter 2). However, also in Chapter 2, A ≤ B means that fuzzy set
A is less than or equal to fuzzy set B. The meaning of the symbol “≤” should
be clear from its use.

1.3 Previous Research

Mathematica has added random fuzzy numbers [11]. It can create “random”
trapezoidal, Gaussian and triangular fuzzy numbers. They are represented by
thin vertical bars similar to a histogram. We would need the functional expres-
sions for the sides of the fuzzy numbers and it is not clear how we could get that
information from Mathematica. The web site does not tell the user how these
“random” fuzzy numbers are generated.

Most authors ([1],[5],[6],[8]-[10]) have used the following method to define
random fuzzy numbers. Consider LR fuzzy numbers which we write as (a, b, c)LR.
Let m, l and r be three real-valued random variables with l > 0, r > 0. Then a
random LR-fuzzy number is (m, l, r)LR. The functions L and R are called the
left and right membership functions, m is where the membership value equals
one (vertex point) and l(r) ≥ 0 is the left (right) spread of the fuzzy number.
So, once you pick and fix L and R, the randomness is in the end points of the
α = 0 cut and the vertex point of the fuzzy number. We think the randomness
should also be in the shape of the fuzzy number. That is, we should also be able
to randomly change L and R.

Next, the paper [4] has another way to construct random fuzzy numbers.
Let Fi(x), i = 1, 2, 3, be probability distribution functions. Randomly choose
y ∈ [0, 1], then a random triangular fuzzy number has base [F−1

1 (y), F−1
3 (y)]

and vertex point at F−1
2 (y). We have assumed that F−1

1 (y) < F−1
2 (y) < F−1

3 (y)
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for y in [0, 1]. This just randomly produces a triangular fuzzy number but it
always has the same shape (a triangle). [12] uses Gaussian fuzzy numbers to
generate random fuzzy numbers but employs crisp Monte Carlo methods. The
book [3] has one very short section on fuzzy Monte Carlo simulation

Finally, [7] generates a random triangular fuzzy number as (m− 6/m/m+ 2)
for m uniform on [1, 3] and a random trapezoidal fuzzy number as (m− 4/m−
2,m+ 4/m+ 6) for m a standard normal random variable. Again the shape is
always the same, straight line segments for the sides of the fuzzy number.

To complete a search for random fuzzy numbers/vectors we suggest putting
the following items into your search engine: fuzzy random numbers, random
fuzzy numbers, fuzzy Monte Carlo,... The authors believe that there are no other
publications that cover in our detail generating random fuzzy numbers/vectors
to give approximate solutions to fuzzy optimization problems. Our random fuzzy
numbers will have random base, random vertex point and also (limited) random
shape. We believe this gives a better picture of random fuzzy numbers for fuzzy
Monte Carlo methods.

Beginning in Chapter 6 many different topics are covered until Chapter 27.
Most chapters have a list of references at the end of the chapter. We give only
a few key references to the topic were the interested reader may find other
references. This book will not do a complete literature search on each area for
you, but we do hope that we have given you a good start.

1.4 MATLAB/C++ Programs

Computer programs were written in MATLAB or C++. Only one MATLAB
program is given in the book and it is at the end of Chapter 14. However, any
of these programs can be obtained from the authors.
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2 Fuzzy Sets

2.1 Introduction

In this chapter we have collected together the basic ideas from fuzzy sets and
fuzzy functions needed for the book. Any reader familiar with fuzzy sets, fuzzy
numbers, the extension principle, α-cuts, interval arithmetic, and fuzzy functions
may go on and have a look at Sections 2.5-2.7. In Section 2.5 we present a method
that we have used in the past of maximizing/minimizing a fuzzy number Z which
represents the value of some objective function in a fuzzy optimization problem.
In Section 2.6 we are concerned with ordering a finite set of fuzzy numbers
from smallest to largest to be used in our fuzzy Monte Carlo studies. Basically,
given two fuzzy numbers M and N , we need a method of deciding which of the
following three possibilities is true: M < N , M ≈ N , M > N . Three methods
are discussed in Section 2.6. Section 2.7 discusses dominated and undominated
fuzzy vectors needed in Chapter 9. Fuzzy vectors are vectors made up of fuzzy
numbers. A good general reference for fuzzy sets and fuzzy logic is [4] and [19].

Our notation specifying a fuzzy set is to place a “bar” over a letter. So A,
B, . . ., X , Y , . . ., α, β, . . . , will all denote fuzzy sets.

2.2 Fuzzy Sets

If Ω is some set, then a fuzzy subset A ofΩ is defined by its membership function,
written A(x), which produces values in [0, 1] for all x in Ω. So, A(x) is a function
mapping Ω into [0, 1]. If A(x0) = 1, then we say x0 belongs to A, if A(x1) = 0
we say x1 does not belong to A, and if A(x2) = 0.6 we say the membership value
of x2 in A is 0.6. When A(x) is always equal to one or zero we obtain a crisp
(non–fuzzy) subset of Ω. For all fuzzy sets B, C, . . . we use B(x), C(x), . . . for
the value of their membership functions at x. Most of the fuzzy sets we will be
using will be fuzzy numbers.

The term “crisp” will mean not fuzzy. A crisp set is a regular set. A crisp num-
ber is just a real number. A crisp matrix (vector) has real numbers as its com-
ponents. A crisp function maps real numbers (or real vectors) into real numbers.

J.J. Buckley et al.: Monte Carlo Meth. in Fuzzy Optimization, STUDFUZZ 222, pp. 9–28, 2008.
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10 Fuzzy Sets

A crisp solution to a problem is a solution involving crisp sets, crisp numbers,
crisp functions, etc.

2.2.1 Fuzzy Numbers

A general definition of a fuzzy number may be found in ([4],[19]), however
our fuzzy numbers will be almost always triangular (shaped), or trapezoidal
(shaped), fuzzy numbers. A triangular fuzzy number (TFN) N is defined by
three numbers a < b < c where the base of the triangle is the interval [a, c] and
its vertex is at x = b. Triangular fuzzy numbers will be written as N = (a/b/c).
A triangular fuzzy number N = (1.2/2/2.4) is shown in Figure 2.1. We see that
N(2) = 1, N(1.6) = 0.5, etc.
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Fig. 2.1. Triangular Fuzzy Number N

A trapezoidal fuzzy number M is defined by four numbers a < b < c < d
where the base of the trapezoid is the interval [a, d] and its top (where the
membership equals one) is over [b, c]. We write M = (a/b, c/d) for trapezoidal
fuzzy numbers. Figure 2.2 shows M = (1.2/2, 2.4/2.7).

A triangular shaped fuzzy number P is given in Figure 2.3. P is only partially
specified by the three numbers 1.2, 2, 2.4 since the graph on [1.2, 2], and [2, 2.4], is
not a straight line segment. To be a triangular shaped fuzzy number we require
the graph to be continuous and: (1) monotonically increasing on [1.2, 2]; and
(2) monotonically decreasing on [2, 2.4]. For triangular shaped fuzzy number P
we use the notation P ≈ (1.2/2/2.4) to show that it is partially defined by
the three numbers 1.2, 2, and 2.4. If P ≈ (1.2/2/2.4) we know its base is on
the interval [1.2, 2.4] with vertex (membership value one) at x = 2. Similarly
we define trapezoidal shaped fuzzy number Q ≈ (1.2/2, 2.4/2.7) whose base is
[1.2, 2.7] and top is over the interval [2, 2.4]. The graph of Q is similar to M in
Figure 2.2 but it has continuous curves for its sides.
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Fig. 2.2. Trapezoidal Fuzzy Number M
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Fig. 2.3. Triangular Shaped Fuzzy Number P

We will use special triangular shaped fuzzy numbers where their sides are
defined by quadratic functions. These will be called quadratic fuzzy numbers
(coded QBGFNs) and they are defined in Chapter 4.

Although we will be using triangular, trapezoidal(shaped) and quadratic fuzzy
numbers throughout the book, many results can be extended to more general fuzzy
numbers, but we shall be content to work with only these special fuzzy numbers.

2.2.2 Alpha-Cuts

Alpha-cuts are slices through a fuzzy set producing regular (nonfuzzy) sets. If A
is a fuzzy subset of some set Ω, then an α-cut of A, written A[α] is defined as
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A[α] = {x ∈ Ω|A(x) ≥ α}, (2.1)

for all α, 0 < α ≤ 1. The α = 0 cut, or A[0], must be defined separately.
Let N be the fuzzy number in Figure 2.1. Then N [0] = [1.2, 2.4]. Notice that

using equation (2.1) to define N [0] would give N [0] = all the real numbers.
Similarly, M [0] = [1.2, 2.7] from Figure 2.2 and in Figure 2.3 P [0] = [1.2, 2.4].
For any fuzzy set A, A[0] is called the support, or base, of A. Many authors
call the support of a fuzzy number the open interval (a, b) like the support of N
in Figure 2.1 would then be (1.2, 2.4). However in this book we use the closed
interval [a, b] for the support (base) of the fuzzy number.

The core of a fuzzy number is the set of values where the membership value
equals one. If N = (a/b/c), or N ≈ (a/b/c), then the core of N is the single
point x = b. However, if M = (a/b, c/d), or M ≈ (a/b, c/d), then the core of
M = [b, c].

For any fuzzy number Q we know that Q[α] is a closed, bounded, interval for
0 ≤ α ≤ 1. We will write this as

Q[α] = [q1(α), q2(α)], (2.2)

where q1(α) (q2(α)) will be an increasing (decreasing) function of α with q1(1) ≤
q2(1). If Q is a triangular shaped or a trapezoidal shaped fuzzy number then:
(1) q1(α) will be a continuous, monotonically increasing function of α in [0, 1];
(2) q2(α) will be a continuous, monotonically decreasing function of α, 0 ≤ α ≤
1; and (3) q1(1) = q2(1) (q1(1) < q2(1) for trapezoids). We sometimes check
monotone increasing (decreasing) by showing that dq1(α)/dα > 0 (dq2(α)/dα <
0) holds.

For the N in Figure 2.1 we obtain N [α] = [n1(α), n2(α)], n1(α) = 1.2 + 0.8α
and n2(α) = 2.4 − 0.4α, 0 ≤ α ≤ 1. Similarly, M in Figure 2.2 has M [α] =
[m1(α),m2(α)], m1(α) = 1.2 + 0.8α and m2(α) = 2.7 − 0.3α, 0 ≤ α ≤ 1.
The equations for ni(α) and mi(α) are backwards. With the y–axis vertical and
the x–axis horizontal the equation n1(α) = 1.2 + 0.8α means x = 1.2 + 0.8y,
0 ≤ y ≤ 1. That is, the straight line segment from (1.2, 0) to (2, 1) in Figure 2.1
is given as x a function of y whereas it is usually stated as y a function of x.
This is how it will be done for all α-cuts of fuzzy numbers.

2.2.3 Inequalities

Let N = (a/b/c). We write N ≥ δ, δ some real number, if a ≥ δ, N > δ when
a > δ, N ≤ δ for c ≤ δ and N < δ if c < δ. We use the same notation for
triangular shaped and trapezoidal (shaped) fuzzy numbers whose support is the
interval [a, c].

If A and B are two fuzzy subsets of a set Ω, then A ≤ B means A(x) ≤ B(x)
for all x in Ω, or A is a fuzzy subset of B. A < B holds when A(x) < B(x),
for all x. There is a potential problem with the symbol ≤. In some places in the
book, for example see Section 2.6, M ≤ N , for fuzzy numbers M and N , means
that M is less than or equal to N . It should be clear on how we use “≤” as to
which meaning is correct.
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2.2.4 Discrete Fuzzy Sets

Let A be a fuzzy subset of Ω. If A(x) is not zero only at a finite number of x
values in Ω, then A is called a discrete fuzzy set. Suppose A(x) is not zero only
at x1, x2, x3 and x4 in Ω. Then we write the fuzzy set as

A = {μ1

x1
, · · · , μ4

x4
}, (2.3)

where the μi are the membership values. That is, A(xi) = μi, 1 ≤ i ≤ 4, and
A(x) = 0 otherwise. We can have discrete fuzzy subsets of any space Ω. Notice
that α-cuts of discrete fuzzy sets of IR, the set of real numbers, do not produce
closed, bounded, intervals.

2.3 Fuzzy Arithmetic

If A and B are two fuzzy numbers we will need to add, subtract, multiply and
divide them. There are two basic methods of computing A+B, A−B, etc. which
are: (1) extension principle; and (2) α-cuts and interval arithmetic.

2.3.1 Extension Principle

Let A and B be two fuzzy numbers. If A+B = C, then the membership function
for C is defined as

C(z) = sup
x,y

{min(A(x), B(y))|x + y = z}. (2.4)

If we set C = A−B, then

C(z) = sup
x,y

{min(A(x), B(y))|x − y = z}. (2.5)

Similarly, C = A ·B, then

C(z) = sup
x,y

{min(A(x), B(y))|x · y = z}, (2.6)

and if C = A/B,

C(z) = sup
x,y

{min(A(x), B(y))|x/y = z}. (2.7)

In all cases C is also a fuzzy number [19]. We assume that zero does not belong
to the support of B in C = A/B. If A and B are triangular (trapezoidal) fuzzy
numbers then so are A + B and A − B, but A · B and A/B will be triangular
(trapezoidal) shaped fuzzy numbers.

We should mention something about the operator “sup” in equations (2.4) –
(2.7). If Ω is a set of real numbers bounded above (there is a M so that x ≤M ,
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for all x in Ω), then sup(Ω) = the least upper bound for Ω. If Ω has a maximum
member, then sup(Ω) = max(Ω). For example, if Ω = [0, 1), sup(Ω) = 1 but if
Ω = [0, 1], then sup(Ω) = max(Ω) = 1. The dual operator to “sup” is “inf”. If Ω
is bounded below (there is a M so that M ≤ x for all x ∈ Ω), then inf(Ω) = the
greatest lower bound. For example, for Ω = (0, 1] inf(Ω) = 0 but if Ω = [0, 1],
then inf(Ω) = min(Ω) = 0.

Obviously, given A and B, equations (2.4) – (2.7) appear quite complicated
to compute A + B, A − B, etc. So, we now present an equivalent procedure
based on α-cuts and interval arithmetic. First, we present the basics of interval
arithmetic.

2.3.2 Interval Arithmetic

We only give a brief introduction to interval arithmetic. For more information the
reader is referred to ([21],[22]). Let [a1, b1] and [a2, b2] be two closed, bounded,
intervals of real numbers. If ◦ denotes addition, subtraction, multiplication, or
division, then [a1, b1] ◦ [a2, b2] = [α, β] where

[α, β] = {a ◦ b|a1 ≤ a ≤ b1, a2 ≤ b ≤ b2}. (2.8)

If ∗ is division, we must assume that zero does not belong to [a2, b2]. We may
simplify equation (2.8) as follows:

[a1, b1] + [a2, b2] = [a1 + a2, b1 + b2] , (2.9)
[a1, b1] − [a2, b2] = [a1 − b2, b1 − a2] , (2.10)

[a1, b1] / [a2, b2] = [a1, b1] ·
[

1
b2
,

1
a2

]
, (2.11)

and
[a1, b1] · [a2, b2] = [α, β], (2.12)

where

α = min{a1a2, a1b2, b1a2, b1b2}, (2.13)
β = max{a1a2, a1b2, b1a2, b1b2}. (2.14)

Multiplication and division may be further simplified if we know that a1 > 0
and b2 < 0, or b1 > 0 and b2 < 0, etc. For example, if a1 ≥ 0 and a2 ≥ 0, then

[a1, b1] · [a2, b2] = [a1a2, b1b2], (2.15)

and if b1 < 0 but a2 ≥ 0, we see that

[a1, b1] · [a2, b2] = [a1b2, a2b1]. (2.16)

Also, assuming b1 < 0 and b2 < 0 we get

[a1, b1] · [a2, b2] = [b1b2, a1a2], (2.17)

but a1 ≥ 0, b2 < 0 produces

[a1, b1] · [a2, b2] = [a2b1, b2a1]. (2.18)
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2.3.3 Fuzzy Arithmetic

Again we have two fuzzy numbers A andB. We know α-cuts are closed, bounded,
intervals so let A[α] = [a1(α), a2(α)], B[α] = [b1(α), b2(α)]. Then if C = A+ B
we have

C[α] = A[α] +B[α]. (2.19)

We add the intervals using equation (2.9). Setting C = A−B we get

C[α] = A[α] −B[α], (2.20)

for all α in [0, 1]. Also
C[α] = A[α] · B[α], (2.21)

for C = A ·B and
C[α] = A[α]/B[α], (2.22)

when C = A/B, provided that zero does not belong to B[α] for all α. This
method is equivalent to the extension principle method of fuzzy arithmetic [19].
Obviously, this procedure, of α-cuts plus interval arithmetic, is more user (and
computer) friendly.

Example 2.3.3.1

Let A = (−3/− 2/− 1) and B = (4/5/6). We determine A ·B using α-cuts and
interval arithmetic. We compute A[α] = [−3+α,−1−α] and B[α] = [4+α, 6−α].
So, if C = A ·B we obtain C[α] = [(α− 3)(6 − α), (−1 − α)(4 + α)], 0 ≤ α ≤ 1.
The graph of C is shown in Figure 2.4.
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Fig. 2.4. The Fuzzy Number C = A · B
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2.4 Fuzzy Functions

In this book a fuzzy function is a mapping from fuzzy numbers into fuzzy num-
bers. We write H(X) = Z for a fuzzy function with one independent variable X .
Usually X will be a triangular (trapezoidal) fuzzy number and then we usually
obtain Z as a triangular (trapezoidal) shaped fuzzy number. For two independent
variables we have H(X,Y ) = Z.

Where do these fuzzy functions come from? They are usually extensions of
real–valued functions. Let h : [a, b] → IR. This notation means z = h(x) for x
in [a, b] and z a real number. One extends h : [a, b] → IR to H(X) = Z in two
ways: (1) the extension principle; or (2) using α-cuts and interval arithmetic.

2.4.1 Extension Principle

Any h : [a, b] → IR may be extended to H(X) = Z as follows

Z(z) = sup
x

{
X(x) | h(x) = z, a ≤ x ≤ b

}
. (2.23)

Equation (2.23) defines the membership function of Z for any triangular (trape-
zoidal) fuzzy number X in [a, b].

If h is continuous, then we have a way to find α-cuts of Z. Let Z[α] =
[z1(α), z2(α)]. Then [8]

z1(α) = min{ h(x) | x ∈ X[α] }, (2.24)
z2(α) = max{ h(x) | x ∈ X[α] }, (2.25)

for 0 ≤ α ≤ 1.
If we have two independent variables, then let z = h(x, y) for x in [a1, b1], y

in [a2, b2]. We extend h to H(X,Y ) = Z as

Z(z) = sup
x,y

{
min

(
X(x), Y (y)

) | h(x, y) = z
}
, (2.26)

for X (Y ) a triangular or trapezoidal fuzzy number in [a1, b1] ([a2, b2]). For
α-cuts of Z, assuming h is continuous, we have

z1(α) = min{ h(x, y) | x ∈ X[α], y ∈ Y [α] }, (2.27)
z2(α) = max{ h(x, y) | x ∈ X[α], y ∈ Y [α] }, (2.28)

0 ≤ α ≤ 1.

Applications

Let f(x1, ..., xn; θ1, ..., θm) be a continuous function. Then

I[α] = {f(x1, ..., xn; θ1, ..., θm)| S }, (2.29)

for α ∈ [0, 1] and S is the statement “θi ∈ θi[α], 1 ≤ i ≤ m”, for fuzzy num-
bers θi, 1 ≤ i ≤ m, defines an interval I[α]. The endpoints of I[α] may be
found as in equations (2.24),(2.25) and (2.27),(2.28). I[α] gives the α-cuts of
f(x1, ..., xn; θi, ..., θm).
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2.4.2 Alpha-Cuts and Interval Arithmetic

All the functions we usually use in engineering and science have a computer al-
gorithm which, using a finite number of additions, subtractions, multiplications
and divisions, can evaluate the function to required accuracy [7]. Such functions
can be extended, using α-cuts and interval arithmetic, to fuzzy functions. Let
h : [a, b] → IR be such a function. Then its extension H(X) = Z, X in [a, b]
is done, via interval arithmetic, in computing h(X[α]) = Z[α], α in [0, 1]. We
input the interval X [α], perform the arithmetic operations needed to evaluate
h on this interval, and obtain the interval Z[α]. Then we put these α-cuts to-
gether to obtain the value Z. The extension to more independent variables is
straightforward.

For example, consider the fuzzy function

Z = H(X) =
A X +B

C X +D
, (2.30)

for triangular fuzzy numbers A, B, C, D and triangular fuzzy number X in
[0, 10]. We assume that C ≥ 0, D > 0 so that C X +D > 0. This would be the
extension of

h(x1, x2, x3, x4, x) =
x1x+ x2

x3x+ x4
. (2.31)

We would substitute the intervals A[α] for x1, B[α] for x2, C[α] for x3, D[α]
for x4 and X[α] for x, do interval arithmetic, to obtain interval Z[α] for Z.
Alternatively, the fuzzy function

Z = H(X) =
2X + 10
3X + 4

, (2.32)

would be the extension of
h(x) =

2x+ 10
3x+ 4

. (2.33)

2.4.3 Differences

Let h : [a, b] → IR. Just for this subsection let us write Z
∗

= H(X) for the
extension principle method of extending h to H for X in [a, b]. We denote Z =
H(X) for the α-cut and interval arithmetic extension of h.

We know that Z can be different from Z
∗
. But for basic fuzzy arithmetic in

Section 2.3 the two methods give the same results. In the example below we
show that for h(x) = x(1−x), x in [0, 1], we can get Z

∗ 	= Z for some X in [0, 1].
What is known ([8],[21]) is that for usual functions in science and engineering
Z

∗ ≤ Z. Otherwise, there is no known necessary and sufficient conditions on h
so that Z

∗
= Z for all X in [a, b]. See also [20].

There is nothing wrong in using α-cuts and interval arithmetic to evaluate
fuzzy functions. Surely, it is user, and computer friendly. However, we should
be aware that whenever we use α-cuts plus interval arithmetic to compute
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Z = H(X) we may be getting something larger than that obtained from the
extension principle. The same results hold for functions of two or more indepen-
dent variables.

Example 2.4.3.1

The example is the simple fuzzy expression

Z = (1 −X) X, (2.34)

for X a triangular fuzzy number in [0, 1]. Let X[α] = [x1(α), x2(α)]. Using
interval arithmetic we obtain

z1(α) = (1 − x2(α))x1(α), (2.35)
z2(α) = (1 − x1(α))x2(α), (2.36)

for Z[α] = [z1(α), z2(α)], α in [0, 1].
The extension principle extends the regular equation z = (1−x)x, 0 ≤ x ≤ 1,

to fuzzy numbers as follows

Z
∗
(z) = sup

x

{
X(x)|(1 − x)x = z, 0 ≤ x ≤ 1

}
. (2.37)

Let Z
∗
[α] = [z∗1(α), z∗2(α)]. Then

z∗1(α) = min{(1 − x)x|x ∈ X [α]}, (2.38)
z∗2(α) = max{(1 − x)x|x ∈ X[α]}, (2.39)

for all 0 ≤ α ≤ 1. Now let X = (0/0.25/0.5), then x1(α) = 0.25α and x2(α) =
0.50− 0.25α. Equations (2.35) and (2.36) give Z[0.50] = [5/64, 21/64] but equa-
tions (2.38) and (2.39) produce Z

∗
[0.50] = [7/64, 15/64]. Therefore, Z

∗ 	= Z. We
do know that if each fuzzy number appears only once in the fuzzy expression, the
two methods produce the same results ([8],[21]). However, if a fuzzy number is
used more than once, as in equation (2.34), the two procedures can give different
results.

2.5 Min/Max of a Fuzzy Number

In some fuzzy optimization problems we will want to determine the values of
some decision variables y = (x1, ..., xn) that will minimize (or maximize) a fuzzy
function E(y). For each value of y we obtain a fuzzy number E(y). We have
employed the method described below in previous publications and we will not
use it in this book. We have included it so that the reader may understand our
previous solution method when we compare it to our new fuzzy Monte Carlo
procedure.

We can not minimize a fuzzy number so what we are going to do, which we have
done before ([6],[9]-[13]), is first change minE(y) into a multiobjective problem
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Fig. 2.5. Computations for the Minimum of a Fuzzy Number

and then translate the multiobjective problem into a single objective problem.
This strategy is adopted from the finance literature where they had the problem
of minimizing a random variableX whose values are constrained by a probability
density function g(x). They considered the multiobjective problem: (1) minimize
the expected value of X ; (2) minimize the variance of X ; and (3) minimize the
skewness of X to the right of the expected value. For our problem let: (1) c(y) be
the center of the core of E(y), the core of a fuzzy number is the interval where the
membership function equals one, for each y; (2) L(y) be the area under the graph
of the membership function to the left of c(y); and (3) R(y) be the area under
the graph of the membership function to the right of c(y). See Figure 2.5. For
minE(y) we substitute: (1) min[c(y)]; (2) maxL(y), or maximize the possibility
of obtaining values less than c(y); and (3)minR(y), or minimize the possibility of
obtaining values greater then c(y). So for minE(y) we have

V = (maxL(y),min[c(y)],minR(y)). (2.40)

First let M be a sufficiently large positive number so that maxL(y) is equiva-
lent to minL∗(y) where L∗(y) = M −L(y). The multiobjective problem become

minV ′ = (minL∗(y),min[c(y)],minR(y)). (2.41)

In a multiobjective optimization problem a solution is a value of the decision
variable y that produces an undominated vector V ′. Let V be the set of all
vectors V ′ obtained for all possible values of the decision variable y. Vector
va = (va1, va2, va3) dominates vector vb = (vb1, vb2, vb3), both in V , if vai ≤ vbi,
1 ≤ i ≤ 3, with one of the ≤ a strict inequality <. A vector v ∈ V is undominated
if no w ∈ V dominates v. The set of undominated vectors in V is considered the
general solution and the problem is to find values of the decision variables that
produce undominated V ′. The above definition of undominated was for a min
problem, obvious changes need to be made for a max problem.
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One way to explore the undominated set is to change the multiobjective prob-
lem into a single objective. The single objective problem is

min(λ1[M − L(y)] + λ2c(y) + λ3R(y)), (2.42)

where λi > 0, 1 ≤ i ≤ 3, λ1 + λ2 + λ3 = 1. You will get different undominated
solutions by choosing different values of λi > 0, λ1 + λ2 + λ3 = 1. It is known
that solutions to this problem are undominated, but for some problems it will
be unable to generate all undominated solutions [17]. The decision maker is to
choose the values of the weights λi for the three minimization goals. Usually
one picks different values for the λi to explore the solution set and then lets the
decision maker choose an optimal y∗ from this set of solutions.

2.6 Ordering Fuzzy Numbers

Given a finite set of fuzzy numbers A1, ..., An we would like to order them from
smallest to largest. For a finite set of real numbers there is no problem in ordering
them from smallest to largest. However, in the fuzzy case there is no universally
accepted way to do this. There are probably more than 40 methods proposed
in the literature of defining M ≤ N , for two fuzzy numbers M and N . Here
the symbol ≤ means “less than or equal” and not “a fuzzy subset of”. A few
key references on this topic are ([1],[14]-[16],[18],[23],[24]) where the interested
reader can look up many of these methods and see their comparisons.

In this section we will present three methods of defining M < N , M ≈ N and
M ≤ N for two fuzzy numbers M and N which we will be using in this book.

2.6.1 Buckley’s Method

For this book we have named this procedure Buckley’s Method because we have
used it before ([2],[3]). But note that different definitions of ≤ between fuzzy
numbers can give different orderings. We first define < between two fuzzy num-
bers M and N . Define

v(M ≤ N) = max{min(M(x), N (y))|x ≤ y}, (2.43)

which measures how much M is less than or equal to N . We write N < M if
v(N ≤ M) = 1 but v(M ≤ N) < η, where η is some fixed fraction in (0, 1]. In
this book we will usually use η = 0.8 or η = 0.9. Then N < M if v(N ≤M) = 1
and v(M ≤ N) < 0.8. We then define M ≈ N when both N < M and M < N
are false. M ≤ N means M < N or M ≈ N . Now this ≈ may not be transitive.
If N ≈ M and M ≈ O implies that N ≈ O, then ≈ is transitive. However, it
can happen that N ≈ M and M ≈ O but N < O because M lies a little to the
right of N and O lies a little to the right of M but O lies sufficiently far to the
right of N that we obtain N < O.

But this ordering is still useful in partitioning the set of fuzzy numbers Ai,
1 ≤ i ≤ n, up into disjoint sets H1, ..., HK where ([2],[3]): (1) given any Ai and
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Fig. 2.6. Determining v(N ≤ M)

Aj in Hk, 1 ≤ k ≤ K, then Ai ≈ Aj ; and (2) given Ai ∈ Hi and i < j, there
is a Aj ∈ Hj with Ai < Aj . We say a fuzzy number Ai is dominated if there is
another fuzzy number Aj so that Ai < Aj . So HK will be all the undominated
Ai. Now HK is nonempty and if it does not contain all the fuzzy numbers we
then define HK−1 to be all the undominated fuzzy numbers after we delete all
those in HK . We continue this way to the last set H1. Then the highest ranked
fuzzy numbers lie in HK , the second highest ranked fuzzy numbers are in HK−1,
etc. This result is easily seen if you graph all the fuzzy numbers on the same
axis then those in HK will be clustered together farthest to the right, proceeding
from the HK cluster to the left the next cluster will be those in HK−1, etc.

There is an easy way to determine if M < N , or M ≈ N , for many fuzzy
numbers. This will be all we need in randomness tests and Monte Carlo studies.
First, it is easy to see that if the core of N lies completely to the right of the core
of M , then v(M ≤ N) = 1. Also, if the core of M and the core of N overlap,
then M ≈ N . Now assume that the core of N lies to the right of the core of M ,
as shown in Figure 2.6 for triangular fuzzy numbers, and we wish to compute
v(N ≤ M). The value of this expression is simply y0 in Figure 2.6. In general,
for triangular (shaped), and trapezoidal (shaped), fuzzy numbers v(N ≤ M) is
the height of their intersection when the core of N lies to the right of the core
of M .

2.6.2 Kerre’s Method

We first need to present the fuzzy max (written max) of two fuzzy numbers. If
O = max(M,N), then

O(z) = sup
{
min(M(x), N (y))|max(x, y) = z

}
. (2.44)

The authors in [19] give a detailed study of the properties of max and min (fuzzy
min).



22 Fuzzy Sets

�

�

� max

max�

�A1
A2

A3

0 1 2 3 4 5 x

1
y

M N

Fig. 2.7. Fuzzy Max

Next we define the Hamming distance between M and N . The Hamming
distance, d(M,N), is defined as

d(M,N) =

∞∫
−∞

|M(x) −N(x)|dx. (2.45)

Clearly, d is a metric (distance measure) on the space of continuous fuzzy num-
bers (those whose membership function is continuous).

Then we say M < N is true whenever

d(N,max(M,N)) < d(M,max(M,N)). (2.46)

This is simply a fuzzification of x < y if and only if max(x, y) = y for real x 	= y.
We write M ≈ N if you get equality in equation (2.46) and M ≤ N means
M < N or M ≈ N . A numerical example showing M ≤ N by this method is
in ([19], p. 407 - 408). We call this procedure for evaluating fuzzy inequalities
Kerre’s method [15].

Figure 2.7 shows the fuzzy max of two fuzzy numbers. We see that d
(M,max(M,N)) is the area of regions A1 plus A3 and d(N,max(M,N)) is
the area of region A2. It appears that the area of region A2 is less than the area
of regions A1 plus A3 so M < N .

We point out from [23] that Kerre’s ≤ is transitive.

2.6.3 Chen’s Method

A third method of ranking fuzzy numbers we focus on was presented by Chen
in [15]. A score is computed for each fuzzy number which is needed for ranking.
The fuzzy set with the highest score is the largest fuzzy number. In order to
rank triangular shaped fuzzy numbers N ≈ (n1/n2/n3) and M ≈ (m1/m2/m3)
Chen defined a fuzzy max and a fuzzy min where the supports of fuzzy max and
min is [xmin, xmax] where
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Fig. 2.8. Ranking Fuzzy Numbers Based on Chen’s Method

xmin = min(n1,m1), (2.47)
xmax = max(n3,m3). (2.48)

Fuzzy min and fuzzy max are triangular fuzzy numbers with membership degree
one at the left and the right limit of the support, respectively (see Figure 2.8).
The membership functions are

μmin(x) =

⎧⎨
⎩

x−xmax
xmin−xmax

: xmin ≤ x ≤ xmax,

0 : otherwise
(2.49)

μmax(x) =

⎧⎨
⎩

x−xmin
xmax−xmin

: xmin ≤ x ≤ xmax,

0 : otherwise.
(2.50)

The intersection points between fuzzy max and M and N as well as the
intersection points between fuzzy min and M and N are needed for computing
the final scores. We compute

μR(M) = sup
x

(min(μmax(x),M (x))), (2.51)

and
μL(M) = sup

x
(min(μmin(x),M(x))), (2.52)

where μR(M) indicates the max of the intersection point between fuzzy max and
M and μL(M) stands for the left score which is given by the max intersection
point with fuzzy min. The larger μR(M) is, the higher M should be ranked. On
the other hand a high value of μL(M) and M is close to the fuzzy min, and
therefore should be ranked lower. By combining both scores we get the final
rating

μT (M) =
1
2

(
μR(M) + (1 − μL(M)

)
. (2.53)
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Similarly, we get μT (N). We then say that M < N is true if μT (M) < μT (N).
In Figure 2.8 we used the notation Lm = μL(M), Rm = μR(M), Ln = μL(N)
and Rn = μR(N ). The labeling of Lm, Rm, Ln and Rn in Figure 2.8 may be a
little misleading. These numbers are the y coordinates of the point indicated in
the figure.

We write M ≈ N when μT (M) = μT (N) and as usual M ≤ N means M < N
or M ≈ N .

We point out from [23] that Chen’s ≤ is transitive.

2.6.4 Breaking Ties

We first adopt some method of deciding on ≤, < and ≈ between fuzzy numbers.
Assume we will use Buckley’s Method. Sometimes in a fuzzy optimization prob-
lem, assume a max problem, we may get too many ties for maximum. Suppose we
wish to maxZ = f(X1, ..., Xn) where the X i are triangular fuzzy numbers and
Z is a triangular shaped fuzzy number. Using our fuzzy Monte Carlo method
we will generate a sequence Zj , j = 1, 2, 3, .... Let HK be the highest ranked
fuzzy numbers in the sequence (Section 2.6.1). But HK could contain 10, or
20, or 100 fuzzy numbers. Given Za and Zb in HK we know that Za ≈ Zb.
What we can now do is rank the fuzzy numbers in HK by their vertices. Let
Za ≈ (za1/za2/za3) and Zb ≈ (zb1/zb2/zb3). We say Za < Zb if za2 < zb2,
Za > Zb if za2 > zb2, and Za ≈ Zb if za2 = zb2. The resulting highest ranked
fuzzy numbers H∗

K should be more manageable. If we require a unique solution
and we still have “ties” then we use the left (right) end points of the support.
For example, if Za ≈ Zb and: (1) zb2 = za2 but zb1 < za1 we say Zb < Za; (2)
zb2 = za2, zb1 = za1 and zb3 < za3 we say Zb < Za; (3) zb2 = za2, zb1 = za1,
zb3 = za3 we randomly discard one of them and declare the other the max (or
min).

2.7 Undominated Fuzzy Vectors

We will first review the concept of undominated for crisp vectors. Consider a
multiobjective optimization problem

max v = (v1 = f1(x), ..., vm = fm(x)), (2.54)

where x = (x1, ..., xn) is in the feasible set F . Usually the xi are non-negative.
The optimization problem has constraints on the variables xi and F is all x
which satisfy these constraints. There will be certain changes for a min problem.

Let V be all vectors v from equation (2.54) obtained using all the x ∈ F .
Given va = (va1, ..., vam) and vb = (vb1, ..., vbm) in V we say va dominates vb if
vai ≥ vbi all i with at least one of the ≥ is equal to >. The solution set S to the
multiobjective max problem is all undominated v ∈ V . The decision maker(s),
depending on their preferences, would now choose certain v ∈ S as solutions to
the optimization problem.
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A way to generate undominated solutions is to consider the single objective
optimization problem

max( λ1f1(x) + ...+ λmfm(x) ), (2.55)

for the λi ∈ (0, 1) all i and λ1 + ... + λm = 1. It is known that all solutions
are undominated but in certain problems we may not be able to obtain all
undominated solutions by varying the values of the λi [17].

Now, as in Chapter 9, we consider a fuzzy multiobjective optimization problem

max V = (V 1 = f1(X), ..., V m = fm(X)), (2.56)

where X = (X1, ..., Xn) is in the feasible set F . Assume we are using one of
the three methods discussed above for evaluating ≤, < and ≈ between fuzzy
numbers. Usually the X i ≥ 0 all i.

Let V be all vectors V from equation (2.56) obtained using all the X ∈ F .
Given V a = (V a1, ..., V am) and V b = (V b1, ..., V bm) in V we say V a weakly dom-
inates V b if V ai ≥ V bi all i with at least one of the ≥ equal to >. We will call
this definition of dominance “weak dominance”. We will say V a strongly domi-
nates V b if V ai > V bi all i. We will employ both definitions of dominance. The
solution set S to the fuzzy multiobjective max problem is all (weakly, strongly)
undominated V ∈ V . Of course, we would like to show that this undominated
set is nonempty.

Next we change the fuzzy multiobjective optimization problem into a single
objective

max( λ1V 1 + ...+ λmV m ), (2.57)

for λi > 0 all i and λ1+...+λm = 1. We would now like to argue that any solution
to equation (2.57) is (weakly, strongly) undominated. The argument depends on
what definition for ≤, < and ≈ you are using between fuzzy numbers. All that
is needed is that if V a (weakly, strongly) dominates V b then

m∑
i=1

λiV ai >

m∑
i=1

λiV bi. (2.58)

If this is true one can easily obtain the desired result. Let us now prove this
result for the special case of m = 2 and then we consider this problem for the
three methods of defining <, ≤ and ≈ between fuzzy numbers discussed above.

We still consider the max problem with obvious changes for the min problem.
Suppose the solution to

max( λ1X1 + λ2X2 ) (2.59)

is X
∗
1 and X

∗
2 for given (and fixed) 0 < λi < 1, i = 1, 2 and λ1 +λ2 = 1. Assume

V
∗

= (X
∗
1, X

∗
2) is not (weakly, strongly) undominated but W ∈ F (weakly,

strongly) dominates V
∗
. We now consider the two cases of weak and strong

domination.
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First we assume weak domination. So X
∗
1 < W 1 and X

∗
2 ≤ W 2. Assume we

are using a method of defining ≤, < and ≈ between fuzzy numbers so that the
following two results are true.

λ1X
∗
1 < λ1W 1, λ2X

∗
2 ≤ λ2W 2, (2.60)

λ1X
∗
1 + λ2X

∗
2 < λ1W 1 + λ2W 2. (2.61)

Then V
∗

is not the optimal solution. A contradiction. So if ≤, < and ≈ has the
properties in equations (2.60) and (2.61) we get that the optimization problem
in equation (2.59) only produces weakly undominated solutions.

Next we look at strong domination. So X
∗
1 < W 1 and X

∗
2 < W 2. Assume we

are using a method of defining ≤, < and ≈ between fuzzy numbers so that the
following two results are true.

λ1X
∗
1 < λ1W 1, λ2X

∗
2 < λ2W 2, (2.62)

λ1X
∗
1 + λ2X

∗
2 < λ1W 1 + λ2W 2. (2.63)

Then V
∗

is not the optimal solution. A contradiction. So if ≤, < and ≈ has the
properties in equations (2.62) and (2.63) we get that the optimization problem
in equation (2.59) only produces strongly undominated solutions.

2.7.1 Buckley’s Method

We will use strong domination and show equation (2.63) is true for Buckley’s
Method. Let X

∗
i ≈ (xi1/xi2/xi3) and W i ≈ (wi1/wi2/wi3) for i = 1, 2. Assume

that x12 < w12 and x22 < w22 as in Figure 2.6 and we are using η = 0.8. Then
v(X

∗
i ,W i) = ηi < 0.8 and v(W i, X

∗
i ) = 1 for i = 1, 2. Assume that η1 ≤ η2.

Now let X
∗
i [η2] = [xi1(η2), xi2(η2)] and W i[η2] = [wi1(η2), wi2(η2)] for i = 1, 2.

We know that x22(η2) = w21(η2) and x12(η2) ≤ w11(η2). Now let X
∗

=
λ1X

∗
1 + λ2X

∗
2 and W = λ1W 1 + λ2W 2. We see that

X
∗
[η2] = [λ1x11(η2) + λ2x21(η2), λ1x12(η2) + λ2x22(η2)], (2.64)

and
W [η2] = [λ1w11(η2) + λ2w21(η2), λ1w12(η2) + λ2w22(η2)]. (2.65)

Therefore X
∗
< W since

λ1x12(η2) + λ2x22(η2) < λ1w11(η2) + λ2w21(η2). (2.66)

Now we can explain why we did now use weak domination. Because we can
have X

∗
1 ≈W 1, so X

∗
1 ≤W 1 is true, and X

∗
2 < W 2 but for certain values of the

λi we get X
∗ ≈W so X

∗
< W is not true.
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2.7.2 Kerre’s Method

First assume that we are using weak dominance. It was shown in [23] that if
X

∗
1 < W 1 and X

∗
2 ≤ W 2, then X

∗
1 + X

∗
2 < W 1 + W 2 may not be true. For

this reason we will not use Kerre’s Method in fuzzy multiobjective optimization
problems in Chapter 9.

2.7.3 Chen’s Method

First assume that we are using weak dominance. It was shown in [23] that if
X

∗
1 < W 1 and X

∗
2 ≤ W 2, then X

∗
1 + X

∗
2 < W 1 + W 2 may not be true. For

this reason we will not use Chen’s Method in fuzzy multiobjective optimization
problems in Chapter 9.
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3 Crisp Random Numbers and Vectors

3.1 Introduction

In this chapter we first discuss different ways to generate sequences of “random”
numbers in some interval [a, b]. Usually the random numbers are first produced in
[0, 1] and then we perform a linear transformation to get them into [a, b]. Next we
consider making sequences of random non-negative integers. We wish to produce
sequences of random vectors v = (x1, ..., xn) where the xi are real numbers, and
the randomness here means that the v will uniformly fill the space [a, b]n. These
random vectors will be used in the next chapter to generate sequences of random
fuzzy numbers.

Subsequently, vectors of so-generated random fuzzy numbers are used for
streams to feed fuzzy Monte Carlo optimization. As is shown in Chapter 4,
with a 5-tuple we can generate a fuzzy number with quadratic membership
functions. In some cases we evaluate using a vector of two or three fuzzy numbers
generated from 5-tuples. In Chapters 6 and 9, we generate pairs of fuzzy numbers
from Sobol quasi-random 10-tuples. In Chapters 7 and 8, vectors of three fuzzy
numbers generated from Sobol 15-tuples are used. Other applications are in
Chapters 10-16.

3.2 Random Numbers

We could have chosen to generate fuzzy numbers whenever they are needed;
however, we wish to study the crisp numbers from which they are made, and we
wish to study fuzzy numbers generated in various ways from those streams of
crisp numbers. We expand upon a computer program from [2] to create streams of
crisp numbers for which we simultaneously evaluate randomness. Our application
from [2], RNGenerator, has several new features noted below. RNGenerator may
be linked with any of several random number (RN) generator subroutines. The
ones which we used were:

1. True Random: A million 8-bit (in binary notation) true random numbers
were downloaded from http://www.random.org. This routine supplies one

J.J. Buckley et al.: Monte Carlo Meth. in Fuzzy Optimization, STUDFUZZ 222, pp. 29–34, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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16-bit true random integer (concatenate two 8-bit bytes), sequentially from
that list, with each call.

2. Pseudo-Random: This routine supplies one 16-bit pseudo-random integer.
From the C library’s rand() function (Visual C++) with each call, we first
obtain a pseudo-random integer in the interval [0,32767]. We multiply that
value times 2 to create an even integer in [0,65534]. Since we will be scaling
further to [0,1) for a χ2 test, having even pseudo-random integers is not a
concern.

3. Quasi-Random: Several quasi-random number routines from Burkardt [12]
were used as the bases for quasi-random integer generators (Section 7.7,
“Quasi-Random Sequences,” from [10] provides background to Sobol se-
quences).
The routines are designed to create n-tuples of crisp 16-bit integers, where
n is user specified. To make their use compatible with the other random
number generators, our generators release integers one at a time with each
call. We are particularly interested in Sobol quasi-random integers because
of our prior work ([1],[2]), and because Sobol sequences are reasonably well
known and we have used them with MATLAB [9].

3.2.1 Quasi-random Sequences

Quasi-random numbers are also known as Low Discrepancy Points (LDP) or
low discrepancy sequences. They are called quasi-random because they possess
many attributes of random numbers, but they are truly not random. Rather
they are designed to be less random and more uniformly distributed than Linear
Congruential Generated (LCG) pseudo-random numbers. Their other name, Low
Discrepancy Points, may be more appropriate though less catchy. The following
excerpt from [7] is instructive to the goal of LDPs:

[Begin] with a unit hypercube that is, a cube of more than three di-
mensions. Each edge of the cube has a length of 1 unit, so its volume
is 1. Lets assume a large number of points are to be distributed within
the cube. How can these points be distributed in such a way that, if
any volume in the cube is selected, the proportion of the points within
the volume is as close to the volume itself? . . . Points that provide, on
average, a close fit between the volume and proportion numbers provide
a low discrepancy thus, their name.

Many quasi-random number algorithms have been designed. The Van der
Corput Sequence (1935) [11] generates LDPs in just one dimension [6]. Others
have since been designed to provide LDPs in higher dimensions. Some of the best
known are Halton (1960), Hammersley (1960), Sobol (1967), Faure (1980), and
Niederreiter (1987) [11] Because quasi-random numbers provide more uniform
coverage to a space than pseudo-random numbers, they are “at the forefront
of financial mathematics” [8]. Algorithms for them are available from various
sources including the Association for Computing Machinery (ACM).
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Table 3.1. Random Number Generator χ2 Tests, N=500,000, bins=10, 9 df

type tuples χ2 Min Max Equal Pairs
Pseudo 1 9.793000 0 65534 10
True 1 7.073160 0 65535 6
Faure 2 0.007280 0 65534 829
Halton 2 0.011480 0 65534 10

Neiderreiter 2 0.007520 0 65534 864
Sobol 2 0.007600 0 65534 865
Faure 3 0.020880 0 65534 352
Halton 3 0.017680 0 65534 10

Neiderreiter 3 0.007400 0 65534 529
Sobol 3 0.006840 0 65534 530
Faure 5 0.082480 0 65534 339
Halton 5 0.017280 0 65534 10

Neiderreiter 5 0.003800 0 65534 332
Sobol 5 0.006520 0 65534 349
Faure 6 0.060400 0 65533 0
Halton 6 0.031800 0 65534 14

Neiderreiter 6 0.009360 0 65534 332
Sobol 6 0.014720 0 65534 411
Faure 9 0.700920 0 65531 0
Halton 9 0.057960 0 65533 11

Neiderreiter 9 0.007440 0 65534 356
Sobol 9 0.021720 0 65534 423
Faure 10 0.456000 0 65531 0
Halton 10 0.067400 0 65533 11

Neiderreiter 10 0.007840 0 65534 365
Sobol 10 0.013440 0 65534 411
Faure 15 4.328640 0 65534 0
Halton 15 0.203560 0 65533 13

Neiderreiter 15 0.020840 0 65534 411
Sobol 15 0.039640 0 65533 470

3.2.2 Random Number Generator

RNGenerator does statistics on the stream of RNs it generates. The 16-bit inte-
gers are scaled to [0,1) by division by 65536. A chi-square test is done for 10 bins
(9 degrees of freedom) on 500,000 random numbers generated by each method.
Though we do not use many of the streams later in this book, we provide our
findings for comparison. In Table 3.1: (1) “type” is the type of generator used
for the stream; (2) “tuple” is the number of integers the generator creates at a
time; (3) “χ2” is the value of the chi-square statistic; (4) “Min” is the small-
est random number produced; (5) “Max” is the value of the largest random
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number generated; and (6) “Equal Pairs” means that two consecutively gener-
ated random numbers were equal.

The chi-square test was the standard randomness test applied to sequences
of real numbers. The null hypothesis is H0 that the sequence is random and the
alternate hypothesis is H1 that the sequence is not random. The significance
level of the test was γ = 0.05. We place the random numbers into 10 equally
spaced bins where, assuming H0 is true, the expected number in each bin would
be 500, 000/10. The critical value is χ2 = 16.9190 for 9 degrees of freedom. So
the true random numbers and the pseudo-random numbers pass the randomness
test (do not reject H0). Moreover, the quasi-random numbers also pass the ran-
domness test (do not reject H0). The use of the quasi-random numbers will be
explained in Section 3.4.

3.3 Random Non-negative Integers

Suppose we want a random sequence z1, z2, z3, ... of non-negative integers in
some interval [a, b], a ≥ 0. We can use a pseudo-random number generator to
first get a random sequence x1, x2, x3, ... in [0, 1). We next transform the xi into
the interval [a−0.5, b+0.5]. Let yi = (b−a+1)xi +(a−0.5), i = 1, 2, 3, .... If the
decimal part of yi is less than 0.5 round yi down to zi and if the decimal part of yi

is greater than 0.5 round yi up to zi, i = 1, 2, 3, .... In case the decimal part of yi

equals 0.5 round yi to the nearest even integer for zi. Even non-negative integers
are 0, 2, 4, .... Random sequences of vectors whose components are non-negative
integers, is discussed in Section 3.5.

3.4 Random Vectors: Real Numbers

Using quasi-random numbers in [0, 1] we make vectors v = (x1, ..., xn) that
should uniformly fill the region [0, 1]n. We can then easily adjust these vectors
so that they uniformly fill the space [a, b]n. It is well known ([3],[4],[10]) that
if a pseudo-random number generator is used to produce sequences of vectors
v ∈ [a, b]n, and we plot their values, then there will be clusters and vacant regions
in [a, b]n. Quasi-random number generators are designed to avoid this problem
and uniformly fill the space [a, b]n.

Put “quasi-Monte Carlo simulation” into your search engine and get almost
700 web sites to visit. Another search phrase “low discrepancy numbers” could
be used. We downloaded a MATLAB program for Sobol quasi-random vectors
from [12]. When you run this program with small initial seeds it obviously does
not start off “random”. You need to discard the first few vectors and in [13] it
is recommended that you delete the first 64 vectors. With large initial seeds we
did not have this problem. We now generated N quasi-random vectors of length
7 using this MATLAB program, to be used in Chapter 4 to produce a random
sequence of quadratic fuzzy numbers, and tested them for randomness.
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We divided [0, 1] up into four equal intervals, in each of the seven dimensions
in [0, 1]7, and we call these intervals I1 = [0.00, 0.25), I2 = [0.25, 0.5), I3 =
[0.5, 0.75) and I4 = [0.75, 1.00]. We then construct K = 47 boxes

B(ijklmnp) = Ii × Ij × ...× Ip, (3.1)

in [0, 1]7. Each vector v = (x1, ..., x7) will fall into a unique box and for N vectors
let O(ijklmnp) be the number of vectors that were in box B(ijklmnp). In this
statistical test the null hypothesis is H0 that the sequence of vectors is random
and the alternative hypothesis H1 is that the sequence is not random. Let the
significance level γ of the test be 0.05. This will be a chi-square goodness of fit
test.

Under the randomness assumption of the null hypothesis the probability of an
xi in v being in an interval Iq, q = 1, 2, 3, 4, is 1

4 , for i = 1, ..., 7. So the expected
number of vectors in any box is

E =
N

47
. (3.2)

For the chi-square test we would like E to be at least five so we choose N =
100, 000.

Let θ be the degrees of freedom of the test and then the critical value for the
test will be cv so that the probability of a chi-square random variable χ2, with
degrees of freedom θ, exceeding cv is equal to γ = 0.05. The chi-square random
variable for this test is

χ2 =
∑

boxes

(O(ijklmnp) − E)2

E
. (3.3)

Next we need to determine the degrees of freedom θ and the critical value cv.
Now [5]

θ = (47 − 1) − [(7)(3)] = 16362, (3.4)

because: (1) we loose one degree of freedom because the sum of the O(ijklnmp)
must equal N ; and (2) we loose three degrees of freedom for each dimension
because we must specify three of the probabilities, since their sum is one, pi =
the probability of xi being in Ii, i = 1, 2, 3. Since the degrees of freedom is so
large we must use the approximation [5]

cv = 0.5(z +
√

2θ − 1)2, (3.5)

where z is the corresponding critical value of the standard normal distribution.
We calculate cv = 16718.

We wrote a program in MATLAB to run this test. The value we obtained
for the test statistic χ2 was 9935.7 < cv and we do not reject H0. We ran the
program again but this time the seed used to produce the vector of length seven
was computed from the clock in the computer. The result was χ2 = 10, 036 < cv
with no rejection of the null hypothesis. This does not prove “randomness” but
it gives us confidence to use this MATLAB program to produce sequences of
vectors in [0, 1]n, n ≥ 2, for our fuzzy Monte Carlo studies.
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3.5 Random Vectors: Non-negative Integers

Now we want sequences of vectors v = (x1, ..., xn), where each xi is a non-
negative integer in [a, b], so that the v should uniformly fill the region I ∩ [a, b]n,
a ≥ 0, where I denotes integers. This may be used in Chapters 18, 20-23, and
25-26. Use a quasi-random number generator to get v with each xi ∈ [0, 1). Set
w = (a− b+1)v+ (a− 0.5) which puts each xi ∈ [a− 0.5, b+ 0.5]. Round the xi

to integers as follows: (1) if the decimal part of xi is less than 0.5 round down to
yi; (2) if the decimal part of xi is greater than 0.5 found up to yi; and (3) if the
decimal part of xi equals 0.5 round to the nearest even integer yi. The vector
u = (y1, ..., yn) is what we want.
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4 Random Fuzzy Numbers and Vectors

4.1 Introduction

We first discuss how we plan to produce random triangular (trapezoidal) fuzzy
numbers. Then we define quadratic fuzzy numbers and show how we can produce
random sequences of these fuzzy numbers using sequences of random vectors of
real numbers. Random quadratic fuzzy numbers are used in Chapters 10 and
27. In the last section we consider producing random sequences of fuzzy vectors
V = (X1, ..., Xn) where the X i are triangular/trapezoidal fuzzy numbers or
quadratic fuzzy numbers. These random sequences of fuzzy vectors have appli-
cations throughout these chapters; triangular fuzzy numbers (TFNs) in Chapters
11-12, 15-17; trapezoidal fuzzy numbers (TrFNs) in Chapter 13; and QBGFNs
(defined below) in Chapters 6-10, 19 and 27. We also abbreviate “fuzzy num-
bers” as FNs. Trapezoidal shaped fuzzy numbers have applications in Chapters
13, 20-22 and 26.

4.2 Random Triangular/Trapezoidal Fuzzy Numbers

First consider producing a random sequence of triangular fuzzy numbers in an
interval [a, b]. We want to create the sequence Xi = (xi1/xi2/xi3), i = 1, 2, 3, ...,
with X i ∈ [a, b] all i. Using our Sobol quasi-random number generator (Chapter
3), we take three consecutively generated numbers and order them. Thus we
make a sequence of random vectors vi = (zi1, zi2, zi3), zi1 < zi2 < zi3, i =
1, 2, 3, ... in [0, 1]3. Then set xij = (b− a)zij + a, j = 1, 2, 3 and i = 1, 2, 3, ....

Now consider making a random sequence of trapezoidal fuzzy numbers in
[a, b]. Assume the sequence is Xi = (xi1/xi2, xi3/xi4), i = 1, 2, 3, .... Using our
Sobol quasi-random number generator (Chapter 3) we take four consecutively
generated numbers and order them. Thus we make a sequence of random vectors
vi = (zi1, zi2, zi3, zi4), zi1 < zi2 < zi3 < zi4, i = 1, 2, 3, ... in [0, 1]4. Then set
xij = (b − a)zij + a, j = 1, 2, 3, 4 and i = 1, 2, 3, .... We will use these random
FNs in Section 4.5.

J.J. Buckley et al.: Monte Carlo Meth. in Fuzzy Optimization, STUDFUZZ 222, pp. 35–42, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 4.1. Random Quadratic Fuzzy Number N : Case 1

4.3 Random Quadratic Fuzzy Numbers

4.3.1 Generated from Implicit Quadratic Functions

Let N ≈ (n1/n2/n3), or ≈ (n1/n2, n3/n4), in [0, 1] be a triangular/trapezoidal
shaped fuzzy number. In this section we will discuss how we plan to produce a
sequence of random triangular/trapezoidal shaped fuzzy numbers in some inter-
val [a, b]. We first make N in [0, 1] and multiply by b − a and add a to get it
into [a, b]. We always start out trying to make a triangular shaped fuzzy number
but sometimes, as we show below, it turns out to be a trapezoidal shaped fuzzy
number.

Let y = f1(x) denote the function that makes the left side of the membership
function y = N(x), 0 ≤ y ≤ 1, n1 ≤ x ≤ n2. We assume that f1(x) is continuous
and strictly increasing with f1(n1) = 0 and f1(n2) = 1. Next let y = f2(x) denote
the function that makes the right side of the membership function y = N(x),
0 ≤ y ≤ 1, n2 ≤ x ≤ n3. We assume that f2(x) is continuous and strictly
decreasing with f2(n2) = 1 and f2(n3) = 0. Notice that if we substitute α for y
an α-cut of N can be written [f−1

1 (α), f−1
2 (α)].

In this chapter we will use quadratic functions for the fi(x). Let ai1x
2+ai2x+

ai3 = fi(x), i = 1, 2. We may extend the results to higher order polynomials.
Now choose n11 and n21 so that n1 < n11 < n2, n2 < n21 < n3, and then choose
y1, y2 in (0, 1). The left side of N will be determined by the three points (n1, 0),
(n11, y1), (n2, 1) because these three points, assuming they do not lie in a straight
line, uniquely determine the a1j in y = a11x

2 + a12x + a13. The right side of
N will be determined by the three points (n2, 1), (n21, y2), (n3, 0) because these
three points, assuming they do not lie in a straight line, uniquely determine the



Random Quadratic Fuzzy Numbers 37

Fig. 4.2. Random Quadratic Fuzzy Number N : Case 2

a2j in y = a21x
2 + a22x + a23. So we require the seven numbers n1, n11, y1,

n3, n21, y2 and n3 to construct our triangular shaped fuzzy number N . We will
call these fuzzy numbers quadratic fuzzy numbers because they have quadratic
membership functions. In the case of Figure 4.1 it is also a triangular shaped
fuzzy number. As shown in Figure 4.2 this method may result in a trapezoidal
shaped fuzzy number or a triangular shaped fuzzy number. One can identify
nine different cases of quadratic fuzzy numbers; we have shown one case which
results in a trapezoidal shaped fuzzy number for which the left support and the
right extent of the core must yet be determined.

To randomly generate a Case 1 N in [0, 1] we randomly produce random num-
bers x1, ..., x7 in [0, 1], using our Sobol quasi-random number generator (Chapter
3), giving the random vector w = (x1, ..., x7) ∈ [0, 1]7. In w first randomly choose
two values say, for example, x3 and x6. Then set y1 = x3 and y2 = x6. Now or-
der the remaining five numbers from smallest to largest giving, for example,
x5 < x2 < x7 < x1 < x4. Then define n1 = x5, n11 = x2, n2 = x7, n21 = x1 and
n3 = x4. We now have the five points to get triangular shaped fuzzy number N .
See Figure 4.1.

However, there are problems with constructing quadratic fuzzy numbers this
way. The graph of the left side of the quadratic fuzzy number between n1 and
n2 in Figure 4.1 may go above y = 1 or below y = 0, but not both. This may
happen as in Figure 4.2. Then we use either min{f1(x), 1} or max{f1(x), 0} for
the left side. Also, the graph of the right side of the quadratic fuzzy number
between n2 and n3 in Figure 4.1 may go above y = 1 or below y = 0, but not
both. This may happen as in Figure 4.2. Then we use either min{f2(x), 1} or
max{f2(x), 0} for the right side. This produces eight more cases of quadratic
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fuzzy numbers, some trapezoidal shaped fuzzy numbers having quadratic sides,
some triangular shaped fuzzy numbers with quadratic sides. But in all cases
the sides of the fuzzy number are described by quadratic functions. These cases
make up all our quadratic fuzzy numbers to be randomly generated from random
vectors w = (x1, ..., x7).

Because of the problems discussed above, curves going above (below) the
horizontal line y = 1 (y = 0), we will not use this method of generating random
quadratic fuzzy numbers in this book. Instead, we will employ the procedure
outlined in the next section.

4.3.2 Generated from Parametric Quadratic Functions, Bézier
Fuzzy Numbers

We now show that we can also generate random triangular shaped fuzzy numbers
using random vectors w = (x1, ..., x5) ∈ [0, 1]5 of length five. The definition and
properties of Bézier generated fuzzy numbers (BGFNs) is a result of research on
random fuzzy numbers done by Leonard Jowers at the University of Alabama at
Birmingham [2]. Bézier generated fuzzy numbers have a 100% yield of triangular
shaped FNs. What happened in Figure 4.2 will not occur now. Methods for two
types of BGFNs are given in [3]. Here we only discuss those which result in FNs
which have quadratic membership functions, quadratic Bézier generated fuzzy
numbers (QBGFNs) are FNs whose membership functions, left and right, are
defined by parabolas generated from Bézier curves [1]. Yet another representa-
tion having membership functions consisting of hyperbolas, ellipses, a line and
a parabola may be generated from weighted quadratic rational Bézier curves;
however, those conic Bézier generated fuzzy numbers (CBGFNs) do not gener-
ate quadratic membership functions in their explicit forms and are not used in
this book.

A full explanation of QBGFNs is lengthy and beyond the scope here. How-
ever, a full explanation is available in [3], which includes how one may generate
QBGFNs (parabolic) or CBGFNs, and recover their explicit forms.

Creation of Bézier curves can be visualized through de Castlejau’s Algorithm
[1]. Given three control points, b0, b1, b2, we create a curve as a moving point,
b20 (Figure 4.3), on a moving line, b10b

1
1. Both move, maintaining the relationship

b0b10 is to b10b1, as b1b11 is to b11b2, as b10b
2
0 is to b20b

1
1. The point b20 is determined

by repeated linear interpolation.
A quadratic Bézier curve is an arc length parameterization, t restricted to

[0, 1], of a parabola. Where bi is
[
xi yi

]T

, we have
⎡
⎣x(t)
y(t)

⎤
⎦ = (1 − t)2b0 + 2(1 − t)tb1 + t2b2. (4.1)

b0, b1, and b2 are coefficients to Bernstein polynomials, Bk,n(t) =
(
n
k

)
tk(1 −

t)n−k, of degree 2; that is, B0,2 = (1 − t)2, B1,2 = 2(1 − t)t, and B2,2 = t2.
Bernstein polynomials of degree n are the terms of the expansion of [(1− t)+ t]n.
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Fig. 4.3. A point, b2
0, in de Castlejau’s Algorithm

We now define quadratic Bézier generated fuzzy numbers (QBGFNs) as fuzzy
numbers (FNs) whose membership function is a pair of quadratic Bézier curves
[2]. This representation requires a vector of length 5. We produce a quadratic
fuzzy number from a “random” vector v = (z1, ..., z5) generated from some
‘random’ method. Three elements of a vector of length 5 define a TFN template
of a QBGFN. The two additional elements define the shape of the left and right
membership functions.

First we specify the range over which we allow the support, which we now
assume to be [0,M ],M > 0. A stream of crisp random integers gives a vector v of
length 5 and we first map each component into [0,1]. So assume v = (z1, ..., z5),
zi ∈ [0, 1] all i. Let the final “random” vector, used for the quadratic fuzzy
number A be w = (x1, ..., x5). However, our construction is to first determine
the support and vertex of a TFN, then a parameter for left (right) side of the
membership function. The first three elements of the vector v are sorted to create
z2 < z1 < z3, then x1 = Mz2, x2 = Mz1, x3 = Mz3 and the TFN is (x1/x2/x3)
in [0,M ]. Next z4 (z5) are transformed into x4 (x5) which produce the quadratic
membership function for the left (right) side the quadratic fuzzy number A.

The left membership function is defined in the following manner. z4 is mapped
to x4 by x4 = (2z4 − 1) × ((x2 − x1) + 1) (similarly, x5 is computed from z5 as
x5 = (2z5−1)×((x3−x2)+1)). x4 will be in [−(x2−x1+1),(x2−x1+1)]. If x4 < 0,
x4 defines a Bézier control point on the path counterclockwise from (x1, 0) to
(x2, 0) to (x2, 1). |x4| is the Manhattan distance from (x1, 0) along that path.
See b0, b1 and b2 in Figure 4.4, the Bézier control points for the left membership
function. One may see that, if x4 < 0, the Bézier control points of the left
membership are either {(x1, 0), (|x4|, 0), (x2, 1)} for |x4| the distance between
(x1, 0) and (x2, 0), or {(x1, 0), (x2, |x4 − (x2 −x1)|), (x2, 1)} for |x4| greater than
the distance between (x1, 0) and (x2, 0), Otherwise, x4 ≥ 0 similarly defines a
Bézier control point on the path clockwise from (x1, 0) to (x1, 1) to (x2, 1).
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Fig. 4.4. A Parabolic QBGFN Fuzzy Number A

The same process is used to determine the Bézier control points b′0, b′1 and b′2
(see Figure 4.4) for the right membership function.

In [3] we show how a Bézier curve may be converted into its implicit form;
i.e., y = f(x). Additionally there, we show a quadratic Bézier is converted to an
implicit quadratic polynomial function.

These QBGFNs are used extensively in Chapters 6-10 and their use is pro-
posed in Chapters 19 and 27.

4.4 Comparison of Random Fuzzy Vectors

In our evaluation of streams of FNs, to be continued in the next chapter, we
investigated our algorithms for comparing fuzzy numbers. For Buckley’s method
(Section 2.6.1) we evaluated the effect of choices of threshold values. Buckley
thresholds of 0.7, 0.8, and 0.9 were evaluated. 0.7 generated an excessive num-
ber of “equal” results. 0.9 appeared too much like a vertex comparison. We
determined that a Buckley threshold of 0.8 provided an acceptable comparison.

We also investigated differences among our three chosen comparison methods,
Buckley, Kerre (Section 2.6.2), and Chen (Section 2.6.3). 10, 000 FNs created
using various crisp input streams were evaluated. In Table 4.1 “Type FN” refers
to the type of input stream; for example, “Sobol 10” is for QBGFNs generated
from Sobol quasi-random numbers which had been generated 10 at a time (as
10-tuples). Given two fuzzy numbers M and N , using any one of the three
comparison methods, only one of the ordering results M < N , or M ≈ N , or
M > N can be true. “All Agree” are the number times all three methods agreed
upon the order of a pair of FNs. “Non-agree” represents the rest of the 10, 000.
“B&K agree” are the number of times that Buckley and Kerre agree when Chen
did not. “B&C agree” are the number of times that Buckley and Chen agree
when Kerre did not. “K&C agree” are the number of times that Kerre and
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Table 4.1. Comparison of Buckley (0.8), Kerre, and Chen Methods

All Non- B&K B&C K&C All
Type FN agree agree agree agree agree disagree
QBGFN
Pseudo 7984 2016 289 267 1424 36
True 8032 1968 249 309 1384 26
Faure 5 6402 3598 105 100 3363 30
Halton 5 8151 1849 240 275 1284 50
Niederreiter 5 8471 1529 180 176 1157 16
Sobol 5 8667 1333 86 121 1109 17
Faure 10 8019 1981 280 257 1410 34
Halton 10 8039 1961 275 259 1390 37
Niederreiter 10 7953 2047 286 267 1472 22
Sobol 10 7956 2044 283 288 1440 33
Faure 15 8155 1845 200 264 1356 25
Halton 15 7977 2023 307 270 1417 29
Niederreiter 15 7961 2039 300 270 1425 44
Sobol 15 8022 1978 276 267 1398 37
TFN
Pseudo 8499 1501 203 202 1050 46
True 8461 1539 211 236 1065 27

Chen agree when Buckley did not. “All disagree” are the number of times that
each gave a different result. An example of an “All disagree” situation could be:
Buckley’s method says M < N , Kerre’s procedure implies M ≈ N , but Chen’s
way gives M > N .

Table 4.1 shows that results did not greatly vary among FNs generated from
our various streams of crisp random numbers. We also found that results did
not vary greatly between QBGFNs and TFNs. We found that Kerre’s method
(Section 2.6.2) and Chen’s method (Section 2.6.3) agreed on average for almost
95% of the comparisons. In Table 4.1, one may add columns “All agree” and
“K&C agree”, for any row, to see that for the 10, 000 comparisons about 9, 500
show the same result for Kerre’s and Chen’s methods. Now both Kerre’s method
and Chen’s method are used in Chapters 6-8, so we will not be too surprised if
they give similar results. Buckley’s method is not used in Chapters 6-8 but will
be employed in the rest of the book.

4.5 Random Fuzzy Vectors

We first look at obtaining sequences of random fuzzy vectors whose components
are all quadratic fuzzy numbers. Suppose we want V i = (X i1, Xi2, Xi3), i =
1, 2, 3, .... Using our quasi-random number generator we get a sequence of random
vectors vi = (xi1, ..., xi5), i = 1, 2, 3, .... We take v1 for X11, v2 for X12, v3 for
X13, etc. We could also make vi have length 15 and take the first five components



42 Random Fuzzy Numbers and Vectors

for X i1, the second five components for Xi2, etc. We will usually use the first
method.

If we wanted a sequence of random fuzzy vectors V i whose components are
all TFNs we may use random crisp vectors vi of length nine. Take the first three
components to make X i1, etc. For random fuzzy vectors of trapezoidal fuzzy
numbers we can use random crisp vectors of length 12 using the first four for
Xi1, etc.
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5 Tests for Randomness

5.1 Introduction

Any sequence claimed to be random, real numbers or fuzzy numbers, must be
tested for randomness. We first test our sequence of fuzzy random numbers, ob-
tained from Sobol quasi-random numbers, for randomness using a run test and
then a frequency test. We identified two types of triangular shaped fuzzy num-
bers from Chapter 4: (1) quadratic fuzzy numbers generated from 7-tuples; and
(2) quadratic Bézier generated fuzzy numbers (QBGFNs). For reasons given there
we direct our attention to QBGFNs. A run test depends on what definition of ≤
between fuzzy numbers we are using. So we do the run test three times on the
Bézier fuzzy numbers; first using Buckley’s Method of≤ (Section 2.6.1) next using
Kerre’s Method of ≤ (Section 2.6.2) and lastly using Chen’s Method of ≤ (Section
2.6.3). We must also test our sequence of random fuzzy vectors for randomness.
We have seen that sequences of random numbers can pass randomness tests but
when they are used to build vectors the resulting sequence of vectors can fail ran-
domness tests (Chapter 3). We will test our sequences of random vectors, whose
components are all TFNs, for randomness using a chi-square test.

Actually, these randomness tests are not too important. We plan to use our
sequences of random fuzzy numbers/vectors to generate approximate solutions to
fuzzy optimizations problems. What is important is for our method to uniformly
fill the search space to a fuzzy optimization problem. We argue that this is true
in the last section in this chapter.

5.2 Random Fuzzy Numbers

The first test is the run test. A frequency (chi-square) test is at the end of this
section.

5.2.1 Run Test

Assume we have a sequence of triangular shaped fuzzy numbers N i, i = 1, 2, 3,
..., n, in [0,M ] which we want to test for randomness. There are many randomness

J.J. Buckley et al.: Monte Carlo Meth. in Fuzzy Optimization, STUDFUZZ 222, pp. 43–53, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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tests for sequences of real numbers ([3],[7]). But, most are not readily adapted
to fuzzy numbers. The “run test” looks to be one of the easier to apply to fuzzy
numbers and we will use it in this section. Make a new sequence using the symbols
+, 0 and − as follows: (1) if N i < N i+1 use +; (2) if N i ≈ N i+1 use 0; and (3)
if N i > N i+1 use −. From the original sequence of fuzzy numbers we get, for
example

++0−−−++++++00−−−−−....0++++++−−−−−++++++−−−−−−,
(5.1)

if n = 56. Now in the run test, applied to real number sequences, there will be
no zeros. We will omit all the zeros and we obtain

++−−−++++++−−−−−++++...++++++−−−−−++++++−−−−−−,
(5.2)

for n = 50. We count the total number of runs with the first run ++, the second
run −−−, third run + ++ +++, etc. In our example above assume we get the
total runs s = 10.

We do a statistical hypothesis test with null hypothesis H0 the sequence of
fuzzy numbers is random and the alternative hypothesis H1 that the sequence
is not random. We choose the level of significance (type I error) to be γ = 0.05.
Under the null hypothesis the mean of s is (2n − 1)/3 and the variance of s is
(16n−29)/90. Also, we know that for large samples (say n ≥ 50) the distribution
of s is approximately normal ([3],[7]). In our example we have n = 50, the mean of
s is 33 and the variance equals 8.5667. Doing a two sided test, and incorporating
a continuity correction of 0.5, the left critical region is

(s+ 0.5 − 33)/
√

8.5667 ≤ −1.96, (5.3)

and the right critical region is

(s− 0.5 − 33)/
√

8.5667 ≥ 1.96. (5.4)

So we reject H0 when s ≤ 26 or s ≥ 40. In our example with s = 10 we reject
H0 and conclude that this sequence of fuzzy numbers is not random.

The left critical value guards against trends and the right critical value guards
against cycles. A trend would be a sequences of increasing, or decreasing, fuzzy
numbers leading to too few runs and s ≤ 26. Cycles would produce something
like + + −− + + −− + + −− .... and too many runs with s ≥ 40.

There are two other variations on the run test that could be used. Let M
be the median of the sequence N i, i = 1, ..., n. The fuzzy median of a finite
sequence of fuzzy numbers would need to be defined. Make a new sequence
using the symbols +, 0 and − as follows: (1) if N i < M use −; (2) if N i ≈ M
use 0; and (3) if N i > M use +. Omit the zeros. Count the runs below the
median, count the runs above the median and let s be the total number of runs.
Then using a normal approximation, similar to equations (5.3) and (5.4), we can
do the hypothesis test of H0 it is a random sequence versus H1 it is not random
([4],[7]). A third test involves using the first sequence of +′s and −′s described
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Table 5.1. Run Test on QBGFNs: Buckley

Reject H0 Reject H0

Type mean σ2 min max γ = 0.05% γ = 0.01%
True 65.64 4.4256 57 79 5 1
Pseudo 65.47 3.9631 55 76 3 1
Sobol 5 76.68 3.0711 69 84 67 54
Faure 5 43.97 1.9871 39 49 100 100
Halton 5 66.47 3.1187 59 75 0 0
Niederreiter 5 73.82 3.5316 66 80 39 24
Sobol 10 58.13 3.4979 52 65 44 35
Faure 10 94.55 2.8047 87 100 100 100
Halton 10 73.63 3.9097 66 82 35 25
Niederreiter 10 58.36 3.8046 51 72 39 31
Sobol 15 66.35 5.2597 55 79 8 4
Faure 15 65.39 4.7798 32 69 6 4
Halton 15 65.46 2.6263 59 71 0 0
Niederreiter 15 65.94 7.4262 47 84 21 17

above, not constructed from the median, and counting the length of a run of +′s
or a run of −′s. An asymptotically chi-square distributed test statistic based on
the number of runs of length L = 1, 2, 3, 4, 5 and L ≥ 6 is given in [5]. However,
the author in [5] suggests a sample size of n ≥ 4000 for a good approximation.
But we shall use only the first run test given in equations (5.3) and (5.4) in this
chapter.

Run Test, Buckley’s Method

Using streams of 500,000 “random” numbers generated by the various methods
discussed in Chapter 3, we may create quadratic fuzzy numbers (Chapter 4)
either from 7-tuples as implicitly generated quadratic fuzzy numbers, or from 5-
tuples as quadratic Bézier generated fuzzy numbers, display them, and compute
statistics for the run test. As explained in Section 4.3.2, to increase the yield of
triangular shaped FNs, we work in Chapters 6-10 with quadratic Bézier gener-
ated fuzzy numbers (QBGFNs). As explained in Section 3.4 to reduce the effect
of the “curse of dimensionality” on randomness for multi-dimensional vectors,
we will use the quasi-random procedure to get random vectors that will define
our fuzzy numbers.

In our computer program FuzzyRunsTest, as we create these QBGFNs, we
apply the run test described above. Let the sequence of random fuzzy numbers be
A1,.....,An. The method used to decide on Ai < Ai+1, Ai ≈ Ai+1 and Ai > Ai+1

is discussed in Section 2.6.1 using η = 0.8. If in the comparison of two fuzzy
numbers in the sequence we get Ai ≈ Ai+1, then we discard (reject) Ai+1. Each
test consists of evaluating QBGFNs until 100 are accepted. For a stream of 100
accepted fuzzy numbers, as we showed above for 50, the mean is 66.33334 and
the variance is 17.45556. If γ = 0.05 the null hypothesis (that the stream is
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Fig. 5.1. Results on the Number of Runs Using ‘Sobol 15’ Quasi-Random Numbers
& Buckley’s Comparison Method

random) is rejected, if the number of runs is ≤ 57 or ≥ 76 (similar to equations
(5.3) and (5.4)). When γ = 0.01, we reject the null hypothesis if the number of
runs is ≤ 55 or ≥ 78.

We replicated the test 100 times using Buckley’s comparison method. We
show, in Table 5.1, results for streams of quadratic fuzzy numbers generated
from various streams of crisp numbers. We used true random, pseudo-random,
and four types of quasi-random numbers (Sobol, Faure, Halton, and Niederre-
iter). In Table 5.1 “Reject H0” means the number of times, in 100 test runs,
we rejected the null hypothesis of randomness. Notice from Table 5.1 how the
null hypothesis of randomness shows a wide range of results for the various
quasi-random numbers investigated. Using γ = 0.05 (γ = 0.01) we would ex-
pect rejection, assuming randomness, on the average 5 times (one time) for 100
tests. Others ([1],[2],[6]) have also noted sensitivity of quasi-random numbers to
dimension and starting values.

We notice from Table 5.5 that the results for “Halton 5” and “Halton 15”
are good but those for “Faure 5” and “Faure 10” are surprisingly non-random.
The results for “Sobol 15” are not too bad. See also Figure 5.1. We will be us-
ing the Sobol quasi-random number generator in the rest of the book starting
in the next chapter. The key question is: will this quasi-random number gen-
erator randomly produce sequences of random fuzzy numbers/vectors that uni-
formly fill the search space for a fuzzy optimization problem? This is discussed in
Section 5.3.
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Table 5.2. Run Test on QBGFNs: Kerre

Reject H0 Reject H0

Type mean σ2 min max γ = 0.05% γ = 0.01%
True 66.76 4.4384 56 75 2 1
Pseudo 67.75 4.1739 58 79 4 4
Sobol 5 79.57 2.5947 73 86 94 91
Faure 5 34.48 2.5445 28 40 100 100
Halton 5 67.05 3.0264 61 75 0 0
Niederreiter 5 74.78 2.1676 70 80 40 16
Sobol 10 57.71 3.0527 51 65 50 40
Faure 10 95.17 2.5783 90 100 100 100
Halton 10 72.67 4.4813 61 82 24 18
Niederreiter 10 55.57 2.9310 50 64 80 64
Sobol 15 67.13 5.8855 53 84 13 11
Faure 15 67.00 1.3707 56 70 1 1
Halton 15 66.67 2.2476 61 71 0 0
Niederreiter 15 67.43 8.8126 47 83 34 30

Run Test, Kerre’s Method

We replicated the test 100 times using Kerre’s comparison method. We show, in
Table 5.2, results for streams of quadratic fuzzy numbers generated from various
streams of crisp numbers. We used true random, pseudo-random, and four types
of quasi-random numbers (Sobol, Faure, Halton, and Niederreiter). In Table 5.2
“Reject H0” means the number of times, in 100 test runs, we rejected the null
hypothesis of randomness.

Run Test, Chen’s Method

We replicated the test 100 times using Chen’s comparison method. We show, in
Table 5.3, results for streams of quadratic fuzzy numbers generated from various
streams of crisp numbers. We used true random, pseudo-random, and four types
of quasi-random numbers (Sobol, Faure, Halton, and Niederreiter). In Table 5.3
“Reject H0” means the number of times, in 100 test runs, we rejected the null
hypothesis of randomness.

5.2.2 Frequency Test

Test for Randomness, QBGFNs

Suppose we have a sequence of fuzzy numbers X i in some interval [a, b] we wish
to test for randomness. Assume the interval is [0, 10]. We compute the centroid
of the fuzzy numbers producing a real sequence δ1, ..., δn, .... We will perform
a frequency test on the δ sequence to test for randomness. With all the fuzzy
numbers in [0, 10] very few will have their centroid near zero or ten. We may get
the left (right) end point of the support close to zero (ten) but not the centroid
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Table 5.3. Run Test on QBGFNs: Chen

Reject H0 Reject H0

Type mean σ2 min max γ = 0.05% γ = 0.01%
True 67.43 4.4727 58 76 3 0
Pseudo 67.70 4.2200 56 78 2 2
Sobol 5 79.91 2.4499 73 86 95 93
Faure 5 36.53 2.3375 32 41 100 100
Halton 5 68.23 3.1362 61 77 2 1
Niederreiter 5 75.05 2.0120 72 80 45 20
Sobol 10 57.79 2.7972 49 64 45 32
Faure 10 95.37 2.5767 90 100 100 100
Halton 10 74.07 4.1736 64 86 37 29
Niederreiter 10 55.99 3.0434 50 68 75 58
Sobol 15 67.41 5.8657 55 80 15 9
Faure 15 67.28 0.9648 65 71 0 0
Halton 15 67.15 2.1760 61 73 0 0
Niederreiter 15 67.77 8.8064 47 85 35 31

Fig. 5.2. Comparison of Frequency Test Results to Normal Distribution

which would be closer to the core. So we will use the interval I = [1, 9] and divide
it up into eight equal intervals I1 = [1, 2),...,I8 = [8, 9]. Now we do a chi-square
test, as in Section 3.4, on the δ sequence. The null hypothesis H0 is that the δ
sequence is random and the alternate hypothesis H1 is that it is not random.
Let the significant level γ = 0.05. Oi is the number of δ values in interval Ii,
i = 1, 2, ..., 8. We reject any fuzzy number with centroid less than one or greater
than nine. If N is the number of accepted fuzzy numbers in the sequence and
H0 is true, the expected number in each interval is E = N/8. We want E to be
at least 5 so choose N > 100. The test statistic is
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χ2 =
8∑

i=1

(Oi − E)2

E
, (5.5)

with 7 degrees of freedom. The critical value cv is 14.1.
We chose to run this test on the Bézier fuzzy numbers, N = 10, 000, generated

from each of our crisp input streams. We obtain similar results for all tests
(examples shown in Figure 5.2). We also test with TFNs generated from true
random and pseudo-random crisp streams. For ‘Sobol 15’ QBGFNs, our ten
bin counts are {52, 348, 978, 1623, 2047, 1987, 1641, 913, 367, 44}. The expected
value (E) for the eight internal bins (total 9904) is 1238 = 9904/8, so our test
statistic (equation 5.5) was computed to be χ2 = 2626 . Since this is greater
than cv = 14.1 we do reject the null hypothesis of randomness. In all tests we
rejected the null hypothesis of randomness. We conjecture (from Figure 5.2) that
the distribution of the centroids is not approximately normal.

Test for Distribution Similarity, QBGFNs

Having rejected the null hypothesis of randomness, we select a null hypothesis of
similarity of the sets of QBGFNs. Suppose we have a sequence of fuzzy numbers
Xi in some interval [a, b] we wish to test for similarity to QBGFNs generated
from true random, crisp numbers. Assume the interval is [0, 10]. We compute
the centroid of the fuzzy numbers producing a real sequence δ1, ..., δn, .... We
perform a frequency test on the δ sequence to test for similarity.

So we will use the interval I = [0, 10] and divide it up into ten equal intervals
I0 = [0, 1),...,I9 = [9, 10]. Now we do a chi-square test, as in Section 3.4, on
the δ sequence. The null hypothesis H0 is that the δ sequence has a similar
distribution to that for QBGFNs generated from true random numbers and
the alternate hypothesis H1 is that it is does not have a similar distribution.
Let the significant level γ = 0.05. Oi is the number of δ values in interval Ii,
i = 1, 2, ..., 10. N = 10, 000 is the number of fuzzy numbers in the sequence. The
test statistic is

χ2 =
10∑

i=1

(Oi − Ei)2

Ei
, (5.6)

with 9 degrees of freedom. The critical value cv is 19.9190.
We use the bin results from our tests for randomness in the previous sec-

tion. For QBGFNs generated from a true random, crisp stream, our bin counts
are {48, 368, 923, 1562, 2041, 2110, 1629, 927, 357, 35}. This data gives us the ex-
pected values E in the test statistic. For example E4 = 1562. So we determine
for ‘Sobol 15’ QBGFNs that χ2 = 12.648. Since this is less than cv = 19.9190
we do not reject the null hypothesis that the ‘Sobol 15’ QBGFNs distribution is
similar to that for ‘True Random’ QBGFNs.

We also found that we do not reject this null hypothesis when we consider
‘Pseudo-random’ QBGFNs (χ2 = 7.404), ‘Sobol 5’ (χ2 = 4.196), or ‘Sobol 10’
(χ2 = 12.264). It appears that no matter how we produce a sequence of QBGFNs
the distribution of the centroids are all roughly the same and this distribution
is not uniform and not normal.
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5.3 Search Space

The results of the run test and the frequency test are interesting but what we
really want to show is that our method of generating sequences of QBGFNs,
or triangular fuzzy numbers (TFNs), will uniformly fill the search space for a
fuzzy optimization problem. We first look at sequences of QBGFNs and then
sequences of TFNs. In both situations we will consider two cases. The first case
is where the search space is an interval [a, b] for a < b. This will be used in
Chapter 10. The second case is for the search space a rectangular box in Rn. We
will assume here that n = 3 so the box will be Ω = [a1, b1] × [a2, b2] × [a3, b3]
for ai < bi, i = 1, 2, 3. This will be used in Chapters 7 an 8 where we will
generate sequences of random fuzzy vectors (X1, X2, X3) each X i is a QBGFN
in [ai, bi], i = 1, 2, 3. In Chapters 6, 9 and 10 we use fuzzy vectors with only two
components. Also, sequences of random vectors consisting of TFNs are used in
Chapters 11,12,15,16. We need random sequences of trapezoidal fuzzy numbers
in Chapter 13 and just random vectors of real numbers in Chapter 14.

We discuss the search space only for the Applications part of the book (Chap-
ters 6 - 16). We do not consider uniformly filling the search space for the Future
Research part of the book (Chapters 17 - 27).

5.3.1 Search Space [a, b] for QBGFNs

Let Q = all QBGFNs in [a, b]. We will randomly generate a sequence of QBGFNs
Xk, k = 1, 2, 3, ..., in [a, b] to uniformly fill Q. Notice at this point this is an infi-
nite sequence and we will later discuss finite sequences to be used in applications.
We first discuss how we produce the sequence Xk.

We use our Sobol quasi-random number generator to produce the sequence
vk = (x1k, ..., x5k) ∈ [0, 1]5, k = 1, 2, 3, .... Let V = {vk|k = 1, 2, 3, ...}. For each
vk first choose the first three numbers in vk. Transform these three numbers into
the interval [a, b]. Let z1k = a+(b−a)x1k, z2k = a+(b−a)x2k,z3k = a+(b−a)x3k

all in [a, b]. Next order the zik from smallest to largest giving dk = z2k < ek =
z1k < fk = z3k. Set w1k = x4k and w2k = x5k. Then

uk = (dk, ek, fk, w1k, w2k) (5.7)

defines a Xk in Q. The construction of Xk is as follows: (1) the support (base)
is [dk, fk]; (2) the vertex is at x = ek; (3) as described in Section 4.3.2 w1k

defines the quadratic membership function for the left side; and (4) as described
in Section 4.3.2 w2k defines the quadratic membership function for the right
side. This defines a mapping ψ of V into Q. We know that V uniformly fills
[0, 1]5 (Section 3.4). This means that there will be no clusters of points and no
“empty” regions in [0, 1]5. We do not have a precise mathematical definition of
“uniformly fills” but if you look at Figure 7.7.1, page 310, in [8] for n = 2, and
only 1024 points, you will see the meaning of “uniformly fills”. Also, since the
sequence vk passed the randomness test in Section 3.4 we feel that it uniformly
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fills [0, 1]5. Using a pseudo-random number generator it can produce clusters and
empty regions in [0, 1]n (Section 3.4). We now use this fact that V uniformly fills
[0, 1]5 to argue that ψ(V ) will uniformly fill Q.

Let M = {(d, e, f, w1, w2)|d < e < f ∈ [a, b], w1, w2 ∈ [0, 1]}. Now each
m ∈ M uniquely defines a X ∈ Q and each X ∈ Q uniquely specifies an
m ∈ M. In this sense M = Q.

Now equation (5.12) shows the mapping ψ of V into M. We easily extend it to
all of [0, 1]5. For any vector in [0, 1]5 we first choose the first three components,
map them into [a, b], order them from smallest to largest, etc. and get a point
in M. So ψ maps [0, 1]5 onto M. If V uniformly fills [0, 1]5 then surely ψ(V )
uniformly fills M. If ψ(V ) uniformly fills M and M = Q we have uniformly
filled Q.

We need to point out that there is an alternate method of producing the
QBGFNs which may not uniformly fill the search space. Instead of always picking
the first three members in vk to get the base and vertex of the fuzzy number now
assume we randomly choose three of the numbers in vk. Let the tree numbers be
x2k, x3k and x5k. Map these three numbers into [a, b] giving z1k = a+(b−a)x2k,
z2k = a + (b − a)x3k and z3k = a + (b − a)x5k. Now order these from smallest
to largest producing dk = z2k < ek = z3k < fk = z1k. Set w1k = x1k and
w2k = x4k. Then we have defined uk in equation (5.12) producing a member
of M and a QBGFN Xk in Q. But now we can not argue that the mapping
from [0, 1]5 is onto M and may not uniformly fill Q. Assume that the interval is
[0, 10] and the point v = (10r, 10s, 10t, w1, w2) ∈ M. Then u = (r, s, t, w1, w2) ∈
[0, 1]5. Let V (i, j, k) be all the points in [0, 1]5 where we randomly choose the
ith, jth and kth points in vk, 1 ≤ i < j < k ≤ 5, to make a point in M. There
are ten (choose three from five) of these V (i, j, k) giving V (1, 2, 3), V (1, 2, 4),
... ,V (3, 4, 5). Whenever we choose three at random in vk the first one, going
from left to right in vk, not picked we set equal to w1k and other one not
chosen becomes w2k. Let u1j, j = 1, ..., 6 be the six permutations of r, s, t in
(r, s, t, w1, w2). So u11 = (r, s, t, w1, w2),...,u16 = (t, s, r, w1, w2). Assume that
u1j is not in V (1, 2, 3) all j. If any u1j is in V (1, 2, 3) then it will be mapped to
v ∈ M. Next let u2j be all six permutations of r, s, t in (r, s, w1, t, w2). Assume
u2j is not in V (1, 2, 4) all j. Similarly we define vij , i = 3, ..., 10 and j = 1, ..., 6.
In each case we assume that uij is not in the corresponding V (i, j, k) all j. This
means that it can happen that no point in [0, 1]5 maps to v. M can have empty
regions and then so can Q. Hence, we can not use this procedure to produce
QBGFNs in Q.

Now assume we use a finite sequence vk, k = 1, 2, 3, ..., N , in applications.
We then plot these points in [0, 1]5. The sequence does not first uniformly fill
a certain region in [0, 1]5, then move on the another region, etc. We see from
Figure 7.7.1 in [8] for [0, 1]2 that the sequence of 1024 points wanders all around
[0, 1]2 right from the beginning. For this reason we will assume that the finite
sequence of QBGFNs Xk, N ≥ 100, 000, sufficiently fills Q to produce a good
approximate solution to the fuzzy optimization problem.
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5.3.2 Search Space Ω for QBGFNs

Let Q3 = all X = (X1, X2, X3) for QBGFNs X i ∈ [ai, bi], i = 1, 2, 3. Use our
Sobol quasi-random number generator to produce a sequence vk = (h1k, h2k, h3k)
in [0, 1]15 where h1k = (x1k, ..., x5k), h2k = (x6k, ..., x10,k), h3k = (x11,k, ..., x15,k),
k = 1, 2, 3, .... Let V be all the vk. V uniformly fills [0, 1]15. Define the mapping
as above ψi(hik) = Xik, i = 1, 2, 3. Then ψ = (ψ1, ψ2, ψ3) maps V into Q3. We
may argue as before that since V uniformly fills [0, 1]15, then ψ(V ) will uniformly
fill Q3. Also, as before, we assume that a finite sequence with N ≥ 100, 000 will
sufficiently fill the search space to give us a good approximate solution to a fuzzy
optimization problem.

5.3.3 Search Space [a, b] for TFNs

Let Q = all TFNs in [a, b]. We will randomly generate a sequence of TFNs Xk,
k = 1, 2, 3, ..., in [a, b] to uniformly fill Q. Notice at this point this is an infinite
sequence and we will later discuss finite sequences to be used in applications.
We first discuss how we produce the sequence Xk.

We use our Sobol quasi-random number generator to produce the sequence
vk = (x1k, ..., x3k) ∈ [0, 1]3, k = 1, 2, 3, .... Let V = {vk|k = 1, 2, 3, ...}. For each
vk transform these three numbers into the interval [a, b]. Let z1k = a+(b−a)x1k,
z2k = a + (b − a)x2k,z3k = a + (b − a)x3k all in [a, b]. Next order the zik from
smallest to largest giving dk = z2k < ek = z1k < fk = z3k. Then

uk = (dk, ek, fk) (5.8)

defines a Xk in Q. The construction of Xk is as follows: (1) the support (base)
is [dk, fk]; and (2) the vertex is at x = ek. This defines a mapping ψ of V into Q.
We know that V uniformly fills [0, 1]3. We now use this fact that V uniformly
fills [0, 1]3 to argue that ψ(V ) will uniformly fill Q.

Let M = {(d, e, f)|d < e < f ∈ [a, b]}. Now each m ∈ M uniquely defines a
X ∈ Q and each X ∈ Q uniquely specifies an m ∈ M. In this sense M = Q.

Now equation (5.13) shows the mapping ψ of V into M. We easily extend
it to all of [0, 1]3. For any vector in [0, 1]3 we map the components into [a, b],
order them from smallest to largest, etc. and get a point in M. So ψ maps [0, 1]3

onto M. If V uniformly fills [0, 1] then surely ψ(V ) uniformly fills M. If ψ(V )
uniformly fills M and M = Q we have uniformly filled Q.

Now assume we use a finite sequence vk, k = 1, 2, 3, ..., N , in applications.
We then plot these points in [0, 1]3. The sequence does not first uniformly fill a
certain region in [0, 1]3, then move on the another region, etc. For this reason we
will assume that the finite sequence of TFNs Xk, N ≥ 100, 000, sufficiently fills
Q to produce a good approximate solution to the fuzzy optimization problem.

5.3.4 Search Space Ω for TFNs

Let Q3 = all X = (X1, X2, X3) for TFNs Xi ∈ [ai, bi], i = 1, 2, 3. Use our Sobol
quasi-random number generator to produce a sequence vk = (h1k, h2k, h3k) in
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[0, 1]9 where h1k = (x1k, ..., x3k), h2k = (x4k, ..., x6,k), h3k = (x7,k, ..., x9,k),
k = 1, 2, 3, .... Let V be all the vk. V uniformly fills [0, 1]9. Define the mapping
as above ψi(hik) = Xik, i = 1, 2, 3. Then ψ = (ψ1, ψ2, ψ3) maps V into Q3. We
may argue as before that since V uniformly fills [0, 1]9, then ψ(V ) will uniformly
fill Q3. Also, as before, we assume that a finite sequence with N ≥ 100, 000 will
sufficiently fill the search space to give us a good approximate solution to a fuzzy
optimization problem.

5.3.5 Other Search Spaces

In Chapter 13 we need to uniformly fill Q3 = all X = (X1, X2, X3) for trape-
zoidal fuzzy numbers Xi ∈ [ai, bi], i = 1, 2, 3. Use our Sobol quasi-random
number generator to produce a sequence vk = (h1k, h2k, h3k) in [0, 1]12 where
h1k = (x1k, ..., x4k), h2k = (x5k, ..., x8,k), h3k = (x9,k, ..., x12,k), k = 1, 2, 3, ....
To get X1k we first map the points in h1k into [a1, b1], order them from small-
est to largest, use the first and last for the base and the middle two for the
core. Let V be all the vk. V uniformly fills [0, 1]12. Define the mapping as above
ψi(hik) = Xik, i = 1, 2, 3. Then ψ = (ψ1, ψ2, ψ3) maps V into Q3. We may
argue as before that since V uniformly fills [0, 1]12, then ψ(V ) will uniformly fill
Q3. Also, as before, we assume that a finite sequence with N ≥ 100, 000 will
sufficiently fill the search space to give us a good approximate solution to a fuzzy
optimization problem.

In Chapter 14 we just need random sequences of crisp vectors. We use our
quasi-random number generator to get these sequences.
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6 Fuzzy Monte Carlo Method

6.1 Introduction

This chapter introduces our fuzzy Monte Carlo method. We will be working with
a very simple linear programming problem. The crisp linear program is presented
in the next section. Then we fuzzify the linear program in the third section. We
make some of the parameters in the problem triangular fuzzy numbers and allow
all the variables to be triangular shaped fuzzy numbers. We will need to decide
on a definition of ≤ between fuzzy numbers and we will use Kerre’s method
(Section 2.6.2 of Chapter 2) first and then Chen’s method (Section 2.6.3 of
Chapter 2) second. This chapter, and Chapters 7 and 8, are based on ([5],[6]),
see also ([3],[4]).

Fuzzy linear programming has become a very large area of research. Put “fuzzy
linear programming” into your search engine and obtain over 17, 000 web sites
to visit. Obviously we can not search all of these sites. A few recent references to
this topic are the papers ([10]-[16],[18],[20],[22]-[25],[27]) and books (or articles
in these books) ([1],[2],[7]-[9],[17],[19],[21],[26]).

6.2 Crisp Linear Program

Consider the optimization problem

max Z = (2x1 + 3x2), (6.1)

subject to
x1 + 2x2 ≤ 6, (6.2)

2x1 + x2 ≤ 6, (6.3)

0 ≤ x1, x2 ≤ M, (6.4)

J.J. Buckley et al.: Monte Carlo Meth. in Fuzzy Optimization, STUDFUZZ 222, pp. 57–65, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



58 Fuzzy Monte Carlo Method

�

�

���

�
A

�
B

�
C

�D

F
�

0 3 6 9 x1

6

3

x2

Fig. 6.1. Linear Programming Problem

Table 6.1. Solution to the Linear Program

Vertex Coordinates Objective Function
A (0, 0) Z = 0.0
B (3, 0) Z = 6
C (2, 2) Z = 10
D (0, 3) Z = 9

for some positive constant M . The positive constant M is for later on in the
chapter and we will not get to use it in this section. Figure 6.1 shows the con-
straints and the feasible set F . We know that the optimal solution will be at
a vertex point of the feasible set. The values of the objective function at these
vertex points is shown in Table 6.1 and we see that maxZ = 10 at x1 = x2 = 2.

6.3 Fuzzy Linear Program

Now we allow the parameters in the objective function and the constants on the
right side of the inequalities to be fuzzy. The fuzzy linear program is

max Z = (C1X1 + C2X2), (6.5)

subject to
X1 + 2X2 ≤ B1, (6.6)

2X1 + X2 ≤ B2, (6.7)

0 ≤ X1, X2 ≤ M, (6.8)
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where C1 = (1/2/3), C2 = (2/3/4), B1 = (5/6/7), B2 = (5/6/7) and X1 ≈
(x11/x12/x13), X2 ≈ (x21/x22/x23). The fuzzy parameters are all triangular
fuzzy numbers but the variables will be Bézier (quadratic) fuzzy numbers
(QBGFNs in Chapter 4).

Now we will look at two cases for evaluating ≤ between fuzzy numbers. Both
of these methods are needed in the next two chapters, but they will not be used
after Chapter 8. The first is Kerre’s method from Section 2.6.2 in Chapter 2.

6.3.1 Kerre’s Method

We will randomly generate, from Chapter 4, vectors V = (X1, X2) and first
check to see if they satisfy equations (6.6) and (6.7) using Kerre’s ≤. If these
equations are satisfied, then V is feasible and we evaluate Z = C1X1 + C2X2.
Let the previous best (max) value of Z be Z

∗
and the current value of Z = Z0

from the recent feasible V . If Z
∗

< Z0, then set Z
∗

to be Z0, otherwise discard
Z0 and generate the next random V . We are looking for an optimal solution and
not all the V that produce the best Z value.

Next we need to determine intervals Ii = [0, Mi], Mi > 0, i = 1, 2, for the
Xi, i = 1, 2, respectively. A good selection of these intervals will make the fuzzy
Monte Carlo process more efficient. If an interval is too big, then too many V
will be rejected as not being feasible. If an interval is too small we can miss the
optimal solution. There is no natural upper bound on x13 (x23) so that V is
feasible. See Figure 6.2. Also see Figure 2.7 in Chapter 2. Here E ≈ (e1/e2/e3)
represents X1 + 2X2 or 2X1 + X2 and let B = (0.5/1.5/2.5). We changed B
from (5/6/7) to this value for this figure. Then e3 = x13 + 2x23 or 2x13 + x23.
In Figure 6.2 E ≈ (0/1/5). We see that d(E, max) is the area of regions A1 and
A2 and d(B, max) is the area of A3. Since area(A3) < area(A1) + area(A2)
we get E < B and V is feasible even as e3 grows larger and larger. In practical
problems there is going to be an upper bound for the variables which will produce
an upper bound for e3. Management will decide on practical upper bounds for
the xi giving the upper bounds for the Mi in the intervals Ii. Sometimes the
optimization problem will dictate the upper bounds, but in this case we get them
for experts familiar with the problem. Let us assume that Ii = [0, 5], i = 1, 2,
which implies that E < 15.

So we now randomly generate a sequence V k = (X1k, X2k) with Xik ∈ [0, 5]
all i and all k. Using our Sobol quasi-random number generator we produce
sequences of random vectors v1k = (x1k1, ..., x1k5), v2k = (x2k1, ..., x2k5), k =
1, 2, 3, .... The sequence v1k is used to get the sequence of quadratic fuzzy num-
bers X1k, recall that we only require vectors of length five for these fuzzy num-
bers (see Chapter 4), and the other sequence v2k constructs the sequence of
quadratic fuzzy numbers X2k, k = 1, 2, 3, .... However, because we use vectors
V = (X1, X2) we choose our stream of quasi-random numbers generated 10 at
a time to get the two pairs of 5. If V k is feasible we compute

Zk = C1X1k + C2X2k, (6.9)
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Fig. 6.2. Finding the Intervals for the Xi Using Kerre’s Method

for k = 1, 2, 3, ..., N , where N is the predetermined total number of iterations.
We want to find a k value, and hence a V k, to solve

max{Zk|k = 1, 2, 3, ..., N}. (6.10)

With N = 100, 000 pairs of QBGFNs (v1k,v2k), the results of the fuzzy Monte
Carlo method are shown in Table 6.2, and Figures 6.3 & 6.4. All the fuzzy
numbers in Table 6.2 are triangular shaped fuzzy numbers. X1 and X2 are
QBGFNs. The notation we use for these fuzzy numbers was explained in Section
4.3.2. We define a QBGFN as (a, b, c, d, e) where: (1) the support is the interval
[a, c]; (2) the vertex is at x = b; (3) the three numbers a, d, b define the quadratic
function for the left side of the fuzzy number; and (4) the three numbers b, e, c
specify the quadratic function for the right side of the fuzzy number. Since
maxZ is not necessarily, or likely to be a QBGFN, we only give the support
and core for maxZ. Our approximate solution to this fuzzy linear program are
the fuzzy numbers determined by this Monte Carlo program. In the following
three chapters we may have another solution, using an evolutionary algorithm,
to compare to our fuzzy Monte Carlo solution.

Table 6.2. Monte Carlo Solution to the Fuzzy Linear Program, Kerre’s Method,
QBGFNs, N=100,000

type maxZ Xi

random
Sobol ≈ (2.70/8.67/33.74) X1 = (1.28, 1.49, 4.97,−0.42, 3.61)

X2 = (0.71, 1.90, 4.70,−0.32, 2.69)
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Fig. 6.3. Monte Carlo Solution to the Fuzzy Linear Program, maxZ, Kerre’s Method,
QBGFNs, N=100,000

Fig. 6.4. Monte Carlo Solution to the Fuzzy Linear Program, X1 & X2 Kerre’s
Method, QBGFNs, N=100,000

6.3.2 Chen’s Method

We randomly generate vectors V = (X1, X2) and check to see if they satisfy
equations (6.6) and (6.7) using Chen’s ≤. If these equations are satisfied, then V

is feasible and we evaluate Z. Let the previous best (max) value of Z be Z
∗

and
the current value of Z = Z0 from the recent feasible V . If Z

∗
< Z0 using Chen’s

<, then set Z
∗

to be Z0, otherwise discard Z0 and generate the next random V .
Now we need to determine intervals Ii = [0, Mi], Mi > 0, i = 1, 2, for the Xi,

i = 1, 2, respectively. There is no natural upper bound on x13 (x23) so that V is
feasible. See Figure 6.5. Also see Figure 2.8 in Chapter 2. Here E ≈ (e1/e2/e3)
represents X1 + 2X2 or 2X1 + X2 and let B = (0.5/1.5/2.5). We changed B
from (5/6/7) to this value for this figure. Then e3 = x13 + 2x23 or 2x13 + x23.
In Figure 6.5 E ≈ (0/1/5). Consulting Figures 2.8 and 6.5 we see that the y
coordinate at: (1) LE is 0.8; (2) LB is 0.7; (3) RE is 0.3; and (4) RB is 0.4. So,
from equation (2.53) in Chapter 2 we compute

µT (E) = 0.5(0.3 + (1 − 0.8)) = 0.25, (6.11)

and
µT (B) = 0.5(0.4 + (1 − 0.7)) = 0.35, (6.12)
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and
µT (E) < µT (B), (6.13)

implying that E < B and V is feasible even as e3 grows larger and larger.
In practical problems there is going to be an upper bound for the variables
which will produce an upper bound for e3. Management will decide on practical
upper bounds for the xi giving the upper bounds for the Mi in the intervals
Ii. Sometimes the optimization problem will dictate the upper bounds, but in
this case we get them for experts familiar with the problem. Let us assume that
Ii = [0, 5], i = 1, 2, so that E < 15.

So we now randomly generate a sequence V k = (X1k, X2k) with Xik ∈ [0, 5]
all i and all k. Using our Sobol quasi-random number generator we produce
sequences of random vectors v1k = (x1k1, ..., x1k5), v2k = (x2k1, ..., x2k5), k =
1, 2, 3, .... The sequence v1k is used to get the sequence of quadratic fuzzy num-
bers X1k and the other sequence v2k constructs the sequence of quadratic fuzzy
numbers X2k, k = 1, 2, 3, .... However, because we use vectors V = (X1, X2) we
choose our stream of Sobol quasi-random numbers generated 10 at a time to get
the two pairs of 5. If V k is feasible we compute

Zk = C1X1k + C2X2k, (6.14)

for k = 1, 2, 3, ..., N , where N is the predetermined total number of iterations.
We want to find a k value, and hence a V k, to solve

max{Zk|k = 1, 2, 3, ..., N}. (6.15)

With N = 100, 000 the results of the fuzzy Monte Carlo method are shown
in Table 6.3, and Figures 6.6 & 6.7. All the fuzzy numbers in Table 6.3 are
triangular shaped fuzzy numbers. X1 and X2 are QBGFNs. The notation we
use for these fuzzy numbers was explained above and in Section 4.3.2. Since
maxZ is not necessarily or likely to be a QBGFN, we only give the support
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Fig. 6.5. Finding the Intervals for the Xi Using Chen’s Method
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Table 6.3. Monte Carlo Solution to the Fuzzy Linear Program, Chen’s Method,
QBGFNs, N=100,000

type maxZ Xi

random
Sobol ≈ (1.37/5.07/34.84) X1 = (0.08, 0.50, 4.99,−0.96, 4.69)

X2 = (0.64, 1.36, 4.97, 0.51, 2.72)

Fig. 6.6. Monte Carlo Solution to the Fuzzy Linear Program, maxZ, Chen’s Method,
QBGFNs, N=100,000

Fig. 6.7. Monte Carlo Solution to the Fuzzy Linear Program, X1 & X2 Chen’s Method,
QBGFNs, N=100,000

and core for maxZ. Our approximate solution to this fuzzy linear program are
the fuzzy numbers determined by this Monte Carlo program. In the following
three chapters we may have another solution, using an evolutionary algorithm,
to compare to our fuzzy Monte Carlo solution.

6.3.3 Comparison of Solutions

All of these software efforts were performed on Windows-based PCs. For these
fuzzy Monte Carlo optimizations, several computers were used, all Dell Optiplex
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GX270’s, 3.0GHz, 1GB RAM. The Kerre/Sobol running time was 2:27:50; the
Chen/Sobol finished in 2:31:10.

The Kerre comparison method found 2, 864 feasible sets in a stream of 100, 000
(X1k,X2k); 15 of them had triggered new maximums. The Chen comparison
method found 17, 047 feasible sets in the same stream of 100, 000 (X1k,X2k); 12
of them had triggered new maximums. The 341st (X1k,X2k) was a new maximum
by both methods; the 4th new maximum under Kerre, the 6th new maximum
under Chen. The last maximum by the Kerre method was found at the 15, 251st

(X1k,X2k) (it was the 2, 864th, the last, feasible set). The last maximum by the
Chen method was found at the 48, 798th (X1k,X2k) (the 8, 322nd feasible set).

For our Monte Carlo solution using Sobol quasi-random numbers, we compare
Kerre’s method results and Chen’s method results to find that the maxZ from
Kerre’s method is greater than the maxZ from Chen’s method solution (regard-
less which of Buckley’s method, Kerre’s method, or Chen’s method is used to
compare the maximums). It appears that Kerre’s method produced a solution
closest to the crisp solution x1 = x2 = 2, maxZ = 10.
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7 Fully Fuzzified Linear Programming I

7.1 Introduction

We first discuss the general fully fuzzified linear program in the next section.
Then we study a max problem, the product mix problem, in Section 7.3. We
have previously obtained an approximate fuzzy solution to this problem us-
ing an evolutionary algorithm ([1],[2]). In Section 7.4 we will apply our fuzzy
Monte Carlo method to the problem to generate another approximate solu-
tion and then compare these new results to the evolutionary algorithm
method.

7.2 Fully Fuzzified Linear Programming

Fuzzy linear programming has long been an area of application of fuzzy sets.
Consider the classical linear program

max / min Z = c1x1 + · · · + cnxn

subject to: (7.1)
ai1x1 + · · · + ainxn ≤ bi, 1 ≤ i ≤ m

xi ≥ 0, for all i.

We need to have values for all the parameters ci, aij and bi to completely
specify the optimization problem. Many of these must be estimated and are
therefore uncertain. It is then natural to model these uncertain parameters
using fuzzy numbers. The problem then becomes a fuzzy linear programming
problem.

We are going to allow all the parameters to be fuzzy and we obtain what we
have called the fully fuzzified linear programming problem. Many researchers
(see the references to Chapter 6) have looked at parts of this problem: (1) the
aij and bi can be fuzzy; or (but not both) (2) the ci can be fuzzy. The fully
fuzzified (max) linear program is

J.J. Buckley et al.: Monte Carlo Meth. in Fuzzy Optimization, STUDFUZZ 222, pp. 67–73, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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maxZ = C1X1 + · · · + CnXn

subject to: (7.2)
Ai1X1 + · · · + AinXn ≤ Bi, 1 ≤ i ≤ m,

Xi ≥ 0, for all i.

where the Ci, Aij and Bi can all be triangular fuzzy numbers. Not every single
parameter need be fuzzy; but we shall assume that some of the Ci are fuzzy and
some of the Aij and Bi are fuzzy. Since the parameters are fuzzy, the variables
Xi will be triangular shaped fuzzy numbers.

We are now concerned with solving the optimization problem in equation
(7.2). But first we must do two things: (1) explain what we mean by max/min
Z since Z will also be a triangular shaped fuzzy number; and (2) decide on
how we will evaluate the inequality (≤) between fuzzy numbers Ei ≤ Bi, where
Ei = Ai1 X1 + · · · + Ain Xn.

In our previous research on this topic we handled max/min Z as discussed in
Section 2.5 of Chapter 2. Also, in those publications we used both Kerre’s Method
(Section 2.6.2) and Chen’s Method (Section 2.6.3) to evaluate ≤ between fuzzy
numbers. In our fuzzy Monte Carlo method we will use both Kerre’s Method
and Chen’s Method to evaluate ≤ and < between fuzzy numbers.

7.3 Product Mix Problem

A company produces three products P1, P2 and P3 each of which must be pro-
cessed through three departments D1, D2 and D3. The approximate time, in
hours, each Pi spends in each Dj is given in Table 7.1.

Table 7.1. Approximate Times Product Pi is in Department Dj

Department

D1 D2 D3

P1 6 12 2
Product P2 8 8 4

P3 3 6 1

Each department has only so much time available each week. These times can
vary slightly from week to week so the following numbers are estimates of the
maximum time available per week, in hours, for each department: (1) for D1 288
hours; (2) 312 hours for D2; and (3) D3 has 124 hours. Finally, the selling price
for each product can vary a little due to small discounts to certain customers
but we have the following average selling prices: (1) $6 per unit for P1; (2) $8
per unit for P2, and (3) $6 per unit for P3. The company wants to determine the
number of units to produce for each product per week to maximize its revenue.
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Since all the numbers given are uncertain, we will model the problem as a
fully fuzzified linear program. We substitute a triangular fuzzy number for each
value where the peak of the fuzzy number is at the number given. So, we have
the following fully fuzzified linear program

maxZ = (5.8/6/6.2)X1 + (7.5/8/8.5)X2 + (5.6/6/6.4)X3 (7.3)
subject to: (7.4)
(5.6/6/6.4)X1 + (7.5/8/8.5)X2 + (2.8/3/3.2)X3 ≤ (283/288/293),
(11.4/12/12.6)X1 + (7.6/8/8.4)X2 + (5.7/6/6.3)X3 ≤ (306/312/318),
(1.8/2/2.2)X1 + (3.8/4/4.2)X2 + (0.9/1/1.1)X3 ≤ (121/124/127),
X1, X2, X3 ≥ 0,

where the Xi are triangular shaped fuzzy numbers for the amount to produce
for Pi per week.

7.4 Fuzzy Monte Carlo Method

We need to find intervals Ii = [0, Mi], i = 1, 2, 3, as explained in Section 6.3
in Chapter 6, for the Xi. Since we form fuzzy vector V = (X1, X2, X3), and
each X i consumes 5 crisp numbers, we choose our stream of Sobol quasi-random
numbers which had been generated 15 at a time to get three sets of 5. We ran-
domly generate X i ∈ [0, Mi], i = 1, 2, 3, and form the random fuzzy vector
V = (X1, X2, X3). We test to see if V is feasible, or the Xi satisfy the con-
straints. Assuming that V is feasible we compute Z0 = C1X1 + ... + C3X3. If
Z

∗
is the current best (max) value of Z then we replace Z

∗
with Z0 if Z

∗
< Z0,

otherwise we discard Z0.
We also need to solve the fuzzy max problem twice. First we use Kerre’s

Method to evaluate Ei ≤ Bi in the constraints and Z
∗

< Z0 in the objective
function. Then we use Chen’s Method.

To get an idea for the intervals Ii for the Xi, i = 1, 2, 3, we studied the
solutions to this problem from the evolutionary algorithm, and we studied our
constraint equations. Since our constraint equations are ‘≤’ inequalities, we may
set any two of our Xi to be zero to determine the maximum possible value for the
third fuzzy variable. Then we use the minimum of these maximums to determine
a possible support interval for feasible sets. For example, set X2 = X3 = 0, and
let X1 ≈ (x11/x12/x13). After multiplying by the fuzzy coefficients we solve each
6x12 ≤ 293, 12x12 ≤ 318, 2x12 ≤ 127 for x12 and take the minimum. The result
is 26.5 and we take the interval [0, 26.5] for X1. Similarly we obtain [0, 31.8] for
X2 and [0, 53] for X3.

Now we follow the procedure outlined in Sections 6.3.1 and 6.3.2.

7.4.1 Kerre’s Method

We randomly generate vectors V = (X1, X2, X3), where the Xik are Bézier
(quadratic) fuzzy numbers (QBGFNs in Chapter 4), and check to see if they
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Table 7.2. Monte Carlo Solution to the Fuzzy Linear Program, Kerre’s ≤, N=100,000

maxZ Xi (QBGFNs from Sobol)
≈ (168.02/260.40/591.80) X1 = (0.10, 2.75, 12.41, 0.57,−10.55)

X2 = (22.21, 24.30, 26.98, 0.92, 0.80)
X3 = (0.15, 8.25, 44.61,−5.30,−31.23)

satisfy constraint equations (7.4) using Kerre’s ≤. We wish to solve the opti-
mization problem given in equation (7.3). If these equations are satisfied, then
V is feasible and we evaluate Z, the fuzzy objective function in equation (7.3).
Let the previous best (max) value of Z be Z

∗
and the current value of Z = Z0

from the recent feasible V . If Z
∗

< Z0 using Kerre’s <, then set Z
∗

to be Z0,
otherwise discard Z0 and generate the next random V .

With N = 100, 000 the results of the fuzzy Monte Carlo method are shown in
Table 7.2, and Figures 7.1 & 7.2. All the fuzzy numbers in Table 7.2 are triangular
shaped fuzzy numbers. X1, X2 and X3 are QBGFNs. The notation we use for
these fuzzy numbers was explained in Section 4.3.2. and also in Section 6.3.1.
Since maxZ is not necessarily or likely to be a QBGFN, we only give the support
and core for maxZ. Our approximate solution to this fuzzy linear program are
the fuzzy numbers determined by this Monte Carlo program.

Fig. 7.1. X1, X2, X3 Solution using Kerre’s ≤, Product Mix Problem

Fig. 7.2. maxZ using Kerre’s ≤, Product Mix Problem
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Figure 7.1 show the “optimal” Xi. Figure 7.2 shows the value of the objective
function Z, corresponding to the values of the X i given in Figure 7.1.

7.4.2 Chen’s Method

Now we randomly generate vectors V = (X1, X2, X3), where the X ik are Bézier
(quadratic) fuzzy numbers (QBGFNs in Chapter 4), and check to see if they
satisfy constraint equations (7.4) using Chen’s ≤. We wish to solve the opti-
mization problem given in equation (7.3). If these equations are satisfied, then
V is feasible and we evaluate Z, the fuzzy objective function in equation (7.3).
Let the previous best (max) value of Z be Z

∗
and the current value of Z = Z0

from the recent feasible V . If Z
∗

< Z0 using Chen’s <, then set Z
∗

to be Z0,
otherwise discard Z0 and generate the next random V .

With N = 100, 000 the results of the fuzzy Monte Carlo method are shown in
Table 7.3, and Figures 7.3 & 7.4. All the fuzzy numbers in Table 7.3 are triangular
shaped fuzzy numbers. X1, X2 and X3 are QBGFNs. The notation we use for
these fuzzy numbers was explained in Section 4.3.2. and also in Section 6.3.1.
Since maxZ is not necessarily or likely to be a QBGFN, we only give the support
and core for maxZ. Our approximate solution to this fuzzy linear program are
the fuzzy numbers determined by this Monte Carlo program.

Table 7.3. Monte Carlo Solution to the Fuzzy Linear Program, Chen’s ≤, N=100,000

maxZ Xi (QBGFN from Sobol)
≈ (285.30/286.20/287.10) X1 = (0.00, 0.00, 0.00,−1.00,−0.00)

X2 = (15.90, 15.90, 15.90,−0.00,−0.00)
X3 = (26.50, 26.50, 26.50,−0.00,−0.00)

Fig. 7.3. X1, X2, X3 Solution using Chen’s ≤, Product Mix Problem

Figure 7.3 show the “optimal” Xi. Please note that this is not a crisp solution.
They appear to be crisp when we round the results to two decimal places. Each
left and right support is not coincident with its vertex. Figure 7.4 shows the
value of the objective function Z, corresponding to the values of the Xi given in
Figure 7.3.
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Fig. 7.4. maxZ using Chen’s ≤, Product Mix Problem

7.5 Comparison of Solutions

For another comparison the solution to the crisp problem is x1 = 0, x2 = 27,
x3 = 16 with max z = 312. The crisp linear program is the one obtained using
the core values of all the fuzzy numbers.

All of these software efforts were performed on Windows-based PCs. These
two fuzzy Monte Carlo optimizations were executed on a Lenovo T60 (T2400),
1.83GHz, 1.49GB RAM.

The Kerre comparison method found 8, 749 feasible sets in a stream of 100,000
(X1k,X2k,X3k); 38 of them had triggered new maximums. Elapsed time for the
run was 14:38:08; the last maximum was found nearly at the end of the stream
(97, 018th vector triplet).

The Chen comparison method found 4, 987 feasible sets in the same stream
of 100,000 (X1k,X2k,X3k); 7 of them had triggered new maximums. Elapsed
time for the run was 14:14:35, but the last maximum was found after 04:44:17 at
vector triplet 33, 335. The Chen solution was found with the 1, 687th feasible set.
The solution using Chen’s comparison method is not too fuzzy and is strangely
not like the crisp solution reported above. We review the crisp solution with
respect to the fuzzy constraint equations (7.4) and find that the second constraint
equation evaluates to (311.3/312/312.7) which does not satisfy the constraint
by either Kerre’s or Chen’s ≤. We note that a crisp solution to a crisp linear
programming problem might not satisfy a fuzzy linear programming problem.

The two methods reported two identical new maximums. At the 492nd vector
triplet they reported a new maximum of ≈(155.06/275.57/346.00). Then again
at vector triplet 33, 335 they found the same new maximum. Chen’s method
found no more new maximums.

For our Monte Carlo solution using Sobol quasi-random numbers, we compare
Kerre’s method results and Chen’s method results to find that the maxZ from
Kerre’s method is less than the maxZ from Chen’s method solution if Buckley’s
method or Kerre’s method is used to compare the maximums. If Chen’s method
is used to compare the maximums, the maxZ from Chen’s method is less than
the maxZ from Kerre’s method solution.

Yet another interesting solution is that given in [1], obtained by using an
Evolutionary Algorithm to arrive at a solution. The results of that Evolutionary
Algorithm method, using Kerre’s method, are shown in Figures 7.5 and 7.6.
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Fig. 7.5. Evolutionary Algorithm, X1, X2, X3 using Kerre’s ≤ Product Mix Problem

Fig. 7.6. Evolutionary Algorithm, maxZ using Kerre’s ≤, Product Mix Problem

All the fuzzy numbers in Figure 7.5 are triangular fuzzy numbers but maxZ
in Figure 7.6 is actually a triangular shaped fuzzy number. One will need to
review [1] to understand their evolutionary algorithm method. We compare our
Monte Carlo solution using Sobol quasi-random numbers and Kerre’s method
with the Evolutionary Algorithm solution from [1] and find that the maxZ
from our Monte Carlo solution is greater than the maxZ from the Evolutionary
Algorithm solution (regardless which of Buckley’s method, Kerre’s method, or
Chen’s method is used to compare the maximums).

Next we attempt to compare our Monte Carlo results using Chen’s method
with an Evolutionary Algorithm solution given in [1]. Unfortunately, we deter-
mined a discrepancy in those Evolutionary Algorithm results. That Evolutionary
Algorithm solution satisfies neither the constraint equations nor the objective
function. Thus we were not able to use them.

We see by comparing these fuzzy Monte Carlo solutions with a crisp solution
that we have a solution not inconsistent with the crisp solution. Additionally,
compared with an Evolutionary Algorithm solution, the fuzzy Monte Carlo So-
lution finds a greater fuzzy maximum.

References

1. Buckley, J.J., Feuring, T.: Evolutionary Algorithm Solution to Fuzzy Problems:
Fuzzy Linear Programming. Fuzzy Sets and Systems 109, 35–53 (2000)

2. Buckley, J.J., Eslami, E., Feuring, T.: Fuzzy Mathematics in Economics and Engi-
neering. Physica-Verlag, Heidelberg (2002)



8 Fully Fuzzified Linear Programming II

8.1 Introduction

This chapter follows from Chapter 7. However we now study a minimization
problem. The diet problem is discussed in the next section. We have previously
obtained an approximate fuzzy solution to this problem using an evolutionary
algorithm ([1],[2]). In Section 7.3 we will apply our fuzzy Monte Carlo method to
the problem to generate another approximate solution and then compare these
new results to the evolutionary algorithm method.

8.2 Diet Problem

A farmer has three products P1, P2 and P3 which he plans to mix together to
feed his pigs. He knows the pigs require a certain amount of food F1 and F2 per
day. Table 8.1 presents estimates of the units of F1 and F2 available, per gram
of P1, P2 and P3.

Table 8.1. Approximate Units of Food Fj in Product Pi

Food

F1 F2

P1 2.5 5
Product P2 4.5 3

P3 5 10

Also, each pig should have approximately at least 54 units of F1 and approx-
imately at least 60 units of F2, per day. The costs of P1, P2 and P3 vary slightly
from day to day but the average costs are: (1) 0.08$ per gram of P1; (2) 0.09$
per gram of P2; and (3) 0.10$ per gram of P3.

The farmer wants to know how many grams of P1, P2 and P3 he should mix
together each day, so his pigs will get the approximate minimums, to minimize

J.J. Buckley et al.: Monte Carlo Meth. in Fuzzy Optimization, STUDFUZZ 222, pp. 75–80, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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his costs. Since all the numbers are uncertain we substitute triangular fuzzy
numbers, whose peak is at the given value, for all the parameters to give a fully
fuzzified linear program. The problem becomes

min Z = (7/8/9)X1 + (8/9/10)X2 + (9/10/11)X3 (8.1)
subject to: (8.2)

(2/2.5/3)X1 + (4/4.5/5)X2 + (4.5/5/5.5)X3 ≥ (50/54/58),
(4.5/5/5.5)X1 + (2.5/3/3.5)X2 + (9/10/11)X3 ≥ (56/60/64),
X1, X2, X3 ≥ 0,

where Xi is the amount of Pi, in grams, to use per day, for each pig.

8.3 Fuzzy Monte Carlo Method

We first need to find intervals Ii = [0, Mi], i = 1, 2, 3, as explained in Section
6.3 in Chapter 6, for the X i. Since we form fuzzy vector V = (X1, X2, X3),
and each Xi consumes 5 crisp numbers, we choose our stream of Sobol quasi-
random numbers which had been generated 15 at a time to get three sets of
5. We randomly generate X i ∈ [0, Mi], i = 1, 2, 3, and form the random fuzzy
vector V = (X1, X2, X3). We test to see if V is feasible, or the Xi satisfy the
constraints. Assuming that V is feasible we compute Z0 = C1X1 + ...+C3X3. If
Z

∗
is the current best (min) value of Z then we replace Z

∗
with Z0 if Z

∗
> Z0,

otherwise we discard Z0.
We also need to solve the fuzzy min problem twice. First we use Kerre’s

Method to evaluate Ei ≥ Bi in the constraints and Z
∗

> Z0 in the objective
function. Then we use Chen’s Method.

To get an idea for the intervals Ii for the Xi, i = 1, 2, 3, we studied the
solutions to this problem from the evolutionary algorithm. Using Kerre’s method
the supports of all the optimal Xi were in [0, 12]. We also note that for low
values of two X i, some Xi vertex must be near 20 to satisfy the constraint
inequalities. So we chose all the intervals to be [0, 20] for our Monte Carlo study
when Kerre’s method is used. From the evolutionary algorithm, using Chen’s
method the supports of all the optimal Xi were in [0, 16]. So we chose all the
intervals to be [0, 25] for a Monte Carlo study when Chen’s method is used.

Now we follow the procedure outlined in Sections 6.3.1 and 6.3.2. We randomly
generate sequences V k = (X1k, X2k, X3k) where the X ik are Bézier (quadratic)
fuzzy numbers (QBGFNs in Chapter 4). If V k is feasible, using Kerre’s or Chen’s
method, we compute the value of the fuzzy objective function in equation (8.1).
We wish to solve the minimization problem given in equations (8.1) and (8.2).

With N = 100, 000, and intervals [0, 20], the results of the fuzzy Monte Carlo
method for Kerre’s comparison method are shown in Table 8.2. The results of
the fuzzy Monte Carlo method for Chen’s comparison method using a different
stream of random fuzzy numbers based on [0, 25], also with N = 100, 000, are
shown in Table 8.3. All the fuzzy numbers in Tables 8.2 and 8.3 are triangular
shaped fuzzy numbers. X1, X2 and X3 are QBGFNs. The notation we use
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Table 8.2. Results for the Diet Problem Using Fuzzy Monte Carlo, Kerre’s Method,
[0,20], N=100,000

minZ Xi (QBGFN from Sobol)
≈ (23.70/122.20/224.99) X1 = (0.41, 0.45, 3.11, 0.54,−0.59)

X2 = (1.31, 6.78, 12.64, 5.32, 0.63)
X3 = (1.15, 5.76, 6.43, 4.31,−0.16)

Table 8.3. Results for the Diet Problem Using Fuzzy Monte Carlo, Chen’s Method,
[0,25], N=100,000

minZ Xi (QBGFN from Sobol)
≈ (41.49/88.92/350.51) X1 = (2.18, 3.71, 8.42,−0.00, 5.69)

X2 = (2.39, 3.08, 23.64,−0.35,−4.23)
X3 = (0.79, 3.16, 3.49,−2.19,−0.98)

Fig. 8.1. X1, X2, X3 using Kerre’s Inequality, Diet Problem

Fig. 8.2. X1, X2, X3 using Chen’s Inequality, Diet Problem

for these fuzzy numbers was explained in Section 4.3.2. We define a QBGFN as
(a, b, c, d, e) where: (1) the support is the interval [a, c]; (2) the vertex is at x = b;
(3) the three numbers a, d, b define the quadratic function for the left side of the
fuzzy number; and (4) the three numbers b, e, c specify the quadratic function
for the right side of the fuzzy number. Since minZ is not necessarily, or likely
to be a QBGFN, we only give the support and core for minZ.

Figures 8.1 and 8.2 display the “optimal” X i, for both methods.
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Fig. 8.3. minZ using Kerre’s Inequality, Diet Problem

Fig. 8.4. minZ using Chen’s Inequality, Diet Problem

Figures 8.3 and 8.4 present the value of the objective function Z for the values
of the X i shown in Figures 8.1 and 8.2, respectively.

8.4 Comparison of Solutions

For another comparison the solution to the crisp problem is x1 = 0, x2 = 8,
x3 = 3.6 with min z = 108 (in cents). The crisp linear program is the one
obtained using the core values of all the fuzzy numbers.

All of these software efforts were performed on Windows-based PCs. For the
fuzzy Monte Carlo optimizations, several computers were used, all Dell Optiplex
GX270’s, 3.0GHz, 1GB RAM.

First we consider the Kerre simulations using the interval [0, 20]. The Kerre
comparison method found 97, 580 feasible sets in a stream of 100,000
(X1k,X2k,X3k); 7 of them triggered new minimums. Elapsed time for the run
was over 24 hours, but the last minimum was found after 640 feasible sets at
00:07:16 into the execution.

Fig. 8.5. Evolutionary Algorithm, X1, X2, X3 using Kerre’s ≤, Diet Problem
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Fig. 8.6. Evolutionary Algorithm, minZ using Kerre’s ≤, Diet Problem

Fig. 8.7. Evolutionary Algorithm, X1, X2, X3 using Chen’s ≤, Diet Problem

Fig. 8.8. Evolutionary Algorithm, minZ using Chen’s ≤, Diet Problem

One may compare this solution is that given in [1], obtained by using an
Evolutionary Algorithm to arrive at a solution. The results of that Evolution-
ary Algorithm method, using Kerre’s method, are shown in Figures 8.5 and
8.6. The fuzzy numbers in Figure 8.5 are triangular fuzzy numbers. One will
need to review [1] to understand their evolutionary algorithm method. We com-
pare our Monte Carlo solution using Sobol quasi-random numbers and Kerre’s
method with the Evolutionary Algorithm solution from [1] and find that the
minZ from our Monte Carlo solution is less than the minZ from the Evolution-
ary Algorithm solution (regardless which of Buckley’s method, Kerre’s method,
or Chen’s method is used to compare the minimums).

The Chen [0, 25] comparison method found 69, 498 feasible sets in its stream
of 100,000 (X1k,X2k,X3k); 15 of them triggered new minimums. Elapsed time
for the run was about 15 hours, with the last minimum found at feasible set
30, 460 after 04:48:56. Having different input streams, the Kerre [0, 20] and the
Chen [0, 25] methods’ minimums did not track each other.

Another interesting solution is that given in [1], obtained by using an Evolution-
ary Algorithm. The results of that Evolutionary Algorithm method, using Chen’s
method, are shown in Figures 8.7 and 8.8. The fuzzy numbers in Figure 8.7 are
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triangular fuzzy numbers. One will need to review [1] to understand their evo-
lutionary algorithm method. We compare our Monte Carlo solution using Sobol
quasi-random numbers and Chen’s method with the Evolutionary Algorithm so-
lution using Chen’s method from [1] and find that the minZ from our Monte Carlo
solution is less than the minZ from the Evolutionary Algorithm solution (regard-
less which of Buckley’s method, Kerre’s method, or Chen’s method is used to com-
pare the minimums).

For our Monte Carlo solution using Sobol quasi-random numbers, we compare
Kerre’s method results and Chen’s method results to find that the minZ from
Chen’s method is less than the minZ from Kerre’s method solution (regard-
less which of Buckley’s method, Kerre’s method, or Chen’s method is used to
compare the maximums).

We see by comparing these fuzzy Monte Carlo solutions with a crisp solution
that we have a solution consistent with the crisp solution. Additionally, compared
with an Evolutionary Algorithm solution, the fuzzy Monte Carlo Solution finds
a lesser fuzzy minimum.
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9 Fuzzy Multiobjective LP

9.1 Introduction

This chapter continues Chapters 7 and 8. However now we have multiple objec-
tive functions we wish to maximize. We first discuss the general multiobjective
fully fuzzified linear program in the next section. Then we study an example
problem in Section 9.3. We have previously obtained an approximate fuzzy so-
lution to this type of problem using an evolutionary algorithm [2]. In Section
9.4 we will apply our fuzzy Monte Carlo method to the problem to generate
another approximate solution. Unfortunately, we will be unable to compare our
Monte Carlo solution to our previous solution because we now are forced to use
a different method of evaluating fuzzy inequalities.

Fuzzy multiobjective linear programming has also (along with fuzzy linear
programming) become a large area of research. A few recent references to this
topic are the papers ([1],[3],[6],[7],[9],[10],[16],[17]) and books (or articles in these
books) ([4],[5],[8],[11]-[15]).

9.2 Multiobjective Fully Fuzzified Linear Programming

We are interested in the following problem

max
(
Z = (Z1, . . . , ZK)

)
(9.1)

where

Zk =
n∑

j=1

CkjXj , 1 ≤ k ≤ K, (9.2)

subject to

n∑
j=1

AijXj ≤ Bi, 1 ≤ i ≤ m, (9.3)

Xj ≥ 0, for all j. (9.4)

J.J. Buckley et al.: Monte Carlo Meth. in Fuzzy Optimization, STUDFUZZ 222, pp. 81–88, 2008.
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In the above problem Ckj , Aij , and Bi are all triangular fuzzy numbers. The Xi

are triangular shaped fuzzy numbers. Let us rewrite it using matrix notation

max
(
Z = (Z1, . . . , ZK)

)
(9.5)

Zk = Ck X, 1 ≤ k ≤ K (9.6)
A X ≤ B,X ≥ 0, (9.7)

for Ck = (Ck1, . . . , Ckn), 1 ≤ k ≤ K, X
t

= (X1, . . . , Xn), B
t

= (B1 . . . , Bm)
and A = [Aij ] a m× n matrix of fuzzy numbers.

To completely define the problem in equations (9.5)-(9.7) we must do two
things: (1) define what we mean by maxZ, or finding the maximum of a vector of
triangular shaped fuzzy numbers; and (2) explain what is meant by A X ≤ B. In
the previous publications (see [2]) we handled max/min Z basically as discussed
in Section 2.5 of Chapter 2. Also, in those publications we used both Kerre’s
Method (Section 2.6.2) and Chen’s Method (Section 2.6.3) to evaluate ≤ and ≥
between fuzzy numbers. In our fuzzy Monte Carlo method we want to use both
Kerre’s Method and Chen’s Method to evaluate ≤, ≥, > and < between fuzzy
numbers but we will explain that we need to use another method.

9.3 Example Problem

This example is adapted from an example in ([18], p. 217). The crisp problem is

max (z1 = 5x1 + 3x2, z2 = 2x1 + 8x2) (9.8)
subject to: x1 + 4x2 ≤ 100 (9.9)

3x1 + 2x2 ≤ 150 (9.10)
5x1 + 3x2 ≥ 200 (9.11)
2x1 + 8x2 ≥ 75 (9.12)

x1, x2 ≥ 0. (9.13)

The feasible set is shown F in Figure 9.1, which is the bounded region with
vertices A,B,C and D, and the undominated set is the line segment from A to
B. The last constraint is inactive and does not define any part of the boundary
of the feasible set. Undominated crisp vectors are discussed in Section 2.7 in
Chapter 2. The general solution to this type of optimization problem is the set
of undominated vectors z = (z1, z2).

We now fully fuzzify the crisp problem using triangular fuzzy numbers whose
vertex (core) value is the corresponding number in the crisp problem. The vari-
ables X i will be triangular shaped fuzzy numbers. The multiobjective fully
fuzzified linear program is

max
(
Z = (Z1, Z2)

)
(9.14)

Z1 = (4/5/6)X1 + (2/3/4)X2 (9.15)
Z2 = (1/2/3)X1 + (6/8/10)X2 (9.16)
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Fig. 9.1. Feasible Set in the Example problem

subject to:
(0/1/2)X1 + (3/4/5)X2 ≤ (95/100/105) (9.17)
(2/3/4)X1 + (1/2/3)X2 ≤ (140/150/160) (9.18)
(3/5/7)X1 + (2/3/4)X2 ≥ (180/200/220) (9.19)
(1/2/3)X1 + (6/8/10)X2 ≥ (70/75/80) (9.20)

X1, X2 ≥ 0. (9.21)

9.4 Fuzzy Monte Carlo Method

We will need to find intervals Ii = [0,Mi], i = 1, 2, as explained in Section 6.3 in
Chapter 6, for the X i. We randomly generateXi ∈ [0,Mi], i = 1, 2, and form the
random fuzzy vector V = (X1, X2). Since we form fuzzy vector V = (X1, X2),
and each Xi consumes 5 crisp numbers, we choose our stream of Sobol quasi-
random numbers which had been generated 10 at a time to get the two pairs
of 5. We test to see if V is feasible, or the X i satisfy the constraints. Assuming
that V is feasible we compute Z1 = C11X1 +C12X2 and Z2 = C21X1 +C22X2.
Now we combine Z1 and Z2 into one fuzzy number Z for ranking (finding the
max). Let

Z = λZ1 + (1 − λ)Z2, (9.22)

for 0 < λ < 1. The decision maker(s) will choose various values for λ and then
solve the fuzzy optimization problem max Z. Let the current value of Z = Z0

from feasible fuzzy vector V . If Z
∗

is the best (max) value of Z up to now, then
we replace Z

∗
with Z0 if Z

∗
< Z0, otherwise we discard Z0.

We discussed weak and strong domination between fuzzy vectors in Section
2.7. We concluded that if we use Buckley’s Method (Section 2.6.1) of evaluat-
ing inequalities between fuzzy numbers, then solutions V = (X1, X2) tomaxZ in
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equation (9.22) are strongly undominated solutions to the multiobjective fully
fuzzified linear program. Let us explain in more detail what this means.

Pick and fix a value for the λ > 0. Let V = (X1, X2) be feasible (satisfy the
constraints in equations (9.17)-(9.21) using Buckley’s Method) and maximize
Z in equation (9.22). Then V is strongly undominated which means that no
other feasible fuzzy vector W can strongly dominate V . This result is not true
using Kerre’s Method or Chen’s Method (Section 2.7). The general solution
to the multiobjective fully fuzzified linear program will be the set of strongly
undominated fuzzy vectors. This means that we do not use Kerre’s Method or
Chen’s Method to evaluate fuzzy inequalities for this problem.

Looking at the undominated set in Figure 9.1 we chose the interval [20, 70]
for X1 and [0, 50] for X2. The Xi will be Bézier (quadratic) fuzzy numbers
(QBGFNs in Chapter 4). So we now randomly generate a sequence V k =
(X1k, X2k) with X1k ∈ [20, 70] and X2k ∈ [0, 50] all k. Using our Sobol quasi-
random number generator we produce sequences of random vectors v1k =
(x1k1, ..., x1k5), v2k = (x2k1, ..., x2k5), k = 1, 2, 3, .... The sequence v1k is used
to get the sequence of quadratic fuzzy numbers X1k, recall that we only re-
quire vectors of length five for these fuzzy numbers (see Chapter 4), and the
other sequence v2k constructs the sequence of quadratic fuzzy numbers X2k,
k = 1, 2, 3, .... If V k is feasible we compute

Z1k = C11X1k + C12X2k, (9.23)

and
Z2k = C21X1k + C22X2k, (9.24)

for k = 1, 2, 3, ..., N , where N is the predetermined total number of iterations.
Assume that the decision maker(s) believe that the two goals are equally

important so they picked λ = 0.5. We want to find a k value, and hence a V k,
to solve

max{Zk|k = 1, 2, 3, ..., N}, (9.25)

where
Zk = 0.5Z1k + 0.5Z2k, (9.26)

k = 1, 2, 3, ..., N .

Table 9.1. Monte Carlo Solution to the Fuzzy Linear Program, Buckley’s Method,
N=100,000

maxZ Xi (QBGFN from Sobol)
≈ (76.25/188.57/337.92) X1 = (39.75, 40.54, 45.21,−0.49, 0.55)

X2 = (8.26, 8.49, 8.55, 0.69, 0.68)
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Fig. 9.2. X1, X2 using Buckley’s Inequality, Example Problem

Fig. 9.3. Z1 using Buckley’s Inequality, Example Problem

1.5

Fig. 9.4. Z2 using Buckley’s Inequality, Example Problem

Fig. 9.5. maxZ using Buckley’s Inequality, Example Problem

With N = 100, 000 the results of the fuzzy Monte Carlo method are shown
in Table 9.1. All the fuzzy numbers in Table 9.1 are triangular shaped fuzzy
numbers. X1 and X2 are QBGFNs. The notation we use for these fuzzy numbers
was explained in Section 4.3.2. We define a QBGFN as (a, b, c, d, e) where: (1)
the support is the interval [a, c]; (2) the vertex is at x = b; (3) the three numbers
a, d, b define the quadratic function for the left side of the fuzzy number; and (4)
the three numbers b, e, c specify the quadratic function for the right side of the
fuzzy number. Since maxZ is not necessarily, or likely to be a QBGFN, we only
give the support and core for maxZ.
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Figure 9.2 shows the “optimal” Xi and Figure 9.5 shows the value of the
objective function Z using λ = 0.5, corresponding to the values of the X i given
in Figure 9.2.

9.5 Compare Solutions

For this multiobjective linear programming problem we have no crisp solution.
All of these software efforts were performed on Windows-based PCs. For the

fuzzy Monte Carlo optimizations, several computers were used, mostly Dell Op-
tiplex GX270’s, 3.0GHz, 1GB RAM. This particular Monte Carlo simulation was
performed on a Dell Inspiron 8200, 1.8GHz, 1GB RAM.

The fuzzy Monte Carlo optimization found 25, 464 feasible sets in a stream of
100,000 (X1k,X2k); 36 of them triggered new maximums. Elapsed time for the
run was 16:15:57, but the last minimum was found after 11, 332 feasible sets at
07:26:06 (iteration 44, 528 of 100, 000) into the execution.

One may compare this solution is that given in [1], obtained by using an
Evolutionary Algorithm to arrive at a solution. The results of that Evolutionary
Algorithm method, using Kerre’s method, are shown in Figures 9.6, 9.7, 9.8,
and 9.9. The fuzzy numbers in Figure 9.6 are triangular fuzzy numbers. The
fuzzy numbers in Figures 9.7, 9.8, and 9.9 are triangular shaped fuzzy numbers.
One will need to review [1] to understand their evolutionary algorithm method.
We compare our Monte Carlo solution using Sobol quasi-random numbers and
Buckley’s method with the Evolutionary Algorithm solution from [1] and find
that the maxZ from our Monte Carlo solution is greater than the maxZ from the
Evolutionary Algorithm solution (regardless which of Buckley’s method, Kerre’s
method, or Chen’s method is used to compare the maximums).

Fig. 9.6. Evolutionary Algorithm, X1, X2 using Kerre’s ≤

Fig. 9.7. Evolutionary Algorithm, Z1 using Kerre’s ≤
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Fig. 9.8. Evolutionary Algorithm, Z2 using Kerre’s ≤

Fig. 9.9. Evolutionary Algorithm, maxZ using Kerre’s ≤

Next we attempt to compare our Monte Carlo results using Chen’s method
with an Evolutionary Algorithm solution given in [1]. Unfortunately, we deter-
mine a discrepancy in those Evolutionary Algorithm results. That Evolutionary
Algorithm solution fails to satisfy the second and third constraint equations.
Thus we were not able to use them.

We see by comparing these fuzzy Monte Carlo solutions with an Evolution-
ary Algorithm solution, the fuzzy Monte Carlo solution finds a greater fuzzy
maximum.
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10 Solving Fuzzy Equations

10.1 Introduction

We start in the next Section 10.2 with looking at possible solutions to the simple
fuzzy linear equation A ·X+B = C. We discuss three different types of solution
which we have studied before in solving fuzzy equations. Then we present a
fourth type of solution, based on our fuzzy Monte Carlo method, in Section
10.2.2. This new solution is based on random fuzzy numbers. In Section 10.3
we look at only “classical” solutions to the fuzzy quadratic equation and apply
our fuzzy Monte Carlo method to obtain new solutions. Then in Section 10.4 we
consider the fuzzy matrix equation A · X = B and a number of solution types
for X and then another solution based on fuzzy Monte Carlo techniques. The
last section contains a brief summary and our conclusions.

In this chapter M ≤ N will mean that M is a fuzzy subset of N (Section
2.2.3) and not that M is less than or equal to N . Solving fuzzy equations has
always been an active area of research. Some recent references on this topic are
([1]-[4],[16]-[18],[21],[22]).

10.2 A X + B = C

A, B and C will be triangular fuzzy numbers so let A = (a1/a2/a3), B =
(b1/b2/b3) and C = (c1/c2/c3). X, if it exists, will be a triangular shaped fuzzy
number so let X ≈ (x1/x2/x3). In the crisp equation

ax+ b = c, (10.1)

we immediately obtain X = (c − b)/a, if a �= 0. We used the important facts
b− b = 0 and (1/a)a = 1 from real numbers to get the solution.

We try this same approach with the fuzzy equation

A X +B = C, (10.2)

we get
(1/A)(A X + (B −B)) = (1/A)(C −B). (10.3)

J.J. Buckley et al.: Monte Carlo Meth. in Fuzzy Optimization, STUDFUZZ 222, pp. 89–115, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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But the left side of the equation (10.3) does not equal X since B − B �= 0 and
(1/A)(A) �= 1. For example, if B = (1/2/3), then B − B = (−2/0/2) not zero.
Also, if A = (1/2/3), (1/A)(A) ≈ (1

3/1/3), a triangular shaped fuzzy number,
not (1/1/1).

This shows a major problem in solving fuzzy equations: some basic operations
we used to solve crisp equations do not hold for fuzzy equations. Actually, this
comes as no great surprise because this also happens in probability theory. If X
is a random variable with positive variance, then X−X �= 0 and X/X �= 1 since
both X −X and X/X will have positive variance.

We now introduce our first solution method, called the classical method, pro-
ducing solution Xc (when it exists). This procedure employs α-cuts and interval
arithmetic (Section 2.4.2) to solve for Xc. Let A[α] = [a1(α), a2(α)], B[α] =
[b1(α), b2(α)], C[α] = [c1(α), c2(α)] and Xc[α] = [x1(α), x2(α)], 0 ≤ α ≤ 1.
Substitute these into equation (10.2) producing

[a1(α), a2(α)][x1(α), x2(α)] + [b1(α), b2(α)] = [c1(α), c2(α)]. (10.4)

We now use interval arithmetic (Section 2.3.2) to solve equation (10.4) for x1(α)
and x2(α). We say that this method defines solution Xc when [x1(α), x2(α)]
defines the α-cuts of a fuzzy number. For the x1(α), x2(α) to specify a fuzzy
number we need:

1. x1(α) monotonically increasing, 0 ≤ α ≤ 1;
2. x2(α) monotonically decreasing, 0 ≤ α ≤ 1; and
3. x1(1) ≤ x2(1).

We did not mention anything about the xi(α) being continuous because through-
out this chapter x1(α), x2(α) will be continuous.

Example 10.2.1

Let A = (1/2/3), B = (−3/−2/−1) and C = (3/4/5). Then A[α] = [1+α, 3−α],
B[α] = [−3 +α,−1−α], C[α] = [3 +α, 5−α]. Since A > 0 and C > 0, we must
have Xc > 0, and equation (10.4) gives

[a1(α)x1(α) + b1(α), a2(α)x2(α) + b2(α)] = [c1(α), c2(α)], (10.5)

or

x1(α) =
6

1 + α
, (10.6)

x2(α) =
6

3 − α
, (10.7)

after substituting for a1(α), . . ., c2(α) and solving for xi(α). But x1(α) is de-
creasing and x2(α) is increasing. So, Xc does not exist.
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Example 10.2.2

Now set A = (8/9/10), B = (−3/ − 2/ − 1) and C = (3/5/7). So A[α] =
[8 +α, 10−α], B[α] = [−3 +α,−1−α], C[α] = [3 + 2α, 7− 2α]. Again we must
have Xc > 0 so we obtain

x1(α) =
6 + α

8 + α
, (10.8)

x2(α) =
8 − α

10 − α
. (10.9)

We see that x1(α) is increasing (its derivative is positive), x2(α) is decreasing
(derivative is negative) and x1(1) = 7/9 = x2(1). The solution Xc exists, with
α-cuts [x1(α), x2(α)], shown in Figure 10.1.

0

0.2

0.4

0.6

0.8

1

0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86
x

Fig. 10.1. Solution to Example 10.2.2, Xc ≈ (0.75/0.777/0.8)

Working more examples, like Examples 10.2.1 and 10.2.2 above, we conclude
that too often fuzzy equations have no solution (Xc). This motivated the authors
in ([5]-[15]) to propose other solutions for fuzzy equations. These new solutions
will be introduced in the next section. The classical solution, plus the new solu-
tions, will be used throughout this chapter.

10.2.1 Other Solutions

We continue working with the fuzzy equation A X+B = C. The other solutions
simply fuzzify the crisp solution (c− b)/a, a �= 0. The fuzzified crisp solution is

(C −B)/A, (10.10)
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where we assume zero does not belong to the support of A. There are two ways
to evaluate equation (10.10). The first method is the extension principle. If Xe

is the value of equation (10.10) using the extension principle, then

Xe(x) = max {π(a, b, c) | (c− b)/a = x } , (10.11)

where
π(a, b, c) = min

{
A(a), B(b), C(c)

}
. (10.12)

Since the expression (c − b)/a, a �= 0, is continuous in a, b, c we know how to
find α-cuts of Xe (Section 2.4.1)

xe1(α) = min
{
(c− b)/a | a ∈ A[α], b ∈ B[α], c ∈ C[α]

}
, (10.13)

xe2(α) = max
{
(c− b)/a | a ∈ A[α], b ∈ B[α], c ∈ C[α]

}
, (10.14)

where
Xe[α] = [xe1(α), xe2(α)], (10.15)

0 ≤ α ≤ 1. Xe will be a triangular shaped fuzzy number when A, B, C are
triangular fuzzy numbers. It is not difficult to show that if Xc exists, Xc ≤ Xe.
In this chapter Xc ≤ Xe means that Xc is a fuzzy subset of Xe (Section 2.2.3).

An important fact about Xc is that it will satisfy the fuzzy equation. That is
A ·Xc +B = C holds using α-cuts and interval arithmetic. However, Xe may, or
may not, satisfy the fuzzy equation. However, Xe will always exist but Xc may
fail to exist.

The second way to evaluate equation (10.10) is to use α-cuts and interval
arithmetic. If the result is XI , we have

XI [α] =
C[α] −B[α]

A[α]
, (10.16)

to be simplified by interval arithmetic, 0 ≤ α ≤ 1. It is also not too difficult to
argue that Xe ≤ XI .
XI may or may not satisfy the fuzzy equation. XI will be a triangular shaped

fuzzy number when A, B, C are all triangular fuzzy numbers. We summarize
these results as:

1. If Xc exists, then Xc ≤ Xe ≤ XI ;
2. Xc always satisfies the fuzzy equation;
3. Xe ≤ XI .

Up to now our general strategy for solving fuzzy equations will be:

1. the solution is Xc when it exists;
2. if Xc fails to exist, the solution is Xe; and
3. if Xc fails to exist and Xe is difficult to construct, use XI as the (approxi-

mate) solution.

For more complicated fuzzy equations Xe will be difficult to compute. However,
XI is usually easily constructed, since it uses only max, min and the arithmetic
of real numbers. For this reason we suggest approximating Xe by XI when we
do not have Xe.
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Example 10.2.1.1

This continues Example 10.2.1 where Xc does not exist. To calculate Xe we need
to evaluate equations (10.13) and (10.14). But this is easily done since (c− b)/a
is increasing in c and decreasing in both b and a. So

xe1(α) =
c1(α) − b2(α)

a2(α)
=

4 + 2α
3 − α

, (10.17)

xe2(α) =
c2(α) − b1(α)

a1(α)
=

8 − 2α
1 + α

. (10.18)

Xe is shown in Figure 10.2.
In calculating XI [α] we get

XI [α] = [c1(α) − b2(α), c2(α) − b1(α)]
[

1
a2(α)

,
1

a1(α)

]
, (10.19)

which is the same as Xe[α] because intervals in equation (10.19) are positive. In
this example, we get Xe = XI , whose support Xe[0] = [43 , 8].
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Fig. 10.2. Solution to Example 10.2.1.1, Xe = XI ≈ ( 4
3
/3/8)

Example 10.2.1.2

This continues Example 10.2.2. We notice that, since A > 0 and C − B > 0,
∂
∂c [

c−b
a ] = 1

a > 0, ∂
∂b [

c−b
a ] = − 1

a < 0 and ∂
∂a [ c−b

a ] = b−c
a2 < 0. This means that

the expression c−b
a is increasing in c but decreasing in a and b. Then equations

(10.13) and (10.14) become

xe1(α) =
c1(α) − b2(α)

a2(α)
=

4 + 3α
10 − α

, (10.20)
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xe2(α) =
c2(α) − b1(α)

a1(α)
=

10 − 3α
8 + α

. (10.21)

As in Example 10.2.1.1 we obtain XI = Xe. Xc and Xe are shown in Figure
10.3. The support of Xe = XI is Xe[0] = [0.4, 1.25].
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1
y

Xc Xe = XI

Fig. 10.3. Solutions to Example 10.2.1.2, Xc ≈ (0.75/0.777/0.8) and Xe ≈
(0.4/0.777/1.25)

10.2.2 Fuzzy Monte Carlo Method

Let Q be the set of triangular fuzzy numbers and the set of quadratic fuzzy
numbers (Section 4.3.2 called QBGFNs). Let D be some metric on Q. Then D
has the following properties: for M , N and P in Q

1. D(M,N) ≥ 0;
2. D(M,N) = 0 implies that M = N ;
3. D(M,N) = D(N,M); and
4. D(M,N) ≤ D(M,P ) +D(P ,N).

Then our new solution will be X
∗

that solves the minimization problem

min{D(A ·X +B,C)|X ∈ Q}. (10.22)

That is, X
∗

is a fuzzy number from Q that makes A ·X∗
+B as close as possible

to C, where the distance is measured by the metric D.
Our fuzzy Monte Carlo method may be applied to approximateX

∗
. Randomly

generate a sequence X1, X2,... from Q, compute the distance D between A·X i+
B and C, and keep the Xi that makes this distance the smallest. In this way we
may compute better and better, for longer and longer sequences, approximations
to X

∗
.

Now we will rework the examples in the previous section using our fuzzy Monte
Carlo method and compare the results. But first we need to select a metric D.
Of course, the answers can vary depending on the choice of D. Metrics on fuzzy
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numbers were discussed in [8]. We first give an example of a “horizontal” metric
and then an example of a “vertical” metric.

Let M [α] = [m1(α),m2(α)], N [α] = [n1(α), n2(α)], L(α) = |m1(α) − n1(α)|
and R(α) = |m2(α) − n2(α)|. Then

D(M,N) = max{max(L(α), R(α))|0 ≤ α ≤ 1}, (10.23)

is a metric. In [8] the authors show that D(M,N) = 1 for M = (1/2/4) and
N = (1/3/4). For triangular/trapezoidal fuzzy numbers it is easy to compute
the distance between them using equation (10.23). It is

D(M,N) = max{|m1(0) − n1(0)|, |m1(1) − n1(1)|, |m2(0) − n2(0)|}, (10.24)

Also, the Hamming distance measure in equation (2.45) in Chapter 2 is a metric.
Also in [8] the authors argue that the Hamming distance between M = (1/2/4)
and N = (1/3/4) is 0.75. Let us use the first metric, the “horizontal metric” in
our fuzzy Monte Carlo studies.

We will use the metric defined by equation (10.23) in equation (10.22). Let
D(X) = D(A · X + B,C) and let ε ∈ (0, 1] be the “threshold”. If the fuzzy
Monte Carlo method produces a X so that D(X) < ε we will say that we have
found an acceptable approximate solution X

∗
a = X with X

∗
a ≈ X

∗
. We begin

with D(X) very large (100) and will accept a solution only if it minimizes to
D(X) < ε = 0.5.

Example 10.2.2.1

This continues Examples 10.2.1 and 10.2.1.1. We wish to use our fuzzy Monte
Carlo method to compute X

∗
a ≈ X

∗
and then compare X

∗
a to the other solution

Xe = XI . Recall that in this example the classical solution Xc does not exist
and X

∗
a is in Q and must satisfy D(X

∗
a) small; e.g., D(X

∗
a) < ε = 0.5.

We have already generated and studied 100,000 crisp random vectors v =
(x1, ..., x5) in [0, 1]5 using a Sobol quasi-random number generator (Chapter 3).
In Section 4.3.2 we relate how we create our vectors v. Next we determine an
interval [a, b], which will depend on the application, for the random quadratic
fuzzy numbers. Then we map v into a QBGFN.

To map v into a QBGFN (Figure 4.4), first we sort, translate and transform
{x1, x2, x3} to {z1, z2, z3} using zi = (b−a)xi+a, i = 1, 2, 3. Additionally we map
x4, x5 into parameters for the left and right membership functions, respectively,
using z4 = (2x4 − 1)(z2 − z1 + 1) and z5 = (2x5 − 1)(z3 − z2 + 1). In Section 5.3
we explain why we know these QBGFNs will cover our search space.

We modified the fuzzy Monte Carlo program used for Chapters 6-9 to optimize
the minimization problem of equation (10.22). Since for this problem the classical
solution does not exist, we choose [a, b] as the support of Xe = XI , which is
[43 , 8]. To compute D(A · X + B,C), we compute 100 α-cuts of A · X + B and
C for given A, B and C, where X is one of 30,000 generated random quadratic
fuzzy numbers.
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Table 10.1. (1/2/3) · X + (−3/ − 2/ − 1) = (3/4/5), Example 10.2.1, First Interval

Solution X A ·X +B

Xc does not exist (3/4/5) = C

XI = Xe ≈ (1.333/3/8) ≈ (−1.666/4/23)
X

∗
a, (2.9655/2.9980/3.0176/0.1286/0.6457), ≈ (−0.03/4.00/8.05)

D(X) = 3.0527

Fig. 10.4. X
∗
a of Example 10.2.2.1

Fig. 10.5. A · X∗
a + B of Example 10.2.2.1

We allow our program to execute for 30, 000 iterations and obtain the results
shown in Table 10.1.

Searching for X in the interval [1.33, 8.00], the smallest “horizontal” distance
for equation (10.23) that we got was 3.0527. Increasing the numbers of fuzzy
numbers to 50, 000 does not produce a change. In other words we obtained a
quadratic fuzzy number X

∗
a ≈ (2.9655/2.9980/3.0176) (Figure 10.4) such that

D(A · X∗
a + B,C) ≈ 3.0527. The graph of X

∗
a is nearly crisp. A · X∗

a + B ≈
(−0.03/4.00/8.05). But this error is too large.

We changed the interval [a, b] and saw that there is a good reduction in the dis-
tance between A·X+B and C. From an optimization over [0, 5] we minimized at
D(A ·X +B,C) = 2.00 for X = X

∗
a = (2.5000, 2.5000, 2.5000,−0.0000, 0.5000).

This error is still too large with ε = 2.00 and A · X∗
a + B ≈ (1.00/3.00/5.00)

(Figure 10.5).
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Our fuzzy Monte Carlo method was unable to get an acceptable approximate
solution to this fuzzy equation. We believe that no quadratic fuzzy number X
can make D(X) < ε = 0.5.

Example 10.2.2.2

This continues Examples 10.2.2 and 10.2.1.2. We apply our fuzzy Monte Carlo
method to compute X

∗
a ≈ X

∗
and then compare X

∗
a to the other solutions Xc

and Xe = XI . Recall that in this example the classical solution exists and is
shown in Figure 10.1. The constraints are still X

∗
a ∈ Q and it must satisfyD(X

∗
a)

small; e.g., D(X
∗
a) < ε = 0.5. As in Example 10.2.2.1 we generate a solution

using a Sobol quasi-random number generator to produce random quadratic

Table 10.2. (8/9/10) · X + (−3/ − 2/ − 1) = (3/5/7), Example 10.2.2.2

Solution X A ·X +B

Xc ≈ (0.75/0.777/0.80) ≈ (3/5/7) = C

XI = Xe ≈ (0.4/0.777/1.25) ≈ (0.2/5/11.5)
X

∗
a, (0.7523, 0.7786, 0.7999, 0.7788, 0.7816), ≈ (3.02/5.01/7.00)

D(X) = 0.083976

Fig. 10.6. X
∗
a of Example 10.2.2.2

Fig. 10.7. A · X∗
a + B of Example 10.2.2.2



98 Solving Fuzzy Equations

fuzzy numbers determined by vectors of length 5. We consider fuzzy numbers in
[0.4, 1.25] which is the support of Xe = XI .

We allow our program to execute for 50, 000 iterations and obtain the results
shown in Table 10.2. X

∗
a (Figure 10.6) is very close to Xc (Figure 10.1). Note

too how A · X∗
a + B (Figure 10.7) matches ≈ (3/5/7). Our fuzzy Monte Carlo

method found an acceptable solution.

10.3 Fuzzy Quadratic Equation

In this section we wish to discuss solutions to

A ·X2
+B ·X + C = D, (10.25)

for triangular fuzzy numbers A,B,C,D and X a triangular shaped fuzzy num-
ber. We know a crisp quadratic equation can have real number solutions and
complex number solutions. The same is true of the fuzzy quadratic. However, we
will not consider fuzzy complex numbers in this book so we will only work
with fuzzy quadratics that have no solution or the solutions are real trian-
gular shaped fuzzy numbers. In Section 10.2 we looked at three possible so-
lutions to the fuzzy linear equation: classical (Xc), extension principle (Xe)
and the interval arithmetic (XI). In this section we only consider the classical
solution.

Let A[α] = [a1(α), a2(α)], B[α] = [b1(α), b2(α)], C[α] = [c1(α), c2(α)], D[α] =
[d1(α), d2(α)], and X [α] = [x1(α), x2(α)]. We use α−cuts and interval arithmetic
to solve for x1(α) and x2(α). Equation (10.25) becomes

[a1(α), a2(α)][x1(α), x2(α)]2 + [b1(α), b2(α)][x1(α), x2(α)] +
+[c1(α), c2(α)] = [d1(α), d2(α)], (10.26)

for all α. We do the interval arithmetic (Section 2.3.2), which depends on A,B
and X being positive or negative, and solve for x1(α) and x2(α). We have a
solution if x1(0) < x1(1) ≤ x2(1) < x3(0) and dx1(α)/dα > 0, dx2(α)/dα < 0.

Now we look at two examples where the first has a solution and the second
does not have a solution. More details on the fuzzy quadratic can be found in
([6]-[9],[11],[13]). Then we turn to our fuzzy Monte Carlo method to see what
approximate answers it can give.

Example 10.3.1

Let A = (3/4/5), B = (1/2/3), C = (0/1/2) and D = (1/3/5). We will look for
a solution where X ≥ 0. Then equation (10.26) becomes

[3 + α, 5 − α][x2
1(α), x2

2(α)] + [1 + α, 3 − α][x1(α), x2(α)]
+[α, 2 − α)] = [1 + 2α, 5 − 2α)], (10.27)
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for α ∈ [0, 1]. If X ≈ (x1/x2/x3) we first solve for the xi getting x1 = 0.4343 <
x2 = 0.5000 < x3 = 0.5307. Looks like we will get a solution. Next we look at
x1(α) which is

x1(α) =
−(1 + α) +

√
5α2 + 18α+ 13

6 + 2α
, (10.28)

and then x2(α)

x2(α) =
−(3 − α) +

√
5α2 − 38α+ 69

10 − 2α
, (10.29)

for 0 ≤ α ≤ 1. We find that dx1(α)/dα > 0 and dx2(α)/dα < 0 and X is a
solution. The graph of this solution is in Figure 10.8.
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Fig. 10.8. Solution to Example 10.3.1, Xc ≈ (0.4343/0.5/0.5307)

Example 10.3.2

This example will have no (classical) solution for X. Let A = (2/4/6), B =
(0/2/4), C = 0, D = (0.5/1/1.5) and X a non-negative triangular shaped fuzzy
number. Let X ≈ (x1/x2/x3). So x1(0) = x1 and x2(0) = x3. Now we set up an
equation, like equation (10.27), for α = 0 and obtain two equations to solve

2x2
1(0) = 0.5, (10.30)

and
6x2

2(0) + 4x2(0) = 1.5. (10.31)

If Xwere a solution, its support would be [x1(0), x2(0)]. However [x1(0), x2(0)] =
[0.5, 0.2676]; i.e., x2(0) < x2(0). Thus there is no classical solution.
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10.3.1 Fuzzy Monte Carlo Method

We follow the same strategy as outlined in Section 10.2.2 for generating ap-
proximate solutions to fuzzy linear equations using fuzzy Monte Carlo methods.
Q will be the same set of fuzzy numbers and we use the same metric between
fuzzy numbers given in equation (10.23). We call our new solution X

∗
, the fuzzy

number in Q that minimizes the distance D(X) between A · X2
+ B · X + C

and D. Using our fuzzy Monte Carlo method we obtain X
∗
a an approximation

to X
∗
. We use the same “threshold” ε discussed in Section 10.2.2. If the fuzzy

Monte Carlo method produces a X so that D(X) < ε we will say that we have
found an acceptable approximate solution X

∗
a = X with X

∗
a ≈ X

∗
. We begin

with D(X) very large (100) and will accept a solution only if it minimizes to
D(X) < ε = 0.5.

Now we will rework Examples 10.3.1 and 10.3.2 using our fuzzy Monte Carlo
method.

Example 10.3.1.1

This continues Example 10.3.1. We wish to use our fuzzy Monte Carlo method to
compute X

∗
a ≈ X

∗
and then compare X

∗
a to the classical solution Xc in Figure

10.8. Recall that in this example the classical solution Xc exists and X
∗
a is in Q

and must satisfy D(X
∗
a) < ε = 0.5. We follow the same procedure discussed in

Example 10.2.2.1.
We have already generated and studied 100,000 crisp random vectors v =

(x1, ..., x5) in [0, 1]5 using a Sobol quasi-random number generator (Chapter 3).
In Section 4.3.2 we relate how we create our vectors v. Next we determine an
interval [a, b], which will depend on the application, for the random quadratic
fuzzy numbers. Then we map v into a QBGFN.

Since for this problem the classical solution does exist, we choose [a, b] as the
support of Xc, which is [0.4343, 0.5307]. To compute D(A ·X2

+B ·X +C,D),
we compute 100 α-cuts of A ·X2

+B ·X + C and D for given A, B, C and D,
where X is one of 50,000 generated random quadratic fuzzy numbers.

Searching for X in the interval [0.4343, 0.5307], the smallest “horizontal” dis-
tance for equation (10.23) that we got in 50, 000 iterations was 0.014840 (Table
10.3), in the 19931th iteration. However, we found D(X) < 0.20 on the 7th

iteration. Figure 10.9 shows X
∗
a; Figure 10.10 shows A · X2

+ B · X + C for
X = X

∗
a.

Wanting to investigate how a change in the interval [a, b] might affect our
result, we executed a test using [a, b] = [0, 1]. and also saw a very good reduction
in the distance between A · X2

+ B · X + C and D. The graphs of these two
solutions are so similar that we do not show graphs for this follow-up experiment.
As early as the 637th iteration, an acceptable solution with D(X) = 0.193726
was found. Although we performed 50, 000 iterations, our acceptable solution was
found on the 20, 726th iteration. From an optimization over [0, 1] we minimized
at D(X) = 0.036417 (Table 10.3).
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Fig. 10.9. X
∗
a of Example 10.3.1.1

Table 10.3. (3/4/5) · X2
+ (1/2/3) · X + (0/1/2) = (1/3/5), Example 10.3.1.1

Solution X A ·X2
+B ·X + C

Xc ≈ (0.4343/0.5/0.5307) ≈ (1/3/5) = D

[a, b] = [0.4343, 0.5307]
X

∗
a, (0.4348, 0.5016, 0.5306,−0.0074, 0.8749), ≈ (1.00/3.01/5.00)

D(X) = 0.014840
[a, b] = [0.0, 1.0]

X
∗
a, (0.4419, 0.5021, 0.5341, 0.0980, 0.9120), ≈ (1.03/3.01/5.03)

D(X) = 0.036417

Fig. 10.10. A · X2
+ B · X + C for X = X

∗
a of Example 10.3.1.1

Example 10.3.1.2

This continues Examples 10.3.2. We apply our fuzzy Monte Carlo method to
compute X

∗
a ≈ X

∗
. Recall that in this example the classical solution does not

exist. The constraints are still X
∗
a ∈ Q and it must satisfy D(X

∗
a) < ε = 0.5. We

follow the same procedure discussed in Example 10.3.1.1.
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Table 10.4. (2/4/6) · X2
+ (0/2/4) · X + (0/0/0) = (0.5/1/1.5), Example 10.3.2

Solution X A ·X2
+B ·X + C

Xc does not exist (0.5/1/1.5) = D

X
∗
a, (0.3058, 0.3088, 0.3107,−0.3767,−0.8683), ≈ (0.19/1.00/1.82)

D(X) = 0.321659

Fig. 10.11. X
∗
a of Example 10.3.1.2

Fig. 10.12. A · X2
+ B · X + C for X = X

∗
a of Example 10.3.1.2

Now we need to find an interval [a, b] for our random quadratic fuzzy numbers.
The classical solution does not exist. Choose the vertex values for the A,...,D
and consider 4x2 + 2x + 0 = 1 which has positive solution x = 0.3090. We
begin with intervals centered at this value so we begin with the interval I =
[0, 0.6180].

To computeD(A·X2
+B·X+C,D), we compute 100 α-cuts ofA·X2

+B·X+C
and D for given A, B, C and D, where X is one of 50,000 generated random
quadratic fuzzy numbers.

From an optimization over [0, 0.6180] we minimized at D(X) = 0.3217
(Table 10.4 and Figure 10.12). Our fuzzy Monte Carlo result generated an
“acceptable” solution. Perhaps we could reduce the error measure with more
iterations.
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10.4 Fuzzy Matrix Equation

This section is based on ([6],[8],[12],[13]). Let A = [aij ] be a n × n matrix of
triangular fuzzy numbers aij , B

t
= (b1, . . . , bn) a n × 1 vector of triangular

fuzzy numbers bi and X
t

= (x1, . . . , xn) a n × 1 vector of unknown triangular
shaped fuzzy numbers xj . Set aij = (aij1/aij2/aij3), bi = (bi1/bi2/bi3), and
xj ≈ (xj1/xj2/xj3). We wish to solve

A X = B, (10.32)

for X.
We need to introduce some more notation. Define

a[α] =
n∏

i,j=1

aij [α], (10.33)

b[α] =
n∏

i=1

bi[α], (10.34)

for 0 ≤ α ≤ 1. Let v = (a11, a12, . . . , ann) ∈ IRk, k = n2, be a vector in a[0]. Each
v ∈ a[0] determines a crisp n× n matrix A = [aij ]. Also, bt = (b1, . . . , bn) ∈ IRn

is a vector in b[0]. As in our previous research on this topic we assume A−1 exists
for all v in a[0]. The existence of A−1 over a[0] simplifies the discussion of the
joint solution to be introduced below.

The joint solutionXJ , a fuzzy subset of IRn, is based on the extension principle

XJ (x) = max
{
π(v, b) | x = A−1b

}
, (10.35)

where
π(v, b) = min

{
aij(aij), bi(bi) | all i, j

}
. (10.36)

The vertex of XJ(x), where the membership value is equal to one, is at x = A−1b
for v = (a112, a122, . . . , ann2), bt = (b12, . . . , bn2). In the crisp case the solution
to Ax = b is a vector x = A−1b in IRn, so for the fuzzy case A X = B, the
(joint) solution is a fuzzy vector about the crisp solution A−1b, for v and b at
the vertex values of all the triangular fuzzy numbers.

In the crisp case the marginals, the xi, are just the components of the vector
x = A−1b. In the fuzzy case we obtain the marginals XJi by projecting XJ onto
the coordinate axes. Then

XJi(w) = max
{
XJ (x) | x ∈ IRn, xi = w

}
, (10.37)

for 1 ≤ i ≤ n. Obviously, it will be difficult to compute XJ and XJi, 1 ≤ i ≤
n, for n ≥ 4. We will determine the joint solution, and its marginals, in two
examples at the end of this section for n = 2.

Since XJ is difficult to determine we now turn to methods of finding the
marginals directly without first computing the joint solution. As in the
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Section 10.2 there will be three solutions: (1) the classical solution Xci; (2) the
extension principle solution Xei; and (3) the interval arithmetic solution XIi.

The classical solution is determined by substituting the intervals aij [α], bi[α]
and X i[α] = [xi1(α), xi2(α)] into A X = B and solving for the xi1(α), xi2(α),
1 ≤ i ≤ n. The resulting equations are evaluated using interval arithmetic. If
the intervals [xi1(α), xi2(α)] define a triangular shaped fuzzy number Xi for
0 ≤ α ≤ 1, 1 ≤ i ≤ n, then this solution is called the classical solution and we
write Xci = X i, 1 ≤ i ≤ n. The conditions for [xi1(α), xi2(α)] to define Xci were
discussed in Section 10.2. The equations to solve for xi1(α) and xi2(α) are

n∑
j=1

[aij1(α), aij2(α)][xj1(α), xj2(α)] = [bi1(α), bi2(α)], (10.38)

for 1 ≤ i ≤ n, where aij [α] = [aij1(α), aij2(α)], bi[α] = [bi1(α), bi2(α)]. After
using interval arithmetic we obtain a (2n) × (2n) system to solve for xi1(α),
xi2(α), 0 ≤ α ≤ 1.

Too often the Xci fail to exist. We only need Xci, for one value of i, to fail to
exist for the classical solution to not exist. When the classical solution does not
exist we turn to Xei, 1 ≤ i ≤ n.

We will use Cramer’s rule on Ax = b to solve for each xi. A comes from
v ∈ a[0] and let b ∈ b[0]. Let Aj be A with its j–th column replaced by b. Then

xj =
|Aj |
|A| , (10.39)

1 ≤ j ≤ n, where | · | denotes the determinant. We fuzzify equation (10.39), using
the extension principle, to get

Xej(xj) = max {π(v, b) | xj = |Aj |/|A| } , (10.40)

1 ≤ j ≤ n. If Xej [α] = [xej1(α), xej2(α)], we may find the α-cuts of Xej as
(Section 2.4.1)

xej1[α] = min
{ |Aj |

|A| | v ∈ a[α], b ∈ b[α]
}
, (10.41)

xej2[α] = max
{ |Aj |

|A| | v ∈ a[α], b ∈ b[α]
}
, (10.42)

To get the XIj we evaluate equation (10.39) using α-cuts and interval arith-
metic. Substitute intervals aij [α] and bi[α] for aij and bi in |Aj |/|A|, evaluate
using interval arithmetic, and the result is XIj [α], 0 ≤ α ≤ 1, 1 ≤ j ≤ n.

We have the following result: If the Xci exist, 1 ≤ i ≤ n, then Xci ≤ XJi ≤
Xei ≤ XIi, 1 ≤ i ≤ n.

Our solution strategy is: (1) use Xci, 1 ≤ i ≤ n, if it exists; (2) if the classical
solution does not exist use XJi, 1 ≤ i ≤ n. However, if the joint solution is too
difficult to compute use Xei, 1 ≤ i ≤ n. Equations (10.41) and (10.42) may be
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hard to evaluate to get the Xei. One can always use the XIi because they are
the easiest to calculate. Notice how the fuzziness grows (the supports do not
decrease) as we go from Xci to XIi. The only solution guaranteed to satisfy the
fuzzy equations is the classical solution.

In the following two examples we only consider 2×2 fuzzy matrices since then
we can easily see pictures of α-cuts of the joint solution. It is known that, in
general, α-cuts of the joint solution need not be convex ([19],[20]). For example,
in two dimensions XJ [α] need not be a rectangle.

Example 10.4.1

Let

A =

⎛
⎝a11 0

0 a22

⎞
⎠ , (10.43)

and B
t

= (b1, b2), where a11 = (4/5/7), a22 = (6/8/12), b1 = (1/2/3) and
b2 = (2/5/8).

Then a11[α] = [4+α, 7− 2α], a22[α] = [6 + 2α, 12− 4α], b1[α] = [1+α, 3−α]
and b2[α] = [2 + 3α, 8 − 3α]. Since all the fuzzy numbers are positive we will
solve for Xci > 0, i = 1, 2. The equations are

[4 + α, 7 − 2α] · [xc11(α), xc12(α)] = [1 + α, 3 − α] , (10.44)
[6 + 2α, 12 − 4α] · [xc21(α), xc22(α)] = [2 + 3α, 8 − 3α] , (10.45)

which define triangular shaped fuzzy numbers,

Xc1[α] =
[
1 + α

4 + α
,

3 − α

7 − 2α

]
, (10.46)

Xc2[α] =
[
2 + 3α
6 + 2α

,
8 − 3α
12 − 4α

]
, (10.47)

0 ≤ α ≤ 1.
We have shown before that a way to find α-cuts of XJ is

XJ [α] = {A−1b | v ∈ a[α], b ∈ b[α] }. (10.48)

Now A−1b = (b1/a11, b2/a22)t so that

XJ [α] =
b1[α]
a11[α]

× b2[α]
a22[α]

, (10.49)

which is a rectangle in IR2 for all 0 ≤ α ≤ 1.
XJ [α] is expressed in equation (10.49) as the product of two factors. The first

factor of XJ [α] is XJ1[α] and XJ2[α] is the second. Then

XJ1[α] =
[

1 + α

7 − 2α
,
3 − α

4 + α

]
, (10.50)
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XJ2[α] =
[

2 + 3α
12 − 4α

,
8 − 3α
6 + 2α

]
, (10.51)

0 ≤ α ≤ 1.
Next we find that |A1|/|A| = b1/a11 and |A2|/|A| = b2/a22. From equations

(10.41) and (10.42) we obtain Xei = XJi, i = 1, 2.
Finally, we substitute the intervals a11[α], a22[α], b1[α] and b2[α] into x1 =

b1/a11 and x2 = b2/a22 and we see that XIi = Xei, i = 1, 2.
For this 2 × 2 fuzzy diagonal matrix A we get

Xci⊆/ XJi = Xei = XIi, (10.52)

i = 1, 2. The graphs of Xci and XJi, i = 1, 2 are in Figures 10.13 and 10.14.
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Fig. 10.13. Xc1 ≈ ( 1
4
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5
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7
) and XJ1 ≈ ( 1

7
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5
/ 3

4
) in Example 10.4.1
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Fig. 10.14. Xc2 ≈ ( 1
3
/ 5

8
/ 3

4
) and XJ2 ≈ ( 1

6
/ 5

8
/ 4

3
) in Example 10.4.1
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Example 10.4.2

Let

A =

⎛
⎝a11 0

1 a22

⎞
⎠ , (10.53)

and B
t

= (b1, b2), where a11 = (1/2/3), a22 = (2/5/8), b1 = (4/5/7) and
b2 = (6/8/12). Then a11[α] = [1 + α, 3 − α], a22[α] = [2 + 3α, 8 − 3α], b1[α] =
[4 + α, 7 − 2α] and b2[α] = [6 + 2α, 12 − 4α].

As in Example 10.4.1 we solve for Xc1 > 0 and obtain
[
4 + α

1 + α
,
7 − 2α
3 − α

]
, (10.54)

which does not define a fuzzy number since ∂/∂α[(4 + α)/(1 + α)] < 0, or
(4 +α)/(1 +α) is a decreasing function of α in [0, 1]. The classical solution does
not exist.

We find α-cuts of XJ using equation (10.48). We only go through the details
for α = 0 and α = 1. An equivalent expression to equation (10.48) is

XJ [α] = { x ∈ IRn | Ax = b, v ∈ a[α], b ∈ b[α]} . (10.55)

For α = 1 we get x = (2.5, 1.1). For α = 0 first assume x1 ≥ 0, x2 ≥ 0. Then we
want all solutions for x1 and x2 so that

([1, 3]x1 + [0, 0]x2) ∩ [4, 7] �= ∅, (10.56)
([1, 1]x1 + [2, 8]x2) ∩ [6, 12] �= ∅. (10.57)

We have used the α = 0 cuts of a11, a22, b1 and b2. This means

x1 ≤ 7, (10.58)
3x1 ≥ 4, (10.59)

x1 + 2x2 ≤ 12, (10.60)
x1 + 8x2 ≥ 6, (10.61)

for x1 ≥ 0, x2 ≥ 0 in the first quadrant. Now x1 must be non–negative so we
can now only consider the fourth quadrant.

Assume x1 ≥ 0 and x2 ≤ 0. Then the equations become

x1 ≤ 7, (10.62)
3x1 ≥ 4, (10.63)

x1 + 8x2 ≤ 12, (10.64)
x1 + 2x2 ≥ 6, (10.65)

for x1 ≥ 0, x2 ≤ 0. The solution XJ [0] is shown in Figure 10.15. It is not
convex since the line joining (4/3, 7/12) and (7,−1/2) is not entirely in XJ [0].



108 Solving Fuzzy Equations
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Fig. 10.15. Support of the Joint Solution in Example 10.4.2
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Fig. 10.16. Xe1 = XI1 = XJ1 ≈ ( 4
3
/ 5

2
/7) in Example 10.4.2

Projecting XJ onto the xi–axes produces XJi, i = 1, 2. These marginals are in
Figures 10.16 and 10.17.

We find the α-cuts of the XJi as follows: (1) we first construct a diagram
like Figure 10.15 for XJ [α] for each 0 ≤ α ≤ 1; (2) project the diagram onto
the x1-axis to get XJ1[α]; and (3) project the picture onto the x2-axis to obtain
XJ2[α]. It turns out, for this example, that XJ1 = Xe1 and XJ2 = Xe2.

Using equations (10.41) and (10.42) we find α-cuts of Xej , j = 1, 2. It is easy
to see that

Xe1[α] =
[
4 + α

3 − α
,
7 − 2α
1 + α

]
, (10.66)
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Fig. 10.17. Xe2 = XJ2, XI2 ≈ (− 1
2
/ 11

10
/16) in Example 10.4.2

0 ≤ α ≤ 1. However, Xe2[α] is a little more difficult since we need to find the
max and min of

a11b2 − b1
a11a22

, (10.67)

for a11 ∈ a11[α], a22 ∈ a22[α], b1 ∈ b1[α] and b2 ∈ b2[α]. We did this and Xe2 is
shown in Figure 10.17.

Lastly, we see that XI1 = Xe1 and

XI2[α] = [xI21(α), xI22(α)] , (10.68)

with xI21(α) = N1(α)/D2(α), 0 ≤ α ≤ 0.0981 = (
√

108 − 10)/4, xI21(α) =
N1(α)/D1(α) for 0.0981 ≤ α ≤ 1 and xI22(α) = N2(α)/D2(α) for all α and

N1(α) = (1 + α)(6 + 2α) − (7 − 2α), (10.69)

N2(α) = (3 − α)(12 − 4α) − (4 + α), (10.70)

D1(α) = (3 − α)(8 − 3α), (10.71)

D2(α) = (1 + α)(2 + 3α). (10.72)

The reason for the change in the denominator for xI21(α) is that N1(α) is neg-
ative for 0 ≤ α ≤ 0.0981. We used the fact that [a, b][c, d] = [ad, bd] if a < 0 < b
and 0 < c < d but [a, b][c, d] = [ac, bd] when 0 < a and 0 < c. Xei and XIi are
in Figures 10.16 and 10.17 for i = 1, 2.
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10.4.1 Fuzzy Monte Carlo Method

We follow the same strategy as outlined in Section 10.2.2 for generating approx-
imate solutions to fuzzy linear equations using fuzzy Monte Carlo methods. Q
will be the same set of fuzzy numbers and we use the same metric between fuzzy
numbers given in equation (10.23). But now we need to extend that metric to a
distance measure between fuzzy vectors. Let X

t
= (x1, ..., xn) and

W i = ai1x1 + ...+ ainxn, (10.73)

for i = 1, 2, ..., n. Then A X = B is the same as W = B where W
t

=
(W 1, ...,Wn). Given a X the distance between W = A X and B will be

D(W,B) = max{D(W i, bi)|i = 1, 2, ..., n}, (10.74)

where D(W i, bi) is from equation (10.23). Our new solution X
∗
, whose elements

x∗i are fuzzy numbers in Q, solves

min{D(W,B)|xi ∈ Q all i}. (10.75)

Let (X
∗
)t = (x∗1, ..., x

∗
n). Let D(X) = D(W,B). Using our fuzzy Monte Carlo

method we obtain X
∗
a an approximation to X

∗
. Let X

∗
a = (x∗a1, ..., x

∗
an). We use

the same “threshold” ε discussed in Section 10.2.2. If the fuzzy Monte Carlo
method produces a X so that D(X) < ε we will say that we have found an
acceptable approximate solution X

∗
a = X with X

∗
a ≈ X

∗
. We begin with D(X)

very large (100) and will accept a solution only if it minimizes to D(X) < ε = 0.5.
Now we will rework Examples 10.4.1 and 10.4.2 using our fuzzy Monte Carlo

method.

Example 10.4.1.1

This continues Example 10.4.1. We wish to use our fuzzy Monte Carlo method to
compute X

∗
a ≈ X

∗
and then compare X

∗
a to Xc = (Xc1, Xc2) shown in Figures

10.16 and 10.17. Recall that in this example the classical solution Xc exists and
the components of X

∗
a = (x∗a1, x

∗
a2) are in Q and we must haveD(X

∗
a) < ε = 0.5.

The fuzzy matrix equation in this example may be written a11 x1 = b1 and
a22 x2 = b2; hence, we can solve for the xi, i = 1, 2, separately. However, we
choose to solve for them simultaneously. Although we may determine individually
lower D(x∗ai) (having only to satisfy them one at a time), it is more algorith-
mically convenient to solve them simultaneously as we will do for this Example
and for Example 10.4.1.2 discussed below. The difference between the methods
will be whether we take crisp quasi-random numbers as 5-tuples for each xi, or
as 10-tuples for (x1, x2).

We solve for the “best” x1 and x2 simultaneously. We generate a Sobol quasi-
random number 10-tuple with which we generate x1 with the first five and x2

with the last five. Using X = (x1, x2) we compute W 1 = a11x1 + a12x2, and
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W 2 = a21x1 + a22x2 (even though for Example 10.4.1 a12 = 0 and a21 = 0).
Then D(W,B) = max{D(W 1, b1), D(W 2, b2)} is determined for this X . As we
evaluate these X’s we find the least D(W,B), capturing its X as X

∗
a.

Next we determine intervals, which will depend on the application, for the ran-
dom quadratic fuzzy numbers (QBGFNs). We modified the fuzzy Monte Carlo
program to optimize the minimization problem of equations (10.74) and (10.75)
for fuzzy matrix equations. For this problem the classical solution does exist. For
x1 we choose [a, b] = [0.1429, 0.7500] which is approximately the support of XJ1.
For x2 we choose [a, b] = [0.1666, 1.3333] which is approximately the support
of XJ2.

To compute D(A ·X,B), we used 100 α-cuts of A ·X and B for given A and
B, where X is one of 50,000 pairs of random quadratic fuzzy numbers.

The smallest D(W,B) we obtained was 0.302329. The X that produced
this value we had saved as X

∗
a = (x∗a2, x

∗
a2). x

∗
a1 and x∗a2 are displayed in

Figure 10.18. As one can see in Table 10.5, solutions of [ (4/5/7) 0
0 (6/8/12) ] · X =

[ (1/2/3)
(2/5/8) ], we have acceptable solutions for x∗a1 and x∗a2. Figure 10.19 and Figure

10.20 are graphs for A ·X.

Table 10.5. Solutions for Example 10.4.1, A · X = B

Solution X A ·X
Xc1 ≈ (0.25/0.4/0.4286) ≈ (1/2/3) = b1
Xc2 ≈ (0.3333/0.625/0.75) ≈ (2/5/8) = b2

XJ1 ≈ (0.1429/0.4/0.75) ≈ (0.5716/2/5.25)
XJ2 ≈ (0.1666/0.625/1.3333) ≈ (1/5/20)
x∗a1, (0.2473, 0.3973, 0.4436,−0.7088, 0.4686), ≈ (0.99/1.99/3.11)

D(W 1, b1) = 0.119918
x∗a2, (0.3646, 0.6203, 0.6908,−0.0618, 0.0208), ≈ (2.19/4.96/8.29)

D(W 2, b2) = 0.302329 (min)

Fig. 10.18. x∗
a1 and x∗

a2 of Example 10.4.1.1
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Fig. 10.19. (4/5/7) · x∗
a1 of Example 10.4.1.1

Fig. 10.20. (6/8/12) · x∗
a2 of Example 10.4.1.1

Example 10.4.1.2

This continues Examples 10.4.2. We apply our fuzzy Monte Carlo method to
compute X

∗
a ≈ X

∗
. Recall that in this example the classical solution does not

exist but we do have Xe, XJ and XI shown in Figures 10.16 and 10.17. The
constraints are still that the components of X

∗
a are in Q and it must satisfy

D(X
∗
a) < ε = 0.5.

Table 10.6. Solutions for Example 10.4.2, A · X = B

X A ·X
Xc does not exist ≈ [(4/5/7) (6/8/12)]t

XI1 ≈ (1.3333/2.5/7) ≈ (1.3333/5/21)
XI2 ≈ (−0.5/1.1/16) ≈ (1.3333/8/135)
x∗a1, (1.5847, 1.6205, 3.3639, 0.6678,−2.6900), ≈ (1.58/3.24/10.09)

D(W 1, b1) = 3.091642
x∗a2, (0.4937, 0.7202, 1.3369,−0.8838,−1.1810), ≈ (2.57/5.22/14/06)

D(W 1, b1) = 3.427969 (min)
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Fig. 10.21. x∗
a1 and x∗

a2 of Example 10.4.1.2

Fig. 10.22. (1/2/3) · x∗
a1 of Example 10.4.1.2

Fig. 10.23. x∗
a1 + (2/5/8) · x∗

a2 of Example 10.4.1.2

For this problem the classical solution does not exist. For x1 we choose [a, b] =
[1.3333, 7] which is approximately the support of XI1. For x2 we choose [a, b] =
[0, 16] which covers the positive portion of the support of XI2.

To compute D(A ·X,B), we used 100 α-cuts of A ·X and B for given A and
B, where X is one of 50,000 pairs of random quadratic fuzzy numbers.

The distance measure D is given in equations (10.74) and (10.75). The small-
est D(W,B) we obtained was 3.427969. The X that produced this value we
had saved as X

∗
a = (x∗a1, x

∗
a2). X

∗
a is shown in Figure 10.21. (1/2/3) · x∗a1

is shown in Figure 10.22. The corresponding x∗a1 + (2/5/8) · x∗a2 is shown in
Figure 10.23.
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Our fuzzy Monte Carlo method was unable to get an acceptable approximate
solution to this fuzzy matrix equation. Table 10.6 lists solutions of [ (1/2/3) 0

1 (2/5/8) ]·
X = [ (4/5/7)

(6/8/12) ] for Example 10.4.2. As our value of D(X) indicates, we do not
have good correspondence with the right had side of our fuzzy matrix equation.
We believe that no fuzzy quadratic fuzzy vectorX can make thisD(X) < ε = 0.5.

10.5 Summary and Conclusions

Through several examples of three types of fuzzy equations ( fuzzy linear equa-
tions A ·X+B = C, fuzzy quadratic equations A ·X2

+B ·X+C = D, and fuzzy
matrix equations A ·X = B) we have demonstrated a use of fuzzy Monte Carlo
optimization to obtain solutions. Where possible we demonstrated computation
of the “classical” solution. We showed how one may compute an “extension prin-
ciple” solution; and we showed how one may determine a “interval arithmetic”
solution.

Also, for every example we used fuzzy Monte Carlo optimization to produce
some solution. In those examples where a “classical” solution could be computed,
fuzzy Monte Carlo found an acceptable solution. In one case, Example 10.3.1.2,
were no classical solution existed, fuzzy Monte Carlo determined an acceptable
approximate solution.

This study supports the viability of this method for solving fuzzy equations.
Our choice of a value ε, and performance of D(X) during simulations, indicates
we may in the future choose a smaller ε = 0.2 to differentiate “tight” solutions
from “loose” ones.

These optimizations were performed on various Windows XP machines run-
ning in the 2Ghz range with over 1GB RAM.
A·X+B = C completed 50, 000 iterations in about 1.5 hours. Fuzzy quadratic

exercises and fuzzy matrix equations completed 50, 000 iterations in 2−3 hours.
Convergence to an acceptableD(X) was evident within a few hundred iterations.
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11 Fuzzy Linear Regression I

11.1 Introduction

This is the first of four chapters on fuzzy regression. This chapter and Chapter
14 are about fuzzy linear regression and Chapters 12 and 13 consider fuzzy
nonlinear regression. In this chapter the independent (predictor, explanatory)
variables are crisp but the dependent (response) variable is fuzzy. In Chapter
14 both the independent variables and the dependent variable are fuzzy. This
chapter is based on [1].

Fuzzy linear regression has become a very large area of research. Put “fuzzy
regression” into your search engine and you can get too many web sites to
visit.“Fuzzy linear regression” will eliminate a lot of web sites but the list is
still quite long. We have selected a few recent and key references on fuzzy linear
regression which are: (1) books (or articles in these books) ([4],[8],[14]); and
(2) papers ([2],[3],[5],[9],[10],[12],[13],[15],[19]-[24],[27]-[32]). As far as the authors
know our research is the only research on using Monte Carlo techniques in fuzzy
linear regression. However, there have been other approaches employing random
search (genetic algorithms) and others using neural nets. If we put “genetic
algorithms” and “fuzzy linear regression” into the search engine there are less
than 200 references. A recent reference is [11]. We feel that one problem with
using a GA is that it can converge to a local minimum and to avoid this you
need to start it with many different randomly generated initial populations.
Also, we believe that our Monte Carlo method is easier to apply than a genetic
algorithm, once you have a quasi-random number generator in your computer.
Next we searched for “neural nets” and “fuzzy linear regression” getting less
than 100 references. A key reference on this topic is [6].

Consider a fuzzy linear regression model

Y = A0 + A1x1 + ... + Amxm, (11.1)

where the x1, ..., xm are crisp real numbers and the A0, ..., Am and Y are all
triangular fuzzy numbers. In this model the independent (predictor, explanatory)
variables are crisp but the dependent (response) variable is fuzzy. The data will

J.J. Buckley et al.: Monte Carlo Meth. in Fuzzy Optimization, STUDFUZZ 222, pp. 117–125, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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be ((x1l, ..., xml), Y l), 1 ≤ l ≤ n, for the xil given real numbers and Y l are given
triangular fuzzy numbers. The best way to fit the model to the data is to have
the Aj , 0 ≤ j ≤ m, also triangular fuzzy numbers. Given the data the objective
is to find the “best” Aj , 0 ≤ j ≤ m. We propose to employ Monte Carlo methods
to approximate the “best” values for the Aj , j = 0, 1, ..., m.

In Monte Carlo we randomly generate a possible solution, evaluate how “good”
it is, discard inferior solutions, and continue N times. N is usually large like
10, 000 or 100, 000. In the next section we discuss how to randomly produce
vectors V k = (A0k, ..., Amk), k = 1, 2, 3, ..., N . Using the V k we determine the
predicted values

Y
∗
lk = A0k + A1kx1l + ... + Amkxml, (11.2)

for k = 1, 2, 3, .., N and l = 1, 2, ..., m. To see how good this V k is we find the
error between the given values Y l and the predicted values Y

∗
lk. We will have

two error measures in this chapter. The first error measure is

E1k(E1) =
n∑

l=1

[
∫ ∞

−∞
|Y l(x) − Y

∗
lk(x)|dx]/[

∫ ∞

−∞
Y l(x)dx], (11.3)

where the integrals are really only over interval(s) containing the support of the
fuzzy numbers. Let Y l = (yl1/yl2/yl3) and Y

∗
lk = (ylk1/ylk2/ylk3) all triangular

fuzzy numbers. Then our second error measure is

E2k(E2) =
n∑

l=1

[|yl1 − ylk1| + |yl2 − ylk2| + |yl3 − ylk3|]. (11.4)

So we calculate V k, E1k and E2k for k = 1, 2, ..., N . A “best” solution is a
value of V k that minimizes E1k (E2k) for all k. An approximate “best” solution
is a V ∈ {V 1, ..., V N} that minimizes an error measure. So we can have two
approximate “best” solutions one with respect to E1 and an other for E2. Next
we see how we will produce sequences of random vectors V k, k = 1, 2, 3, .., N .

11.2 Random Fuzzy Vectors

To obtain random sequences V k = (X0k, ..., Xmk), where the Xik are all triangu-
lar fuzzy numbers, we first randomly generate crisp vectors vk = (x1k, ..., x3m+3,k)
using our Sobol quasi-random number generator (Chapter 3) with all the xik in
[0, 1], k = 1, 2, .., N . We choose the first three numbers in vk and order them from
smallest to largest. Assume that x3k < x1k < x2k. Then the first triangular fuzzy
number X0 = (x3k/x1k/x2k) which becomes A0. Continue with the next three
numbers in vk, etc. making Xi = Ai, i = 1, 2, ..., m.

However the Ai will need to be in certain intervals. Suppose Ai is to be in
interval Ii = [ai, bi], i = 0, 1, 2, ..., m. These intervals are very important to the
Monte Carlo process because: (1) if they are wrong and/or too small we can miss
a “good” solution; and (2) if they are too big the simulation can spend too much
time looking at situations that will not produce a “good” solution. Since each
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Table 11.1. Data for the Application

Fuzzy Output Y l x1l x2l x3l

(2.27/5.83/9.39) 2.00 0.00 15.25
(0.33/0.85/1.37) 0.00 5.00 14.13

(5.43/13.93/22.43) 1.13 1.50 14.13
(1.56/4.00/6.44) 2.00 1.25 13.63
(0.64/1.65/2.66) 2.19 3.75 14.75
(0.62/1.58/2.54) 0.25 3.50 13.75
(3.19/8.18/13.17) 0.75 5.25 15.25
(0.72/1.85/2.98) 4.25 2.00 13.50

Xi starts out in [0, 1] we may easily put it into [ai, bi] by Ai = ai + (bi − ai)X i,
i = 0, 1, ..., m.

11.3 Application

The data for this application was taken from [16] and is shown in Table 11.1.
There are three (m = 3) independent variables x1, x2 and x3. Also, there are only
eight (n = 8) items in the data set. We will need to find intervals Ii, i = 0, 1, 2, 3,
as explained above for the Ai. We will solve for these intervals two ways: (1) first,
in the next subsection, using the solutions for the Ai, i = 0, 1, 2, 3, from [7]; and
(2) secondly, in the second subsection, we use two optimization procedures to
determine these intervals.

The authors in [16] compared their method, applied to the data in Table 11.1,
to that in [25] and [26] applied to the same data set, in their Table 5. They give the
predicted values for the dependent variable using the three methods. We have also
studied this data set in [7] and obtained predicted values for the dependent vari-
able using a least absolute values estimator. In this chapter we apply our Monte
Carlo method to compute predicted values and compare our new results to the
other four methods using error measures E1 and E2. All programs were written
in MATLAB [18]. A copy of the MATLAB program may be obtained from the
authors. For all our calculations, we used a Pentium III, Processor: 933 MHz.

11.3.1 First Choice of Intervals

After studying the solutions for the Ai using the methods in [7] we first decided
on the following intervals for our fuzzy Monte Carlo method: (1) [−1, 0] for
A0; (2) [−1, 0] for A1; (3) [−1.5,−0.5] for A2; and (4) [0, 1] for A3. The exact
solutions in [7] for the Ai are given below.

Using our Sobol quasi-random number generator we produced 70, 000 vectors
vk = (x1k, ..., x12,k) which defined the Ai, i = 0, 1, 2, 3, as described in Section
11.2. Results for the Ai are shown in Table 11.2 with minimum error values in
Table 11.8. Since we will have four Monte Carlo studies on this data we call this
one MCI.
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Table 11.2. Results of the Monte Carlo (MCI) Method, First Choice of Intervals, to
Minimize the Error

Coefficient MCI E1 MCI E2

A0 (−0.4953/ − 0.4306/ − 0.3393) (−0.8902/ − 0.6815/ − 0.3355)

A1 (−0.5005/ − 0.4656/ − 0.0059) (−0.6808/ − 0.5436/ − 0.5194)

A2 (−0.7965/ − 0.7864/ − 0.7165) (−1.0640/ − 1.0476/ − 0.8578)

A3 (0.3335/0.3540/0.3920) (0.4756/0.5379/0.6112)

Table 11.3. Results of the Monte Carlo (MCII) Method, First Choice of Intervals, to
Minimize the Error

Coefficient MCII E1 MCII E2

A0 (0.2464/0.4892/0.7266) (0.0285/0.3569/0.8847)

A1 (−0.4815/ − 0.2852/ − 0.1398) (−0.5654/ − 0.5329/ − 0.3708)

A2 (−0.8760/ − 0.8303/ − 0.7575) (−1.0999/ − 1.0600/ − 0.9360)

A3 (0.3174/0.3361/0.3398) (0.4052/0.4381/0.5280)

Next we experimented with other intervals. We started with larger intervals,
shifted them and shortened them, until we arrived at: (1) [0, 1] for A0; (2) [−1, 0]
for A1; (3) [−1.5,−0.5] for A2; and (4) [0, 1] for A3. The only difference is for A0.
After another run of 70, 000 quasi-random vectors the results for the Ai are in
Table 11.3 with minimum error values in Table 11.8. This Monte Carlo study is
called MCII. For these choices of intervals, in MCI and MCII, the computational
time was between 25 and 28 minutes.

11.3.2 Second Choice of Intervals

The first thing to do is to determine the intervals Ii = [ai, bi] for the Ai, 0 ≤ i ≤
3. We first describe an optimization method used to determine these intervals.
This procedure will be called MCIII. A second optimization method will be
used and it will be described below. Let

[Ll, Rl] = I0 + I1x1l + I2x2l + I3x3l, (11.5)

evaluated using interval arithmetic, for l = 1, 2, ..., 8. Recall the data Y l =
(yl1/yl2/yl3). Define

W =
8∑

l=1

(Ll − yl1)2 +
8∑

l=1

(Rl − yl3)2. (11.6)

The optimization problem is to minimize W subject to ai ≤ bi all i. We want
to find the intervals that make Ll and Rl closest, in the sense of minimizing
W , to the end points of the bases of the dependent fuzzy numbers Y l in the
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Table 11.4. First Method of Determining the Intervals (MCIII) for Monte Carlo

Interval Value
I0 [−18.174,−18.174]
I1 [−1.083,−1.083]
I2 [−1.150,−1.150]
I3 [1.733, 2.149]

Table 11.5. Results of the Monte Carlo Method (MCIII), Second Choice of Intervals,
to Minimize the Error

Coefficient MCIII E1 MCIII E2

A0 −18.174 −18.174
A1 −1.083 −1.083
A2 −1.150 −1.150
A3 (1.736/1.752/1.792) (1.733/1.799/1.958)

data. We solved this using Maple [17]. The results, rounded to three decimal
places, are in Table 11.4. It is very interesting that the first three “intervals” are
degenerate and are just real numbers. Using these intervals A0 = A0 = −18.174,
A1 = A1 = −1.083, A2 = A2 = −1.150 and the support of A3 is a subset of
[1.733, 2.149] with only one fuzzy number.

We now produce a sequence of random crisp vectors vk = (x1k, ..., x3k),
k = 1, 2, ..., N , using our Sobol quasi-random number generator as described
in Section 11.2, to get a sequence of triangular fuzzy numbers A3k and com-
puted E1k and E2k. After a run of N = 70, 000 the smallest E1 value and the
minimum E2 value found are shown in Table 11.8 with corresponding A3 shown
in Table 11.5.

We also investigated a second optimization procedure for finding the intervals.
Ll and Rl are defined as above. This method is called MCIV. Let

W =
8∑

l=1

(yl1 − Ll) +
8∑

l=1

(Rl − yl3). (11.7)

The linear programming problem is to minimize W subject to the constraints:
(1) Ll ≤ yl1 all l; (2) Rl ≥ yl3 all l; and (3) ai ≤ bi all i. We solved this problem
using Maple [17] and the results are in Table 11.6. It is again interesting that
the last three “intervals” are degenerate and are just real numbers. Using these
intervals with the support of A0 a subset of [28.000, 47.916], A1 = A1 = −2.542,
A2 = A2 = −2.323 and A3 = A3 = −1.354 with only one fuzzy number.

We now produce a sequence of random crisp vectors vk = (x1k, ..., x3k), k =
1, 2, ..., N , using a quasi-random number generator as described in Section 11.2,
to get a sequence of triangular fuzzy numbers A0k and computed E1k and E2k.
After a run of N = 70, 000 the smallest E1 value and the minimum E2 value
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Table 11.6. Second Method of Determining the Intervals (MCIV) for Monte Carlo

Interval Value
I0 [28.000, 47.916]
I1 [−2.542,−2.542]
I2 [−2.323,−2.323]
I3 [−1.354,−1.354]

Table 11.7. Results of the Monte Carlo Method (MCIV), Second Choice of Intervals,
to Minimize the Error

Coefficient MCIV E1 MCIV E2

A0 (35.842/36.030/36.030) (31.062/33.336/36.228)
A1 −2.542 −2.542
A2 −2.323 −2.323
A3 −1.354 −1.354

found are shown in Table 11.8 with corresponding A0 shown in Table 11.7. The
total computational time for the second choice of intervals, MCIII and MCIV,
was between 15 and 18 minutes.

11.3.3 Comparison of Solutions

Table 5 in [16] gives the predicted values for the dependent variable for the
techniques used in [16],[25] and [26]. The predicted values were not given in [7]
but we know the optimal solution for the Ai: A0 = (−0.71/ − 0.539/ − 0.524),
A1 = (−0.61/ − 0.473/ − 0.472), A2 = (−1.09/ − 1.089/ − 1.088) and A3 =
(0.459/0.487/0.68). From this we may compute the predicted values. From the
Monte Carlo methods discussed above we take the solutions for the Ai and deter-
mine the predicted values. From the predicted values we can find E1 (equation
(11.3)) and E2 (equation (11.4)). The results are shown in Table 11.8.

The dependent variable represents “response time” and can not be negative. If
a predictive value is (−1.15/2.33/3.04) the authors in [16] round up the negative
to zero and present (0/2.33/3.04) as the predicted response time in their Table
5. Since we did not have access to the original predicted values we used those
in their Table 5 with the zero value in our calculations for our Table 11.8. By
rounding the negative left end point up to zero E2 will decrease and E1 may
decrease or increase.

We see from Table 11.8 that our Monte Carlo method obtained the smallest
values for error measure E1. However, our Monte Carlo procedure did not get
the smallest values for E2. The smallest value for E2 was gotten by [7]. Let us
explain why we did not expect Monte Carlo to do better than [7] on E2.
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Table 11.8. Error Measures in the Application

Error [25] [26] [16] [7] MCI MCII MCIII MCIV

E1 53.82 48.79 16.98 9.26 6.169 5.812 7.125 8.201

E2 143.45 131.83 70.99 61.86 64.878 63.590 66.463 94.092

Let Ai = (ai1/ai2/ai3), i = 0, 1, 2, 3. Also let LLl = a01 +
∑3

i=1 ai1xil,Cl =
a02 +

∑3
i=1 ai2xil and RRl = a03 +

∑3
i=1 ai3xil. In [7] they first solve

min

8∑
l=1

|Cl − yl2|, (11.8)

for the ai2, i = 0, 1, 2, 3. Let the solution be a∗
i2, i = 0, 1, 2, 3. Then they solve

for the ai1 from

min

8∑
l=1

|LLl − yl1|, (11.9)

subject to ai1 ≤ a∗
i2 all i, and solve for the ai3 from

min

8∑
l=1

|RRl − yl3|, (11.10)

subject to ai3 ≥ a∗
i2 all i. This is like finding the Ai to minimize E2. Hence, we

expected [7] to have a minimum value for E2.

11.4 Summary and Conclusions

In this chapter we studied the fuzzy linear regression problem given in equation
(11.1). We employed our fuzzy Monte Carlo method to approximate the “best”
solutions for the coefficients Ai, 0 ≤ i ≤ m. Best will be measured by two
error measures E1 (equation (11.3)) and E2 (equation (11.4)). We showed in an
example problem that our Monte Carlo method was best according to E1 with
respect to the results on the same data set in four other publications. Monte
Carlo did not get the smallest E2 value, but MCI and MCII came close, and
we explained above why [7] was expected to show the smallest E2 value. Given
any error measure E∗ we conjecture that our Monte Carlo method, allowing the
number of iterations N to be sufficiently large, will be best (minimizing E∗),
or approximately best. If this conjecture is true, then the estimation technique
in fuzzy linear regression may become Monte Carlo. We can easily extend out
method to trapezoidal fuzzy numbers, quadratic fuzzy numbers and other more
general fuzzy numbers.
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12 Univariate Fuzzy Nonlinear Regression

12.1 Introduction

This chapter is concerned with fuzzy nonlinear regression. One of the problems
in fuzzy linear regression is to find the “best” values of triangular (trapezoidal)
(shaped) fuzzy numbers A and B so that the fuzzy linear function Y = A X+B
“explains” the fuzzy data (X l, Z l), 1 ≤ l ≤ n. In fuzzy nonlinear regression we
are looking for a fuzzy polynomial, or a fuzzy exponential, or a fuzzy logarithmic,
. . ., function that “explains” the data. In the next section we discuss univariate
(one independent variable) fuzzy nonlinear regression. The next chapter con-
tinues this discussion where there is more than one independent (explanatory)
variable.

We will use non-negative fuzzy numbers in this chapter. We restrict ourselves
to non-negative fuzzy numbers when we want our algebraic expressions to have
the same value using the extension principle or using α-cuts and interval arith-
metic. For example, Y = A X

2
+ B X + C produces the same Y using the

extension principle, or α-cuts and interval arithmetic, when A, X, B and C are
all non-negative.

What is normally done in regular (crisp) linear regression is to derive formulas
for the estimates of the parameters in the regression model so that you can
construct confidence intervals, do hypothesis testing, etc. Some of this can also
be done in fuzzy linear regression. However, in our fuzzy nonlinear regression
we have no formulas for the parameters so we are unable to do any “statistical”
analysis of the regression models.

There have been relatively few papers on fuzzy nonlinear regression. See ([2],[6]-
[8],[11]-[14]), and the references in these papers, for a survey of fuzzy nonlinear
regression. We have used an evolutionary algorithm (EA) in fuzzy nonlinear re-
gression ([3]-[5]). We used an evolutionary algorithm to choose the “best” fuzzy
function, from a library of fuzzy functions, to explain the fuzzy data.

We use triangular (shaped) fuzzy numbers in this chapter but trapezoidal
(shaped) fuzzy numbers are used in the following chapter. This chapter is based
on [1].

J.J. Buckley et al.: Monte Carlo Meth. in Fuzzy Optimization, STUDFUZZ 222, pp. 127–137, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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12.2 Univariate Fuzzy Nonlinear Regression

Let T 0 denote all triangular fuzzy numbers and T is all triangular shaped fuzzy
numbers. Also, let F be all fuzzy numbers. We shall not be working a lot with
general fuzzy numbers and all we need to know about N in F is that its mem-
bership function y = N(x) need not be continuous but N [α] is always a closed,
bounded, interval and there is some x so that N(x) = 1. A function F : T 0 → F
will be written Y = F (X;K1, . . . ,Km) where X is the variable in T 0 and the
Ki, 1 ≤ i ≤ m, are constants also in T 0. For example, the fuzzy quadratic
Y = K2 X

2
+K1 X +K0 is such a function. Y will be in F and possibly also

in T . Ω will be some fixed collection of F : T 0 → F called our library. We will
discuss the composition of Ω later in this section.

The data is (X l, Z l), 1 ≤ l ≤ n, with Xl ∈ T 0 and Z l ∈ T . The generation
of the data, using specific members F of the library, is discussed in the next
section. The restricted fuzzy nonlinear regression problem is to find the “best”
F ∈ Ω that models (explains) the data. To define “best” we need to define a
distance measure on F . If N , M are in F , the distance between M and N will
be taken to be

D(M,N) = sup
0≤α≤1

{max{|m1(α) − n1(α)|, |m2(α) − n2(α)|}} , (12.1)

where M [α] = [m1(α),m2(α)], N [α] = [n1(α), n2(α)]. We measure the “best”
through the error function

E = E(F ) =
1
n

n∑
l=1

D2(Y l, Z l), (12.2)

for F ∈ Ω, Y l = F (Xl;K1, . . . ,Km), 1 ≤ l ≤ n. This F is any member of
the library. The restricted (to Ω) fuzzy nonlinear regression problem is to find
F ∗ ∈ Ω so that

inf
F∈Ω

(E(F )) = E(F ∗). (12.3)

Now we describe the basic library. First, set Ω1 to be all K2 X +K1 for K1,
K2 ∈ T 0. Ω1 contains all linear fuzzy functions. Ω2 will be all

Km X
m

+Km−1 X
m−1

+ · · · +K1 X +K0, (12.4)

for Ki ∈ T 0, 0 ≤ i ≤ m, and m ≤ Δ, Δ some positive integer. Ω2 contains all
fuzzy polynomials of degree less than, or equal to, Δ. Ω3 is all

K3 exp(K2 X) +K1, (12.5)

for Ki ∈ T 0, 1 ≤ i ≤ 3. Fuzzy exponentials make up Ω3. Lastly, Ω4 is all

K3 ln(X +K2) +K1, (12.6)

for Ki ∈ T 0, 1 ≤ i ≤ 3, with X + K2 ≥ 1. If X + K2 = (a/b/c), we require
a ≥ 1. Then

Ω =
4⋃

i=1

Ωi. (12.7)
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12.2.1 Evolutionary Algorithm (EA)

To test our EA (evolutionary algorithm) we picked a G(X ;K1, . . . ,Km) ∈ Ω
to generate the data and then asked the EA to find G. We did this two ways:
(1) first the data was (X l, Z l), Z l = G(X l;K1, . . . ,Km), 1 ≤ l ≤ n; and (2)
secondly, the data (Xl, Zl), Z l = G(X l;K1, . . . ,Km)+εl, 1 ≤ l ≤ n, had “noise”
in it with εl distributed N(0, σ2). We will now only discuss the first case.

For the no noise case there were four tests: (1) Z = K2 X + K1; (2) Z =
K2 X

2
+ K1 X + K0; (3) Z = K3 exp(K2 X) + K1; and (4) Z = K3 ln(X +

K2) + K1 for given values of the Ki. Consider case (2) above where the “un-
known” function was G(X ;K0,K1,K2) = K2 X

2
+K1 X +K0. The EA found

F (X;C,B,A) = A X
2

+B X + C where A ≈ K2, B ≈ K1 and C ≈ K0. In all
tests the EA essentially found the unknown G.

The EA used to discover the correct function was in two parts. In the data
let Xl = (xl1/xl2/xl3) in T 0 and Z l ≈ (zl1/zl2/zl3) ∈ T , 1 ≤ l ≤ n. The first
EA, EA1, attempts to fit a crisp linear, polynomial of degree ≤ Δ, exponential
and logarithmic function to the crisp data (xl2, zl2), 1 ≤ l ≤ n. The model with
the smallest error was chosen for the next phase. For example, if Z = K2 X

2
+

K1 X+K0, then EA1 would pick f(x) = ax2+bx+c for some a, b, c. The second
EA, EA2, would look for A, B, and C so that F (X ;C,B,A) = A X

2
+B X+C

would fit the data, or E(F ) would be acceptably small. But, in order to make
EA2 run faster, we first cut down on the search space. Based on the results of
EA1 intervals Ji where computed for the unknown parameters Ki. That is, for
Z = K2 X

2
+ K1 X + K0, EA2 only looked in J1 for A, J2 for B and J3 for

C. In all cases (with or without noise) the EA essentially found the unknown G
in Ω.

12.3 Fuzzy Monte Carlo Method

Now we plan to achieve similar results described above for the EA using our
fuzzy Monte Carlo method. We will not do the part completed by EA1 discussed
above because that can be done by any crisp statistical software. Assume first we
choose a fuzzy quadratic in the library to generate the data. The case of choosing
a fuzzy logarithmic will be discussed later in the chapter. Let the fuzzy quadratic
be (as in [3]) Z = A X

2
+ B X + C for A = (2.2/2.5/2.7), B = (4.6/5.1/5.3)

and C = (2.9/3.2/3.6). We randomly generate n = 30 values of X in [0, 40]
to produce the data (X l, Z l) using this fuzzy quadratic. Then the Zl will be
triangular shaped fuzzy numbers. We will not consider the case of “noise” in this
chapter. Before we can go on we need to discuss how we will produce sequences
of random fuzzy vectors.

To obtain random sequences V k = (Xk1, ..., Xkp), k = 1, 2, ..., N , where the
Xki are all triangular fuzzy numbers, we first randomly generate crisp vectors
vk = (xk1, ..., xk,3p) with all the xki in [0, 1], k = 1, 2, .., N . We choose the
first three numbers in vk and order them from smallest to largest. Assume that
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xk3 < xk1 < xk2. Then the first triangular fuzzy number Xk1 = (xk3/xk1/xk2).
Continue with the next three numbers in vk, etc. making Xki, i = 2, ..., p. This
was all discussed in Chapter 4.

However the Xki we want will need to be in certain intervals. Suppose Xki is
to be in interval Ii = [ai, bi], i = 1, 2, ..., p. Since each Xki starts out in [0, 1] we
may easily put it into [ai, bi] by computing ai + (bi − ai)Xki, i = 1, ..., p.

To randomly generateXl ∈ [0, 40], 1 ≤ l ≤ 30, we use our Sobol quasi-random
number generator to obtain random vector vl = (vl1, vl2, vl3) ∈ [0, 1]3, 1 ≤ l ≤
30. Order the components in vl from smallest to largest, say vl2 < vl3 < vl1, and
then set xl1 = vl2, xl2 = vl3 and xl3 = vl1 and define triangular fuzzy number
Xl = 40(xl1/xl2/xl3), 1 ≤ l ≤ 30. Now compute

Zl = A X
2

l +B X l + C, (12.8)

for l = 1, 2, ..., 30. The A, B and C in the above equation were given above. The
data is (Xl, Zl), 1 ≤ l ≤ 30. All fuzzy arithmetic is to be done using α−cuts and
interval arithmetic with α going from zero to one in increments of 0.1. So the
data is really (X l[α], Z l[α]) for l = 1, 2, ..., 30 and α = 0.0, 0.1, 0.2, ..., 0.9, 1.0.

Randomly generate, using a quasi-random number generator, random vectors
vk = (xk1, ..., xk9), k = 1, 2, ..., N , using the first three numbers (as discussed
above) to define triangular fuzzy number Ak, the next three numbers for Bk and
the last three numbers for Ck. Next we need to determine intervals Ii = [ai, bi],
i = 1, 2, 3, for these fuzzy numbers. A good selection of these intervals will make
the fuzzy Monte Carlo process more efficient because: (1) if they are wrong
and/or too small we can miss a “good” solution; and (2) if they are too big the
simulation can spend too much time looking at situations that will not produce
a “good” solution. Defining the intervals Ii is application dependent so we now
proceed to the applications. We first consider the fuzzy quadratic function and
then the fuzzy logarithmic function.

12.4 Fuzzy Quadratic

This application is to use our new Monte Carlo method to find the values of A,
B and C that produced the data (Xl, Zl), 1 ≤ l ≤ 30, which is generated as
described above. We will need to find intervals Ii, i = 1, 2, 3, as explained above.
We will solve for these intervals two ways: (1) first, in the next subsection, using
the solutions for the intervals from [3]; and (2) secondly, in the second subsection,
we use two optimization procedures to determine these intervals.

All programs were written in MATLAB [10]. For all our Monte Carlo calcu-
lations, we used a Pentium III, Processor: 933 MHz.

12.4.1 First Choice of Intervals

The selection of these intervals was discussed in detail in [3]. However, those
intervals turned out to be much too large, having large negative components,
and the fuzzy coefficients are known to be positive. So we take only the positive
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Table 12.1. Results of the Monte Carlo (QMCI) Method, First Choice of Intervals,
to Minimize the Error

Coefficient QMCI

A (2.2060/2.5085/2.6942)
B (4.6798/4.8534/5.4691)
C (2.7931/3.0474/3.4434)

part of the intervals calculated in [3] to be: (1) [0, 4.2] for A; (2) [0, 11.2] for
B; and (3) [0, 171.8] for C. Assume that we have already ordered the first three
components in vk = (xk1, ..., xk9) from smallest to largest, same for the next
three and the last three, then Ak = 4.2(xk1/xk2/xk3), Bk = 11.2(xk4/xk5/xk6)
and Ck = 171.8(xk7/xk8/xk9). Let

Y kl = Ak X
2

l +Bk Xl + Ck, (12.9)

for k = 1, 2, ..., N and l = 1, ..., 30. Now compute Dkl = D(Zl, Y kl), l = 1, ..., 30,
from equation (12.1), for α = 0, 0.1, ..., 0.9, 1.0, and then the error is

Ek = (1/30)
30∑
l=1

D2
kl, (12.10)

as in equation (12.2), for k = 1, ..., N .
Using our Sobol quasi-random number generator we produced N = 200, 000

vectors vk = (xk1, ..., xk9) which defined the A, B and C as described above.
Results are shown in Table 12.1 with minimum error value in Table 12.5. Since
we will have four Monte Carlo studies for the fuzzy quadratic we call this one
QMCI (for quadratic Monte Carlo).

Next we experimented with other intervals. We started with larger intervals,
shifted them and shortened them, until we arrived at: (1) [2.101, 2.701] for A;
(2) [4.601, 5.401] for B; and (3) [2.801, 3.801] for C. After another run of N =
200, 000 quasi-random vectors the results for A, B and C are in Table 12.2 with
minimum error value in Table 12.5. This Monte Carlo study is called QMCII.

Table 12.2. Results of the Monte Carlo (QMCII) Method, First Choice of Intervals,
to Minimize the Error

Coefficient QMCII

A (2.2001/2.5002/2.6999)
B (4.6011/5.0950/5.3041)
C (2.8589/3.2241/3.5759)
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12.4.2 Second Choice of Intervals

The first thing to do is to determine the intervals Ii = [ai, bi], i = 1, 2, 3, for
A(i = 1), B(i = 2) and C(i = 3). We first describe an optimization method used
to determine these intervals. This procedure will be called QMCIII. A second
optimization method will be used and it will be described below. Let

[Ll, Rl] = I1[x2
1l, x

2
l3] + I2[xl1, xl3] + I3, (12.11)

evaluated using interval arithmetic, for l = 1, 2, ..., 30. Recall the data Zl ≈
(zl1/zl2/zl3). Define

W =
30∑

l=1

(Ll − zl1)2 +
30∑

l=1

(Rl − zl3)2. (12.12)

The optimization problem is to minimize W subject to ai ≤ bi all i. We want
to find the intervals that make Ll and Rl closest, in the sense of minimizing W ,
to the end points of the bases of the Zl in the data. We solved this using Maple
[9]. The results, rounded to three decimal places, are in Table 12.3.

Table 12.3. First Method of Determining the Intervals (QMCIII) for Monte Carlo

Interval Value
I1 for A [2.200, 2.701]
I2 for B [4.600, 5.310]
I3 for C [2.900, 3.601]

We now produce a sequence of random crisp vectors vk = (xk1, ..., xk9), k =
1, 2, ..., N , using our Sobol quasi-random number generator as described above, to
get a sequence of triangular fuzzy numbers Ak, Bk and Ck in their intervals and
computed E in equation (12.2). After a run of N = 200, 000 the smallest E value
found is shown in Table 12.5 with corresponding A, B, C shown in Table 12.4.

We also investigated a second optimization procedure for finding the intervals.
Ll and Rl are defined as above. This method is called QMCIV. Let

W =
30∑
l=1

(zl1 − Ll) +
30∑

l=1

(Rl − zl3). (12.13)

Table 12.4. Results of the Monte Carlo Method (QMCIII), Second Choice of Intervals,
to Minimize the Error

Coefficient QMCIII

A (2.2002/2.5001/2.6999)
B (4.6001/5.0952/5.3042)
C (2.9003/3.2359/3.5741)
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The linear programming problem is to minimize W subject to the constraints:
(1) Ll ≤ zl1 all l; (2) Rl ≥ zl3 all l; and (3) ai ≤ bi all i. We solved this problem
of determining intervals using Maple [9] and the results are the same as shown
in Table 12.3. Hence, the results for QMCIV will be the same as for QMCIII.

12.4.3 Comparison of Solutions

We see (Table 12.5) that the error measure for QMCI is much too large compared
to the error in EA, QMCII and QMCIII. This was because the intervals for A,
B and C were too large for a Monte Carlo run of N = 200, 000. Possibly N =
1, 000, 000 could result in a much smaller error for QMCI. The error measures for
QMCII and QMCIII were comparable to that for the EA method. The computing
time for: (1) QMCI and QMCII was between 22 and 25 minutes; and (2) for
QMCIII was also between 22 and 25 minutes.

Table 12.5. Comparing Fuzzy Monte Carlo Solutions and EA Solution to the Fuzzy
Quadratic Data

Method Error(E)
EA 0.0078

QMCI 8.5658
QMCII 0.0025
QMCIII 0.0034

12.5 Fuzzy Logarithmic

The procedure here will be very similar to that for the fuzzy quadratic discussed
above so we will not present as many details. To produce the data (Zl, Xl),
1 ≤ l ≤ 30 let Zl = C +A ln(X l +B) for A = (2.1/2.7/2.9), B = (3.6/4.1/4.4),
C = (0.8/1.1/1.7) for 30 random values for triangular fuzzy number X in [0, 40].
We evaluate the fuzzy logarithmic function using α-cuts and interval arithmetic
(all intervals are positive).

This application is to use our new Monte Carlo method to find the values of
A, B and C that produced the data (Xl, Zl), 1 ≤ l ≤ 30. We will need to find
intervals Ii, i = 1, 2, 3, for the “unknown” fuzzy parameters. We will solve for
these intervals two ways: (1) first, in the next subsection, using the solutions for
the intervals from [3]; and (2) secondly, in the second subsection, we use two
optimization procedures to determine these intervals.

12.5.1 First Choice of Intervals

The selection of these intervals was discussed in detail in [3]. The intervals calcu-
lated in [3] were: (1) I1 = [1.501, 3.601] for A; (2) I2 = [2.105, 24.905] for B; and
(3) I3 = [0.897, 1.797] for C. Using our Sobol quasi-random number generator
we produced N = 200, 000 vectors vk = (xk1, ..., xk9) which defined the A, B and
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Table 12.6. Results of the Monte Carlo (LMCI) Method, First Choice of Intervals, to
Minimize the Error

Coefficient LMCI

A (1.9651/2.5743/2.9242)
B (3.9632/4.8364/5.0394)
C (0.9473/1.4353/1.7133)

Table 12.7. Results of the Monte Carlo (LMCII) Method, First Choice of Intervals,
to Minimize the Error

Coefficient LMCII

A (2.1067/2.6212/2.9526)
B (3.6011/3.7972/4.1890)
C (0.8101/1.3787/1.5461)

C in their respective intervals. Results are shown in Table 12.6 with minimum
error value (equation (12.2)) in Table 12.10. Since we will have four Monte Carlo
studies for the fuzzy logarithmic we call this one LMCI (for logarithmic Monte
Carlo).

Next we experimented with other intervals. We started with larger intervals,
shifted them and shortened them, until we arrived at: (1) [2.101, 3.001] for A;
(2) [3.601, 4.201] for B; and (3) [0.801, 1.601] for C. After another run of N =
200, 000 quasi-random vectors the results for A, B and C are in Table 12.7 with
minimum error value in Table 12.10. This Monte Carlo study is called LMCII.

12.5.2 Second Choice of Intervals

The first thing to do is to determine the intervals Ii = [ai, bi] for A (i = 1),
B (i = 2) and C (i = 3). We first describe an optimization method used to
determine these intervals. This procedure will be called LMCIII. A second
optimization method will be used and it will be described below. Let

[Ll, Rl] = I1[ln(xl1 + a2), ln(xl3 + b2)] + I3, (12.14)

evaluated using interval arithmetic, for l = 1, 2, ..., 30. Define

W =
30∑

l=1

(Ll − zl1)2 +
30∑

l=1

(Rl − zl3)2. (12.15)

The optimization problem is to minimize W subject to ai ≤ bi all i. We solved
this using Maple [9]. The results, rounded to three decimal places, are in
Table 12.8.

We now produce a sequence of random crisp vectors vk = (xk1, ..., xk9), k =
1, 2, ..., N , using our Sobol quasi-random number generator as described above,
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Table 12.8. First Method of Determining the Intervals (LMCIII) for Monte Carlo

Interval Value
I1 for A [2.100, 2.990]
I2 for B [3.600, 4.400]
I3 for C [0.800, 1.700]

Table 12.9. Results of the Monte Carlo Method (LMCIII), Second Choice of Intervals,
to Minimize the Error

Coefficient LMCIII

A (2.1003/2.6217/2.9519)
B (3.6041/3.8629/4.1861)
C (0.8109/1.3440/1.5821)

to get a sequence of triangular fuzzy numbers Ak, Bk and Ck in their respective
intervals and computed E in equation (12.2). After a run of N = 200, 000 the
smallest E value found is shown in Table 12.10 with corresponding A, B, C
shown in Table 12.9.

We also investigated a second optimization procedure for finding the intervals.
Ll and Rl are defined as above. This method is called QMCIV. Let

W =
30∑
l=1

(zl1 − Ll) +
30∑

l=1

(Rl − zl3). (12.16)

The optimization problem is to minimize W subject to the constraints: (1) Ll ≤
zl1 all l; (2) Rl ≥ zl3 all l; and (3) ai ≤ bi all i. We solved this problem of
determining intervals using Maple [9] and the results are same as in Table 12.8.
So the results for LMCIV will be the same as for LMCIII.

12.5.3 Comparison of Solutions

We see (Table 12.10) that the error measure for LMCI is slightly larger than the
error in EA, LMCII and LMCIII. This was because the intervals for A, B and

Table 12.10. Comparing Fuzzy Monte Carlo Solutions and EA Solution to the Fuzzy
Logarithmic Data

Method Error(E)
EA 0.0030

LMCI 0.0473
LMCII 0.0009
LMCIII 0.0025
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C were larger for a Monte Carlo run of N = 200, 000. Possibly N = 1, 000, 000
could result in a much smaller error for LMCI. The error measures for LMCII
and LMCIII were comparable to that for the EA method. The computing time
for LMCI, LMCII and LMCIII was between 36 and 40 minutes.

12.6 Summary and Conclusions

We have shown that our new fuzzy Monte Carlo method can do better than the
evolutionary algorithm method on two fuzzy nonlinear regression problems: a
fuzzy quadratic equation and a fuzzy logarithmic equation. An interested reader
may obtain our data and MATLAB programs by contacting the authors. Of
course more research is needed to conclude that our fuzzy Monte Carlo method
can do as well and better than an evolutionary algorithm in fuzzy regression.
However we believe that fuzzy Monte Carlo will become very important in solving
fuzzy optimization problems.

Evolutionary algorithms can be difficult to construct; often a special algorithm
for each fuzzy optimization problem is needed. But, just as every high-level com-
puter language has a pseudo-random number generator, every language can have
a quasi-random number generator and then a random fuzzy vector generator.
Everyone can then use their random fuzzy vector generator to solve fuzzy opti-
mization problems.

References

1. Abdalla, A., Buckley, J.J.: Monte Carlo Methods in Fuzzy Nonlinear Regression
(under review)

2. Acton, S.T.: On Fuzzy Nonlinear Regression for Image Enhancement. J. Mathe-
matical Imaging and Vision 8, 239–253 (1998)

3. Buckley, J.J., Feuring, T.: Linear and Nonlinear Fuzzy Regression: Evolutionary
Algorithm Solutions. Fuzzy Sets and Systems 112, 381–394 (2000)

4. Buckley, J.J., Eslami, E., Feuring, T.: Fuzzy Mathematics in Economics and En-
gineering. Physica-Verlag, Heidelberg (2002)

5. Buckley, J.J., Feuring, T., Hayashi, Y.: Multivariate Nonlinear Fuzzy Regres-
sion: An Evolutionary Algorithm Approach. Int. J. Uncertainty, Fuzziness and
Knowledge-Based Systems 7, 83–98 (1999)

6. Chang, Y.-H.O.: Hybrid Fuzzy Least-Squares Regression Analysis and Its Relia-
bility Measures. Fuzzy Sets and Systems 119, 225–246 (2001)

7. Hong, D.H., Hwang, C.: Support Vector Fuzzy Regression Machines. Fuzzy Sets
and Systems 138, 271–281 (2003)

8. Ishibuchi, H., Nii, M.: Fuzzy Regression using Asymmetric Fuzzy Coefficients and
Fuzzified Neural Networks. Fuzzy Sets and Systems 119, 273–290 (2001)

9. Maple 9.5, Waterloo Maple Inc., Waterloo, Canada
10. MATLAB, The MathWorks, http://www.mathworks.com
11. Ruoning, X.: S-Curve Regression Model in Fuzzy Environment. Fuzzy Sets and

Systems 90, 317–326 (1997)

http://www.mathworks.com


Summary and Conclusions 137

12. Yabuuchi, Y., Watada, J., Tatsumi, T.: Fuzzy Regression Analysis of Data with
Error. Japanese J. of Fuzzy Theory and Systems 6, 673–685 (1994)

13. Zhang, X., Omachi, S., Aso, H.: Fuzzy Regression Analysis Using RFLN and its
Application. In: Proc. FUZZ-IEEE 1997, Barcelona, Spain, July 1-5,1997, vol. 1,
pp. 51–56 (1997)

14. Zhang, D., Deng, L.-F., Cai, K.-Y., So, A.: Fuzzy Nonlinear Regression with Fuzzi-
fied Radial Basis Function Network. IEEE Trans. Fuzzy Systems 13, 742–760
(2005)



13 Multivariate Nonlinear Regression

13.1 Introduction

This chapter continues the previous chapter but now we can have two or more
independent (predictor, explanatory) variables, the Xi. Another change from
Chapter 12 is now we will work with fuzzy trapezoidal (shaped) fuzzy numbers
instead of fuzzy triangular (shaped) fuzzy numbers. As in Chapter 12 we usually
assume our fuzzy numbers are non-negative so that in the evaluation of fuzzy
expressions the extension principle and the α-cut and interval arithmetic method
produce the same results. However, in Section 13.5.4 we allow fuzzy numbers in
an interval I = [−a, a], a > 0. This chapter is based on [1].

We will need a metric (distance measure) on the collection of fuzzy numbers.
Since α-cuts of fuzzy numbers are always closed, bounded, intervals, we will use

D(N,M) = supα{max[|m1(α) − n1(α)|, |m2(α) − n2(α)| ]}, (13.1)

where M [α] = [m1(α),m2(α)] and N [α] = [n1(α), n2(α)], all α. This is the same
distance measure used in Chapter 12.

In the next section we present a universal approximation result for fuzzy
functions. The third section discusses evolutionary algorithm results followed
by, in the fourth section, a presentation of our fuzzy Monte Carlo method to
be used in this chapter. The fifth section first looks at three applications given
in [2] and then a new application for our fuzzy Monte Carlo method. The last
section has a brief summary and our conclusions.

13.2 Universal Approximator

The result in this section was proven in [2] and we include it here to explain the
nonlinear regression library defined in the next section and for Section 13.5.4.

Let T 0 be all trapezoidal fuzzy numbers, T is all trapezoidal shaped fuzzy
numbers and F denotes all fuzzy numbers. To simplify the discussion for the
rest of this chapter we will only be working with two independent variables, so
we will be interested in functions like Z = F (X1, X2;K1, . . . ,Km) where X1,

J.J. Buckley et al.: Monte Carlo Meth. in Fuzzy Optimization, STUDFUZZ 222, pp. 139–154, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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X2, K1, . . ., Km are all in T 0, X1 in interval [a, b], X2 in interval [c, d], the
parameters Ki are in intervals Ii, 1 ≤ i ≤ m, and Z is in F and possibly also
in T .

We obtain such an F via the extension principle. Let f(x1, x2; k1, . . . , km) :
[a, b] × [c, d] → R where the parameters ki belong to closed, bounded, intervals
Ii, 1 ≤ i ≤ m. Although the ki are constants we will consider f having m + 2
variables so it will be a continuous mapping from [a, b]× [c, d]×∏m

i=1 Ii into R.
Now we extend f , using the extension principle, to F (X1, X2;K1, . . . ,Km) for
Xi in T 0, X1 in [a, b], X2 in [c, d] and all the Ki in T 0 with Kj in Ij , 1 ≤ j ≤ m.
Let Z = F (X1, X2;K1, . . . ,Km) with Z in F .

We will use the notation pθ(x1, x2; k1, . . . , km) for a polynomial in variables
x1, x2, k1, . . . , km of degree d1 in x1, d2 in x2, d3 in k1, . . . , dm+2 in km with
θ = (d1, d2; d3, . . . , dm+2). Given ε > 0, there is a pθ so that [5]

|f(x1, x2; k1, . . . , km) − pθ(x1, x2; k1, . . . , km)| < ε, (13.2)

for all x1 ∈ [a, b], x2 ∈ [c, d] and kj ∈ Ij , 1 ≤ j ≤ m.
Now use the extension principle to extend pθ to Pθ(X1, X2;K1, . . . ,Km) = Y .

Then [2] using the same ε as in equation (13.2)

D(F (X1, X2;K1, . . . ,Km) − Pθ(X1, X2;K1, . . . ,Km)) < ε, (13.3)

for all X1 ∈ [a, b], X2 ∈ [c, d] and all Kj ∈ Ij , 1 ≤ j ≤ m.
Let C be all F which are extension principle extensions of continuous f defined

above. Let C0 be all Pθ which are extension principle extensions of multivariate
polynomials pθ also defined above. Then C0 is an universal approximator for C.
However, we will use (and also in [2]) α-cuts and interval arithmetic to evaluate
fuzzy functions like F and Pθ. Let P ∗

θ be the extension of pθ using α-cuts and
interval arithmetic. Then it is well known (Chapter 2) that Pθ ≤ P ∗

θ and they
may not be equal. But if all the fuzzy numbers are non-negative we get Pθ = P ∗

θ .
Hence, all our fuzzy numbers in the rest of the chapter will be non-negative
except in Section 13.5.4.

Suppose we have some fuzzy data ((X1l, X2l), Z l), 1 ≤ l ≤ p, generated by
some F ∈ C. Then, from the result above, there is a Pθ ∈ C0 that can model this
data. Hence our multivariate fuzzy nonlinear regression library, discussed in the
next section, will be composed of Pθ in C0.

13.3 Evolutionary Algorithm

Let the library be L. This library will contain multivariate, only two independent
variables, fuzzy polynomials Pθ which are sums of terms like

C X
γ

1X
μ

2 , (13.4)

with λ = γ + μ ≤ δ for some positive integer δ. The largest value of λ is called
the degree of Pθ and we will assume that (as in [2]) δ ≤ 4. We assume that all
the fuzzy numbers are non-negative and in T 0 and X1 ∈ [a, b], X2 ∈ [c, d].
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To test our EA in [2] we picked an F ∈ L to generate the fuzzy data and then
asked the EA to find this F . Our EA was in two parts EA1 and EA2. EA1 first
decided if λ was 1, 2, 3 or 4. This can be performed by crisp regression software
and will be omitted in this chapter. Suppose EA1 decided λ = 2 so

F = K1X
2

1 +K2X1X2 +K3X
2

2 +K4X1 +K5X2 +K6. (13.5)

Then EA2 found

Pθ = C1X
2

1 + C2X1X2 + C3X
2

2 + C4X1 + C5X2 + C6, (13.6)

with Cj ≈ Kj , 1 ≤ j ≤ 6. We will discuss these tests in more detail in Section
13.5.

We now define the error measure used in [2] and in this chapter. Let the
data be ((X1l, X2l), Z l), 1 ≤ l ≤ p, generated by some F ∈ L. Also let Y l =
Pθ(X1l, X2l;C1, . . . , C6), 1 ≤ l ≤ p. Then

Error = E = (1/p)
p∑

l=1

D2(Zl, Y l). (13.7)

The EA and our fuzzy Monte Carlo method want to find the Ci to minimize E.
A major problem in the EA and fuzzy Monte Carlo method is to find intervals
for the Ci. That is, determine Ii = [ai, bi] so that Ci ∈ [ai, bi] all i. A good
choice for these intervals will make both methods more efficient.

13.4 Fuzzy Monte Carlo Method

Now we plan to achieve similar results described above for the EA using our
fuzzy Monte Carlo method. Assume first we choose a fuzzy linear function in
the library to generate the data. Let the fuzzy linear function be (as in [2])
Z = K1 X1 + K2X2 + K3 for K1 = (3.0/3.2, 3.7/4.2), K2 = (2.0/3.0, 4.0/5.0)
andK3 = (4.5/5.0, 5.5/6.0). We randomly generate p = 30 values ofX i in [0, 30],
i = 1, 2, to produce the data ((X1l, X2l;Z l), 1 ≤ l ≤ 30, using this fuzzy linear
function. Then the Zl will be trapezoidal shaped fuzzy numbers. We will not
consider the case of “noise” in this chapter which was discussed in [2].

To obtain random sequences V k = (Xk1, ..., Xkp), k = 1, 2, ..., N , where the
Xki are all trapezoidal fuzzy numbers, we first randomly generate crisp vec-
tors vk = (xk1, ..., xk,4p) with all the xki in [0, 1], k = 1, 2, .., N . We choose
the first four numbers in vk and order them from smallest to largest. Assume
that xk3 < xk1 < xk2 < xk4. Then the first trapezoidal fuzzy number Xk1 =
(xk3/xk1, xk2/xk4). Continue with the next four numbers in vk, etc. making Xki,
i = 2, ..., p.

However the Xki we want will need to be in certain intervals. Suppose Xki is
to be in interval Ii = [ai, bi], i = 1, 2, ..., p. Since each Xki starts out in [0, 1] we
may easily put it into [ai, bi] by computing ai + (bi − ai)Xki, i = 1, ..., p.
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How shall we make the random crisp vectors vk? We use our Sobol quasi-
random number generator discussed in Chapter 3.

Now we return to the example we were discussing at the beginning of this
section. To randomly generate X il ∈ [0, 30], i = 1, 2 and 1 ≤ l ≤ 30, we
use our Sobol quasi-random number generator to obtain random vectors vl =
(vl1, . . . , vl8) ∈ [0, 1]8, 1 ≤ l ≤ 30. Order the first four components in vl from
smallest to largest to construct trapezoidal fuzzy number X1l and then do the
same for the next four components to get X2l and compute

Z l = K1 X1l +K2 X2l +K3, (13.8)

for l = 1, 2, ..., 30. The K1, K2 and K3 in the above equation were given above.
The data is ((X1l, X2l);Z l), 1 ≤ l ≤ 30. All fuzzy arithmetic is to be done using
α−cuts and interval arithmetic with α going from zero to one in increments of
0.1. So the data is really ((X1l[α], X2l[α]);Zl[α]) for l = 1, 2, ..., 30 and α =
0.0, 0.1, 0.2, ..., 0.9, 1.0.

Now we are ready for our fuzzy Monte Carlo method. Randomly gener-
ate, using our Sobol quasi-random number generator, random vectors vk =
(xk1, ..., xk,12), k = 1, 2, ..., N , using the first four numbers (as discussed above)
to define trapezoidal fuzzy number C1k, the next four numbers for C2k and the
last four numbers for C3k. Now compute

Y lk = C1kX1l + C2kX2l + C3k, (13.9)

for l = 1, 2, ..., 30, k = 1, 2, ..., N . Determine the error measure

Error = Ek = (1/30)
30∑

l=1

D2(Y lk, Z l). (13.10)

Find the values for the Ci to minimize the error measure.
Next we need to determine intervals Ii = [ai, bi], i = 1, 2, 3, for these fuzzy

numbers. A good selection of these intervals will make the fuzzy Monte Carlo
process more efficient because: (1) if they are wrong and/or too small we can miss
a “good” solution; and (2) if they are too big the simulation can spend too much
time looking at situations that will not produce a “good” solution. Defining the
intervals Ii is application dependent so we now proceed to the applications.

13.5 Applications

The first three applications are from [2] and the last application is a new example.

13.5.1 First Application

This application is to use our new Monte Carlo method to find the values of
K1, K2 and K3 that produced the data ((X1l, X2l);Z l), 1 ≤ l ≤ 30, which
is generated as described above. We will need to find intervals Ii, i = 1, 2, 3,
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as explained above. We will solve for these intervals two ways: (1) first, in the
next subsection, using the solutions for the intervals from [2]; and (2) secondly,
in the second subsection, we use an optimization procedure to determine these
intervals.

Monte Carlo programs were written in MATLAB [4]. For all our Monte Carlo
calculations, we used a Pentium III, Processor: 933 MHz.

First Choice of Intervals

The selection of these intervals was discussed in detail in [2]. However, those
intervals turned out to be much too large, having large negative components,
and the fuzzy coefficients are known to be positive. So we take only the positive
part of the intervals calculated in [2] to be: (1) [0, 10.604] for C1; (2) [0, 7.803]
for C2; and (3) [0, 47.846] for C3. Assume that we have already ordered the
first four components in vk = (xk1, ..., xk,12) from smallest to largest, same for
the next four and the last four, then C1k = 10.604(xk1/xk2, xk3/xk4), C2k =
7.803(xk5/xk6, xk7/xk8) and C3k = 47.846(xk9/xk,10, xk,11/xk,12). Now find Y lk

as in equation (13.9) and Ek in equation (13.10).

Table 13.1. Results of the Monte Carlo (LMCI) Method, First Choice of Intervals, to
Minimize the Error, First Application

Coefficient LMCI

C1 (2.989/3.181, 3.674/4.218)
C2 (2.021/2.979, 3.961/4.956)
C3 (4.451/4.893, 5.517/6.139)

Using our Sobol quasi-random number generator we produced N = 400, 000
vectors vk = (xk1, ..., xk,12) which defined the Ci as described above. Results are
shown in Table 13.1 with minimum error value in Table 13.5. Since we will have
three Monte Carlo studies for the fuzzy linear function we call this one LMCI
(for linear Monte Carlo).

Second Choice of Intervals

We need to determine the intervals Ii = [ai, bi] for the supports of the Ci,
i = 1, 2, 3. We first describe an optimization method used to determine these
intervals. This procedure will be called LMCII. Let

[Ll, Rl] = I1[x11l, x1l4] + I2[x2l1, x2l4] + I3, (13.11)

evaluated using interval arithmetic, for l = 1, 2, ..., 30, where X1l =
(x1l1/x1l2, x1l3/x1l4) and X2l = (x2l1/x2l2, x2l3/x2l4). Recall the data Zl ≈
(zl1/zl2, zl3/zl4). Define

W =
30∑

l=1

(Ll − zl1)2 +
30∑

l=1

(Rl − zl4)2. (13.12)
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Table 13.2. Optimization Method of Determining the Supports (QMCII) for Monte
Carlo

Coefficient Support
C1 [3.000, 4.200]
C2 [2.000, 5.000]
C3 [4.500, 6.000]

Table 13.3. Results of the Monte Carlo Method (LMCII), Second Choice of Intervals,
to Minimize the Error, First Application

Coefficient LMCII

C1 (3.021/3.219, 3.699/4.193)
C2 (1.998/2.982, 3.988/4.989)
C3 (4.504/5.102, 5.521/5.996)

Table 13.4. Results of the Monte Carlo Method (LMCIII), Second Choice of Intervals,
to Minimize the Error, First Application

Coefficient LMCIII

C1 (3.019/3.196, 3.697/4.203)
C2 (2.003/2.999, 3.998/5.001)
C3 (4.453/5.032, 5.502/5.984)

The optimization problem is to minimize W subject to ai ≤ bi all i. We want to
find the intervals that make Ll and Rl closest, in the sense of minimizing W , to
the end points of the supports of the Zl in the data. We solved this using Maple
[4]. The results, rounded to three decimal places, are in Table 13.2.

We now produce a sequence of random crisp vectors vk = (xk1, ..., xk,12),
k = 1, 2, ..., N , using our Sobol quasi-random number generator as described
above, to get a sequence of trapezoidal fuzzy numbers Cik, i = 1, 2, 3, in their
intervals and compute Ek in equation (13.10). After a run of N = 400, 000 the
smallest error value found is shown in Table 13.5 with corresponding Ci values
shown in Table 13.3.

As a result of LMCI and LMCII we experimented with other choices for these
intervals. In a Monte Carlo study it is rare to obtain the end points of an interval Ii
to be the exact support of a Ci, i = 1, 2, 3. For example, I1 = [3.000, 4.200] and we
would not expect to get in our Monte Carlo study support(C1) = [3.000, 4.200]. So
we slightly enlarged the intervals in Table 13.2 so that our Monte Carlo program
could obtain the intervals in Table 13.2 for the support ofCi, i = 1, 2, 3. The inter-
vals we used were I1 = [2.900, 4.300], I2 = [1.900, 5.100] and I3 = [4.400, 6.100].
We called this method LMCIII. After a run of N = 400, 000 the smallest error is
in Table 13.5 with the corresponding Ci in Table 13.4.
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Table 13.5. Comparing Fuzzy Monte Carlo Solutions and EA Solution to the Fuzzy
Linear Function Data

Method Error(E)
EA 0.00217

LMCI 0.334181
LMCII 0.058135
LMCIII 0.002031

Comparison of Solutions

We see that the error measure for LMCI is much too large compared to the
error in EA, LMCII and LMCIII. The error for EA was taken from [2]. This
was because the intervals for the Ci were too large for a Monte Carlo run of
N = 400, 000. Possibly N = 1, 000, 000 could result in a much smaller error
for LMCI. The error measure for LMCIII was comparable to that for the EA
method. The computing time was between 14 and 16 minutes for N = 100, 000.

13.5.2 Second Application

This application is to use our Monte Carlo method to find the values of Ki,
1 ≤ i ≤ 6, that produced the data ((X1l, X2l);Z l), 1 ≤ l ≤ 30, which was
generated by the fuzzy function

Z = K1X
2

1 +K2X1X2 +K3X
2

2 +K4X1 +K5X2 +K6. (13.13)

The values used for the Ki are K1 = (1.0/1.5, 2.5/3.0), K2 = (3.2/3.4, 4.0/4.3),
K3 = (3.0/3.2, 3.7/4.2), K4 = (2.4/2.5, 2.9/3.0), K5 = (0.8/1.1, 1.5/2.1), and
K6 = (4.5/4.6, 5.1/5.4). The value for K6 was changed slightly from [2] because
there was an error in reporting its value in [2]. We randomly, using our Sobol
quasi-random number generator as explained above, generated 30 values of the
Xi ∈ [0, 30], i = 1, 2, and then used equation (13.13) to compute the Zl and
obtain the data. In our fuzzy Monte Carlo method we will randomly generate
fuzzy vectors V k = (C1k, . . . , C6k), k = 1, . . . , N , and compute for l = 1, . . . , 30;

Y lk = C1kX
2

1l + C2kX1lX2l + C3kX
2

2l + C4kX1l + C5kX2l + C6k. (13.14)

Then evaluate the error measure in equation (13.10) and search for the vector
V k that minimizes Ek.

We will need to find intervals Ii, as explained above, for the Ci, i = 1, . . . , 6.
We will solve for these intervals two ways: (1) first, in the next subsection, using
the solutions for the intervals from [2]; and (2) secondly, in the second subsection,
we use an optimization procedure to determine these intervals.

First Choice of Intervals

The selection of these intervals was discussed in detail in [2]. However, those in-
tervals turned out to be much too large, having large negative components, and
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the fuzzy coefficients are known to be positive. So we take only the positive part of
the intervals calculated in [2] to be: (1) [0, 5.369] for C1; (2) [0, 11.129] for C2; (3)
[0, 10.710] for C3; (4) [0, 10.371] for C4; (5) [0, 13.954] for C5; and (6) [0, 13.954]
for C6. Assume that we have already ordered the first four components in vk =
(xk1, ..., xk,24) from smallest to largest, same for the next four, . . . and the last four,
then C1k = 5.369(xk1/xk2, xk3/xk4), C2k = 11.129(xk5/xk6, xk7/xk8), C3k =
10.710(xk9/xk,10, xk,11/xk,12), C4k = 10.371(xk,13/xk,14, xk,15/xk,16), C5k =
13.954(xk,17/xk,18, xk,19/xk,20), and C6k = 13.954(xk,21/xk,22, xk,23/xk,24). Now
find the Y lk for equation (13.14) and Ek from equation (13.10).

Using our Sobol quasi-random number generator we produced N vectors vk =
(xk1, ..., xk,24) which defined the Ci as described above. We were unable to drive
the error measure sufficiently small for N = 600, 000. We would probably need
N = 2, 000, 000 or N = 3, 000, 000. The reason was that the intervals for the Ci

were too large. Also, if a Ci was just slightly different from a Ki, i = 1, 2, 3,
the error could be large because of the squared (product) terms with a Xi ≈
(20/25, 26/30), i = 1, 2.

Second Choice of Intervals

We need to determine the intervals Ii = [ai, bi] for the supports of the Ci,
i = 1, . . . , 6. We first describe an optimization method used to determine these
intervals. Then we find intervals for the cores of the Ci, 1 ≤ i ≤ 6. Let Q1l =
[x1l1, x1l4] and Q2l = [x2l1, x2l4]. Define

[Ll, Rl] = I1Q
2
1l + I2Q1lQ2l + I3Q

2
2l + I4Q1l + I5Q2l + I6, (13.15)

evaluated using interval arithmetic, for l = 1, 2, ..., 30. Recall the data Zl ≈
(zl1/zl2, zl3/zl4). Define

W =
30∑

l=1

(Ll − zl1)2 +
30∑

l=1

(Rl − zl4)2. (13.16)

The optimization problem is to minimize W subject to ai ≤ bi all i. We want to
find the intervals that make Ll and Rl closest, in the sense of minimizing W , to
the end points of the supports of the Zl in the data. We solved this using Maple
[4]. The results, rounded to three decimal places, are in Table 13.6.

Now we do the same for the cores of the fuzzy parameters. Let V1l = [x1l2, x1l3]
and V2l = [x2l2, x2l3]. Define

[L1l, R1l] = I1V
2
1l + I2V1lV2l + I3V

2
2l + I4V1l + I5V2l + I6, (13.17)

evaluated using interval arithmetic, for l = 1, 2, ..., 30. Define

W =
30∑

l=1

(L1l − zl2)2 +
30∑

l=1

(R1l − zl3)2. (13.18)

The optimization problem is to minimize W subject to ai ≤ bi all i. We want to
find the intervals that make L1l and R1l closest, in the sense of minimizing W ,
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Table 13.6. Determining the Intervals for the Support and Core for Monte Carlo,
Second Application

Coefficient Support Core
C1 [1.000, 3.000] [1.500, 2.500]
C2 [3.200, 4.300] [3.400, 4.000]
C3 [3.000, 4.200] [3.200, 3.700]
C4 [2.400, 3.000] [2.500, 2.900]
C5 [0.800, 2.100] [1.100, 1.500]
C6 [4.500, 5.400] [4.600, 5.100]

to the end points of the cores of the Zl in the data. We solved this using Maple
[4]. The results, rounded to three decimal places, are also in Table 13.6.

Now we tried the intervals in Table 13.6 for the Ci, for example C1 =
(1.000/1.500, 2.500/3.000), . . . , C6 = (4.500/4.600, 5.100/5.400), and got zero er-
ror. Problem finished. This analytical method found the unknown fuzzy param-
eters Ki, 1 ≤ i ≤ 6, and no EA or Monte Carlo procedure is required. However,
for this analytical procedure to work we needed to know the structure of the
fuzzy function that produced the fuzzy data.

13.5.3 Third Application

This application is to use our Monte Carlo method to find the values of Ki,
1 ≤ i ≤ 10, that produced the data ((X1l, X2l);Z l), 1 ≤ l ≤ 30, which was
generated by the fuzzy cubic polynomial

Z = K1X
3

1 +K2X
2

1X2 +K3X1X
2

2 +

K4X
3

2 +K5X
2

1 +K6X1X2 +

K7X
2

2 +K8X1 +K9X2 +K10. (13.19)

The values used for the Ki are K1 = (2.8/3.5, 4.1/4.8), K2 = (0.8/1.1, 1.5/2.1),
K3 = (2.0/2.5, 2.9/4.0), K4 = (3.0/3.2, 3.7/4.0), K5 = (3.2/4.1, 5.1/6.0), K6 =
(1.0/1.3, 1.7/2.3), K7 = (2.6/3.1, 3.7/4.3), K8 = (3.0/3.2, 3.7/4.2), K9 =
(1.2/1.4, 2.0/2.6), and K10 = (0.4/0.6, 1.2/1.5).

We randomly, using our Sobol quasi-random number generator as explained
above, generate 30 values of the Xi ∈ [0, 30], i = 1, 2, and then use equation
(13.19) to compute the Zl and obtain the data. In our fuzzy Monte Carlo method
we will randomly generate fuzzy vectors V k = (C1k, . . . , C10,k), k = 1, . . . , N ,
and compute for l = 1, . . . , 30

Y lk = C1kX
3

1l + C2kX
2

1lX2l + C3kX1lX
2

2l +

C4kX
3

2l + C5kX
2

1l + C6kX1lX2l +

C7kX
2

2l + C8kX1l + C9kX2l + C10,k. (13.20)
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Then evaluate the error measure in equation (13.10) and search for the vector
V k that minimizes Ek.

We will need to find intervals Ii, as explained above, for the Ci, i = 1, . . . , 10.
We will solve for these intervals two ways: (1) first, in the next subsection, using
the solutions for the intervals from [2]; and (2) secondly, in the second subsection,
we use an optimization procedure to determine these intervals.

First Choice of Intervals

The selection of these intervals was discussed in detail in [2]. However, those in-
tervals turned out to be much too large, some having large negative components,
and the fuzzy coefficients are known to be positive. So we take only the positive
part of the intervals calculated in [2] to be: (1) [0.021, 5.249] for C1; (2) [0, 4.791]
for C2; (3) [0, 6.064] for C3; (4) [1.002, 5.194] for C4; (5) [0, 11.209] for C5; (6)
[0, 7.481] for C6; (7) [0, 10.201] for C7; (8) [0, 12.955] for C8; (9) [0, 10.445] for
C9; and (10) [0, 286.450] for C10. Assume that we have already ordered the first
four components in vk = (xk1, ..., xk,40) from smallest to largest, same for the
next four, . . . and the last four, then C1k = 0.021 + 5.228(xk1/xk2, xk3/xk4),
C2k = 4.791(xk5/xk6, xk7/xk8), C3k = 6.064(xk9/xk,10, xk,11/xk,12), C4k =
1.002 + 4.192(xk,13/xk,14, xk,15/xk,16), C5k = 11.209(xk,17/xk,18, xk,19/xk,20),
C6k = 7.481(xk,21/xk,22, xk,23/xk,24), C7k = 10.201(xk,25/xk,26, xk,27/xk,28),
C8k = 12.955(xk,29/xk,30, xk,31/xk,32), C9k = 10.445(xk,33/xk,34, xk,35/xk,36),
and C10,k = 286.450(xk,37/xk,38, xk,39/xk,40). Now find the Y lk for equation
(13.20) and Ek from equation (13.10).

Using our Sobol quasi-random number generator we produced N = 200, 000
vectors vk = (xk1, ..., xk,24) which defined the Ci as described above. We were
unable to drive the error measure sufficiently close to zero even withN = 600, 000
for the same reasons discussed in the previous application.

Second Choice of Intervals

We need to determine the intervals Ii = [ai, bi] for the supports of the Ci,
i = 1, . . . , 10. We first describe an optimization method used to determine these
intervals. Then we do the same for the cores. Let Q1l = [x1l1, x1l4] and Q2l =
[x2l1, x2l4]. Define

[Ll, Rl] = I1Q
3
1l + I2Q

2
1lQ2l + I3Q1lQ

2
2l + I4Q

3
2l + I5Q

2
1l +

I6Q1lQ2l + I7Q
2
2l + I8Q1l + I9Q2l + I10, (13.21)

evaluated using interval arithmetic, for l = 1, 2, ..., 30. Recall the data Zl ≈
(zl1/zl2, zl3/zl4). Define

W =
30∑

l=1

(Ll − zl1)2 +
30∑

l=1

(Rl − zl4)2. (13.22)

The optimization problem is to minimize W subject to ai ≤ bi all i. We want to
find the intervals that make Ll and Rl closest, in the sense of minimizing W , to
the end points of the supports of the Zl in the data. We solved this using Maple
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Table 13.7. Determining the Intervals for the Support and Core for Monte Carlo,
Third Application

Coefficient Support Core
C1 [2.800, 4.800] [3.500, 4.100]
C2 [0.800, 2.100] [1.100, 1.500]
C3 [2.000, 4.000] [2.500, 2.900]
C4 [3.000, 4.000] [3.200, 3.700]
C5 [3.200, 6.000] [4.100, 5.100]
C6 [1.000, 2.300] [1.300, 1.700]
C7 [2.600, 4.300] [3.100, 3.700]
C8 [3.000, 4.200] [3.200, 3.700]
C9 [1.200, 2.600] [1.400, 2.000]
C10 [0.400, 1.501] [0.600, 1.200]

[4]. This time we gave the program initial values for the variables ai = 1.0 and
bi = 2.0 all i. The results, rounded to three decimal places, are in Table 13.7.

Let V1l = [x1l2, x1l3] and V2l = [x2l2, x2l3]. Define

[L1l, R1l] = I1V
3
1l + I2V

2
1lV2l + I3V1lV

2
2l + I4V

3
2l + I5V

2
1l +

I6V1lV2l + I7V
2
2l + I8V1l + I9V2l + I10, (13.23)

evaluated using interval arithmetic, for l = 1, 2, ..., 30. Define

W =
30∑

l=1

(L1l − zl2)2 +
30∑

l=1

(R1l − zl3)2. (13.24)

The optimization problem is to minimize W subject to ai ≤ bi all i. We want to
find the intervals that make L1l and R1l closest, in the sense of minimizing W ,
to the end points of the cores of the Zl in the data. We solved this using Maple
[4]. We gave the program initial values for the variables ai = 2.0 and bi = 3.0 all
i. The results, rounded to three decimal places, are in Table 13.7.

Now we tried the intervals in Table 13.7 for the Ci, for example C1 =
(2.800/3.500, 4.100/4.800), . . . , C10 = (0.400/0.600, 1.200/1.501), and got an er-
ror of approximately zero. Problem finished. This analytical method found the
unknown fuzzy parametersKi, 1 ≤ i ≤ 10, and no EA or Monte Carlo procedure
is required. However, for this analytical procedure to work we needed to know
the structure of the fuzzy function that produced the fuzzy data which will not
happen in the next application.

13.5.4 Fourth Application

In this example we act like we do not know the structure of the function f that
generates the fuzzy data and it does not belong to our library L. That is, f
is not a fuzzy multivariate polynomial. Let z = f(x1, x2) = exp(x1 + x2) for
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xi ∈ I = [−a, a], a > 0, i = 1, 2. By the extension principle Z = f(X1, X2) for
Xi trapezoidal fuzzy numbers in I, i = 1, 2. The data will be ((X1l, X2l), Z l),
1 ≤ l ≤ 30, generated by f . We use our Sobol quasi-random number generator
to obtain X1l and X2l in I and then Zl = f(X1l, X2l), l = 1, . . . , 30.

We will now use the results in Section 13.2. We could write the function f
as z = k1 exp(k2x1 + k3x2 + k4) + k5 for constants k1 = k2 = k3 = 1 and
k4 = k5 = 0. These constants will be fixed at their crisp values given above and
not fuzzified when we go to Z = f(X1, X2) which means we do not have any
Kj used in Section 13.2. Let g(x1, x2) be any function having continuous partial
derivatives of all orders on I × I. Then there are constants ci, i = 1, · · · , 10 so
that the Taylor series expansion of g about (0, 0) is

g(x1, x2) = c1 + (c2x1 + c3x2) + (c4x2
1 + c5x1x2 + c6x

2
2) +

(c7x3
1 + c8x

2
1x2 + c9x1x

2
2 + c10x

3
2) + R, (13.25)

where R is the remainder and the ci depend on the partial derivatives of g
evaluated at (0, 0) [5]. Let p(x1, x2; c1, . . . , c10) denote the cubic polynomial in
x1 and x2 in the above equation. We will assume that

|g(x1, x2) − p(x1, x2; c1, . . . , c10)| < ε, (13.26)

for some ε for all xi ∈ I, i = 1, 2. The ε in the above equation will depend on g
and the interval I. Using the extension principle get Y = p(X1, X2; c1, . . . , c10)
for some constants ci, 1 ≤ i ≤ 10.

Now f is such a function as g so equations (13.25) and (13.26) will hold for
the (unknown) f . So there are constants ci so that

|f(x1, x2) − p(x1, x2; c1, . . . , c10)| < ε, (13.27)

for some ε and all xi ∈ I. This equation is similar to equation (13.2). Then by a
proof similar to that in [2] we may attain

D(f(X1, X2), p(X1, X2; c1, . . . , c10)) < ε, (13.28)

for all Xi ∈ I. We point out that the fuzzy functions in equation (13.28) are
both evaluated using the extension principle.

If we knew f we could find the ci, i = 1, . . . , 10, choose an interval I and
estimate/compute ε. We will do this at the end of the section but for now we
continue with unknown f . Let us pick an interval I and apply our Monte Carlo
method to estimate the ci, i = 1, . . . , 10, and find the minimum error.

Monte Carlo Method

Let I = [−0.6, 0.6]. Using this interval we may generate the data. We will need to
find intervals Ii = [ai, bi] for the ci, 1 ≤ i ≤ 10. Given these intervals we use our
Sobol quasi-random number generator to produce vectors vk = (c1k, . . . , c10,k),
cik ∈ Ii, 1 ≤ i ≤ 10 and k = 1, . . . , N . Our first choice is Ii = [0, 1] all i. Compute

Y lk = p(X1l, X2l; c1k, . . . , c10,k), (13.29)
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Table 13.8. Results of the Monte Carlo (MC) Method, to Minimize the Error, Fourth
Application

Coefficient Value
c1 0.9577
c2 0.8812
c3 0.8737
c4 0.6337
c5 0.4918
c6 0.0006
c7 0.0011
c8 0.0004
c9 0.0010
c10 0.0003

for l = 1, . . . , 30, k = 1, . . . , N . We evaluate equation (13.29) using α-cuts and
interval arithmetic. We used α−cuts and interval arithmetic to evaluate the
fuzzy polynomial because we found it difficult to evaluate using the extension
principle in a MATLAB program. Determining Y lk is now more difficult because
the intervals given by α−cuts of X1l and X2l can have negative end points. This
only complicates the multiplication of intervals and we use the general formula
[a, b] ∗ [c, d] = [s, t] where s(t) = min(max){ac, ad, bc, bd}. Next we compute Ek

in equation (13.10) and find the minimum error value.
After a Monte Carlo run of N = 100, 000 the results for the ci are shown in

Table 13.8 with minimum error in Table 13.10. We call this method MC (for
Monte Carlo).

Optimization Method

Now we find the values for the ci, i = 1, . . . , 10, using an optimization procedure
similar to the one used in the previous two sections. Let X1l = (x1l1/x1l2,, x1l3/
x1l4), X2l = (x2l1/x2l2,, x2l3/x2l4), Q1l = [x1l1, x1l4], V1l = [x1l2, x1l3], V2l =
[x2l2, x2l3] and Q2l = [x2l1, x2l4]. Define

[Ll, Rl] = p(Q1l, Q2l; c1, . . . , c10), (13.30)

and
[L1l, R1l] = p(V1l, V2l; c1, · · · , c10), (13.31)

both evaluated using interval arithmetic, l = 1, . . . , 30. Define W1 as in equation
(13.12) and then define

W2 =
30∑

l=1

(L1l − zl2)2 +
30∑

l=1

(R1l − zl3)2, (13.32)

and set W = W1 +W2. The optimization problem is to minimize W subject to
0 ≤ ci ≤ 1, 1 ≤ i ≤ 10. The objective is to find the constants to make the support
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Table 13.9. Determining the Constants, Optimization Method, Fourth Application

Coefficient Value
c1 1.0000
c2 0.7731
c3 0.8736
c4 0.4726
c5 0.0000
c6 0.8130
c7 0.0000
c8 0.0000
c9 0.0000
c10 0.0000

Table 13.10. Comparing Solutions in the Fourth Application

Method Error(E)
MC 0.0084
OPT 0.0554
TAY 0.0493

and core of the Y lk close to the support and core of the data Zl, 1 ≤ l ≤ 30. We
solved this problem using Maple. The results are in Table 13.9.

We now computed Y lk = p(X1l, X2l; c1k, . . . , c10,k) using the ci values in
Table 13.9 and α-cuts with interval arithmetic. We will call this method OPT
(optimization method) and the error measure for this procedure is shown in
Table 13.10.

Now let us assume we know f . Then c1 = c2 = c3 = c5 = 1, c4 = c6 =
c8 = c9 = 0.5 and c7 = c10 = 1/6. Using these values for the ci we evaluated
equation (13.29) using α-cuts with interval arithmetic and computed the error
measure in equation (13.10). We call this procedure TAY (for Taylor series) and
the error value is in Table 13.10. We may also find ε in equation (13.27). We used
Maple to find the maximum of |f(x1, x2)−p(x1, x2; c1, · · · , c10)|, using the Taylor
series values for the ci given above, for x1, x2 ∈ [−0.6, 0.6]. The maximum was
ε = 0.1121. If we use the extension principle to evaluate the fuzzy functions in
equation (13.28), then that equation holds for ε = 0.1121. Hence, from equation
(13.10)

Error ≤ 30(ε)2/30 = 0.012. (13.33)

Comparison of Solutions

We see that our Monte Carlo method (MC) obtained the smallest error. The
computer time for the fuzzy Monte Carlo was 7 to 8 hours for a run of N =
100, 000.
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The optimization method (OPT), that worked so well in the second and third
application, did not get the smallest error. In this application we did not know
the structure of the fuzzy function that produced the fuzzy data and this may
be the reason this method did not perform that well.

Now suppose we know the fuzzy function that produced the fuzzy data and
we compute the first four terms in the Taylor series, equation (13.25), with the
ci values previously given. We then use this fuzzy polynomial to get the Y lk as
in equation (13.29) using α-cuts and interval arithmetic to evaluate the fuzzy
function. This method (TAY) had error 0.0493. But if we used the extension
principle to evaluate the fuzzy polynomial, equation (13.3) holds, and the error
will be less than 0.012. Since, in practice, we will not know the fuzzy function
that produced the fuzzy data, these results were included only for comparison.

Our Monte Carlo method was clearly the best way to model the fuzzy data.

13.6 Summary and Conclusions

In this chapter we introduced our new fuzzy Monte Carlo procedure for mul-
tivariate fuzzy nonlinear regression. The basic requirement of any fuzzy Monte
Carlo method is to be able to randomly produce fuzzy/crisp vectors to uniformly
fill the search space. We suggested using a quasi-random number generator to
make these random fuzzy/crisp vectors. Theoretically, given enough iterations
of the fuzzy Monte Carlo technique, it will produce a sufficiently small error. A
major problem with our fuzzy Monte Carlo method is to find a sufficiently small
(to reduce computer time) search space.

We applied our fuzzy Monte Carlo method in four applications. The first
three were taken from [2] so that we could compare the fuzzy Monte Carlo
procedure to the evolutionary algorithm (EA) that was used in that paper. The
first application was a fuzzy linear function with two variables that produced the
fuzzy data. The objective was to find the fuzzy constants in the fuzzy function
and our fuzzy Monte Carlo method did as well as the EA.

The second two applications involved fuzzy polynomials and we discovered
an optimization procedure to find the “unknown” fuzzy constants in the fuzzy
polynomials and an EA or fuzzy Monte Carlo method was not needed. The
optimization procedure was originally designed to find a “good” search space.
This optimization method required knowing the structure of the fuzzy function
that produced the fuzzy data, usually not the case in applications.

The fourth application was about a “unknown” fuzzy function producing the
fuzzy data and this fuzzy function was not a fuzzy linear/polynomial fuzzy func-
tion. Our universal approximation result in Section 13.2 says that there is a fuzzy
polynomial that can model this data, but all fuzzy functions must use the ex-
tension principle for evaluation. We showed that a cubic polynomial, with crisp
coefficients, can be used and our Monte Carlo method found these coefficients
that will give small error. However, we employed α−cuts and interval arithmetic
to evaluate the fuzzy polynomial. We did not find the unknown fuzzy function
that made the fuzzy data; we found a polynomial that can model the data. The
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optimization procedure that worked so well in the second and third application
did not perform well in this application since we could not use the structure of
the unknown fuzzy function.

All the fuzzy data used and all the MATLAB programs are available from the
authors.
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14 Fuzzy Linear Regression II

14.1 Introduction

This chapter is a continuation of Chapter 11 and is based on [1]. We wish to
use our Monte Carlo method to get approximate solutions for crisp numbers ai,
0 ≤ i ≤ m, to the fuzzy linear regression model

Y = a0 + a1X1 + ... + amXm, (14.1)

for Xi, 1 ≤ i ≤ m, triangular fuzzy numbers and Y a triangular fuzzy number.
The fuzzy linear regression model in equation (14.1) has been previously studied
in [2]-[6]. In this model the independent variables X i will be given triangular
fuzzy numbers, the dependent variable Y will be a given triangular fuzzy number,
so the best way to fit the model to the data is to use real numbers for the ai.
If ai is also a triangular fuzzy number, then aiXi will be a triangular shaped
fuzzy number and the right side of equation (14.1) is a triangular shaped fuzzy
number which is used to approximate Y a triangular fuzzy number. If the ai are
real numbers the right side of equation (14.1) will be a triangular fuzzy number
which is better to use to approximate a triangular fuzzy number Y . The data will
be ((X1l, ..., Xml), Y l), 1 ≤ l ≤ n, for the X il = (xil1/xil2/xil3) triangular fuzzy
numbers and Y l = (yl1/yl2/yl3) triangular fuzzy numbers. Given the data the
objective is to find the “best” aj, 0 ≤ j ≤ m. We propose to employ our Monte
Carlo methods to approximate the “best” values for the aj , j = 0, 1, ..., m.

In Monte Carlo we randomly generate a possible solution, evaluate how
“good” it is, discard inferior solutions, and continue N times. N is usually large
like 10, 000 or 100, 000. In the next section we discuss how to randomly produce
vectors vk = (a0k, ..., amk), k = 1, 2, 3, ..., N . Using the vk we determine the
predicted values

Y
∗
lk = a0k + a1kX1l + ... + amkXml, (14.2)

for k = 1, 2, 3, .., N and l = 1, 2, ..., m. To see how good this vk is we find the
error between the given values Y l and the predicted values Y

∗
lk. We will have

two error measures in this chapter. The first error measure is

J.J. Buckley et al.: Monte Carlo Meth. in Fuzzy Optimization, STUDFUZZ 222, pp. 155–164, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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E1k(E1) =
n∑

l=1

[
∫ ∞

−∞
|Y l(x) − Y

∗
lk(x)|dx]/[

∫ ∞

−∞
Y l(x)dx], (14.3)

where the integrals are really only over interval(s) containing the support of
the fuzzy numbers. E1 is a “vertical” error measure. Let Y l = (yl1/yl2/yl3)
and Y

∗
lk = (ylk1/ylk2/ylk3) all triangular fuzzy numbers. Then our second error

measure is

E2k(E2) =
n∑

l=1

[|yl1 − ylk1| + |yl2 − ylk2| + |yl3 − ylk3|]. (14.4)

E2 is a “horizontal” error measure. So we calculate vk, E1k and E2k for k =
1, 2, ..., N . A “best” solution is a value of vk that minimizes E1k (E2k) for all
k. An approximate “best” solution is a v ∈ {v1, ..., vN} that minimizes an error
measure. So we can have two approximate “best” solutions one with respect to
E1 and an other for E2. Next we see how we will produce sequences of crisp
random vectors vk, k = 1, 2, 3, .., N , and then apply our Monte Carlo method
to an example problem. In this chapter we will be generating sequences of crisp
random vectors and not sequences of fuzzy random vectors. But first let us
discuss the choice of error measures in more detail.

14.2 Error Measures

Consider the model in equation (14.1) and the given data and let P be some
procedure for estimating the parameters ai, 0 ≤ i ≤ m. For example: (1) in [2]
they used least absolute deviation; (2) in [4] they used least squares; and (3)
in [5] they used a two stage method the first was least squares and the second
another minimization procedure. For any P let the estimates be âi, 0 ≤ i ≤ m.
The predicted values will then be

Ŷ l = â0 + â1X1l + ... + âmXml, (14.5)

for l = 1, ..., n. Then we compute the value of some error measure E = E(Y , Ŷ )

which aggregates the “error” between Y l and Ŷ l all l. The objective is to use a
P that will make E small.

Now E should not be directly related to P . Suppose P1 is least squares and
P2 is least absolute deviation and E is also least squares. Then it is not fair
to compare P1 and P2 using E. Actually it does not matter what P we use
(discussed below). So, if we are comparing Pi, 1 ≤ i ≤ I, we may compare using
E as long as E is not directly related to any Pi.

Now consider E1 and E2 defined above. We will have four procedures P1

goes with [2], P2 with [4], P3 for [5] and P4 will be associated with our fuzzy
Monte Carlo. But there are two relationships: (1) E2 and P1 from [2]; and (2)
E1 with the second stage in P3. There is a strong relationship between P1 and
E2, discussed further in section 14.3.3, and we do not expect P4 to do better
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than P1 for E2. The relationship between P3 and E1 is weak, only the second
stage in [5], and should not effect the results.

Why does it not matter what P we use? We know that in crisp linear regres-
sion, under certain normality assumptions, such as when P is least squares, we
have a statistical theory developed for confidence intervals for the ai and Y , and
hypothesis tests for the ai. But this does not yet exist for fuzzy linear regression.
So, until such a theory exists for fuzzy linear regression and some P , it does not
matter what procedure you use. Given the model and the data fuzzy Monte
Carlo can estimate the absolute minimum of any error measure. Even when we
have a statistical theory for fuzzy linear regression it would be nice to have an
estimate of the minimum of your error measure.

14.3 Random Vectors

To obtain random sequences vk = (a0k, ..., amk), where the aik are all real
numbers in intervals Ii, i = 0, ..., m, we first randomly generate crisp vectors
vk = (x1k, ..., xmk) with all the xik in [0, 1], k = 1, 2, .., N . Suppose ai is to be
in interval Ii = [ci, di], i = 0, 1, 2, ..., m. These intervals are very important to
the Monte Carlo process because: (1) if they are wrong and/or too small we can
miss a “good” solution; and (2) if they are too big the simulation can spend
too much time looking at situations that will not produce a “good” solution.
Since each xik starts out in [0, 1] we may easily put them into Ii = [ci, di] by
aik = ci + (di − ci)xik, i = 0, 1, ..., m.

How shall we make the random crisp vectors vk? Now vk is initially in
[0, 1]m+1. We will use our Sobol quasi-random number generator discussed in
Chapter 3 to make the initial vk and then transform to intervals Ii, 0 ≤ i ≤ m.
Our Sobol quasi-random number generator will then produce the transformed
vk uniformly filling the search space I0 × ... × Im.

14.4 Example Problem

The data for this application was taken from [2] and [4], and is shown in Table
14.1. We converted the “LR” fuzzy numbers in an example in [4] to triangular
fuzzy numbers. There are two (m = 2) independent variables X1 and X2. Also,
there are ten (n = 10) items in the data set. We will need to find intervals Ii,
i = 0, 1, 2, as explained above for the ai. We will solve for these intervals two
ways: (1) first, in the next subsection, using the solutions for the ai, i = 0, 1, 2,
from [2]; and (2) secondly, in the second subsection, we use two optimization
procedures to determine these intervals.

The authors in [2] compared their method, applied to the data in Table 14.1,
to that in [5] applied to the same data set, in their Table 3.2. They give the error
values E1 for both methods. In this chapter we apply our Monte Carlo method to
compute predicted values and compare our new results to the other two methods
using error measures E1 and E2. All programs were written in MATLAB [8]. An
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Table 14.1. Data for the Application

Fuzzy Output Y l X1l X2l

(55.4/61.6/64.7) (5.7/6.0/6.9) (5.4/6.3/7.1)
(50.5/53.2/58.5) (4.0/4.4/5.1) (4.7/5.5/5.8)
(55.7/65.5/75.3) (8.6/9.1/9.8) (3.4/3.6/4.0)
(61.7/64.9/74.7) (6.9/8.1/9.3) (5.0/5.8/6.7)
(69.1/72.7/80.0) (8.7/9.4/11.2) (6.5/6.8/7.1)
(49.6/52.2/57.4) (4.6/4.8/5.5) (6.7/7.9/8.7)
(47.7/50.2/55.2) (7.2/7.6/8.7) (4.0/4.2/4.8)
(41.8/44.0/48.4) (4.2/4.4/4.8) (5.4/6.0/6.3)
(45.7/53.8/61.9) (8.2/9.1/10.0) (2.7/2.8/3.2)
(45.4/53.5/58.9) (6.0/6.7/7.4) (5.7/6.7/7.7)

example MATLAB program is given at the end of this chapter. For all our
calculations, we used a Pentium III, Processor: 933 MHz.

14.4.1 First Choice of Intervals

Now we need to find intervals Ii, i = 0, 1, 2, as explained above, for the ai.
After studying the solutions for the ai (a0 = 4.19, a1 = 4.97, a2 = 3.11) in
[2] we decided on the following intervals for our fuzzy Monte Carlo method: (1)
I0 = [0, 5] for a0; (2) [0, 6] = I1 for a1; and (3) I2 = [0, 4] for a2.

Table 14.2. Results of the Monte Carlo (MCI), Method First Choice of Intervals, to
Minimize the Error

Coefficient MCI E1 MCI E2

a0 3.9855 1.462
a1 0.0060 4.837
a2 0.0096 3.7712

Using our Sobol quasi-random number generator we produced 100, 000 vec-
tors vk = (a0k, a1k, a2k) which defined the ai ∈ Ii, i = 0, 1, 2, as described in
Section 14.3. Results for the ai, that minimize the error, are shown in Table 14.2,
with minimum error values in Table 14.8. Since we will have four Monte Carlo
studies on this data we call this one MCI.

Next we experimented with other intervals. We started with larger intervals,
shifted them and shortened them, until we arrived at: (1) I0 = [0, 37] for a0;
(2) I1 = [0, 6] for a1; and (3) [0, 6] = I2 for a2. After another run of 100, 000
quasi-random vectors the results for the ai are in Table 14.3 with minimum error
values in Table 14.8. This Monte Carlo study is called MCII. For these choices
of intervals, in MCI and MCII, the computing time was between 40 and 45
minutes.
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Table 14.3. Results of the Monte Carlo (MCII) Method, First Choice of Intervals, to
Minimize the Error

Coefficient MCII E1 MCII E2

a0 35.3251 1.4652
a1 3.9498 4.8378
a2 0.0063 3.7692

14.4.2 Second Choice of Intervals

The first thing to do is to determine the intervals Ii = [ci, di] for the ai, 0 ≤ i ≤ 2.
We first describe an optimization method used to determine these intervals. This
procedure will be called MCIII. A second optimization method will be used and
it will be described below. Let

[Ll, Rl] = I0 + I1X1l[0] + I2X2l[0], (14.6)

evaluated using interval arithmetic (all intervals are positive), for l = 1, 2, ..., 10.
Recall the data Y l = (yl1/yl2/yl3). Define

W =
10∑

l=1

(Ll − yl1)2 +
10∑

l=1

(Rl − yl3)2. (14.7)

The optimization problem is to minimize W subject to ci ≤ di all i. We want to
find the intervals that make Ll and Rl closest, in the sense of minimizing W , to
the end points of the bases of the dependent fuzzy numbers Y l in the data. We
solved this using Maple [7]. The results, rounded to three decimal places, are in
Table 14.4. It is very interesting that the two of the “intervals” are degenerate
and are just real numbers. Using these intervals a0 = 16.528, a1 ∈ [3.558, 3.982]
and a2 = 2.575 and we will need to randomly generate only one value
for a1.

We now produce a sequence of random crisp vectors (only one is random) vk =
(a0k, a1k, a2k), k = 1, 2, ..., N , using our Sobol quasi-random number generator
as described in Section 4.2, with aik ∈ Ii, i = 0, 1, 2 and computed minimum E1k

and minimum E2k. After a run of N = 100, 000 the smallest E1 value and the
minimum E2 value found are shown in Table 14.8 with corresponding ai shown
in Table 14.5.

Table 14.4. First Method of Determining the Intervals (MCIII) for Monte Carlo

Interval Value
I0 [16.528, 16.528]
I1 [3.558, 3.982]
I2 [2.575, 2.575]



160 Fuzzy Linear Regression II

Table 14.5. Results of the Monte Carlo Method (MCIII), Second Choice of Intervals,
to Minimize the Error

Coefficient MCIII E1 MCIII E2

a0 16.528 16.528
a1 3.9820 3.7132
a2 2.575 2.575

We also investigated a second optimization procedure for finding the intervals.
Ll and Rl are defined as above. This method is called MCIV. Let

W =
10∑
l=1

(yl1 − Ll) +
10∑

l=1

(Rl − yl3). (14.8)

The linear programming problem is to minimize W subject to the constraints:
(1) Ll ≤ yl1 all l; (2) Rl ≥ yl3 all l; and (3) ci ≤ di all i. We solved this problem
using Maple [7] and the results are in Table 14.6. It is again interesting that one
of the “intervals” is degenerate and is just a real number. Using these intervals
a0 ∈ [33.808, 36.601], a1 ∈ [1.294, 3.756] and a2 = 0.473 and we will need to
randomly generate only a value for a0 and a value for a1.

We now produce a sequence of random crisp vectors (only two are random)
vk = (a0k, a1k, a2k), k = 1, 2, ..., N , using our Sobol quasi-random number gen-
erator as described in Section 4.2 and computed E1k and E2k. After a run of
N = 100, 000 the smallest E1 value and the minimum E2 value found are shown
in Table 14.8 with corresponding ai shown in Table 14.7. The total computing
time for the second choice of intervals, MCIII and MCIV, was between 27 and
35 minutes.

14.4.3 Comparison of Solutions

In Example 2 in [4], we changed all LR fuzzy numbers to triangular fuzzy num-
bers; the authors give the model they fit to the data (Table 14.1) from which we
can determine their predicted values for the dependent variable and hence E1

and E2. This is what we report in Table 14.8. The authors in [2] reported only
E1 = 12.031 for [5] and no E2 value.

We see from Table 14.8 that our Monte Carlo method obtained the smallest
values for error measure E1 for MCII and MCIV. MCI and MCII gave the
smallest error values for E2. Let us explain why we did not expect Monte Carlo
to do much better than [2] on E2.

Let ylc be the centroid of Y l, 1 ≤ l ≤ n, and let xilc be the centroid of X il,
1 ≤ i ≤ m, 1 ≤ l ≤ n. In [2] the authors first estimate the ai, 0 ≤ i ≤ m from

min

n∑
l=1

|ylc − [a0 +
m∑

j=1

ajxjlc]|, (14.9)



Summary and Conclusions 161

Table 14.6. Second Method of Determining the Intervals (MCIV) for Monte Carlo

Interval Value
I0 [33.808, 36.601]
I1 [1.294, 3.756]
I2 [0.473, 0.473]

Table 14.7. Results of the Monte Carlo Method (MCIV), Second Choice of Intervals,
to Minimize the Error

Coefficient MCIV E1 MCIV E2

a0 33.8196 33.7081
a1 3.7559 3.3208
a2 0.473 0.473

Table 14.8. Error Measures for the Application (na=not available)

Error [4] [2] [5] MCI MCII MCIII MCIV

E1 13.5748 11.1060 12.031 10.0170 9.3888 12.7267 9.5933

E2 141.6260 137.8470 na 133.1181 133.1239 146.5307 170.1175

giving âi, 0 ≤ i ≤ m. Next let

Zl = â0 + â1X1l + ... + âmXml, (14.10)

for l = 1, 2, ..., n. The model now is the predicted value for the dependent variable
is

Y
∗
l = Z l + E, (14.11)

for “error” term E = (−L/0/R). The authors then estimated L and R by mini-
mizing new sums of absolute values of differences. This is somewhat like finding
the ai to minimize E2. Hence, we expected [2] to have a minimum value for E2.

14.5 Summary and Conclusions

In this chapter we studied the fuzzy linear regression problem given in equation
(14.1). We employed our fuzzy Monte Carlo method to approximate the “best”
solutions for the crisp coefficients ai, 0 ≤ i ≤ m. Best will be measured by
two error measures E1 (equation (14.3)) and E2 (equation (14.4)). We showed
in an example problem that our Monte Carlo method was best according to
E1 with respect to the results on the same data set in three other publications.
Monte Carlo also obtained the smallest E2 value. Given any error measure E∗ we
conjecture that our Monte Carlo method, allowing the number of iterations N to
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be sufficiently large, will be best (minimizing E∗). If this conjecture is true, then
the estimation technique in fuzzy linear regression may become Monte Carlo.

14.6 MATLAB Program

This program is to apply Mont Carlo Methods to a Fuzzy Linear Regression
Problem to estimate the best solution (vector of crisp numbers). It runs on
a data file, data.dat, that contains N quasi-random Vectors each of length 3,
generated by the Sobol subroutine.

MC.m

%

% Initializing The minimum values for the Error measures and their indices

%

min_E1 = 10000; index = 0; min_E2 = 10000; index_E2 = 0;

N = 100000 ; % The number of runs of the algorithm.

% The data from table 1

Y = [55.4,61.6,64.7,50.5,53.2,58.5,55.7,65.5,75.3,61.7,64.9,74.7,69.1,

72.7,80.0,49.6,52.2,57.4,47.7,50.2,55.2,41.8,44.0,48.4,45.7,53.8,

61.9,45.4,53.5,58.9];

X1 = [5.7,6.0,6.9,4,4.4,5.1,8.6,9.1,9.8,6.9,8.1,9.3,8.7,9.4,11.2,4.6,

4.8,5.5,7.2,7.6,8.7,4.2,4.4,4.8,8.2,9.1,10.0,6.0,6.7,7.4];

X1 = reshape(X1,3,10)’;

X2 = [5.4,6.3,7.1,4.7,5.5,5.8,3.4,3.6,4.0,5.0,5.8,6.7,6.5,6.8,7.1,6.7,

7.9,8.7,4.0,4.2,4.8,5.4,6,6.3,2.7,2.8,3.2,5.7,6.7,7.7];

X2 = reshape(X2,3,10)’;

%

% Reading N vectors of length 3, generated by the Quasi-Random Vector

% Generator, Sobol

%

fid_2 = fopen(’data.dat’,’r’);

D = fscanf(fid_2,’%f’);

fclose(fid_2); A = reshape(D,3,N)’;

fid_1 = fopen(’minE.dat’,’w’); % Opening a file for the output

for k =1:N

%

% Initializing E1 and E2 for the kth iteration

%

E1 = 0; E2 = 0;

%

% Calculating E1 (equation 3) and E2 (equation 4).

%

for i=0:9

a=Y(i*3+1);b=Y(i*3+2);c=Y(i*3+3);

%

% Mapping the three real numbers into the intervals

% I0= [r0,s0], I1= [r1,s1],I2= [r2,s2]
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%

A0 =(s0-r0)*A(k,1) + r0;

A1 =(s1-r1)*A(k,2) + r1;

A2 =(s2-r2)*A(k,3) + r2;

%

% Calculating Y* using equation (2)

%

YY =A0 + A1*[X1(i+1,1),X1(i+1,2),X1(i+1,3)] +

A2*[X2(i+1,1),X2(i+1,2),X2(i+1,3)] ;

%

% diff_area is a function that evaluates the integral in the

% numerator in equation 3.

%

f = diff_area(a,b,c,YY(1),YY(2),YY(3));

E1 = E1 + f/(.5*(c-a));

E2 = E2 + sum(abs([a,b,c]-YY));

end % end of for loop for E1, and E2

%

% Storing the minimum values for E1 and E2

%

if(E1 < min_E1)

min_E1 = E1;

index_E1 = k;

end

if(E2 < min_E2)

min_E2 = E2;

index_E2 = k;

end

%

% Recording the minimum values for E1 and E2 and their corresponding

% best solution to the output file

%

end % end of for loop, the number of runs

%

% Writing the output to file

%

fclose(fid_1); % closing the file
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15 Fuzzy Two-Person Zero-Sum Games

15.1 Introduction

In this chapter we use fuzzy Monte Carlo methods to get approximate optimal
fuzzy mixed strategies for fuzzy two-person zero-sum games. In the next sec-
tion we briefly review the results for crisp two-person zero-sum games. Then in
Section 15.3 we fuzzify the games and define optimal fuzzy values for the players
and optimal fuzzy mixed strategies. In the fourth section we introduce our fuzzy
Monte Carlo method and use it on an example problem to generate approximate
solutions. The last section contains our conclusions and suggestions for future
research. Our fuzzy Monte Carlo method will be programmed in MATLAB [6].
This chapter is based on [1].

15.2 Two-Person Zero-Sum Games

There are two players named Player I and Player II. A is a m × n matrix of
real numbers aij . Player I has pure strategies i = 1, 2, 3, ...,m, the row labels,
and Player II has pure strategies j = 1, 2, 3, ..., n, the labels for the columns. If
Player I chooses pure strategy i and Player II chooses pure strategy j, then the
payoff from Player II to Player I is aij when aij > 0. If aij < 0, then the payoff
is −aij from Player I to Player II.

Sometimes the games have optimal strategies for both players in pure strate-
gies. This is when the game has a saddle point. Suppose aij is both the maximum
entry in its column and the minimum entry in its row. We have a saddle point
and the pure strategy i for Player I and pure strategy j for Player II are optimal
strategies for both players. So assume that the game has no saddle points. We
now consider mixed strategies.

A mixed strategy for Player I is a probability vector x = (x1, ..., xm), xi ∈ [0, 1]
all i, and

∑m
i=1 xi = 1. A mixed strategy for Player II is also a probability vector

y = (y1, ..., yn), yj ∈ [0, 1] all j,
∑n

j=1 yj = 1. Player I chooses pure strategy i
with probability xi and Player II will choose pure strategy j with probability yj .
The expected payoff to Player I will be

J.J. Buckley et al.: Monte Carlo Meth. in Fuzzy Optimization, STUDFUZZ 222, pp. 165–173, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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E = xAyt, (15.1)

where yt is the transpose of row vector y.
Let X (Y ) be the set of all mixed strategies for Player I (II). For a fixed x ∈ X

let
v(x) = min{xAyt|y ∈ Y }, (15.2)

and
vI = max{v(x)|x ∈ X}. (15.3)

The value of the game for Player I is vI and a mixed strategy x∗ in X solving
equation (15.3) is an optimal mixed strategy for Player I. For a fixed y ∈ Y
define

v(y) = max{xAyt|x ∈ X}, (15.4)

and
vII = min{v(y)|y ∈ Y }. (15.5)

The value of the game for Player II is vII and a mixed strategy y∗ in Y solving
equation (15.5) is an optimal mixed strategy for Player II. The minimax theorem
says that vI = vII .

The details on two-person zero-sum games are in many books and two ref-
erences are ([8],[10]). We now consider the probability vectors and the payoff
matrix becoming fuzzy.

15.3 Fuzzy Two-Person Zero-Sum Games

There have been some papers/chapters in books, about fuzzy two-person zero-
sum games which consider fuzzy payoffs, and sometimes fuzzy goals for the fuzzy
payoffs ([2],[4],[5],[7],[9],[11],[12]), but not with fuzzy mixed strategies. We will
allow both fuzzy payoffs and fuzzy mixed strategies.

We first fuzzify the payoff matrix A = (aij) where the aij are trapezoidal
fuzzy numbers, or real numbers. Some of the payoffs can be real numbers but
we still write all of them as fuzzy numbers. For example, if a23 = 20 we write
a23 = 20. The fact that a aij is fuzzy represents any uncertainty in the exact
value of the payment.

How do we get these trapezoidal fuzzy numbers. We could employ expert
opinion if we do not have any historical/statistical data to estimate these pa-
rameters. Suppose a34 is an uncertain payoff value in the fuzzy matrix A. First
assume we have only one expert and he/she is to estimate the value of some
aij . We can solicit this estimate from the expert as is done in estimating job
times in project scheduling ([10], Chapter 13). Let a = the “pessimistic” value
of aij , or the smallest possible value, let d = the “optimistic” value of aij , or
the highest possible value, and let [b, c] be the interval of the most likely values
of aij . We then ask the expert to give values for a, b, c, d and we construct the
trapezoidal fuzzy number a34 = (a/b, c/d) for a34. If we have a group of experts
all to estimate the value of some aij we would average their response.
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We define a saddle point for the fuzzy games the same way it was defined for
the crisp game. Adopt the definitions of <, ≈ and > between fuzzy numbers
discussed in Section 15.4.2. We say the fuzzy game has a saddle point at a34 if
a34 ≥ ai4, i = 1, 2, . . . , n and a34 ≤ a3j , j = 1, 2, . . . ,m. A ≤ (≥) between fuzzy
numbers means < or ≈ (> or ≈). If a34 is a saddle point the players have optimal
strategies in pure strategies: Player I chooses the third row and Player II picks
the fourth column. So assume that the fuzzy game does not have a saddle point.

Next the probability vectors for mixed strategies become fuzzy probabilities
[3]. A fuzzy mixed strategy for Player I is x = (x1, ..., xm) where xi ∈ [0, 1]
is a triangular fuzzy number or a real number, all i, and there are xi ∈ xi[1]
so that

∑m
i=1 xi = 1. The last constraint says that for any α ∈ [0, 1] we can

find xi ∈ xi[α], 1 ≤ i ≤ m, so that x1 + ... + xm = 1. Similarly we define
a fuzzy mixed strategy y for Player II. For example if m = 4 we could have
x = (0.2, x2, x3, 0.3) where x1 = 0.2, x2 = (0/0.1/0.2), x3 = (0.3/0.4/0.5) and
x4 = 0.3. In this example we could use (0.2, 0.2, 0.3, 0.3) when α = 0 for a crisp
mixed strategy. Let X (Y) be all fuzzy mixed strategies for Player I (Player II).
We wish to define, and find, optimal x∗ ∈ X (y∗ ∈ Y) for Player I (Player II).
We could consider trapezoidal fuzzy numbers for the xi in x but we will use
triangular fuzzy numbers in this chapter.

The fuzzy expected payoff E from the fuzzy game is determined by its
α-cuts [3]

E(x, y)[α] = {
m∑

i=1

n∑
j=1

xiaijyj | S }, (15.6)

where S denotes the statement “ x ∈ X , xi ∈ xi[α] all i, x1 + ... + xm = 1,
y ∈ Y, yj ∈ yj [α] all j, y1 + ... + yn = 1 and aij ∈ aij [α] all i, j ”. This is how
we will compute with fuzzy probabilities: for any α-cut we always choose only
crisp probability distributions [3]. We may find these α−cuts as follows

e(x, y)1(α) = min{
m∑

i=1

n∑
j=1

xiaijyj| S }, (15.7)

and

e(x, y)2(α) = max{
m∑

i=1

n∑
j=1

xiaijyj | S }, (15.8)

where E(x, y)[α] = [e(x, y)1(α), e(x, y)2(α)]. We will need to solve this optimiza-
tion problem using the Optimization Toolbox in MATLAB [6]. Also, this is the
way we compute with fuzzy probabilities. We use “complete” crisp probabilities
selected from the fuzzy numbers xi, 1 ≤ i ≤ m (yj , 1 ≤ j ≤ n). Equation
(15.6) defines the α−cuts of trapezoidal shaped fuzzy number E(x, y). Notice
that E(x, y) was not evaluated using the extension principle nor by α-cuts and
interval arithmetic.

Now we define optimal fuzzy mixed strategies and consider a fuzzy minimax
theorem. X (Y) is the set of fuzzy mixed strategies to be used by Player I
(Player II). These could be finite, or some other infinite restricted set of fuzzy
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probabilities, and are not necessarily all possible fuzzy probabilities. Let us first
assume that X (Y) is all fuzzy mixed strategies for Player I (Player II). We
will use some method of defining ≤, < and ≈ between fuzzy numbers, and in
choosing the maximum/minimum of a (finite) set of fuzzy numbers, which will
be defined and discussed in the next section. For each x ∈ X define the fuzzy
function

V (x) = min{E(x, y) | y ∈ Y }. (15.9)

Then the fuzzy value for the game for Player I is

V I = max{V (x) | x ∈ X }. (15.10)

But we are unable to determine the fuzzy function V (x) = z, z a trapezoidal
shaped fuzzy number. For this reason we will employ our fuzzy Monte Carlo
method to approximate V I (V II) for Player I (Player II). This means that we
will restrict X and Y to be finite sets of fuzzy mixed strategies.

In order for the notation here to match that in the next section on our Monte
Carlo method we will now assume that X and Y are finite. Let X = {xi | i =
1, . . . , N } and Y = {yj | j = 1, . . . , N }. We have changed our notation where
now xi (yj) is the whole fuzzy mixed strategy for Player I (II) and not a compo-
nent of a fuzzy mixed strategy. That is, now xi = (xi1, . . . , xim), i = 1, . . . , N ,
and a similar expression for yj . Pick and fix xi ∈ X . Let

E(xi, yj) = U ij , (15.11)

for j = 1, . . . , N . Next compute

U i = min{U ij | j = 1, . . . , N }. (15.12)

We do this for each i = 1, 2, . . . , N .
Next we determine

U
∗

= max{U i | i = 1, . . . , N }. (15.13)

Now U
∗

will equal U i for some i. If U
∗

= U143, then set x∗ = x143. The fuzzy
value for the game for Player I is V I = U

∗
and his/her optimal fuzzy mixed

strategy is x∗. Now we do similar calculations for Player II.
Pick and fix yj in Y. Let

E(xi, yj) = V ij , (15.14)

for i = 1, . . . , N . Next compute

V
∗
j = max{V ij | i = 1, . . . , N }. (15.15)

We do this for each j = 1, 2, . . . , N .
Next we determine

V
∗

= min{V j | j = 1, . . . , N }. (15.16)
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Now V
∗

will equal V j for some j. If V
∗

= V 643, then set y∗ = y643. The fuzzy
value for the game for Player II is V II = V

∗
and his/her optimal fuzzy mixed

strategy is y∗.
Now compare U

∗
and V

∗
both are trapezoidal shaped fuzzy numbers. Can

they be equal? This would be the fuzzy minimax theorem. We will investigate this
possibility using our fuzzy Monte Carlo method discussed in detail in the next
section. However we do have the following result. We assume that we are using
definitions of <, ≤ and ≈ between fuzzy numbers (see Section 15.4.2) so that:
(1) we may find a unique solution to max{Aτ | τ ∈ Υ} and to min{Aτ | τ ∈ Υ}
for the Aτ fuzzy numbers and Υ an index set; and (2) given two fuzzy numbers
M and N one and only one of the following is true M < N , M ≈ N , M > N .

Theorem 15.1. V I ≤ V II .

Proof
For y ∈ Y consider

max{E(x, y) | x ∈ X } = V (y). (15.17)

This defines a mapping from each y ∈ Y to an x∗ in X so that E(x∗, y) = V (y).
We write x∗ = f(y) so that E(f(y), y) = V (y). Then

E(x, y) ≤ E(f(y), y), (15.18)

for all x and all y. It follows that

min{E(x, y) | y ∈ Y } ≤ min{E(f(y), y) | y ∈ Y }, (15.19)

for all x. But the right side of equation (15.19) is V II . Hence

min{E(x, y) | y ∈ Y } ≤ V II , (15.20)

for all x. Now take the max on x ∈ X of the left side of equation (15.20) and
the result follows. �

A complete fuzzy Monte Carlo study would generate N fuzzy mixed strategies
x ∈ X and N fuzzy mixed strategies y ∈ Y, for l = 1, 2, 3, . . . , L. Each study
would produce fuzzy values V

(l)

I , V
(l)

II , and optimal fuzzy mixed strategies x∗(l),
y∗(l), l = 1, 2, . . . , L. Then we would compare these fuzzy values to choose our
final approximations to the fuzzy value of the game for the players and their
optimal fuzzy mixed strategies. However, because of the long computer time to
accomplish each fuzzy Monte Carlo study, we will be able to do only one of them
in the example in Section 15.4.3.

15.4 Fuzzy Monte Carlo

Assume that the fuzzy payoff matrix A is given. We first need to do two things:
(1) describe how to get random sequences of fuzzy mixed strategies xk and yk,
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k = 1, . . . , N ; and (2) how we will determine the maximum/minimum of a fi-
nite set of fuzzy numbers. We first consider random sequences of fuzzy mixed
strategies and then the max/min of a finite set of fuzzy numbers (equations
(15.12),(15.13),(15.15),(15.16)). Then we can outline our fuzzy Monte Carlo
method for producing an approximate solution to the problem discussed above
and consider an example problem.

15.4.1 Random Sequences of Fuzzy Mixed Strategies

To obtain a random sequence xk = (xk1, . . . , xkm), k = 1, 2, ..., N , where each
xkj is a triangular fuzzy number in [0, 1] and

∑m
j=1 xkj [1] = 1, we first randomly

generate crisp vectors vk = (ak1, ..., ak,3m) with all the aki in [0, 1], k = 1, 2, .., N .
We obtain the sequence vk using our Sobol quasi-random number generator
discussed in Chapter 3. We choose the first three numbers in vk and order them
from smallest to largest. Assume that ak3 < ak1 < ak2. Then the first triangular
fuzzy number zk1 = (ak3/ak1/ak2). Continue with the next three numbers in vk,
making zk2, etc. Assume zkj = (zkj1/zkj2/zkj3), all k and j. Let Lk =

∑m
j=1 zkj2.

Then the final xk is xkj = (1/Lk)zkj all k and j. If xkj = (xkj1/xkj2/xkj3) we
now have

∑m
j=1 xkj2 = 1. We construct the random sequence of fuzzy mixed

strategies yk for Player II the same way.

15.4.2 Max/Min of Fuzzy Numbers

Given a finite set of fuzzy numbers U1, ..., UN we want to find the maximum and
the minimum. For a finite set of real numbers there is no problem in ordering
them from smallest to largest. However, in the fuzzy case there is no universally
accepted way to do this. There are probably more than 50 methods proposed in
the literature of defining M ≤ N , for two fuzzy numbers M and N .

Here we will use only Buckley’s Method presented in Section 2.6.1. We will
now use η = 0.9 in Buckley’s Method to help reduce the number of fuzzy numbers
that could be considered approximately equal for the maximum/minimum of a
set of fuzzy numbers. But note that different definitions of ≤ between fuzzy
numbers can give different orderings and therefore different final answers to the
fuzzy game theory problem.

Now apply this to U ij , j = 1, . . . , N , in equation (15.12). We will find the
minimum sequentially. Suppose we are at stage j = T − 1 and the current
minimum of U ij , 1 ≤ j ≤ T − 1, is S. The next step computes U iT = R. There
are three possibilities: (1) if S < R, then min remains S go on to the next
step; (2) if S > R, then the new min is R; and (3) if S ≈ R, there are three
more cases. Let S ≈ (s1/s2, s3/s4) and R ≈ (r1/r2, r3/r4) since they will be
trapezoidal shaped fuzzy numbers. The next three cases are: (1) if s2 < r2, then
min remains S; (2) if s2 > r2, the min is now R; and (3) if s2 = r2, there are
three more cases. At this point S ≈ R and s2 = r2. The three new cases are:
(1) if s3 < r3, the min remains S; (2) if s3 > r3, then the min is R; and (3) if
s3 = r3, there are three more cases. We are at S ≈ R, s2 = r2 and s3 = r3. The
next three cases are: (1) if s1 < r1, then the min remains S; (2) if s1 > r1, then
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the min is R; and (3) if s1 = r1, then we have a final three cases to consider.
We are at S ≈ R, s2 = r2, s3 = r3 and s1 = r1. The final three cases are: (1) if
s4 < r4, then the minimum remains S; (2) if s4 > r4, then the minimum is R;
and (3) if s4 = r4, then randomly delete one of them and the other is the min.
We do this so that there will be one and only one minimum. It is clear what
changes are needed for a maximum.

15.4.3 Fuzzy Monte Carlo Solution Method

The basic program was written in MATLAB [6]. We must decide on N , the
number of random fuzzy mixed strategies for each player and the number of
α-cuts we need to determine for all the fuzzy numbers. For the α-cuts we need
α = 0, 1 and α = 0.9 for the comparison of two fuzzy numbers (Section 15.4.2).
We will use one more α-cut between zero and 0.9 so the α-cuts will be α =
0, 0.4, 0.9, 1. After generating the random fuzzy mixed strategies xk and yk,
k = 1, . . . , N , we need to evaluate equation (15.11) N2 times. Also, each one is
done four times for the α-cuts. So to get to equation (15.13) we compute equation
(15.6) 4N2 times. For y∗ also 4N2 times. A total of 8N2. With N = 1000 that
equals 8, 000, 000. That seems like the absolute max for our computer. So for the
example below we will pick the smallest A, a 2 × 2 fuzzy payoff matrix.

Before we consider the example let us look more closely at our MATLAB
program. Let E(xi, yj) = W ij . We previously called this U ij in equation (15.11)
and then V ij in equation (15.14). Now we call it just W ij , a trapezoidal shaped
fuzzy number evaluated at α-cuts, α = 0, 0.4, 0.9, 1. We compute these α-cuts as
in equations (15.7) and (15.8) using the Optimization Toolbox in MATLAB. Now
form a N ×N matrix rows labeled xi, columns labeled yj , whose ijth element is
the α-cuts of W ij . For each row xi scan the row j = 1, . . . , N for the minimum
U i producing column vector (U1, . . . , UN )t. Now scan this column vector for
the maximum V I . Next for each column yj scan the row i = 1, . . . , N for the
maximum V j producing the row vector (V 1, . . . , V N ). Scan this row vector for
its minimum V II .

Example 15.4.3.1

The fuzzy payoff matrix A will be 2 × 2 with trapezoidal fuzzy numbers a11 =
(0/1, 2/3), a12 = 0, a21 = (−2/− 1, 0/1) and a22 = (1/2, 3/4). Now we want to
estimate the fuzzy values of the game using A and random fuzzy mixed strategies
for both players. The results are in Table 15.1 and Figure 15.1. In Figure 15.1 we
approximated the trapezoidal shaped fuzzy numbers V I and V II by trapezoidal
fuzzy numbers using only the support and core.

We see that the intersection of the core of V I with the core of V II is non-
empty. Then from our definition of < and ≈ between fuzzy numbers at the
beginning of Section 15.4.2 we get V I ≈ V II . However, if we also use the rest
of Section 15.4.2 where we “fine tuned” < between fuzzy numbers to obtain a
unique max/min of a set of fuzzy numbers, we have V I < V II . Our Monte Carlo
study showed V I ≤ V II which is the theorem in Section 15.3.
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Table 15.1. Optimal Results from the Fuzzy Monte Carlo Method

Player I Player II

x∗
1 = (0.0398/0.7491/1.3658) y∗

1 = (0.5247/0.5842/0.6245)

x∗
2 = (0.1432/0.2509/2.5463) y∗

2 = (0.3454/0.4158/0.5953)

V I ≈ (−1.8958/0.4983, 1.4671/2.6918) V II ≈ (−0.4976/0.7383, 1.7183/2.9469)

�

�

-2 -1 0 1 2 3 x

1
0.9

y

V I V II V I V II

Fig. 15.1. Fuzzy Values V I and V II for the Players from the Monte Carlo Method

15.5 Conclusions and Future Research

In this chapter we considered a two-person zero-sum game with fuzzy payoffs and
fuzzy mixed strategies for both players. We defined the fuzzy value of the game
for both players (V I ,V II) and also defined an optimal fuzzy mixed strategy for
both players. We showed that V I ≤ V II . We then employed our fuzzy Monte
Carlo method to produce approximate solutions, to an example fuzzy game with
no (fuzzy) saddle point, for the fuzzy values V I for Player I and V II for Player
II; and also approximate solutions for the optimal fuzzy mixed strategies for
both players. We then looked at V I and V II to see if there could be a Minimax
theorem (V I = V II) for this fuzzy game. All our Monte Carlo study showed
was V I ≤ V II which was the theorem in Section 15.3. So, it remains an open
question will V I = V II for these fuzzy games?

For all our Monte Carlo calculations, we used a Dell Optiplex GX 250 with a
dual core and a 64-bit pentium D 2.8 GHz processor running on Windows XP.
The computer time for N = 100, 000 random fuzzy mixed strategies for both
players was approximately 68 hours.

It would be nice to try 1, 000, 000 random fuzzy mixed strategies for both play-
ers, but the computing time would be too excessive. However, if we could run the
fuzzy Monte Carlo program with N = 100, 000 random fuzzy mixed strategies
for each player simultaneously on ten separate machines and then combine the
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results, we could go to 1, 000, 000. The MATLAB program is available from the
authors.
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16 Fuzzy Queuing Models

16.1 Introduction

This chapter is based on, and expanded from, Chapters 11, 12 and 14 of [4]
which is about using fuzzy probabilities and fuzzy sets in web site planning. So
the queuing network considered in this chapter is within a web site. For other
papers/chapters in books, on this topic of fuzzy queuing theory, we refer the
reader to ([2],[3],[6],[7],[10]) and the references in these papers/books. In the
next section we discuss the crisp queuing optimization problem and then we
fuzzify the optimization problem in the third section. In the fourth section we
present our fuzzy Monte Carlo method and how we will generate sequences of
random fuzzy vectors. Our fuzzy Monte Carlo solution to the fuzzy queuing
optimization problem is the fifth section and the last section has a summary and
our conclusions. All the fuzzy numbers used in this chapter, except fuzzy profit
starting in Section 16.3, will be non-negative. We will program our fuzzy Monte
Carlo method in MATLAB [8]. This chapter is also based on [1].

16.2 Queuing Model

We will model the queuing system using the arrival rate λ and the service rate μ
for any server. This is a common method used in queuing theory ([9],[11]). The
system has c parallel and identical servers, system capacity M (in the servers
and in the queue, c ≤ M) and an infinite calling source. If the system is full,
new arrivals are turned away and lost from the system. The λ rate will be state
independent, which means that λ does not depend on how many customers are
in the system. But if there are n customers in the system, then the rate of
departure from the whole system is μn = nμ, for 0 ≤ n < c and μn = cμ for
c ≤ n ≤M .

A basic assumption is that we are in steady-state, all transient behavior has
died down and can be neglected, and the time interval δ is sufficiently small so
that the probability of two or more events occurring during δ is zero. If we are
in state n, or there are n customers in the system with 0 < n < M , we can

J.J. Buckley et al.: Monte Carlo Meth. in Fuzzy Optimization, STUDFUZZ 222, pp. 175–184, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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have only two events occurring: (1) one customer arrives and we have n + 1 in
the system; or (2) one customer finishes service and leaves and we have n − 1
left in the system. Usually for steady-state we assume that λ ≤ μ when we have
infinite capacity. However, since we have finite system capacity we do not need
to assume that λ ≤ μ. If we are in state zero (n = 0), we can only go to n = 1
and we can get to state n = 0 from n = 1 when a customer leaves service. We
can get to state n = M only from n = M − 1 with an arrival and we can leave
state n = M to state M − 1 when a customer leaves service.

The first objective is to compute the steady-state probabilities wi, 0 ≤ i ≤M ,
from which we may determine various measures of system performance.

Using a transition rate diagram, the expected rate of flow into state n is

λwn−1 + μn+1wn+1, (16.1)

and the expected rate of flow out of state n is

λwn + μnwn, (16.2)

for 0 < n < M . We set these two equal to get the balance equation

λwn−1 + μn+1wn+1 = λwn + μnwn, (16.3)

for 0 < n < M . The balance equation for state n = 0 is simply λw0 = μ1w1

and for n = M it is λwM−1 = μMwM . We solve these balance equations for wi,
1 ≤ i ≤M , functions of w0 and then use the fact that the sum of all the wi must
equal one to obtain a formula for w0. The final result is that wi = Fi(λ, μ, c,M),
0 ≤ i ≤M . That is, the steady-state probabilities are function of λ, μ, c and M
([9],[11]).

Now we can determine measures of system performance such as U=server
utilization and N=expected number of customers in the system. All we will
need in this chapter is

N =
M∑

k=0

kwk. (16.4)

We next wish to consider the optimal queuing network maximizing profit with
variables λ, μ, c and M .

There are many types of servers each with associated service rate μ ∈ [0, 10].
Let C = K1μ be the cost, in $ per unit time, of operating a server having
corresponding service rate μ for some constant K1 > 0. Determining the cost of
a server per unit time is a difficult number to estimate so we later assign a fuzzy
number to its value.

There is a cost involved in maintaining the queue, or those in the system but
not yet in a server. Let Q be the cost, in $ per unit time, of having one space
available in the queue. So the queue cost is Q(M − c). Q is also difficult to
estimate exactly so we will later model it as fuzzy.

There will be certain fixed costs associated with maintaining the web site
which do not depend on the decision variables. Since they do not depend on
M ,c,λ and μ they can be omitted for the model.
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We will assume that we can affect the arrival rate λ through advertising. Let
A = K2λ be the advertising level in $ per unit time that is expected to produce
arrival rate λ for constant K2 > 0. This cost A will be hard to know precisely so
it too will become fuzzy. The web site pays for these advertisements but other
advertisers will pay the web site, to place their ads, depending on the number
of customers in the queue who can see their (pop-up) adds.

Revenue from advertisers is assumed to be proportional to the average number
of customers in the systemN . If T is the revenue, in $ per unit time, per customer
in the system, then total revenue per unit time is TN .

Profit per unit time, to be maximized, is

Profit = TN − [K2λ+Q(M − c) +K1μ c], (16.5)

We will next model all the cost/income parameters as fuzzy numbers, and if
any are known exactly, then we would use their exact values. The variables are
c = 1, 2, .., 10 and M = c, c+ 1, ..., 30, λ ∈ [0, 10] and μ ∈ [0, 10].

We could consider a budget constraint, only so much money available per
unit time, but we will not do this here. The above profit equation gives us only
one goal, maximize profit. We could add other goals [4] such as maximize server
utilization, minimize number of lost customers due to system capacity M , etc.

There are many other costs associated with the system, such as startup costs
and operating costs ([9], Chapter 5), which we have not incorporated into the
model. Many of these costs are independent from our variables, so can be clas-
sified as fixed costs in our model, and hence omitted.

16.3 Fuzzy Queuing Model

The arrival rate would need to be estimated and we will use a fuzzy estimator
λ ([4], Chapter 3). Assume that we gather data to estimate the arrival rate.
Then we can construct (1− γ)100% confidence intervals for λ. If we place these
confidence intervals one on top of another, 0.001 ≤ γ ≤ 1, we obtain a fuzzy
number λ. We can easily change the MATLAB program to use a crisp value
for λ but in this chapter we will use a fuzzy λ. Also, the service rate has to
be estimated so we have a fuzzy estimator μ ([4], Chapter 3). We get μ as
described above from the (1 − γ)100% confidence intervals, 0.001 ≤ γ ≤ 1. The
fuzzy numbers obtained from the confidence interval method will be triangular
shaped fuzzy numbers but in this chapter we will use triangular fuzzy numbers
for λ and μ. The server cost automatically becomes fuzzy C = K1μ for crisp
constant K1 > 0. Also, the advertising cost is fuzzy A = K2λ for crisp K2 > 0.
The fuzzy queue cost is Q > 0 and the fuzzy revenue from advertisers is T > 0.
All these crisp and fuzzy constants are given in Table 16.1. The fuzzy constants
are all triangular fuzzy numbers. The constants K1, K2, Q and T might be
obtained from expert opinion (Section 3.4 in [4]).

The fuzzy optimization problem is to find integer c ∈ [1, 10], integer M ∈
[1, 30] with c ≤M and λ, μ ∈ [0, 10] to maximize fuzzy profit

Π = T N − [K2λ+Q(M − c) +K1μc]. (16.6)
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Table 16.1. Crisp/Fuzzy Parameters in the Fuzzy Optimization Problem

Constant α = 0 Cut
K1 0.04
K2 0.03
Q (0.04/0.07/0.10)
T (3.15/3.45/3.80)

Given the values of the variables the next thing to do is to get the fuzzy steady-
state probabilities wk, 0 ≤ k ≤ M . We will first discuss computing the crisp
steady-state probabilities and then fuzzify them using the extension principle.
Let ρ = λ/μ and [11]

wk = Fk(λ, μ, c,M) =
ρk

k!
w0, 1 ≤ k ≤ c, (16.7)

and

wk = Fk(λ, μ, c,M) =
ρk

c!ck−c
w0, c ≤ k ≤M. (16.8)

Now w0 = F0(λ, μ, c,M) where

w0 = [
c−1∑
n=0

ρn

n!
+
ρc(1 − (ρ/c)M−c+1)

c!(1 − ρ/c)
]−1, ρ/c �= 1, (16.9)

and

w0 = [
c−1∑
n=0

ρn

n!
+
ρc

c!
(M − c+ 1)]−1, ρ/c = 1. (16.10)

The test ρ/c �= 1 and ρ/c = 1 in equations (16.9) and (16.10) will be difficult
to do when λ and μ are fuzzy numbers. So we combine both of these equations
into one equation eliminating the two tests on ρ/c. Let s = M − c + 1 and do
the division in equation (16.9) producing

w0 = [
c−1∑
n=0

ρn

n!
+

ρc

c!cs−1
P (c, s, ρ)]−1, (16.11)

where
P (c, s, ρ) = cs−1 + cs−2ρ+ cs−3ρ2 + . . .+ ρs−1. (16.12)

We will use equations (16.11) and (16.12) to determine the steady-state proba-
bility w0. Then

wk = Fk(λ, μ, c,M), (16.13)

for 0 ≤ k ≤ M , evaluated using the extension principle. Let wk[α] = [wk1(α),
wk2(α)], k = 0, . . . ,M , 0 ≤ α ≤ 1. Then we know how to get the α-cuts of the
wk as [5]

wk1(α) = min{Fk(λ, μ, c,M) | λ ∈ λ[α], μ ∈ μ[α]}, (16.14)
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and
wk2(α) = max{Fk(λ, μ, c,M) | λ ∈ λ[α], μ ∈ μ[α]}, (16.15)

for all k and α. Let us change equations (16.14) and (16.15) to Fk a function of
ρ, c and M . Let λ[α] = [λ1(α), λ2(α)] and μ[α] = [μ1(α), μ2(α)]. Then ρ = λ/μ
so that ρ[α] = [λ1(α)/μ2(α), λ2(α)/μ1(α)]. Then

wk1(α) = min{Fk(ρ, c,M) | ρ ∈ ρ[α]}, (16.16)

and
wk2(α) = max{Fk(ρ, c,M) | ρ ∈ ρ[α]}, (16.17)

for all k and α. We solve these optimization problems, equations (16.16) and
(16.17), using the Optimization Toolbox in MATLAB [8].

Next we find N as

N [α] = {
M∑

k=0

kwk| S}, (16.18)

all α ∈ [0, 1], where S is the statement “wk ∈ wk[α], 0 ≤ k ≤M,w0 + ...+wM =
1”. If N [α] = [n1(α), n2(α)] then

n∗
1(α) = min{

M∑
k=0

kwk| S}, (16.19)

and

n∗
2(α) = max{

M∑
k=0

kwk| S}. (16.20)

Then since n∗
i (α), i = 1, 2, could exceed M we set

n1(α) = min{n∗
1(α),M}, (16.21)

and
n2(α) = min{n∗

2(α),M}, (16.22)

Equations (16.19) and (16.20) are linear programming problems which can be
solved using the Optimization Toolbox in MATLAB.

Now we can compute the fuzzy profit Π. We will use α-cuts and interval arith-
metic because in this case it produces the same result as the extension principle.
Let Π [α] = [π1(α), π2(α)]. Also let T [α] = [t1(α), t2(α)], N [α] = [n1(α), n2(α)],
λ[α] = [λ1(α), λ2(α)], Q[α] = [q1(α), q2(α)], μ[α] = [μ1(α), μ2(α)]. Then

Π [α] = [t1(α)n1(α), t2(α)n2(α)] − [s, t], (16.23)

where

[s, t] = [K2λ1(α)+q1(α)(M−c)+K1μ1(α)c,K2λ2(α)+q2(α)(M−c)+K1μ2(α)c],
(16.24)

and
Π[α] = [t1(α)n1(α) − t, t2(α)n2(α) − s]. (16.25)
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16.4 Fuzzy Monte Carlo Method

We plan to produce (approximate) solutions to the fuzzy optimization problem in
equation (16.6) using our fuzzy Monte Carlo method. We will randomly generate
fuzzy vectors

Vk = (λk, μk, ck,Mk), (16.26)

with λk, μk ∈ [0, 10], integer ck in [1, 10] and integer Mk in [ck, 100], for k =
1, 2, . . . , P . We evaluate fuzzy profit Πk for each V k and find the V k to maximize
Πk. With P = 100, 000 we should get a good estimate of maximum fuzzy profit.
So we need to do two things: (1) describe how to get random sequences of the
vectors V k; and (2) how we will determine the maximum of the set Λ = {Πk | k =
1, 2, . . . , P}. We first consider V k and how to produce the fuzzy values for λ and
μ and then separately generate c and M . Then we discuss finding the maximum
of Λ.

16.4.1 Random Sequence V k

To obtain random sequences V k1 = (λk, μk), k = 1, 2, ..., P , where the λk and
μk are triangular fuzzy numbers, we first randomly generate crisp vectors vk =
(xk1, ..., xk6), using our Sobol quasi-random number generator (Chapter 3), with
all the xki in [0, 1], k = 1, 2, .., P . We choose the first three numbers in vk and
order them from smallest to largest. Assume that xk3 < xk1 < xk2. Then the
first triangular fuzzy number λk = (xk3/xk1/xk2). Continue with the next three
numbers in vk making μk. However the λk and μk we want need to be in [0, 10].
Since λk and μk start out in [0, 1] we may easily map them into [0, 10] by using
10λk (10μk) for fuzzy λ (μ).

Next we need to randomly get the sequence of integers ck ∈ [1, 10]. Randomly
generate ν ∈ [0, 1] and then define π = 0.5 + 10ν making π ∈ [0.5, 10.5]. Then
round π off to the nearest integer producing c. We round 0.5 to one and 10.5
to 10. Use a pseudo-random number generator for ν. Finally randomly produce
ξ ∈ [0, 1] and then define σ = (c − 0.5) + (31 − c)ξ putting σ ∈ [c − 0.5, 30.5].
Round σ off to the nearest integer giving M . Also use a pseudo-random number
generator for ξ.

16.4.2 Maximum of Fuzzy Profit

Given a finite set of fuzzy numbers Π1, ..., ΠP we want to order them from
smallest to largest. For a finite set of real numbers there is no problem in ordering
them from smallest to largest. However, in the fuzzy case there is no universally
accepted way to do this. There are probably more than 50 methods proposed in
the literature of defining U ≤ V , for two fuzzy numbers U and V .

Here we will use only one procedure for ordering fuzzy numbers which is Buck-
ley’s Method in Section 2.6.1. We will now use η = 0.9 in Buckley’s Method to
help reduce the number of fuzzy profits that could be considered approximately
equal for the maximum fuzzy profit. But note that different definitions of ≤
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between fuzzy numbers can give different orderings and therefore different final
answers to the fuzzy optimization problem.

Now apply this to Π1, . . . , ΠP . These are all triangular shaped fuzzy numbers.
We wantHK the set of undominated fuzzy profits. We then presentHK , together
with the corresponding values for λ,μ, c andM , to management for their decision.
It is usually better to present multiple optimal solutions then one unique optimal
solution. Managers are decision makers and if you give then one optimal solution
they essentially have almost no decision: accept it or reject it. However, with
multiple solutions the manager can study them, bringing in new information
etc., to make their final decision. However, with P = 100, 000 HK could be
too large, like 100 − 200 fuzzy sets. We need to restrict the size of HK and in
this chapter we decide that the maximum size of HK will be three fuzzy sets.
Whenever we have more than three fuzzy sets to be in HK we pick the three
with largest vertex points. Therefore, the maximum of Λ will be HK .

Now we need to incorporate this into the iterations in our fuzzy Monte Carlo
method. Suppose at some point in the iterations HK = {Πa, Πb, Πc}. The
next iteration produces fuzzy profit Π0. We then compare Π0 to Πi, for i =
a, b, c. There are nine possible outcomes. For example Π0 ≈ Πc, Π0 > Πb

and Π0 ≈ Πa is one possible result. Then HK = {Π0, Πa, Πc}. Any fuzzy set
which is dominated can not be in HK and all the fuzzy sets in HK must be
equivalent (≈).

16.5 Fuzzy Monte Carlo Solution

We will describe our fuzzy Monte Carlo program. The program is written in
MATLAB. We first generate V k, k = 1, . . . , P . We compute the fuzzy numbers
using the α-cuts α = 0.00, 0.30, 0.60, 0.90, 1.00. We have our first file

F1 = {(λ[α], μ[α], ck,Mk) | α = 0, 0.30, 0.60, 0.90, 1; k = 1, . . . , P}. (16.27)

Using this file we determine the fuzzy steady-state probabilitieswjk, j = 0, . . . ,M ,
k = 1, . . . , P , from equations (16.16) and (16.17), using the Optimization Toolbox.
This makes our second file

F2 = {(w0k[α], . . . , wM,k[α]) | α = 0, 0.30, 0.60, 0.90, 1; k = 1, . . . , P }. (16.28)

Using file F2 we determine Nk[α] from equations (16.19)-(16.22) using the Op-
timization Toolbox. This produces file

F3 = {Nk[α] | α = 0, 0.30, 0.60, 0.90, 1; k = 1, . . . , P }. (16.29)

Now we are ready to find fuzzy profit Πk[α], α = 0, 0.30, 0.60, 0.90, 1, k =
1, . . . , P , from equations (16.23)-(16.25).

The results of the Monte Carlo method, after P = 100, 000 iterations, gave
us the three (approximate) optimal solutions shown in Table 16.2. The graph of
the three maximum fuzzy profits in the final HK are shown in Figure 16.1. For
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Table 16.2. Optimal Numerical Results from the Fuzzy Monte Carlo Method

Solution λ μ c M Π

1 (4.81/5.85/6.59) (2.40/3.28/4.00) 1 30 ≈ (16.83/96.75/112.54)

2 (4.52/7.16/7.46) (3.25/4.18/4.18) 1 30 ≈ (−0.62/96.25/108.77)

3 (7.96/9.72/9.78) (1.91/2.33/2.36) 2 29 ≈ (83.57/94.51/103.18)

�

�
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1
0.9

y

Π1
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Π3

Fig. 16.1. Optimal Fuzzy Profits from the Fuzzy Monte Carlo Method

simplicity the graphs in Figure 16.1 are triangular fuzzy numbers, using only
their base and vertex, where they are really triangular shaped fuzzy numbers.

Let us now compare the results above for our fuzzy Monte Carlo method to
those in Chapter 14 of [4]. Both basically consider the same problem of maxi-
mizing (almost the same) fuzzy profit with variables fuzzy arrival rate λ, fuzzy
service rate μ, number of servers c and system capacity M . Because of the com-
putational burden of calculating fuzzy profit in [4] the author only considered
16 cases. For example, λ = (4/5/6), μ = (5/6/7), c = 2, M = 10 was one
of the cases. The author of [4], at that time, could not look at P = 100, 000
random cases. In [4] HK = {Πa, Πb, Πc} where Πa ≈ (−0.8/0.7/4.6), Πb ≈
(−0.5/1.9/6.3) and Πc ≈ (−0.8/0.9/4.3). The graphs of these fuzzy profits, as
triangular fuzzy numbers, are shown in Figure 16.2 for comparison to Figure
16.1. Now let us briefly summarize the model in Chapter 14 of [4] to compare to
the model in this chapter.

The fuzzy profit function in [4] was

Π = TN − [Au +Q(M − c) + Cvc]. (16.30)

In [4] the author considered only two fuzzy arrival rates λi and only two fuzzy
service rates μi, i = 1, 2, in their 16 cases. Then Au = Ai when λ = λi, i = 1, 2. In
this chapter we used K2λ since we could not use P = 100, 000 different constants
for that many different fuzzy arrival rates. Also, Cv = Ci when μ = μi, i = 1, 2.
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Fig. 16.2. Optimal Fuzzy Profits from Chapter 14 of [4]

In this chapter we used K1μc since we could not use P = 100, 000 different
constants for that many different fuzzy service rates. The Q(M − c) is the same
in both models. In this chapter our T is greater then the fuzzy T value used in
[4] because the Π ≈ (π1/π2/π3) in [4] had too many results with negative π2

values. Finally, in [4] they used η = 0.8 in the comparison of fuzzy numbers and
in this chapter we used η = 0.9 to help in reducing the size of the set HK .

We see from Figures 16.1 and 16.2 that the results are similar: three fuzzy
sets clustered together approximating maximum fuzzy profit. However, those in
Figure 16.1 would present a better approximation since they are the result of
100, 000 random choices for the variables. The fuzzy profits in Figure 16.1 will
all lie to the right of those in Figure 16.2 because T used in this chapter is
approximately three plus the T used in Chapter 14 of [4].

16.6 Summary and Conclusions

In this chapter we introduced our new fuzzy Monte Carlo procedure. The ba-
sic requirement of any fuzzy Monte Carlo method is to be able to randomly
produce fuzzy/crisp vectors to uniformly fill the search space. We suggested us-
ing a quasi-random number generator to make these random fuzzy/crisp vectors.
Theoretically, given enough iterations of the fuzzy Monte Carlo technique, it will
produce a very good approximate solutions to the fuzzy optimization problem.

We applied our fuzzy Monte Carlo method to a fuzzy optimization problem
from fuzzy queuing theory. For all our Monte Carlo calculations, we used a Dell
Optiplex GX 250 with a dual core and a 64-bit pentium D 2.8 GHz processor
running on Windows XP. The computer time for 100, 000 iterations was approxi-
mately 52.5 hours. To construct file F2 (equation (16.29)) using the Optimization
Toolbox the computer time was approximately 47 hours and then to finish the
program it was approximately 5.5 hours.

It would be nice to try 1, 000, 000 iterations, but the computing time on one
office PC would be too excessive. However, if we could run the fuzzy Monte Carlo
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program 100, 000 iterations simultaneously on ten separate machines, comput-
ing over the weekend, and then combine the results, we could go to 1, 000, 000
iterations. The MATLAB program is available from the authors.

References

1. Abdalla, A., Buckley, J.J.: Monte Carlo Methods in Fuzzy Queuing Theory (under
review)

2. Buckley, J.J.: Elementary Queuing Theory Based on Possibility Theory. Fuzzy Sets
and Systems 37, 43–52 (1990)

3. Buckley, J.J.: Fuzzy Probabilities: New Approach and Applications. Springer, Hei-
delberg (2003)

4. Buckley, J.J.: Fuzzy Probabilities and Fuzzy Sets for Web Planning. Springer,
Heidelberg (2004)

5. Buckley, J.J., Qu, Y.: On Using α-cuts to Evaluate Fuzzy Equations. Fuzzy Sets
and Systems 38, 309–312 (1990)

6. Buckley, J.J., Eslami, E., Feuring, T.: Fuzzy Mathematics in Economics and En-
gineering. Physica-Verlag, Heidelberg (2002)

7. Buckley, J.J., Feuring, T., Hayashi, Y.: Fuzzy Queuing Theory Revisited. Int. J.
Uncertainty, Fuzziness and Knowledge Based Systems 9, 527–538 (2001)

8. MATLAB, The MathWorks, http://www.mathworks.com
9. Menasce, D.A., Almeida, V.A.F.: Capacity Planning for Web Performance. Pren-

tice Hall, Upper Saddle River, N.J. (1998)
10. Pardo, M.J., de la Fuente, D.: Optimizing a Priority-Discipline Queueing Model

Using Fuzzy Set Theory. Computers & Math. with Applications 54, 267–281 (2007)
11. Taha, H.A.: Operations Research, 5th edn. Macmillan, N.Y. (1992)

http://www.mathworks.com


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Part III: Unfinished Business 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



17 Fuzzy Min-Cost Capacitated Network

17.1 Introduction

The min-cost capacitated flow network problem generalizes the transportation,
transshipment and max-flow problems [4]. This chapter is based on ([1]and Sec-
tion 6.5.2 of [2]). A recent reference in this area is [3]. In the next section we
first discuss the crisp problem and then fuzzify it. We have previously found an
approximate fuzzy solution to an example problem using an evolutionary algo-
rithm. Then in Section 17.3 we plan to apply our fuzzy Monte Carlo method to
obtain another approximate solution to this example problem and then compare
both solutions.

17.2 Min-Cost Capacitated Network

There are n nodes, some of which are “sources” which accept input, and some
others are “sinks” which produce output. Let Ii be the input to node i and set
Ii = 0 if node i is not a source node. Let Oi be the output from node i and set
Oi = 0 if node i is not a sink node.

We assume that all nodes are connected by an arc which are now all one-way
streets. All arcs have a unit cost cij associated with them. We set cii = 0 all
i and if there is no arc from node i to node j we make cij = M , M a large
positive number, so that the optimal solution to the minimization problem will
not choose an arc with cij = M .

Let xij be the flow from node i to node j. For example, xij may be gallons of
oil. The xij flow along the arc from i to j at unit cost cij . Also, all arcs have a
minimum capacity Lij and a maximum capacity Uij . Now an Lij can be zero (no
minimum capacity) and a Uij can be infinite (no maximum capacity). If there
is no maximum capacity we let Uij = M .

So, the optimization problem is to minimize the total cost

minZ =
n∑

i=1

n∑
j=1

cijxij , (17.1)

J.J. Buckley et al.: Monte Carlo Meth. in Fuzzy Optimization, STUDFUZZ 222, pp. 187–190, 2008.
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subject to capacity constraints

Lij ≤ xij ≤ Uij , (17.2)

all i, j, plus the conservation of flow constraints

Ii +
n∑

k=1

xki =
n∑

k=1

xik +Oi, (17.3)

for all nodes i = 1, 2, · · · , n. The conservation of flow constraint says that the
total flow into a node must equal to the total flow out of that node. For the
problem to be feasible we need

∑n
i=1 Ii =

∑n
i=1Oi.

The complete fuzzification has all the Cij , Lij , U ij , Ii and Oi triangular fuzzy
numbers. The fuzzy flows Xij will also be triangular fuzzy numbers. The fuzzy
optimization problem is

minZ =
n∑

i=1

n∑
j=1

CijX ij , (17.4)

subject to
Lij ≤ Xij ≤ U ij , (17.5)

for all i, j and

Ii +
n∑

k=1

Xki ≈
n∑

k=1

Xik +Oi, (17.6)

for 1 ≤ i ≤ n. In equation (17.5) we have some special cases: (1) if Lij = 0, then
it is 0 ≤ X ij ≤ U ij ; (2) if U ij = M , then it is Lij ≤ Xij ; and (3) if Lij = 0
and U ij = M , then it is 0 ≤ Xij . In equation (17.6) we cannot, because of fuzzy
arithmetic, demand exact equality as in the crisp case, so we use ≈. We also
assume that

∑n
i=1 Ii ≈ ∑n

i=1Oi. We will be using Buckley’s Method (Section
2.6.1 in Chapter 2) to evaluate ≤, < and ≈ between fuzzy numbers because that
is what we used in our original research on this topic. We will not allow negative
flows through the network, so we add the extra constraint that X ij ≥ 0.
Z will be a triangular shaped fuzzy number and in our previous discussions

of this topic we handled min Z as discussed in Section 2.5 of Chapter 2, subject
to the constraints given in equation (17.5) and (17.6).

Example 17.2.1

Our example is shown in Figure 17.1. For all arcs not shown we set Cij = M .
If no pair (Lij , U ij) is specified for an arc it means that it is equal to (0,M), or
no restrictions. Nodes 1 and 2 are source nodes and the sink nodes are 4 and 5.
The values of the fuzzy numbers are: (1) I1 = (35/40/45) and I2 = (45/50/55);
(2) O4 = (25/30/35) and O5 = (55/60/65): (3) C12 = (1/3/5), C13 = (6/7/8),
C14 = (4/5/6), C23 = (1/2/3), C25 = (0.5/1/2), C35 = (6/7/8), C45 = (2/4/6);
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Fig. 17.2. Evolutionary Algorithm Min Fuzzy Cost in Example 17.2.1

and (4) U13 = (8/10/11), U14 = (30/35/40), U23 = (50/60/70), and U25 =
(28/30/34). Using the vertex values for all the fuzzy numbers the crisp optimal
solution is x12 = 5, x13 = 0, x14 = 35, x23 = 25, x25 = 30, x35 = 25 and x45 = 5
with minimum cost of 490. In equation (2.42) of Chapter 2 we used λ1 = 0.4 = λ2

and λ3 = 0.2 since the decision maker was more interested in maximizing A1

and minimizing u2 than in minimizing A2. The evolutionary algorithm solution
for Z is shown in Figure 17.2 with the corresponding values for the Xij in
Table 17.1.

The evolutionary algorithm is not fast because it spends a lot of time checking
the constraints. For much larger n we would need to construct special algorithms
just for checking the constraints.
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Table 17.1. Best Fuzzy Flows in Example 17.2.1

Evolutionary Algorithm Fuzzy Monte Carlo
X12 (0.0041/4.8012/4.8168) TBC
X13 (0.0035/0.0052/0.0112) TBC
X14 (0.0020/34.1925/34.1955) TBC
X23 (0.0000/13.4586/13.4641) TBC
X25 (0.0034/38.4981/42.9179) TBC
X35 (0.0003/13.1353/13.1410) TBC
X45 (0.0000/6.4814/6.4830) TBC

17.3 Fuzzy Monte Carlo Method

Now obtain another approximate solution to Example 17.2.1 using the fuzzy
Monte Carlo method. Generate sequences of random fuzzy vectors V i =
(Xi1, ..., Xi7), i = 1, 2, 3, ... and set X12 = Xi1,...,X45 = X i7 all triangular
fuzzy numbers. We get these random fuzzy vectors using our Sobol quasi-random
number generator as discussed in Section 4.5.

Now we need to find intervals Tj = [0,Mj], j = 1, 2, ..., 7, as explained in
previous chapters, for the X ij . We randomly generate Xij ∈ [0,Mj], j = 1, ..., 7,
and form the random fuzzy vector V i = (X i1, ..., X i7). We test to see if V i

is feasible, or the Xij satisfy the constraints. Assuming that V i is feasible we
compute the value of the objective function Z = Z0. If Z

∗
is the current best

(min) value of Z then we replace Z
∗

with Z0 if Z
∗
> Z0, otherwise we discard

Z0. The determination of these intervals is very important. If they are too big too
many V i can be rejected as not feasible, and if they are too small we could miss
a “good” solution. After studying the crisp optimal solution, the evolutionary
algorithm results in Table 17.1 and the constraints Xij ≤ U ij we came up with
T1 = [0, 10], T2 = [0, 11], T3 = [0, 40], T4 = [0, 70], T5 = [0, 45], T6 = [0, 30] and
T7 = [0, 10]. Changing these intervals can effect the solution. Also we are using
Buckley’s Method (Section 2.6.1 of Chapter 2) to evaluate ≤, > and ≈ between
fuzzy numbers with tie breakers as discussed in Section 2.6.4.

The results of the fuzzy Monte Carlo method, after N iterations, would also be
presented in Table 17.1 where TBC represents “to be completed”. The graph of the
best (minimum)Z would be shown in another figure. Then we compare the results.
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18 Fuzzy Shortest Path Problem

18.1 Introduction

In this chapter we consider the shortest route problem where distances/costs are
not known precisely and are modeled using fuzzy numbers. The fuzzy shortest
route problem is outlined in the next section. We have previously used an evo-
lutionary algorithm to solve an example problem (Section 6.5.1 of [2] and [3]).
In Section 18.3 we plan to apply our fuzzy Monte Carlo method to obtain a
solution to this example problem and then compare both solution methods.

18.2 Fuzzy Shortest Path Problem

Consider a network having n nodes linked by arcs. We allow all nodes to be con-
nected by an arc. All arcs can be two-way streets (can travel in both directions).
Define aij to be the fuzzy distance (or cost) of traveling from node i to node
j, 1 ≤ i, j ≤ n. Set aii = 0 for 1 ≤ i ≤ n. If there is no arc/street connecting
node i to node j we set aij = M , M is a large positive number. Since this is a
minimization problem the optimal solution will not select a path from i to j if
aij = M . We wish to find paths from node 1 to node n with smallest total fuzzy
distance/cost.

For a survey of the literature on the fuzzy shortest path problem see the
papers/books ([1],[4]-[14]) and the references in these papers/books. Our solution
concept using an evolutionary algorithm, or fuzzy Monte Carlo, is different from
those used by other researchers.

Define a path of length K + 1, 1 ≤ K ≤ n− 1, to be (1, i1, · · · , iK , n) where
i1, i2, · · · , iK are distinct numbers in the set {2, · · · , n− 1}. A path of length 1
is (1, n) and a path of length 2 is (1, i1, n) for 2 ≤ i1 ≤ n− 1. Let Ω be all paths
from 1 to n. If Γ ∈ Ω, then define D(Γ ) = a1,i1 + ai1,i2 + · · · + aiK ,n. If all the
aij are triangular fuzzy numbers, or real numbers in [0,M ], then D(Γ ) is also
a triangular fuzzy number. We will be using Buckley’s Method (Section 2.6.1
of Chapter 2), with η = 0.8, to evaluate ≤, < and ≈ between fuzzy numbers
since that is what we used in our previous research on this topic. We wish to

J.J. Buckley et al.: Monte Carlo Meth. in Fuzzy Optimization, STUDFUZZ 222, pp. 191–193, 2008.
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find paths Γ with minimum D(Γ ). We will employ the “tie” breaking strategy
in Section 2.6.4 so we expect a unique solution.

18.3 Monte Carlo Method

Now we want to apply our fuzzy Monte Carlo method to obtain solutions to
this problem. First randomly choose K ∈ {1, 2, ..., n − 2} and using this K
randomly choose, without replacement, K numbers in {2, 3, ..., n− 1}. Let the
first number chosen be i1, the second i2,..., and the last iK . Then the path Γ
is 1 → i1 → i2 → ... → iK → n. In this application we used a pseudo-random
number generator. Compute D(Γ ). At some point in the simulation let D

∗
(Γ )

be the smallest fuzzy distance from node 1 to node n. Let the next random path
produce D0(Γ ). If D0(Γ ) < D

∗
(Γ ), then replace D

∗
(Γ ) with D0(Γ ), otherwise

discard D0(Γ ). Since we are using a method of breaking “ties”, we do not expect
to get D0(Γ ) ≈ D

∗
(Γ ).

Apply this algorithm to a network with n = 6 nodes and fuzzy distances/costs
given in Table 18.1. All the fuzzy distances/costs are triangular fuzzy numbers
and we will use M = 10, 000. So D(Γ ) will also be a triangular fuzzy number. If
we use all the vertices of these triangular fuzzy numbers we have a crisp network
and its solution for the shortest distance from node 1 to node 6 is 18 using path
1 → 3 → 4 → 5 → 6.

In this application we do not need to generate random fuzzy numbers, only
random paths. The results of our Monte Carlo study, after N iterations, would

Table 18.1. Fuzzy Distances Between the Nodes in Example Problem

1 2 3 4 5 6
1 0 (1/3/4) (4/6/8) (11/13/16) (13/15/18) M
2 (2/4/5) 0 (3/5/7) (6/8/9) (10/12/15) (14/19/23)
3 (1/3/4) (3/4/6) 0 (3/4/6) M (11/14/18)
4 (9/11/14) (5/8/10) (5/7/10) 0 (1/2/3) (7/9/12)
5 (11/15/18) (8/10/13) M (5/6/7) ( 0 (5/6/8)
6 M (16/20/26) (8/10/13) (7/9/11) (2/3/4) 0

Table 18.2. Fuzzy Shortest Routes from Our Evolutionary Algorithm

Path Fuzzy Distance
1–3–4–5–6 (13/18/25)
1–2–4–5–6 (13/19/24)
1–3–4–6 (14/19/26)
1–2–4–6 (14/20/25)
1–3–6 (15/20/26)

1–2–3–4–5–6 (13/20/28)
1–5–6 (18/21/26)
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be: (1) shortest fuzzy distance from node 1 to node 6 is D(Γ ) = TBC; and (2)
the path is Γ = 1 → TBC → n where TBC means “to be completed”.

The results of the evolutionary algorithm applied to the same problem are
given in Table 18.2. We obtained seven “solutions” because we did not use any
“tie breakers”.
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19 Fuzzy Max-Flow Problem

19.1 Introduction

If we take the “Fuzzy Min-Cost Capacitated Network” problem in Chapter 17
and delete the costs we get the “Fuzzy Max-Flow Problem” in this chapter. This
is exactly what we will do. The crisp problem is outlined in the next section.
Then in Section 19.3 we fuzzify the problem and plan to apply our fuzzy Monte
Carlo method to get approximate solutions.

There have been only a few papers/articles in books, on the fuzzy max-flow
problem ([1]-[6]).

19.2 Max-Flow Problem

This model is discussed in most operations research/management science books
[7]. There are n nodes, some of which are “sources” which accept input,
and some others are “sinks” which produce output. Let Ii be the input to node
i and set Ii = 0 if node i is not a source node. Let Oi be the output from node
i and set Oi = 0 if node i is not a sink node. The Ii �= 0 represent the supplies
and the Oi �= 0 are the demands.

Some of the nodes are connected by an arc which are all one-way streets. If
nodes i and j are connected by an arc then let xij be the flow from node i to
node j. For example, xij may be gallons of oil per day. If there is no arc going
from i to j then set xij = 0. Also, all arcs have a maximum capacity Uij . Now
a Uij can be infinite (no real maximum capacity) and we may set this Uij = M
a very large positive number.

So, the optimization problem is to maximize the total flow through the net-
work satisfying (if possible) all demands

max Z =
n∑

i=1

Oi, (19.1)

subject to capacity constraints

0 ≤ xij ≤ Uij , (19.2)
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Fig. 19.1. Fuzzy Max-Flow Problem

all i, j, plus the conservation of flow constraints

Ii +
n∑

k=1

xki =
n∑

k=1

xik + Oi, (19.3)

for all nodes i = 1, 2, · · · , n. The conservation of flow constraint says that the
total flow into a node must equal to the total flow out of that node. For the
problem to be feasible we need

∑n
i=1 Ii =

∑n
i=1 Oi.

An example is shown in Figure 19.1 which we shall use below. Notice that: (1)
nodes #1 and #2 are input/source nodes; (2) nodes #4 and #5 are output/sink
nodes; (3) arcs 1 → 4, 1 → 3, 2 → 3 and 2 → 5 have finite capacities; and (4)
arcs 1 → 2, 3 → 5 and 4 → 5 have infinite capacities.

19.3 Fuzzy Max-Flow Problem

The complete fuzzification has all the U ij , Ii and Oi triangular fuzzy numbers.
The fuzzy flows Xij will be triangular fuzzy numbers. The fuzzy optimization
problem is

max Z =
n∑

i=1

Oi, (19.4)

subject to
0 ≤ Xij ≤ U ij , (19.5)

for all i, j and

Ii +
n∑

k=1

Xki ≈
n∑

k=1

Xik + Oi, (19.6)
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for 1 ≤ i ≤ n. In equation (19.5) we have a special case: if U ij = M , then it
is 0 ≤ X ij . In equation (19.6) we cannot, because of fuzzy arithmetic, demand
exact equality as in the crisp case, so we use ≈. We also assume that

∑n
i=1 Ii ≈∑n

i=1 Oi. We will be using Buckley’s Method (Section 2.6.1 in Chapter 2) to
evaluate ≤, < and ≈ between fuzzy numbers because that is what we used in
Chapter 17.

19.3.1 Fuzzy Monte Carlo Solution

The example we will investigate is shown in Figure 19.1. The fuzzy constants,
all triangular fuzzy numbers, are given in Table 19.1. The demands are O4 =
(25/30/35) and O5 = (55/60/65). So I1 + I2 = (80/90/100) = (80/90/100) =
O4 + O5 and the problem is feasible.

Table 19.1. Fuzzy Parameters in the Monte Carlo Study

Constant Fuzzy Value
U13 (8/10/11)
U14 (30/35/40)
U23 (50/60/70)
U25 (28/30/34)
I1 (35/40/45)
I2 (45/50/55)

The fuzzy optimization problem is

max Z = O4 + O5, (19.7)

subject to: (1) X13 ≤ U13, X14 ≤ U14, X23 ≤ U23, X25 ≤ U25; (2) I1 ≈
X14 + X13 + X12, I2 + X12 ≈ X23 + X25, X13 + X23 ≈ X35, X14 ≈ X45 + O4

and X25 + X35 + X45 ≈ O5; and (3) Xij ≥ 0 all i, j.
Using the vertex values of all the fuzzy parameters the crisp optimal solution

is x12 = 5, x13 = 0, x14 = 35, x23 = 25, x25 = 30, x35 = 25, x45 = 5 and max
flow equal to 90 units with O4 = 30, O5 = 60 and all demands are met.

We randomly generate a fuzzy vector of triangular fuzzy numbers (Section 4.4,
Chapter 4) V = (X12, ..., X45) of length 7 and if it satisfies all the constraints
we compute Z = O4 + O5. Now we get O5 from X25 + X35 + X45 and we have
to compute O4 from the equation

X14 ≈ X45 + O4. (19.8)

But equation (19.8) may not have any exact solution (using an equal sign) for
fuzzy number O4. So, in general, we set O4 = X14 − X45 and we will get X14

approximately equal to X45 + O4 because both fuzzy numbers have the same
vertex.
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The problem is that too many of the random vectors V will not be feasible.
We need to find intervals Tij = [0, Mij], as explained in previous chapters, for the
Xij so that V has a better chance of being feasible. Looking at the crisp solution
and the constraints we pick T12 = [0, 10], T13 = [0, 12], T14 = [0, 45],T23 = [0, 75],
T25 = [0, 40], T35 = [0, 30] and T45 = [0, 10]. Changing these intervals can effect
the solution. The determination of these intervals is very important. If they are
too big too many V i can be rejected as not feasible, and if they are too small
we could miss a “good” solution.

Now assume we are at some point in the algorithm and V is feasible so we
compute the value of the objective function Z = Z0. If Z

∗
is the current best

(max) value of Z then we replace Z
∗

with Z0 if Z
∗

< Z0, otherwise we discard
Z0. We are using Buckley’s Method (Section 2.6.1 of Chapter 2) to evaluate ≤,
> and ≈ between fuzzy numbers and the method of breaking “ties” discussed
in Section 2.6.4. We therefore do not expect to get Z

∗ ≈ Z0.
The results of the fuzzy Monte Carlo method, after N iterations, would be

presented in a table and the graph of the maximum Z to be shown in a figure.
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20 Inventory Control: Known Demand

20.1 Introduction

This is the first of three chapters on fuzzy inventory control. We start with
crisp known demand in this chapter followed by fuzzy demand in the next two
chapters ending with allowing backorders in Chapter 22.

Most of the applications of fuzzy sets to inventory control have been in
the area of the EOQ, or the economic order quantity problem. See ([4]-[12],
[14]-[17]), and the references in these papers, for a survey of this literature on
fuzzy inventory control. In this chapter we will apply fuzzy sets to model un-
certainty in the single item, N -period, inventory control problem. This problem
will be outlined below in Section 20.2. We will assume that demand is known
(not fuzzy) but the ordering cost and holding cost can be fuzzy. In Chapter 21
demand will be fuzzy, shortages are allowed and the penalty cost for shortages
is also fuzzy. Finally, we add to the model in Chapter 22 backorders, maximize
profit instead of minimizing cost since we now sell the product, and discount all
future monies to their present value. This chapter, and Chapters 21 and 22, are
based on (Section 6.3 of [1], Chapter 9 of [2] and [3]).

20.2 Inventory Problem

Let us now describe the inventory problem we shall be studying [13]. The flow is
shown in Figure 20.1. The incoming inventory x1 will always be a non-negative
integer. The variables are the z1, z2, . . . , zN , which are the amounts we are to
order each period. The zi, 1 ≤ i ≤ N , will always be non–negative integers. If
we allow the zi to be fuzzy we will have to defuzzify them in the end, so we
will have them non–negative integers. The Di represents the demand in the i-th
period and the xi, 2 ≤ i ≤ N , stands for the outgoing inventory, which will be
the starting inventory for the next period, in the i-th period. So we must have

xi+1 = xi + zi −Di, (20.1)

1 ≤ i ≤ N .

J.J. Buckley et al.: Monte Carlo Meth. in Fuzzy Optimization, STUDFUZZ 222, pp. 199–204, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 20.1. Inventory Problem

There are only N periods and at the end of the planning horizon we assume
that the final inventory will be zero. That is, we want xN+1 = 0. When Di is
fuzzy, the xi, i ≥ 2, will also be fuzzy from equation (20.1), so we will adjust
this crisp constraint of zero final inventory in the next two chapters.

Another basic assumption throughout these three chapters is that we have
zero delivery lag with instant replenishment at the start of each period.

We wish to minimize the total inventory cost over the N periods. This cost
is made up of four components: (1) purchase cost; (2) ordering cost; (3) holding
cost; and (4) shortage cost. We now discuss the first three in detail. The fourth
one will be discussed later in Chapter 21.

We assume that we are to buy the item and we do not produce it ourselves.
There may, or may not, be price breaks. A simple model, which we shall use is

ci(zi) =

⎧⎨
⎩

10zi : 0 ≤ zi ≤ Li

10Li + 5(zi − Li) : zi > Li.
(20.2)

This means in the i-th period we pay $ 10 per unit for the first Li units and then
we pay $ 5/unit for each additional unit. We will assume these are all known
numbers and they will not be fuzzy.

The ordering costKi in the i-th period is the cost of placing the order, checking
up on the order, and putting the items into inventory when they arrive. This
number is always difficult to estimate so we will model it using a fuzzy number.
Then the total cost of obtaining zi units at the start of the i-th period is

Ci(zi) =

⎧⎨
⎩

0 : zi = 0

Ki + ci(zi) : zi > 0,
(20.3)

for fuzzy Ki.
The holding cost is assumed to be proportional to the ending inventory xi+1 =

xi + zi − Di. The model may be readily extended to cover any holding cost
function Hi(xi+1) by replacing xi+1 by Hi(xi+1). For example, holding cost may
be modeled as proportional to (xi + xi+1)/2. In our first model in this chapter
no shortages are allowed and Di is crisp so all the xi will be non-negative real
numbers. In our other models in later chapters shortages are allowed and Di can
be fuzzy, so certain adjustments in the development must be made. Let hi be
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the holding cost per unit for the i-th period. This number, depending on interest
on invested capital, depreciation, etc., is very difficult to determine exactly so
it will be fuzzy. For non-negative xi and crisp Di the holding cost for the i-th
period is

hi(xi + zi −Di), (20.4)

for fuzzy hi, since xi+1 = xi + zi −Di.
When no shortages are allowed let

TCi = Ci(zi) + hi(xi + zi −Di), (20.5)

and

Z =
N∑

i=1

TCi. (20.6)

We wish to find zi, 1 ≤ i ≤ N , to minimize Z. The constraint is xN+1 = 0.
Now Z is a fuzzy set so we can not minimize it. What we did in our pre-

vious research on this topic was to first change min(Z) into a multiobjective
optimization problem, and then into a single objective problem as in Section 2.5
of Chapter 2.

The model discussed in the next section, together with a numerical example,
is to find the zi to minimize the expression in equation (20.6) subject to xN+1 =
0 given: (1) x1, ci(zi), N , Di, all crisp; and (2) hi and Ki fuzzy. Our first
approximate solution to this problem was to employ an evolutionary algorithm
and now we plan to use a Monte Carlo method. Notice that the variables are
the zi which are all non-negative integers. So, in this and the next two chapters,
we will be using sequences of random non-negative integers in Monte Carlo and
not sequences of random fuzzy numbers.

The N -period inventory problem studied in this chapter is usually solved,
with no fuzzy sets, using dynamic programming. So a solution method, when
some of the parameters are fuzzy, might be fuzzy dynamic programming. Some
work has been done, employing (fuzzy) dynamic programming, for N–period
fuzzy inventory control problem ([7],[11],[12]).

The book [11] gives an excellent review of multi–stage inventory control. Both
fuzzy sets and stochastic models are used. The solution method is dynamic pro-
gramming. They seek to maximize the weighted sum of the membership functions
which assures us that the system states, over their respective stages, are satisfac-
tory. This is not the standard cost minimization, or profit maximization, model
in inventory control. The set up cost, demand, storage cost, lost sales cost are
all crisp and not fuzzy.

A recent survey of fuzzy sets applied to production management research
(including inventory control, job shop scheduling, project scheduling, and fore-
casting) is [6].

Dynamic programming can be very computationally intensive, and even more
so, for fuzzy dynamic programming. Therefore, we wished to avoid a fuzzy dy-
namic programming approach. Instead we employed an evolutionary algorithm
and now Monte Carlo.
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20.3 Monte Carlo Method

The objective is to find non-negative integers zi, 1 ≤ i ≤ N , to minimize Z.
Ki and hi will be trapezoidal fuzzy numbers which implies Zi will also be a
trapezoidal fuzzy number. Let Z = (z1/z2, z3/z4). The only other thing we must
do is to expand constraint xN+1 = 0 to involve the zi (decision variables).

Since no shortages are allowed the constraints are:

k∑
i=1

Di − x1 ≤
k∑

i=1

zi ≤
N∑

i=1

Di − x1, (20.7)

for k = 1, 2, . . . , N − 1, and since ending inventory is zero

N∑
i−1

zi =
N∑

i=1

Di − x1. (20.8)

We summarize this fuzzy inventory control problem: (1)find non-negative in-
tegers zi to minimize Z; (2) subject to the constraints in equations (20.7)-(20.8);
and (3) for given values of x1, Ki, ci(zi), N , Di and hi.

Example 20.3.1

We use N = 4 to be able to easily compute the corresponding crisp solution
to compare to the result of the evolutionary algorithm and the Monte Carlo
technique.

Initial inventory (x1) is 15 units, and we use

ci(zi) =

⎧⎨
⎩

6zi : 0 ≤ zi ≤ 50

300 + 4(zi − 50) : zi > 50.
(20.9)

for i = 1, 2, 3, 4 and Ki, Di, hi are given in Table 20.1.
The evolutionary algorithm used λ1 = λ2 = 0.4, λ3 = 0.2 and M = 1000

(see equation (2.42)). The evolutionary algorithm solution for minZ produced
z1 = 91, z2 = 0, z3 = 153 and z4 = 0.

Table 20.1. Data for Example 20.3.1

Period Di Ki hi

1 76 (92/96, 100/104) (0.8/1, 1/1.2)
2 26 (108/112, 116/120) (1.4/1.8, 2.2/2.6)
3 90 (179/183, 187/191) (1.4/1.8, 2.2/2.6)
4 67 (64/68, 72/76) (0.8/1, 1/1.2)
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To obtain a crisp solution we defuzzify Ki and hi as follows: (1) if Ki =
(ki1/ki2, ki3/ki4), the defuzzified value is (ki2 + ki3)/2 = k∗i ; (2) if hi =
(hi1/hi2, hi3/hi4), use h∗i = (hi2 + hi3)/2. These values are k∗1 = 98, k∗2 = 114,
k∗3 = 185, k∗4 = 70 and h∗1 = h∗4 = 1.0, h∗2 = h∗3 = 2 for all i. The crisp optimal
solution is z1 = 88, z2 = 0, z3 = 156 and z4 = 0 with minimum cost $1622.

20.3.1 Monte Carlo Solution

Randomly generate vectors v = (z1, z2, z3, z4), where the zi are non-negative
integers as discussed in Chapter 3, and they satisfy equations (20.7)-(20.8). The
resulting constraints are: (1) 61 ≤ z1 ≤ 244; (2) 87 ≤ z1 + z2 ≤ 244; (3)
177 ≤ z1 + z2 + z3 ≤ 244; and (4) 244 = z1 + z2 + z3 + z4. Then evaluate
equation (20.6) to obtain fuzzy cost Z. Let the current value of fuzzy cost be Z0

and, up to now, the minimum fuzzy cost Z
∗
. If Z0 < Z

∗
, then replace Z

∗
with

Z0, otherwise discard Z0 and produce the next random vector v. Now we need
to decide on how we will evaluate < between fuzzy numbers. We will modify
Buckley’s Method, Section 2.6.1 of Chapter 2, in order to reduce the possibility
of “ties” (Section 2.6.4). We do not want a large collection of fuzzy numbers for
Z in equation (20.6), all approximately equal to each other, and all considered
the minimum.

Let M = (m1/m2,m3/m4) andN = (n1/n2, n3/n4). ThenN < M if n2 < m2

and N > M if n2 > m2. Assume that n2 = m2. Then N < M if n3 < m3 and
N > M if n3 > m3. Assume that n2 = m2 and n3 = m3. Then N < M if
n1 < m1 and N > M if n1 > m1. Assume that n2 = m2, n3 = m3 and n1 = m1.
Then N < M if n4 < m4 and N > M if n4 > m4. If n2 = m2, n3 = m3, n1 = m1

and n4 = m4, then M = N and discard one of them, with their corresponding
zi values.

After many iterations (number of random vectors v generated) the Monte
Carlo solution will also be shown in Table 20.2. In Table 20.2 “EA” denotes the
evolutionary algorithm solution and TBC denotes “to be completed”.

The minimum fuzzy cost Z found by the evolutionary algorithm, correspond-
ing to the optimal values of the zi given in Table 20.2, is given in Table 20.3.
The results of the Monte Carlo simulation would also appear in these tables. The
fuzzy numbers in Table 20.3 are trapezoidal fuzzy numbers. The crisp minimum
cost is $1622.

Table 20.2. Solutions to the Inventory Problem

Variable Crisp EA Monte Carlo
z1 88 91 TBC
z2 0 0 TBC
z3 156 153 TBC
z4 0 0 TBC
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Table 20.3. Minimum Fuzzy Cost from EA and Monte Carlo Methods

Method Fuzzy Cost
EA (1570/1613, 1649/1693)

Monte Carlo TBC
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21.1 Introduction

This chapter continues Chapter 20 on fuzzy inventory control. The first changes
made in this chapter are to allow shortages and have demand Di fuzzy. There
will be no backlogging (back orders) so shortages result in lost sales and loss of
customer’s goodwill. The penalty cost, due to shortages, is usually very difficult
to estimate so it will be modeled by a fuzzy number pi for the period i. We
will still minimize the total fuzzy cost, with Di, Ki, hi, pi and also the xi

(i ≥ 2) all fuzzy, subject to fuzzy xN+1 approximately zero. We now discuss
in more detail the changes from Chapter 20 to this chapter in order to handle
fuzzy demand and shortages. Then we plan to apply our Monte Carlo method
to a numerical example and compare its solution to a crisp solution and an
evolutionary algorithm solution.

21.2 Inventory Model

There will be a slight change in the fuzzy mathematics in this and the following
chapter that does not occur in the rest of the book. We will be working with
fuzzy sets that are parts of fuzzy numbers. We will call these fuzzy sets “non-
standard” fuzzy numbers. We will discuss these fuzzy sets in more detail later
in this section.

The Di, Ki, hi and pi will all be non-negative trapezoidal fuzzy numbers, the
xi (i ≥ 2) incoming inventory is fuzzy, and fuzzy cost Z will be a non–negative
fuzzy set. Also, we need a new definition of holding cost and a new definition of
xN+1 ≈ 0 which specifies the constraints on the zi. What has not changed from
Chapter 20 is Ci(zi), hi and crisp starting inventory x1.

We now show how we will construct non-standard fuzzy numbers. Let

Pos(x) =

⎧⎨
⎩

1 : x ≥ 0

0 : otherwise,
(21.1)

J.J. Buckley et al.: Monte Carlo Meth. in Fuzzy Optimization, STUDFUZZ 222, pp. 205–212, 2008.
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and let N = (a/b, c/d), with a < 0 < d. Then fuzzy sets like

N ∩ Pos (21.2)

will be used.
Di will be a non-negative trapezoidal fuzzy number for all i. The xi, i ≥ 2,

as we shall see, will also be fuzzy but the equations xi+1 = xi + zi −Di, i ≥ 2,
will no longer hold.

Shortages are allowed but there are no backorders. When demand exceeds
supply sales are lost. Let Hi(zi) measure how much supply exceeds demand and
P i(zi) measure how much demand exceeds supply, for all periods i. Define

Hi(zi) = (xi + zi −Di) ∩ Pos, (21.3)
P i(zi) = (Di − [xi + zi]) ∩ Pos, (21.4)

1 ≤ i ≤ N , for Pos defined by equation (21.1). See Figures 21.1-21.6. Of course,
for i = 1 we have x1 = x1. Then

TCi = Ci(zi) + hi ·Hi(zi) + pi · P i(zi), (21.5)

and total fuzzy cost is

Z =
N∑

i=1

TCi. (21.6)

In equation (21.5) pi is the fuzzy penalty cost due to shortages. Z will be a trape-
zoidal shaped fuzzy number. Since Hi(zi) measures how much supply exceeds
demand, then

xi+1 = Hi(zi), (21.7)

i = 1, 2, . . . , N − 1, which is the outgoing inventory for the i-th period.
We now need to discuss the fuzzy arithmetic involving non-standard fuzzy

numbers in more detail. Examples of non-standard fuzzy numbers can be seen
as Hi(zi) (P i(zi)) in Figure 21.2 (21.3) and as Hi(zi) (P i(zi)) in Figure 21.5
(21.6). Notice that all of these non-standard fuzzy numbers are normalized (have
maximum membership equal to one) but the Hi(zi) in Figure 21.5 has maxi-
mum membership 0.4 (this fuzzy set will also be called a subnormal fuzzy set).
Suppose M ≈ (m1/m2,m3/m4), m1 ≥ 0, is a non-negative trapezoidal shaped
fuzzy number and N is a non-standard fuzzy number. We will need to add and
multiply M and N using α-cuts and interval arithmetic (Section 2.3.3 of Chapter
2). There is no problem if N is normalized as in Figures 21.2, 21.3 and 21.6. So
let us consider N = Hi(zi) in Figure 21.5 and M + N = Q. We can compute
the α−cuts of M and N for 0 ≤ α ≤ 0.4, add them, and get the corresponding
α-cuts of Q. However, for α > 0.4 the α-cuts of N are empty and we get nothing
for Q. So Q will be a non-standard fuzzy number with maximum membership
0.4. The same thing will happen for multiplication. In any operation involving a
series of additions and multiplications between fuzzy numbers and non-standard
fuzzy numbers, where at least one of the items is a non-standard fuzzy number
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with maximum membership s < 1, then the final result will be a non-standard
fuzzy number with maximum membership less than or equal to s. Non-standard
fuzzy numbers with maximum membership less than one create a lot of problems
in the model: (1)fuzzy cost Z in equation (21.6) could be subnormal (maximum
membership less than one); (2) outgoing inventory xi+1 could be subnormal; (3)
final inventory xN+1 may be subnormal; and (4) “Penalty” can be subnormal.
So as to avoid all these problems we will not allow subnormal (maximum mem-
bership less than one) fuzzy sets. We will treat the Hi(zi) in Figure 21.5 as a
number 0.xxxx with xxxx < 0.5 and round it down to zero. So if zero falls be-
tween c and d as in Figure 21.4 Hi(zi) = 0 and P i(zi) is the non-standard fuzzy
number in Figure 21.6 using the vertical straight line from (−c, 0) to (−c, 1).

We now introduce notation for these normalized non-standard fuzzy num-
bers. The trapezoidal fuzzy number in Figure 21.1 is represented as (a/b, c/d),
for a < b < 0 < c < d, and if the sides are curved ≈ (a/b, c/d). The non-standard
fuzzy number in Figure 21.2 (21.3) has representation (0/0, c/d) ((0/0,−b/−a)).
The non-standard fuzzy number in Figure 21.6, after rounding the Hi(zi) in
Figure 21.5 down to zero, and rounding up to the vertical line in Figure 21.6, has
representation (−c/− c,−b/− a). The membership function for (x1/x1, x2/x3),
with 0 ≤ x1 < x2 < x3, is: (1) zero on (−∞, x1); (2) one on [x1, x2]; 3) continu-
ously decreasing from (x2, 1) to (x3, 0) on [x2, x3]; and (4) zero on (x3,∞).

We now have the following cases depending where zero falls in relation to
a, b, c, d in Figure 21.1.

1. If 0 ≤ a, then Hi(zi) = xi + zi −Di, P i(zi) = 0.
2. If a < 0 < b, then we get a subnormal fuzzy set on the interval [a, 0] which we

round down to zero giving P i(zi) = 0. The normalized non-standard fuzzy
number on [0, d] we round up to be on the interval [b, d] and set Hi(zi) =
(b/b, c/d).

3. If b ≤ 0 ≤ c, then we obtain two normalized non-standard fuzzy numbers
one on the interval [0, d] and the other on the interval [a, 0]. Set Hi(zi) =
(0/0, c/d) and define P i(zi) = (0/0,−b/− a).

4. If c < 0 < d, then we obtain a subnormal fuzzy set on the interval [0, d] which
we round down to zero and Hi(zi) = 0. What is left is the normalized non-
standard fuzzy number on the interval [a, 0] which we round down to be on
the interval [a, c] and, after making it positive, set P i(zi) = (−c/−c,−b/−a).

5. If d ≤ 0, then Hi(zi) = 0, P i(zi) = −xi − zi +Di.

In all cases xi + zi − Di will be a trapezoidal fuzzy number like the one in
Figure 21.1, since Di is always a trapezoidal fuzzy number, but zero may be
placed anywhere from −∞ to ∞. In the computations to get TCi in equation
(21.5) Hi(zi) and /or P i(zi) may be normalized non-standard fuzzy numbers
but, since Ki, hi and pi are always trapezoidal fuzzy numbers, TCi will be a
trapezoidal (shaped) fuzzy number. The sides of TCi may be straight lines or
curves. In general we will call TCi a trapezoidal shaped fuzzy numbers so Z in
equation (21.6) will also be a trapezoidal shaped fuzzy number.

The last change, from Chapter 20, is to discuss is the constraint xN+1 ≈ 0.
Now xN+1 could be zero and this surely satisfies xN+1 ≈ 0. So assume that final
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Fig. 21.2. Storage from Figure 21.1

inventory is not zero and let xN+1[1] = [u, v]. If u ≤ 0 ≤ v we will say that the
constraint xN+1 ≈ 0 is satisfied, otherwise the constraint is not satisfied.

We summarize this fuzzy N -period inventory control problem: (1) find non-
negative integers zi to minimize the expression in equation (21.6); (2) subject
to the constraint xN+1 ≈ 0; (3) for Z, computed using α-cuts and interval
arithmetic, given by equations (21.5) and (21.6); and (4) for given values of x1,
ci(zi), Ki, N , Di, hi, pi.
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Fig. 21.4. The Fuzzy Set xi + zi − Di

Example 21.2.1

This will continue Example 20.3.1. Fuzzy demand Di and fuzzy penalty cost pi

are shown in Table 21.1. The defuzzified values of the Di in Table 21.1 will equal
the crisp Di values in Table 20.1. The defuzzified values of the pi are all equal
to 3.00. We also change ci(zi) to equal 2zi with no price breaks. All the other
parameter values are the same as in Example 20.3.1 (see Table 20.1).
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Fig. 21.6. Penalty from Figure 21.4

A main problem now is for the evolutionary algorithm and/or the Monte Carlo
method to check the constraints. A population member is still z = (z1, z2, z3, z4)
for zi ≥ 0 integer.

To check feasibility we first compute x2 = H1(z1) from z1. Then x3 = H2(z2)
from x2, and z2 and x4 = H3(z3) from x3 and z3. Finally, compute x5 and
check x5 ≈ 0. If x5 is approximately zero (defined above), then we keep this
z = (z1, . . . , z4). Otherwise, discard this population member and generate an-
other one. Keep generating new population members until we obtain one that is
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Table 21.1. Data for Example 21.2.1

Period Di pi

1 (70/74, 78/82) (2.0/3.0, 3.0/4.0)
2 (24/26, 26/28) (2.5/2.8, 3.2/3.5)
3 (86/89, 91/94) (2.0/2.7, 3.3/4.0)
4 (64/65, 69/70) (2.5/2.9, 3.1/3.5)

feasible, which is kept. For the evolutionary algorithm solution we minimized Z,
a trapezoidal shaped fuzzy number, in Equation (21.6) as discussed in Section
2.5 in Chapter 2. The values for the λi in equation (2.42) were λ1 = λ2 = 0.4
and λ3 = 0.2.

The evolutionary algorithm’s solution for Z produced fuzzy cost Z whose core,
the membership values were all equal to one, was the interval [859.0, 907.2]. The
best values for the decision variables were z1 = 89, z2 = 0, z3 = 89 and z4 = 65.

Next, we defuzzified the fuzzy inventory problem and obtained its solution
z1 = 61, z2 = 116, z3 = 0 and z4 = 67. We used the same defuzzified values of
Ki and hi as in Example 20.3.1, defuzzified Di gives Di values in Table 20.1,
and defuzzified pi is always 3.00. The minimum cost in the crisp problem was
$860, which was in the core of Z.

21.2.1 Monte Carlo Solution

Randomly generate vectors v = (z1, z2, z3, z4) where the zi are non-negative
integers as discussed in Chapter 4, and they satisfy the constraint x5 ≈ 0.
Looking at the “EA” solution in Table 21.2 we initially chose the interval [0, 100]
for all the zi. Then evaluate equations (21.5) and (21.6) to obtain fuzzy cost Z.
Let the current value of fuzzy cost be Z0 and, up to now, the minimum fuzzy
cost Z

∗
. If Z0 < Z

∗
, then replace Z

∗
with Z0, otherwise discard Z0 and produce

the next random vector v. Now we need to decide on how we will evaluate <
between fuzzy numbers. We will use the modified Buckley’s Method discussed
in Section 20.3.1 in Chapter 20.

In comparing two trapezoidal (shaped) fuzzy numbers M ≈ (m1/m2,m3/m4)
and N ≈ (n1/n2, n3/n4) the modified Buckley’s Method depends only on the
numbers mi and ni, i = 1, 2, 3, 4. So we only need to find these numbers for
the TCi, i = 1, 2, 3, 4. Let Ki = (ki1/ki2, ki3/ki4), hi = (hi1/hi2, hi3/hi4), pi =
(pi1/pi2, pi3/pi4), Hi(zi) = (Hi1/Hi2, Hi3/Hi4) and P i(zi) = (Pi1/Pi2, Pi3/Pi4),
i = 1, 2, 3, 4. We may get Hi1 = Hi2 and Pi1 = Pi2. If TCi ≈ (TCi1/TCi2,
TCi3/TCi4) then

TCi1 = ki1 + 2zi + hi1Hi1 + pi1Pi1, (21.8)

and continuing we end with

TCi4 = ki4 + 2zi + hi4Hi4 + pi4Pi4. (21.9)

If Z ≈ (w1/w2, w3/w4), then w1 =
∑4

j=1 TCj1, etc.
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Table 21.2. Solutions to the Inventory Problem

Variable Crisp EA Monte Carlo
z1 61 89 TBC
z2 116 0 TBC
z3 0 89 TBC
z4 67 65 TBC

Table 21.3. Core of Minimum Fuzzy Cost from EA and Monte Carlo Methods

Method Core of Fuzzy Cost
EA [859, 907])

Monte Carlo TBC

After N iterations (number of random vectors v generated) the Monte Carlo
solution will also be shown in Table 21.2. In Table 21.2 “EA” denotes the evo-
lutionary algorithm solution and TBC means “to be completed”. We also want
to see if the minimum cost to the crisp solution falls in the core of the minimum
fuzzy cost for the evolutionary algorithm and Monte Carlo solutions which is to
be shown in Table 21.3.



22 Inventory Control: Backordering

22.1 Introduction

The major changes in this chapter, from the previous chapter, are: (1) we now
allow for backorders; (2) we maximize profit instead of minimizing cost; and (3)
we discount future monies back to their present value.

We still assume we buy the item, and we do not produce it ourselves, so we
can still use Ci(zi) in equation (20.3) in Chapter 20. However, we will need
to redefine Hi(zi) and P i(zi) in equations (21.3) and (21.4) in Chapter 21,
respectively. Let us now look at these changes in more detail and develop our
new inventory model.

22.2 Inventory Model

We are going to resell the item at $r per unit where r is known (not fuzzy). We
cannot use xi + zi −Di directly, as shown in Figures 21.1 - 21.6 of Chapter 21,
because they do not show what we sell each period. Let Si(zi) be the (fuzzy)
amount we sell during period i, 1 ≤ i ≤ N . First we need to decide when
xi + zi > Di, or Di > xi + zi or xi + zi ≈ Di, i = 1, 2, ..., N . We will employ the
following rules: (1) xi + zi > Di if the core of (xi + zi −Di) lies to the right of
zero; (2) Di > xi+zi when the core of (xi+zi−Di) lies to the left of zero; and (3)
xi + zi ≈ Di if zero belongs to the core of (xi + zi−Di). Notice that xi + zi −Di

will be a trapezoidal fuzzy number as shown in Figure 21.1. We use this method,
instead of one of those from Section 2.6 of Chapter 2, because that was what we
used in our previous research on this topic which used an evolutionary algorithm
and we wish to be able to compare our Monte Carlo results to the evolutionary
algorithm results.

Now we may describe our procedure to determine Si(zi). Assume that xi +
zi −Di is a trapezoidal fuzzy number like the one shown in Figure 21.1 but zero
may be anywhere from −∞ to ∞. We have the following cases.

1. If 0 < b, or xi + zi > Di, then Si(zi) = Di, Hi(zi) = xi + zi −Di = xi+1,
P i(zi) = 0.

J.J. Buckley et al.: Monte Carlo Meth. in Fuzzy Optimization, STUDFUZZ 222, pp. 213–216, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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2. If c < 0, or Di > xi + zi, then Si(zi) = xi + zi, Hi(zi) = 0 = xi+1,
P i(zi) = Di− [xi +zi], and next periods demand Di+1 will be Di+1 +P i(zi).

3. If b ≤ 0 ≤ c, or xi + zi ≈ Di, then Hi(zi) = 0 = xi+1 = P i(zi) and
Si(zi) = Di.

Notice that P i(zi), if it is not zero, is what is backordered and is added to next
periods demand. The value pi will now be the backorder cost per unit.

Next we may set up the profit function to be maximized. Let

TP i = rS(zi) − Ci(zi) − hi Hi(zi) − pi P i(zi), (22.1)

and

Z =
N∑

i=1

(α)i−1TP i. (22.2)

The α are fuzzy discount factors which bring future fuzzy monies back to their
present value. We must be careful in evaluating this last equation using α-cuts
and interval arithmetic because TP i may not be a non-negative trapezoidal fuzzy
number. In ([1]-[3]) the evolutionary algorithm looks for the optimal values of
the zi to maxZ, subject to the constraint xN+1 ≈ 0 from Chapter 21, and it
handles the max problem as in Section 2.5 of Chapter 2. The values for the λi

in equation (2.42) were λ1 = λ2 = 0.4 and λ3 = 0.2.
Now: (1) Di, Ki, hi and pi are all non-negative trapezoidal fuzzy numbers; (2)

xi+zi−Di are all trapezoidal fuzzy numbers; (3)Hi(zi) = xi+1 are non-negative
trapezoidal fuzzy numbers or zero; (4) P i(zi) is a non-negative trapezoidal fuzzy
number or zero; (5) Si(zi) is a non-negative trapezoidal fuzzy number or a crisp
number (Case 2 above when xi = 0); (6) TP i in equation (22.1) is a trapezoidal
(shaped) fuzzy number because the sides may be curved; and (7) Z in equation
(22.2) is a trapezoidal shaped fuzzy number.

22.3 Monte Carlo Method

Randomly generate vectors v = (z1, z2, z3, z4) where the zi are non-negative in-
tegers as discussed in Chapter 4, and they satisfy feasibility condition x5 ≈ 0
detailed in Section 21.2 of Chapter 21. Feasibility is easy to determine because
x5 is zero (v is feasible) or in Case 1 above it is a trapezoidal fuzzy number with
core greater than zero and then v is not feasible. Looking at the solutions in
Table 20.2 we initially picked the interval [0, 120] for the zi. Then evaluate equa-
tions (22.1) and (22.2) to obtain fuzzy profit Z. Let the current value of fuzzy
profit be Z0 and, up to now, the maximum fuzzy profit Z

∗
. If Z0 > Z

∗
, then

replace Z
∗

with Z0, otherwise discard Z0 and produce the next random vector
v. Now we need to decide on how we will evaluate < between fuzzy numbers. We
will use the modified Buckley’s Method discussed in Section 20.3.1 in Chapter
20 with obvious changes for a max problem.

In comparing two trapezoidal (shaped) fuzzy numbers M ≈ (m1/m2,m3/m4)
and N ≈ (n1/n2, n3/n4) the modified Buckley’s Method depends only on the
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numbers mi and ni, i = 1, 2, 3, 4. So we only need to find these numbers
for the TP i, i = 1, 2, 3, 4, and then Z. Let Ki = (ki1/ki2, ki3/ki4), hi =
(hi1/hi2, hi3/hi4), pi = (pi1/pi2, pi3/pi4), Hi(zi) = (Hi1/Hi2, Hi3/Hi4), Si(zi) =
(Si1/Si2, Si3/Si4), P i(zi) = (Pi1/Pi2, Pi3/Pi4), and α = (α1/α2, α3/α4), i =
1, 2, 3, 4. If Hi(zi) and/or P i(zi) are zero we use (0/0, 0/0). If Si(zi) = θ (crisp)
we use (θ/θ, θ/θ). If TP i = (or ≈)(TPi1/TPi2, TPi3/TPi4) then

TPi1 = rSi1 − ki4 − ci(zi) − hi4Hi4 − pi4Pi4, (22.3)

and continuing we end with

TPi4 = rSi4 − ki1 − ci(zi) − hi1Hi1 − pi1Pi1. (22.4)

If Z ≈ (w1/w2, w3/w4), then w1 =
∑4

j=1(α1)j−1TPj1, etc.

Example 22.3.1

Let ri = 5 for all i and let the discount figure α = (1+β)−1 for β ≈ 6%; that is,
β = (0.055/0.058, 0.062/0.065). We will use Ki and hi from Table 22.1 because
we have changed the hi values from Table 20.1 in Chapter 20. Also, we use the
Di and pi values from Table 21.1 in Chapter 21. We set ci(zi) = 2zi for all i.

Table 22.1. Data for Example 22.3.1

Period Ki hi

1 (92/96, 100/104) (0.8/1, 1/1.2)
2 (108/112, 116/120) (0.8/0.9, 1.1/1.2)
3 (179/183, 187/191) (0.6/0.8, 1.2/1.4)
4 (64/68, 72/76) (0.7/1, 1/1.3)

Table 22.2. Solutions to the Inventory Problem in Example 22.3.1

Variable Crisp EA Monte Carlo
z1 87 59 TBC
z2 0 116 TBC
z3 90 0 TBC
z4 67 65 TBC

Table 22.3. Maximum Fuzzy Profit from EA and Monte Carlo Methods

Method Core of Max Fuzzy Profit
EA [351, 428]

Monte Carlo TBC
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The initial inventory remains x1 = 15. We defuzzify Ki, hi, Di and pi to obtain
a crisp optimal solution as in the previous two chapters. The optimal defuzzified
solution, using α = (1.06)−1, is shown in Table 22.2. The evolutionary algorithm
solution is also given in Table 22.2.

After N iterations (number of random vectors v generated) the Monte Carlo
solution will also be shown in Table 22.2. In Table 22.2 “EA” denotes the evolu-
tionary algorithm solution and TBC stands for “to be completed”. We also want
to see if the maximum profit to the crisp solution ($390) falls in the core of the
maximum fuzzy profit for the evolutionary algorithm and Monte Carlo solutions
(Table 21.3).
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23 Fuzzy Transportation Problem

23.1 Introduction

In this chapter we apply our fuzzy Monte Carlo method to determine approx-
imate solutions to a fuzzy transportation problem. The next section presents
the standard definition of the transportation model. Then in Section 23.3 we
fuzzify it and apply our fuzzy Monte Carlo method to generate approximate
solutions. An example is given which is to show the results of our fuzzy Monte
Carlo method.

23.2 Transportation Problem

The standard transportation model seeks to find a transportation plan for a
single commodity from a number of sources to a number of destinations [8].
The data in the model includes: (1) the amount of supply at each source and
the demand at each destination; and (2) the unit transportation cost of the
commodity from each source to each destination. A destination may receive its
demand from many sources. The objective is to determine the shipping plan, to
meet all demands but not exceed any supply, to minimize the total transportation
cost.

Assume there are m sources and n destinations. Let xij be the amount to
be shipped from source i to destination j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. xij will be
an integer greater than, or equal to, zero. Also let ai be the amount of supply
at source i = 1, ...,m and bj the demand at destination j = 1, ..., n. The unit
transportation cost from source i to destination j is cij , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

The linear programming model is

minimize Z =
m∑

i=1

n∑
j=1

cijxij , (23.1)

subject to
m∑

i=1

xij ≥ bj , j = 1, ..., n, (23.2)

J.J. Buckley et al.: Monte Carlo Meth. in Fuzzy Optimization, STUDFUZZ 222, pp. 217–221, 2008.
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and
n∑

j=1

xij ≤ ai, i = 1, ...,m, (23.3)

and xij ≥ 0 and xij integer. For the model to be feasible we must have the total
supply is at least equal to the total demand

m∑
i=1

ai ≥
n∑

j=1

bj. (23.4)

This problem has a special solution algorithm and is not usually solved as a
linear program [8].

23.3 Fuzzy Transportation Problem

Now we allow some, or all, of the parameters cij , ai and bj to be fuzzy showing
any uncertainty in their values. However, the xij will be crisp because if we
allowed them to be fuzzy we would have to defuzzify them at the end to obtain
a feasible shipping plan. Let Cij be a triangular fuzzy number representing the
cost of sending one unit from source i to destination j. Ai is a triangular fuzzy
number for the amount at source i and Bj is another triangular fuzzy number
for the demand at destination j. Some of these parameters may be crisp. Then
the fuzzy optimization problem to solve is

minimize Z =
m∑

i=1

n∑
j=1

Cijxij , (23.5)

subject to
m∑

i=1

xij ≥ Bj , j = 1, ..., n, (23.6)

and
n∑

j=1

xij ≤ Ai, i = 1, ...,m, (23.7)

and xij ≥ 0 and xij integer. For the model to be feasible we must have the total
supply is at least equal to the total demand

m∑
i=1

Ai ≥
n∑

j=1

Bj . (23.8)

There have been numerous papers on the fuzzy transportation problem (see [1]-
[7]). These authors allow for fuzzy demand and fuzzy supply and/or fuzzy cost
coefficients. However, they keep the flow from source i to destination j (the xij)
non-negative integers. We will do the same but apply our fuzzy Monte Carlo
method to generate (approximate) solutions.
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Now we must adopt a method of deciding ≤, < and ≈ between fuzzy numbers
to understand equations (23.5) - (23.8). We will employ Buckley’s Method dis-
cussed in Section 2.6.1 using η = 0.8. First consider equation (23.6) and let crisp
number xj =

∑m
i=1 xij . Let Bj(x) be the membership function for triangular

Bj = (bj1/bj2/bj3). We say equation (23.6) is true if xj ≥ bj2 or if xj < bj2
then Bj(xj) ≥ 0.8. Next look at equation (23.7) and let crisp xi =

∑n
j=1 xij .

Let Ai(x) be the membership function for triangular Ai = (ai1/ai2/ai3). We
say equation (23.7) is true if xi < ai2 or if xi ≥ ai2 then Ai(xi) ≥ 0.8. Now
equation (23.8) is just comparing two triangular fuzzy numbers and can be done
directly using Buckley’s Method. Lastly, we need to be able to decide on min Z
in equation (23.5). This can be done sequentially during the simulation. Suppose
at some point in the Monte Carlo process the current minimum of Z is Z

∗
. The

next feasible values for the xij produce Z = Z0. If Z0 < Z
∗

replace Z
∗

with Z0,
otherwise discard Z0. We will be using the “tie” breakers discussed in Section
2.6.4 so we do not expect to get Z

∗ ≈ Z0.
In this way we may run the fuzzy Monte Carlo method. The main problem is

that when we randomly generate non-negative integers xij , 1 ≤ i ≤ m, 1 ≤ j ≤ n
too often they are not feasible, or equations (23.6) and (23.7) are not true. So
we must pay attention to how we produce the xij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, so that
many of these sets are feasible.

Example 23.3.1

We start with the following crisp transportation problem shown in Table 23.1.
There are three plants denoted as P1, P2 and P3 and four distribution centers
shown as D1,..,D4. This is a balanced problem because the total supply equals
the total demand. The values inside the table are the unit transportation costs
in dollars. We easily compute the optimal solution to be x13 = 2, x14 = 10,
x22 = 9, x23 = 8, x31 = 10, x32 = 1 with the rest of the xij zero and minimum
total cost $20, 200.

Now some of the parameters become triangular fuzzy numbers given in Table
23.2. We used the data in Table 23.1 for the vertex values of the triangular fuzzy
numbers in Table 23.2.

We randomly generate integers in [0, 10], since each xij ≤ 10, to form the
vector

v = (x11, ..., x14, x21, ..., x34), (23.9)

of length 12 as a possible feasible shipping schedule. If it is feasible, satisfies
equations (23.6) and (23.7), we compute Z in equation (23.5). We use our Sobol
quasi-random number generator (Section 3.5, Chapter 3) to get v in equation
(23.9) so that these vectors will be uniformly spread around I ∩ [0, 10]12, where
the “I” denotes integers.

We may simplify the constraints. Let si =
∑4

j=1 xij , i = 1, 2, 3 and cj =∑3
i=1 xij , j = 1, 2, 3, 4. The constraints can be rewritten as: (1) s1 < 13, s2 < 18,

s3 < 12; and (2) cj > 9 all j.
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Table 23.1. Crisp Transportation Problem in Example 23.3.1

D1 D2 D3 D4 Supply
P1 500 750 300 450 12
P2 650 800 400 600 17
P3 400 700 500 550 11

Demand 10 10 10 10 40

Table 23.2. Fuzzy Transportation Problem in Example 23.3.1

D1 D2 D3 D4 Supply
P1 (450/500/550) (725/750/775) (280/300/320) (410/450/460) (10/12/14)
P2 (600/650/700) (800/800/800) (390/400/420) (570/600/650) (15/17/20)
P3 (400/400/400) (680/700/710) (450/500/550) (510/550/560) (8/11/12)

Demand (8/10/12) (9/10/11) (6/10/13) (7/10/14)

Table 23.3. Solutions in Example 23.3.1

x Crisp Problem Fuzzy Problem
x11 0 TBC
x12 0 TBC
x13 2 TBC
x14 10 TBC
x21 0 TBC
x22 9 TBC
x23 8 TBC
x24 0 TBC
x31 10 TBC
x32 1 TBC
x33 0 TBC
x34 0 TBC

The results of our fuzzy Monte Carlo method, after N iterations, will be
displayed in Table 23.3 where TBC is for “to be completed”.
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24 Fuzzy Integer Programming

24.1 Introduction

We did not discuss fuzzy integers in Chapter 2 so we will do this in the next
section. Then in Section 24.3 we look at a standard integer programming problem
and then fuzzify it. We plan to use our fuzzy Monte Carlo method in Section 24.4
to obtain (approximate) solutions to this fuzzy integer programming problem.
There have been a few papers on fuzzy integers and optimization problems and
we refer the reader to ([1]-[5]).

24.2 Fuzzy Integers

A fuzzy integer I will have discrete membership function (equation (2.3) of
Chapter 2)

I = { μ1

n− r
, ...,

μr

n− 1
,
1
n
,
μr+2

n+ 1
, ...,

μ2r+1

n+ r
}, (24.1)

where n is an integer, r can be 1, 2, 3, ... and 0 < μ1 < ... < μr < 1, 1 >
μr+2 > ... > μ2r+1 > 0. These are “triangular shaped” fuzzy integers since their
membership functions monotonically increase (decrease) from zero to one (from
one to zero). I would be approximately n. An example of approximately ten
could be

I = {0.4
9
,

1
10
,
0.6
11

} (24.2)

and approximately four might be

I = {0.2
2
,
0.7
3
,
1
4
,
0.6
5
,
0.3
6

}. (24.3)

The arithmetic of fuzzy integers is done using the extension principle (Section
2.3.1) and using equations (2.4)-(2.7). For example consider

I1 = {0.5
0
,
1
1
,
0.6
2

} × {0.7
1
,
1
2
,
0.3
3

} = I2. (24.4)
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Let I3 = I1 × I2. Then

I3 = {0.5
0
,
0.7
1
,
1
2
,
0.3
3
,
0.6
4
,
0.3
6

}, (24.5)

because: (1) the value of zero can occur three ways; and (2) the value of two can
happen two ways. So the membership value at zero is

max{min{I1(0), I2(1)},min{I1(0), I2(2)},min{I1(0), I2(3)}}. (24.6)

This is no longer a “triangular shaped” fuzzy integer. A similar calculation is
done for I3(2).

Next we need to determine a way of deciding on <, ≤ and ≈ between fuzzy
integers. We will use Buckley’s Method in Section 2.6.1. Consider

I1 = {0.3
6
,
1
7
,
0.6
8

} (24.7)

and
I2 = {0.4

6
,
0.8
7
,
1
8
,
0.5
9
,
0.2
10

}. (24.8)

We use equation (2.43) for v(I1, I2) = 1 and v(I2, I1) = 0.8. This second value
is 0.8 because for x = 7 we have the maximum of [min(0.8, 1) for y = 7 and
min(0.8, 0.6) for y = 8] is 0.8 which is the largest value for x ≤ y. Having η = 0.8
means that I1 ≈ I2 but η = 0.9 gives I1 < I2.

This is all that we will need about fuzzy integers for the rest of this chapter.

24.3 An Integer Programming Problem

Let us consider the following simple integer programming problem from ([6],
p.309)

max Z = 6x1 + 4x2, (24.9)

subject to
x1 + x2 ≤ 5, (24.10)

and
10x1 + 6x2 ≤ 45, (24.11)

for x1, x2 ≥ 0 and integer. The optimal solution is x1 = 3 and x2 = 2 with max
Z = 26.

24.4 A Fuzzy Integer Programming Problem

We now have the following fuzzy integer programming problem

max Z = 6x1 + 4x2, (24.12)
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subject to
x1 + x2 ≤ 5, (24.13)

and
10x1 + 6x2 ≤ 45, (24.14)

for x1 and x2 non-negative fuzzy integers. Recall that a “bar” over a symbol
means it is fuzzy. So the variables will be non-negative fuzzy integers, the pa-
rameters in the objective function are considered uncertain and are fuzzy integers
and the right sides of the constraints are also uncertain and modeled as fuzzy
integers. The parameters on the left side of the constraints are all considered
known and crisp.

Values for the fuzzy parameters in the fuzzy integer programming problem
are given in Table 24.1.

Table 24.1. Fuzzy Parameters in the Fuzzy Integer Programming Problem

Parameter Fuzzy Integer

6 { 0.4
5 ,

1
6 ,

0.6
7 }

4 { 0.5
3 ,

1
4 ,

0.4
5 }

5 { 0.3
4 ,

1
5 ,

0.5
6 }

45 { 0.2
44 ,

1
45 ,

0.7
46 }

24.4.1 Fuzzy Monte Carlo Solution

We plan to apply our fuzzy Monte Carlo method to the fuzzy integer program-
ming problem outlined above. We first need to decide on what type of fuzzy
integers we will allow for x1 and x2. We will use two types of triangular shaped
fuzzy integers. Because of the crisp optimal solution we keep the xi in [0, 10].
The first type of fuzzy integer we can use is

x = { μ1

n− 1
,
1
n
,
μ2

n+ 1
}, (24.15)

for 0 < μi < 1, i = 1, 2 and n ∈ {1, 2, ..., 9}. The second type is

x = { μ1

n− 2
,
μ2

n− 1
,
1
n
,
μ3

n+ 1
,
μ4

n+ 2
}, (24.16)

for 0 < μ1 < μ2 < 1, 1 > μ3 > μ4 > 0 and n ∈ {2, ..., 8}.
Now we randomly generate a fuzzy vector v = (x1, x2), with the fuzzy integers

of either type in equations (24.15)-(24.16) and check if it is feasible, or satisfies
equations (24.13)-(24.14). Let the vertex point (where the membership value is
one) of x1 (x2) be at n1 (n2). We do not want n1 + n2 (10n1 + 6n2) to be much
greater than 5 (45) or else it will not be feasible. We will leave it up to the reader
on how they would randomly produce a sequence of fuzzy vectors v uniformly
filling the search space. Assuming it is feasible we compute the objective function
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Z. Now we have to adjust the breaking of “ties” in Section 2.6.4 for discrete fuzzy
sets. Let us first change the η value to 0.9.

Assume at some point in the simulation the maximum value of Z is Z
∗
. The

next generation of a feasible v gives Z0 for the objective function and assume
that Z

∗ ≈ Z0. Let the smallest value in Z
∗

(Z0) which has membership one
be z∗1 (z10) and the largest value with membership one z∗2 (z20). If z∗1 < z10 we
have Z

∗
< Z0 and if z∗1 > z10 then Z

∗
> Z0. If z∗1 = z10 we go on and do the

same thing with z∗2 and z20. In this way we can reduce the number of Z values
considered the maximum.

After N iterations of the algorithm the results of the fuzzy Monte Carlo
method will give (approximate) solutions for x1, x2 and Z.
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25 Fuzzy Dynamic Programming

25.1 Introduction

Dynamic programming has become a very large field of applications. Any man-
agement science/operations research book will discuss this topic and have list of
references on the topic. Fuzzy dynamic programming is dynamic programming
with some of the parameters/variables fuzzy. Put “fuzzy dynamic programming”
into your search engine and get around 500 hits. A few key references on fuzzy
dynamic programming are ([1]-[5],[7]-[9]. The inventory control problems dis-
cussed in Chapters 20-22 are usually solved by dynamic programming. Sequen-
tial decision problems usually fall into the dynamic programming area. So, fuzzy
dynamic programming might be used on the fuzzy inventory control problems
in those chapters. However, we used Monte Carlo methods there and will do the
same in this chapter.

We will look at a typical crisp dynamic programming problem in the next
section. We will just set the problem up, but not go through the details of the
dynamic programming solution. In Section 25.3 we fuzzify this problem and then
plan to apply our fuzzy Monte Carlo method to obtain a fuzzy solution to this
example problem.

25.2 A Dynamic Programming Problem

This problem is adapted from an example in ([6],p.361). Consider the design
of an electronic device consisting of K main components. The K main com-
ponents are arranged in series so that if one component fails the entire device
fails. The reliability (probability of no failure) of the device can be improved
by installing backup units for each component. We may add one, two, three,...,
or N-1 backup units for each component. These backup units could be added
in parallel to all components. We collect the data for the construction of the
device and we compute Rik = the reliability of the kth component if it has i− 1
backups in parallel, 1 ≤ k ≤ K, i = 1, 2, 3, ..., N . The Rik increase, nonlinearly,
as i increases. There are costs involved in making this devise and we have a
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budget constraint. Let Cik = be the total cost of the kth component having
i − 1 backups. The budget constraint is that we have at most $B to spend. A
design is d = ((i1, 1), ..., (iK ,K)) where the first component has i1 − 1 backups
with i1 in {1, 2, 3, ..., N},...,the Kth component has iK − 1 backups with iK in
{1, 2, 3, ..., N}. Let D be the set of all designs. The optimization problem is

max
∏
s∈d

Rs, (25.1)

subject to ∑
s∈d

Cs ≤ B, (25.2)

and
d ∈ D, (25.3)

where s ∈ d means s ∈ {(i1, 1), ..., (iK ,K)} for d = ((i1, 1), ..., (iK ,K)).

25.3 A Fuzzy Dynamic Programming Problem

We just fuzzify the crisp design problem in the previous section. We will use
N = K = 3 and the fuzzy data is in Table 25.1. The cost values are all in
multiples of $1000. All the fuzzy numbers in this table are triangular fuzzy
numbers. The budget constraint is approximately $10, 000 and we take B =
(8, 500/10, 000/11, 500). We will use Buckley’s Method (Section 2.6.1) with η =
0.9 to decide on ≤ and < between fuzzy numbers, and the rules for breaking ties
in Section 2.6.4 to change ≈ between fuzzy numbers to < or >.

The fuzzy optimization problem is

max
∏
s∈d

Rs, (25.4)

subject to ∑
s∈d

Cs ≤ B, (25.5)

and
d ∈ D. (25.6)

Table 25.1. Fuzzy Reliability and Cost in the Monte Carlo Study

i Ri1 Ci1 Ri2 Ci2 Ri3 Ci3

1 (0.4/0.6/0.8) (0.5/1/1.5) (0.5/0.7/0.9) (2/3/4) (0.4/0.5/0.6) (1/2/3)

2 (0.7/0.8/0.9) (1.7/2/2.3) (0.7/0.8/0.9) (4.5/5/5.5) (0.5/0.7/0.9) (2/4/6)

3 (0.85/0.9/0.95) (2.8/3/3.2) (0.85/0.9/0.95) (5/6/7) (0.85/0.9/0.95) (3/5/7)



A Fuzzy Dynamic Programming Problem 229

25.3.1 Fuzzy Monte Carlo Solution

We next want to apply our fuzzy Monte Carlo method to produce a design
solution to this fuzzy optimization problem. Randomly generate a design d by
randomly picking ik in {1, 2, 3} for k = 1, 2, 3. This design will be feasible if∑

s∈dCs ≤ B. This constraint is easy to check since all the fuzzy numbers are
triangular fuzzy numbers. Let

∑
s∈d Cs = (cd1/cd2/cd3). Then this constraint is

true if cd2 ≤ 10, 000. So if cd2 > 10, 000 we need to check and see if
∑

s∈dCs ≈ B

or
∑

s∈d Cs > B. If
∑

s∈d Cs ≈ B then
∑

s∈d Cs ≤ B. Once we have a feasible
design we compute the value of the fuzzy objective function. Now

∏
s∈d Rs will be

a triangular shaped fuzzy number. Assume we are at some point in the simulation
and the current maximum fuzzy reliability is R

∗
=

∏
s∈d Rs. The next feasible

design produces fuzzy reliability R0. If R
∗
< R0, then replace R

∗
with R0,

otherwise delete R0. Since we are using the tie breaking rules we do not expect
to get R

∗ ≈ R0.
The Monte Carlo method may be inefficient in having too many infeasible

designs. But in this example there are only 33 = 27 possible designs and the
simulation should run quickly. For larger problems we would need to deter-
mine how to make mostly feasible designs. If we use the vertex values of all
the triangular fuzzy numbers the resulting crisp problem has optimal design
d∗ = ((2, 1), (1, 2), (3, 3)) with maximum reliability R∗ = 0.504 and total cost
$10, 000.

The results of the fuzzy Monte Carlo method, after N iterations, will pro-
duce an optimal design of d∗ = ((x, 1), (x, 2), (x, 3)) with maximum fuzzy re-
liability R

∗ ≈ TBC and fuzzy cost C = TBC where TBC means “to be
completed”.
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26 Fuzzy Project Scheduling/PERT

26.1 Introduction

PERT stands for “Project Evaluation and Review Technique”. A project defines
a combination of interrelated activities (jobs) that must be completed in a cer-
tain order before the entire project can be completed. The project that we will
concentrate on in this chapter is shown in Figure 26.1.
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Fig. 26.1. Project Network

The jobs are interrelated in a sequence such that some jobs cannot start until
others are finished. In Figure 26.1 we see that jobs J35 and J34 coming from
node number 3, cannot start until all jobs leading into node 3, which are J13

and J23, have been completed. In general, jobs require time and resources for
completion. We will not discuss the allocation of resources to jobs in this chapter
so the concept of “crashing” ([7],[13]) will not be used. So, attached to each job
Jij is only its time to completion tij ≥ 0. Let Tij denote a variable whose values
tij are possible job times for job Jij .

In general, job times are uncertain and in PERT Tij is a random variable,
while in fuzzy PERT, Tij is a fuzzy variable. Let Ti be the time all jobs entering
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node number i are finished and is therefore the earliest time all jobs leaving this
node may start. We wish to find T8 giving the time of project duration. We see
from Figure 26.1 that T8 = max{T68, T78}, T7 = max{T47, T57}, etc. In stochastic
PERT, T8 will be a random variable, so one would want to find its probability
density function so that we can compute Prob[T8 ≤ λ] for various possible due
date times λ. We may have a constraint like Prob[T8 > λ] ≤ 0.05. However, in
probabilistic PERT it is very difficult, in general, to find the probability density
of project duration and one usually uses simulation to construct a histogram
approximating the unknown density. In fuzzy PERT T8 is a fuzzy variable and
we wish to find the fuzzy set M8 describing project duration. We now argue
that there is an algorithm to find M8 for both job times fuzzy numbers and for
job times discrete fuzzy sets. For fuzzy PERT we will consider two cases: (1) job
times are trapezoidal fuzzy numbers; and (2) job times are discrete fuzzy sets.
We will only discuss our fuzzy Monte Carlo method for the case where job times
are discrete fuzzy sets.

There are a number of other items usually computed in PERT such as floats,
earliest start time for a job, latest start time for a job, etc. We will not be
concerned with any of these computations and the reader may consult ([7],[13])
for probabilistic PERT, and ([1],[3]-[12],[14]-[15]), and the references in these
papers, for fuzzy PERT/fuzzy CPM/fuzzy project scheduling. This chapter is
based on [2].

26.2 Job Times Fuzzy Numbers

Let the fuzzy job time for Tij be the trapezoidal fuzzy number M ij =
(aij/m

1
ij,m

2
ij/bij). In the definition of M ij : (1) aij is the optimistic job time for

Jij , or the shortest time possible if everything goes well; (2) m1
ij , m

2
ij are the

lower, and upper, bounds respectively, of the most likely, or expected, job time;
and (3) bij is the pessimistic job time for Jij , or the longest time possible when
everything goes wrong. We assume that 0 ≤ aij < m1

ij ≤ m2
ij < bij for all jobs.

So job times may be triangular when m1
ij = m2

ij . These fuzzy numbers M ij can
be obtained from expert opinion and if so, one might want to only solicit the
numbers aij , m1

ij , m
2
ij and bij from experts.

To determine the fuzzy set for project duration we employ the extension
principle (Section 2.4.1 of Chapter 2). Let F be a function that computes project
duration given the job times for all jobs. So

F (t12, t13, ..., t78) = T8, (26.1)

where aij ≤ tij ≤ bij for all jobs. By the extension principle

M8 = F (M12, ...,M78), (26.2)

and then

M8(x) = sup{min(M12(t12), ..,M78(t78))|F (t12, .., t78) = x}, (26.3)

where M8 is the fuzzy set for project duration.
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We now present a computational method of computing M8. Let

Lij(y) = (m1
ij − aij)y + aij , (26.4)

Rij(y) = (m2
ij − bij)y + bij , (26.5)

for 0 ≤ y ≤ 1. Let us assume we have a software package, which we will call L,
that computes project duration T8 given a vector of job times v = (t12, ..., t78).
The project in Figure 26.1 is fixed, all we input into L is a vector of job times v.
Let L(v) = T8. For each fixed y in [0, 1] let L(vl(y)) = t18(y) and L(vr(y)) = t28(y),
where vl(y) = (L12(y), ..., L78(y)) and vr(y) = (R12(y), ..., R78(y)). The t18(y) and
t28(y) are project duration times. Then it was shown in [2] that

M8(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y : if x = t18(y), 0 ≤ y < 1,

1 : if t18(1) ≤ x ≤ t28(1),

y : if x = t28(y), 0 ≤ y < 1,

0 : otherwise.

(26.6)

Example 26.2.1

The project network in Figure 26.1 with fuzzy job times is presented in
Table 26.1.

We ran L on Lij(y) and Rij(y) for y = 0, 0.1, . . . , 0.9, 1.0. Using these results
and equation (26.6) we constructed M8 shown in Figure 26.2.

Notice that the slope of M8 in Figure 26.2 changes at t8 = 20 and at t8 = 27.5
both corresponding to α = 0.5. In both cases the slope changes due to different
critical paths being created in the network. A critical path is a path through the
network from start to finish so that the delay of the completion of any job on
this path will cause a delay in the completion of the project.

Table 26.1. Fuzzy Job Times in Example 26.2.1

Job aij m1
ij m2

ij bij
J12 4 5 5 6
J13 7 8 8 10
J23 2 4 4 5
J35 3 4 5 6
J34 3 5 5 6
J47 3 5 5 6
J56 2 5 6 7
J57 4 5 5 6
J78 4 5 5 8
J68 3 5 5 6
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Fig. 26.2. Fuzzy Project Duration in Example 26.2.1

26.3 Job Times Discrete Fuzzy Sets

Now job times tij will be non–negative integers. A discrete fuzzy set for a job
time might look like {

0.2
2
,
0.5
3
,
1.0
4
,
0.6
5
,
0.1
6

}
. (26.7)

The computational algorithm to find the discrete fuzzy set for project duration is
more complicated than the one for trapezoidal number job times and we will omit
it. The interested reader needs to consult [2] for the complete details. However,
the discrete fuzzy set for project duration is still computed from equation (26.3).
Now we will construct the discrete fuzzy set for project time using our fuzzy
Monte Carlo method.

26.3.1 Fuzzy Monte Carlo Method

We first need the discrete fuzzy sets for job times. They are:

1. M12 = { 0.5
4 ,

1
5 ,

0.5
6 };

2. M13 = { 0.5
7 ,

1
8 ,

0.67
9 , 0.33

10 };
3. M23 = { 0.33

2 , 0.67
3 , 1

4 ,
0.5
5 };

4. M35 = { 0.5
3 ,

1
4 ,

1
5 ,

0.5
6 };

5. M34 = { 0.33
3 , 0.67

4 , 1
5 ,

0.5
6 };

6. M47 = { 0.33
3 , 0.67

4 , 1
5 ,

0.5
6 };

7. M56 = { 0.25
2 , 0.5

3 ,
0.75
4 , 1

5 ,
1
6 ,

0.5
7 };

8. M57 = { 0.5
4 ,

1
5 ,

0.5
6 };

9. M78 = { 0.5
4 ,

1
5 .

0.75
6 , 0.5

7 ,
0.25
8 };

10. M68 = { 0.33
3 , 0.67

4 , 1
5 ,

0.5
6 }.

We randomly generate vectors v(k) = (t(k)
12 , ..., t

(k)
78 ) where t(k)

12 ∈ {4, 5, 6},...,t(k)
78

∈ {4, 5, 6, 7, 8}, for k = 1, 2, 3, .... We want random vectors of non-negative in-
tegers here and not random vectors of fuzzy numbers. To obtain v(k) we may
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modify the procedure given in Section 3.5. Use our Sobol quasi-random number
generator for random vector v = (x1, ..., x10) and then transform x1 to be an
integer in {4, 5, 6} and set the result to t

(k)
12 , transform x2 to be an integer in

{7, 8, 9, 10} and set the result to t(k)
13 , etc.

Let L(v(k)) = t
(k)
8 project duration given job times in v(k). Next set

μ
(k)
8 = min{M(t(k)

ij )|v(k) = (t(k)
12 , ..., t

(k)
78 )}. (26.8)

We may get multiple v(k) which produce the same project duration. Suppose we
get t(a)

8 = t
(b)
8 = t

(c)
8 = t8. Then μ8 = M(t8) = max{μ(a)

8 , μ
(b)
8 , μ

(c)
8 }. Then we

will use μ8/t8 in the discrete fuzzy set for project duration.
In this way we may construct a discrete fuzzy set for project duration

M8 = {μ1

18
, ...,

μ14

31
}, (26.9)

with the membership values μi determined by our fuzzy Monte Carlo method.
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27 Max/Min Fuzzy Function

27.1 Introduction

In this chapter we first look at finding solutions to

max/minY = f(X), (27.1)

where X is a triangular (shaped) fuzzy number in some interval I, f is a fuzzy
function mapping fuzzy numbers into fuzzy numbers and Y is also a triangular
shaped fuzzy number. As an example of this problem we consider a fuzzy EOQ
(economic order quantity) problem to solve. To generate approximate solutions
we plan to employ our fuzzy Monte Carlo method.

Then we consider finding solutions to

max/minZ = f(X,Y ), (27.2)

where X, Y and Z are all triangular (shaped) fuzzy numbers with X (Y ) in
some interval Ix (Iy) and f is a fuzzy function mapping pairs of fuzzy numbers
into fuzzy numbers. As an example of this problem we plan to use our fuzzy
Monte Carlo method to obtain approximate solutions to a fuzzy profit function
of two fuzzy variables.

27.2 Max/Min f(X)

We first briefly discuss the crisp EOQ model. We have adapted this description
from ([2],p.246). See also [4]. The average weekly cost of ordering, paying for
and storing merchandize is

C(x) =
kD

x
+ cx+

hx

2
, (27.3)

where x is the order quantity, k is the cost of placing the order (the same no
matter how large x is), D is the weekly demand, c is the purchase cost in $ per
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unit and h is the storage cost (including space, utilities, insurance, security,...).
The object is to find x to minimize C(x). The solution is, after setting the
derivative to zero,

x∗ =

√
2kD

2c+ h
, (27.4)

from which we may compute the minimum weekly cost.
These parameters k, D and h are difficult to estimate. So we will use fuzzy

estimators [1] and then k, D and h are all fuzzy numbers expressing the uncer-
tainty in their values. We assume that c is a known crisp number. To complete
the fuzzification of the EOQ model we will also let the order quantity x be a
fuzzy number. We wish to find x in some interval I to minimize

C(x) =
k D

x
+ cx+

hx

2
. (27.5)

We may have to defuzzify our solution x∗ to get a usable order quantity.
For literature on the fuzzy EOQ model see Chapter 20.

Example 27.2.1

Let k = (8/10/12), D = (40/50/60), h = (0.06/0.10/0.14) and c = $5.00/unit.
These fuzzy numbers are all triangular fuzzy numbers. Defuzzify the fuzzy num-
bers to k = 10, D = 50 and h = 0.10 and then the crisp EOQ has solution
x∗ = 100 with minimum cost $260 per week. So we pick the interval for the
fuzzy order x to be I = [0, 150].

We randomly generate a QBGFNs (Chapter 4) x and evaluate equation (27.5)
producing the current value of C0 for the fuzzy cost. Let C

∗
be the previous

minimum for fuzzy cost. If C0 < C
∗
, then discard C

∗
and set minimum fuzzy

cost to C0. If C0 > C
∗
, then discard C0. If C0 ≈ C

∗
, let C0 ≈ (c01/c02/c03)

and C
∗ ≈ (c∗1/c

∗
2/c

∗
3). If c02 < c∗2 we keep C0, if c02 > c∗2 we discard C0. If

c02 = c∗2, then use c03 and c∗3. If c02 = c∗2 and c03 = c∗3, then use c01 and c∗1. If
the supports and cores are equal randomly discard one of them. Continue this
process until it appears that we are close to the minimum fuzzy cost. Let the
minimum fuzzy cost be C

∗
with corresponding fuzzy order x = x∗. For < and ≈

between fuzzy numbers we will use Buckley’s Method (Section 2.6.1 in Chapter
2) using η = 0.9.

27.3 Max/Min f(X, Y )

We first briefly discuss the crisp profit model. We have adapted this description
from ([3],p.861). The total profit from one acre of a certain crop depends on the
amount spent (x) on fertilizer and the amount spent (y) on seed according to
the model

P (x, y) = c(a1x
2 + a2xy + a3x+ a4y

2 + a5y + a6), (27.6)
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for parameters c and ai, i = 1, 2, ..., 6. Given values for all the parameters we
wish to find x and y to maximize P (x, y). Crisp values for these parameters
have been estimated. They are c = 0.01, a1 = −1, a2 = 3, a3 = 160, a4 = −5,
a5 = 200 and a6 = 2600. Then after setting the partial derivatives to zero we
obtain the optimal solution of x∗ = 200, y∗ = 80 with maximum profit $266.

All these parameters were estimated from data or from experts. We therefore
use fuzzy estimators and obtain c and ai, i = 1, ..., 6, all triangular fuzzy num-
bers. We will also let x and y be fuzzy numbers. We wish to find x (y) in some
interval Ix (Iy) to maximize

P (x, y) = c(a1x
2 + ...+ a6). (27.7)

We may have to defuzzify our solutions x∗ and y∗ to get usable values. We now
can use our fuzzy Monte Carlo method to obtain approximate solutions.

Example 27.3.1

Let c = (0.005/0.01/0.05), a1 = (−1.5/ − 1/ − 0.5), a2 = (2/3/4), a3 =
(150/160/170), a4 = (−5.5/ − 5/ − 4.5), a5 = (170/200/230) and a6 = (2500/
2600/2700). We choose the interval Ix = [0, 300] for x and Iy = [0, 120] for y.

We randomly generate QBGFNs (Chapter 4) x, y and evaluate equation (27.7)
producing the current value of P 0 for the fuzzy profit. Let P

∗
be the previous

maximum for fuzzy profit. If P 0 > P
∗
, then discard P

∗
and set maximum fuzzy

profit to P 0. If P 0 < P
∗
, then discard P 0. If P 0 ≈ P

∗
, let P 0 ≈ (p01/p02/p03)

and P
∗ ≈ (p∗1/p

∗
2/p

∗
3). If p02 > p∗2 we keep P 0, if p02 < p∗2 we discard P 0. If

p02 = p∗2, then use p03 and p∗3. If p02 = p∗2 and p03 = p∗3, then use p01 and p∗1. If
the supports and cores are equal randomly discard one of them. Continue this
process until it appears that we are close to the maximum fuzzy profit. Let the
maximum fuzzy profit be P

∗
with corresponding fuzzy variables x = x∗ and

y∗. For > and ≈ between fuzzy numbers we will use Buckley’s Method (Section
2.6.1 in Chapter 2) using η = 0.9.
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28 Summary, Conclusions, Future Research

28.1 Summary

In this book we hoped to convince the reader that Monte Carlo methods can be
useful in generating approximate solutions to fuzzy optimization problems. In
a Monte Carlo procedure we randomly produce N possible (feasible) solutions
to an optimization problem, subject to some criteria we keep only the “best”
feasible solutions, and as N grows larger and larger we converge to an optimal
solution. Having a feasible solution usually means it satisfies the constraints to
the problem and these constraints usually involve equalities and inequalities.
Monte Carlo methods are known to be very inefficient and are seldom used in
crisp optimization problems since these problems usually have their own efficient
solution algorithms. However, fuzzy optimization problems usually do not have
their own efficient solution algorithms so Monte Carlo methods become more
important in fuzzy optimization.

Monte Carlo methods in fuzzy optimization require us to randomly generate
N feasible solutions. These feasible solutions will be fuzzy numbers or fuzzy vec-
tors. The fuzzy numbers we use are triangular fuzzy numbers, trapezoidal fuzzy
numbers or quadratic fuzzy numbers (coded QBGFNs in the book). A quadratic
fuzzy number is a triangular shaped fuzzy number whose sides are described by
quadratic functions. Fuzzy vectors are vectors composed of fuzzy numbers. We
need to produce random sequences of fuzzy numbers and random sequences of
fuzzy vectors. How we do this is explained in detail in Chapter 4. We use streams
of crisp quasi-random numbers discussed in Chapter 3 to produce sequences of
random fuzzy numbers/vectors. Randomness tests on our sequences of random
fuzzy numbers/vectors is presented in Chapter 5.

Next we need to check to see if our random fuzzy number/vector is feasible.
When the constraints involve <, or ≤, between fuzzy numbers we use three
methods to evaluate inequalities between fuzzy numbers: (1) Buckley’ Method
in Section 2.6.1; (2) Kerre’s Method in Section 2.6.2; and (3) Chen’s Method
in Section 2.6.3. Of course, our computer programs may be altered to employ
any method of evaluating inequalities between fuzzy numbers. Once we have a
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sequence of random feasible solutions we need to pick the “best” ones. Most of
the fuzzy optimization problems we study in the applications chapters (Chapters
6 - 16) involve finding the maximum/minimum of a fuzzy function subject to
fuzzy constraints. We use the same methods (Buckley, Kerre, Chen) to find the
maximum/minimum of a collection of fuzzy numbers. A key property that a
Monte Carlo method must have, to be able to converge on an optimal solution,
is that it uniformly fill the search space. We argue that our procedure has this
property in Section 5.3.

A major problem in fuzzy Monte Carlo is to decide on intervals [ai, bi], 1 ≤
i ≤ m, for our random fuzzy numbers X i, i = 1, 2, 3, ..., m. That is, randomly
generate Xi ∈ [ai, bi] all i. If an interval is too small we can miss a good solution.
If the intervals are too big we can produce many infeasible candidates. This
problem is discussed starting in Chapter 6 and you can use the key phrase
“intervals for Monte Carlo” in the Index.

We applied our fuzzy Monte Carlo method to fully fuzzified linear program-
ming (Chapters 7-9), solving fuzzy equations (Chapter 10), to fuzzy regression
(Chapters 11-14), fuzzy game theory (Chapter 15) and fuzzy queuing theory
(Chapter 16). In some cases these fuzzy optimization problems had approximate
optimal solutions from previous publications. In all cases, except one situation as
explained in Chapter 11, our Monte Carlo method obtained a better approximate
solution.

The computer time can be quite long. In one case it was 68 hours for N =
100, 000 in Chapter 15. So we suggested doing it in parallel. Use 10 computers
each for N = 100, 000 to get a run of 1, 000, 000.

There are many fuzzy optimization problems we have not yet applied our
fuzzy Monte Carlo method to calculate an approximate solution and some of
these are outlined in Chapters 17-27.

28.2 Future Research

Future research could be involved with continuing to use our fuzzy Monte Carlo
method on fuzzy linear programming problems and on fuzzy regression prob-
lems. But more importantly it would involve attacking those fuzzy optimization
problems discussed in Chapters 17-27. Of course, there are fuzzy optimization
problems not presented in this book that may also be (approximately) solved by
Monte Carlo.

We encourage others to review and extend the work which we have begun. In
preparation for Chapters 3-10 of this book we have developed seven programs
(Table 28.1). Each is written in Visual C++; some use the OpenGL graphics
library. We offer the source and data files freely to those wanting to do further
research. Contact Leonard Jowers (LJJowers@uab.edu) for more information.
A number of MATLAB programs were created for Chapters 11-16. One is con-
tained in Chapter 14. Others may be obtained by contacting James J.Buckley
(buckley@math.uab.edu).
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Table 28.1. Programs Available from Book Preparation

Program Name Description Chapter
RNGenerator generates homogeneous files 3

of crisp random numbers
ComparisonOfBuckleys pair-wise Buckley comparison 4

for various thresholds
ComparisonOfCompares pair-wise Buckley, Kerre, Chen 4

FN comparisons
FuzzyRunsTest performs fuzzy runs test 5
FuzzyFrequencyTest performs fuzzy frequency test 5
FuzzyMonteCarlo performs fuzzy Monte Carlo 6-10
Plotter creates plots of results file 6-10

28.3 Conclusions

We believe that we have convinced the reader that fuzzy Monte Carlo methods
are worthy of research and application to fuzzy optimization. We also believe
that processing capabilities are mature enough to support fuzzy Monte Carlo op-
timizations. Fast processors and new computer architectures (e.g., technologies
behind simultaneous multithreading, dual-core and cell processors) make these
types of research more feasible for researchers not having access to supercom-
puters. There are surely hidden opportunities in this work.
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