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Neuro-fuzzy systems of Mamdani,
logical and Takagi-Sugeno type

9.1 Introduction

Within the last dozen of years, different structures of neuro-fuzzy networks
have been presented, often referred to in the world literature as neuro-fuzzy
systems. They combine the advantages of neural networks and classic fuzzy
systems. In particular, the neuro-fuzzy networks are characterized – in con-
trast with neural networks – by a interpretable representation of knowledge
represented by fuzzy rules. As generally known, the knowledge in neural
networks is represented by the values of synaptic weights, and therefore
is completely not interpretable, for instance, for a user of a medical ex-
pert system that uses neural networks. Moreover, neuro-fuzzy networks
can be trained, using the idea of error backpropagation method, which is
the basis of learning of multilayer neural networks. The learning usually
applies to membership function parameters of the IF and THEN part
of the fuzzy rules. As shown in Chapter 7, there is also the possibility to
apply the evolutionary algorithms to learn not only the parameters of the
membership functions but also the fuzzy rules themselves. The above dis-
cussed advantages of the neuro-fuzzy networks are the reason for their com-
mon application in classification, approximation and prediction problems.
Most of neuro-fuzzy structures described in the world literature utilizes
the Mamdani type inference or the Takagi-Sugeno schema. As mentioned
in Chapter 4, the Mamdani type inference consists in connecting the an-
tecedents and the consequents of rules using a t-norm (most often the
t-norm of the min type or of the product type). Then the aggregation of
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particular rules is made using a t-conorm. In case of the Takagi-Sugeno
schema, the consequents of the rules are not fuzzy in nature, but are func-
tions of the input variables. Less often the logical inference is applied, which
consists in connecting the antecedents and the consequents of rules using
a fuzzy implication that satisfies the conditions of Definition 4.47. In case
of an inference of logical type the aggregation of particular rules is made
using a t-conorm. It is obvious that the designers and users of neuro-fuzzy
systems would like to obtain a possibly high accuracy of these systems op-
eration in the sense of the chosen quality criterion. In approximation and
prediction problems, such quality criterion is the mean squared error, and
in classification problems – the number of erroneously classified samples. In
both problems, the experiments are made on learning sequences and test-
ing sequences. It should be stressed that the satisfactory results obtained
on a learning sequence do not guarantee a correct system operation on a
testing sequence. In other words, the neuro-fuzzy system should have good
properties of the so-called generalization. In particular, neuro-fuzzy systems
designed using both the membership function and the weights describing
the importance of rules and importance of linguistic variables in individual
rules should be characterized by an appropriate number of all parameters
which are to be subject of learning. A big number of parameters ensures
a small learning error, but usually leads to wrong generalization. On the
other hand, a small number of parameters in the system leads to a larger
learning error. In this chapter, we will present the Mamdani, logical and
Takagi-Sugeno systems, their learning algorithms and we will make a com-
parative analysis of their effectiveness. We will solve the issue of designing
neuro-fuzzy systems, which are a compromise between accuracy and the
number of parameters describing this system.

9.2 Description of simulation problems used

Neuro-fuzzy system discussed in this and the next chapter will be tested
using standard testing problems (benchmarks).

Table 9.1 presents the name of the problem, number of input data, length
of the learning sequence and length of the testing sequence.

Below, we present a detailed description of the problems listed in
Table 9.1. Information on the number of rules and the number of epochs
relates to the simulations performed in this chapter (problems 9.2.1 - 9.2.4).

9.2.1 Polymerization
We consider the problem of modeling the polymer manufacturing process.
The device produces polymers (macromolecular compounds obtained from
monomers, i.e. small-molecule compounds) as a result of chemical reaction
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TABLE 9.1. Simulation problems

No. Name of problem Number of Length of Length of
inputs the learning the testing

sequence sequence
1 Polymerization 3 70 20
2 HANG (modeling a static 2 50 20

nonlinear function)
3 NPD (modeling a dynamic 2 1000 200

nonlinear function)
4 Modeling the taste of rice 5 75 30
5 Distinguishing of the brand 13 125 53

of wine
6 Classification of iris flower 4 90 60

called polymerization, during which many small molecules of the same com-
pound connect spontaneously (or under the influence of catalytic agents).
In order to model the system, three continuous input variables are selected.
They include: monomer concentration, change of monomer concentration
and its current flow rate. Based on the values of input variables, the next
value of the monomer flow rate should be determined. Simulation tests of
systems made of 3 inputs, one output and 6 rules have been performed. The
experiment was repeated many times for 6000 epochs (420 000 iterations)
and its results were averaged.

9.2.2 Modeling a static non-linear function
It is an issue of approximation of a non-linear function – HANG, described
by the formula

y (x1, x2) =
(
1 + x−2

1 + x−1.5
2

)2
, (9.1)

where x1, x2 ∈ [1, 5]. The learning sequence consists of 50 input data vectors
and the corresponding function values. Simulation tests of systems made
of 2 inputs, one output and 8 rules were performed. The experiment was
repeated many times for 8000 epochs (400 000 iterations) and its results
were averaged.

9.2.3 Modeling a non-linear dynamic object (Nonlinear
Dynamic Problem - NDP)
It is the problem of modeling a nonlinear dynamic object the behavior of
which is described by the formula

y (t) = g (y (t − 1) , y (t − 2)) + u (t) , (9.2)
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where

g (u (t − 1) , y (t − 2)) =
y (t − 1) y (t − 2) (y (t − 1) − 0.5)

1 + y2 (t − 1) + y2 (t − 2)
, (9.3)

and u (t) is the output signal.
For the purpose of learning neuro-fuzzy systems, a sequence of model

states of the objects for a random input signal with uniform distribution is
used (first 500 samples) and for a sinusoidal input signal u (t) = sin (2πt/25)
(next 500 samples). The sequence has been generated for a zero initial
state. Simulation tests of systems made of 3 inputs, one output and 6 rules
were performed. The experiment was repeated many times for 500 epochs
(500 000 iterations) and its results were averaged.

9.2.4 Modeling the taste of rice
The problem to be solved in this example is to find a nonlinear dependency
between input data, characterizing the rice samples, and the output signal
containing the interpretation of the taste of rice. Data consist of 105 cases.
Each sample has been described by 5 features: flavor, appearance, taste,
viscosity and hardness, constituting the system input data. The system
output is a general assessment of the taste of rice. Input and output data
have been normalized to the interval [0, 1]. Simulation tests of systems made
of 2 inputs, one output and 6 rules were performed. The experiment was
repeated many times for 5000 epochs (375 000 iterations) and its results
were averaged.

9.2.5 Distinguishing of the brand of wine
The problem to be solved is the correct classification of wine samples. Data
in the problem of wine distinguishing consist of chemical analysis of 178
wines from same region of Italy, but from three different vineyards. The
input data consist of 13 continuous attributes which include among other
thing: alcohol contents, malic acid contents, sediment, sediment alkalinity,
magnesium contents, total phenol contents, color intensity and shade. In
the experiment discussed, all the data have been divided into a learning
sequence (125 samples) and a testing sequence (53 samples).

9.2.6 Classification of iris flower
The problem consist in the classification of the Iris flower based on the length
of the leaf in cm, width of the leaf in cm, length of the petal in cm, width of
the petal in cm. We distinguish three classes: Iris setosa, Iris Versicolor and
Iris Virginica. Data include 150 sets, which were divided at random into the
learning sequence (90 sets) and the testing sequence (60 sets).
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Remark 9.1
Gradient algorithms of the momentum type with learning coefficient η =
0.25 and with momentum coefficient 0.1 have been used for learning of all
the neuro-fuzzy systems presented in this chapter. These algorithms have
been derived in Subchapter 9.6 without taking account of the momentum
term in particular iteration procedures. In all neuro-fuzzy systems consid-
ered in this chapter, the following principle has been adopted:

• particular rules are aggregated using a t-conorm of the max type in
case of the Mamdani system and a t-norm of the min type in case of
a logical system,

• the antecedents of rules are aggregated by means of t-norm of the
product type.

The basis for assessment of neuro-fuzzy systems will be the value of
error (mean squared error in case of approximation issues or number of
erroneously classified samples in case of classification issues). At first, the
mean error in particular epochs is determined, and then the minimum error
is found among these errors.

9.3 Neuro-fuzzy systems of Mamdani type

Let us consider two types of neuro-fuzzy systems of Mamdani type, the
so-called A type and B type systems. In both cases, the antecedents and
the consequents of rules are connected by means of a t-norm. In A type
systems at the inference block output we have N fuzzy sets, while in B-type
systems at the block output we have one fuzzy set which is the result of
aggregation of inference results in particular rules.

9.3.1 A-type systems
In A-type systems, the defuzzification is realized using the dependency:

y =
∑N

r=1 yr · µB
r (yr)

∑N
r=1 µB

r (yr)
. (9.4)

The membership functions of fuzzy sets B
r
, r = 1, 2, . . . , N, are defined

using the following formula:

µB
r (y) = sup

x∈X

{
µAr (x)

T∗ µAr→Br (x, y)
}

. (9.5)

With singleton type fuzzification, formula (9.5) takes the form

µB
r (y) = µAr→Br (x, y) = T (µAr (x) , µBr (y)) . (9.6)
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Since
µAr (x) =

n

T
i=1

(
µAr

i
(xi)
)
, (9.7)

we have

µ
Br (y) = µAr→Br (x, y) = T

[
n

T
i=1

(
µAr

i
(xi)
)
, µBr (y)

]
, (9.8)

where T is any t-norm. Owing to the fact that

µBr (yr) = 1 (9.9)

and
T (a, 1) = a, (9.10)

we obtain the following dependency:

µB
r (yr) =

n

T
i=1

(
µAr

i
(xi)
)
. (9.11)

By substituting dependency (9.11) to formula (9.4), we get

y =
∑N

r=1 yr · Tn
i=1

(
µAr

i
(xi)
)

∑N
r=1 Tn

i=1

(
µAr

i
(xi)
) . (9.12)

In A-type systems, separate inference is made within each rule and
µB

r (yr), r = 1, 2, . . . , N, is computed. Let us assume that input and out-
put linguistic variables are described by means of Gaussian membership
functions, that is

µAr
i
(xi) = exp

[

−
(

xi − xr
i

σr
i

)2
]

, (9.13)

µBr (y) = exp

[

−
(

y − yr

σr

)2
]

. (9.14)

By substituting the above dependencies to formula (9.4) and applying the
Larsen rule, we will get the following formula:

y =

∑N
r=1 yr

(
∏n

i=1 exp

[

−
(

xi − xr
i

σr
i

)2
])

∑N
r=1

(
∏n

i=1 exp

[

−
(

xi − xr
i

σr
i

)2
]) . (9.15)

Let us notice that in dependency (9.15), there is no parameter σr of the
output fuzzy set Br, r = 1, 2, . . . , N . Figure 9.1 presents a block schema of
the structure reflecting dependency (9.15). As we can see, it is a multilayer
network structure. Such a structure is called a neuro-fuzzy network. To
train it, the idea of error backpropagation method may be applied.
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x1

x2

xn

FIGURE 9.1. Network structure of a system described by formula (9.15)

9.3.2 B-type systems
In B-type systems, the defuzzification is made using the dependency

y =
∑N

r=1 yr · µB′ (yr)
∑N

r=1 ·µB′ (yr)
. (9.16)

In these systems, aggregation of particular fuzzy sets B
k

given by formula
(9.6) is made, which means that the fuzzy set B′ is determined through
operation of union of fuzzy sets B

k

B′ =
N⋃

k=1

B
k
. (9.17)

The membership function of fuzzy set B′ is determined using a t-conorm, i.e.

µB′ (y) =
N

S
k=1

{
µ

B
k (y)
}

. (9.18)

Therefore

µB′ (yr) =
N

S
k=1

{
µ

B
k (yr)
}

=
N

S
k=1

{T (µAk (x) , µBk (yr))} (9.19)

=
N

S
k=1

{
T

(
n

T
i=1

µAk
i
(xi) , µBk (yr)

)}
.
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FIGURE 9.2. Network structure of a system described by formula (9.20)

By substituting formula (9.19) to dependency (9.16), we get

y =

∑N
r=1 yr · SN

k=1

{
T
(
Tn

i=1

{
µAk

i
(xi)
}

, µBk (yr)
)}

∑N
r=1 SN

k=1

{
T
(
Tn

i=1

{
µAk

i
(xi)
}

, µBk (yr)
)} . (9.20)

In Fig. 9.2 the network structure of the system described by formula (9.20)
is presented.

In B-type systems, separate inference is also made within each rule, but
next, the aggregation of inference results is made in individual rules and
only then µB′(yr), r = 1, 2, . . . , N, is computed.

9.3.3 Mamdani type systems in modeling problems
Mamdani type systems will be applied to modeling problems. These prob-
lems were described in detail in Subchapter 9.2. We will assume that fuzzy
sets Ar

i and Br are characterized by Gaussian membership functions given
by formula (9.13) and (9.14).

9.3.3.1. M1-type systems

Let us consider Mamdani type systems which are constructed using defin-
itions of triangular norms without taking the weights into account. Using
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dependency (9.20) and min type Mamdani rule, we obtain the following
description of the neuro-fuzzy system:

y =

∑N
r=1 yr · SN

k=1

{
min
(
Tn

i=1

{
µAk

i
(xi)
}

, µBk (yr)
)}

∑N
r=1 SN

k=1

{
min
(
Tn

i=1

{
µAk

i
(xi)
}

, µBk (yr)
)} . (9.21)

Substituting dependencies (9.13) and (9.14) to formula (9.21) and using
the contents of Remark 9.1, we obtain

y =

∑N
r=1 yr · SN

k=1

{
min

(
T n

i=1

{
exp

[
−
(

xi−xk
i

σk
i

)2]}
, exp

[
−
(

yr−yk

σk

)2])}

∑N
r=1 SN

k=1

{
min

(
T n

i=1

{
exp

[
−
(

xi−xk
i

σk
i

)2]}
, exp

[
−
(

yr−yk

σk

)2])}

=

∑N
r=1 yr · max

1≤k≤N

{
min

(
∏n

i=1 exp

[
−
(

xi−xk
i

σk
i

)2])
· exp

[
−
(

yr−yk

σk

)2]}

∑N
r=1 max

1≤k≤N

{
min

(
∏n

i=1 exp

[
−
(

xi−xk
i

σk
i

)2]
· exp

[
−
(

yr−yk

σk

)2])} .

(9.22)

Using dependency (9.20) and product type Mamdani rule (known as Larsen
rule), we obtain the following description of the neuro-fuzzy system:

y =

∑N
r=1 yr · SN

k=1

{
Tn

i=1

{
µAk

i
(xi)
}
· µBk (yr)

}

∑N
r=1 SN

k=1

{
Tn

i=1

{
µAk

i
(xi)
}
· µBk (yr)

} . (9.23)

Substituting dependencies (9.13) and (9.14) to formula (9.23) and using
the contents of Remark 9.1, we obtain

y =

∑N
r=1 yr · SN

k=1

{
Tn

i=1

{
exp
[
−
(

xi−xk
i

σk
i

)2]}
· exp
[
−
(

yr−yk

σk

)2]}

∑N
r=1 SN

k=1

{
Tn

i=1

{
exp
[
−
(

xi−xk
i

σk
i

)2]}
· exp
[
−
(

yr−yk

σk

)2]}

=

∑N
r=1 yr · max

1≤k≤N

{
∏n

i=1 exp
[
−
(

xi−xk
i

σk
i

)2]
· exp
[
−
(

yr−yk

σk

)2]}

∑N
r=1 max

1≤k≤N

{
∏n

i=1 exp
[
−
(

xi−xk
i

σk
i

)2]
· exp
[
−
(

yr−yk

σk

)2]} .

(9.24)

Further in this chapter, we will not remind the wording of Remark 9.1.
We should however remember that particular rules are aggregated using a
t-conorm of the max type in case of the Mamdani system and a t-norm of
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the min type in case of a logic system and that the antecedents of the rules
are aggregated using a t-norm of the product type. Neuro-fuzzy systems
(9.22) and (9.24) are special cases of B-type system described in point 9.3.2.
In systems (9.22) and (9.24) the following parameters of the membership
functions are subject to learning; xk

i , σk
i , yk, σk, k = 1, 2, . . . , N . One of

subjects of studies is also A-type Mamdani system described in point 9.3.1,
the description of which, for the Reader’s convenience, is recalled below:

y =

∑N
r=1 yr ·

[
∏n

i=1

(
exp
[
−
(

xi−xr
i

σr
i

)2])]

∑N
r=1

[
∏n

i=1

(
exp
[
−
(

xi−xr
i

σr
i

)2])] . (9.25)

System (9.25) has been called a simplified Larsen structure. In this sys-
tem, the parameters xr

i , σr
i , yr, r = 1, 2, . . . , N, are subject to learning.

It may be shown that system (9.25) is a special case of system (9.24)
Neuro-fuzzy systems (9.22), (9.24) and (9.25) have been used to solve four
problems specified in Table 9.1: polymerization, HANG, NDP and model-
ing the taste of rice. All the parameters of the neuro-fuzzy systems have
been trained using error backpropagation method: centers and widths of
Gaussian functions were trained. In case of structure (9.25), there are no
widths of consequents of the Gaussian function.

9.3.3.1.1. Polymerization

Table 9.2 presents the smallest error for individual structures and the num-
ber of epochs corresponding to this error. Table 9.3 presents three desired
error values and the number of epochs, after which this error was obtained.

As it may be inferred from Table 9.3, for the Larsen structure, it was
impossible to train the system with error 0.0045.

9.3.3.1.2. HANG

Table 9.4 presents the smallest error for individual structures and the
number of epochs corresponding to this error. Table 9.5 presents three

TABLE 9.2. The smallest error obtained as a result of learning

POLYMERIZATION
Structure The smallest error Number of epochs
Mamdani 0.0041 3734
Larsen 0.0049 5984
Larsen (simplified) 0.0042 4689
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TABLE 9.3. Number of epochs required to train the system which is characterized
by a definite error

POLYMERIZATION
Structure Value of error

0.0055 0.0050 0.0045
Mamdani 1086 1479 1943
Larsen 3621 5984 –
Larsen (simplified) 807 2718 4454

TABLE 9.4. The smallest error obtained as a result of learning

HANG
Structure The smallest error Number of epochs
Mamdani 0.0340 7848
Larsen 0.0387 8000
Larsen (simplified) 0.0240 7102

TABLE 9.5. Number of epochs required to train the system which is characterized
by a given error

HANG
POLYMERIZATION

Structure Value of error
0.028 0.026 0.024

Mamdani – – –
Larsen – – –
Larsen (simplified) 4071 6024 7102

desired values of error and the number of epochs, after which this error
was obtained.

As it may be inferred from Table 9.5, neither the Mamdani nor the Larsen
structure did achieve any of the desired values of error.

9.3.3.1.3. NDP

Table 9.6 presents the smallest error for individual structures and the num-
ber of epochs corresponding to this error.

Table 9.7 presents three desired values of error and the number of epochs,
after which this error was obtained.

As it may be inferred from Table 9.7, the Mamdani structure did not
attain any of the desired values of error.
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TABLE 9.6. The smallest error obtained as a result of learning

NDP
Structure The smallest error Number of epochs
Mamdani 0.0263 436
Larsen 0.0176 433
Larsen (simplified) 0.0140 393

TABLE 9.7. Number of epochs required to train the system which is characterized
by a given error

NDP
Structure Value of error

0.026 0.023 0.020
Mamdani – – –
Larsen 172 233 302
Larsen (simplified) 74 82 93

9.3.3.1.4. Modeling the taste of rice

Table 9.8 presents the smallest error for individual structures and the num-
ber of epochs corresponding to this error.

As it may be inferred from Table 9.9, only the simplified Larsen structure
obtained all the desired values of error.

9.3.3.2. M2-type systems

Let us consider Mamdani type systems which are constructed using de-
finitions of triangular norms taking into account the weights wk, character-
izing the importance of particular rules. Using the definition of weighted
t-conorm and dependency (9.22), (9.24) and (9.25) we obtain the following
description of the neuro-fuzzy systems:
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TABLE 9.8. The smallest error obtained as a result of learning

MODELING THE TASTE OF RICE
Structure The smallest error Number of epochs
Mamdani 0.0244 4459
Larsen 0.0252 2501
Larsen (simplified) 0.0205 3888

TABLE 9.9. Number of epochs required to train the system which is characterized
by a definite error

MODELING THE TASTE OF RICE
Structure Value of error

0.028 0.025 0.022
Mamdani 233 1978 –
Larsen 506 – –
Larsen (simplified) 67 451 2936

a) Mamdani system with weights of rules

y =

∑N
r=1 yr · S∗N

k=1

{
min
(
T n

i=1

{
µAk

i
(xi)
}

, µBk (yr)
)

, wk

}

∑N
r=1 S∗N

k=1

{
min
(
T n

i=1

{
µAk

i
(xi)
}

, µBk (yr)
)

, wk

} (9.26)

=

∑N
r=1 yr · S∗N

k=1

{

min

(

T n
i=1

{

exp

[

−
(

xi−xk
i

σk
i

)2
]}

, exp

[
−
(

yr−yk

σk

)2]
)

, wk

}

∑N
r=1 S∗N

k=1

{

min

(

T n
i=1

{

exp

[

−
(

xi−xk
i

σk
i

)2
]}

, exp

[
−
(

yr−yk

σk

)2]
)

, wk

} .

b) Larsen system with weights of rules

y =

∑N
r=1 yr ·S∗N

k=1

{
Tn

i=1

({
µAk

i
(xi)
}
· µBk (yr)

)
,wk

}

∑N
r=1 S∗N

k=1

{
Tn

i=1

({
µAk

i
(xi)
}
· µBk (yr)

)
,wk

} (9.27)

=

∑N
r=1 yr ·S∗N

k=1

{
Tn

i=1

{
exp
[
−
(

xi−xk
i

σk
i

)2]}
·exp
[
−
(

yr−yk

σk

)2]
,wk

}

∑N
r=1 S∗N

k=1

{
Tn

i=1

{
exp
[
−
(

xi−xk
i

σk
i

)2]}
·exp
[
−
(

yr−yk

σk

)2]
,wk

} .

In both a) and b) systems, the parameters of membership function, i.e.
xk

i , σk
i , yk, σk and weights wk are subject to learning.
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c) Simplified Larsen system with weights of rules

y =
∑N

r=1y
r · wr ·

∏n
i=1

(
µAr

i
(xi)
)

∑N
r=1wr ·

∏n
i=1

(
µAr

i
(xi)
) (9.28)

=

∑N
r=1 yr · wr ·

∏n
i=1

(
exp
[
−
(

xi−xr
i

σr
i

)2])

∑N
r=1 wr ·

∏n
i=1

(
exp
[
−
(

xi−xr
i

σr
i

)2]) .

In c) system, the parameters of membership function xr
i , σ

r
i , yr and weights

wr. are subject to learning. Neuro-fuzzy systems (9.26), (9.27) and (9.28),
have been used to solve four problems specified in Table 9.1.

9.3.3.2.1. Polymerization

Table 9.10 presents the smallest error for individual structures and the
number of epochs corresponding to this error.

Table 9.11 presents three desired values of error and the number of
epochs, after which this error was obtained.

9.3.3.2.2. HANG

Table 9.12 presents the smallest error for individual structures and the
number of epochs corresponding to this error. Table 9.13 presents three

TABLE 9.10. The smallest error obtained as a result of learning

POLYMERIZATION
Structure The smallest error Number of epochs
Mamdani with weights 0.0039 4088
Larsen with weights 0.0043 4501
Larsen (simplified) weights 0.0039 3691

TABLE 9.11. Number of epochs required to train the system which is character-
ized by a definite error

POLYMERIZATION
Structure Value of error

0.0055 0.0050 0.0045
Mamdani with weights 26 44 2440
Larsen with weights 2646 3154 4099
Larsen (simplified) with weights 1633 1633 3443



9.3 Neuro-fuzzy systems of Mamdani type 385

TABLE 9.12. The smallest error obtained as a result of learning

HANG
Structure The smallest error Number of epochs
Mamdani with weights 0.0318 7848
Larsen with weights 0.0353 6773
Larsen (simplified) with weights 0.0183 1955

TABLE 9.13. Number of epochs required to train the system which is character-
ized by a definite error

HANG
Structure Value of error

0.028 0.026 0.024
Mamdani with weights – – –
Larsen with weights – – –
Larsen (simplified) with weights 191 366 632

TABLE 9.14. The smallest error obtained as a result of learning

NDP
Structure The smallest error Number of epochs
Mamdani with weights 0.0238 389
Larsen with weights 0.0164 495
Larsen (simplified) with weights 0.0136 487

desired values of error and the number of epochs, after which this error
was obtained.

As it may be inferred from Table 9.13, neither for the Mamdani nor for
the Larsen structure the system was able to learn as to obtain the desired
values of error.

9.3.3.2.3. NDP

Table 9.14 presents the smallest error for individual structures and the
number of epochs corresponding to this error. Table 9.15 presents three
desired values of error and the number of epochs, after which this error
was obtained.

As it may be inferred from Table 9.15, for the Mamdani structure with
weights of rules, the system was unable to learn as to obtain the error 0.020
and 0.023.
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9.3.3.2.4. Modeling the taste of rice

Table 9.16 presents the smallest error for individual structures and the
number of epochs corresponding to this error. Table 9.17 presents three
desired values of error and the number of epochs, after which this error
was obtained.

As it may be inferred from Table 9.17, for the Larsen structure with
weights of rules, the system was unable to learn as to obtain the error 0.022.

9.3.3.3. M3-type systems

Let us consider Mamdani type systems which are constructed using defini-
tions of triangular norms taking into account the weights wk, characterizing

TABLE 9.15. Number of epochs required to train the system which is character-
ized by a definite error

NDP
Structure Value of error

0.028 0.020 0.023
Mamdani with weights 157 – –
Larsen with weights 121 180 272
Larsen (simplified) with weights 55 59 90

TABLE 9.16. The smallest error obtained as a result of learning

MODELING THE TASTE OF RICE
Structure The smallest error Number of epochs
Mamdani with weights 0.0178 4978
Larsen with weights 0.0229 4154
Larsen (simplified) with weights 0.0199 4935

TABLE 9.17. Number of epochs required to train the system which is character-
ized by a definite error

MODELING THE TASTE OF RICE
Structure Value of error

0.028 0.025 0.022
Mamdani with weights 335 716 1751
Larsen with weights 562 1479 –
Larsen (simplified) with weights 421 852 3264
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the importance of particular rules, and the weights wi,k, characterizing the
importance of particular input linguistic variables. Using the definition of
weighted t-conorm and dependencies (9.22), (9.24) and (9.25), we obtain
the following description of the neuro-fuzzy systems:
a) Mamdani system with weights of inputs and rules

y =

∑N
r=1 yr ·S∗N

k=1

{
min
(
T ∗n

i=1

{
µAk

i
(xi) , wi,k

}
, µBk (yr)

)
,wk

}

∑N
r=1 S∗N

k=1

{
min
(
T ∗n

i=1

{
µAk

i
(xi) , wi,k

}
, µBk (yr)

)
,wk

} (9.29)

=

∑N
r=1y

r ·S∗N
k=1

⎧
⎪⎪⎨

⎪⎪⎩
min

⎛

⎜
⎜
⎝

T ∗n
i=1

{
exp
[
−
(

xi−xk
i

σk
i

)2]
, wi,k

}
,

exp
[
−
(

yr−yk

σk

)2]

⎞

⎟
⎟
⎠,wk

⎫
⎪⎪⎬

⎪⎪⎭

∑N
r=1S

∗N
k=1

⎧
⎪⎪⎨

⎪⎪⎩
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⎛

⎜
⎜
⎝

T ∗n
i=1

{
exp
[
−
(

xi−xk
i

σk
i

)2]
, wi,k

}
,

exp
[
−
(

yr−yk

σk

)2]

⎞

⎟
⎟
⎠,wk

⎫
⎪⎪⎬

⎪⎪⎭

.

b) Larsen system with weights of inputs and rules

y =

∑N
r=1 yr ·S∗N

k=1

{
T ∗n

i=1

{
µAk

i
(xi), wi,k

}
·µBk (yr),wk

}

∑N
r=1 S∗N

k=1

{
T ∗n

i=1

{
µAk

i
(xi), wi,k

}
·µBk (yr),wk

} (9.30)

=

∑N
r=1 yr ·S∗N

k=1

{
T ∗n

i=1

{
exp
[
−
(

xi−xk
i

σk
i

)2]
,wi,k

}
·exp
[
−
(

yr−yk

σk

)2]
,wk

}

∑N
r=1 S∗N

k=1

{
T ∗n

i=1

{
exp
[
−
(

xi−xk
i

σk
i

)2]
,wi,k

}
·exp
[
−
(

yr−yk

σk

)2]
,wk

} .

In both a) and b) systems, the parameters of membership function, i.e.
xk

i , σk
i , yk, σk and weights wi,k and wk are subject to learning.

c) Simplified Larsen system with weights of inputs and rules

y =
∑N

r=1 yr · wr

[
Tn

i=1

{
1 − wi,r

(
1 − µAr

i
(xi)
)}]

∑N
r=1 wr

[
Tn

i=1

{
1 − wi,r

(
1 − µAr

i
(xi)
)}] (9.31)

=

∑N
r=1 yr · wr

[
Tn

i=1

{
1 − wi,r

(
1 −
(

exp
[
−
(

xi−xr
i

σr
i

)2]))}]

∑N
r=1 wr

[
Tn

i=1

{
1 − wi,r

(
1 −
(

exp
[
−
(

xi−xr
i

σr
i

)2]))}] .
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In system c) the parameters of membership function, i.e. xr
i , σ

r
i , yr and

weights wi,r and wr are subject to learning. Neuro-fuzzy systems (9.29),
(9.30) and (9.31) have been used to solve four problems specified in Table 9.1.

9.3.3.3.1. Polymerization

Table 9.18 presents the smallest error for individual structures and the
number of epochs corresponding to this error. Table 9.19 presents three
desired values of error and the number of epochs, after which this error
was obtained.

9.3.3.3.2. HANG

Table 9.20 presents the smallest error for individual structures and the
number of epochs corresponding to this error. Table 9.21 presents three
desired values of error and the number of epochs, after which this error
was obtained.

As it may be inferred from Table 9.21, the desired error values could not
be obtained for the Larsen structure with weights of inputs and rules.

TABLE 9.18. The smallest error obtained as a result of learning

POLYMERIZATION
Structure The smallest error Number of epochs
Mamdani with weights of 0.0034 4704
inputs and rules
Larsen with weights of 0.0035 3822
inputs and rules
Larsen (simplified) with 0.0031 2953
weights of inputs and rules

TABLE 9.19. Number of epochs required to train the system which is character-
ized by a definite error

POLYMERIZATION
Structure Value of error

0.0055 0.0050 0.0045
Mamdani with weights of 1915 2303 2549
inputs and rules
Larsen with weights of 1 1 1
inputs and rules
Larsen (simplified) with 1 6 13
weights of inputs and rules
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TABLE 9.20. The smallest error obtained as a result of learning

HANG
Structure The smallest error Number of epochs
Mamdani with weights of 0.0209 5474
inputs and rules
Larsen with weights of 0.0346 1541
inputs and rules
Larsen (simplified) with 0.0124 4252
weights of inputs and rules

TABLE 9.21. Number of epochs required to train the system which is character-
ized by a definite error

HANG
Structure Value of error

0.028 0.026 0.024
Mamdani with weights of
inputs and rules

4213 5474 5474

Larsen with weights of
inputs and rules

– – –

Larsen (simplified) with
weights of inputs and rules

628 750 750

TABLE 9.22. The smallest error obtained as a result of learning

NDP
Structure The smallest error Number of epochs
Mamdani with weights of
inputs and rules

0.0181 498

Larsen with weights of
inputs and rules

0.0146 500

Larsen (simplified) with
weights of inputs and rules

0.0188 484

9.3.3.3.3. NDP

Table 9.22 presents the smallest error for individual structures and the
number of epochs corresponding to this error. Table 9.23 presents three
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TABLE 9.23. Number of epochs required to train the system which is character-
ized by a definite error

NDP
Structure Value of error

0.026 0.023 0.020
Mamdani with weights
of inputs and rules

60 126 294

Larsen with weights
of inputs and rules

24 31 74

Larsen (simplified) with
weights of inputs and rules

– – –

TABLE 9.24. The smallest error obtained as a result of learning

MODELING THE TASTE OF RICE
Structure The smallest error Number of epochs
Mamdani with weights of
inputs and rules

0.0168 2218

Larsen with weights of
inputs and rules

0.0218 2325

Larsen (simplified) with
weights of inputs and rules

0.0190 4975

desired values of error and the number of epochs, after which this error
was obtained.

As it may be inferred from Table 9.23, the desired error values could not
be obtained for the simplified Larsen structure with weights of inputs and
rules.

9.3.3.3.4. Modeling the taste of rice

Table 9.24 presents the smallest error for individual structures and the
number of epochs corresponding to this error.

Table 9.25 presents three desired values of error and the number of
epochs, after which this error was obtained.

9.4 Neuro-fuzzy systems of logical type

In the previous subchapter, we have discussed neuro-fuzzy systems with
Mamdani type inference. Currently, we will consider systems in which the
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TABLE 9.25. Number of epochs required to train the system which is character-
ized by a definite error

MODELING THE TASTE OF RICE
Structure Value of error

0.028 0.025 0.022
Mamdani with weights of
inputs and rules

1 3 3

Larsen with weights of
inputs and rules

295 528 2325

Larsen (simplified) with
weights of inputs and rules

1 1 5

antecedents and the consequents of rules are connected with each other
using a fuzzy implication.

In logical type systems, the defuzzification is made by means of depen-
dency

y =
∑N

r=1 yr · µB′ (yr)
∑N

r=1 ·µB′ (yr)
. (9.32)

In these systems, the fuzzy set B′ is created as a result of intersection of
fuzzy sets B

k
, i.e.

B′ =
N⋂

k=1

B
k
. (9.33)

The membership function of fuzzy set B′ is determined using a t-norm,
which shall be notated as follows:

µB′ (y) =
N

T
k=1

{
µ

B
k (y)
}

. (9.34)

Using formulas (9.34), (9.6) and (9.7), we have

µB′ (yr) =
N

T
k=1

{
µ

B
k (yr)
}

=
N

T
k=1

{I (µAk (x) , µBk (yr))} (9.35)

=
N

T
k=1

{
I

(
N

T
i=1

µAk
i
(xi) , µBk (yr)

)}
,

where I is a fuzzy implication defined in point 4.8.4. By substituting for-
mula (9.35) to dependency (9.32), we obtain

y =

∑N
r=1 yr · TN

k=1

{
I
(
Tn

i=1

{
µAk

i
(xi)
}

, µBk (yr)
)}

∑N
r=1 TN

k=1

{
I
(
Tn

i=1

{
µAk

i
(xi)
}

, µBk (yr)
)} . (9.36)
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The specific form of formula (9.36) depends on the chosen definition of I
function. Logical type systems will be applied to solve modeling problems.
We will consider M1 systems (without weights), M2 systems (with weights
of rules) and M3 systems (with weights of rules and weights of input linguis-
tic variables). We will apply the Łukasiewicz, binary, Reichenbach, Zadeh
and Willmott fuzzy implications. Moreover we will present and test simpli-
fied neuro-fuzzy structures using Łukasiewicz and Zadeh implications.

9.4.1 M1-type systems
Let us consider logical type systems which are constructed using definitions
of triangular norms without taking the weights into account. First, we will
use Łukasiewicz implication. As a result of applying this implication, we
will obtain the following dependency:

µAk→Bk(x, y) = I (µAk(x) , µBk(y)) = I

(
n

T
k=1

(
µAk

i
(xi)
)
, µBk(y)

)
(9.37)

= min
[
1, 1 −

n

T
i=1

(
µAk

i
(xi)
)

+ µBk (y)
]

.

By substituting dependency (9.37) to formula (9.36), we obtain

y =

∑N
r=1 yrTN

k=1

{
min
[
1, 1 − Tn

i=1

(
µAk

i
(xi)
)

+ µBk (yr)
]}

∑N
r=1 TN

k=1

{
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[
1, 1 − Tn

i=1

(
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i
(xi)
)

+ µBk (yr)
]} . (9.38)

By substituting dependencies (9.13) and (9.14) to formula (9.38), we obtain

y =
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. (9.39)

By applying the binary fuzzy implication, we obtain

µAk→Bk (x, y) = I (µAk (x) , µBk (y)) = I

(
n

T
i=1

(
µAk

i
(xi)
)
,µBk (y)

)
(9.40)

= max
[
1 −

n

T
i=1

(
µAk

i
(xi)
)

, µBk (y)
]

.
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By substituting dependency (9.40) to formula (9.36), we obtain

y =

∑N
r=1 yrTN

k=1

{
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[
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i
(xi)
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i
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)
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]} . (9.41)

By substituting dependencies (9.13) and (9.14) to formula (9.41), we obtain
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. (9.42)

Applying Reichenbach fuzzy implication we get:

µAk→Bk (x, y) = I (µAk (x) , µBk (y)) = I

(
n

T
i=1

(
µAk

i
(xi)
)
, µBk (y)

)
(9.43)

= 1 −
n

T
i=1

(
µAk

i
(xi)
)

(1 − µBk (y)) .

By substituting dependency (9.43) to formula (9.36), we obtain

y =

∑N
r=1 yrTN

k=1

{
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(
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By substituting dependencies (9.13) and (9.14) to formula (9.44), we have

y =
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Applying Zadeh fuzzy implication we get:

µAk→Bk (x, y) = I (µAk (x) , µBk (y)) = I

(
n

T
i=1

(
µAk

i
(xi)
)
, µBk (y)

)
(9.46)

= max
{
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.

By substituting dependency (9.46) to formula (9.36), we obtain
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(9.47)
By substituting dependencies (9.13) and (9.14) to formula (9.47), we get:
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FIGURE 9.3. Example fuzzy sets satisfying the assumption µBk (yr) ≈ 0

The simplified systems were also studied which are characterized by a
small coincidence or total separation one from another of output fuzzy
sets Bk. In this situation, the condition µBk (yr) ≈ 0 is satisfied, which is
illustrated by Fig. 9.3.

If µBk (yr) ≈ 0, then we will obtain from dependency (9.39) a simplified
Łukasiewicz structure of the following form
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Similarly, if µBk (yr) ≈ 0, then we will obtain from dependency (9.48) a
simplified Zadeh structure given by the formula
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. (9.50)

In systems (9.39), (9.42), (9.45) and (9.48) the following parameters of the
membership functions are subject to learning: xk

i , σk
i , yk, σk. In simplified
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systems (9.49) and (9.50), the parameters xk
i , σk

i , yk are subject to learning.
We will solve the modeling problems using Łukasiewicz structure, binary
structure, Reichenbach structure, Łukasiewicz simplified structure, Zadeh
structure, Willmott structure and Zadeh simplified structure.

9.4.1.1. Polymerization

Table 9.26 presents the smallest error for individual structures and the
number of epochs corresponding to this error.

As it may be inferred from Table 9.26, the smallest error was 0.0038 and
was obtained for Zadeh structure.

Table 9.27 presents three desired values of error and the number of
epochs, after which this error was obtained. As it may be inferred from this
table, not all the structures were able to obtain the desired error value.

TABLE 9.26. The smallest error obtained as a result of learning

POLYMERIZATION
Structure The smallest error Number of epochs

Łukasiewicz 0.0065 5863
Binary 0.0063 5980
Reichenbach 0.0040 5494
Łukasiewicz simplified 0.0059 3385
Zadeh 0.0038 3648
Willmott 0.0056 5918
Zadeh simplified 0.0049 3432

TABLE 9.27. Number of epochs required to train the system which is character-
ized by a definite error

POLYMERIZATION
Structure Value of error

0.0055 0.0050 0.0040
Łukasiewicz – – –
Binary – – –
Reichenbach 1627 1903 2783
Łukasiewicz simplified – – –
Zadeh 949 1022 1809
Willmott – – –
Zadeh simplified 2844 3432 –
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9.4.1.2. HANG

Table 9.28 presents the smallest error for individual structures and the
number of epochs corresponding to this error.

As it may be inferred from Table 9.28, the smallest error was 0.0177 and
was obtained for binary structure. Table 9.29 presents three desired values
of error and the number of epochs, after which this error was obtained.

As it may be inferred from Table 9.29, not all the structures were able
to obtain the desired value of error.

9.4.1.3. NDP

Table 9.30 presents the smallest error for individual structures and the
number of epochs corresponding to this error.

TABLE 9.28. The smallest error obtained as a result of learning

HANG
Structure The smallest error Number of epochs
Łukasiewicz 0.0289 3908
Binary 0.0177 7773
Reichenbach 0.0320 7989
Łukasiewicz simplified 0.0361 6536
Zadeh 0.0216 5288
Willmott 0.0366 7327
Zadeh simplified 0.0265 2317

TABLE 9.29. Number of epochs required to train the system which is character-
ized by a definite error

HANG
Structure Value of error

0.028 0.026 0.024
Łukasiewicz – – –
Binary 1795 2996 3762
Reichenbach – – –
Łukasiewicz simplified – – –
Zadeh 3382 3875 4218
Willmott – – –
Zadeh simplified 1787 – –
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TABLE 9.30. The smallest error obtained as a result of learning

NDP
Structure The smallest error Number of epochs
Łukasiewicz 0.0166 457
Binary 0.0149 437
Reichenbach 0.0157 454
Łukasiewicz simplified 0.0229 497
Zadeh 0.0156 498
Willmott 0.0180 488
Zadeh simplified 0.0156 496

TABLE 9.31. Number of epochs required to train the system which is character-
ized by a definite error

NDP
Structure Value of error

0.026 0.023 0.020
Łukasiewicz 255 276 313
Binary 74 111 166
Reichenbach 166 173 251
Łukasiewicz simplified 190 497 –
Zadeh 38 59 109
Willmott 121 171 303
Zadeh simplified 39 83 147

As it may be inferred from Table 9.30, the smallest error was 0.0149 and
was obtained for the binary structure. Table 9.31 presents three desired
values of error and the number of epochs, after which this error was ob-
tained. As it may be inferred from Table 9.31, for the simplified Łukasiewicz
structure, it was impossible to obtain the error equal to 0.020.

9.4.1.4. Modeling the taste of rice

Table 9.32 presents the smallest error for individual structures and the
number of epochs corresponding to this error.

As it may be inferred from Table 9.32, the smallest error was 0.0211 and
was obtained for Willmott structure. Table 9.33 presents three desired val-
ues of error and the number of epochs, after which this error was obtained.

As it may be inferred from Table 9.33, not all the structures were able
to obtain the desired value of error equal to 0.022.
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TABLE 9.32. The smallest error obtained as a result of learning

MODELING THE TASTE OF RICE
Structure The smallest error Number of epochs
Łukasiewicz 0.0221 4048
Binary 0.0230 3201
Reichenbach 0.0212 4575
Łukasiewicz simplified 0.0243 2328
Zadeh 0.0219 4534
Willmott 0.0211 2605
Zadeh simplified 0.0246 4588

TABLE 9.33. Number of epochs required to train the system which is character-
ized by a definite error

MODELING THE TASTE OF RICE
Structure Value of error

0.028 0.025 0.022
Łukasiewicz 408 2327 –
Binary 286 817 –
Reichenbach 313 938 2354
Łukasiewicz simplified 1030 1850 –
Zadeh 344 1484 4534
Willmott 134 517 2605
Zadeh simplified 998 4588 –

9.4.2 M2-type systems
Let us consider logical type systems which are constructed using definitions
of triangular norms taking into account the weights wk, characterizing the
importance of particular rules. Using the definition of weighted t-norm
and dependencies (9.39), (9.42), (9.45), and (9.48) - (9.50), we obtain the
following neuro-fuzzy systems:
a) Neuro-fuzzy system with weights of rules and the Łukasiewicz implication
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b) Neuro-fuzzy system with weights of rules and the binary implication

y =

∑N
r=1 yrT ∗N

k=1

⎧
⎪⎪⎨

⎪⎪⎩
max

⎡

⎢
⎢
⎣

1 −
n

T
i=1

(
exp
[
−
(

xi−xk
i

σk
i

)2])
,

exp
[
−
(

yr−yk

σk

)2]

⎤

⎥
⎥
⎦, wk

⎫
⎪⎪⎬

⎪⎪⎭

∑N
r=1 T ∗N

k=1

⎧
⎪⎪⎨

⎪⎪⎩
max

⎡

⎢
⎢
⎣

1 −
n

T
i=1

(
exp
[
−
(

xi−xk
i

σk
i

)2])
,

exp
[
−
(

yr−yk

σk

)2]

⎤

⎥
⎥
⎦, wk

⎫
⎪⎪⎬

⎪⎪⎭

. (9.52)

c) Neuro-fuzzy system with weights of rules and the Reichenbach implica-
tion
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d) Neuro-fuzzy system with weights of rules and a fuzzy Zadeh implication
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e) Simplified neuro-fuzzy system with weights of rules and a fuzzy
Łukasiewicz implication
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f) Simplified neuro-fuzzy system with weights of rules and the Zadeh impli-
cation

y =

N∑

r=1
yrT ∗

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎝max

⎧
⎪⎪⎨

⎪⎪⎩

n

T
i=1

{
exp
[
−
(

xi−xr
i

σr
i

)2]}
,

1 −
n

T
i=1

{
exp
[
−
(

xi−xr
i

σr
i

)2]}

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟
⎟
⎠ , wr,

N

T ∗
k=1
k 	=r

{
1 −

n

T
i=1

{
exp
[
−
(

xi−xk
i

σk
i

)2]}
,wk

}

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

N∑

r=1
T ∗

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎝max

⎧
⎪⎪⎨

⎪⎪⎩

n

T
i=1

{
exp
[
−
(

xi−xr
i

σr
i

)2]}
,

1 −
n

T
i=1

{
exp
[
−
(

xi−xr
i

σr
i

)2]}

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟
⎟
⎠ , wr,

N

T ∗
k=1
k 	=r

{
1 −

n

T
i=1

{
exp
[
−
(

xi−xk
i

σk
i

)2]}
, wk

}

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

. (9.56)

In systems (9.51) - (9.54) the parameters of the membership functions,
i.e. xk

i , σk
i , yk, σk and weights wk are subject to learning. In systems (9.55)

and (9.56), the parameters of membership function xk
i , σk

i , yk and weights
wk are subject to learning.

9.4.2.1. Polymerization

Table 9.34 presents the smallest error for individual structures and the
number of epochs corresponding to this error. As it may be inferred from
the table, the smallest error was 0.0030 and was obtained for Zadeh struc-
ture with weights of rules. Table 9.35 presents three desired values of error
and the number of epochs, after which this error was obtained.

As it may be inferred from the table, not all the structures were able to
obtain the desired value of error.

9.4.2.2. HANG

Table 9.36 presents the smallest error for individual structures and the
number of epochs corresponding to this error.



402 9. Neuro-fuzzy systems of Mamdani, logical and Takagi-Sugeno type

TABLE 9.34. The smallest error obtained as a result of learning

POLYMERIZATION
Structure The smallest Number of

error epochs
Łukasiewicz with weights of rules 0.0041 4765
Binary with weights of rules 0.0054 5980
Reichenbach with weights of rules 0.0037 4653
Łukasiewicz simplified with weights of rules 0.0039 4694
Zadeh with weights of rules 0.0030 5650
Willmott with weights of rules 0.0047 5539
Zadeh simplified with weights of rules 0.0041 5151

TABLE 9.35. Number of epochs required to train the system which is character-
ized by a definite error

POLYMERIZATION
Structure Value of error

0.0055 0.0050 0.0040
Łukasiewicz with weights of rules 1258 1662 3266
Binary with weights of rules 5980 – –
Reichenbach with weights of rules 1385 1385 2521
Łukasiewicz simplified with weights of
rules

4 4 209

Zadeh with weights of rules 1497 1497 2726
Willmott with weights of rules 1405 3084 –
Zadeh simplified with weights of rules 367 701 3103

As it may be inferred from Table 9.36, the smallest error was 0.0115 and
was obtained for Reichenbach structure with weights of rules. Table 9.37
presents three desired values of error and the number of epochs, after which
this error was obtained.

As it may be inferred from Table 9.37, not all the structures were able
to obtain the desired value of error.

9.4.2.3. NDP

Table 9.38 presents the smallest error for individual structures and the
number of epochs corresponding to this error.
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TABLE 9.36. The smallest error obtained as a result of learning

HANG
Structure The smallest Number of

error epochs
Łukasiewicz with weights of rules 0.0247 6500
Binary with weights of rules 0.0161 6525
Reichenbach with weights of rules 0.0115 7580
Łukasiewicz simplified with weights of
rules

0.0350 1840

Zadeh with weights of rules 0.0202 5290
Willmott with weights of rules 0.0335 7977
Zadeh simplified with weights of rules 0.0231 7935

TABLE 9.37. Number of epochs required to train the system which is character-
ized by a definite error

HANG
Structure Value of error

0.028 0.026 0.024
Łukasiewicz with weights of rules 3771 3908 –
Binary with weights of rules 1320 1320 1929
Reichenbach with weights of rules 506 660 660
Łukasiewicz simplified with weights of
rules

– – –

Zadeh with weights of rules 3380 3393 4089
Willmott with weights of rules – – –
Zadeh simplified with weights of rules 2483 2483 4139

As it may be inferred from Table 9.38, the smallest error was 0.0131 and
was obtained for binary structure with weights of rules. Table 9.39 presents
three desired values of error and the number of epochs, after which this error
was obtained.

9.4.2.4. Modeling the taste of rice

Table 9.40 presents the smallest error for individual structures and the
number of epochs corresponding to this error.

As it may be inferred from Table 9.40, the smallest error was 0.0199
and was obtained for Willmott structure with weights of rules. Table 9.41
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TABLE 9.38. The smallest error obtained as a result of learning

NDP
Structure The smallest Number of

error epochs
Łukasiewicz with weights of rules 0.0161 492
Binary with weights of rules 0.0131 498
Reichenbach with weights of rules 0.0140 489
Łukasiewicz simplified with weights of
rules

0.0177 459

Zadeh with weights of rules 0.0148 499
Willmott with weights of rules 0.0165 486
Zadeh simplified with weights of rules 0.0142 448

TABLE 9.39. Number of epochs required to train the system which is character-
ized by a definite error

NDP
Structure Value of error

0.026 0.023 0.020
Łukasiewicz with weights of rules 170 218 274
Binary with weights of rules 101 119 151
Reichenbach with weights of rules 139 153 186
Łukasiewicz simplified with weights of
rules

267 277 364

Zadeh with weights of rules 222 281 352
Willmott with weights of rules 86 121 331
Zadeh simplified with weights of rules 58 78 212

TABLE 9.40. The smallest error obtained as a result of learning

MODELING THE TASTE OF RICE
Structure The smallest Number of

error epochs
Łukasiewicz with weights of rules 0.0207 3257
Binary with weights of rules 0.0219 3897
Reichenbach with weights of rules 0.0205 3800
Łukasiewicz simplified with weights of
rules

0.0222 2841

Zadeh with weights of rules 0.0205 3531
Willmott with weights of rules 0.0199 3805
Zadeh simplified with weights of rules 0.0227 4432
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TABLE 9.41. Number of epochs required to train the system which is character-
ized by a definite error

MODELING THE TASTE OF RICE
Structure Value of error

0.028 0.025 0.022
Łukasiewicz with weights of rules 1 16 462
Binary with weights of rules 143 1117 3387
Reichenbach with weights of rules 38 185 394
Łukasiewicz simplified with weights of
rules

397 1152 –

Zadeh with weights of rules 108 314 879
Willmott with weights of rules 22 78 374
Zadeh simplified with weights of rules 461 696 –

presents three desired values of error and the number of epochs, after which
this error was obtained.

As it may be inferred from Table 9.41, the error of 0.022 could not be
obtained for the simplified Łukasiewicz structure with weights of rules and
Zadeh structure with weights of rules.

9.4.3 M3-type systems
Let us consider logical type systems which are constructed using definitions
of triangular norms taking into account the weights wk, characterizing the
importance of particular rules, and the weights wi,k, characterizing the
importance of particular input linguistic variables. Using the definition of
weighted t-norm and dependencies (9.37), (9.40), (9.43), (9.46), (9.49) and
(9.50), we obtain the following neuro-fuzzy systems:

a) Neuro-fuzzy system with weights of inputs and rules and the
Łukasiewicz implication

y =
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r=1y

rT ∗N
k=1
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. (9.57)
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b) Neuro-fuzzy system with weights of inputs and rules and the binary im-
plication

y =
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c) Neuro-fuzzy system with weights of inputs and rules and the Reichenbach
implication

y =
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d) Neuro-fuzzy system with weights of inputs and rules and the Zadeh im-
plication
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e) Simplified neuro-fuzzy system with weights of inputs and rules and the
Łukasiewicz implication
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f) Simplified neuro-fuzzy system with weights of inputs and rules and the
Zadeh implication
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In systems (9.57) - (9.60), the parameters of membership function, i.e. xk
i ,

σk
i , yk, σk and weights wi,k and wk are subject to learning. In systems (9.61)

and (9.62), the parameters of membership function xk
i , σk

i , yk and weights
wi,k and wk are subject to learning. Neuro-fuzzy systems (9.57) - (9.62)
have been used to solve four problems specified in Table 9.1.

9.4.3.1. Polymerization

Table 9.42 presents the smallest error for individual structures and the
number of epochs corresponding to this error.

As it may be inferred from Table 9.42, the smallest error was 0.0028 and
was obtained for Zadeh structure with weights of inputs and rules. Table
9.43 presents three desired values of error and the number of epochs, after
which this error was obtained.
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TABLE 9.42. The smallest error obtained as a result of learning

POLYMERIZATION
Structure The smallest Number of

error epochs
Łukasiewicz with weights of inputs and
rules

0.0038 4773

Binary with weights of inputs and rules 0.0036 4896
Reichenbach with weights of inputs
and rules

0.0034 4704

Łukasiewicz simplified with weights of
inputs and rules

0.0037 4815

Zadeh with weights of inputs and rules 0.0028 5064
Willmott with weights of inputs and
rules

0.0039 4810

Zadeh simplified with weights of inputs
and rules

0.0038 5515

TABLE 9.43. Number of epochs required to train the system which is character-
ized by a definite error

POLYMERIZATION
Structure Value of error

0.0055 0.0050 0.0040
Łukasiewicz with weights of inputs
and rules

1 9 867

Binary with weights of inputs and
rules

2305 2386 2798

Reichenbach with weights of inputs
and rules

1915 2303 2549

Łukasiewicz simplified with weights
of inputs and rules

2502 2821 3225

Zadeh with weights of inputs and
rules

1 1 6

Willmott with weights of inputs and
rules

11 90 1341

Zadeh simplified with weights of
inputs and rules

2 2 206
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9.4.3.2. HANG

Table 9.44 presents the smallest error for individual structures and the
number of epochs corresponding to this error. Table 9.45 presents the re-
sults analogous to those given in Table 9.43.

TABLE 9.44. The smallest error obtained as a result of learning

HANG
Structure The smallest Number of

error epochs
Łukasiewicz with weights of inputs and
rules

0.0207 6502

Binary with weights of inputs and rules 0.0110 7882
Reichenbach with weights of inputs and
rules

0.0092 7390

Łukasiewicz simplified with weights of
inputs and rules

0.0203 7996

Zadeh with weights of inputs and rules 0.0105 5533
Willmott with weights of inputs and
rules

0.0300 6545

Zadeh simplified with weights of inputs
and rules

0.0178 8000

TABLE 9.45. Number of epochs required to train the system which is character-
ized by a definite error

HANG
Structure Value of error

0.028 0.026 0.024
Łukasiewicz with weights of inputs
and rules

3724 3771 3771

Binary with weights of inputs and
rules

556 608 608

Reichenbach with weights of inputs
and rules

603 678 978

Łukasiewicz simplified with weights
of inputs and rules

7992 7992 7992

Zadeh with weights of inputs and
rules

666 666 1115

Willmott with weights of inputs and
rules

– – –

Zadeh simplified with weights of
inputs and rules

3943 4408 5407
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TABLE 9.46. The smallest error obtained as a result of learning

NDP
Structure The smallest Number of

error epochs
Łukasiewicz with weights of inputs and
rules

0.0140 498

Binary with weights of inputs and rules 0.0121 479
Reichenbach with weights of inputs and
rules

0.0133 497

Łukasiewicz simplified with weights of
inputs and rules

0.0162 457

Zadeh with weights of inputs and rules 0.0140 4
Willmott with weights of inputs and
rules

0.0141 496

Zadeh simplified with weights of inputs
and rules

0.0135 496

9.4.3.3. NDP

Table 9.46 presents the smallest error for individual structures and the
number of epochs corresponding to this error.

As it may be inferred from Table 9.46, the smallest error was 0.0121 and
was obtained for binary structure with weights of inputs and rules. Table
9.47 presents three desired values of error and the number of epochs, after
which this error was obtained

9.4.3.4. Modeling the taste of rice

Table 9.48 presents the smallest error for individual structures and the
number of epochs corresponding to this error.

As it may be inferred from Table 9.48 the smallest error was 0.0164
and was obtained for Zadeh structure with weights of inputs and rules.
Table 9.49 presents three desired values of error and the number of epochs,
after which this error was obtained.

9.5 Neuro-fuzzy systems of Takagi-Sugeno type

In the fuzzy Takagi-Sugeno type model [246], the base of rules is of a
fuzzy character only in the IF part, whereas in the THEN part, there are
functional dependencies

R(r) : IF (x1 is Ar
i AND x2 is Ar

2...AND xn is Ar
n)

THEN yr = f (r) (x1, x2, ..., xn)
(9.63)
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TABLE 9.47. Number of epochs required to train the system which is character-
ized by a definite error

NDP
Structure Value of error

0.026 0.023 0.020
Łukasiewicz with weights of inputs
and rules

279 295 368

Binary with weights of inputs and
rules

61 80 94

Reichenbach with weights of inputs
and rules

107 176 237

Łukasiewicz simplified with weights of
inputs and rules

285 299 315

Zadeh with weights of inputs and rules 95 109 142
Willmott with weights of inputs and
rules

80 109 150

Zadeh simplified with weights of
inputs and rules

60 82 170

TABLE 9.48. The smallest error obtained as a result of learning

MODELING THE TASTE OF RICE
Structure The smallest Number of

error epochs
Łukasiewicz with weights of inputs and
rules

0.0192 3031

Binary with weights of inputs and rules 0.0194 4164
Reichenbach with weights of inputs and
rules

0.0191 4460

Łukasiewicz simplified with weights of
inputs and rules

0.0201 4804

Zadeh with weights of inputs and rules 0.0164 3994
Willmott with weights of inputs and rules 0.0187 3916
Zadeh simplified with weights of inputs and
rules

0.0186 3646

If we assume that the input of the fuzzy system is signal x =
(x1, x2, ..., xn), then in order to obtain the output signal y of the system,
first we will determine

T
(
µAr

1
(x1) , µAr

2
(x2) , ..., µAr

n
(xn)
)
, r = 1, . . . , N. (9.64)
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TABLE 9.49. Number of epochs required to train the system which is character-
ized by a definite error

MODELING THE TASTE OF RICE
Structure Value of error

0.028 0.025 0.022
Łukasiewicz with weights of inputs and
rules

74 331 2045

Binary with weights of inputs and rules 143 317 1679
Reichenbach with weights of inputs and
rules

2 3 8

Łukasiewicz simplified with weights of
inputs and rules

165 450 1702

Zadeh with weights of inputs and rules 40 143 197
Willmott with weights of inputs and rules 1 1 37
Zadeh simplified with weights of inputs
and rules

76 202 404

The next step is to compute

yr = f (r) (x1, x2, ..., xn) , r = 1, . . . , N. (9.65)

The output signal of the fuzzy Takagi-Sugeno system is a normalized
weighted sum of particular inputs y1, ..., yN , i.e.

y =
∑N

r=1 yrT
n
i=1

{
µAr

i
(xi)
}

∑N
r=1 Tn

i=1

{
µAr

i
(xi)
} . (9.66)

In the following part of this subchapter, we will consider the Takagi-
Sugeno systems with linear dependencies in consequents of the base of
rules, i.e.

R(r) : IF (x1 is Ar
i AND x2 is Ar

2...AND xn is Ar
n)

THEN yr = c
(r)
0 + c

(r)
1 x1 + ... + c

(r)
n xn

(9.67)

for r = 1, ..., N . It should be noted that if c
(r)
i = 0, i = 1, . . . , n, then

system (9.66) is reduced to a simplified Mamdani system given by formula
(9.12), and then c

(r)
0 = yr, r = 1, ..., N .

The systems of Takagi-Sugeno type have been used to solve approxima-
tion and identification problems (polymerization, HANG, NDP, modeling
the taste of rice). Like in case of Mamdani type structures and logical type
structures, we will consider three types of systems, i.e. without weights,
with weights of rules and with weights of rules and weights of inputs re-
flecting the importance of individual linguistic variables.
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9.5.1 M1-type systems
To construct a neuro-fuzzy system, Gaussian membership functions and the
assumption that the antecedents in each rule are connected by a t-norm
of the product type have been used. In this situation, dependency (9.66)
takes the following form

y =
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r=1 Tn

i=1
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}(
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1 x1 + . . . + c

(r)
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All the parameters of the neuro-fuzzy systems have been subject to learn-
ing using error backpropagation method: centers and widths of Gaussian
functions and function parameters c

(r)
0 , ..., c

(r)
n , r = 1, ..., N .

9.5.1.1. Polymerization

The smallest error for the Takagi-Sugeno structure was 0.0034 and was
obtained in the 3430th epoch. Table 9.50 presents three desired error val-
ues and the number of epochs, after which this error was obtained.

9.5.1.2. HANG

The smallest error for the Takagi-Sugeno structure was 0.0197 and was
obtained in the 7551st epoch. Table 9.51 presents three desired values of
error and the number of epochs, after which this error was obtained.

TABLE 9.50. Number of epochs required to train the system which is character-
ized by a definite error

POLYMERIZATION
Structure Value of error

0.0055 0.0050 0.0045
Takagi-Sugeno 72 83 83
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9.5.1.3. NDP

The smallest error for the Takagi-Sugeno structure was 0.0156 and was
obtained in the 481st epoch. Table 9.52 presents three desired values of
error and the number of epochs, after which this error was obtained.

9.5.1.4. Modeling the taste of rice

The smallest error for the Takagi-Sugeno structure was 0.0176 and was
obtained in the 1264th epoch. Table 9.53 presents three desired values of
error and the number of epochs, after which this error was obtained.

9.5.2 M2-type systems
By introducing to system (9.68) the weights specifying the importance of
particular rules, we will obtain the following dependency:

TABLE 9.51. Number of epochs required to train the system which is character-
ized by a definite error

HANG
Structure Value of error

0.028 0.026 0.024
Takagi-Sugeno 4280 5159 5593

TABLE 9.52. Number of epochs required to train the system which is character-
ized by a definite error

NDP
Structure Value of error

0.026 0.023 0.020
Takagi-Sugeno 36 66 122

TABLE 9.53. Number of epochs required to train the system which is character-
ized by a definite error

MODELING THE TASTE OF RICE
Structure Value of error

0.028 0.025 0.022
Takagi-Sugeno 546 1060 1951
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All the parameters of the neuro-fuzzy systems have been subject to learning
using the error backpropagation method: centers and widths of Gaussian
functions, weights of rules and function parameters c

(r)
0 , ..., c

(r)
n , r = 1, ..., N .

9.5.2.1. Polymerization

The smallest error for the Takagi-Sugeno structure was 0.0031 and was
obtained in the 3098th epoch. Table 9.54 presents three desired values of
error and the number of epochs, after which this error was obtained.

9.5.2.2. HANG

The smallest error for the Takagi-Sugeno structure with weights of rules
was 0.0145 and was obtained in the 3008th epoch. Table 9.55 presents three
desired values of error and the number of epochs, after which this error was
obtained.

9.5.2.3. NDP

The smallest error for the Takagi-Sugeno structure with weights of rules was
0.0140 and was obtained in the 497th epoch. Table 9.56 presents three
desired values of error and the number of epochs, after which this error
was obtained.

TABLE 9.54. Number of epochs required to train the system which is
characterized by a definite error

POLYMERIZATION
Structure Value of error

0.0055 0.0050 0.0045
Takagi-Sugeno with weights of rules 56 57 95
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TABLE 9.55. Number of epochs required to train the system which is character-
ized by a definite error

HANG
Structure Value of error

0.028 0.026 0.024
Takagi-Sugeno with weights of rules 478 779 1132

TABLE 9.56. Number of epochs required to train the system which is character-
ized by a definite error

HANG
Structure Value of error

0.026 0.023 0.020
Takagi-Sugeno with weights of rules 20 40 79

TABLE 9.57. Number of epochs required to train the system which is character-
ized by a definite error

MODELING THE TASTE OF RICE
Structure Value of error

0.028 0.025 0.022
Takagi-Sugeno with weights of rules 8 35 67

9.5.2.4. Modeling the taste of rice

The smallest error for the Takagi-Sugeno structure with weights of rules
was 0.0149 and was obtained in the 1620th epoch. Table 9.57 presents three
desired values of error and the number of epochs, after which this error was
obtained.

9.5.3 M3-type systems
By introducing to system (9.69) the weights specifying the importance of
particular linguistic variables in each rule, we will obtain the following
dependency:

y =

∑N
r=1

(
wr

[
Tn

i=1

{
1 − wi,r

(
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i
(xi)
)}]

·
·
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(r)
n xn

)
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All the parameters of the neuro-fuzzy systems have been subject to learning
using the error backpropagation method: centers and widths of Gaussian
functions, weights of inputs and rules and function parameters c

(r)
0 , ..., c

(r)
n ,

r = 1, ..., N .

9.5.3.1. Polymerization

The smallest error for the Takagi-Sugeno structure with weights of rules
was 0.0030 and was obtained in the 4859th epoch. Table 9.58 presents three
desired values of error and the number of epochs, after which this error was
obtained.

9.5.3.2. HANG

The smallest error for the Takagi-Sugeno structure with weights of rules
was 0.0116 and was obtained in the 2381st epoch. Table 9.59 presents three

TABLE 9.58. Number of epochs required to train the system which is character-
ized by a definite error

POLYMERIZATION
Structure Value of error

0.0055 0.0050 0.0045
Takagi-Sugeno with weights
of inputs and rules

36 110 324

TABLE 9.59. Number of epochs required to train the system which is character-
ized by a definite error

HANG
Structure Value of error

0.028 0.026 0.024
Takagi-Sugeno with weights
of inputs and rules

265 465 478
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TABLE 9.60. Number of epochs required to train the system which is character-
ized by a definite error

NDP
Structure Value of error

0.026 0.023 0.020
Takagi-Sugeno with weights
of inputs and rules

60 77 111

TABLE 9.61. Number of epochs required to train the system which is character-
ized by a definite error

MODELING THE TASTE OF RICE
Structure Value of error

0.028 0.025 0.022
Takagi-Sugeno with weights
of inputs and rules

1 1 1

desired values of error and the number of epochs, after which this error was
obtained.

9.5.3.4. Modeling the taste of rice

The smallest error for the Takagi-Sugeno structure with weights of rules
was 0.0129 and was obtained in the 4008th epoch. Table 9.61 presents three
desired values of error and the number of epochs, after which this error was
obtained.

9.5.3.3. NDP

The smallest error for the Takagi-Sugeno structure with weights of rules
was 0.0085 and was obtained in the 495th epoch. Table 9.60 presents three
desired values of error and the number of epochs, after which this error was
obtained.

9.6 Learning algorithms of neuro-fuzzy systems

In Subchapters 9.3, 9.4 and 9.5 we have discussed the neuro-fuzzy systems
of the Takagi-Sugeno, Mamdani and logical type. In this subchapter, we
will derive the learning algorithms of the above specified systems. They
have been used in simulation examples (Subchapters 9.3-9.5).
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We will use the idea of error backpropagation method, which is the basic
learning method of neural networks. Learning of the neuro-fuzzy systems
will come down to application of gradient algorithms, minimizing the ap-
propriately formulated quality criterion. By x (t) ∈ Rn and d (t) ∈ R we
will notate, a sequence of input and desired (at the output of the neuro-
fuzzy system) signals, respectively. The problem of learning of those sys-
tems comes down to determining, based on the learning sequence

(x (1) , d (1)) , (x (2) , d (2)) , . . . (9.71)

all the parameters of the membership function and weights (weights de-
scribing the importance of rules and importance of particular linguistic
variables in each rule) so as to minimize the criterion

Q (t) =
1
2

[f (x (t)) − d (t)]2 , (9.72)

where
y = f (x (t)) (9.73)

is the output of the neuro-fuzzy systems of the Mamdani, logical and
Takagi-Sugeno type presented in previous subchapters. For example, in
the Mamdani and logical type systems, the parameter yr, r = 1, . . . , N,
may be determined using the gradient algorithm

yr (t + 1) = yr (t) − η
∂Q (t)
∂yr (t)

. (9.74)

The direct determination of gradient ∂Q(t)
∂yr(t) in the above procedure is

complicated from a computational point of view. That is why an anal-
ogy between the neural networks and the neuro-fuzzy networks has been
used, considering the fact that the latter also have a multilayer structure.
Therefore, the error backpropagation method may be applied to learning
of neuro-fuzzy networks. The notation used in this subchapter shall be
explained on the example of a single neuron described by formula

y = f (s) , s =
n∑

i=0

xiwi, (9.75)

where f is a sigmoidal function, xi and wi, i = 0, . . . , n are inputs and
weights of the neuron. Let d be the desired signal at the neuron output.
Then

εf = ε = y − d (9.76)

is the error at neuron output and the expression

εs = εf {s} = εf ∂f (s)
∂s

= (y − d) f ′ (s) (9.77)
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FIGURE 9.4. Flow of signals and errors in a single neuron

describes the error propagated from the functional block f to the summa-
tion block s. Figure 9.4 presents the flow of signals and errors in a single
neuron.

At first, we will derive the learning algorithm for the Takagi-Sugeno
system and next, for the Mamdani and logical type systems. We will modify
the symbols used before to describe these systems, so that it would be
possible to clearly present the flow of errors through particular blocks of
the specified systems. The output signal of the Takagi-Sugeno system may
be described as follows:

y =

∑N
r=1

⎛

⎜
⎝

wdef
r · T ∗

{
µAr

1
(x1) , µAr

2
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n
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τ
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τ
n,r

}

·
(
cf
0,r +
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)

⎞

⎟
⎠

∑N
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⎝
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r ·

· T ∗
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µAr
1
(x1) , µAr

2
(x2) , . . . , µAr
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wτ
1,r, w

τ
2,r, . . . , w

τ
n,r

}
⎞

⎠

, (9.78)

where wτ
i,r ∈ [0, 1], i = 1, 2, . . . , n, r = 1, 2, . . . , N , mean the weights of

antecedents of rules and wdef
r ∈ [0, 1], r = 1, 2, . . . , N , mean the weights of

rules. By substituting

T ∗
{

µAr
1
(x1) , µAr

2
(x2) , . . . , µAr

n
(xn) ;

wτ
1,r, w

τ
2,r, . . . , w

τ
n,r

}
= τr (x) (9.79)

and

cf
0,r +

n∑

i=1

cf
i,r · xi = fr (x) , (9.80)
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FIGURE 9.5. Network structure of the Takagi-Sugeno system

we get

y =
∑N

r=1 wdef
r · τr (x) · fr (x)

∑N
r=1 wdef

r · τr (x)
= def

⎛

⎜
⎜
⎜
⎜
⎝

τ1 (x) , . . . , τN (x) ,

f1 (x) , . . . , fN (x) ;

wdef
1 , . . . , wdef

N

⎞

⎟
⎟
⎟
⎟
⎠

. (9.81)

The network structure of the Takagi-Sugeno system is presented in Fig. 9.5.
In the Takagi-Sugeno system, the following parameters are subject to

learning:

• pA
u,i,r, u = 1, 2, . . . , PA, parameters of input membership functions of

the fuzzy sets,

• cf
i,r, i = 0, 1, . . . , n, r = 1, 2, . . . , N , parameters of the functional

blocks,

• wτ
i,r, i = 1, 2, . . . , n, r = 1, 2, . . . , N , weights of antecedents,

• wdef
r , r = 1, 2, . . . , N , weights of rules.

The Takagi-Sugeno system parameters are modified by iteration according
to the dependencies below:

pA
u,i,r (t + 1) = pA

u,i,r (t) − η∆pA
u,i,r (t) , (9.82)

wτ
i,r (t + 1) = wτ

i,r (t) − η∆wτ
i,r (t) , (9.83)

cf
0,r (t + 1) = cf

0,r (t) − η∆cf
0,r (t) , (9.84)

cf
i,r (t + 1) = cf

i,r (t) − η∆cf
i,r (t) , i = 1, . . . , n, (9.85)
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wdef
r (t + 1) = wdef

r (t) − η∆wdef
r (t) . (9.86)

The terms ∆ in the above dependencies are defined as follows:

∆pA
u,i,r (t) = ετ

r

{
pA

u,i,r

}
, (9.87)

∆wτ
i,r (t) = ετ

r

{
wτ

i,r

}
(9.88)

∆cf
0,r (t) = εf

r

{
cf
0,r

}
, (9.89)

∆cf
i,r (t) = εf

r

{
cf
i,r

}
, (9.90)

∆wdef
r (t) = εdef

{
wdef

r

}
. (9.91)

The errors propagated by individual layers of the Takagi-Sugeno system
are defined as follows (Fig. 9.6):

ετ
r = εdef {τr (x)} , (9.92)

εf
r = εdef {fr (x)} , (9.93)

εdef = ε = y − d. (9.94)

FIGURE 9.6. Flow of errors in the Takagi-Sugeno system



9.6 Learning algorithms of neuro-fuzzy systems 423

FIGURE 9.7. Block of rules activation of the Takagi-Sugeno system

The errors propagated by blocks of rules activation of the Takagi-Sugeno
system are defined as follows (Fig. 9.7):

ετ
r

{
pA

u,i,r

}
= ετ

r
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µAr
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· (9.95)

·
∂µAr

i
(xi)

∂pA
u,i,r

,

ετ
r

{
wτ

i,r

}
= ετ

r

∂T ∗
{

µAr
1
(x1) , µAr

2
(x2) , . . . , µAr

n
(xn) ;

wτ
1,r, w

τ
2,r, . . . , w

τ
n,r

}

∂wτ
i,r

. (9.96)

We should notice that we are solving an optimization problem with
constraints. That is why further in our considerations, we will apply the
so-called constraint function fz(·) given by dependency

fz (x) =
1

1 + exp (− (p1x − p2))
, (9.97)

while
∂fz (x)

∂x
= p1 (1 − fz (x)) fz (x) . (9.98)

In the simulations, it has been assumed that p1 = 10 and p2 = 5.

Example 9.1
We will show the method for the determination of partial derivatives in
formula (9.95) and (9.96). Using the notation of the constraint function in
the definition of weighted t-norm, we get

T ∗
{

a1, a2, . . . , an;
w1, w2, . . . , wn

}
= T ∗ {a;w} = Tn

i=1 {1 − fz (wi) (1 − ai)} . (9.99)
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In case of an algebraic t-norm, we have

T ∗ {a;w} =
n∏

i=1

(1 − fz (wi) (1 − ai)) . (9.100)

Then
∂T ∗ {a;w}

∂ai
= fz (wi)

n∏

u=1
u	=i

(1 − fz (wu) (1 − au)) (9.101)

and

∂T ∗ {a;w}
∂wi

= − (1 − ai)
∂fz (wi)

∂wi

n∏

u=1
u	=i

(1 − fz (wu) (1 − au)) . (9.102)

Example 9.2
We will determine the partial derivatives of the Gaussian membership func-
tion of the input fuzzy set A (in order to have a clear notation, we will omit
appropriate indexes)

µA (x) = exp

(

−
(

x − x

σ

)2
)

. (9.103)

Let us notice that:

PA = 2, pA
1,i,r = x, pA

2,i,r = σ. (9.104)

Appropriate derivatives take the form

∂µA (x)
∂x

= −µA (x)
2 (x − x)

σ2
, (9.105)

∂µA (x)
∂x

= µA (x)
2 (x − x)

σ2
, (9.106)

∂µA (x)
∂σ

= µA (x)
2 (x − x)2

σ3
. (9.107)

The errors propagated by functional blocks of the Takagi-Sugeno system
are determined as follows (Fig. 9.8):

εf
r

{
cf
0,r

}
= εf

r , (9.108)

εf
r

{
cf
i,r

}
= εf

r xi. (9.109)

The errors propagated by the defuzzification block of the Takagi-Sugeno
system are determined as follows (Fig. 9.9):

εdef {τr(x)} = εdef ∂

∂τr(x)
def

⎛

⎝
τ1 (x) , . . . , τN (x) ,
f1 (x) , . . . , fN (x) ;

wdef
1 , . . . , wdef

N

⎞

⎠ , (9.110)
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FIGURE 9.8. Functional block of the Takagi-Sugeno system

FIGURE 9.9. Defuzzification block of the Takagi-Sugeno system

εdef {fr(x)} = εdef ∂

∂fr(x)
def

⎛

⎝
τ1 (x) , . . . , τN (x) ,
f1 (x) , . . . , fN (x) ;

wdef
1 , . . . , wdef

N

⎞

⎠ , (9.111)

εdef {wdef
r

}
= εdef ∂

∂wdef
r

def

⎛

⎝
τ1 (x) , . . . , τN (x) ,
f1 (x) , . . . , fN (x) ;

wdef
1 , . . . , wdef

N

⎞

⎠ , (9.112)

where

def

⎛

⎝
a1, a2, . . . , an,
b1, b2, . . . , bn;
w1, w2, . . . , wn

⎞

⎠ = def (a,b;w) =
∑n

i=1 wiaibi∑n
i=1 wiai

, (9.113)

∂def (a,b;w)
∂aj

= (bj − def (a,b;w))
wj∑n

i=1 wiai
, (9.114)

∂def (a,b;w)
∂wj

= (bj − def (a,b;w))
aj∑n

i=1 wiai
, (9.115)
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∂def (a,b;w)
∂bj

=
wjaj∑n
i=1 wiai

. (9.116)

Now we will derive learning algorithms of the neuro-fuzzy systems of
Mamdani and logical type. We will start our considerations with a gener-
alized model which describes both types of systems. The output signal of
such system may be described as follows:

y =
∑N

r=1 yr · agrr (x, yr)
∑N

r=1 agrr (x, yr)
. (9.117)

The operation of operators agrr (x, yr), r = 1, 2, . . . , N, depends on the
type of inference applied in a given system, i.e.

agrr (x, yr) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗
{

I1,r (x, yr) , . . . , IN,r (x, yr) ;
wagr

1 , . . . , wagr
N

}

for Mamdani inference,

T ∗
{

I1,r (x, yr) , . . . , IN,r (x, yr) ;
wagr

1 , . . . , wagr
N

}

for logical inference,

(9.118)

where

Ik,r (x, yr) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T {τk (x) , µBk (yr)}
for Mamdani inference

Ifuzzy (τk (x) , µBk (yr))
for logical inference

(9.119)

and

Ifuzzy (τk (x) , µBk (yr)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S {N (τk (x)) , µBk (yr)}
for S − implication,

t−1
mul

(
min
{

1,
tmul (µBk (yr))
tmul (τk (x))

})

for R − implication,

S {N (τk (x)) , T {τk (x) , µBk (yr)}}
for Q − implication,

(9.120)

In formula (9.120), the definition of R-implication has been used, tak-
ing into consideration the multiplicative generators tmul(·) of Archimedean
t-norm. The rules activation operator τk (x), k = 1, 2, . . . , N , has been de-
scribed similarly to the Takagi-Sugeno system considered earlier.
Figure 9.10 presents the network structure of a generalized neuro-fuzzy
system.

In the considered neuro-fuzzy system, the following parameters are sub-
ject to learning:
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FIGURE 9.10. Network structure of the neuro-fuzzy system

• pA
u,i,k, u = 1, 2, . . . , PA, i = 1, 2, . . . , n, k = 1, 2, . . . , N , parameters of

input membership functions of the fuzzy sets,

• pB
1,k = yk, k = 1, 2, . . . , N , centers of membership functions of output

fuzzy sets,

• pB
u,k, u = 2, 3, . . . , PB , k = 1, 2, . . . , N , other parameters of member-

ship functions of output fuzzy sets,

• wτ
i,k, i = 1, 2, . . . , n, k = 1, 2, . . . , N , weights of antecedents,

• wagr
k , k = 1, 2, . . . , N , weights of rules.

The system parameters are modified by iteration according to the
dependencies below:

pA
u,i,k (t + 1) = pA

u,i,k (t) − η∆pA
u,i,k (t) , (9.121)

wτ
i,k (t + 1) = wτ

i,k (t) − η∆wτ
i,k (t) , (9.122)

pB
u,k (t + 1) = pB

u,k (t) − η∆pB
u,k (t) , u = 2, . . . , PB , (9.123)

yr (t + 1) = pB
1,r (t + 1) = yr (t) − η∆yr (t) , (9.124)

wagr
k (t + 1) = wagr

k (t) − η∆wagr
k (t) . (9.125)
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The terms ∆ in the above dependencies are defined as follows:

∆pA
u,i,k = ετ

k

{
pA

u,i,k

}
, (9.126)

∆wτ
i,k = ετ

k

{
wτ

i,k

}
, (9.127)

∆pB
u,k =

N∑

r=1

εI
k,r

{
pB

u,k

}
, u = 2, . . . , PB , (9.128)

∆yr = ∆pB
1,r = εdef {yr} +

N∑

k=1

εI
k,r {yr} +

N∑

k=1

εI
r,k

{
pB
1,r

}
, (9.129)

∆wagr
k =

N∑

r=1

εagr
r {wagr

k } . (9.130)

The errors propagated by particular layers of the system are determined
as follows (Fig. 9.11):

ετ
k =

N∑

r=1

εI
k,r {τk (x)} , (9.131)

εI
k,r = εagr

r {Ik,r (x, yr)} , (9.132)

εagr
r = εdef {agrr (x, yr)} , (9.133)

εdef = ε = y − d. (9.134)

FIGURE 9.11. Flow of errors in the neuro-fuzzy system
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The errors propagated by blocks of rules activation of the system are
determined similarly as in Takagi-Sugeno system. The method of determi-
nation of errors propagated by implication blocks of the system depends of
the chosen inference model (Mamdani or logical) as well as type of applied
fuzzy implication (S, R, Q-implication) in case of logical inference.

The errors propagated by implication blocks of the system with Mamdani
type inference are determined as follows (Fig. 9.12):

εI
k,r

{
pB

u,k

}
= εI

k,r

∂T {τk (x) , µBk (yr)}
∂µBk (yr)

∂µBk (yr)
∂pB

u,k

, (9.135)

εI
k,r {yr} = εI

k,r

∂T {τk (x) , µBk (yr)}
∂µBk (yr)

∂µBk (yr)
∂yr , (9.136)

εI
k,r {τk (x)} = εI

k,r

∂T {τk (x) , µBk (yr)}
∂τk (x)

, (9.137)

whereas the derivatives ∂µ
Bk (yr)

∂pB
u,k

, ∂µ
Bk (yr)

∂yr ,
∂T{τk(x),µ

Bk (yr)}
∂τk(x) and

∂T{τk(x),µ
Bk (yr)}

∂µ
Bk (yr) are determined using the dependencies provided with the

description of the learning method of the Takagi-Sugeno system.

FIGURE 9.12. Implication block of the system with Mamdani type inference

FIGURE 9.13. Implication block of the neuro-fuzzy system with inference of
logical type (S-implication)
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The errors propagated by implication blocks of the system with inference
of logical type using the S -implication are determined as follows (Fig. 9.13):

εI
k,r

{
pB

u,k

}
= εI

k,r

∂S {N (τk (x)) , µBk (yr)}
∂µBk (yr)

∂µBk (yr)
∂pB

u,k

, (9.138)

εI
k,r {yr} = εI

k,r

∂S {N (τk (x)) , µBk (yr)}
∂µBk (yr)

∂µBk (yr)
∂yr , (9.139)

εI
k,r {τk (x)} = εI

k,r

∂S {N (τk (x)) , µBk (yr)}
∂N (τk (x))

∂N (τk (x))
∂τk (x)

, (9.140)

while
N (a) = 1 − a, (9.141)

∂N (a)
∂a

= −1 (9.142)

and the derivatives ∂µ
Bk (y)

∂pB
u,k

and ∂µ
Bk (yr)

∂yr are determined using the de-
pendencies provided with the description of the learning method of the
Takagi-Sugeno system.

The method of determination of partial derivatives in formulas (9.138) -
(9.140) will be shown in Example 9.3. This example relates to a more gen-
eral case, taking into account any number of arguments and their weights
in the definition of the t-conorm.

Example 9.3
Using the notation of the constraint function in the definition of weighted
t-conorm, we get

S∗
{

a1, a2, . . . , an;
w1, w2, . . . , wn

}
= S∗ {a;w} =

n

S
i=1

{fz (wi) ai} . (9.143)

In case of an algebraic t-conorm, we have

S∗ {a;w} = 1 −
n∏

i=1

(1 − fz (wi) ai) . (9.144)

Then
∂S∗ {a;w}

∂ai
= fz (wi)

n∏

u=1
u	=i

(1 − fz (wu) au) (9.145)

and
∂S∗ {a;w}

∂wi
= ai

∂fz (wi)
∂wi

n∏

u=1
u	=i

(1 − fz (wu) au) . (9.146)
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FIGURE 9.14. Implication block of the neuro-fuzzy system with inference of
logical type (R-implication)

The errors propagated by implication blocks of the system with inference
of logical type using the R-implication are determined as follows (Fig. 9.14):

εI
k,r

{
pB

u,k

}
=

= εI
k,r

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂t−1
mul

(
min
{

1,
tmul (µBk (yr))
tmul (τk (x))

})

∂ min
{

1,
tmul (µBk (yr))
tmul (τk (x))

}

∂ min
{

1,
tmul (µBk (yr))
tmul (τk (x))

}

∂
tmul (µBk (yr))
tmul (τk (x))

·
∂

tmul (µBk (yr))
tmul (τk (x))

∂tmul (µBk (yr))

∂tmul (µBk (yr))
∂µBk (yr)

∂µBk (yr)
∂pB

u,k

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (9.147)

εI
k,r {yr} =

= εI
k,r
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⎜
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∂t−1
mul

(
min
{

1,
tmul (µBk (yr))
tmul (τk (x))

})

∂ min
{

1,
tmul (µBk (yr))
tmul (τk (x))

}

∂ min
{

1,
tmul (µBk (yr))
tmul (τk (x))

}

∂
tmul (µBk (yr))
tmul (τk (x))

·
∂

tmul (µBk (yr))
tmul (τk (x))

∂tmul (µBk (yr))

∂tmul (µBk (yr))
∂µBk (yr)

∂µBk (yr)
∂yr

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (9.148)
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εI
k,r {τk (x)} =

= εI
k,r

⎛
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⎜
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⎜
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⎜
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⎝

∂t−1
mul

(
min
{

1,
tmul (µBk (yr))
tmul (τk (x))

})

∂ min
{

1,
tmul (µBk (yr))
tmul (τk (x))

}

∂ min
{

1,
tmul (µBk (yr))
tmul (τk (x))

}

∂
tmul (µBk (yr))
tmul (τk (x))

·
∂

tmul (µBk (yr))
tmul (τk (x))

∂tmul (τk (x))

∂tmul (τk (x))
∂τk (x)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (9.149)

In the above formulas, there are derivatives of the division operator and the
minimum operator. The method of their determination has been provided
in Subchapter 10.6 of the following chapter.

Example 9.4
To generate the Goguen R-implication, the following multiplicative gener-
ator of the t-norm may be used:

tmul (a) = ap, p > 0. (9.150)

Then in formulas (9.147) - (9.149) the following dependencies are used:

∂tmul (a)
∂a

= pap−1, (9.151)

t−1
mul (a) = a

1
p , (9.152)

∂t−1
mul (a)
∂a

=
1
p
a

1
p−1. (9.153)

The errors propagated by implication blocks of the system with inference
of logical type using the Q-implication are determined as follows (Fig. 9.15):

εI
k,r

{
pB

u,k

}
= εI

k,r

∂S {N (τk (x)) , T {τk (x) , µBk (yr)}}
∂T {τk (x) , µBk (yr)} (9.154)

·∂T {τk (x) , µBk (yr)}
∂µBk (yr)

∂µBk (yr)
∂pB

u,k

,

εI
k,r {yr} = εI

k,r

∂S {N (τk (x)) , T {τk (x) , µBk (yr)}}
∂T {τk (x) , µBk (yr)} (9.155)

·∂T {τk (x) , µBk (yr)}
∂µBk (yr)

∂µBk (yr)
∂yr ,
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FIGURE 9.15. Implication block of the neuro-fuzzy system with inference of
logical type (Q-implication)

εI
k,r {τk (x)}

= εI
k,r

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂S {N (τk (x)) , T {τk (x) , µBk (yr)}}
∂N (τk (x))

·∂N (τk (x))
∂τk (x)

+
∂S {N (τk (x)) , T {τk (x) , µBk (yr)}}

∂T {τk (x) , µBk (yr)}
·∂T {τk (x) , µBk (yr)}

∂τk (x)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (9.156)

and the derivatives

∂µBk (yr)
∂pB

u,k

,
∂µBk (yr)

∂yr ,
∂T {τk (x) , µBk (yr)}

∂τk (x)
,
∂T {τk (x) , µBk (yr)}

∂µBk (yr)
,

∂S {N (τk (x)), T {τk (x), µBk (yr)}}
∂N (τk (x))

,
∂S {N (τk (x)), T {τk (x), µBk (yr)}}

∂T {τk (x) , µBk (yr)}

and
∂N (τk (x))

∂τk (x)

are determined using the dependencies provided earlier and with the de-
scription of the learning method of the Takagi-Sugeno system.

Errors propagated by aggregation blocks of the system are determined
depending on the chosen inference method. The errors propagated by ag-
gregation blocks of the system with Mamdani type inference are determined
as follows (Fig. 9.16):

εagr
r {wagr

r } = εagr
r

∂S∗
{

I1,r (x, yr) , . . . , IN,r (x, yr) ;
wagr

1 , . . . , wagr
N

}

∂wagr
r

, (9.157)

εagr
r {Ik,r (x, yr)} = εagr

r

∂S∗
{

I1,r (x, yr) , . . . , IN,r (x, yr) ;
wagr

1 , . . . , wagr
N

}

∂Ik,r (x, yr)
, (9.158)
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FIGURE 9.16. Aggregation block of the neuro-fuzzy system with Mamdani type
inference

FIGURE 9.17. Aggregation block of the neuro-fuzzy system with inference of
logical type

while the derivatives

∂S∗
{

I1,r(x,yr),...,IN,r(x,yr);
wagr

1 ,...,wagr
N

}

∂Ik,r (x, yr)
and

∂S∗
{

I1,r(x,yr),...,IN,r(x,yr);
wagr

1 ,...,wagr
N

}

∂wagr
k

are determined based on the dependencies presented above.
The errors propagated by aggregation blocks of the system with inference

of logical type are determined as follows (Fig. 9.17):

εagr
r {wagr

k } = εagr
r

∂T ∗
{

I1,r (x, yr) , . . . , IN,r (x, yr) ;
wagr

1 , . . . , wagr
N

}

∂wagr
k

, (9.159)

εagr
r {Ik,r (x, yr)} = εagr

r

∂T ∗
{

I1,r (x, yr) , . . . , IN,r (x, yr) ;
wagr

1 , . . . , wagr
N

}

∂Ik,r (x, yr)
, (9.160)

while the derivatives

∂T ∗
{

I1,r(x,yr),...,IN,r(x,yr);
wagr

1 ,...,wagr
N

}

∂Ik,r (x, yr)
and

∂T ∗
{

I1,r(x,yr),...,IN,r(x,yr);
wagr

1 ,...,wagr
N

}

∂wagr
k

are determined using the dependencies provided with the description of the
learning method of the Takagi-Sugeno system.
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FIGURE 9.18. Defuzzification block of the neuro-fuzzy system

The errors propagated by the defuzzification block of the system are
determined as follows (Fig. 9.18):

εdef {yr} = εdef
∂ def
(

agr1
(
x, y1
)
, . . . , agrN

(
x, yN
)
;

y1, . . . , yN

)

∂yr , (9.161)

εdef {agrr (x, yr)} = εdef
∂ def
(
agr1
(
x, y1
)
, . . . , agrN

(
x, yN
)
;

y1, . . . , yN

)

∂ agrr (x, yr)
, (9.162)

while

def (a1, a2, . . . , an;w1, w2, . . . , wn) = def (a;w) =
∑n

i=1 wiai∑n
i=1 ai

, (9.163)

∂ def (a;w)
∂aj

= (wj − def (a;w))
1

∑n
i=1 ai

, (9.164)

∂ def (a;w)
∂wj

=
(

aj − def (a;w)
∂aj

∂wj

)
1

∑n
i=1 ai

. (9.165)

Let us notice that dependencies (9.163) - (9.165) are special cases of de-
pendencies – (9.113) - (9.116).

9.7 Comparison of neuro-fuzzy systems

Simulation analyses in Subchapters 9.3 – 9.5 and an attempt to evaluate
the studied neuro-fuzzy systems were based on the mean squared error as
the criterion used to compare these systems. These considerations allow to
conclude that usually the systems containing a higher number of trained
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parameters allowed to obtain better results. However, the desired neuro-
fuzzy system should be characterized by the smallest possible error but at
the same time should be as simple as possible. It should remember that sys-
tems with smaller number of trained parameters are characterized among
others by better capabilities of generalization of the results obtained. Here,
we should mention the so-called parsimony principle [235]. This princi-
ple is very useful when determining the appropriate order of the model.
It may be formulated as follows: from between two alternative and satis-
factory models, we shall choose the one which contains less independent
parameters. This principle remains compliant with common sense: “do not
enter any additional parameters into the process description unless they
are necessary”.

Estimation methods of the system order have been best developed for
autoregression processes [107, 132, 202]. Time series u (n) , u (n − 1) , ..,
u (n − p) is an autoregression process of order p, if the difference equation
is satisfied

u (n) + α1u (n − 1) + ... + αpu (n − p) = e (n) (9.166)

or equivalently

u (n) = −
p∑

k=1

αku (n − k) + e (n) , (9.167)

where α1, ..., αp are process coefficient, while e (n) is the white noise

E [e (n)] = 0, E [e (n) e (m)] =
{

σ2 for n = m,
0 for n �= m.

(9.168)

In the autoregression theory, criteria allowing to estimate the order of pre-
dictor p, determining first the prediction error Q̂p based on the learning
sequence of the length M , are well known. The most important is the Akaike
information criterion (AIC), Schwarz method and the final prediction error
(FPE) method.

In the following point, we will first present the basic models evaluation
criteria (taking into account their complexity), initially applied to the esti-
mation of orders of autoregression processes, and next they will be adapted
to evaluate the effectiveness of neuro-fuzzy systems. By the effectiveness of
operation of a neuro-fuzzy system, we shall understand the precision (accu-
racy) of operation achieved by such a system, (expressed by mean squared
error or by the number of erroneously classified samples) in the context
of its size. By the system size we shall understand the number of all pa-
rameters that are subject to learning. We shall also present the concept
of the so-called criteria isolines, which allow to solve the problem of the
compromise between the system accuracy and the number of parameters
describing this system.
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9.7.1 Models evaluation criteria taking into account
their complexity

Two general criteria taking into account the complexity of the model, the
dependencies between those criteria as well as their special forms are pre-
sented below.

9.7.1.1. Criterion A

The general form of criterion A, taking into account the complexity of
the model, is given by formula

W (p) = Q̂p [1 + β (M,p)] , (9.169)

where Q̂p is the mean square error, and β (M,p) is the function of the length
of the learning sequence M and the number of parameters p of the model.
To eliminate too complex structures (according to the economy principle),
we assume that

lim
p→∞

β (M,p) = ∞. (9.170)

At the same time, in order to avoid the situation where the presence of
the penalizing term in expression (9.169) hampers the observation of the
decreasing of the mean square error Q̂p value with the increase of model
complexity, we shall assume that

lim
M→∞

β (M,p) = 0. (9.171)

The typical choice is β (M,p) = 2p/M and then

W (p) = Q̂p

[
1 +

2p

M

]
. (9.172)

9.7.1.2. Criterion B

An alternative criterion to formula (9.169) may be the following depen-
dence:

W (p) = M log Q̂p + γ (M,p) , (9.173)

where the additional term γ (M,p) should take into account the penalty for
accepting models of an order which is too high. It is easy to check that if

γ (M,p) = Mβ (M,p) , (9.174)

then criteria (9.169) and (9.173) are asymptotically equivalent.
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Below, we shall present the basic methods of the compromise selection
of the model order. Most of these methods are the special cases of criterion
A or B presented above.

9.7.1.3. Akaike information criterion (AIC) method

The assumption that γ (M,p) = 2p in criterion (9.173) results in the so-
called Akaike Information Criterion. The complexity of system p may be
found by searching for the smallest value of the following expression

AIC(p) = M ln Q̂p + 2p (9.175)

9.7.1.4. Final prediction error (FPE) method

The FPE criterion was also proposed by Akaike. In the Final Prediction
Error method, which does not result from any general formulas (9.169)
and (9.173), the complexity of system p may be found by searching for the
smallest value of the expression

FPE(p) =
M + p

M − p
Q̂p. (9.176)

In expression (9.176) together with the increase of parameter p, the factor
M+p
M−p increases and the value of the mean square error Q̂p decreases. We
shall notice that for high values of M , the following approximation may be
used:

FPE(p) = Q̂p

[
1 +

2p/M

1 − p/M

]
≈ Q̂p

[
1 +

2p

M

]
, (9.177)

which is of type (9.169), i.e.

β (M,p) =
2p

M
. (9.178)

Expressions (9.169) and (9.173) are asymptotically equivalent, if condition
(9.174) is satisfied, and hence

γ (M,p) = 2p. (9.179)

In consequence:

FPE(p) ≈ AIC(p) = M ln Q̂p + 2p. (9.180)

FPE and AIC criteria show a tendency to select a model of a too small
order. That is why literature [235] proposes three other methods described
below:
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9.7.1.5. Schwarz method

Assuming γ (M,p) = p log M in criterion (9.173) gives the so-called Schwarz
criterion. In this method, the complexity of system p may be found by
searching for the smallest value of the expression

S(p) = M ln Q̂p + p ln M. (9.181)

9.7.1.6. Södeström and Stoica method

Assuming γ (M,p) = 2pc log (log M) , where c ≥ 1, in criterion (9.173)
gives the so-called Södeström and Stoica criterion. In this method, the
complexity of system p is found by searching for the smallest value of the
expression

H(p) = M ln Q̂p + 2pc log (log M) . (9.182)

9.7.1.7. CAT method

In the CAT (Criterion Autoregressive Transfer Function) method, the com-
plexity of system p may be found by searching for the smallest value of the
expression

CAT (p) =
1
M

p∑

i=1

1
Qi

− 1
Qp

, (9.183)

where Qi = m
M−i Q̂i.

The methods described above for determination of the order of the model
have been first proposed for the analysis of data autoregression processes
using formula (9.166). However, it should be stated that these methods
allow to determine the appropriate order of the model regardless whether
the system belongs to the class of the model structures or not [235].

9.7.2 Criteria isolines method
The estimation methods of the prediction order described in the previous
point will be adapted now to the evaluation of fuzzy systems. Thanks to
this, search for the desired fuzzy system based on two criteria (number of
parameters and mean square error) will come down to one selected crite-
rion, i.e. AIC, Schwarz or FPE. They have been adapted for the needs of
evaluation of neuro-fuzzy systems in the following form:

AIC(p, Q̂p) = M ln Q̂p + 2p, (9.184)

S(p, Q̂p) = M ln Q̂p + p ln M, (9.185)

FPE(p, Q̂p) =
Mn + p

Mn − p
Q̂p, (9.186)
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where p is the number of system parameters subject to learning (number of
parameters of all membership functions and number of all weights if they
occur in a given system), Q̂p is the measure of error used in simulations
described in Subchapters 9.3 - 9.5, M is the number of samples in a learn-
ing sequence, and n is the number of system inputs. The product M · n
may therefore be treated as a measure of size of the problem being solved.
Tables 9.62a, 9.62b, 9.63a and 9.63b contain the computed values of cri-
teria for particular tested structures in case of the learning and testing
sequence used in the polymerization problem. Figures 9.19 - 9.24 illus-
trate the coordinates of the points corresponding to particular neuro-fuzzy
systems tested. The coordinate p defines the number of parameters of a
given system, coordinate Q defines the error with which the system real-
ized the problem to be solved. The criteria isolines present constant values
of the AIC, Schwarz and FPE criteria, with different values of the error and
the number of parameters. Such an approach allows to solve the problem of
the compromise between the system operation error and the number of pa-
rameters describing this system. Points located on the criteria isolines with
the same values of AIC, Schwarz or FPE criterion characterize the neuro-
fuzzy systems making up the Pareto set. In the Pareto set, none of the
two values of contradictory criteria may be improved (mean square error
versus system size), without worsening the other one. Points located on the
criteria isolines with the smallest values of AIC, Schwarz or FPE criterion
characterize the neuro-fuzzy systems which have been called suboptimal
ones. The suboptimal neuro-fuzzy systems presented in graphs ensure the
smallest value of criteria within tested structures (the terminology “opti-
mum systems” is not used as all possible structures have not been tested).

Tables 9.62a, 9.62b, 9.63a and 9.63b and figures indicate that both for the
learning sequence and for the testing sequence, the AIC criterion evaluates
as the best system 1 (simplified Larsen structure), and next, system 29
(Zadeh structure with weights of rules), the FPE criterion – system 29, the
Schwarz criterion – definitely system 1.

Analogically, the criteria isolines may be easily drawn for HANG, NDP
and modeling the taste of rice problems. Having drawn these lines, it may
be checked that in case of the HANG problem, both for the learning and the
testing sequence, the AIC and FPE criteria indicate system 23 (Reichen-
bach structure with weights of rules), and the Schwarz criterion – system
1 (simplified Larsen structure). In case of the NDP problem all three cri-
teria, both for the learning and the testing sequence indicate the selection
of system 3 (simplified Larsen structure with weights of inputs and rules).
In case of modeling the taste of rice, both for the learning and the test-
ing sequence, the AIC and Schwarz criteria indicate system 1 (simplified
Larsen structure) as the best one, and the FPE criterion indicates system
20 (Mamdani structure with weight of rules).
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TABLE 9.62a. Values of criteria for the learning sequence

No. Structure Polymerization

error p AIC FPE Schwarz

1 Larsen simplified 0.0042 42 −299.09 0.0063 −204.65
2 Larsen simplified with

weights of rules
0.0039 48 −292.27 0.0062 −184.35

3 Larsen simplified with
weights of inputs and
rules

0.0031 66 −272.34 0.0059 −123.94

4 Łukasiewicz simplified 0.0059 42 −275.30 0.0089 −180.86
5 Łukasiewicz simplified

with weights of rules
0.0039 48 −292.27 0.0062 −184.35

6 Łukasiewicz simplified
with weights of inputs
and rules

0.0037 66 −259.96 0.0071 −111.56

7 Zadeh simplified 0.0049 42 −288.30 0.0074 −193.86
8 Zadeh simplified with

weights of rules
0.0041 48 −288.77 0.0065 −180.85

9 Zadeh simplified with
weights of inputs and
rules

0.0038 66 −258.09 0.0073 −109.69

10 Binary 0.0063 48 −258.70 0.01 −150.78
11 Binary with weights

of rules
0.0054 54 −257.49 0.0091 −136.08

12 Binary with weights
of inputs and rules

0.0036 72 −249.88 0.0074 −87.99

13 Larsen 0.0049 48 −276.30 0.0078 −168.37
14 Larsen with weights of

rules
0.0043 54 −273.44 0.0073 −152.02

15 Larsen with weights of
inputs and rules

0.0035 72 −251.85 0.0072 −89.96

16 Łukasiewicz 0.0065 48 −256.52 0.0104 −148.59
17 Łukasiewicz with

weights of rules
0.0041 54 −276.77 0.0069 −155.36

18 Łukasiewicz with
weights of inputs and
rules

0.0038 72 −246.09 0.0078 −84.20

19 Mamdani 0.0041 48 −288.77 0.0065 −180.85
20 Mamdani with

weights of rules
0.0039 54 −280.27 0.0066 −158.86

21 Mamdani with
weights of inputs and
rules

0.0034 72 −253.88 0.0069 −91.99

22 Reichenbach 0.0040 48 −290.50 0.0064 −182.57
23 Reichenbach with

weights of rules
0.0037 54 −283.96 0.0063 −162.54
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TABLE 9.62b. Values of criteria for the learning sequence

No. Structure Polymerization

error p AIC FPE Schwarz
24 Reichenbach with

weights of inputs
and rules

0.0034 72 −253.88 0.0069 −91.990

25 Willmott 0.0056 48 −266.95 0.0089 −159.02
26 Willmott with

weights of rules
0.0047 54 −267.21 0.008 −145.79

27 Willmott with
weights of inputs
and rules

0.0039 72 −244.27 0.008 −82.38

28 Zadeh 0.0038 48 −294.09 0.0061 −186.17
29 Zadeh with weights

of rules
0.0030 54 −298.64 0.0051 −177.22

30 Zadeh with weights
of inputs and rules

0.0028 72 −267.47 0.0057 −105.58

31 Takagi-Sugeno 0.0034 60 −277.88 0.0061 −142.97
32 Takagi-Sugeno with

weights of rules
0.0031 66 −272.34 0.0059 −123.94

33 Takagi-Sugeno with
weights of inputs
and rules

0.0030 84 −238.64 0.007 −49.77

In all simulations performed so far, the effectiveness of operation of the
neuro-fuzzy systems, assuming the defined number of rules to solve a spe-
cific problem has been analised. Thanks to it, it was possible to compare
33 different neuro-fuzzy systems. It should be stressed that the method of
criteria isolines may be also applied to the appropriate designing of each
of these systems. If we concentrate on a single specific neuro-fuzzy system,
we may select the number of rules which will ensure the smallest value of
one of the criteria listed in point 9.7.1. For example, for the problem of
modeling the taste of rice, we have applied the simplified Larsen structure,
changing gradually the number of rules from 10 to 2. Individual systems are
characterized by the following number of parameters: 110, 99, 88, 77, 66,
55, 44, 33 and 22. Figures 9.25 and 9.26 show the function of dependency of
the AIC and Schwarz criteria versus the number of parameters. As it may
be inferred from the graphs, the AIC and Schwarz criteria suggest that
four rules should be assumed. In the simulations performed, the problem
of modeling the taste of rice was analyzed, assuming 5 rules, according to
the principle of caution.
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TABLE 9.63a. Value of criteria for the testing sequence

No. Structure Polymerization

error p AIC FPE Schwarz
1 Larsen simplified 0.0045 42 −294.26 0.0068 −199.82
2 Larsen simplified with

weights of rules
0.0041 48 −288.77 0.0065 −180.85

3 Larsen simplified with
weights of inputs and
rules

0.0033 66 −267.97 0.0063 −119.57

4 Łukasiewicz simplified 0.0063 42 −270.70 0.0095 −176.27
5 Łukasiewicz simplified

with weights of rules
0.0041 48 −288.77 0.0065 −180.85

6 Łukasiewicz simplified
with weights of inputs
and rules

0.0039 66 −256.27 0.0075 −107.87

7 Zadeh simplified 0.0053 42 −282.80 0.0080 −188.37
8 Zadeh simplified with

weights of rules
0.0044 48 −283.83 0.0070 −175.90

9 Zadeh simplified with
weights of inputs and
rules

0.0040 66 −254.50 0.0077 −106.10

10 Binary 0.0067 48 −254.40 0.0107 −146.47
11 Binary with weights

of rules
0.0057 54 −253.71 0.0096 −132.29

12 Binary with weights
of inputs and rules

0.0038 72 −246.09 0.0078 −84.20

13 Larsen 0.0052 48 −272.14 0.0083 −164.21
14 Larsen with weights of

rules
0.0045 54 −270.26 0.0076 −148.84

15 Larsen with weights of
inputs and rules

0.0038 72 −246.09 0.0078 −84.20

16 Łukasiewicz 0.0069 48 −252.34 0.0110 −144.41
17 Łukasiewicz with

weights of rules
0.0045 54 −270.26 0.0076 −148.84

18 Łukasiewicz with
weights of inputs and
rules

0.0041 72 −240.77 0.0084 −78.88

19 Mamdani 0.0043 48 −285.44 0.0068 −177.51
20 Mamdani with

weights of rules
0.0042 54 −275.09 0.0071 −153.67

21 Mamdani with
weights of inputs and
rules

0.0037 72 −247.96 0.0076 −86.07

22 Reichenbach 0.0044 48 −283.83 0.0070 −175.90
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TABLE 9.63b. Value of criteria for the testing sequence

No. Structure Polymerization

error p AIC FPE Schwarz

23 Reichenbach with
weights of rules

0.0039 54 −280.27 0.0066 −158.86

24 Reichenbach with
weights of inputs and
rules

0.0037 72 −247.96 0.0076 −86.07

25 Willmott 0.0060 48 −262.12 0.0096 −154.19
26 Willmott with weights

of rules
0.0049 54 −264.30 0.0083 −142.88

27 Willmott with weights
of inputs and rules

0.0043 72 −237.44 0.0088 −75.55

28 Zadeh 0.0043 48 −285.44 0.0068 −177.51
29 Zadeh with weights of

rules
0.0033 54 −291.97 0.0056 −170.55

30 Zadeh with weights of
inputs and rules

0.0031 72 −260.34 0.0063 −98.45

31 Takagi-Sugeno 0.0036 60 −273.88 0.0065 −138.97
32 Takagi-Sugeno with

weights of rules
0.0034 66 −265.88 0.0065 −117.48

33 Takagi-Sugeno with
weights of inputs and
rules

0.0033 84 −231.97 0.0077 −43.09

FIGURE 9.19. Criteria isolines: results obtained by particular systems for the
Akaike criterion for the learning sequence – polymerization problem
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FIGURE 9.20. Criteria isolines: results obtained by particular systems for the
FPE criterion for the learning sequence – polymerization problem

FIGURE 9.21. Criteria isolines: results obtained by particular systems for the
Schwarz criterion for the learning sequence – polymerization problem
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FIGURE 9.22. Criteria isolines: results obtained by particular systems for the
Akaike criterion for the testing sequence – polymerization problem

FIGURE 9.23. Criteria isolines: results obtained by particular systems for the
FPE criterion for the testing sequence – polymerization problem
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FIGURE 9.24. Criteria isolines: results obtained by particular systems for the
Schwarz criterion for the testing sequence – polymerization problem

FIGURE 9.25. Values of the Akaike criterion

FIGURE 9.26. Values of the Schwarz criterion
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9.8 Notes

In this chapter, the object of studies included the neuro-fuzzy systems of
the Mamdani, logical and Takagi-Sugeno type. From the simulations per-
formed we may conclude that if weights reflecting the importance of rules
and importance of linguistic variables in the antecedents of rules are in-
cluded, it significantly improves the operation of neuro-fuzzy systems. The
Takagi-Sugeno systems are characterized by the smallest mean square error,
but this result is obtained with a large number of parameters. Extended
structures (characterized by a more extensive information on membership
functions of the fuzzy sets in the consequents of rules) give better results
than the simplified structures. Moreover, the issue of compromise between
the system operation error and the number of parameters describing it has
been presented in this chapter. From the analysis of criteria isolines corre-
sponding to particular simulations we may conclude that in most cases the
best system, in the meaning of proposed criteria, is the simplified Larsen
structure given by formula (9.25). The logical type systems have been stud-
ied in monographs by Czogała and Łęski [34], Rutkowska [187] as well
as Rutkowski [225]. Different approaches to the issue of designing neuro-
fuzzy networks have been presented in works [65, 126, 142, 145, 148, 149,
176, 185, 186, 213, 214, 216, 239, 253, 254]. Neuro-fuzzy structures associ-
ated with the rough sets theory have been proposed by Nowicki [151, 152],
while in association with the type-2 fuzzy sets theory have been proposed
by Starczewski [238]. Relational neuro-fuzzy systems have been analyzed
by Scherer [231]. The learning method of neuro-fuzzy structures has been
developed by Piliński [172 - 174]. Models evaluation criteria taking into
account their complexity have been discussed in detail in monograph [235].




