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Data clustering methods

8.1 Introduction

In daily life as well as in different fields of science we encounter big, some-
times enormous volume of information. One look is enough for humans to
distinguish the shapes of objects being of interest to us from a specific
image. Intelligent machines, however, are still incapable of prompt and
unerring distinguishing of objects in the image, due to the lack of universal
algorithms which would work in every situation.

The objective of data clustering is a partition of data set into clusters of
similar data. Objects in the data set may be e.g. bank customers, figures or
things in a photograph, sick and healthy persons. A human being may effec-
tively group only one- and two-dimensional data, while three-dimensional
data may cause serious difficulties. The scale of the problem is intensified
by the fact that the number of samples in real tasks may amount to thou-
sands and millions. In the light of those facts it would be very useful to
have algorithms for automatic data clustering. Operation of those algo-
rithms would result in a fixed structure of data partition, i.e. location and
shape of the clusters and membership degrees of each sample to each clus-
ter. Data clustering is a complicated issue as the structures hidden in the
data set may have any shapes and sizes. Moreover, the number of clusters
is usually unknown. Unfortunately, the literature so far does not provide
any algorithm which would work in the case of any shapes of clusters.
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FIGURE 8.1. Various shapes of clusters in two-dimensional space

When choosing the proper clustering algorithm, we should use the knowl-
edge of the problem described by the data set. Generally, data partition
should have two features:

• homogeneity in clusters, i.e. data within a given cluster should be as
similar to each other as possible,

• heterogeneity between clusters, i.e. data belonging to different clusters
should be as different from each other as possible.

Similarity of data vectors may be defined in different ways, depending on
the type of data being clustered. As data most often describe features of
objects in a numerical form (as numbers), the most appropriate similarity
measure is to measure the distance between objects. We may use e.g. the
Euclidean norm which is the most frequently used method of measuring
the similarity of objects. Clusters may be represented in different ways.
Most frequently the cluster is represented by its central point in the data
space. By using various similarity measures we can obtain different shapes
of clusters, with the center represented by the central point. Figure 8.1
illustrates examples of various clusters in the two-dimensional space.

In the data clustering tasks we do not have at our disposal the so-called
desired output signal, from the teacher. Thus, the process of data clustering
may be equated with unsupervised learning. This chapter presents various
methods of data partitioning and algorithms for automatic data clustering.
Data clustering validity measures are also discussed in this chapter.

8.2 Hard and fuzzy partitions

Data subject to clustering will be represented by n-dimensional vectors
xk = [xk1, . . . , xkn]T,xk ∈ Rn, k = 1, . . . ,M , which consist of numerical
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values describing the objects. The set of M vectors creates matrix X of
dimension n × M

X =

⎡

⎢
⎢
⎢
⎣

x11 x21 · · · xM1

x12 x22 · · · xM2

...
...

...
...

x1n x2n · · · xMn

⎤

⎥
⎥
⎥
⎦

. (8.1)

In case of classification, matrix columns (8.1) are objects, and the rows are
features (attributes). In the case of medical diagnostics, objects may be
identified with patients, while features will be identified with symptoms of
a disease or with results of laboratory analysis of those patients.

If clusters are represented by their centers, the objective of clustering
algorithms is to obtain c vectors vi = [vi1, . . . , vin], i = 1, . . . , c, which are
representatives of particular clusters in the data space.

It must be emphasized that from the computational point of view it
would be very hard to analyze all possible partitions of M objects into c
clusters as their number equals [48]

1
c!

c∑

i=1

(
c

i

)
(−1)(c−i)

iM . (8.2)

Example 8.1
Let us consider the problem of partitioning 100 patients (M = 100) into 5
different clusters, characterizing particular pathological cases (c = 5). It
is easy to check that by using formula (8.2), we obtain approximately
6.57 ·1067 different partitions. Thus it is extremely important to find meth-
ods which would perform optimal partition without the necessity to analyze
all possible results of clustering.

In the data clustering tasks it is essential to define the type of data
partition. The literature distinguishes between hard, fuzzy and possibilis-
tic partitions, where possibilistic partitions are treated as modification of
fuzzy partitions.

In the hard data clustering the object entirely belongs or does not belong
to a given cluster. The objective of data clustering is data partitioning into
c clusters Ai so that

c⋃

i=1

Ai = X, (8.3)

Ai ∩ Aj = Ø, 1 ≤ i �= j ≤ c, (8.4)

Ø ⊂ Ai ⊂ X, 1 ≤ i ≤ c. (8.5)

Assumption (8.3) means that the set of all clusters contains all data vectors,

and each object belongs to exactly one cluster. The clusters are disjoint
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(condition (8.4)), and none of them is empty nor contains the whole data
set X (condition (8.5)). In order to partition data into c clusters, it is
comfortable to use the partition matrix U of the dimension c × M , con-
taining the membership degrees µik of the k-th data xk to the i-th cluster,
k = 1, ...,M, i = 1, ..., c.

Definition 8.1
Let X = {x1, . . . ,xM} be a finite set. Let c, 2 ≤ c < M, be an integer.
Hard partitioning space of the set X is defined in the following way:

Z1 =

{

U ∈ Rc×M | µik ∈ {0, 1} , ∀i, k;
c∑

i=1

µik (8.6)

= 1, ∀k; 0 <

M∑

k=1

µik < M, ∀i

}

.

The partition above assumes that the object belongs to one cluster only
and there are no empty clusters or clusters containing all objects.

Example 8.2
Let us consider the data presented in Fig. 8.1. For such data hard partitioning
into three clusters (c = 3) may be represented by the following matrix U:

U =

⎡

⎣
1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 1
0 0 0 0 0 0 1 1 1 0

⎤

⎦ . (8.7)

Let us notice that the object x10 is assigned to cluster 2, although in-
tuitively we would not include it in any of the clusters. However, hard
partition makes it necessary for each of the objects to belong to one of the
clusters.

The most frequently considered problems do not permit such an unam-
biguous data partition as in Definition 8.1, as the areas of clusters occur-
rence may overlap. What is helpful in such a case are algorithms which cause
that objects may belong to many clusters with different membership de-
grees at the same time. It is a natural extension of the hard partition where,
like in real problems, a given object may not always be classified unambigu-
ously to one category. For example the boundaries between small, compact
and big cars are not strictly defined. There are two types of soft partition:
fuzzy and possibilistic. In both partitions the objects may belong to any
number of clusters with a membership degree which is a number from the
range [0, 1]. In the fuzzy partition there is additionally a constraint imposed
on membership degrees of a particular object so that the sum of member-
ship degrees of this object to each of c clusters equals 1. This constraint is
analogous to the constraint occurring in the probabilistics, therefore this
partition is also called probabilistic partition.
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Definition 8.2
Let X = {x1, . . . ,xM} be a finite set. Let c, 2 ≤ c < M , be an integer.
Fuzzy partition of the set X is defined in the following way:

Z2 =

{

U ∈ Rc×M | µik ∈ [0, 1] , ∀i, k;
c∑

i=1

µik (8.8)

= 1, ∀k; 0 <

M∑

k=1

µik < M, ∀i

}

.

The partition above assumes that the object may at the same time belong
to all clusters with a certain membership degree but the sum of all mem-
bership degrees must equal 1. Moreover, there may be no empty clusters
or clusters containing all data.

Example 8.3
Let us consider the data presented in Fig. 8.2. For such data the fuzzy
partition into three clusters may be represented by the following matrix U:

U =

⎡

⎣
0 0.06 0.02 0.98 0.98 0.99 0.01 0.01 0 0.29
1 0.89 0.93 0.01 0.01 0.00 0.01 0.01 0 0.33
0 0.05 0.05 0.01 0.01 0.01 0.98 0.98 1 0.38

⎤

⎦. (8.9)
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FIGURE 8.2. A dataset in Example 8.3

Let us notice that object x10 is characterized by similar degrees of mem-
bership to all three clusters, which corresponds to its almost equal distance
from the centers of those clusters. This object may be identified as an out-
lier (noise). Intuitively we would assign very low membership degrees to
noise x10, equal to e.g. 0.1, to all three clusters. However, then the condi-
tion that the sum of all membership degrees of a given object must equal
1 would not be met.
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Historically in the literature the next partition was a possibilistic parti-
tion getting rid of the restriction that the sum of membership degrees is
equal one. The only restriction for the object is to belong at least to one
cluster. In practice it is not a big inconvenience as the low value of mem-
bership degree may be regarded as the lack of membership.

Definition 8.3
Let X = {x1, . . . ,xM} be a finite set. Let c, 2 ≤ c < M , be an integer.
Possibilistic partition of the set X is defined in the following way:

Z3 =

{

U∈Rc×M | µik∈[0,1], ∀i, k; ∀k, ∃i, µik>0; 0<
M∑

k=1

µik<M, ∀i

}

. (8.10)

Example 8.4
Let us consider the data presented in Fig. 8.2. For such data the possibilistic
partition into three clusters may be represented by the following matrix U:

U=

⎡

⎣
0.01 0.02 0.01 0.52 0.39 0.87 0.01 0.01 0.01 0.03
0.87 0.44 0.79 0.04 0.03 0.03 0.05 0.04 0.05 0.12
0.01 0.01 0.02 0.01 0.01 0.01 0.53 0.63 0.79 0.03

⎤

⎦

(8.11)

Currently the condition that the sum of membership degrees is equal to
one does not have to be met. Therefore the noise x10 belongs to all clusters
but with a small membership degree.

8.3 Distance measures

An important factor influencing the result of data partition is the method of
determining distances between objects. In case of data clustering we mea-
sure the distance in the features space in which there are clustered objects
and centers (prototypes) of clusters. The most frequently used distance
measure is the Euclidean norm, interpreted as geometric distance between
two points in the space X. Let us consider two points xd = [xd1, ..., xdn]T

and vi = [vi1, ..., vin]T . The Euclidean distance between those points is
defined in the following way:

Did =

√√
√
√

n∑

j=1

(xdj − vij)
2 = ‖xd − vi‖2 , (8.12)

and in the vector notation

Did =
[
(vi − xd)

T (vi − xd)
] 1

2
. (8.13)
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x2

x1

FIGURE 8.3. Illustration of the Euclidean and Manhattan distance

This measure is a generalization of the Minkowski metric

Did =

⎛

⎝
n∑

j=1

|xdj − vij |r
⎞

⎠

1
r

. (8.14)

For different values of the parameter r we may obtain other than the
Euclidean norm distance measures. For example for r = 1 we obtain the
Manhattan distance (also called the city block measure). The interpretation
of this measure may be identified with moving along city streets where we
are forced to keep to the network of streets and only 90-degree turns are
allowed. Figure 8.3 illustrates the interpretation of the Euclidean norm and
Manhattan distance. In case of binary variables the Manhattan distance is
called the Hamming distance. This measure gives the number of bits by
which two bit strings differ. Those strings may represent for example black
and white images.

Minkowski measures are susceptible to differences in size (scale) of partic-
ular variables. High value variables will dominate low value variables which
are for example in a different scale. The method to avoid this problem is
variables scaling, which leads to the weighted Euclidean norm

Did =

√√
√
√

n∑

j=1

wj (xdj − vij)
2
, (8.15)

where wj is the weight of a given dimension. Assigning the weights to
particular variables is useful if we want to obtain the same importance
of variables without scaling the data set, or to impose another dimension
hierarchy.

If we introduce an additional matrix A to the Euclidean norm, the clus-
ters may take the shape of ellipses of any orientation. Then we obtain the
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family of norms induced by a scalar product. In the simplest case the ma-
trix A is an identity matrix, i.e. A = I. The measure then becomes the
Euclidean distance given by the formula (8.12), and from the geometric
point of view the clusters constitute hyperspheres. Figure 8.4 shows how
the Euclidean norm operates for n = 2. The dotted lines have been used to
mark circles characterized by a constant distance between the points lying
on those circles from the central point (center). In general the matrix A is
an n × n diagonal matrix of the form of

A =

⎡

⎢
⎢
⎢
⎣

c1 0 · · · 0
0 c2 · · · 0
...

...
. . .

...
0 0 · · · cn

⎤

⎥
⎥
⎥
⎦

, (8.16)

where ci > 0, i = 1, ..., n. The clusters generated by the norm with such a
matrix are hyperellipses with main diagonals perpendicular to the axis of
data space, which is illustrated in Fig. 8.5. The dotted lines have been used
to mark ellipses characterized by a constant distance between the points
lying on those ellipses from the central point.

x2

x1

FIGURE 8.4. Euclidean norm

x2

x1

FIGURE 8.5. Diagonal norm
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x1

x2

FIGURE 8.6. Mahalanobis norm

Now we will show another method of creation of the matrix A. Let us
define the covariance matrix of data from the set X

R =
1
M

M∑

k=1

(xk − x) (xk − x)T
, (8.17)

where x means the average of data xk, k = 1, ...,M . Matrix A is defined
in the following way:

A = R−1. (8.18)

Matrix A created in this way induces the Mahalanobis norm in the space
Rn, and the clusters are now hyperellipses with any shape and orientation,
which is illustrated in Fig. 8.6.

8.4 HCM algorithm

The HCM algorithm (Hard C-Means) unambiguously partitions the data
contained in the matrix X into c clusters. When executing this algorithm,
we compute the distance between each vector xk ∈ Rn, k = 1, . . . ,M
and the cluster center vi, i = 1, ..., c. The cluster center is the average
of the location of all objects belonging to this cluster. It is convenient to
describe the membership in a cluster by means of matrix U = [µik] ∈ Z1

(see Definition 8.1). Elements of this matrix are zeros and ones saying that
the object xk belongs to the i-th cluster. The algorithm is performed in the
following stages:

1. Algorithm initialization.

2. Determining the membership of objects on the basis of their distance
from the cluster centers.
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3. Determining new cluster centers by computing the average of the
location of the objects belonging to a given cluster.

4. Checking the algorithm stopping criterion. If the condition is not met,
then we proceed to step 2.

The algorithm initialization consists in the choice of the number of clusters
c and determining the initial location of their centers. This location may
be chosen at random. Alternatively, the initial location of the centers may
be identical with c vectors xk chosen at random or with first c objects in
the data set. A detailed flowchart of the algorithm is illustrated in Fig. 8.7.

The algorithm stopping criterion is the most frequently an appropriately
small change of the value of elements of the matrix U, that is

∥
∥U(t+1)−U(t)

∥
∥

< ε, where ε is a fixed constant. Alternatively, we may check the change
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FIGURE 8.7. Flowchart of the HCM algorithm
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of cluster centers location, i.e.
∥
∥V(t+1) − V(t)

∥
∥ < ε. The HCM algorithm

may give various results, depending on the initial location of the cluster
centers.

8.5 FCM algorithm

Now let us present the FCM algorithm (Fuzzy C-Means) which allows as-
signing the same objects to various clusters with appropriate membership
degrees. The FCM algorithm is the most frequently used algorithm of fuzzy
clustering. It detects clusters with prototypes which are points in the data
space. All clusters have the same shape dependent on the norm chosen in
advance since the algorithm has no possibility to adjust the matrix A to
existing data. This algorithm is derived by minimization of the criterion

J (X;U,V) =
c∑

i=1

M∑

k=1

(µik)m ‖xk − vi‖2
A , (8.19)

where

U = [µik] ∈ Z2 (8.20)

is the matrix of the set X partition, whereas

V = [v1,v2, . . . ,vc] (8.21)

is the vector of centers which are to be defined as a result of the algorithm
operation, vi ∈ Rn, i = 1, ..., c. The following term appearing in formula
(8.19)

D2
ikA = ‖xk − vi‖2

A = (xk − vi)
T A (xk − vi) (8.22)

permits to compute the distance between vector xk and cluster center vi,
and m ∈ (1,∞) is a coefficient indicating the fuzziness degree of formed
clusters. When m → 1, the partition becomes less and less fuzzy. When
m → ∞, the partition becomes more and more fuzzy (then µik = 1/c). In
practice the value m = 2 is chosen. In order to execute the algorithm, having
a given data set X, we must choose the number of clusters c, fuzziness
degree m, parameter ε in the algorithm stopping criterion and initiate at
random matrix U(0) ∈ Z2 and vector of clusters prototypes V(0). The
algorithm stopping criterion is the same as in case of the HCM algorithm.
The FCM algorithm, like HCM, may give various results depending on
the initialization. The shape of clusters depends on the adopted distance
measure. The flowchart of the FCM algorithm operation is illustrated in
Fig. 8.8.
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8.6 PCM algorithm

When deriving the FCM algorithm it is assumed that the sum of the mem-
bership degrees of a given object to each of the clusters always equals 1.
This restriction may cause undesirable shift of cluster centers in a situation
when single incidental objects (noise) occur which sometimes lie far away
from the proper clusters. Giving up this constraint, we will get the PCM
algorithm (Possibilistic C-Means) which may be obtained as a result of
minimization of the following objective function:

J (X, η;U,V) =
c∑

i=1

M∑

k=1

(µik)m ‖xk − vi‖2
A+

c∑

i=1

ηi

M∑

k=1

(1 − µik)m
, (8.23)
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where ηi is a certain positive constant. The first term of criterion (8.23) is
the same as in criterion (8.19) concerning the FCM algorithm. The second
term, however, makes it necessary for membership degrees to be as big
as possible, without which the solution would be achieved for matrix U
with elements equal 0. Such a solution would result from giving up the
assumption saying that the sum of membership degrees of a given object
to each of the clusters always equals 1. It is easy to notice that the global
objective function (8.23) can be decomposed into c objective functions for
particular clusters. As a result of minimization we get

µik =

(

1 +
(

DikA

ηi

) 2
m−1
)−1

, (8.24)

where distance DikA is given by (8.22). The coefficient ηi defines the so-
called width of resulting possibilistic distribution. We can choose the same
value of the coefficient ηi for all clusters or compute it separately for each
of the clusters, proportionally to the average distance of the objects from
the center of a given cluster, i.e.

ηi =
∑M

k=1 (µik)m
D2

ikA∑M
k=1 (µik)m

. (8.25)

The algorithm stopping criterion is chosen in the same way as in case of
the HCM algorithm. We must note the fact that improper initialization
of the PCM algorithm may lead to partitioning in which all membership
degrees are equal. Therefore the initial partitioning in the PCM algorithm
usually takes place with use of the FCM algorithm. The flowchart of the
PCM algorithm is illustrated in Fig. 8.9.

8.7 Gustafson-Kessel algorithm

In the algorithms presented so far the type of norm must be defined in
advance. Therefore we must know what cluster shapes occur in the data.
The main disadvantage of the algorithms with a constant norm is search-
ing for clusters with the shape which may not occur in the data set. The
Gustafson-Kessel algorithm (GK) is a modification of the FCM algorithm.
In this algorithm each cluster is associated with a separate matrix Ai, and
the distance between object xk and the cluster center vi equals

D2
ik = (xk − vi)

T Ai (xk − vi) . (8.26)

During the algorithm operation also matrices Ai, inducing the distance
measure, i = 1, ..., c, are modified. The objective function in the GK
algorithm is defined in the same way as in the FCM algorithm (8.19),
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FIGURE 8.9. Flowchart of the PCM algorithm

but now distance measure (8.26) is used. Thus the objective function takes
the form of

J (X;U,V,A) =
c∑

i=1

M∑

k=1

(µik)m
D2

ik, (8.27)

where A = (A1,A2, . . . ,Ac). Let us notice that the direct minimization
of criterion (8.27) does not lead to an effective solution as the value of
this criterion may have any small value, e.g. for matrix Ai with almost
exclusively zero-value elements. In order to obtain a correct result, matrices
Ai must be constrained, e.g. by setting the values of their determinants, i.e.

det (Ai) = ρi, ρi > 0, ∀i, i = 1, . . . , c, (8.28)

where ρi is a chosen constant reflecting the information of data subject to
clustering. In case of lack of such information it is assumed that ρi = 1 for
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i = 1, ..., c. The constraint (8.28) causes that the volumes of clusters are
constant, and we only permit a change of the shape of clusters. As a result
of the minimization of criterion (8.27) with respect to matrix Ai we get

Ai = [ρi det (Fi)]
1
n F−1

i , (8.29)

where Fi is the so-called fuzzy covariance matrix of the i-th cluster

Fi =
∑M

k=1 (µik)m (xk − vi) (xk − vi)
T

∑M
k=1 (µik)m

. (8.30)

The algorithm initialization requires determining the same parameters as in
the FCM algorithm, and additionally coefficients ρi defining the volumes of
particular clusters (if we do not have the knowledge on the problem, we may
assume that ρi = 1). The GK algorithm finds clusters of any shapes but
requires more computations than the FCM algorithm due to the necessity
to compute the determinant and inverse of the matrix Fi. The flowchart of
the GK algorithm is illustrated in Fig. 8.10.

8.8 FMLE algorithm

In the FMLE clustering algorithm (Fuzzy Maximum Likelihood Estimates)
the distance measure refers to the form of maximum likelihood estimates.
This measure is given by the following formula:

DikGi
=

[det (Gi)]
1
2

Pi
exp
[
1
2

(xk − vi)
T G−1

i (xk − vi)
]
, (8.31)

where Gi is the covariance matrix of the i-th cluster

Gi =
∑M

k=1 µik (xk − vi) (xk − vi)
T

∑M
k=1 µik

, (8.32)

and Pi is the a priori probability of choosing the i-th cluster

Pi =
1
M

M∑

k=1

µik. (8.33)

Membership degree µik may be interpreted as the probability of assigning
object xk to the i-th cluster. Convergence of the FMLE algorithm strongly
depends on the initialization as it often gets stuck in the local minimum.
Contrary to the GK algorithm, realization of the FMLE algorithm does not
require the knowledge or arbitrary assumption of the value of parameter ρi

for i = 1, ..., c. The algorithm flowchart is illustrated in Fig. 8.11.
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FIGURE 8.10. Flowchart of the Gustafson-Kessel algorithm

8.9 Clustering validity measures

The number of clusters is an important factor influencing clustering valid-
ity. It should reflect the actual number of clusters of objects similar to each
other in the set X. The proper number of clusters may be found by clus-
tering the data set for a different number of clusters and different values



8.9 Clustering validity measures 365

( )
( )( )

( )( )
1

1

, 1

mM t
kikt k

i mM t
ikk

i c
µ

µ
=

=

= ≤ ≤
∑
∑

x
v

( )

( )

0
2

0

, , ,

1
c M

c m

Z

t

R

ε

×

∈
=

∈

X

U

V

( )

12
( ) 1

( )
1

1 ,1i

i

tc m
ikt

ik t
j jk

D
i c k M

D
µ

−

−

=
≤≤≤≤= ∑ A

A

stop?
N

1t t= +

STOP

Y

( ) ( )( 1) ( 1) ( 1)
( ) 1

( 1)
1

TM t t t
k ki iikt k

i M t
ikk

µ

µ

− − −
=

−
=

− −
= ∑

∑
x v x v

G

( ) ( ) ( ) ( )
1

( ) 2
1 )1()()1()(

( )

det 1
exp

2i

t
Ti tttt

kk i i iik t
i

D
P

− −−
⎡ ⎤⎣ ⎦ −−=G

G
x v G x v

( ) ( 1)
1

1 Mt t
i ikk

P
M

µ −
== ∑

FIGURE 8.11. Flowchart of the FMLE algorithm



366 8. Data clustering methods

of parameters (e.g. parameter m in the FCM algorithm). Each time we
must also evaluate the partition obtained. Such evaluation is performed by
means of special indexes called clustering validity indexes. Below is the list
of several best-known clustering validity indexes.
a) Fuzziness in partition matrix U
It is the simplest index measuring the fuzziness degree of a partition matrix

V1 (U) =
1
M

c∑

i=1

M∑

k=1

(µik)2 . (8.34)

The best partition is a partition where index V1 (U) reaches the maximum
value, that is

max
c

{
max
Z2

V1 (U)
}

, c = 2, . . . ,M − 1. (8.35)

Coefficient V1 (U) evaluates the distance of all objects to the cluster centers.
If each data is strongly connected with one cluster only, i.e. if for each k
membership degree µik is big for only one cluster i, the uncertainty of data
is low, and consequently V1 (U) takes a high value. It is easy to notice that
the value of index (8.34) depends on the distance of particular objects xk

from the centers of created clusters. Index (8.34) is connected with the
index defining the entropy of data partition

V2 (U) = − 1
M

c∑

i=1

M∑

k=1

µik ln (µik) . (8.36)

The best partition is a partition which minimizes index (8.36) that is

min
c

{
min
Z2

V2 (U)
}

c = 2, . . . , M − 1. (8.37)

When all degrees have values close to 1/c, which means a high degree
of clusters fuzziness, then measure V2 (U) takes high values, which means
that the result of clustering is unsatisfactory. By analogy, if all membership
degrees µik take values close to 0 or 1, then measure V2 (U) takes low values,
which indicates a good result of clustering.

b) Fukuyama-Sugeno index

The inconvenience of the above indexes is dependence of their values on
the number of clusters c and lack of connection between those values and
geometric shape of clusters.

The Fukuyama-Sugeno index enables connection of partition with geo-
metric properties of clustered data. It is given by the following formula:

V3 (U,V;X) =
c∑

i=1

M∑

k=1

(µik)m
(
‖xk − vi‖2

A − ‖xk − v‖2
A

)
, (8.38)
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where v is an average of all points in the data set, i.e.

v =
1
M

M∑

k=1

xk. (8.39)

The optimal data partition minimizes index V3.

c) Xie-Beni index

Xie-Beni index is given by the formula

V4 (U,V;X) =
∑c

i=1

∑M
k=1 (µik)m ‖xk − vi‖2

M
(
mini,j {‖vi − vj‖}2

) , (8.40)

and the optimal selection of the number of classes is given by the formula

min
c

{
min
M2

V4 (U)
}

c = 2, . . . , M − 1. (8.41)

The best partition minimizes index (8.40) which is a quotient of the average
of all distances between clusters and objects and the smallest distance be-
tween clusters. The proper clustering procedure should result in a situation
in which all data will be as close to the centers of the respective clusters as
possible and all centers will be as far from each other as possible.

8.10 Illustration of operation of data clustering
algorithms

The most frequently used algorithm of data clustering is the FCM algorithm.
Therefore in this chapter we will perform a simulation of this algorithm and
compare it with the HCM and PCM algorithms.

Example 8.5
Figure 8.12 presents an exemplary data set composed of 9 two-dimensional
objects, i.e. M = 9 and n = 2. Matrix X corresponding to this set is in the
form of

FIGURE 8.12. Comparison of three clustering algorithms
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X =
[

98 97 111 109 178 178 190 189 143
86 99 99 85 85 95 97 85 46

]
. (8.42)

It is easy to notice two separate groups of objects and one object number
9 which “does not fit” in those groups. Symbol “+” has been used to mark
the cluster centers obtained by means of the HCM algorithm. As one can
see, object 9 has been qualified to cluster 2 and influenced the position
of this cluster’s center, by “drawing” this center towards itself. As a result
of the HCM algorithm operation, the following partition matrix has been
created:

UHCM =
[

0 0 0 0 1 1 1 1 1
1 1 1 1 0 0 0 0 0

]
. (8.43)

The FCM algorithm assigned object number 9 to both groups with the
same membership degree equal to 0.5. In such a case the centers of both
clusters are moved towards object number 9. As a result of clustering using
the FCM algorithm, the following partition matrix has been created:

UFCM =
[

0.99 0.98 0.98 0.99 0.00 0.01 0.02 0.01 0.50
0.01 0.02 0.02 0.01 1.00 0.99 0.98 0.99 0.50

]
.

(8.44)

The problem of noise has been best dealt with by the PCM algorithm
which assigned membership degrees equal to 0.04 and 0.03 to the object
number 9, which can be seen when analyzing the partition matrix created

UPCM =
[

0.76 0.56 0.53 0.73 0.03 0.03 0.02 0.02 0.04
0.02 0.02 0.02 0.02 0.74 0.73 0.54 0.65 0.03

]
.

(8.45)

The centers of both clusters have only slightly been moved comparing to the
results of the HCM and PCM algorithms. Table 8.1 shows the coordinates
of cluster centers which were created as a result of clustering set (8.42).

TABLE 8.1. Coordinates of cluster centers which were created as a result of
clustering the set (8.42)

HCM algorithm x1 x2

Cluster 1 175.60 81.60
Cluster 2 103.75 92.25
FCM algorithm x1 x2

Cluster 1 106.13 89.38
Cluster 2 181.20 87.73
PCM algorithm x1 x2

Cluster 1 103.58 90.19
Cluster 2 182.41 89.86
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8.11 Notes

This chapter presents only basic methods of data clustering. In order to
illustrate their operation we compared the HCM, FCM and PCM algo-
rithms. The most frequently used FCM method is sensitive to occurrence
of noisy data. This method may serve as an initialization of the PCM
algorithm, which is resistant to noise and outliers. It is also applied for
preliminary setup of membership functions during design of neural and
fuzzy systems (Chapters 9 and 10). Data clustering methods constitute an
extremely important research tool in computational intelligence and have
numerous applications. Both, basic algorithms presented in this chapter as
well as more advanced methods, e.g. oriented at detection of clusters of
specific shapes, have been discussed in detail in the literature [3, 9, 23, 34,
83]. It is worth noting that pioneers in the field of data clustering methods
are James C. Bezdek and Enrique H. Ruspini whose original works have
been reprinted in the book [10].




