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Methods of knowledge representation
using type-2 fuzzy sets

5.1 Introduction

The fuzzy sets, discussed in the previous chapter, are called type-1 fuzzy
sets. They are characterized by the membership function, while the value
of this function for a given element x is called the grade of membership of
this element to a fuzzy set. In case of type-1 fuzzy sets, the membership
grade is a real number taking values in the interval [0, 1]. This chapter will
present another concept of a fuzzy description of uncertainty. According to
this concept, the membership grade is not a number any more, but it has
a fuzzy character. Figure 5.1 shows a graphic illustration of type-1 fuzzy
sets A1, ..., A5 and corresponding type-2 fuzzy sets Ã1, ..., Ã5. It should be
noted that in case of type-2 fuzzy sets, for any given element x, we cannot
speak of an unambiguously specified value of the membership function. In
other words, the membership grade is not a number, as in case of type-1
fuzzy sets.

In subsequent points of this chapter, basic definitions concerning type-2
fuzzy sets will be presented and operations on these sets will be discussed.
Then type-2 fuzzy relations and methods of transformation of type-2 fuzzy
sets into type-1 fuzzy sets will be introduced.

In the last part of this chapter, the theory of type-2 fuzzy sets will serve
for the construction of the fuzzy inference system. Particular blocks of such
system will be discussed in details, including type-2 fuzzification, type-2
rules base, type-2 inference mechanisms and the two-stage defuzzification
consisting of type-reduction and defuzzification.
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FIGURE 5.1. Graphic illustrations of type-1 fuzzy sets and corresponding type-2
fuzzy sets

5.2 Basic definitions

Definition 5.1
Type-2 fuzzy set Ã defined on a universe of discourse X, which is denoted
as Ã ⊆ X, is a set of pairs

{x, µÃ (x)}, (5.1)

where x is an element of a fuzzy set, and its grade of membership µÃ (x)
in the fuzzy set Ã is a type-1 fuzzy set defined in the interval Jx ⊂ [0, 1] ,
i.e.

µÃ (x) =
∫

u∈Jx

fx (u) /u. (5.2)

Function fx : [0, 1] → [0, 1] will be called the secondary membership func-
tion, and its value fx (u) will be called the secondary grade or secondary
membership. Of course, u is an argument of the secondary membership
function. The interval Jx, being a domain of the secondary membership
function fx, is called the primary membership of element x. The fuzzy set
Ã may be notated, in the notation of fuzzy sets, as follows:

Ã =
∫

x∈X

µÃ (x) /x (5.3)
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or

Ã =
∫

µÃ (x) /x =
∫

x∈X

[∫

u∈Jx

fx (u) /u

]
/x, Jx ⊆ [0, 1]. (5.4)

Example 5.1
Fig. 5.2a depicts the method of construction of type-2 fuzzy sets. For a
given element x1 we get the interval Jx1 = [0.4, 0.7] being a domain of the
secondary membership function fx1 . Figures 5.2b, 5.2c and 5.2d show exem-
plary secondary membership functions of triangular, interval and Gaussian
types with a finite support [171].

FIGURE 5.2. Illustration of type-2 fuzzy set and secondary membership func-
tions for Jx1 = [0.4; 0.7]

Figure 5.3 depicts the same type-2 fuzzy set, but another element x2

is chosen, x2 ∈ X, as well as a corresponding membership grade being a



158 5. Methods of knowledge representation using type-2 fuzzy sets

type-1 fuzzy set (of a triangular, interval or Gaussian type with a finite
support) defined on the interval Jx2 = [0.1, 0.6].

FIGURE 5.3. Illustration of type-2 fuzzy set and secondary membership func-
tions for Jx2 = [0.1; 0.6]

In a discrete case, the type-2 fuzzy set will be defined in a similar way,
i.e.

Ã =
∑

x∈X

µÃ (x) /x (5.5)

and
µÃ (x) =

∑

u∈Jx

fx (u) /u. (5.6)

Let us assume that the set X has been discretized and takes R values
x1, ..., xR. Moreover, the intervals Jx corresponding to these values, have
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been discretized and each of them takes Mi values, i = 1, ..., R. We can
then note

Ã =
∑

x∈X

[
∑

u∈Jx

fx (u) /u

]

/x =
R∑

i=1

⎡

⎣
∑

u∈Jxi

fxi
(u) /u

⎤

⎦ /xi (5.7)

=

[
M1∑

k=1

fxi
(u1k) /u1k

]

/x1 + . . . +

[
MR∑

k=1

fxR
(uRk) /uRk

]

/xR.

Remark 5.1
The fuzzy membership grade can take two characteristic and extreme forms
of the type-1 fuzzy set:
µÃ (x) = 1/1 meaning a full membership of element x to the fuzzy set Ã,
µÃ (x) = 1/0 meaning the lack of membership of element x to the fuzzy
set Ã,

Example 5.2
Let us assume that X = {1, 2, 3} and Jx1 = {0.2, 0.5, 0.7} , Jx2 = {0.5, 1},
Jx3 = {0.1, 0.3, 0.5}. If we assign appropriate grades of secondary member-
ship to particular elements of sets Jx1 , Jx2 , Jx3 we may define the following
type-2 fuzzy set:

Ã = (0.5/0.2 + 1/0.5 + 0.5/0.7) /1 + (0.5/0.5 + 1/1) /2 (5.8)
+ (0.5/0.1 + 1/0.3 + 0.5/0.5) /3.

Definition 5.2
Let us assume that each secondary membership function fx of a type-2
fuzzy set takes value 1 only for one element u ∈ Jx. Then the union of
elements u forms a so-called principal membership function, i.e.

µAg
(x) =

∫

x∈X

u/x, where fx (u) = 1. (5.9)

The principal membership function defines the appropriate type-1 fuzzy
set denoted as Ag.

Remark 5.2
In case where the secondary membership function fx is an interval func-
tion, then the principal membership function will be determined as a union
of all the elements u being mid-points of the primary membership Jx,x ∈ X.

Example 5.3
We are going to discuss a type-2 fuzzy set given by formula (5.8). Upon
the basis of Definition 5.2 we may determine the following fuzzy set Ag:

Ag =
0.5
1

+
1
2

+
0.3
3

. (5.10)
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5.3 Footprint of uncertainty

The type-2 fuzzy set may be described using the notion of the footprint of
uncertainty.

Definition 5.3
Let us assume that Jx ⊂ [0, 1] means the primary membership of element
x. The footprint of uncertainty (FOU) of a type-2 fuzzy set Ã ⊆ X will
be a bounded region consisting of all the points of primary membership of
elements x, i.e.

FOU
(
Ã
)

=
⋃

x∈X

Jx. (5.11)

Example 5.4
Let us discuss the family of membership functions of the type-1, fuzzy set
which is described by the Gaussian function with the assumption that a
standard deviation σ changes in the interval [σ1, σ2], i.e.:

µA (x) = N (m,σ;x) = exp

[

−1
2

(
x − m

σ

)2
]

, σ ∈ [σ1, σ2]. (5.12)

The family of membership functions (5.12) forms a type-2 fuzzy set. A full
description of this set would require to define the secondary membership
function for each point x and the corresponding interval Jx. Figure 5.4
shows the footprint of uncertainty of the discussed type-2 fuzzy set.

FIGURE 5.4. Footprint of uncertainty of a type-2 fuzzy set: σ ∈ [σ1, σ2]



5.3 Footprint of uncertainty 161

Example 5.5
Let us discuss the family of membership functions of the type-1 fuzzy set
which is described by the Gaussian function with the assumption that the
average value m changes in interval [m1,m2], i.e.

µA (x) = exp

[

−1
2

(
x − m

σ

)2
]

, m ∈ [m1,m2]. (5.13)

The family of membership functions (5.13) forms a type-2 fuzzy set. As in
the previous example, a full description of this set would require to define
the secondary membership function for each point x and the corresponding
interval Jx. Figure 5.5 shows the footprint of uncertainty of the discussed
type-2 fuzzy set.

Let us assume that Jx =
[
Jx, Jx

]
, x ∈ X.

FIGURE 5.5. Footprint of uncertainty of a type-2 fuzzy set: m ∈ [m1, m2]

Definition 5.4
The upper membership function (UMF) is the membership function of the
type-1 fuzzy set defined by:

µÃ(x) = UMF (Ã) =
⋃

x∈X

Jx ∀x ∈ X. (5.14)
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Definition 5.5
The lower membership function (LMF) is the membership function of the
type-1 fuzzy set defined by:

µ
Ã
(x) = LMF (Ã) =

⋃

x∈X

Jx ∀x ∈ X. (5.15)

Example 5.6
We are going to determine the footprint of uncertainty for the type-2 fuzzy
set given in Example 5.4. It is easy to notice that the upper membership
function takes the form

µÃ (x) = N (m,σ2;x), (5.16)

and the lower membership function is given by

µ
Ã

(x) = N (m,σ1;x). (5.17)

Example 5.7
For the type-2 fuzzy set given in Example 5.5 the upper membership func-
tion takes the form

µÃ(x) =

⎧
⎨

⎩

N(m1, σ;x) for x < m1,
1 for m1 ≤ x ≤ m2 ,

N(m2 , σ;x) for x > m2,
(5.18)

and the lower membership function is given by

µ
Ã
(x) =

⎧
⎨

⎩

N(m2, σ;x) for x ≤m1 + m2

2
,

N(m1, σ;x) for x >
m1 + m2

2
.

(5.19)

5.4 Embedded fuzzy sets

In type-2 fuzzy sets we can distinguish between so-called embedded type-1
and embedded type-2 fuzzy sets.

Definition 5.6
From each interval Jx, x ∈ X, we will select only one element θ ∈ Jx.

The embedded type-2 set in set Ã is set Ão

Ão =
∫

x∈X

[fx (θ) /θ] /x θ ∈ Jx ⊆ U = [0, 1]. (5.20)
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Of course, there is an uncountable number of embedded sets Ão in set Ã.
In a discrete case, the embedded set Ã0 is defined as follows:

Ão =
R∑

i=1

[fxi
(θi) /θi] /xi θi ∈ Jxi

⊆ U = [0, 1]. (5.21)

It is easy to notice that there are
R∏

i=1

Mi embedded fuzzy sets Ão in set Ã.

Example 5.8
Let us assume that

Ã = (0.5/0.2 + 1/0.5 + 0.5/0.7) /2 + (0.3/0.5 + 1/1) /3 (5.22)
+ (0.5/0.1 + 1/0.3 + 0.5/0.5) /4.

Then one of the 18 embedded fuzzy sets Ão takes the form

Ão = (0.5/0.7) /2 + (0.3/0.5) /3 + (1/0.3) /4. (5.23)

Each embedded type-2, fuzzy set Ão is connected with an embedded type-1
fuzzy set denoted as Ao.

Definition 5.7
The embedded type-1 set is defined as follows:

Ao =
∫

x∈X

θ/x θ ∈ Jx ⊆ U = [0, 1]. (5.24)

There is an uncountable number of embedded fuzzy sets Ao. In a discrete
case, formula (5.24) becomes

Ao =
R∑

i=1

θi/xi θi ∈ Jxi
⊆ U = [0, 1]. (5.25)

The number of all sets Ao is
R∏

i=1

Mi.

A particular case of an embedded type-1 set is fuzzy set Ag defined by
the principal membership function given by formula (5.9). Furthermore,
it should be noted that embedded fuzzy set Ao looses all the information
about secondary grades. Thus, upon the basis of the family of embedded
sets Ao, it is not possible to reconstruct the type-2 fuzzy set, but only its
footprint of uncertainty. However, the notion of embedded set will turn to
be especially useful when discussing the fast algorithm of type-reduction
presented further in this chapter.
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Example 5.9
Figure 5.6 shows three different embedded type-1 sets.

FIGURE 5.6. Embedded type-1 fuzzy sets

Example 5.10
Let us discuss a type-2 fuzzy set given by

Ã = (0.6/0.3 + 1/0.7) /3 + (0.4/0.4 + 1/1) /5. (5.26)

We can distinguish four embedded fuzzy sets Ao in set Ã:

Ao = 0.3/3 + 0.4/5,
Ao = 0.7/3 + 0.4/5,
Ao = 0.3/3 + 1/5,
Ao = 0.7/3 + 1/5.

(5.27)

5.5 Basic operations on type-2 fuzzy sets

The extension principle (Subchapter 4.4) allows to extend operations on
type-1 fuzzy sets to operations on type-2 sets.
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We are going to discuss two type-2 fuzzy sets, Ã and B̃, defined as follows:

Ã =
∫

x∈X

(∫

u∈Ju
x

fx (u) /u

)

/x (5.28)

and

B̃ =
∫

x∈X

(∫

v∈Jv
x

gx (v) /v

)

/x, (5.29)

where Ju
x , Jv

x ⊂ [0, 1]. The sum of sets Ã and B̃ is a type-2 fuzzy set notated
as Ã ∪ B̃ and defined as follows:

µÃ∪B̃ =
∫

w∈Jw
x

hx (w) /w = φ
(
µÃ (x) , µB̃ (x)

)
(5.30)

= φ

(∫

u∈Ju
x

fx (u) /u,

∫

v∈Jv
x

gx (v) /v

)

.

In this case, the extended φ function is any t-conorm, but its arguments
are not common numbers, but type-1 fuzzy sets µÃ (x) and µB̃ (x) for the
given x ∈ X. In accordance with the extension principle

φ

(∫

u∈Ju
x

fx(u)/u,

∫

v∈Jv
x

gx(v)/v

)

=
∫

u∈Ju
x

∫

v∈Jv
x

fx(u)
T∗ gx(v)/φ(u, v).

(5.31)

After substituting t-conorm in place of function φ, the sum of type-2 fuzzy
sets is given by the fuzzy membership function

µÃ∪B̃ (x) =
∫

u∈Ju
x

∫

v∈Jv
x

fx (u)
T∗ gx (v) /u

S∗ v. (5.32)

The formula above allows to determine the sum of type-2 fuzzy sets for
each value of x. The membership function of the resulting set is the high-
est value of expression fx (u)

T∗ gx (v) for all the pairs (u, v) , which give the

same element w = u
S∗ v as a result.

Example 5.11
This example will explain in details the manner of determining the sum
of type-2 fuzzy sets. We assume the minimum operation as the t-norm,
and the maximum operation as the t-conorm. We are going to discuss two
type-2 fuzzy sets, Ã and B̃, defined as follows:

Ã = (0.5/0.2 + 1/0.5 + 0.5/0.7) /1 + (0.5/0.5 + 1/1) /2 (5.33)
+(0.5/0.1 + 1/0.3 + 0.5/0.5) /3
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and

B̃ = (1/0) /1 + (0.5/0.5 + 1/0.8) /2 + (1/0.6 + 0.5/1) 3. (5.34)

In accordance to formula (5.32) for x = 1 we have

µÃ∪B̃ (1) =
0.5 ∧ 1
0.2 ∨ 0

+
1 ∧ 1

0.5 ∨ 0
+

0.5 ∧ 1
0.7 ∨ 0

(5.35)

=
0.5
0.2

+
1

0.5
+

0.5
0.7

.

For x = 2 we obtain

µÃ∪B̃ (2) =
0.5 ∧ 0.5
0.5 ∨ 0.5

+
0.5 ∧ 1

0.5 ∨ 0.8
+

max (1 ∧ 0.5, 1 ∧ 1)
1

(5.36)

=
0.5
0.5

+
0.5
0.8

+
1
1
.

For x = 3 we have

µÃ∪B̃(3) =
max (0.5∧1, 1∧1, 0.5∧1)

0.6
+

max (0.5∧0.5, 1∧0.5, 0.5∧0.5)
1

=
1

0.6
+

0.5
1

. (5.37)

Thus, the sum of sets Ã and B̃ is

Ã ∪ B̃=(0.5/0.2+1/0.5+0.5/0.7)/1 + (0.5/0.5+0.5/0.8+1/1)/2 (5.38)
+ (1/0.6+0.5/1)/3.

The intersection of sets Ã and B̃ is a type-2 fuzzy set with the fuzzy mem-
bership function given by the following formula

µÃ∩B̃ (x) =
∫

w∈Jw
x

hx (w) /w = φ
(
µÃ (x) , µB̃ (x)

)
(5.39)

= φ

(∫

u∈Ju
x

fx (u) /u,

∫

v∈Jv
x

gx (v) /v

)

,

where the extended function φ is any t-norm this time. The arguments
of the function φ are type-1 fuzzy sets, i.e, µÃ (x) and µB̃ (x). Thus, the
intersection of type-2 fuzzy sets is specified as follows:

µÃ∩B̃ (x) =
∫

u∈Ju
x

∫

v∈Jv
x

fx (u)
T∗

∗ gx (v) /u
T∗v. (5.40)

In formula (5.40), the t-norm aggregating secondary memberships has been
denoted by T ∗, and its form can be selected irrespectively of the selection
of the extended t-norm T . Also in this case the membership function of the
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resulting set is the highest value of the expression fx (u)
T∗

∗ gx (v) for all the

pairs (u, v), which bring the same element w = u
T∗v as a result.

Example 5.12
We are going to determine the intersection of the type-2 fuzzy sets dis-
cussed in Example 5.11. We assume the minimum operation as t-norm T ∗

and T . In accordance with formula (5.40), for x = 1 and x = 2, we obtain

µÃ∩B̃ (1) =
max (0.5 ∧ 1, 1 ∧ 1, 0.5 ∧ 1)

0
=

1
0

(5.41)

and

µÃ∩B̃ (2) =
max (0.5 ∧ 0.5, 0.5 ∧ 1, 1 ∧ 0.5)

0.5
+

1 ∧ 1
1 ∧ 0.8

(5.42)

=
0.5
0.5

+
1

0.8
.

A complement of the type-2 fuzzy set is a type-2 fuzzy set with the fuzzy
membership function given by the formula

µ ̂̃
A

(x) = φ
(
µÃ (x)

)
(5.43)

=
∫

u∈Ju
x

fx (u) / (1 − u).

Example 5.13
Let us discuss a type-2 fuzzy set defined by the following formula:

µÃ (x) = (0.4/0.6 + 1/0.7) /9. (5.44)

In accordance with formula (5.43), we have

µ ̂̃
A

(x) = (0.4/0.4 + 1/0.3) /9. (5.45)

Remark 5.3
Sum (5.32) and intersection (5.40) of type-2 fuzzy sets may be treated as
a result of applying the operator of the extended t-norm T̃ and extended
t-conorm S̃. These operators may also be discussed in the context of type-1
fuzzy sets defined in the interval [0, 1]. We are going to discuss two such
sets

F =
∫

u∈Ju

f (u) /u and G =
∫

v∈Jv

g (v) /v. (5.46)

The operator of the extended t-norm, whose arguments and resulting value
are type-1 fuzzy sets defined within the universe of discourse [0, 1] is given by

F
T̃∗G =

∫

u∈Ju

∫

v∈Jv

g (u)
T∗

∗ f (v) /u
T∗v. (5.47)
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An analogic result may be obtained in a discrete case. We are going to
discuss two type-1 sets

F =
∑

u∈Ju

f (u)/u and G =
∑

v∈Jv

g (v) /v. (5.48)

The operator of the extended t-norm is given by the formula

µÃ

T̃∗µB̃ =
∑

u∈Ju

∑

v∈Jv

(
f (u)

T∗

∗ g (v)
)

/u
T∗v, (5.49)

and the operator of the extended t-conorm takes the form

µÃ

S̃∗µB̃ =
∑

u∈Ju

∑

v∈Jv

(
f (u)

T∗g (v)
)

/u
S∗v. (5.50)

The introduction of extended triangular norms operating on type-1 sets
allows to simplify considerably the notation of complicate operations on
type-2 fuzzy sets.

Remark 5.4
The extended function φ may also be a function of many variables. Then
the operations of the extended t-norm and t-conorm take the following
forms:

n

T̃
i=1

Fi =
∫

u1∈J1

· · ·
∫

un∈Jn

n

T
i=1

∗fi (ui) /
n

T
i=1

ui, (5.51)

n

S̃
i=1

Fi =
∫

u1∈J1

· · ·
∫

un∈Jn

n

T
i=1

fi (ui) /
n

S
i=1

ui, (5.52)

where Fi =
∫

ui∈Ji
fi (ui) /ui, i = 1, . . . , n.

Remark 5.5
The operations of extended t-norm and t-conorm are easier to be made
with specified assumptions concerning the membership function of partic-
ular fuzzy sets. We are going to discuss n convex, normal type-1 fuzzy
sets F1, ..., Fn with membership functions f1, ..., fn. Let us assume that
f1 (υ1) = f2 (υ2) = · · · = fn (υn) = 1, where υ1, υ2, ..., υn are real numbers
such that υ1 ≤ υ2 ≤ · · · ≤ υn Then the extended minimum type t-norm,
known as the meet operation, is specified as follows ([97, 134]):

µ∩n
i=1Fi

(θ) =

⎧
⎨

⎩

∨n
i=1fi (θ) , θ < υ1,

∧k
i=1fi (θ) , υk ≤ θ < υk+1, 1 ≤ k ≤ n − 1,

∧n
i=1fi (θ) , θ ≥ υn,

(5.53)

whereas the extended maximum type t-conorm takes the form

µ∪n
i=1Fi

(θ) =

⎧
⎨

⎩

∧n
i=1fi (θ) , θ < υ1,

∧n
i=k+1fi (θ) , υk ≤ θ < υk+1, 1 ≤ k ≤ n − 1,

∨n
i=1fi (θ) , θ ≥ υn.

(5.54)
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Remark 5.6
Let us discuss n Gaussian fuzzy sets F1, F2, ..., Fn with means m1,m2, ...,mn

and with standard deviations σ1, σ2, ..., σn. Then, as a result of an approx-
imate extended operation of the algebraic t-norm we have [97]

µF1∩F2∩···∩Fn
(θ) ≈ e(−1/2)((θ−m1m2···mn)/σ)2, (5.55)

while

σ =
√

σ2
1

∏

i;i	=1

m2
i + · · · + σ2

j

∏

i;i	=j

m2
i + · · · + σ2

n

∏

i;i	=n

m2
i , (5.56)

where i = 1, ..., n.

5.6 Type-2 fuzzy relations

At first, we are going to define the Cartesian product of type-2 fuzzy sets.

Definition 5.8
The Cartesian product of n type-2 fuzzy sets Ã1⊆X1, Ã2⊆X2, . . . , Ãn⊆Xn

is the fuzzy set Ã = Ã1 × Ã2 × . . .× Ãn defined on set X1 ×X2 × . . .×Xn,
while the membership function of set Ã is given by the formula

µÃ (x) = µÃ1×Ã2×...×Ãn
(x1, x2, . . . , xn) =

n

T̃
i=1

µÃi
(xn), (5.57)

where x1 ∈ X1, ..., xn ∈ Xi, and the operation of the extended t-norm is
described by dependency (5.51).

Definition 5.9
The binary type-2 fuzzy relation R̃ between two non-empty non-fuzzy sets
X and Y is the type-2 fuzzy set determined on the Cartesian product X×Y ,
i.e.

R̃ (X,Y ) =
∫

X×Y

µR̃ (x, y) / (x, y), (5.58)

while x ∈ X, y ∈ Y, and the membership grade of the pair (x, y) to the
fuzzy set R̃ is a type-1 fuzzy set defined in the interval Jv

x,y ⊂ [0, 1], i.e.

µR̃ (x, y) =
∫

v∈Jv
x,y

rx,y (v) /v, (5.59)

where rx,y (v) is the secondary grade.
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Example 5.13
Let X = {3, 4} and Y = {4, 5}. We are going to formalize an imprecise
statement “y is more or less equal to x ”. At first, we are going to determine
the type-1 relation R in the following way:

R =
0.8

(3.4)
+

0.6
(3.5)

+
1

(4.4)
+

0.8
(4.5)

. (5.60)

An analogic type-2 fuzzy relation may take on the form

R̃ = (0.6/0.7 + 1/0.8 + 0.5/0.6) / (3, 4) (5.61)
+ (0.3/0.5 + 1/0.6 + 0.4/0.3) / (3, 5)
+ (1/1 + 1/1 + 1/1) / (4, 4)
+ (0.6/0.7 + 1/0.8 + 0.5/0.6) / (4.5).

Example 5.14
We are going to formalize an imprecise statement “number x slightly differs
from number y”. This problem may be solved with the type-1 fuzzy relation
described by the membership function

µR (x, y) = max {(4 − |x − y|) /4.0}. (5.62)

An analogic type-2 fuzzy relation may take on the form

µR̃ (x, y) =
∫

v∈[0,1]

exp

[

−
(

v − m (x, y)
σ

)2
]

/v , (5.63)

where σ > 0 and

m (x, y) = max {(4 − |x − y|) /4.0}. (5.64)

Alternatively, the secondary membership function of Gaussian type may
be substituted by a fuzzy triangular number. Figure 5.7a depicts the illus-
tration of the type-1 fuzzy relation given by formula (5.62). Figure 5.7b
depicts the possibility of uncertainty in the specification of the statement
“number x slightly differs from number y”. The figure depicts the footprint
of uncertainty while the level of shading corresponds to the value of the
secondary grade. Figure 5.7c presents the triangular secondary membership
function defined in the interval Jx = [0.2, 0.4].

It is worth mentioning that fuzzy relations may be made with the use of
extended norms. We are going to discuss the membership function of the
type-2 fuzzy set defined on set X, Ã ⊆ X, i.e.

µÃ (x) =
∫

u∈Ju
x

fx (u) /u (5.65)
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FIGURE 5.7. Illustration of type-1 and type-2 fuzzy relations

and the membership function of fuzzy set B̃ defined on another set Y,
B̃ ⊂ Y , i.e.

µB̃ (y) =
∫

v∈Jv
y

gy (v) /v, (5.66)

where Ju
x , Jv

y ⊂ [0, 1]. The extended t-conorm of the type-2 fuzzy sets
defined on different spaces forms a certain fuzzy relation R̃, determined
as follows:

µR̃ (x, y) = µÃ (x)
S̃∗ µB̃ (y) =

∫

u∈Ju
x

∫

v∈Jv
y

fx (u)
T∗ gy (v) /u

S∗ v (5.67)

=
∫

w∈Jw
x,y

rx,y (w) /w.

Similarly, the extended t-norm creates a fuzzy relation in the form of

µR̃ (x, y) = µÃ (x)
T̃∗ µB̃ (y) =

∫

u∈Ju
x

∫

v∈Jv
y

fx (u)
T∗

∗ gy (v) /u
T∗ v (5.68)

=
∫

w∈Jw
x,y

rx,y (w) /w.

In the application of the theory of fuzzy sets to the construction of infer-
ence systems it is necessary to use the concept of the composition of fuzzy
relations, which, in the context of type-2 fuzzy sets, are defined as follows:
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Definition 5.10
The sup-T type (sup-star) extended composition of type-2 fuzzy relations
R̃ ⊆ X × Y and S̃ ⊆ Y × Z is the fuzzy relation R̃ ◦ S̃ ⊆ X × Z with the
membership function

µR̃◦S̃ (x, z) = S̃
y∈Y

(
µR̃ (x,y)

T̃∗ µS̃ (x, z)
)

. (5.69)

Definition 5.11
The extended composition of the type-2 fuzzy set Ã, Ã ⊂ X, and of the
type-2 fuzzy relation R̃ ⊆ X × Y is denoted as Ã ◦ R̃ and determined as
follows:

µB̃ (y) = S̃
x∈X

(
µÃ (x)

T̃∗ µR̃ (x, y)
)

. (5.70)

5.7 Type reduction

The defuzzification of the type-2 fuzzy sets consists of two stages: At first,
a so-called type reduction should be made, which is the transformation of
the type-2 fuzzy set into the type-1 fuzzy set. This way we are going to
obtain the type-1 fuzzy set called a centroid, which may be defuzzified to
a non-fuzzy value. We are going to show the method for the determination
of the centroid of the type-2 fuzzy set.

Let us discuss a fuzzy set A (type-1) defined on set X. Let us assume
that set X has been discretized and takes R values x1, ..., xR. The centroid
of fuzzy set A is determined as follows:

CA =

R∑

k=1

xkµA (xk)

R∑

k=1

µA (xk)
. (5.71)

We are going to determine the centroid of the type-2 fuzzy set,
Ã =
{(

x, µÃ (x)
)
|x ∈ X

}
, which, as a result of an analogic discretizaton

is notated as follows:

Ã =
R∑

k=1

[∫

u∈Jxk

fxk
(u) /u

]

/xk. (5.72)

Applying the extension principle to formula (5.71) we get

CÃ =
∫

θ1∈Jx1

· · ·
∫

θR∈JxR

[fx1 (θ1) ∗ · · · ∗ fxR
(θR)] /

R∑

k=1

xkθk

R∑

k=1

θk

. (5.73)
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Of course, the centroid CÃ is a type-1 fuzzy set. Let us note that any selec-
tion of elements θ1 ∈ Jx1 , ..., θR ∈ JxR

along with corresponding secondary
grades fx1 (θ1) , ..., fxR

(θR), creates an embedded fuzzy set Ão (type-2).

Example 5.15
Let X = {2, 5}. We are going to perform the type reduction of the following
type-2 fuzzy set:

Ã = (0.6/0.4 + 1/0.8) /2 + (0.3/0.7 + 1/0.6) /5. (5.74)

The centroid of the type-2 fuzzy set given by formula (5.74) is a type-1
fuzzy set taking the form

CÃ =
0.6 × 0.3

a1
+

0.6 × 1
a2

+
1 × 0.3

a3
+

1 × 1
a4

(5.75)

=
0.18
a1

+
0.6
a2

+
0.3
a3

+
1
a4

,

while

a1 =
2 × 0.4 + 5 × 0.7

0.4 + 0.7
=

43
11

,

a2 =
2 × 0.4 + 5 × 0.6

0.4 + 0.6
= 3.8,

a3 =
2 × 0.8 + 5 × 0.7

0.8 + 0.7
= 3.4,

a4 =
2 × 0.8 + 5 × 0.6

0.8 + 0.6
=

23
7

.

In a continuous case, the determination of the centroid of the type-2 fuzzy
set is a much more complicated task from the computational point of view.
The problem becomes easier to solve, if the secondary membership func-
tions are interval ones. Then formula (5.73) takes the form

CÃ =
∫

θ1∈Jx1

· · ·
∫

θR∈JxR

1/

R∑

k=1

xkθk

R∑

k=1

θk

. (5.76)

We are going to show the method of the determination of the centroid of
the type-2 fuzzy set having an interval secondary membership function.
With reference to formula (5.76), let us define

s (θ1, ..., θR) =

R∑

k=1

xkθk

R∑

k=1

θk

. (5.77)
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It is obvious that centroid (5.76) will be an interval type-1 fuzzy set, i.e.

CÃ =
∫

x∈[xl,xp]

1/x ≡ [xl, xp]. (5.78)

From the observations shown above, it may be concluded that the deter-
mination of centroid (5.76) comes down to the optimization (maximization
and minimization) with respect to θk of function given by formula (5.77),
taking account of constraints

θk ∈
[
θk, θ

k
]
, (5.79)

where k = 1, ..., R and

θk = Jx, θ
k

= Jx. (5.80)

Differentiating expression (5.77) with respect θj , we get

∂

∂θj
s (θ1, ..., θR) =

∂

∂θj

⎡

⎢
⎢
⎢
⎣

R∑

k=1

xkθk

R∑

k=1

θk

⎤

⎥
⎥
⎥
⎦

=
∂

∂θj

⎡

⎢
⎣

xjθj +
∑

k 	=j

xkθk

θj +
∑

k 	=j

θk

⎤

⎥
⎦ (5.81)

=

⎡

⎢
⎣

1
θj +
∑

k 	=j

θk

⎤

⎥
⎦ (xj)

⎛

⎝xjθj +
∑

k 	=j

xkθk

⎞

⎠

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−1
(

θj +
∑

k 	=j

θk

)2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=
xj

R∑

k=1

θk

−

R∑

k=1

xkθk

(
R∑

k=1

θk

)2 =
xj

R∑

k=1

θk

−

⎡

⎢
⎢
⎢
⎣

R∑

k=1

xkθk

R∑

k=1

θk

⎤

⎥
⎥
⎥
⎦

1
R∑

k=1

θk

=
xj − s (θ1, ..., θR)

R∑

k=1

θk

.

Of course
∑R

k=1 θk > 0. Hence, from the last equality we have

∂

∂θj
s (θ1, ..., θR) ≥ 0, if xj ≥ s (θ1, ..., θR) (5.82)

and
∂

∂θj
s (θ1, ..., θR) ≤ 0, if xj ≤ s (θ1, ..., θR). (5.83)
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When equating the right side of expression (5.81) to zero we get

∑R
k=1 xkθk
∑R

k=1 θk

= xj . (5.84)

Therefore
R∑

k=1

xkθk = xj

R∑

k=1

θk (5.85)

and

xjθj +
R∑

k=1
k �=j

xkθk = xjθj + xj

R∑

k=1
k �=j

θk. (5.86)

In consequence ∑
k 	=j xkθk
∑

k 	=j θk
= xj . (5.87)

We find out that the necessary condition for the extremum s to exist does
not depend in any way on parameter θk with respect to which the derivative
was calculated. However, inequalities (5.82) and (5.83) show in which di-
rection we should go in order to increase or decrease the value of expression
s (θ1, ..., θR). Upon the basis of these inequalities we conclude that

i) if xj > s (θ1, ..., θR) , thens (θ1, ..., θR) is increasing along with the de-
crease of parameter θj ,

ii) if xj < s (θ1, ..., θR) , thens (θ1, ..., θR) is increasing along with the
increase of parameter θj .
Let us remind that θk ≤ θk ≤ θk. Hence, function s reaches the maximum
if

a) θk = θk for these values k, for which xk > s,
b) θk = θk for these values k, for which xk < s,

Upon this basis we are going to present an iterative algorithm (known as
Karnik - Mendel type reduction algorithm) for the search of the maximum
of function s:

1) Determine θk = θk+θk

2 , k = 1, ..., R, calculate s′ = s (θ1, ..., θR).
2) Find j (1 ≤ j ≤ R − 1) so that xj ≤ s′ < xj+1.
3) Substitute θk = θk for k ≤ j and θk = θk for k > j.

Calculate s′′ = s
(
θ1, ..., θj , θj+1, ..., θR

)
.

4) If s′′ = s′ then s′′ is the maximum value of function s.
If s′′ �= s′ then pass on to step 5.

5) Substitute s′ = s′′ and pass on to step 2.
In an analogic way, we may determine the minimum of function s. This
function reaches the minimum if

a) θk = θk for these values k, for which xk < s,
b) θk = θk for these values k, for which xk > s,
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The iterative algorithm for the search of the minimum of function s is given
as follows:

1) Determine θk = θk+θk

2 , k = 1, ..., R, calculate s′ = s (θ1, ..., θR).
2) Find j (1 ≤ j ≤ R − 1) so that xj < s′ ≤ xj+1.
3) Substitute θk = θk for k < j and θk = θk for k ≥ j, calculate

s′′ = s
(
θ1, ..., θj , θj+1, ..., θR

)
.

4) If s′′ = s′ then, s′′ is the minimum value of function s.
If s′′ �= s′ then pass on to step 5.

5) Substitute s′ = s′′ and pass on to step 2.

Example 5.16
Figures 5.8 – 5.10 depict the method of working of the iterative algorithm
for the search of the centroid of the type-2 fuzzy set with the interval sec-
ondary membership function. In Fig. 5.8, the footprint of uncertainty of
the type-2 fuzzy set, which will be subject to type reduction, is marked.
The thick line in this picture corresponds with point 1 of the iterative al-
gorithm, which starts with the determination of the centre of particular
intervals Jx, x ∈ X and the value of expression (5.77).

FIGURE 5.8. The footprint of uncertainty of type-2 fuzzy set; the thick line
corresponds with point 1 of the K -M iterative type-reduction algorithm

The centroid is a type-1 fuzzy set given by formula (5.78). By iteration,
we search for point xp, determining the centroid of an embedded fuzzy set
(Fig. 5.9) consisting first of a piece of the lower membership function, and
then of a piece of the upper membership function. Similarly, we search for
point xl, determining the centroid of an embedded fuzzy set (Fig. 5.10)
consisting first of a piece of the upper membership function, and then of a
piece of the lower membership function.

The obtained fuzzy set CÃ = [xl, xp] may be deffuzified (Fig. 5.11) in
the following way:

x̂w =
xl + xp

2
. (5.88)
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FIGURE 5.9. Iterative search for point xp determining the centroid of an embed-
ded fuzzy set

FIGURE 5.10. Iterative search for point xl determining the centroid of an em-
bedded fuzzy set
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FIGURE 5.11. Fuzzy set CÃ

5.8 Type-2 fuzzy inference systems

We are going to discuss the type-2 fuzzy system having n input variables
xi ∈ Xi ⊂ R, i = 1, . . . , n, and a scalar output y ∈ Y . Figure 5.12 depicts
the block diagram of such a system. It consists of the following elements:
the type-2 fuzzification block, rule base described by type-2 fuzzy relations,
type-2 inference mechanism, and the deffuzification block.

The deffuzification has two stages: at first, the type reduction is per-
formed (Subchapter 5.7) and then the classic defuzzification is applied
(Subchapter 4.9).

5.8.1 Fuzzification block

Let x = (x1, ..., xn)T ∈ X = X1 ×X2 × · · · ×Xn be the input signal of the
fuzzy inference system. In type-1 fuzzy systems, the singleton type fuzzifi-
cation is applied. Its equivalence in type-2 fuzzy systems is the singleton-
singleton type fuzzification defined as follows:

µ̃A′ (x) =
{

1/1, if x = x,
1/0, if x �= x.

(5.89)

INFERENCE
OF TYPE 2

RULE BASE

Type
reducer

Type 2
antecedents

Type 2
consequents

Type 2 fuzzy relations

Type
defuzzifier

A′′x B ′ yTYPE 2
FUZZIFIER

TYPE 2 DEFUZZIFIER

FIGURE 5.12. Block diagram of a type-2 fuzzy inference system
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In caseof the independenceofparticular inputvariables, theabove-mentioned
operation takes the form of:

µ̃A′ (xi) =
{

1/1 , if xi = xi,
1/0 , if xi �= xi.

(5.90)

for i = 1, ..., n. As a result of the fuzzification, we obtain n input type-2
fuzzy sets described by:

Ã′
i = (1/1) /xi, i = 1, . . . , n, (5.91)

where xi is a specific value of i-th input variable.
It is worth mentioning that other methods for the fuzzification of the

input signal are also possible. Figure 5.13 depicts a graphic illustration
of these methods. For instance, the fuzzification of singleton-interval type
(Fig. 5.13b) means that the secondary membership function is an interval
fuzzy set. The non-singleton-singleton fuzzification (Fig. 5.13c) means that
the secondary membership function is a singleton type fuzzy set, and in this
case the fuzzification is identical to the non-singleton type fuzzification for
type-1 fuzzy sets. The non-singleton-triangular fuzzification (Fig. 5.13e)
means that the secondary membership function is triangular fuzzy set,
while the level of shading on Fig. 5.13e reflects the value of the secondary
membership function (triangular) for given element u ∈ Jx.

FIGURE 5.13. Illustration of different fuzzification methods: a) singleton-sin-
gleton, b) singleton-interval, c) nonsingleton-singleton, d) nonsigleton-interval,
e) nonsingleton-triangular, f) nonsingleton-gaussoidal
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5.8.2 Rules base
The linguistic model consists of N rules in the form of:

R̃k : IF x1 is Ãk
1 AND x2 is Ãk

2 AND . . .AND xn is Ãk
n

THEN y is B̃k, k = 1, . . . , N. (5.92)

Denote
Ã = Ãk = Ãk

1 × Ãk
2 × . . . × Ãk

n. (5.93)

Of course

µÃk (x) =
n

T̃
i=1

µÃk
i
(xi) . (5.94)

It is easily seen that rule (5.92) may be presented in the form of implication

Ãk → B̃k, k = 1, ..., n. (5.95)

5.8.3 Inference block
At first, we are going to determine membership function µÃk→B̃k (x, y).
Each k -th rule is represented in a fuzzy system by a certain type-2 fuzzy
relation.

R̃k (x, y) =
∫

X×Y

µR̃k (x, y) / (x, y), (5.96)

where
µR̃k (x, y) =

∫

v∈Vx,y

rk
x,y (v) /v. (5.97)

Therefore
µÃk→B̃k (x, y) = µR̃(k) (x, y) . (5.98)

Membership function µÃk→B̃k (x, y) will be determined, analogically as in
case of type-1 systems, upon the basis of the knowledge of membership
function µÃk (x) and µB̃k (y). Using the operator of the extended t-norm
we have

µÃk→B̃k (x, y) = µÃk (x)
T̃∗ µB̃k (y). (5.99)

The Mamdani and Larsen rules used in type-1 systems now take the form of

• extended min rule (Mamdami)

µÃk→B̃k (x, y) =
∫

u∈Ju
x

∫

v∈Jν
y

(
fx (u)

T∗gy (v)
)

/min (u, v), (5.100)

• extended product rule (Larsen)

µÃk→B̃k (x, y) =
∫

u∈Ju
x

∫

v∈Jν
y

(
fx (u)

T∗gy (v)
)

/uv. (5.101)
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At the output of the inference block, we obtain a type-2 fuzzy set B̃′k.
This set is determined by the composition of the input fuzzy set Ã′ and
the fuzzy relation R̃k, i.e.

B̃′k = Ã′ ◦ R̃k = Ã′ ◦
(
Ãk → B̃k

)
. (5.102)

Using Definition 5.11, we determine the membership function of the fuzzy
set B̃′k

µB̃′k (y) = µÃ′◦R̃k (y) = S̃
x∈X

(
µÃ′ (x)

T̃∗ µB̃k (x, y)
)

(5.103)

= S̃
x∈X

(
µÃ′ (x)

T̃∗ µÃ′→B̃k (x, y)
)

.

In case of singleton-singleton type fuzzification (5.84) the formula above
takes the form

µB̃′k (y) = µÃk→B̃k (x, y). (5.104)

Using formulae (5.99) and (5.94), we obtain

µB̃′k (y) = µÃk
1×...×Ãk

n
(x)

T̃∗ µB̃k (y) =

(
n

T̃
i=1

µÃk
i
(xi)

)
T̃∗ µB̃k (y). (5.105)

Let us denote the firing strength of k -th rule in the following way:

τk =
n

T̃
i=1

µÃk
i
(xi). (5.106)

Then dependency (5.105) takes the form

µB̃′k (y) = τk
T̃∗ µB̃k (y). (5.107)

Remark 5.7
In case of type-1 fuzzy sets the firing strength of τk rule is a real number
while τk ∈ [0, 1]. In case of type-2 fuzzy sets the firing strength of τk rule
is a type-1 fuzzy set defined in [0, 1].

Having inference results B̃′k for all N rules, we make an aggregation
using the operator of the extended t-conorm

µB̃′ (y) =
N

S̃
k=1

µB̃′k (y). (5.108)

We are going to show the inference process in interval systems. In such
systems the secondary membership functions of fuzzy sets Ãk

i and B̃k,
i = 1, ..., n, k = 1, ..., N , are constant functions taking value 1 in all in-
tervals Jx, x ∈ X. Within further discussion we are going to apply two
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properties ([97, 134]) of interval type-1 fuzzy sets F1, ..., Fn, defined on
intervals [l1, p1] , ..., [ln, pn], where li ≥ 0 and pi ≥ 0, i = 1, ..., n.

1) Extended t-norm T̃n
i=1Fi is an interval type-1 fuzzy set defined on

interval
[(

l1
T∗ l2

T∗ . . .
T∗ ln

)
,
(
p1

T∗ p2
T∗ . . .

T∗ pn

)]
, where

T∗ denotes t-norm
of minimum type or product.

2) Extended t-conorm S̃n
i=1Fi is an interval type-1 fuzzy set defined in

the interval [(l1 ∨ l2 ∨ . . . ∨ ln), (p1 ∨ p2 ∨ . . . ∨ pn)], where ∨ means a max-
imum operation.

We are going to introduce a symbolic notation, according to which the
interval fuzzy set A will be denoted as

A =
∫

x∈[a,b]

1/x ≡ [a, b]. (5.109)

Using property 1, we are going to express the firing strength of rule τk,
being now an interval type-1 fuzzy set, through the values of the lower and
upper membership functions of fuzzy sets Ãk

i . Based on property 1, we may
denote

τk = [τk, τk] , (5.110)

where
τk (x) = µ

Ãk
1
(x1) ∗ . . . ∗ µ

Ãk
n

(xn) (5.111)

and
τk (x) = µÃk

1
(x1) ∗ · · · ∗ µÃk

n
(xn) . (5.112)

Using formulas (5.107), (5.110), and property 1, we obtain

µB̃′k (y) = µB̃k (y)
T̃∗
[
τk, τk
]
≡
[
bk (y) , b

k
(y)
]
, y ∈ Y, (5.113)

where
bk (y) = τk T∗ µ

B̃k (y) (5.114)

and
b
k
(y) = τk T∗ µB̃k (y). (5.115)

Using formulas (5.113), (5.108), and property 2, we may determine

µB̃′ (y) =
N

S̃
k=1

µB̃′k (y) =
N

S̃
k=1

[
bk (y), b

k
(y)
]

=
[
b (y), b (y)

]
, (5.116)

where
b (y) = b1 (y) ∨ b2 (y) ∨ . . . ∨ bN (y) (5.117)
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and

b (y) = b
1
(y) ∨ b

2
(y) ∨ . . . ∨ b

N
(y).
∑

k 	=j
. (5.118)

Example 5.17
Figure 5.14 shows the method of determining the firing strength of a type-2
system with two rules. As the t-norm the minimum operation was chosen.
Therefore,

τk = min
[
µ

Ãk
1
(x1) , µ

Ãk
2
(x2)
]

(5.119)

and

τk = min
[
µÃk

1
(x1) , µÃk

2
(x2)
]

(5.120)

for k = 1, 2. As we have emphasized earlier, the firing strengths are interval
type-1 fuzzy sets.

FIGURE 5.14. The method of determining the firing strength of a type-2 fuzzy
system with singleton-singleton fuzzification

Example 5.18
Figures 5.15 and 5.16 show output type-2 fuzzy sets B̃1 and B̃2, as well
as fuzzy sets (shaded ones) B̃′1 and B̃′2 resulting from inference given by
formula (5.113).
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FIGURE 5.15. Output type-2 fuzzy set B̃1 and corresponding inferred type-2
fuzzy set B̃′1

FIGURE 5.16. Output type-2 fuzzy set B̃2 and corresponding inferred type-2
fuzzy set B̃′2

FIGURE 5.17. Type-2 fuzzy set B̃′ resulting from the aggregation of fuzzy sets
B̃′1 and B̃′2

Figure 5.17 presents fuzzy set (shaded one) B̃′ given by formula (5.116)
and resulting from the aggregation of fuzzy sets B̃′1 and B̃′2. In order to
determine this set we have used the operation

max
(
min τ1, µB̃1 (y),min τ2, µB̃2 (y)

)
(5.121)
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and
max
(
min τ1, µB̃1 (y) ,min τ2, µB̃2 (y)

)
. (5.122)

Example 5.19
Examples 5.17 and 5.18 present the results obtained for interval type-2
fuzzy systems with singleton fuzzification given by formula (5.89). These
results can be generalized for the case where the input signal is a type-1
fuzzy set (nonsingleton-singleton fuzzification) or an interval type-2 fuzzy

FIGURE 5.18. The method of determining the firing strength of a type-2 fuzzy
system with nonsigleton-singleton fuzzification

FIGURE 5.19. The method of determining the firing strength of a type-2 fuzzy
system with nonsigleton (type-2) – interval fuzzification
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set (type-2 nonsingleton fuzzification – interval). Figures 5.18 and 5.19 show
the method of determining the firing strength illustrating both cases.

5.9 Notes

The notion of the type-2 fuzzy set has been introduced by Lotfi Zadeh
[266]. In his article the author also defines the amount and the intersection
of the type-2 fuzzy sets using the extension principle for that purpose. The
basic notions characterizing type-2 fuzzy sets, i.e. the secondary member-
ship functions and grades, the upper and lower membership functions, as
well as the notions of embedded fuzzy sets and the footprint of uncertainty,
have been successively introduced to the global literature by Mendel, and
their review is contained in his monography [134]. The method of inference
with the use of interval type-2 fuzzy sets was first described by Gorzałczany
[64]. Basic operations on type-2 fuzzy sets have been provided by Dubois
and Prade [42], and Karnik and Mendel [97,100]. The interval fuzzy sets of
higher levels have been examined by Hisdal [80]. The iterative algorithm
of type reduction for the interval type-2 fuzzy sets has been introduced by
Karnik and Mendel [97, 101]. This has allowed to construct the interval
type-2 fuzzy logic systems. The first such constructions have been pre-
sented by Karnik, Mendel and Liang [99]. The analysis of the differences
between the interval inference systems and type-1 systems is presented in
an article by Starczewski [240]. An interesting method of type reduction
has been presented by Wu and Mendel in article [261]. The interval type-2
systems have been used for the prediction of chaotic series [98]. A novelty
is the construction of the type-2 fuzzy inference system with the trian-
gular secondary membership function, presented by Starczewski [238]. On
the webpage http://ieee-cis.org/standards/ Mendel, Hagras and John have
presented basic information on the type-2 fuzzy sets. This subject is also
discussed on http://www.type2fuzzylogic.org/.




