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Methods of knowledge representation
using rough sets

3.1 Introduction

In the physical world around us, it is impossible to find any two object
(things) that are identical. By comparing any two objects, even if very
similar, we will always be able to find differences between them, in partic-
ular if we consider a sufficiently large number of their features (attributes)
with a sufficiently great accuracy. Of course, such a detailed description of
the world is not always needed. If we decrease the precision of description,
it may happen that some or even several objects that were distinguish-
able before become indiscernible. For example, all cities in Poland may be
discernible with respect to the exact number of inhabitants. If we are in-
terested in cities with the number of inhabitants within a given interval,
e.g. from 100 to 300 thousand people, then some cities will be indiscernible
with respect to the feature (attribute) “number of inhabitants”. Moreover,
in the description of any given object, we only consider a limited number
of features, adequate to a given purpose. Quite often, we want to reduce
that number to the necessary minimum. These are the problems dealt with
by the theory of rough sets.

In order to facilitate further discussion, we shall introduce several notions
and symbols. First, we shall define the universe of discourse U . It is the set
of all objects which constitute the area of our interest. A single j -th element
of this space will be denoted as xj . Each object of the space U may be
characterized using specific features. If it is a physical object, most certainly
it has infinitely many features, however, we shall limit the selection to their
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specific subset. Let us denote the interesting set of object features of space
U by the symbol Q. Let us denote the individual features by the symbol q
appropriately indexed, e.g. qi. What differentiates one object from another
and makes other objects similar, these are the values of their features. Let
us denote by Vq the set of values that the feature q can take. The value of
feature q of the object x will be denoted as vx

q . The vector of all object x

features may be presented as vx =
[
vx

q1
, vx

q2
, ..., vx

qn

]
.

In this chapter the rough sets theory will be presented in the form of a
series of definitions illustrated by examples. Table 3.1 will allow the reader
an easier handling of them.

TABLE 3.1. List of definitions and examples

Definition Examples
3.1. Information system 3.1, 3.2, 3.3
3.2. Decision table 3.4
3.3. Indiscernibility relation
3.4. Equivalence class 3.5, 3.6, 3.7
3.5. Lower approximation of the set 3.8, 3.9, 3.10
3.6. Upper approximation of the set 3.11, 3.12, 3.13
3.7. Positive region of the set 3.8, 3.9, 3.10
3.8. Boundary region of the set 3.14, 3.15, 3.16
3.9. Negative region of the set 3.17, 3.18, 3.19

3.10. P̃ -exactly set 3.20, 3.21, 3.22
3.11. P̃ -definable set 3.20, 3.21, 3.22
3.12. P̃ -accuracy of an approximation of the set 3.23, 3.24, 3.25
3.13. Lower approximation of the family of sets 3.26
3.14. Upper approximation of the family of sets 3.27
3.15. Positive region of the family of sets 3.28
3.16. Boundary region of the family of sets 3.29
3.17. Negative region of the family of sets 3.30
3.18. Quality of approximation of the family of sets 3.31
3.19. Accuracy of approximation of the family of sets 3.32
3.20. Dependence degree of attributes 3.33
3.21. Deterministic rules 3.33
3.22. Set of independent attributes 3.34
3.23. Set of relatively independent attributes 3.35
3.24. Reduct 3.36
3.25. Relative reduct 3.36
3.26. Indispensable attribute 3.37
3.27. Core 3.38
3.28. Normalized coefficient of attributes significance 3.39
3.29. Error of approximate reduct 3.40
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3.2 Basic terms

One of methods to present the information on objects characterized by the
same set of features is the information system.

Definition 3.1
The information system is referred toanordered4-tupleSI = 〈U,Q, V, f〉 [1],
where U is the set of objects, Q is the set of features (attributes), V =

⋃

q∈Q

Vq

is the set of all possible values of features, while f : U×Q → V is called the
information function. We can say that vx

q = f (x, q), of course f (x, q) ∈ Vq.
The notation vx

q = fx (q), which treats the information function as a family
of functions, will be considered as equivalent. Then fx : Q → V .

Example 3.1
Let us consider a used car dealer. Currently, there are 10 cars. The universe
of discourse U is therefore composed of 10 objects, which can be notated
as

U = {x1, x2, ..., x10} . (3.1)

The car dealer notes in his documents four features of each car, which are
usually referred to by customers during phone calls. These are: number of
doors, horsepower, colour and make. Therefore, the set of features can be
written as

Q = {q1, q2, q3, q4} (3.2)
= {number of doors, horsepower, colour, make} .

Based on the contents of Table 3.2 we can define the domains of particular
features:

TABLE 3.2. Example of an information system

Object Number Horsepower Colour Make
(U) of doors (q1) (q2) (q3) (q4)
x1 2 60 blue Opel
x2 2 100 black Nissan
x3 2 200 black Ferrari
x4 2 200 red Ferrari
x5 2 200 red Opel
x6 3 100 red Opel
x7 3 100 red Opel
x8 3 200 black Ferrari
x9 4 100 blue Nissan
x10 4 100 blue Nissan
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Vq1 = {2, 3, 4} , (3.3)

Vq2 = {60, 100, 200} , (3.4)

Vq3 = {black, blue, red} , (3.5)

Vq4 = {Ferrari, Nissan, Opel} . (3.6)

Example 3.2
Let us consider the set of real numbers in the interval U (see Fig. 3.1),
where

U = [0, 10) . (3.7)

0 1 2 3 4 5 6 7 8 9 10

U

x = q1+q2

FIGURE 3.1. One-dimensional universe of discourse U

Let each element x ∈ U be defined by two features making up the set of
features

Q = {q1, q2} , (3.8)

where q1 is the integral part of the number x and q2 is the decimal part of
this number. Of course x = {q1, q2} . The information functions may be
defined as follows

fx (q1) = Ent (x) , (3.9)

fx (q2) = x − Ent (x) , (3.10)

where function Ent(·) (fr. entier) means the integral part of the argument.
Knowing the definition of information functions, it is usually easy to

define the domains of variability of particular features. In our example,
they will be as follows:

Vq1 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} , (3.11)

Vq2 = [0; 1) . (3.12)

Example 3.3
In the following example, let us consider the space of pairs

U = {x = [x1;x2] ∈ [0; 10) × [0; 10)} . (3.13)
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FIGURE 3.2. Two-dimensional universe of discourse U

The objects belonging to the space defined in this way may be interpreted
as points located on a plane, as shown in Fig. 3.2. The most natural features
of points are their coordinates x1 and x2. In our example, however, they
will be defined otherwise. Let us define four features

Q = {q1, q2, q3, q4} (3.14)

where q1 is the integral part of the first coordinate of point x, q2 is its
decimal part, and q3 and q4 are the integral and the decimal part of the
second coordinate of the point, respectively. The information functions will
therefore be defined as follows:

fx (q1) = Ent (x1) , (3.15)

fx (q2) = x1 − Ent (x1) , (3.16)

fx (q3) = Ent (x2) , (3.17)

fx (q4) = x2 − Ent (x2) . (3.18)

Knowing the definition of information functions, it is usually easy to
define the domains of variability of particular features. In this example,
they will be as follows:

Vq1 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} , (3.19)

Vq2 = [0; 1) , (3.20)
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Vq3 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} , (3.21)

Vq4 = [0; 1) . (3.22)

The special case of the information system is the decision table.

Definition 3.2
The decision table is the ordered 5-tuple DT = 〈U,C,D, V, f〉. The ele-
ments of the set C we call conditional features (attributes), and elements
of D-decision features (attributes).

The information function f described in Definition 3.1 defines unam-
biguously the set of rules included in the decision table. In the notation,
in the form of family of functions, the function fl : C × D → V defines l
the decision rule of the table. The difference between the above definition
and Definition 3.1 consists in separation of the set of features Q into two
disjoint subsets C and D, complementary to Q. The decision tables are an
alternative way of representing the information with relation to the rules:

Rl : IF c1 = vl
c1

AND c2 = vl
c2

AND...AND cnc
= vl

cnc
THEN d1 = vl

d1

AND d2 = vl
d2

AND . . .AND dnd
= vl

dnd
.

Example 3.4
Let us assume that basing on notes of the car dealer from Example 3.1, we
shall build an expert system, which will define the car make based on infor-
mation on the number of doors, horsepower and colour. We should divide
the set Q (defined by formula (3.2)) into the set of conditional features

C = {c1, c2, c3} = {q1, q2.q3} (3.23)
= {number of doors, horsepower, colour}

and a single-element set of decision features

D = {d1} = {q4} = {make} . (3.24)

Information included in the information system presented in Table 3.2 will
be used to build a decision table (Table 3.3). The description of each object
of space U constitutes the basis to create a single rule.

The contents included in the decision table (Table 3.3) may also be pre-
sented in the form of rules:

R1 : IF c1 = 2 AND c2 = 60 AND c3 = blueTHEN d1 = Nissan
R2 : IF c1 = 2 AND c2 = 100 AND c3 = black THEN d1 = Nissan
· · ·
R10 : IF c1 = 4 AND c2 = 100 AND c3 = blue THEN d1 = Nissan
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TABLE 3.3. Example of the decision table

Rule Number Horsepower Colour Make
(l) of doors (c1) (c2) (c3) (d1)
1 2 60 blue Opel
2 2 100 black Nissan
3 2 200 black Ferrari
4 2 200 red Ferrari
5 2 200 red Opel
6 3 100 red Opel
7 3 100 red Opel
8 3 200 black Ferrari
9 4 100 blue Nissan
10 4 100 blue Nissan

Now we shall present two definitions that are very important in the rough
sets theory. If given two objects x1, xb ∈ U have the same values of all fea-
tures q belonging to the set P ⊆ Q, which may be notated as ∀q ∈ P,
fxa

(q) = fxb
(q), then we say that these objects are P -indiscernible or that

they are to each other in P -indiscernibility relation
(
xa, P̃ xb

)
.

Definition 3.3
The P -indiscernibility relation refers to a P̃ relation defined in the space
U × U satisfying

xaP̃ xb ⇐⇒ ∀q ∈ P ; fxa
(q) = fxb

(q) , (3.25)

where xa, xb ∈ U, P ⊆ Q.

It is easy to verify that the P̃ relation is reflexive, symmetrical and tran-
sitive, and thus it is a relation of equivalence. The relation of equivalence
divides a set in which it is defined, into a family of disjoint sets called
equivalence classes of this relation.

Definition 3.4
The set of all objects x ∈ U being in relation P̃ we call the equivalence
class of relation P̃ in the space U . For each xa ∈ U , there is exactly one
such set denoted by the symbol [xa]P̃ , i.e.

[xa]P̃ =
{

x ∈ U : xaP̃ x
}

. (3.26)

The family of all equivalence classes of the relation P̃ in the space U (called
the quotient of set U by relation P̃ ) will be denoted using the symbol P ∗

or U/P̃ .
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Example 3.5
Let us define the equivalence classes of relation C-indiscernibility C̃ defined
by the set of features C given by formula (3.23) for the information system
defined in Example 3.1:

[x1]C̃ = {x1} , (3.27)

[x2]C̃ = {x2} , (3.28)

[x3]C̃ = {x3} , (3.29)

[x4]C̃ = [x5]C̃ = {x4, x5} , (3.30)

[x6]C̃ = [x7]C̃ = {x6, x7} , (3.31)

[x8]C̃ = {x8} , (3.32)

[x9]C̃ = [x10]C̃ = {x9, x10} . (3.33)

We therefore can say that the objects x4 and x5 are C-indiscernible, sim-
ilarly to x6 and x7 as well as x9 and x10. The family of above specified
equivalence classes will be the set

c∗ = {{x1} , {x2} , {x3} , {x4, x5} , {x6, x7} , {x8} , {x9, x10}} . (3.34)

Example 3.6
For the set of features Q = {q1, q2} defined in Example 3.2 all objects are
discernible, i.e. there are infinitely many one-element equivalence classes of
Q-indiscernibility relation and each element of space U forms its own class.
It will be different when we divide the set Q into two features sets:

P1 = {q1} , (3.35)

P2 = {q2} . (3.36)

For P1-indiscernibility relation, 10 equivalence classes are formed

[0]P1
= [0; 1) , (3.37)

[1]P1
= [1; 2) , (3.38)

· · ·

[9]P1
= [9; 10) . (3.39)

Their family is the set

P ∗
1 ={[0; 1); [1; 2); [2; 3); [3; 4); [4; 5); [5; 6); [6; 7); [7; 8); [8; 9); [9; 10)}. (3.40)

Figure 3.3 shows the exemplary equivalence class [1]P̃1
.
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0 1 2 3 4 5 6 7 8 9 10

U

x = q1+q2

FIGURE 3.3. Example of equivalence class [1]P̃1

U

x=q1+q2

543210 6 7 8 9 10

FIGURE 3.4. Example of equivalence class [0.33]P̃2

For P2-indiscernibility relation, infinitely many ten-element equivalence
classes are formed. These are sets of numbers from the space U with the
same decimal part

[x]P2
= {x̂ ∈ U : x̂ − Ent (x̂) = x − Ent (x)} . (3.41)

Their family is the set

P ∗
2 =
{
[x]P2

= {x̂ ∈ U : x̂ − Ent (x̂) = x − Ent (x)} : x ∈ [0; 1)
}

(3.42)

=
{
[x]P2

= {x̂ ∈ U : x̂ − Ent (x̂) = x} : x ∈ [0; 1)
}

.

Figure 3.4 shows the exemplary equivalence class [0.33]P̃2
.

Example 3.7
Like in Example 3.6, for the set of features Q defined by formula (3.14) in
Example 3.3, all the objects are discernible, i.e. there are infinitely many
one-element equivalence classes of Q-indiscernibility relation and each ele-
ment of space U forms its own class. It will be different, if we consider the
features set P ⊆ Q given by

P = {q1, q3} . (3.43)

For the P -indiscernibility relation thus defined in the space U , we have
100 equivalence classes. The equivalence class of point x = (x1, x2) may be
described as

[x]P̃ ={x̂ =(x̂1, x̂2)∈U: Ent (x̂1)=Ent (x1)∧Ent (x̂2)=Ent (x2)} . (3.44)

Figure 3.5 presents the exemplary equivalence class.
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FIGURE 3.5. Example of equivalence class [(5; 4)]P̃

Their family is the set of all square fields visible in Figs. 3.2 and 3.5. We
can describe this set as follows:

P ∗ =
{
[x]P̃ = {x̂ = (x̂1; x̂2) ∈ U : Ent (x̂1) = Ent (x1) ∧ Ent (x̂2) (3.45)

= Ent (x2) : x = (x1;x2) ;x1;x2 = 0; . . . ; 9}

=
{
[x]P̃ = {x̂ = (x̂1; x̂2) ∈ U : Ent (x̂1) = x1 ∧ Ent (x̂2) = x2} :

x = (x1;x2) ;x1;x2 = 0; . . . ; 9} .

3.3 Set approximation

In the space U , certain sets X may exist. We can infer that particular
objects x ∈ U belong to sets X based on the knowledge of values of their
features. The set of available features P ⊆ Q is usually limited and the
determination of membership of the object to a specific set may not be
unequivocal. This situation is described by the terms of lower and upper
approximation of set X ⊆ U .

Definition 3.5
The set P̃X described as follows:

P̃X =
{
x ∈ U : [x]P̃ ⊆ X

}
(3.46)

is called P̃ -lower approximation of the set X ⊆ U .
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Therefore, the lower approximation of the set X is the set of the objects
x ∈ U , with relation to which on the basis of values of features P , we can
certainly state that they are elements of the set X.

Example 3.8
In the space U , defined by equation (3.1) in Example 3.1 there are three
sets of car makes: Ferrari, Nissan and Opel (see Table 3.2). Let us mark
them with letters XF, XN and XO:

XF = {x3, x4, x8} , (3.47)

XN = {x2, x9, x10} , (3.48)

XO = {x1, x5, x6, x7} . (3.49)

We will infer the membership of various space objects based on based on
the value of features of set C defined by notation (3.23). Applying directly
Definition 3.5, let us determine C̃-lower approximation of sets XF, XN and
XO. This definition says that the object x ∈ U is an element of the lower
approximation, if the whole equivalence class, to which it belongs, is a
subset of the set X. Among the equivalence classes defined in Example 3.5,
only classes [x3]C̃ and [x8]C̃ are the subsets of the set XF, that is

C̃XF = {x3} ∪ {x8} = {x3, x8} . (3.50)

The object x4 does not belong to C̃XF, even if it belongs to XF, as the ob-
ject x5 with identical feature values from the set C, and therefore belonging
to the same equivalence class, is not an element of XF.

Sets [x2]C̃ and [x9]C̃ = [x10]C̃ are subsets of the set XN, hence

C̃XN = {x2} ∪ {x9, x10} = {x2, x9, x10} . (3.51)

Sets [x1]C̃ and [x6]C̃ = [x7]C̃ are subsets of the set XO, hence

C̃XO = {x1} ∪ {x6, x7} = {x1, x6, x7} . (3.52)

Example 3.9
Let us assume that in the space U defined in Example 3.2 there is a set X
defined as follows:

X = [1, 75; 6, 50] . (3.53)

Let us define the P̃1 and P̃2-lower approximation of this set. Four equiv-
alence classes of P1-indiscernibility relation (Example 3.6) belong entirely
to the set X. Therefore, the P̃1-lower approximation will be their sum

P̃1X = [2]P1
∪ [3]P1

∪ [4]P1
∪ [5]P1

= [2, 6) , (3.54)

which is illustrated in Fig. 3.6.
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543210 6 7 8 9 10

U

x=q1+q2

X

~P1X

FIGURE 3.6. Lower approximation in one-dimensional universe of discourse

No equivalence class of the P2-indiscernibility relation belongs entirely
to the set X, therefore its P̃2-lower approximation is an empty set, i.e.

P̃2X = ∅ (3.55)

Example 3.10
Let us in the space U , defined by notation (3.13), define the set X as
shown in Fig. 3.7. This figure shows the marked equivalence classes making
up the P̃ -lower approximation of the set X. Among the 100 equivalence
classes defined by formula (3.44), the lower approximation is made up by
25 equivalence classes – squares which are entirely subsets of the set X.

FIGURE 3.7. Lower approximation in two-dimensional universe of discourse
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Definition 3.6
The set P̃X described as follows:

P̃X =
{
x ∈ U : [x]P̃ ∩ x �= ∅

}
(3.56)

is called P̃ -upper approximation of the set X ⊆ U .

The upper approximation of the set X is the set of the objects x ∈ U ,
with relation to which, on the basis of values of features P , we can not
certainly state that they are not elements of the set X.

Example 3.11
Applying directly Definition 3.6, let us determine C̃-upper approximation
of sets XF, XN, and XO defined in Example 3.8. This definition says that
the object x ∈ X is an element of the upper approximation, if the whole
equivalence class, to which it belongs, has a non-empty intersection with
the set X. In other words, if at least one element of a given equivalence class
belongs to the set X, then each element of this equivalence class belongs
to the upper approximation of the set X. Among the equivalence classes
defined in Example 3.5, elements of classes [x3]C̃ , [x4]C̃ , and [x8]C̃ belong
to the set XF, hence

C̃XF = {x3} ∪ {x4, x5} ∪ {x8} = {x3, x4, x5, x8} . (3.57)

The object x5 belongs to C̃-upper approximation of the set XF, even though
it does not belong to XF, as the object x4 with identical values of features
from set C, and therefore belonging to the same equivalence class, is an
element of the set XF. The set XN contains elements from classes [x2]C̃
and [x2]C̃ = [x10]C̃ , hence

C̃XN = {x2} ∪ {x9, x10} = {x2, x9, x10} . (3.58)

The set XO contains elements from classes [x1]C̃ , [x4]C̃ and [x6]C̃ , so

C̃XO = {x1} ∪ {x4, x5} ∪ {x6, x7} = {x1, x4, x5, x6, x7} . (3.59)

Example 3.12
Let us determine P̃1 and P̃2-upper approximation of the set X defined
in Example 3.9. Objects of six equivalence classes of P1-indiscernibility
relation belong to the set X. Therefore the P̃1-upper approximation will
be their sum, i.e.

P̃ 1X = [1]P̃1
∪ [2]P̃1

∪ [3]P̃1
∪ [4]P̃1

∪ [5]P̃1
∪ [6]P̃1

= [1, 7) , (3.60)

which is illustrated by Fig. 3.8.



38 3. Methods of knowledge representation using rough sets

543210 6 7 8 9 10
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x=q1+q2
~P1X

FIGURE 3.8. Upper approximation in one-dimensional universe of discourse

As the elements of all equivalence classes of the P2-indiscernibility relation
belong to the set X, so its P̃2-upper approximation is equal to the universe
of discourse U , i.e.

P̃ 2X = U. (3.61)

Example 3.13
Figure 3.9 shows the marked equivalence classes included in the P -upper
approximation of the set X described in the space U defined by formula
(3.13).

FIGURE 3.9. Upper approximation in two-dimensional universe of discourse

Definition 3.7
P̃ -positive region of the set X is defined as

PosP̃ (X) = P̃X. (3.62)

The positive region of the set X is equal to its lower approximation.
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Definition 3.8
P̃ -boundary region of the set X is defined as

BnP̃ (X) = P̃X \ P̃X. (3.63)

Example 3.14
By directly applying Definition 3.8, we shall find the boundary region of sets
XF, XN and XO defined in Example 3.8. We shall perform that by defining
the difference of sets described in Examples 3.11 and 3.8. Therefore, we
obtain

BnC̃ (XF) = C̃XF \ C̃XF (3.64)
= {x3, x4, x5, x8} \ {x3, x8} = {x4, x5} ,

BnC̃ (XN) = C̃XN \ C̃XN = ∅, (3.65)

BnC̃ (XO) = C̃XO \ C̃XN = {x4, x5} . (3.66)

Example 3.15
Let us define the boundary region of set X defined in Example 3.9 for the
set of features P1 and P2. In the first case, we have

BnP̃1
(X) = P̃1X \ P̃1X (3.67)

= [1; 7) \ [2; 6) = [1; 2) ∪ [6; 7) ,

which is illustrated by Fig. 3.10. In the second case

543210 6 7 8 9 10

U

X

~BnP1(X )

x=q1+q2

FIGURE 3.10. Boundary region in one-dimensional universe of discourse

BnP̃2
(X) = P̃2X \ P̃2X (3.68)

= U \ ∅ = U.
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Example 3.16
Figure 3.11 shows the marked equivalence classes included in the boundary
region BnP̃ (X) described in the space U defined by formula (3.13).

FIGURE 3.11. Boundary region in two-dimensional universe of discourse

Definition 3.9
P̃ -negative region of the set X is defined as

NegP̃ (X) = U \ P̃X. (3.69)

The negative region of the set X is the set of the objects x ∈ U , with
relation to which, on the basis of values of features P , we can certainly
state that they are not elements of the set X.

Example 3.17
According to Definition 3.9, we shall define the negative regions of the sets
XF, XN and XO considered in Example 3.8. By defining the complement
of sets defined in Example 3.11 to the space U , we shall obtain

NegC̃ (XF) = U \ C̃X = {x1, x2, x6, x7, x9, x10} , (3.70)

NegC̃ (XN) = U \ C̃X = {x1, x3, x4, x5, x6, x7, x8} , (3.71)

NegC̃ (XO) = U \ C̃X = {x2, x3, x8, x9, x10} . (3.72)

Example 3.18
Let us define the boundary region of set X defined in Example 3.9 for the
set of features P1 and P2. In the first case, we have

NegP̃1
(X) = U \ P̃ 1X (3.73)

= U \ [1; 7) = [0; 1) ∪ [7; 10) ,
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which is illustrated by Fig. 3.12. In the second case, we have

NegP̃2
(X) = U \ P̃ 2X (3.74)

= U \ U = ∅.

543210 6 7 8 9 10

U

X

~NegP1
(X)

x=q1+q2

FIGURE 3.12. Negative region in one-dimensional universe of discourse

Example 3.19
Figure 3.13 shows the marked equivalence classes included in the negative
region NegP̃ (X), determined in the space U defined by formula (3.13).

FIGURE 3.13. Negative region in two-dimensional universe of discourse

Definition 3.10
The set X is called a P̃ -exactly set, if its lower and upper approximation
are equal

P̃X = P̃X (3.75)
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and P̃ -rough set otherwise
P̃X �= P̃X. (3.76)

Definition 3.11
The set X is called
a) roughly P̃ -definable set, if ⎧

⎨

⎩

P̃X �= ∅

P̃X �= U,
(3.77)

b) internally P̃ -non definable set, if
⎧
⎨

⎩

P̃X = ∅

P̃X �= U,
(3.78)

c) externally P̃ -non definable set, if
⎧
⎨

⎩

P̃X �= ∅

P̃X = U,
(3.79)

d) totally P̃ -non definable set, if
⎧
⎨

⎩

P̃X = ∅

P̃X = U.
(3.80)

Example 3.20
By comparing the lower and upper approximations of sets XF, XN and XO,
described in Examples 3.8 and 3.11, we can easily notice that only the set
XN satisfies Definition 3.10 and is a C̃-exactly set. The sets XF and XO
satisfy equation (3.77) in Definition 3.11 and are roughly C̃-definable sets,
as well as C̃-rough sets according to Definition 3.10.

Example 3.21
By comparing the lower and upper approximations of the set X defined
in Example 3.9, determined in Examples 3.9 and 3.12, we can easily state
that this set is both a P̃1– and P̃2-rough set (Definition 3.10). Moreover,
according to Definition 3.11, it is a roughly P̃1-definable set and at the
same time a totally P̃2-non definable set.

Example 3.22
By analyzing Figs. 3.7 and 3.9, we can state that the set X, defined in
Example 3.10 and shown in Fig. 3.7, is a P̃ -rough set and at the same time
a P̃ -definable set.
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Definition 3.12
The value expressed by formula

µP̃ (X) =
P̃X

P̃X

(3.81)

is called P̃ -accuracy of approximation of the set X. The symbol A denotes
the measure of the set A. In case of finite sets, we can use the cardinality as
the measure, in case of continuous bounded sets, we can use such measures
as the length of the interval, surface area, volume, etc.

Example 3.23
Let us determine C̃-accuracy of sets XF, XN and XO, defined in Example
3.8. By applying formula (3.81), we obtain

µC̃ (XF) =
C̃XF

C̃XF

=
2
4

= 0.5, (3.82)

µC̃ (XN) =
C̃XN

C̃XN

=
3
3

= 1, (3.83)

µC̃ (XO) =
C̃XO

C̃XO

=
3
5

= 0.6. (3.84)

As we can see, C̃-accuracy of the approximation of the set XN is 1, which
confirms the previous observation that this set is a C̃-exact set. In other
words, it is unambiguously defined by the features belonging to the set C
given by formula (3.23).

Example 3.24
In case of continuous spaces of discourses, we can define the C̃-accuracy,
using the length of appropriate intervals. Therefore, for the set X defined
in Example 3.9, we have

µP̃1
(X) =

P̃1X

P̃1X

=
3
3
, (3.85)

µP̃2
(X) =

P̃2X

P̃2X

= 0. (3.86)
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Example 3.25
In case of the set X, defined in Example 3.10, we can determine the
P̃ -accuracy of approximation using the surface area, as the measure. Based
on Figs. 3.7 and 3.9 we have

µP̃ (X) =
P̃X

P̃X

=
8
21

. (3.87)

3.4 Approximation of family of sets

Definitions 3.5 - 3.9 and 3.12 may be easily generalized for a certain family
of sets of the space U . Let us denote the abovementioned family of sets by
X = {X1,X2, ...,Xn}.

Definition 3.13
The set P̃X described as follows:

P̃X =
{

P̃X1, P̃X2, ..., PXn

}
(3.88)

is called P̃ -lower approximation of the family of sets X.

Example 3.26
Let the elements of family of sets X be the sets XF, XN and XO, defined
in Example 3.8. We shall notate this as follows:

X = {XF,XN,XO} (3.89)

= {{x3, x4, x8} , {x2, x9, x10} , {x1, x5, x6, x7}} .

Using the sets determined in Example 3.8, according to Definition 3.13, we
can write

C̃X =
{

C̃XF, C̃XN, C̃XO

}
(3.90)

= {{x3, x8} , {x2, x9, x10} , {x1, x6, x7}} .

Definition 3.14
The set P̃X described as follows:

P̃X =
{

P̃X1, P̃X2, ..., P̃Xn

}
(3.91)

is called P̃ -upper approximation of family of sets X.
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Example 3.27
According to Definition 3.14, using the sets determined in Example 3.11,
C̃-upper approximation of the family of sets X defined in Example 3.26,
will be

C̃X =
{

C̃XF, C̃XN, C̃XO

}
(3.92)

= {{x3, x4, x5, x8} , {x2, x9, x10} , {x1, x4, x5, x6, x7}} .

Definition 3.15
P̃ -positive region of family of the sets X is defined as

PosP̃ (X) =
⋃

XiεX
PosP̃ (Xi) . (3.93)

Example 3.28
The C̃-positive region of family of sets X, defined in Example 3.26, we can
determine as follows:

PosC̃ (X) = PosC̃ (XF) ∪ PosC̃ (XN) ∪ PosC̃ (XO) (3.94)

= {x1, x2, x3, x6, x7, x8, x9, x10} .

As it can be inferred from the example, the term of the positive region
of family of sets is not equal to the term of its lower approximation – by
contrast with the terms of positive region and lower approximation of sets.

Definition 3.16
P̃ -boundary region of family of the sets X is defined as

BnP̃ (X) =
⋃

XiεX
BnP̃ (Xi) . (3.95)

Example 3.29
According to Definition 3.16, C̃-boundary region of family of sets X, defined
in Example 3.26, takes the form

BnC̃ (X) = BnC̃ (XF) ∪ BnC̃ (XN) ∪ BnC̃ (XO) (3.96)
= {x4, x5} .

Definition 3.17
P̃ -negative region of family of the sets X is defined as

NegP̃ (X) = U\
⋃

XiεX
P̃Xi. (3.97)
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Example 3.30
C̃-negative region of family of sets X, defined in Example 3.26, according
to Definition 3.17 takes the form

NegC̃ (X) = U\
⋃

XiεX
C̃Xi = ∅. (3.98)

Definition 3.18
P̃ -quality of approximation of family of sets X is determined by the expres-
sion

γP̃ (X) =
PosP̃ (X)

U
. (3.99)

Example 3.31
C̃-quality of approximation of family of sets X, defined in Example 3.26, is

γC̃ (X) =
PosC̃ (X)

U
=

8
10

. (3.100)

Definition 3.19
P̃ -accuracy of approximation of family of sets X is defined by

βP̃ (X) =
PosP̃ (X)
∑

XiεX P̃Xi

. (3.101)

Example 3.32
Using Definition 3.19 and notations (3.92) and (3.94), it is easy to check that
C̃-accuracy of approximation of family of sets X, defined in Example 3.26, is

βC̃ (X) =
PosC̃ (X)
∑

XiεX C̃Xi

=
8

4 + 3 + 5
=

2
3
. (3.102)

3.5 Analysis of decision tables

The theory of rough sets introduces the notion of dependency between fea-
tures (attributes) of the information system. Thanks to that, we can check
whether it is necessary to know the values of all features in order to unam-
biguously describe the object belonging to the set U .

Definition 3.20
Dependence degree of set of attributes P2 on the set of attributes P1, where
P1, P2 ⊆ Q, is defined as follows:
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k = γP̃1
(P ∗

2 ) , (3.103)

where γP̃1
(P ∗

2 ) is determined pursuant to Definition 3.18.

The notation P1
k−→ P2 means that the set of attributes P2 depends on

the set of attributes P1 to the degree k < 1. In case where k = 1, we shall
simply write P1 → P2.

The notion of dependence degree of attributes is used to define the cor-
rectness of construction of the decision table (Definition 3.2).

Definition 3.21
The rules of decision table are called deterministic, provided that for each
pair of rules la �= lb from the equality of values of all conditional attributes
C, we can infer an equality of values of decision attributes D, i.e.

∀la,lb=1,...,N
la �=lb

: ∀c∈C fla (c) = flb (c) → ∀d∈D fla (d) = flb (d) . (3.104)

If for a certain pair of rules la �= lb the above condition is not met, i.e.
the equality of values of all conditional attributes C does not result in
the equality of values of decision attributes D, we shall call these rules as
non-deterministic, i.e.

∃ la,lb
la �=lb

: ∀c∈C fla (c) = flb (c) → ∃d∈D fla (d) �= flb (d) . (3.105)

The decision table (Definition 3.2) is well defined, if all its rules are deter-
ministic. Otherwise, we say that it is not well defined.

Let us notice that the decision table having a set of conditional attributes
C and a set of decision attributes D is well defined, if the set of decision
attributes depends on the set of conditional attributes to a degree which is
equal to 1 (C → D), that is

γC̃ (D∗) = 1. (3.106)

The reason for the decision table to be not well defined is that it con-
tains the so-called non-deterministic rules. The decision table that is not
well defined may be “repaired” by removing the non-deterministic rules or
expanding the set of conditional attributes C.

Example 3.33
Let us examine the dependence degree of the set of attributes D on the set
of attributes C defined in Example 3.4. According to Definition 3.20, we
have

k = γC̃ (D∗) =
PosC̃ (D∗)

U
. (3.107)
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Let us notice that the equivalence classes of D-indiscernibility relation are
the sets XF, XN and XO defined in Example 3.8. Therefore

D∗ = {XF,XN,XO} . (3.108)

Based on Definition 3.15, using the lower approximations of sets XF, XN
and XO defined in Example 3.8, we obtain

PosC̃ (D∗) = PosC̃ (XF) ∪ PosC̃ (XN) ∪ PosC̃ (XO) (3.109)

= C̃XF ∪ C̃XN ∪ C̃XO

= {x3, x8} ∪ {x2, x9, x10} ∪ {x1, x6, x7}

= {x1, x2, x3, x6, x7, x8, x9, x10} .

By substituting the dependence (3.109) to formula (3.107), we obtain the
result

k =
{x1, x2, x3, x6, x7, x8, x9, x10}

{x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}
=

8
10

. (3.110)

We can therefore state that the set of attributes D depends on the set
of attributes C to the degree k = 0.8, which is notated as C

0.8−→ D. The
obtained value k < 1 informs us that the decision table given in Example
3.4 is not well defined. Based on the set of conditional attributes C, we
cannot unambiguously infer on the membership of objects of the space U
to the particular sets XF, XN and XO, which are equivalence classes of
the D-indiscernibility relation.

The used cars dealer from Example 3.1 should expand the set of condi-
tional attributes C, if he wants to infer unambiguously on the car make on
the basis of these attributes.

The non-deterministic rules in the decision table described in Example
3.4 are the rules 4 and 5. If they are removed, a not well-defined deci-
sion table (Table 3.3) is transformed into a well defined decision table
(Table 3.4).

For the decision table thus defined, it is easy to check that

γC̃ (D∗) =
{x1, x2, x3, x6, x7, x8, x9, x10}
{x1, x2, x3, x6, x7, x8, x9, x10}

= 1. (3.111)

Hence, it is well defined.
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TABLE 3.4. A well-defined decision table (after removing non-deterministic rules)

Rule Number Horsepower Colour Make
(l) of doors (c1) (c2) (c3) (d1)
1 2 60 blue Opel
2 2 100 black Nissan
3 2 200 black Ferrari
6 3 100 red Opel
7 3 100 red Opel
8 3 200 black Ferrari
9 4 100 blue Nissan
10 4 100 blue Nissan

The second method used to create a well-defined table is to expand the
sets of conditional attributes. The car dealer decided to add the type of
fuel used, the type of upholstery and wheel rims, to the features considered
so far. The new set of conditional attributes takes the following form

C = {c1, c2, c3, c4, c5, c6} (3.112)
= {number of doors, horsepower, colour, fuel, upholstery, rims} .

The domains of new features are

VC4 = {Diesel oil, Ethyl gasoline, gas} , (3.113)
VC5 = {woven fabric, leather} , (3.114)

VC6 = {steel, aluminium} . (3.115)

Table 3.5 presents the decision table completed with new attributes and
their values.

Let us determine for decision Table 3.5 the C̃-quality and the C̃-accuracy
of approximation of family of sets D∗. The first step is to define the family
of equivalence classes of the relation C̃ in the space U . Each element of the
space U has at least one different value of the feature, hence

C∗={{x1}, {x2}, {x3}, {x4}, {x5}, {x6}, {x7}, {x8}, {x9}, {x10}}. (3.116)

Therefore, the following positive regions of family of sets B∗ are defined:

PosC̃ (XF) = C̃XF = {x3} ∪ {x4} ∪ {x8} = {x3, x4, x8} = XF, (3.117)

PosC̃ (XN) = C̃XN = {x2} ∪ {x9} ∪ {x10} = {x2, x9, x10} = XN, (3.118)

PosC̃ (XO) = C̃XO = {x1} ∪ {x5} ∪ {x6} ∪ {x7} (3.119)

= {x1, x5, x6, x7} = XO.
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TABLE 3.5. A well-defined decision table (after adding attributes)

Rule Number Horsepower Colour Fuel Upholstery Rims Make
(l) of doors (c2) (c3) (c4) (c5) c6 (d1)

(c1)
1 2 60 blue Ethyl woven steel Opel

gasoline fabric
2 2 100 black Diesel woven steel Nissan

oil fabric
3 2 200 black Ethyl leather Al Ferrari

gasoline
4 2 200 red Ethyl leather Al Ferrari

gasoline
5 2 200 red Ethyl woven steel Opel

gasoline fabric
6 3 100 red Diesel leather steel Opel

oil
7 3 100 red gas woven steel Opel

fabric
8 3 200 black Ethyl leather Al Ferrari

gasoline
9 4 100 blue gas woven steel Nissan

fabric
10 4 100 blue Diesel oil woven Al Nissan

fabric

The C̃-upper approximations of these sets may be defined similarly

C̃XF = {x3} ∪ {x4} ∪ {x8} = {x3, x4, x8} = XF, (3.120)

C̃XN = {x2} ∪ {x9} ∪ {x10} = {x2, x9, x10} = XN, (3.121)

C̃XO = {x1} ∪ {x5} ∪ {x6} ∪ {x7} = {x1, x5, x6, x7} = XO. (3.122)

C̃-positive region of family of sets D∗ takes the form

PosC̃ (D∗) = {x3, x4, x8} ∪ {x2, x9, x10} ∪ {x1, x5, x6, x7} (3.123)
= {x1, x2, x3, x4, x5, x6, x7, x8x9, x10} = U.

Now, using Definition 3.18 and 3.19, we can directly determine:

γC̃ (D∗) =
PosC̃ (D∗)

U
=

U

U
=

10
10

= 1, (3.124)

βC̃ (D∗) =
PosC̃ (D∗)
∑

XiεD∗ C̃Xi

=
10

3 + 3 + 4
= 1. (3.125)

On this basis, we can unambiguously state that the decision Table 3.5 is
well defined.
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Definition 3.22
The set of attributes P1 ⊆ Q is independent in a given information system,
if for each P2 ⊂ P1 the inequality P̃1 �= P̃2 occurs. Otherwise, the set P1 is
a dependent one.

Example 3.34
Let us consider data given in decision Table 3.5. It is easy to notice that the
set C described by formula (3.112) is a dependent set. Exemplary subsets
of the set C, C1 = {c1, c2, c3, c5, c6} and C2 = {c1, c2, c3, c4, c5}, gener-
ate such quotient of the space U , as the set C (see. 3.116). The sets C1

and C2 are also dependent, as the sets C3 = {c1, c3, c5, c6} ⊂ C1 and
C4 = {c1, c3, c4, c5} ⊂ C2 also generate the quotient of the space U de-
scribed by formula (3.116). On the other hand, the sets C3 and C4 are
independent sets.

Definition 3.23
The set of attributes P1 ⊆ Q is independent with respect to the set of
attributes P2 ⊆ Q (P2-independent), if for each P3 ⊂ P1 the following
inequality holds

PosP̃1
(P ∗

2 ) �= PosP̃3
(P ∗

2 ) . (3.126)

Otherwise, the set P1 is P2-dependent.

Example 3.35
The set C3 is an independent set in a given information system (Defini-
tion 3.22). According to Definition 3.23, it is a D-dependent set. We shall
demonstrate that the set C3 together with its subset C5 = {c1, c3, c6} does
not meet condition (3.126), i.e.

PosC̃3
(D∗) �= PosC̃5

(D∗) . (3.127)

Let us notice that

PosC̃3
(D∗) = PosC̃3

(XF) ∪ PosC̃3
(XN) ∪ PosC̃3

(XO) (3.128)

= XF ∪ XN ∪ XO = U

and

PosC̃5
(D∗) = PosC̃5

(XF) ∪ PosC̃5
(XN) ∪ PosC̃5

(XO) (3.129)

= XF ∪ XN ∪ XO = U

hence
PosC̃3

(D∗) = PosC̃5
(D∗) . (3.130)
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Definition 3.24
Every independent set P2 ⊂ P1 for which P̃2 = P̃1 is called the reduct of
the set of attributes P1 ⊆ Q.

Definition 3.25
Every P2-independent set P3 ⊂ P1 for which P̃3 = P̃1 is called the rela-
tive reduct of a set of attributes P1 ⊆ Q with respect to P2 (the so-called
P2-reduct).

Example 3.36
If we return to the discussions in Examples 3.34 and 3.35; we can notice
that the sets C3 and C4 presented therein are the reducts of the set C,
whereas the set C5 is the D-reduct of the set C3 and C.

Definition 3.26
The attribute p ∈ P1 is indispensable from P1, if for P2 = P1\ {p}, the
equation P̃2 �= P̃1 holds. Otherwise, the attribute p is dispensable.

Example 3.37
Using Definition 3.26, we shall check the indispensability of particular
attributes c ∈ C in the information system forming the decision Table 3.5.
It is easy to check that

C∗ = {{x1} , {x2} , {x3} , {x4} , {x5} , (3.131)

{x6} , {x7} , {x8} , {x9} , {x10}} ,

(C\ {c1})∗ = {{x1} , {x2} , {x3, x8} , {x4} , {x5} , (3.132)

{x6} , {x7} , {x9} , {x10}} �= C∗,

(C\{c2})∗ = {{x1} , {x2} , {x3} , {x4} , {x5} , (3.133)

{x6} , {x7} , {x8} , {x9} , {x10}} =C∗,

(C\ {c3})∗ = {{x1} , {x2} , {x3, x4} , {x5} , (3.134)

{x6} , {x7} , {x8} , {x9} , {x10}} �= C∗,

(C\ {c4})∗ = {{x1} , {x2} , {x3} , {x4} , {x5} , (3.135)

{x6} , {x7} , {x8} , {x9} , {x10}} = C∗,
(C\ {c5})∗ = {{x1} , {x2} , {x3} , {x4} , {x5} , (3.136)

{x6} , {x7} , {x8} , {x9} , {x10}} = C∗,

(C\ {c6})∗ = {{x1} , {x2} , {x3} , {x4} , {x5} , (3.137)

{x6} , {x7} , {x8} , {x9} , {x10}} = C∗.
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As we can see, the attributes c1 and c3 are indispensable, while the
attributes c2, c4, c5 and c6 are superfluous.

Definition 3.27
The set of all indispensable attributes from the set P is called a core of P ,
which is notated as follows:

CORE (P ) =
{

p ∈ P : P̃ ′ �= P̃ , P ′ = P\ {p}
}

. (3.138)

Example 3.38
Using the results from Example 3.37, we can define the core of the set of
attributes C as

CORE (C) = {c1, c3} . (3.139)

Definition 3.28
The normalized coefficient of significance of subset of the set of conditional
attributes C ′ ⊂ C is expressed by the following formula

σ(C,D) (C ′) =
γC̃ (D∗) − γC̃′′ (D∗)

γC̃ (D∗)
, (3.140)

where C ′′ = C \ C ′. Of course, in a special case the set C ′ may be a one-
element set, then the coefficient (3.140) will express the significance of one
conditional attribute.

The coefficient of significance plays an important role in the analysis of
decision tables. The zero value obtained for a given subset of conditional
attributes C indicates that this subset may be deleted from the set of con-
ditional attributes without any detriment to the approximation of family
of sets D∗.

Example 3.39
Let us determine the significance of an exemplary subset of the set of con-
ditional attributes C defined by the notation (3.112). In Example 3.33,
we have demonstrated (formula (3.124)), that C̃-quality of approximation
of family of sets D∗ for a well-defined decision table amounts to 1. For
C ′ = {c1}, we have C ′′ = {c2, c3, c4, c5, c6} and

γC̃′′ (D∗) =
PosC̃′′ (D∗)

U
(3.141)

=
XF ∪ XN ∪ XO

U
= 1.

Hence
σ(C,D) ({c1}) =

1 − 1
1

= 0. (3.142)
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Therefore, the attribute c1 in the given decision table is insignificant, and
due to that, its removal will not impact the quality of approximation of
family of sets D∗.

For C ′ = {c4, c5, c6}, we get C ′′ = {c1, c2, c3}, hence

γC̃′′ (D∗) =
{x3, x8} ∪ {x2, x9, x10} ∪ {x1, x6, x7}

U
=

8
10

, (3.143)

which, after substituting to formula (3.140), gives the value

σ(C,D) ({c4, c5, c6}) =
1 − 0.8

1
= 0.2. (3.144)

Based on the above discussion we see the attributes c4, c5 and c6 added in
Example 3.33 (Table 3.5) are of low significance.

Definition 3.29
Any given subset of the set of conditional attributes C ′ ⊂ C is called a
rough D-reduct of the set of attributes C, and the approximation error of
this reduct is defined as follows:

ε(C,D) (C ′) =
γC̃ (D∗) − γC̃′ (D∗)

γC̃ (D∗)
. (3.145)

Example 3.40
Let us determine an approximation error of the set C ′ = {c1, c2, c3} which
is the rough D-reduct of set of attributes C (decision Table 3.5). Using the
result (3.143), we have

ε(C,D) ({c1, c2, c3}) =
1 − 0.8

1
= 0.2. (3.146)

3.6 Application of LERS software

LERS (Learning from Examples based on Rough Sets) software [67] has
been created by RS Systems company. Its task is to generate the rule base,
based on examples entered and to test the rule base generated or prepared
independently. The data entered may be subject to some initial process-
ing, among others by removing contradictions, eliminating or completing
missing data and quantization of numerical values.

In order to present the capabilities of LERS software, let us consider two
cases of data analysis. The first case, already discussed in the Example 3.1 –
it is the case of the used car dealer. The second case – the problem of
classification of Iris flowers, an example often used to illustrate and compare
the performance of computational intelligence algorithms.
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Example 3.41 (Cars in the parking lot)
Let the decision table describing the used car dealer from Example 3.1
have the form as in Table 3.5. In order to have a clear presentation of this
example, it has been presented again in Table 3.6.

TABLE 3.6. Original decision table (before reduction)

Number Horsepower Colour Fuel Upholstery Rims Make
of doors (c2) (c3) (c4) (c5) (c6) (d1)
(c1)
2 60 blue Ethyl woven steel Opel

gasoline fabric
2 100 black Diesel woven steel Nissan

oil fabric
2 200 black Ethyl leather Al Ferrari

gasoline
2 200 red Ethyl leather Al Ferrari

gasoline
2 200 red Ethyl woven steel Opel

gasoline fabric
3 100 red Diesel leather steel Opel

oil
3 100 red gas woven steel Opel

fabric
3 200 black Ethyl leather Al Ferrari

gasoline
4 100 blue gas woven steel Nissan

fabric
4 100 blue Diesel oil woven Al Nissan

fabric

In order to enter the data from Table 3.6 to LERS software, the following
file must be prepared:
< a, a, a a a a d >

[doors horsepower] colour fuel upholstery rims make
2 60 blue Ethyl gasoline woven fabric steel Opel
2 100 black Diesel oil woven fabric steel Nissan
2 200 black Ethyl gasoline leather alum Ferrari
2 200 red Ethyl gasoline leather alum Ferrari
2 200 red Ethyl gasoline woven fabric steel Opel
3 100 red Diesel oil leather steel Opel
3 100 red gas woven fabric steel Opel
3 200 black Ethyl gasoline leather alum Ferrari
4 100 blue gas woven fabric steel Nissan
4 100 blue Diesel oil woven fabric alum Nissan
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In the first row of the file, the division to conditional attributes (a) and
decision attributes (d) has been made. The second row contains the names
of particular attributes. Based on data entered, LERS software generated
5 rules containing 8 conditions in total:

IF rims is steel AND colour is red THEN make is Opel
IF horsepower is 60 THEN make is Opel
IF doors is 4 THEN make is Nissan
IF colour is black AND fuel is Diesel oil THEN make is Nissan
IF horsepower is 200 AND upholstery is leather THEN make is Ferrari

TABLE 3.7. Decision table after removing redundant data

Number Horsepower Colour Fuel Upholstery Rims Make
of doors (c2) (c3) (c4) (c5) (c6) (d1)
(c1)

60 Opel
black Diesel oil Nissan

200 leather Ferrari
200 leather Ferrari

red steel Opel
red steel Opel
red steel Opel

200 leather Ferrari
4 Nissan
4 Nissan

The process of rules generation may be interpreted as removing redundant
data from the decision table, which is shown in Table 3.7. The algorithm
used for rules generation and removal of redundant data uses the rough
sets theory.

By removing repeating entries from 3.7, we obtain Table 3.8, identical
with the generated set of rules.

TABLE 3.8. Decision table obtained after reduction

Number Horsepower Colour Fuel Upholstery Rims Make
of doors (c2) (c3) (c4) (c5) (d4)
(c1)

red steel Opel
60 Opel

4 Nissan
black Diesel oil Nissan

200 leather Ferrari
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Example 3.42 (Classification of Iris flowers)
As it has been mentioned before, the problem of classification of Iris flowers
is often used as an example to illustrate the performance of different types
of computational intelligence algorithms. The task consists in determining
the membership of flowers to one of three classes: Setosa, Virginica and
Versicolor. The decision is made based on the value of four conditional
attributes describing the dimensions (length and width) of the leaf and the
flower petal.

We have 150 samples in our disposal, including 147 unique ones (not
recurrent); 50 of them belongs to each of three classes. Table 3.9 presents
the ranges of variability of particular attributes.

TABLE 3.9. Ranges of variability of attributes (classification of Iris flowers)

Attribute Range Number of unique
values

p1 〈4.3; 7.9〉 35
p2 〈2.0; 4.4〉 23
p3 〈1.0; 6.9〉 43
p4 〈0.1; 2.5〉 22
Iris Setosa, Virginica, Versicolor 3

The data have been divided into a learning and a testing part; 40 samples
from each class have been selected randomly for the learning part and the
remaining 30 samples have been used to create the testing part. Based on
the contents of the learning sequence, the input file for LERS software has
been prepared in the form:

< a a a a d >
[p1 p2 p3 p4 iris]
4.4 2.9 1.4 0.2 Setosa
4.8 3.0 1.4 0.1 Setosa
5.4 3.4 1.7 0.2 Setosa
. . .

Based on data entered, LERS generated 34 rules containing 41 conditions
in total:

IF p4 is 0.2 THEN iris is Setosa
IF p4 is 0.4 THEN iris is Setosa
IF p4 is 0.3 THEN iris is Setosa
IF p4 is 0.1 THEN iris is Setosa
IF p4 is 0.5 THEN iris is Setosa
IF p4 is 0.6 THEN iris is Setosa
IF p4 is 1.3 THEN iris is Versicolor
IF p4 is 1.5 AND p3 is 4.5 THEN iris is Versicolor
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IF p4 is 1.0 THEN iris is Versicolor
IF p4 is 1.4 THEN iris is Versicolor
IF p4 is 1.5 AND p3 is 4.9 THEN iris is Versicolor
IF p4 is 1.2 THEN iris is Versicolor
IF p4 is 1.5 AND p1 is 5.9 THEN iris is Versicolor
IF p3 is 4.7 THEN iris is Versicolor
IF p4 is 1.1 THEN iris is Versicolor
IF p3 is 4.8 AND p1 is 5.9 THEN iris is Versicolor
IF p3 is 4.6 THEN iris is Versicolor
IF p4 is 1.6 AND p1 is 6.0 THEN iris is Versicolor
IF p4 is 2.1 THEN iris is Virginica
IF p4 is 2.3 THEN iris is Virginica
IF p3 is 5.5 THEN iris is Virginica
IF p4 is 2.0 THEN iris is Virginica
IF p1 is 7.3 THEN iris is Virginica
IF p3 is 6.0 THEN iris is Virginica
IF p3 is 5.1 THEN iris is Virginica
IF p3 is 5.8 THEN iris is Virginica
IF p3 is 6.1 THEN iris is Virginica
IF p4 is 2.4 THEN iris is Virginica
IF p4 is 1.8 AND p1 is 6.2 THEN iris is Virginica
IF p4 is 1.7 THEN iris is Virginica
IF p3 is 6.7 THEN iris is Virginica
IF p3 is 5.0 THEN iris is Virginica
IF p3 is 5.7 THEN iris is Virginica
IF p3 is 4.9 AND p2 is 2.7 THEN iris is Virginica

In the next step, data included in the learning sequence have been quantized
so that the corresponding decision table remained still deterministic. LERS
software defined the intervals given in Table 3.10 for particular conditional
attributes.

The original input file has been replaced with the file presented below.
Each value of the decision attribute has been replaced with an interval
identifier it belongs to.
! Decision table produced by LERS (C version 1.0)
! First the attribute names list . . .
!
[p1 p2 p3 p4 iris]
!
! Now comes the actual data. Please note that one example
! does NOT necessarily occupy one physical line
!
4.4..5.05 2.75..2.95 1..2.6 0.1..0.8 Setosa
4.4..5.05 2.95..3.05 1..2.6 0.1..0.8 Setosa
5.05..5.65 3.25..3.45 1..2.6 0.1..0.8 Setosa
. . .
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TABLE 3.10. Result of quantization (classification of iris flowers)

Attribute Range Number of samples
〈4.4; 5.05〉 26
〈5.05; 5.65〉 26

p1 〈5.65; 6.15〉 22
〈6.15; 6.65〉 22
〈6.65; 7.9〉 24

〈2; 2.75〉 24
〈2.75; 2.95〉 18

p2 〈2.95; 3.05〉 21
〈3.05; 3.25〉 21
〈3.25; 3.45〉 17
〈3.45; 4.4〉 19

〈1; 2.6〉 40
p3 〈2.6; 4.85〉 40

〈4.85; 6.9〉 40

〈0.1; 0.8〉 40
p4 〈0.8; 1.65〉 42

〈1.65; 2.5〉 38

Setosa 40
Iris Virginica 40

Versicolor 40

Based on the file so prepared, LERS software generated 11 rules containing
altogether 41 conditions:

IF p3 is > THEN iris is Setosa
IF p4 is <0.8; 1.65> AND p3 is <2.6; 4.85> THEN iris is Versicolor
IF p2 is <3.05; 3.25> AND p1 is <5.65; 6.15> THEN iris is Versicolor
IF p4 is <0.8; 1.65> AND p2 is <3.05; 3.25> THEN iris is Versicolor
IF p1 is <6.15; 6.65> AND p2 is <2; 2.75> AND p4 is <0.8; 1.65>
THEN iris is Versicolor
IF p3 is <4.85; 6.9> AND p4 is <1.65; 2.5> THEN iris is Virginica
IF p3 is <4.85; 6.9> AND p2 is <2.75; 2.95> THEN iris is Virginica
IF p1 is <5.65; 6.15> AND p3 is <4.85; 6.9> THEN iris is Virginica
IF p4 is <1.65; 2.5> AND p2 is <2.75; 2.95> THEN iris is Virginica
IF p2 is <2.95; 3.05> AND p1 is <6.65; 7.9> THEN iris is Virginica
IF p2 is <2; 2.75> AND p4 is <1.65; 2.5> THEN iris is Virginica
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The rules obtained in the first and in the second trial have been used
to classify the samples included in the testing set. The results of both
experiments have been presented in Table 3.11. The first four columns
contain the values of conditional attributes for test samples, the fifth col-
umn contains the correct result (decision attribute), the sixth column is
the result obtained using the first set of rules, and the seventh column is
the result obtained using the second set of rules.

By analyzing Table 3.11, one can notice, among others things, that the
initial quantization of data, which resulted in the set of rules operating on
intervals, leads to a more efficient inference system.

TABLE 3.11. Results of classification of iris flowers

p1 p2 p3 p4 pattern classification 1 classification 2
5.0 3.6 1.4 0.2 Setosa Setosa Setosa
4.9 3.1 1.5 0.1 Setosa Setosa Setosa
4.3 3.0 1.1 0.1 Setosa Setosa Setosa
5.0 3.0 1.6 0.2 Setosa Setosa Setosa
5.5 4.2 1.4 0.2 Setosa Setosa Setosa
5.1 3.4 1.5 0.2 Setosa Setosa Setosa
5.1 3.8 1.5 0.3 Setosa Setosa Setosa
5.1 3.5 1.4 0.3 Setosa Setosa Setosa
4.6 3.1 1.5 0.2 Setosa Setosa Setosa
5.1 3.8 1.9 0.4 Setosa Setosa Setosa
5.1 2.5 3.0 1.1 Versicolor Versicolor Versicolor
6.1 2.8 4.7 1.2 Versicolor Versicolor Versicolor
6.0 2.7 5.1 1.6 Versicolor ??? Virginica
5.5 2.4 3.8 1.1 Versicolor Versicolor Versicolor
4.9 2.4 3.3 1.0 Versicolor Versicolor Versicolor
6.7 3.0 5.0 1.7 Versicolor Virginica Virginica
6.2 2.2 4.5 1.5 Versicolor Versicolor Versicolor
6.8 2.8 4.8 1.4 Versicolor Versicolor Versicolor
5.7 2.8 4.5 1.3 Versicolor Versicolor Versicolor
5.8 2.6 4.0 1.2 Versicolor Versicolor Versicolor
6.3 2.5 5.0 1.9 Virginica Virginica Virginica
6.1 3.0 4.9 1.8 Virginica ??? Virginica
6.3 2.9 5.6 1.8 Virginica ??? Virginica
6.7 3.1 5.6 2.4 Virginica Virginica Virginica
5.8 2.8 5.1 2.4 Virginica Virginica Virginica
6.1 2.6 5.6 1.4 Virginica Versicolor Virginica
6.4 2.7 5.3 1.9 Virginica ??? Virginica
6.9 3.1 5.4 2.1 Virginica Virginica Virginica
6.0 3.0 4.8 1.8 Virginica ??? ???
6.4 2.8 5.6 2.2 Virginica ??? Virginica
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3.7 Notes

The theory of rough sets was created by professor Zdzisław Pawlak
[161 - 164]. The definitions provided in this chapter, as well as various ap-
plications of rough sets, are presented in a monograph [140], which is the
first more comprehensive study on this subject in the Polish language. We
refer the Reader interested in various aspects of rough sets to a rich set of
publications [66, 67, 158, 177, 180, 233]. In Section 3.6, the LERS software
has been used to generate the rules using the rough sets method. This soft-
ware has been kindly made available for the purposes of this publication
by professor Jerzy Grzymała-Busse of Kansas University, USA.




