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Flexible neuro-fuzzy systems

10.1 Introduction

In the previous chapter we considered Mamdani and logical neuro-fuzzy
systems. In the present chapter we will build a neuro-fuzzy system, the
inference method (Mamdani or logical) of which will be found as a result of
the learning process. The structure of such a system will be changing during
the learning process. Its operation will be possible thanks to specially con-
structed adjustable triangular norms. Adjustable triangular norms, applied
to aggregate particular rules, take the form of a classic t-norm or t-conorm
after the learning process is finished. Adjustable implications, which finally
take the form of a “correlation function” between premises and consequents
(Mamdani approach) or fuzzy S-implication (logical approach), will be con-
structed in analogical way. Moreover, the following concepts will be used
for construction of the neuro-fuzzy systems: the concept of soft triangular
norms, parameterized triangular norms as well as weights which describe
the importance of particular rules and antecedents in those rules.

10.2 Soft triangular norms

Soft equivalents of triangular norms shall be defined in the following way:

T̃ {a;α} = (1 − α)
1
n

n∑

i=1

ai + αT {a1, . . . , an} (10.1)
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and
S̃ {a;α} = (1 − α)

1
n

n∑

i=1

ai + αS {a1, . . . , an} , (10.2)

where a = [a1, ..., an] and α ∈ [0, 1]. The above operators allow smooth
balancing between the arithmetic average of arguments a1, . . . , an and a
classic t-norm or t-conorm operator.

Example 10.1
The soft Zadeh t-norm (of the min type) shall be defined as follows:

T̃ {a1, a2;α} = (1 − α)
1
2

(a1 + a2) + α min {a1, a2} . (10.3)

Its operation is illustrated by Fig. 10.1.

a) b) c)

e)d)

FIGURE 10.1. Hyperplanes of function (10.3) for a) α = 0.00, b) α = 0.25,
c) α = 0.50, d) α = 0.75, e) α = 1.00

The soft Zadeh t-conorm takes the following form

S̃ {a1, a2;α} = (1 − α)
1
2

(a1 + a2) + α max {a1, a2} . (10.4)

Its operation is illustrated by Fig. 10.2.
As we remember, the “correlation function” in the Mamdani approach

shall be defined through the t-norm. A soft equivalent of this function shall
be notated as follows:

Ĩ (a, b;β) = (1 − β)
1
2

(a + b) + βT {a, b} . (10.5)

The soft S-implication takes the form

Ĩ (a, b;β) = (1 − β)
1
2

(1 − a + b) + βS {1 − a, b} , (10.6)

where β ∈ [0, 1] in both cases.
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a) b) c)

e)d)

FIGURE 10.2. Hyperplanes of function (10.4) for a) α = 0.00, b) α = 0.25,
c) α = 0.50, d) α = 0.75, e) α = 1.00

Example 10.2
The soft binary S-implication is given by the following formula

Ĩ (a, b;β) = (1 − β)
1
2

(1 − a + b) + β max {1 − a, b} . (10.7)

Its operation is illustrated by Fig. 10.3.

a) b)

d) e)

c)

FIGURE 10.3. Hyperplanes of function (10.7) for a) β = 0.00, b) β = 0.25,
c) β = 0.50, d) β = 0.75, e) β = 1.00

To construct Mamdani systems, we can use the following soft triangular
norms:

• T̃1 {a;ατ} = (1 − ατ )
1
n

∑n
i=1 ai + ατTn

i=1 {ai} to aggregate the
premises in particular rules;

• T̃2

{
b1, b2;αI

}
=
(
1 − αI

) 1
2

(b1 + b2) + αIT {b1, b2} to combine the
premises and consequents of the rules;

• S̃ {c;αagr} = (1 − αagr)
1
N

∑N
k=1 ck + αagrSN

k=1 {ck} to aggregate the
rules,

where n is the number of inputs while N is the number of rules.
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To construct logical systems using the S-implication, we can use the
following soft triangular norms:

• T̃1 {a;ατ} = (1 − ατ )
1
n

∑n
i=1 ai + ατTn

i=1 {ai} to aggregate the
premises in particular rules;

• S̃
{
b1, b2;αI

}
=
(
1 − αI

) 1
2

(1 − b1 + b2) + αIS {1 − b1, b2} to com-
bine the premises and consequents of the rules;

• T̃2 {c;αagr} = (1 − αagr)
1
N

∑N
k=1 ck +αagrTN

k=1 {ck} to aggregate the
rules,

where n is the number of inputs while N is the number of rules. It should
be emphasized that parameters ατ , αI and αagr can be found as a result
of learning.

10.3 Parameterized triangular norms

In order to construct flexible systems, we can also use parameterized
variations of triangular norms. These include among other things
Dombi, Hamacher, Yager, Frank, Weber, Dubois and Prade, Schweizer
and Mizumoto triangular norms. The notations

↔
T {a1, a2, . . . , an; p} and

↔
S{a1, a2, . . . , an; p} will be used to notate them. Parameterized triangular
norms are characterized by the fact that their corresponding hyperplanes
can be modified as a result of learning the parameter p.

Example 10.3
Parameterized Dombi t-norm is defined as follows:

↔
T {a; p} =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Łukasiewicz t-norm for p = 0,
(

1 +
(

n∑

i=1

(
1 − ai

ai

)p) 1
p

)−1

for p ∈ (0,∞) ,

Zadeh t-norm for p = ∞.

(10.8)

Its operation for n = 2 is illustrated by Fig. 10.4.
Parameterized Dombi t-conorm is defined as follows:

↔
S {a; p} =

⎧
⎪⎪⎨

⎪⎪⎩

Łukasiewicz t − conorm for p = 0 ,

1 −
(

1 +
(∑n

i=1

(
ai

1−ai

)p) 1
p

)−1

for p ∈ (0,∞) ,

Zadeh t − conorm for p = ∞ .

(10.9)

Figure 10.5 illustrates its operation.
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FIGURE 10.4. Hyperplanes of function (10.8) for a) p = 0.10, b) p = 0.25,
c) p = 0.50, d) p = 1.00, e) p = 10.00

FIGURE 10.5. Hyperplanes of function (10.9) for a) p = 0.10, b) p = 0.25,
c) p = 0.50, d) p = 1.00, e) p = 10.00

The additive generator of parameterized Dombi t-norm takes the form

tadd (x) =
(

1 − x

x

)p

, (10.10)

while the additive generator of parameterized Dombi t-conorm is defined
as follows:

sadd (x) =
(

x

1 − x

)p

. (10.11)

Parameterized Dombi t-norm for n = 2 may play the role of a “correlation
function”. By combining the concept of parameterized Dombi t-conorm
with the concept of S-implication we obtain the parameterized Dombi
S-implication which is notated as follows:

↔
I (a, b; p) = 1 −

(

1 +
((

1 − a

a

)p

+
(

b

1 − b

)p) 1
p

)−1

(10.12)

for p ∈ (0,∞). The operation of parameterized Dombi S-implication is
illustrated by Fig. 10.6.
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FIGURE 10.6. Hyperplanes of function (10.12) for a) p = 0.10, b) p = 0.25,
c) p = 0.50, d) p = 1.00, e) p = 10.00

Example 10.4
Parameterized Yager t-norm is defined as follows:

↔
T {a; p} =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Łukasiewicz t-norm for p = 0

max

{

0, 1 −
(

n∑

i=1

(1 − ai)
p

) 1
p

}

for p ∈ (0,∞)

Zadeh t-norm for p = ∞

(10.13)

for p > 0. Its operation for n = 2 is illustrated by Fig. 10.7.
Parameterized Yager t-conorm is defined as follows:

↔
S {a; p} =

⎧
⎪⎨

⎪⎩

boundary t-conorm for p = 0 ,

min
{

1, (
∑n

i=1 (ai)
p)

1
p

}
for p ∈ (0,∞),

Zadeh t-conorm for p = ∞ .

(10.14)

FIGURE 10.7. Hyperplanes of function (10.13) for a) p = 0.1, b) p = 0.5,
c) p = 1.0, d) p = 10.0, e) p = 100.0
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FIGURE 10.8. Hyperplanes of function (10.14) for a) p = 0.1, b) p = 0.5,
c) p = 1.0, d) p = 10.0, e) p = 100.0

Figure 10.8 illustrates its operation.
The additive generator of parameterized Yager t-norm takes the form

tadd (x) = (1 − x)p
, (10.15)

while the additive generator of parameterized Yager t-conorm is defined as
follows:

sadd (x) = xp. (10.16)

Parameterized Yager t-norm for n = 2 can be used as “correlation function”.
By combining the concept of parameterized Yager t-conorm with the con-
cept of S-implication we obtain parameterized Yager S-implication which
is notated as follows:

↔
I (a, b; p) = min

{
1, ((1 − a)p + bp)

1
p

}
. (10.17)

The operation of parameterized Yager S -implication is illustrated by
Fig. 10.9.

FIGURE 10.9. Hyperplanes of function (10.17) for a) p = 0.1, b) p = 0.5,
c) p = 1.0, d) p = 10.0, e) p = 100.0
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To construct Mamdani systems, we can use the following parameterized
triangular norms:

•
↔
T 1 {a1, a2, . . . , an; pτ} to aggregate the premises in particular rules;

•
↔
T 2

{
b1, b2; pI

}
to combine the premises and consequents of the rules;

•
↔
S {c1, c2, . . . , cN ; pagr} to aggregate the rules,

where n is the number of inputs and N is the number of rules.
In order to construct logical systems using the S-implication, we can use

the following parameterized triangular norms:

•
↔
T 1 {a1, a2, . . . , an; pτ} to aggregate the premises in particular rules;

•
↔
S
{
1 − b1, b2; pI

}
to combine the premises and consequents of the

rules;

•
↔
T 2 {c1, c2, . . . , cN ; pagr} to aggregate the rules,

where n is the number of inputs and N is the number of rules.
It should be emphasized that parameters pτ , pI and pagr can be found

in the process of learning.

10.4 Adjustable triangular norms

We will build the function H (a; ν) which, depending on the value of the
parameter ν, takes the form of t-norm or t-conorm. To construct this func-
tion we will use the compromise operator defined below.

Definition 10.1
Function

Ñν : [0, 1] → [0, 1] (10.18)
defined as

Ñν (a) = (1 − ν) N (a) + νa (10.19)

is called a compromise operator, where ν ∈ [0, 1] and N (a) = Ñ0 (a) = 1−a.

It could be observed that Ñ1−ν (a) = Ñν (1 − a) = 1 − Ñν (a) and

Ñν (a) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

N (a) for ν = 0,

1
2

for ν =
1
2
,

a for ν = 1.

(10.20)
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FIGURE 10.10. Illustration of the operation of the compromise operator (10.19)

Function Ñν for ν = 0 is a strong type negation. Its operation is illustrated
by Fig. 10.10.

Definition 10.2
Function

H : [0, 1]n → [0, 1] (10.21)

defined as

H (a; ν) = Ñν

(
n

S
i=1

{
Ñν (ai)

})
= Ñ1−ν

(
n

T
i=1

{
Ñ1−ν (ai)

})
(10.22)

is called H-function, where ν ∈ [0, 1].

Theorem 10.1
Let T and S be dual triangular norms. Then function H, defined by for-
mula (10.22), changes its shape from the t-norm to the t-conorm, when ν
changes from 0 to 1.

Proof. The assumption says that

T {a} = N (S {N (a1) , N (a2) , . . . , N (an)}) . (10.23)

For ν = 0 formula (10.23) can be notated as follows:

T {a} = Ñ0

(
S
{

Ñ0 (a1) , Ñ0 (a2) , . . . , Ñ0 (an)
})

. (10.24)

At the same time

S {a} = Ñ1

(
S
{

Ñ1 (a1) , Ñ1 (a2) , . . . , Ñ1 (an)
})

(10.25)

for ν = 1. The right sides of formulas (10.24) and (10.25) can be notated
as follows:

H (a; ν) = Ñν

(
n

S
i=1

{
Ñν (ai)

})
(10.26)
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for, respectively, ν = 0 and ν = 1. If parameter ν changes its value from
0 to 1, then function H is smoothly switched between the t-norm and the
t-conorm. It could easily be observed that:

H (a; ν) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T {a} for ν = 0 ,

1
2

for ν =
1
2

,

S {a} for ν = 1.

(10.27)

Example 10.5
The adjustable H -function constructed with the use of Zadeh t-norm or
t-conorm takes the form

H (a1, a2; ν) = Ñ1−ν

(
min
{

Ñ1−ν (a1) , Ñ1−ν (a2)
})

(10.28)

= Ñν

(
max
{

Ñν (a1) , Ñν (a2)
})

,

while ν changes from value 0 to 1. It could easily be observed that:

H (a1, a2; 0) = T {a1, a2} = min {a1, a2} , (10.29)

H (a1, a2; 1) = S {a1, a2} = max {a1, a2} . (10.30)

The operation of Zadeh H -function is illustrated by Fig. 10.11.

FIGURE 10.11. Hyperplanes of function (10.28) for a) ν = 0.00, b) ν = 0.15,
c) ν = 0.50, d) ν = 0.85, e) ν = 1.00

Example 10.6
The adjustable H -function constructed with the use of algebraic t-norm or
t-conorm takes the form:

H (a1, a2; ν) = Ñ1−ν

(
Ñ1−ν (a1) Ñ1−ν (a1)

)
(10.31)

= Ñν

(
1 −
(
1 − Ñν (a1)

)(
1 − Ñν (a1)

))
,
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FIGURE 10.12. Hyperplanes of function (10.31) for a) v = 0.00, b) v = 0.15,
c) v = 0.50, d) v = 0.85, e) v = 1.00

while ν changes from value 0 to 1. It could easily be observed that:

T {a1, a2} = H (a1, a2; 0) = a1a2, (10.32)

S {a1, a2} = H (a1, a2; 1) = a1 + a2 − a1a2. (10.33)

The operation of algebraic H -function is illustrated by Fig. 10.12.
Now we will construct the so-called H -implication which may be switched

between the “correlation function” (t-norm) and fuzzy implication
(S-implication).

Theorem 10.2
Let T and S be dual triangular norms. Then the H -implication defined as
follows:

I (a, b; ν) = H
(
Ñ1−ν (a) , b; ν

)
(10.34)

changes from the “engineering implication”

Icor (a, b) = I (a, b; 0) = T {a, b} (10.35)

to the fuzzy implication

Ifuzzy (a, b) = I (a, b; 1) = S {1 − a, b} (10.36)

when parameter ν changes its value from 0 to 1.

Proof. Theorem 10.2 is a direct consequence of Theorem 10.1.
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Example 10.7
The adjustable H -implication which may be switched between the “corre-
lation function” expressed by the Zadeh t-norm

Ieng (a, b) = H (a, b; 0) (10.37)
= T {a, b}
= min {a, b}

and binary S-implication

Ifuzzy (a, b) = H
(
Ñ0 (a) , b; 1

)
(10.38)

= S {N (a) , b}
= max {N (a) , b}

may be expressed as follows:

I (a, b; ν) = H
(
Ñ1−ν (a) , b; ν

)
, (10.39)

while ν changes from 0 to 1.The operation of H -implication given by for-
mula (10.39) is illustrated by Fig. 10.13.

FIGURE 10.13. Hyperplanes of function (10.39) for a) ν = 0.00, b) ν = 0.15,
c) ν = 0.50, d) ν = 0.85, e) ν = 1.00

Example 10.8
The adjustable H -implication which may be switched between the “corre-
lation function” expressed by algebraic t-norm

Ieng (a, b) = H (a, b; 0) (10.40)
= T{a, b}
= ab,
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FIGURE 10.14. Hyperplanes of function (10.42) for a) ν = 0.00, b) ν = 0.15,
c) ν = 0.50, d) ν = 0.85, e) ν = 1.00

and binary S-implication

Ifuzzy (a, b) = H
(
Ñ0 (a) , b; 1

)
(10.41)

= S {N (a) , b}
= 1 − a + ab,

may be expressed as follows:

I (a, b; ν) = H
(
Ñ1−ν (a) , b; ν

)
, (10.42)

while ν changes from 0 to 1. The operation of H -implication given by
formula (10.42) is illustrated by Fig. 10.14.

10.5 Flexible systems

Using the concept of adjustable triangular norms and adjustable implica-
tions, we will build a neuro-fuzzy system the structure of which can change
between the system of Mamdani type and the logical type system.

Theorem 10.3
Let T and S be dual triangular norms. Then the neuro-fuzzy system

τk (x) = H

(
µAk

1
(x1) , . . . , µAk

n
(xn) ;

0

)
, (10.43)

Ik,r (x, yr) = H

(
Ñ1−ν (τk (x)) , µBk (yr) ;

ν

)
, (10.44)
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agrr (x, yr) = H

(
I1,r (x, yr) , . . . , IN,r (x, yr) ;

1 − ν

)
, (10.45)

y =
∑N

r=1 yr · agrr (x, yr)
∑N

r=1 agrr (x, yr)
(10.46)

changes between the Mamdani type system (ν = 0) and the logical type
system (ν = 1) together with the change of parameter ν from 0 to 1.

Proof. For ν = 0 formula (10.46) takes the form

y =
∑N

r=1 yr · SN
k=1 {T {τk (x) , µBk (yr)}}

∑N
r=1 SN

k=1 {T {τk (x) , µBk (yr)}}
. (10.47)

It could easily be observed that the above formula describes the Mamdani
type system. For ν = 1 we have

y =
∑N

r=1 yr · TN
k=1 {S {N (τk (x)) , µBk (yr)}}

∑N
r=1 TN

k=1 {S {N (τk (x)) , µBk (yr)}}
. (10.48)

Dependency (10.48) describes a logical system using the S-implication. For
the value of parameter ν ∈ (0, 1) the inference is performed according to
the definition of the H -implication, which ends the proof.

Table 10.1 presents implication and aggregation operators for changing
parameter ν. The system described by means of dependencies (10.43) -
(10.46) is a flexible system as it enables the choice of inference model as a
result of the learning process. However, that system does not include the
other flexibility aspects described in Subchapters 10.2 and 10.3.

At present the concept of soft triangular norms, parameterized triangular
norms, weights of rules and weights of rules premises will be introduced to
system (10.46) given in Theorem 10.3. Then the flexible neuro-fuzzy system
takes the following form:

τk (x) =

⎛

⎜
⎝

(1 − ατ ) avg
(
µAk

1
(x1) , . . . , µAk

n
(xn)
)

+

+ατ
↔
H

∗( µAk
1
(x1) , . . . , µAk

n
(xn) ;

wτ
1,k, . . . , wτ

n,k, pτ , 0

)

⎞

⎟
⎠ , (10.49)

TABLE 10.1. Implication and aggregation operators for changing parameter ν

Parameter ν Implication Aggregation
ν = 0 T {a, b} t-conorma
ν = 1 S {1 − a, b} t-norma
0 < ν < 1 H

(
Ñ1−ν (a) , b; ν

)
H (a, b; 1 − ν)

ν = 0.5 H (a, b; 0.5) = 0.5 H (a, b; 0.5) = 0.5
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Ik,r (x, yr) =

⎛

⎜
⎝

(
1 − αI

)
avg
(
Ñ1−ν (τk (x)) , µBk (yr)

)
+

+αI
↔
H

(
Ñ1−ν (τk (x)) , µBk (yr) ;

pI , ν

)

⎞

⎟
⎠ , (10.50)

agrr (x, yr) =

⎛

⎝
(1 − αagr) avg (I1,r (x, yr) , . . . , IN,r (x, yr)) +

+αagr
↔
H

∗( I1,r (x, yr) , . . . , IN,r (x, yr) ;
wagr

1 , . . . , wagr
N , pagr, 1 − ν

)
⎞

⎠ . (10.51)

In the system described by means of dependencies (10.46) and (10.49) -
(10.51) we can distinguish the following parameters:

• ν ∈ [0, 1], parameter of the type of inference model,

• ατ ∈ [0, 1], αI ∈ [0, 1], αagr ∈ [0, 1], flexibility parameters (in the sense
of Yager and Filev) in operators of premises aggregation, operators
of inference and operators of rules aggregation,

• pτ ∈ [0,∞), pI ∈ [0,∞), pagr ∈ [0,∞), parameters of the hyperplanes
shape of premises aggregation operators, operators of inference and
operators of rules aggregation,

• wτ
i,k ∈ [0, 1], i = 1, . . . , n, k = 1, . . . , N , weights of rules premises,

• wagr
k ∈ [0, 1], k = 1, . . . , N , weights of rules,

• pA
u,i,k, u = 1, 2, . . . , PA, i = 1, 2, . . . , n, parameters of the shape of

membership function of input fuzzy sets,

• pB
1,k = yk, k = 1, 2, . . . , N , centers of membership functions of output

fuzzy sets,

• pB
u,k, u = 2, 3, . . . , PB , k = 1, 2, . . . , N , parameters of the shape of

membership functions of output fuzzy sets.

The above mentioned parameters will be subject to learning in the following
subchapter.

10.6 Learning algorithms

Now we will derive gradient learning algorithms of the system described by
means of dependencies (10.46) and (10.49) - (10.51). Those parameters are
modified by iteration according to the dependencies below:

ν (t + 1) = ν (t) − η∆ν (t) , (10.52)

ατ (t + 1) = ατ (t) − η∆ατ (t) (10.53)
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αI (t + 1) = αI (t) − η∆αI (t) , (10.54)

αagr (t + 1) = αagr (t) − η∆αagr (t) (10.55)

pτ (t + 1) = pτ (t) − η∆pτ (t) , (10.56)

pI (t + 1) = pI (t) − η∆pI (t) , (10.57)

pagr (t + 1) = pagr (t) − η∆pagr (t) , (10.58)

wτ
i,k (t + 1) = wτ

i,k (t) − η∆wτ
i,k (t) , (10.59)

wagr
k (t + 1) = wagr

k (t) − η∆wagr
k (t) , (10.60)

pA
u,i,k (t + 1) = pA

u,i,k (t) − η∆pA
u,i,k (t) , (10.61)

pB
u,k (t + 1) = pB

u,k (t) − η∆pB
u,k (t) ; u = 2, . . . , PB , (10.62)

yr (t + 1) = pB
1,r (t + 1) = yr (t) − η∆yr (t) . (10.63)

The terms ∆ in the above dependencies are defined as follows:

∆ν =
N∑

k=1

N∑

r=1

εI
k,r {ν} +

N∑

r=1

εagr
r {ν} , (10.64)

∆ατ =
N∑

k=1

ετ
k {ατ} , (10.65)

∆αI =
N∑

k=1

N∑

r=1

εI
k,r

{
αI
}

, (10.66)

∆αagr =
N∑

r=1

εagr
r {αagr} , (10.67)

∆pτ =
N∑

k=1

ετ
k {pτ} , (10.68)

∆pI =
N∑

k=1

N∑

r=1

εI
k,r

{
pI
}

, (10.69)

∆pagr =
N∑

r=1

εagr
r {pagr} , (10.70)

∆wτ
i,k = ετ

k

{
wτ

i,k

}
, (10.71)

∆wagr
k =

N∑

r=1

εagr
r {wagr

k } , (10.72)
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∆pA
u,i,k = ετ

k

{
pA

u,i,k

}
, (10.73)

∆pB
u,k =

N∑

r=1

εI
k,r

{
pB

u,k

}
; u = 2, . . . , PB , (10.74)

∆yr = ∆pB
1,r = εdef {yr} +

N∑

k=1

εI
k,r {yr} +

N∑

k=1

εI
r,k

{
pB
1,r

}
. (10.75)

The errors propagated through particular system layers are defined simi-
larly to the learning algorithms related to non-flexible systems which have
been described in point 9.6. The method of error propagation is illustrated
in Fig. 9.11.

The errors propagated by blocks of rules activation are defined as follows
(Fig. 10.15):

ετ
k {ατ} = ετ

k

∂τk (x)
∂ατ

, (10.76)

ετ
k {pτ} = ετ

k

∂τk (x)
∂bτ

k (x)
∂bτ

k (x)
∂pτ

, (10.77)

ετ
k

{
wτ

i,k

}
= ετ

k

∂τk (x)
∂bτ

k (x)
∂bτ

k (x)
∂wτ

i,k

, (10.78)

ετ
k

{
pA

u,i,k

}
= ετ

k

⎛

⎜
⎜
⎜
⎜
⎝

∂τk (x)
∂bτ

k (x)
∂bτ

k (x)
∂µAk

i
(xi)

+

+
∂τk (x)
∂aτ

k (x)
∂aτ

k (x)
∂µAk

i
(xi)

⎞

⎟
⎟
⎟
⎟
⎠

∂µAk
i
(xi)

∂pA
u,i,k

, (10.79)

FIGURE 10.15. Block of rules activation of a flexible system
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while
∂τk (x)
∂aτ

k (x)
=

∂

∂aτ
k (x)

G

(
aτ

k (x) , bτ
k (x) ;

ατ

)
, (10.80)

∂τk (x)
∂bτ

k (x)
=

∂

∂bτ
k (x)

G

(
aτ

k (x) , bτ
k (x) ;

ατ

)
, (10.81)

∂τk (x)
∂ατ

=
∂

∂ατ
G

(
aτ

k (x) , bτ
k (x) ;

ατ

)
, (10.82)

∂aτ
k (x)

∂µAk
i
(xi)

=
∂

∂µAk
i
(xi)

avg
(
µAk

1
(x1) , . . . , µAk

n
(xn)
)

, (10.83)

∂bτ
k (x)
∂pτ

=
∂

∂pτ

↔
H

∗( µAk
1
(x1) , . . . , µAk

n
(xn) ;

wτ
1,k, . . . , wτ

n,k, pτ , 0

)
, (10.84)

∂bτ
k (x)

∂wτ
i,k

=
∂

∂wτ
i,k

↔
H

∗( µAk
1
(x1) , . . . , µAk

n
(xn) ;

wτ
1,k, . . . , wτ

n,k, pτ , 0

)
, (10.85)

∂bτ
k (x)

∂µAk
i
(xi)

=
∂

∂µAk
i
(xi)

↔
H

∗( µAk
1
(x1) , . . . , µAk

n
(xn) ;

wτ
1,k, . . . , wτ

n,k, pτ , 0

)
. (10.86)

The derivatives in the above dependencies are determined with use of the
formulas specified in the further part of this subchapter.

The errors propagated by blocks of implications are defined as follows
(Fig. 10.16):

FIGURE 10.16. Block of implications of a flexible system
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εI
k,r {ν} = εI

k,r

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂Ik,r (x, yr)
∂bI

k,r (x, yr)
∂bI

k,r (x, yr)
∂ν

+

+

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂Ik,r (x, yr)
∂bI

k,r (x, yr)
∂bI

k,r (x, yr)

∂Ñ1−ν (τk (x))
+

+
∂Ik,r (x, yr)
∂aI

k,r (x, yr)
∂aI

k,r (x, yr)

∂Ñ1−ν (τk (x))

⎞

⎟
⎟
⎟
⎟
⎟
⎠

·

·∂Ñ1−ν (τk (x))
∂ (1 − ν)

∂N (ν)
∂ν

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (10.87)

εI
k,r

{
αI
}

= εI
k,r

∂Ik,r (x, yr)
∂αI

, (10.88)

εI
k,r

{
pI
}

= εI
k,r

∂Ik,r (x, yr)
∂bI

k,r (x, yr)
∂bI

k,r (x, yr)
∂pI

, (10.89)

εI
k,r

{
pB

u,k

}
= εI

k,r

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂Ik,r (x, yr)
∂bI

k,r (x, yr)
∂bI

k,r (x, yr)
∂µBk (yr)

+

+
∂Ik,r (x, yr)
∂aI

k,r (x, yr)
∂aI

k,r (x, yr)
∂µBk (yr)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∂µBk (yr)
∂pB

u,k

, (10.90)

εI
k,r {yr} = εI

k,r

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂Ik,r (x, yr)
∂bI

k,r (x, yr)
∂bI

k,r (x, yr)
∂µBk (yr)

+

+
∂Ik,r (x, yr)
∂aI

k,r (x, yr)
∂aI

k,r (x, yr)
∂µBk (yr)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∂µBk (yr)
∂yr , (10.91)

εI
k,r{τk(x)}= εI

k,r

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂Ik,r(x, yr)
∂bI

k,r (x, yr)
∂bI

k,r(x, yr)

∂Ñ1−ν (τk (x))
+

+
∂Ik,r(x, yr)
∂aI

k,r(x, yr)
∂aI

k,r(x, yr)

∂Ñ1−ν(τk (x))

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∂Ñ1−ν(τk (x))
∂τk(x)

, (10.92)

while

∂Ik,r (x, yr)
∂aI

k,r (x, yr)
=

∂

∂aI
k,r (x, yr)

G

(
aI

k,r (x, yr) , bI
k,r (x, yr) ;

αI

)
, (10.93)

∂Ik,r (x, yr)
∂bI

k,r (x, yr)
=

∂

∂bI
k,r (x, yr)

G

(
aI

k,r (x, yr) , bI
k,r (x, yr) ;

αI

)
, (10.94)
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∂Ik,r (x, yr)
∂αI

=
∂

∂αI
G

(
aI

k,r (x, yr) , bI
k,r (x, yr) ;

αI

)
, (10.95)

∂aI
k,r (x, yr)

∂Ñ1−ν (τk (x))
=

∂

∂Ñ1−ν (τk (x))
avg
(
Ñ1−ν (τk (x)) , µBk (yr)

)
, (10.96)

∂aI
k,r (x, yr)

∂µBk (yr)
=

∂

∂µBk (yr)
avg
(
Ñ1−ν (τk (x)) , µBk (yr)

)
, (10.97)

∂bI
k,r (x, yr)

∂ν
=

∂

∂ν

↔
H

(
Ñ1−ν (τk (x)) , µBk (yr) ;

pI , ν

)
, (10.98)

∂bI
k,r (x, yr)

∂pI
=

∂

∂pI

↔
H

(
Ñ1−ν (τk (x)) , µBk (yr) ;

pI , ν

)
, (10.99)

∂bI
k,r (x, yr)

∂Ñ1−ν (τk (x))
=

∂

∂Ñ1−ν (τk (x))

↔
H

(
Ñ1−ν (τk (x)) , µBk (yr) ;

pI , ν

)
, (10.100)

∂bI
k,r (x, yr)

∂µBk (yr)
=

∂

∂µBk (yr)

↔
H

(
Ñ1−ν (τk (x)) , µBk (yr) ;

pI , ν

)
. (10.101)

The derivatives in the above dependencies are determined with use of the
formulas specified in the further part of this subchapter.

The errors propagated by blocks of aggregation are defined as follows
(Fig. 10.17):

FIGURE 10.17. Block of aggregation of a flexible system
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εagr
r {ν} = εagr

r

∂agrr (x, yr)
∂bagr

r (x, yr)
∂bagr

r (x, yr)
∂ (1 − ν)

∂N (ν)
∂ν

, (10.102)

εagr
r {αagr} = εagr

r

∂agrr (x, yr)
∂αagr , (10.103)

εagr
r {pagr} = εagr

r

∂agrr (x, yr)
∂bagr

r (x, yr)
∂bagr

r (x, yr)
∂pagr , (10.104)

εagr
r {wagr

k } = εagr
r

∂agrr (x, yr)
∂bagr

r (x, yr)
∂bagr

r (x, yr)
∂wagr

k

, (10.105)

εagr
r {Ik,r (x, yr)} = εagr

r

⎛

⎜
⎜
⎜
⎜
⎝

∂agrr (x, yr)
∂bagr

r (x, yr)
∂bagr

r (x, yr)
∂Ik,r (x, yr)

+

+
∂agrr (x, yr)
∂aagr

r (x, yr)
∂aagr

r (x, yr)
∂Ik,r (x, yr)

⎞

⎟
⎟
⎟
⎟
⎠

, (10.106)

while

∂agrr (x, yr)
∂aagr

r (x, yr)
=

∂

∂aagr
r (x, yr)

G

(
aagr

r (x, yr) , bagr
r (x, yr) ;

αagr

)
, (10.107)

∂agrr (x, yr)
∂bagr

r (x, yr)
=

∂

∂bagr
r (x, yr)

G

(
aagr

r (x, yr) , bagr
r (x, yr) ;

αagr

)
, (10.108)

∂agrr (x, yr)
∂αagr =

∂

∂αagr G

(
aagr

r (x, yr) , bagr
r (x, yr) ;

αagr

)
, (10.109)

∂aagr
r (x, yr)

∂Ik,r (x, yr)
=

∂

∂Ik,r (x, yr)
avg (I1,r (x, yr) , . . . , IN,r (x, yr)) , (10.110)

∂bagr
r (x, yr)

∂ (1 − ν)
=

∂

∂ (1 − ν)

↔
H

∗( I1,r (x, yr) , . . . , IN,r (x, yr) ;
wagr

1 , . . . , wagr
N , pagr, 1 − ν

)
, (10.111)

∂bagr
r (x, yr)
∂pagr =

∂

∂pagr

↔
H

∗( I1,r (x, yr) , . . . , IN,r (x, yr) ;
wagr

1 , . . . , wagr
N , pagr, 1 − ν

)
, (10.112)

∂bagr
r (x, yr)
∂wagr

k

=
∂

∂wagr
k

↔
H

∗( I1,r (x, yr) , . . . , IN,r (x, yr) ;
wagr

1 , . . . , wagr
N , pagr, 1 − ν

)
, (10.113)

∂bagr
r (x, yr)

∂Ik,r (x, yr)
=

∂

∂Ik,r (x, yr)

↔
H

∗( I1,r (x, yr) , . . . , IN,r (x, yr) ;
wagr

1 , . . . , wagr
N , pagr, 1 − ν

)
. (10.114)

The errors propagated by defuzzification block are defined similarly to
the learning algorithms related to non-flexible systems which have been
described in Subchapters 9.3 - 9.5.

The learning algorithms derived above of a flexible neuro-fuzzy system
require determining derivatives for different types of operators. Below a
computation method of those derivatives is presented.
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10.6.1 Basic operators
Summation operator

y =
n∑

i=1

xi (10.115)

∂y

∂xi
= 1 (10.116)

Multiplication operator

y =
n∏

i=1

xi (10.117)

∂y

∂xi
=

n∏

j=1

j 	=i

xj (10.118)

Division operator
y =

a

b
(10.119)

∂y

∂a
=

1
b

(10.120)

∂y

∂b
= − a

b2
(10.121)

Minimum operator
y = min

i=1...n
{xi} (10.122)

∂y

∂xi
=
{

1 for xi = y
0 for xi �= y

(10.123)

Maximum operator
y = max

i=1...n
{xi} (10.124)

∂y

∂xi
=
{

1 for xi = y
0 for xi �= y

(10.125)

Compromise operator

Ñν (a) = (1 − fz (ν)) (1 − a) + fz (ν) a (10.126)

∂Ñν (a)
∂a

= 2fz (ν) − 1 (10.127)
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∂Ñν (a)
∂ν

= (2a − 1)
∂fz (ν)

∂ν
(10.128)

Arithmetic average operator

avg (a1, a2, ..., an) =
1
n

n∑

i=1

ai (10.129)

∂avg (a1, a2, . . . , an)
∂ai

=
1
n

(10.130)

Aggregation operator

G (a1, a2;φ) = (1 − fz (φ)) a1 + fz (φ) a2 (10.131)

∂G (a1, a2;φ)
∂a1

= 1 − fz (φ) (10.132)

∂G (a1, a2;φ)
∂a2

= fz (φ) (10.133)

∂G (a1, a2;φ)
∂φ

= − (a1 − a2)
∂fz (φ)

∂φ
(10.134)

Defuzzification operator

def (a1, a2, . . . , an;w1, w2, . . . , wn) = def (a;w) =
∑n

i=1 wiai∑n
i=1 ai

(10.135)

∂def (a;w)
∂aj

= (wj − def (a;w))
1

∑n
i=1 ai

(10.136)

∂def (a;w)
∂wj

=
(

aj − def (a;w)
∂aj

∂wj

)
1

∑n
i=1 ai

(10.137)

10.6.2 Membership functions

Gaussian membership function

µA (x) = exp

(

−
(

x − x

σ

)2
)

(10.138)

∂µA (x)
∂x

= −µA (x)
2 (x − x)

σ2
(10.139)
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∂µA (x)
∂x

= µA (x)
2 (x − x)

σ2
(10.140)

∂µA (x)
∂σ

= µA (x)
2 (x − x)2

σ3
(10.141)

Triangular membership function

µA (x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for x ≤ a or x ≥ c
x − a

b − a
for a ≤ x ≤ b

c − x

c − b
for b ≤ x ≤ c

(10.142)

∂µA (x)
∂x

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for x < a or x > c
1

2 (b − a)
for x = a

1
b − a

for a < x < b

c − 2b + a

2 (c − b) (b − a)
for x = b

− 1
c − b

for b < x < c

− 1
2 (c − b)

for x = c

(10.143)

∂µA (x)
∂a

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for x ≤ a or x > b
1

2 (b − a)
for x = b

x − a

(b − a)2
for a ≤ x < b

(10.144)

∂µA (x)
∂b

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 for x ≤ a or x ≥ c
a − x

(b − a)2
for a ≤ x < b

a − 2b + c

2 (c − b) (b − a)
for x = b

c − x

(c − b)2
for b < x ≤ c

(10.145)

∂µA (x)
∂c

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 for x ≤ b or x > c
1

2 (c − b)
for x = c

x − b

(c − b)2
for b < x < c

(10.146)
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FIGURE 10.18. Plot of function (10.147) for pz1 = 10, pz2 = 5, pz3 = 0.9,
pz4 = 0.05

10.6.3 Constraints

Constraints for parameters ν ∈ [0, 1], λ ∈ [0, 1], ατ ∈ [0, 1], αI ∈ [0, 1],
αagr ∈ [0, 1], wτ

i,k ∈ [0, 1], i = 1, . . . , n, k = 1, . . . , N , wagr
k ∈ [0, 1], k =

1, . . . , N

fz (x) =
pz3

1 + exp (− (pz1x − pz2))
+ pz4 (10.147)

∂fz (x)
∂x

= −pz1

pz3
(pz3 + pz4 − fz (x)) (pz4 − fz (x)) (10.148)

Constraints for parameters pτ ∈ [0,∞), pI ∈ [0,∞), pagr ∈ [0,∞)

fz (x) =
x

1 + exp (− (pz1x − pz2))
+ pz3 (10.149)

∂fz (x)
∂x

=
−pz3 + fz (x)

x
(1 + pz1 (pz3 + x − fz (x))) (10.150)

In Figures 10.18 and 10.19 we show plots of functions 10.147 and 10.149,
respectively.

10.6.4 H-functions

Argument of H-functions

argi (ai, wi, ν) = G

(
N (fz (wi) N (ai)) , fz (wi) ai;

ν

)
(10.151)

∂ argi (ai, wi, ν)
∂ai

= fz (wi) (10.152)
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FIGURE 10.19. Plot of function (10.149) for pz1 = 10, pz2 = 5, pz3 = 0

∂ argi (ai, wi, ν)
∂wi

= (a + ν − 1)
∂fz (wi)

∂wi
(10.153)

∂ argi (ai, wi, ν)
∂ν

= fz (wi) − 1 (10.154)

Zadeh H -function

H∗ (a;w, ν) = Ñν

(
max

i=1,...,n

{
Ñν (argi (ai, wi, ν))

})
(10.155)

H∗ (a;w, ν) = Ñν (h∗ (a;w, ν)) (10.156)

where
h∗ (a;w, ν) = max

i=1,...,n

{
Ñν (argi (ai, wi, ν))

}
(10.157)

∂H∗ (a;w, ν)
∂ai

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2fz (ν) − 1)2 · ∂ argi (ai, wi, ν)
∂ai

for h∗ (a;w, ν) = Ñν (argi (ai, wi, ν))

0 for h∗ (a;w, ν) �= Ñν (argi (ai, wi, ν))

(10.158)

∂H∗ (a;w, ν)
∂wi

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2fz (ν) − 1)2 ·∂ argi (ai, wi, ν)
∂wi

for h∗ (a;w, ν) = Ñν (argi (ai, wi, ν))

0 for h∗ (a;w, ν) �= Ñν (argi (ai, wi, ν))

(10.159)



10.6 Learning algorithms 475

∂H∗ (a;w, ν)
∂ν

=
∂fz (ν)

∂ν
(2h∗ (a;w, ν) − 1)

+ (2fz (ν) − 1) max
i=1,...,n

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(2fz (ν) − 1)
∂ argi (ai, wi, ν)

∂ν
+

+ (2 argi (ai, wi, ν) − 1)
∂fz (ν)

∂ν

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(10.160)

Algebraic H -function

H∗ (a;w, ν) = Ñν

(

1 −
n∏

i=1

(
1 − Ñν (argi (ai, wi, ν))

)
)

(10.161)

H∗ (a;w, ν) = Ñν (h∗ (a;w, ν)) (10.162)

where

h∗ (a;w, ν) = 1 −
n∏

i=1

(
1 − Ñν (argi (ai, wi, ν))

)
(10.163)

∂H∗ (a;w, ν)
∂ai

= (2fz (ν) − 1)2
∂ argi (ai, wi, ν)

∂ai

·
n∏

u=1
u	=i

(
1 − Ñν (argu (au, wu, ν))

) (10.164)

∂H∗ (a;w, ν)
∂wi

= (2fz (ν) − 1)2
∂ argi (ai, wi, ν)

∂wi
·

·
n∏

u=1
u	=i

(
1 − Ñν (argu (au, wu, ν))

) (10.165)

∂H∗ (a;w, ν)
∂ν

= (2h∗ (a;w, ν) − 1)
∂fz (ν)

∂ν
+

+ (2fz (ν) − 1)
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⎟
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(10.166)
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Dombi H -function

↔
H

∗
(a;w, p, ν)

=Ñν

(
1−
(
1 +
(

n∑

i=1

(
Ñν (argi (ai, wi, ν))−1− 1

)
−fz1(p)

)
1

fz1(p)

)
−1

) (10.167)

↔
H

∗
(a;w, p, ν) = Ñν

(
1 −

↔
h
∗
(a;w, p, ν)

)
(10.168)

p ∈ (0,∞) (10.169)

where

↔
h
∗
(a;w, p, ν)

=

(

1 +
(
∑n

i=1

(
Ñν (argi (ai, wi, ν))−1− 1

)−fz1(p)
) 1

fz1(p)
)−1 (10.170)

∂
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H
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∂ai
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·

(
↔
h
∗
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h
∗
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·

·

(
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·
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∂
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(
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h
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h
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(10.172)
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∂
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Yager H -function

↔
H

∗
(a;w, p, ν)

= Ñν

(
min
{
1,
(∑n

i=1 Ñν (argi (ai, wi, ν))fz1(p)
) 1

fz1(p)
}) (10.175)
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(10.177)

p ∈ (0,∞) (10.178)
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where

↔
h
∗
(a;w, p, ν) =
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) 1
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10.7 Simulation examples

We will present the results of simulation for previously described flexi-
ble neuro-fuzzy systems. Simulations concern problems of polymerization,
modeling the taste of rice, classification of iris flower and classification of
wine presented in Subchapter 9.2. To remind of those problems, they have
been listed in Table 10.2. Two simulation series have been conducted for
each simulation example. Each series has been conducted and described in
analogic way:

• In the first experiment only the parameters of membership function
of input and output fuzzy sets and the parameter of inference model
ν ∈ [0, 1] were learnt. The value of this parameter after completion
of the learning process belongs to the set ν ∈ {0, 1}.

• In the second experiment the parameters of membership function of
input and output fuzzy sets were also learnt, whereas the value of

TABLE 10.2. Simulation examples used

Simulation Type of Number of Length of Length of
problem the problem inputs the learning the testing

sequence sequence

Polymerization approximation 3 70 –
Modeling the approximation 5 75 30
taste of rice
Classification of classification 4 105 45
iris flowers
Classification classification 13 125 53
of wine
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the parameter of inference model ν was chosen as a opposite value (0
or 1) to the one obtained in the first experiment. As we will see, the
accuracy obtained in this experiment is worse than the one obtained
in the first experiment.

• In the third experiment the same parameters as in the first experiment
and also flexibility parameters ατ ∈ [0, 1], αI ∈ [0, 1], αagr ∈ [0, 1]
and parameters of the shape of the applied operators pτ ∈ [0,∞),
pI ∈ [0,∞), pagr ∈ [0,∞) were learnt. The latter parameters occur
in case of applying adjustable Dombi and Yager H -functions (in the
second series of experiments).

• Inthefourthexperimentthesameparametersas inthethirdexperiment,
as well as weights of rules premises wτ

i,k ∈ [0, 1], i = 1, . . . , n, k =
1, . . . , N and weights of particular rules wagr

k ∈ [0, 1], k = 1, . . . , N
were learnt. The values of weights, after completion of the learning
process, are illustrated in the diagrams in which the weights of premises
and the weights of rules are separated with a vertical dotted line. In
the diagrams we assume that the grayer the field which symbolizes a
given weight, the value of the weight is closer to zero.

In the first simulation series, in each of the four experiments described
above, non-adjustable Zadeh and algebraic H -functions and H -implications
were applied. In the second series of experiments adjustable H -functions
and Dombi and Yager H -implications were applied, instead of non- ad-
justable operators.

10.7.1 Polymerization
The results of simulation for the polymerization problem are presented in
Tables 10.3a and 10.3b for non-adjustable H -functions (Zadeh and alge-
braic) and in Tables 10.4a and 10.4b for adjustable H -functions (Dombi
and Yager). Moreover, for the experiment (iv) the values of weights of
rules premises wτ

i,k ∈ [0, 1] and values of weights of rules wagr
k ∈ [0, 1] of the

considered systems with non-adjustable H -functions are symbolically pre-
sented in Fig. 10.20, while the values of weight of systems with adjustable
H -functions are presented in Fig. 10.21.

10.7.2 Modeling the taste of rice
The results of simulation for the problem of modeling the taste of rice
are presented in Tables 10.5a and 10.5b for non-adjustable H -functions
(Zadeh and algebraic) and in Tables 10.6a and 10.6b for adjustable H -
functions (Dombi and Yager). Moreover, for the experiment (iv) the values
of weights of rules premises wτ

i,k ∈ [0, 1] and values of weights of rules
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TABLE 10.3a. The results of simulation of a flexible system with non-parame-
terized H -functions – the problem of polymerization

Flexible system with non-parameterized H -functions
(Polymerization)

Simulation Name of flexibility Initial value
number parameter
i ν 0.5
ii ν 1

iii

ν 0.5
ατ 1
αI 1

αagr 1

iv

ν 0.5
ατ 1
αI 1

αagr 1
wτ 1
warg 1

TABLE 10.3b. The results of simulation of a flexible system with non-parame-
terized H -functions – the problem of polymerization

Flexible system with non-parametrized H -functions (Polymerization)
Simulation Final value RMSE
number after learning (learning sequence)

Zadeh Algebraic Zadeh Algebraic
H -function H -function H -function H -function

i 0.0000 0.0000 0.0096 0.0060
ii – – 0.0115 0.0063

iii

0.0000 0.0000

0.0059 0.00560.7158 0.9678
0.7613 0.9992
0.7277 0.9930

iv

0.0000 0.0000

0.0056 0.0044

0.6941 0.9987
0.7783 0.9992
0.6713 0.9334

Fig. 10.20a Fig. 10.20b
Fig. 10.20a Fig. 10.20b
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TABLE 10.4a. The results of simulation of a flexible system with parameterized
H -functions – the problem of polymerization

Flexible system with parameterized H -functions
(Polymerization)

Simulation Name of flexibility Initial value
number parameter
i ν 0.5

ii ν 1

iii

ν 0.5
pτ 10
pI 10

pagr 10
ατ 1
αI 1

αagr 1

iv

ν 0.5
pτ 10
pI 10

pagr 10
ατ 1
αI 1

αagr 1
wτ 1
warg 1

wagr
k ∈ [0, 1] of considered systems with non-adjustable H -functions are

symbolically presented in Fig. 10.22, while the values of weights of systems
with adjustable H -functions are presented in Fig. 10.23.

10.7.3 Classification of iris flower
The results of simulation for the problem of classification of iris flower
are presented in Tables 10.7a and 10.7b for non-adjustable H -functions
(Zadeh and algebraic) and in Tables 10.8a and 10.8b for adjustable H -
functions (Dombi and Yager). Moreover, for the experiment (iv) the values
of weights of rules premises wτ

i,k ∈ [0, 1] and values of weights of rules
wagr

k ∈ [0, 1] of the considered systems with non-adjustable H -functions are
symbolically presented in Fig. 10.24, while the values of weight of systems
with adjustable H -functions are presented in Fig. 10.25.
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TABLE 10.4b. The results of simulation of a flexible system with parameterized
H -functions – the problem of polymerization

Flexible system with parameterized H -functions (Polymerization)

Simulation Final value RMSE
number after learning (learning sequence)

Dombi Yager Dombi Yager
H -function H -function H -function H -function

i 0.0000 0.0000 0.0117 0.0110

ii – – 0.0133 0.0113

iii

0.0000 0.0000

0.0077 0.0061

9.9714 10.2089
10.0042 10.2594
9.9835 9.3991
0.6996 0.1624
0.7743 0.5344
0.9941 0.9942

iv

0.0000 0.0000

0.0069 0.0053

13.1310 7.5714
15.3619 11.7834
3.4720 13.9273
0.7127 0.1375
0.7148 0.4742
0.9335 0.9910

Fig. 10.21a Fig. 10.21b
Fig. 10.21a Fig. 10.21b

FIGURE 10.20. Weights of rules premises and weights of rules for a flexible
system which solves the problem of polymerization in case of a) Zadeh H -function,
b) algebraic H -function
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FIGURE 10.21. Weights of rules premises and weights of rules for a flexible system
which solves the problem of polymerization in case of a) Dombi H -function,
b) Yager H -function

TABLE 10.5a. The results of simulation of a flexible system with non-parame-
terized H -functions – the problem of modeling the taste of rice

Flexible system with non-parameterized H -functions
(Modeling the taste of rice)

Simulation Name of flexibility Initial value
number parameter
i ν 0.5

ii ν 1

iii

ν 0.5
ατ 1
αI 1

αagr 1

iv

ν 0.5
ατ 1
αI 1

αagr 1
wτ 1
warg 1

10.7.4 Classification of wine
The results of simulation for the problem of wine classification are presented
in Tables 10.9a and 10.9b for non-adjustable H -functions (Zadeh and alge-
braic) and in Tables 10.10a and 10.10b for adjustable H -functions (Dombi
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TABLE 10.5b. The results of simulation of a flexible system with non-parame-
terized H -functions – the problem of modeling the taste of rice

Flexible system with non-parameterized H -functions
(Modeling the taste of rice)

Simulation Final value RMSE
number after learning (learning sequence)

Zadeh Algebraic Zadeh Algebraic
H -function H -function H -function H -function

i 0.0000 0.0000 0.0184 0.0185

ii – – 0.0186 0.0192

iii

0.0000 0.0000

0.0163 0.01730.2954 0.9972
0.9843 0.9979
0.4658 0.9958

iv

0.0000 0.0000

0.0140 0.0159

0.3101 0.9519
0.9575 0.9512
0.5496 0.9085

Fig. 10.22a Fig. 10.22b
Fig. 10.22a Fig. 10.22b

TABLE 10.6a. The results of simulation of a flexible system with parameterized
H -functions – the problem of modeling the taste of rice

Flexible system with parametrized H -functions
(Modeling the taste of rice)

Simulation number Name of flexibility parameter Initial value
i ν 0.5

ii ν 1

iii

ν 0.5
pτ 10
pI 10

pagr 10
ατ 1
αI 1

αagr 1

iv

ν 0.5
pτ 10
pI 10

pagr 10
ατ 1
αI 1

αagr 1
wτ 1
warg 1
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TABLE 10.6b. The results of simulation of a flexible system with parameterized
H -functions – the problem of modeling the taste of rice

Flexible system with parametrized H -functions
(Modeling the taste of rice)

Simulation Final value RMSE
number after learning (learning sequence)

Dombi Yager Dombi Yager
H -function H -function H -function H -function

i 0.0000 0.0000 0.0186 0.0187

ii – – 0.0192 0.0197

iii

0.0000 0.0000

0.0181 0.0184

9.9268 10.7365
10.0026 10.1154
9.7692 10.8200
0.4606 0.6895
0.9943 0.9993
0.9865 0.9728

iv

0.0000 0.0000

0.0160 0.0169

10.1449 10.9117
9.9448 10.0472
9.2063 10.0148
0.4380 0.6763
0.9201 0.9263
0.8967 0.9927

Fig. 10.23a Fig. 10.23b
Fig. 10.23a Fig. 10.23b

FIGURE 10.22. Weights of rules premises and weights of rules for a flexible
system which solves the problem of modeling the taste of rice in case of a) Zadeh
H -function, b) algebraic H -function
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FIGURE 10.23. Weights of rules premises and weights of rules for a flexible
system which solves the problem of modeling the taste of rice in case of a) Dombi
H -function, b) Yager H -function

TABLE 10.7a. The results of simulation of a flexible system with non-parame-
terized H -functions – the problem of classification of iris flowers

Flexible system with non-parameterized H -functions
(Classification of iris flowers)

Simulation Name of
flexibility
parameter

Initial value Final value
number after learning

Zadeh Algebraic
H -function H -function

i ν 0.5 1.0000 1.0000
ii ν 0 – –

iii

ν 0.5 1.0000 1.0000
ατ 1 0.2032 0.9922
αI 1 0.9891 0.6082

αagr 1 0.9994

iv

ν 0.5 1.0000 1.0000
ατ 1 0.2442 0.9592
αI 1 0.9845 0.5753

αagr 1 0.9650 0.9937
wτ 1 Fig. 10.24a Fig. 10.24b
warg 1 Fig. 10.24a Fig. 10.24b

and Yager). Moreover, for the experiment (iv) the values of weights of rules
premises wτ

i,k ∈ [0, 1] and values of weights of rules wagr
k ∈ [0, 1] of consid-

ered systems with non-adjustable H -functions are symbolically presented
in Fig. 10.26, while the values of weights of systems with adjustable H -
functions are presented in Fig. 10.27.
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TABLE 10.7b. The results of simulation of a flexible system with non-parame-
terized H -functions – the problem of classification of iris flowers

Flexible system with non-parameterized H -functions
(Classification of iris flowers)

Simulation Number of errors Number of errors
number [%] (learning sequence) [%] (testing sequence)

Zadeh Algebraic Zadeh Algebraic
H -function H -function H -function H -function

i 0.95 0.95 4.44 4.44
ii 0.95 0.95 6.67 6.67
iii 0.00 0.95 4.44 4.44
iv 0.00 0.00 4.44 4.44

TABLE 10.8a. The results of simulation of a flexible system with parameterized
H -functions – the problem of classification of iris flowers

Flexible system with parameterized H -functions
(Classification of iris flowers)

Simulation Name of
flexibility
parameter

Initial value Final value
number after learning

Dombi Yager
H -function H -function

i ν 0.5 1.0000 1.0000
ii ν 0 – –

iii

ν 0.5 1.0000 1.0000
pτ 10 13.2031 4.3306
pI 10 10.0001 7.5741

pagr 10 9.9974 10.1209
ατ 1 0.8259 0.7846
αI 1 0.9924 0.9931

αagr 1 0.9985 0.9985

iv

ν 0.5 1.0000 1.0000
pτ 10 13.5253 4.3621
pI 10 10.8610 8.0120

pagr 10 9.4218 9.3590
ατ 1 0.8739 0.8068
αI 1 0.9871 0.9731

αagr 1 0.9698 0.9661
wτ 1 Fig. 10.25a Fig. 10.25b
warg 1 Fig. 10.25a Fig. 10.25b
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TABLE 10.8b. The results of simulation of a flexible system with parameterized
H -functions – the problem of classification of iris flowers

Flexible system with parameterized H -functions
(Classification of iris flowers)

Simulation Number of errors Number of errors
number [%] (learning sequence) [%] (testing sequence)

Dombi Yager Dombi Yager
H -function H -function H -function H -function

i 0.00 0.95 4.44 4.44
ii 0.95 0.95 6.67 6.67
iii 0.00 0.00 4.44 4.44
iv 0.00 0.00 2.22 2.22

FIGURE 10.24. Weights of rules premises and weights of rules for a flexible
system which solves the problem of classification of iris flowers in case of a) Zadeh
H -function, b) algebraic H -function

FIGURE 10.25. Weights of rules premises and weights of rules for a flexible
system which solves the problem of classification of iris flowers in case of a) Dombi
H -function, b) Yager H -function
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TABLE 10.9a. The results of simulation of a flexible system with non-parame-
terized H -functions – the problem of wine classification

Flexible system with non-parameterized H -functions
(Classification of wine)

Simulation Name of
flexibility
parameter

Initial value Final value
number after learning

Zadeh Algebraic
H -function H -function

i ν 0.5 1.0000 1.0000
ii ν 0 – –

iii

ν 0.5 1.0000 1.0000
ατ 1 0.0004 0.0036
αI 1 0.9907 0.9986

αagr 1 0.9938 0.9908

iv

ν 0.5 1.0000 1.0000
ατ 1 0.0329 0.0180
αI 1 0.9987 0.9756

αagr 1 0.9896 0.9861
wτ 1 Fig. 10.26a Fig. 10.26b
warg 1 Fig. 10.26a Fig. 10.26b

TABLE 10.9b. The results of simulation of a flexible system with non-parame-
terized H -functions – the problem of wine classification

Flexible system with non-parameterized H -functions
(Classification of wine)

Simulation Number of errors Number of errors
number [%] (learning sequence) [%] (testing sequence)

Zadeh Algebraic Zadeh Algebraic
H -function H -function H-function H -function

i 0.00 0.00 3.77 1.89
ii 0.80 0.80 3.77 3.77
iii 0.00 0.00 1.89 1.89
iv 0.00 0.00 0.00 0.00
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TABLE 10.10a. The results of simulation of a flexible system with parameterized
H -functions – the problem of wine classification

Flexible system with parameterized H -functions
(Classification of wine)

Simulation Name of
flexibility
parameter

Initial value Final value
number after learning

Dombi Yager
H -function H -function

i ν 0.5 1.0000 1.0000
ii ν 0 – –

iii

ν 0.5 1.0000 1.0000
pτ 10 9.9999 10.0498
pI 10 10.0005 9.9936

pagr 10 9.9991 10.0014
ατ 1 0.0032 0.0029
αI 1 0.9911 0.9917

αagr 1 0.9919 0.9920

iv

ν 0.5 1.0000 1.0000
pτ 10 7.8330 6.9528
pI 10 11.7084 13.3122

pagr 10 14.3699 12.1427
ατ 1 0.0028 0.0389
αI 1 0.9826 0.9740

αagr 1 0.9914 0.9599
wτ 1 Fig. 10.27a Fig. 10.27b
warg 1 Fig. 10.27a Fig. 10.27b

TABLE 10.10b. The results of simulation of a flexible system with parameterized
H -functions – the problem of wine classification

Flexible system with parameterized H -functions
(Classification of wine)

Simulation Number of errors Number of errors
number [%] (learning sequence) [%] (testing sequence)

Dombi Yager Dombi Yager
H -function H -function H -function H -function

i 0.00 0.00 1.89 1.89
ii 0.00 0.00 3.77 3.77
iii 0.00 0.00 1.89 1.89
iv 0.00 0.00 0.00 0.00
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FIGURE 10.26. Weights of rules premises and weights of rules for a flexible system
which solves the problem of distinguishing the brand of wine in case of a) Zadeh
H -function, b) algebraic H -function

FIGURE 10.27. Weights of rules premises and weights of rules for a flexible system
which solves the problem of distinguishing the brand of wine in case of a) Dombi
H -function, b) Yager H -function

10.8 Notes

The concept of flexible neuro-fuzzy systems presented in this chapter al-
lows us to determine the type of system (Mamdani or logical) as a result
of the learning process. It could be inferred from the simulation examples
presented in Subchapter 10.7 that a flexible system becomes a Mamdani
system after completion of the learning process (parameter ν = 0) for
the problems of approximation or identification. In contrast, for the prob-
lems of classification a flexible system becomes a logical system (parameter
ν = 1) as a result of learning. The above results could be treated as a
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recommendation of the Mamdani system to solve the problems of approxi-
mation or identification and the logical system to solve the problems of clas-
sification. It should be mentioned that the concept of soft triangular norms
was presented by Yager and Filev [262], while Klement [111] and Lowen
[128] presented in detail various types of parameterized triangular norms.
Various types of flexible neuro-fuzzy structures were proposed by Cpałka
[30]. The subject of those systems is discussed in more detail in monograph
[225]. We refer the interested Reader to the following works [210–212, 215,
217, 218, 220, 223, 227].




