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Foreword

Publication of this book is a special event. This valuable title fills a seri-
ous gap in domestic science and technical literature. At the same time it
introduces a reader to the most recent achievements in the quickly devel-
oping branch of knowledge which the computational intelligence has been
for several years. The field, which is a subject of this book, is one of those
important fields of science which enable to process information included in
data and give their reasonable interpretation programmed by a user.

Recent decades have brought a stormy development of computer tech-
niques and related computational methods. Together with their appearance
and quick progress, theoretical and applied sciences developed as well, en-
abling the user to fully utilize newly created computational potential and to
get knowledge out of increasing wealth of data. The development of compu-
tational intelligence is then strictly connected with the increase of available
data as well as capabilities of their processing, mutually supportive factors.
Without them the development of this field would be almost impossible,
and its application practically marginal. That is why these techniques have
especially developed in recent years.

The development of computational intelligence systems was inspired by
observable and imitable aspects of intelligent activity of human being and
nature. Nature when undertakes intelligent actions processes data in par-
allel regulating and adjusting these actions through feedback mechanisms.
In such a system learning neural networks function. Another example can
be optimization algorithms modeled based on natural selection processes
or fuzzy logic systems reflecting vagueness, fuzziness, subjectivity or rela-
tivism of human being assessments.
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Computational intelligence is a new branch of science and its develop-
ment dates back to the 60s of the last century when the first algorithms
of learning machines – forerunners of today’s neural networks – were de-
veloped. Then, in the 70s foundations of set theory and fuzzy logic were
created. In this early period of computational intelligence development ge-
netic and evolutionary algorithms were introduced. In the 80s the bases for
representation of knowledge using rough sets were also created. In recent
years many hybrid techniques connecting learning systems with evolution-
ary and fuzzy ones were developed as well.

Developed theories of computational intelligence were quickly applied in
many fields of engineering, data analysis, forecasting, in biomedicine and
others. They are used in images and sounds processing and identifying,
signals processing, multidimensional data visualization, steering of objects,
analysis of lexicographic data, requesting systems in banking, diagnostic
systems, expert systems and many other practical implementations.

The essence of the systems based on computational intelligence is to
process and interpret data of various nature. These can be numerical, sym-
bolic (e.g. language data of different degree of accuracy), binary, logical
data or, for example, uncoded images read out directly on camera screen.
The data can be formatted as numbers, that means single elements of vec-
tors, as vectors or tables or as strings of elements or tables composed of
them. They can also be composed of ordered sequences of elements or ta-
bles and contain elements described in a very inaccurate or even subjective
manner.

The common feature of computational intelligence systems is that they
process information in cases when presentation in the form of algorithms
is difficult and they do it in connection with a symbolic representation of
knowledge. These can be relations concerning an object known only based
on a finite number of measurements of output and input state (activation).
These can also be data binding the most probable diagnosis with a series
of observed, often descriptive symptoms. In other cases these can be data
characterizing sets in respect to some special features which are initially
intangible to the user until they are derived from data and defined as dom-
inant features. These systems have the capability to reconstruct behaviors
observed in learning sequences, can form rules of inference and generalize
knowledge in situations when they are expected to make prediction or to
classify the object to one of previously observed categories.

This book is not only a valuable title on the publishing market, but is also
a successful synthesis of computational intelligence methods in world litera-
ture. A special advantage of the book is that it contains many examples and
illustrations of the methods described, which creates good opportunities to
program the presented algorithms. This book should be recommended to
engineers of various specialties, physicists, mathematicians, information
technology specialists, economists and students of those or related spe-
cialties. It should give great satisfaction both to the author due to its
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publishing and to many readers who will use the techniques described in
the book to solve practical issues they are interested in.

July 18, 2007
Jacek M. Żurada
Past President of IEEE Computational Intelligence Society
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1
Introduction

The origins of artificial intelligence can be traced back to early centuries,
even to the times of ancient philosophers, especially if we consider the
philosophical aspects of this field of science. Less distant in time is the
first half of the 19th century when a professor of the University of Cam-
bridge, Charles Babbage, came up with an idea of the so-called “analytical
machine” which could not only perform arithmetic operations of a certain
type but was also capable of performing operations according to pre-defined
instructions. What played an essential role in that project was a punched
card which one hundred years later turned out to be a very important
element of communication between man and computer. In 1950 Alan Tur-
ing came up with a test, the purpose of which was to check whether a
given program is intelligent. Soon afterwards a number of works appeared
and research projects were carried out in order to understand the natural
language and solving complex problems. The ambition of scholars was to
create a universal system named “General Problem Solver”, which was sup-
posed to solve problems in many areas. The project ended in failure, yet
while it was in progress, the researchers had an opportunity to explore the
complexity of the issue of artificial intelligence. The 60s and 70s of the last
century are characterized by complete dominance of the so-called symbolic
approach to solving various issues of artificial intelligence. Thus, decision
tree induction methods and methods of predicate logic were used as well
as, to a certain extent, classical probabilistic methods, which, however,
gained greater significance later on, upon the development of Bayesian net-
works. A characteristic feature of that time was departure from the use of
numerical calculations to solve the problems of artificial intelligence. The
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turning point in the development of artificial intelligence was publication of
a book in 1986 in which Rumelhart and McClelland specified the method
for learning of multilayer neural networks, which gave the possibility to
solve the problems of, for instance, classifications that traditional methods
could not handle. At the beginning of the nineties the concept of learning
of neural networks was adopted to learning of fuzzy systems. In this way
neuro-fuzzy structures were developed, moreover, a number of other com-
binations of neural networks, fuzzy systems and evolutionary algorithms
were proposed. Today we have a separate branch of science defined in the
English literature as Computational Intelligence. This term is understood
as solving various problems of artificial intelligence with the use of com-
puters to perform numerical calculations. Such computations are connected
with application of the following techniques:

a) neural networks [242, 270],

b) fuzzy logic [94, 265],

c) evolutionary algorithms [57, 136],

d) rough sets [161, 163],

e) uncertain variables [18, 19],

f) probabilistic methods [1, 157].

Only those selected papers or monographs have been cited above, which
present “soft computing” (soft techniques, [1, 108]). It must be emphasized
that the subject of interest of computational intelligence covers not only
individual techniques but also their various combinations [104]. There is
an international society called IEEE Computational Intelligence Society,
which organizes numerous conferences in the field of computational intel-
ligence, moreover, it publishes three prestigious journals in this field, i.e.
IEEE Transactions on Neural Networks, IEEE Transactions on Fuzzy Sys-
tems and IEEE Transactions on Evolutionary Computation. In Poland, the
Polish section of this society exists. Methods of artificial intelligence and
computational intelligence lie within the interests of the Polish Neural Net-
works Society, which organizes conferences called “Artificial Intelligence and
Soft Computing” every two years. The purpose of those conferences is to in-
tegrate researchers who represent the traditional approach to the artificial
intelligence methods and those who apply the methods of computational
intelligence.

This book focuses on various techniques of computational intelligence,
both single ones and those which form hybrid methods. Those techniques
are today commonly applied to classical issues of artificial intelligence, e.g.
to process speech and natural language, build expert systems and robots,
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search for information as well as for the needs of learning by machines.
Below are specified the main threads of this book.

In Chapter 2 we briefly present the selected issues concerning artificial
intelligence, beginning with the historic Turing test and the issue of the
“Chinese room”. This chapter contains introductory information on expert
systems, robotics, issues of speech and natural language processing as well
as heuristic methods. The second part of the chapter focuses on the impor-
tance of cognitivistics, i.e. science which attempts to understand the nature
of the mind. Further, the chapter introduces the reader to the issues of in-
telligence of ants and ant algorithms, the field of science called “artificial
life” as well as intelligent computer programs known as bots. In the con-
clusion of this chapter, we quote the opinions of well-known scientists on
the perspectives of artificial intelligence and formulate conclusions which
reflect the author’s views on this topic.

The subsequent three chapters present methods of knowledge represen-
tation using various techniques, namely the rough sets, type-1 fuzzy sets
and type-2 fuzzy sets.

Chapter 3 presents basic information on the subject of rough sets. The
issue of approximation of set and family of sets is discussed therein. The
second part of the chapter presents the issues of decision tables, and subse-
quently the LERS program is used to generate a rule base. The chapter in
question, like the two subsequent ones, is richly illustrated with examples
which make it easier for the reader to understand various definitions.

Chapter 4 presents basic terms and definitions of fuzzy sets theory. Then
it discusses the issue of reasoning, i.e. reasoning on the basis of fuzzy an-
tecedents. Moreover, the reader is introduced to the method for construc-
tion of fuzzy inference systems. The second part of the chapter contains
numerous examples of applications of fuzzy sets in the issues of forecast-
ing, planning and decision-making.

In Chapter 5, basic definitions concerning type-2 fuzzy sets are presented,
operations on those sets are discussed, and subsequently type-2 fuzzy re-
lations are discussed as well. Much attention has been given to the type-
reduction method, i.e. a method of transformation of type-2 fuzzy sets into
type-1 fuzzy sets. The last part of the chapter explains to the reader the
issue of designing type-2 fuzzy inference systems.

Chapter 6 discusses artificial neural networks. This chapter first presents
various mathematical models of a single neuron. Next the structure and func-
tioning of multilayer neural networks are discussed. A number of algorithms
for learning of those networks have been presented and the issue of choosing
their architecture is given particular attention. In the subsequent paragraphs
the reader is introduced to the idea of neural networks with feedback. The
structure and functioning of the Hopfield, Hamming, Elman, RTRN and
BAM networks are discussed. In the second part of the chapter we present
the issue of self-organizing neural networks with competitive learning, ART
networks, radial-basis function networks and probabilistic neural networks.
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Chapter 7 discusses the family of evolutionary algorithms, in particular
the classical genetic algorithm, evolutionary strategies and genetic pro-
gramming. We also present advanced techniques used in evolutionary al-
gorithms. The second part of the chapter discusses connections between
evolutionary techniques and neural networks and fuzzy systems.

Chapter 8 presents various methods of data partitioning and algorithms
of automatic data clustering. The definitions of hard, fuzzy and possibilistic
partitions are provided. Subsequently distance measures applied in cluster-
ing methods are presented, which is followed by the discussion of the most
popular data clustering algorithms, i.e. HCM algorithm, FCM algorithm,
PCM algorithm, Gustafson-Kessel algorithm and FMLE algorithm. This
chapter is finished with a presentation of known data clustering validity
measures.

In Chapter 9 we present various neuro-fuzzy structures. Those structures
are a multilayer (network) representation of a classical fuzzy system. To
construct them, the Mamdani type inference and the logical-type inference
were applied. Moreover, the so-called Takagi-Sugeno schema is discussed,
where the consequents of rules are not fuzzy in nature but are functions of
input variables. A characteristic feature of all structures is the possibility
to enter weights reflecting the importance of both particular linguistic val-
ues in the antecedents of fuzzy rules and weights reflecting the importance
of the entire rules. The concept of weighted triangular norms presented in
Chapter 4 was used to build those structures. Those norms do not meet the
boundary conditions of a classical t-norm and t-conorm, as the commonly
applied Mamdani type inference rule does not meet the conditions of log-
ical implication. This chapter illustrates that the application of weighted
triangular norms leads to the construction of neuro-fuzzy structures char-
acterized by a very low system operation error. In the second part of the
chapter we present the algorithms for learning of all structures, and then
we solve the issue of designing neuro-fuzzy systems which are characterized
by a compromise between the system operation error and the number of
parameters describing this system.

Chapter 10 presents the concepts of the so-called flexible neuro-fuzzy
systems. Their characteristic feature is the possibility to find a method of
inference (of Mamdani or logical type) as a result of the learning process.
The execution of such systems will be possible thanks to specially con-
structed adjustable triangular norms which are presented in this chapter.
Moreover, the following concepts have been used to build the neuro-fuzzy
systems: the concept of soft triangular norms, parameterized triangular
norms as well as weights used previously in Chapter 9 and describing the
importance of particular rules and premises in those rules.

Some of the results presented in this book are based on the research
conducted within the Professorial Grant (2005-2008) supported by the
Foundation for Polish Science and Special Research Project (2006-2009)
supported by Polish Ministry of Science and Higher Education.
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their fourth year of studies. Thus, I would like to give heartfelt thanks
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of scientists at the Department of Computer Engineering, namely Marcin
Gabryel, PhD. Eng., Marcin Korytkowski, PhD. Eng., Agata Pokropińska,
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2
Selected issues of artificial intelligence

2.1 Introduction

When considering the issues of artificial intelligence, we need to have a
point of reference. This point of reference may be the definition of hu-
man intelligence. The literature contains many different definitions, but
most of them come down to the conclusion that intelligence is the ability
to adapt to new tasks and living conditions or a way in which humans
process information and solve problems. Intelligence is also the ability to
associate and to understand. It is influenced by both hereditary factors
and by nurture. The most important processes and functions making up
human intelligence are learning and using knowledge, ability to generalize,
perception and cognitive abilities, e.g. ability to recognize a given object
in any context. Moreover, we can list such elements as memorizing, setting
and achieving objectives, ability to cooperate, formulation of conclusions,
ability to analyze, creativity as well as conceptual and abstractive thinking.
Intelligence is also related to such factors as self-consciousness, emotional
and irrational states of human being.

The so-called man-made intelligent machines may be programmed to
imitate only in a very limited scope, a few of above listed elements making
up human intelligence. Thus, we have still a long way to go before we
understand the functioning of the brain and are able to build its artificial
counterpart. In this chapter, we shall briefly present the selected issues
concerning artificial intelligence, beginning with the historical Turing test
and the issue of the “Chinese room”.
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2.2 An outline of artificial intelligence history

Artificial intelligence (AI) is a term that stirs great interest as well as many
controversies. The name was proposed for the first time by John McCarthy
in 1956, when organizing a conference at the Dartmouth College on in-
telligent machines. The AI issues include, among others, the research for
methods of solving problems. One of the examples is the research for chess
algorithms. The logical reasoning is the second of many AI issues. It con-
sists of building an algorithm imitating the way of inference occurring in
the human brain. Another field of AI research is the processing of natu
ral language, and in consequence, automatic translation of sentences from
language to language, giving voice orders to machines and capturing infor-
mation from voiced sentences and building knowledge bases based on this.
AI researchers are faced with the challenge of creating software programs
which learn by analogy and are able to perfect themselves. Predicting and
forecasting of results and planning are also artificial intelligence domains.
There is a large group of philosophers pondering over the problem of con-
sciousness of an intelligent computer. The researchers also try to explore
the processes of perception, i.e. vision, touch and hearing, and in conse-
quence, to built electronic equivalents of these organs and apply them in
robotics.

The literature presents different definitions of artificial intelligence:

a) Artificial intelligence is a science on machines performing tasks which
require intelligence when performed by humans (M. Minsky).

b) Artificial intelligence is a domain of informatics concerning the
methods and techniques of symbolic inference by a computer and
symbolic representation of knowledge applied during such inference
(E. Feigenbaum).

c) Artificial intelligence includes problem solving by methods modeled
after natural activities and cognitive processes of humans using com-
puter programs that simulate them (R. J. Schalkoff).

Even though AI is considered a domain of the informatics, it is a point
of interest of researchers in other domains, like philosophers, psychologists,
medical doctors and mathematicians. We may therefore firmly state that
it is an interdisciplinary science, which aims to study human intelligence
and implement it in machines. Knowing the definition of AI, we may ask
the question: when is our program or machine intelligent? An attempt
to answer this question was made in 1950 by the English mathematician
Alan Turing. He is the creator of the so-called “Turing test” which is to
decide whether the program is intelligent or not. This test consists of the
idea that a man, using a keyboard and a computer screen, asks the same
questions to the computer and to another person. If the interrogator is
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unable to differentiate the answers given by the computer from the an-
swers given by a human, we can state that the computer (program) is
intelligent. A known critic of the Turing idea was the American philoso-
pher John Searle. He claimed that computers cannot be intelligent, because
even though they are using symbols according to certain rules, they do not
understand their meaning. To back up his thesis, the philosopher came up
with the example known in the literature as the “Chinese Room”. Let us
assume that we have a closed room, in which there is a European who
does not speak Chinese. He is given separate sheets of paper inscribed with
Chinese symbols which tell a story. Our hero does not speak Chinese, but
he notices a book on a shelf, written in a language he speaks and entitled
What to do when someone slips a paper with Chinese symbols under the
door. This book contains instructions how to make Chinese symbols corre-
lated to the ones he received. To each question, the European prepares an
answer according to the rules provided in the manual. Searle states that
a man closed in the room in fact does not understand any of the infor-
mation he is given, just like a computer executing a program. Therefore,
there is an obvious difference between thinking and simulating thinking
processes. According to Searle, even if we cannot distinguish between an
answer given by a machine and a human, this does not mean that the ma-
chine is intelligent. Let us assume, however, that there is a machine which
passed the Turing test. We can thus state that it is intelligent and able to
think as such. In this case, Roger Penrose, the author of The Emperor’s
New Mind, wonders if it would be acceptable or rather reprehensible to use
it for one’s own purposes, not making note of its desires. Would selling of
such machine, or cutting its power supply, which can be in such case consid-
ered as food, be ethical? In his book, Penrose describes one of the first AI
devices. It was an electronic turtle built by Grey in the early 1950s. The de-
vice moved around the room using power from a battery. When the voltage
dropped below a certain level, the turtle searched for the nearest socket and
charged the batteries. Let us remark that such behavior is similar to the
search and consumption of food by humans. Penrose goes further in his
ideas and proposes to introduce a certain measure of “turtle’s happiness” –
the value from the interval, for instance −100 (the turtle is extremely
unhappy) to +100 (extreme happiness). Let us also assume that our elec-
tronic pet may restore its power resources using solar energy. We can as-
sume that the turtle is unhappy when it is in a dark place, where the sun
does not reach (we can easily state that our artificial pet is hungry), and it
really “enjoys” sunbathing. After such description of the device, few people
could lock the turtle in a dark room, and still, it is just a machine, like a
computer.
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2.3 Expert systems

As one of many definitions states, the expert system is an “intelligent”
computer program that applies knowledge and reasoning (inference) pro-
cedures in order to solve problems which require human experience (expert)
acquired by many years of activity in a given domain. The general idea of
expert systems consists in transposing the expert knowledge of a given
domain to a knowledge base, designing an inference machine inferring on
the basis of information possessed and adding a user interface used for
communication.

The prototype of expert systems was the DENDRAL program, developed
in the early 1960s at the Stanford University. Its task was to compute
all possible configurations of a given set of atoms. The integral part of
the program was a knowledge base containing chemistry laws and rules,
which had been developed in chemical labs for decades. DENDRAL proved
to be very helpful in solving issues for which analytical methods weren’t
developed.

At the same Stanford University in the 1970s, two other expert systems
were created, which became a historical benchmark solutions in this do-
main. The PROSPECTOR system was designed to support geologists in
defining the type of rock based on contents of different minerals. It facili-
tated the research for mineral deposits and estimation of deposit volume.
PROSPECTOR was a conversation system using the rules obtained from
specialists. Models of particular types of deposits contained from several
dozens to several hundreds of rules constituting the knowledge base, which
was separated from the inference mechanism. The use of PROSPECTOR
proved to be a spectacular success as rich deposits of molybdenum have
been discovered in Washington state (USA). The MYCIN system was de-
signed to diagnose contagious diseases. The system was fed with data con-
cerning the patient and the results of lab tests. The result of its operation
was the diagnosis and recommendations for treatment in certain cases of
blood infections. This system supported the decision-making process in case
of incomplete data. In case of doubts the system provided the degree of cer-
tainty of its diagnosis and alternative solutions (diagnoses). On the basis
of MYCIN system, the NEOMYCIN system was created and was used for
training doctors.

It is worth to mention one of the largest projects in the history of artificial
intelligence, known under the acronym CYC (the name is a fragment of
the word encyclopedia) and developed in the USA. This system contained
millions of rules (it was planned to have ultimately 100 million rules), which
was supposed to give exceptional “intellectual” possibilities to a computer
with appropriate software.

As has been mentioned before, the basic elements of an expert system
are: a knowledge base, an inference machine and a user’s interface. The
knowledge base is made of a set of facts and rules. The rules are logical
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sentences which define some implications and lead to creation of new facts,
which as a result allow to solve a given problem. The inference machine is
a module which uses the knowledge base. This module may use different
inference methods to solve the problem. The so-called shell expert systems
are gaining on popularity – these are computer programs with a designed
inference machine and an empty knowledge base. These programs are all
equipped with special editor programs allowing to enter rules concerning a
given problem the user wishes to solve. The issues of constructing expert
systems are part of the so-called knowledge engineering. The scope of inter-
est of specialists operating in the domain of knowledge engineering covers
such issues as knowledge acquisition, its structuralization and processing as
well as designing and selection of appropriate inference methods (inference
machine) and designing appropriate interfaces between the computer and
its user.

2.4 Robotics

The term “robot” appeared for the first time in 1920 in a play entitled
“R.U.R” by the Czech author, Karel Čapek. The play presented a vision of
inappropriate use of technology by humans. The story is developed around a
factory which produces robots – slaves which are to replace humans in heavy
tasks and difficult work. The industry producing robots is being developed
and the machines are modernized and equipped with increasingly growing
intelligence. A large demand allows to increase the number of robots built.
Finally, they were used for military purposes, as soldiers. A time has come
when the robots outnumbered their creators – humans. The play ends with
a revolt of robots and with the end of human kind.

The dynamic development of robots was initiated by research conducted
in the USA. In 1950s, robots developed to work in factories were created
– among others, they assembled cars at a General Motors factory. Works
were undertaken to build manipulating machines for nuclear industry and
oceanographic exploration. Currently, the robots are small wonders of elec-
tronic engineering and their prices often exceed the prices of luxury cars.
They are basically used everywhere. They perform all kinds of works, from
insignificant and trivial, like bringing slippers or serving coffee, through
works in difficult conditions in heavy industry, considered difficult and hard
for people, to complicated surgical operations. In 2002, a robot steered by
professor Louis Kavoussi from the distance of one thousand kilometers per-
formed a surgical operation. The role of doctors supervising the work of
the machine was limited to anesthetizing the patient. This way, the pa-
tient does not have to wait for the doctor to arrive, which significantly
lowers the costs and the duration of the procedure. The da Vinci robot
made by Intuitive Surgical imitates the movements of the surgeon’s hands
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during operation, and at the same time eliminates the shaking. Moreover,
it displays a large, magnified picture of the patient’s heart. It facilitates the
procedure, as the surgeon can precisely see the operated organ. The pre-
cision of robots causes a significant reduction of damages to the patient’s
tissues. Due to that, the patient may recover faster. Robots often replace
people when difficult jobs e.g. disarming bombs must be performed.

For the last few years, the Japanese company Honda has presented sub-
sequent versions of the ASIMO robot. Its creators claim that the robot
speaks two languages – English and Japanese, and is able to hold a con-
versation. It smoothly moves up and down the stairs and avoids different
obstacles. AIBO is another interesting robot. It was given the form of a
metallic silver dog, which can play with a ball and pee, for instance. How-
ever, it has problems with avoiding obstacles and cannot climb or give a
paw. One of the versions was able to recognize 75 voice commands. To learn
the mode of operation of this toy, the user must go through a 150 – page
manual.

The researchers ask themselves how intelligent a robot should be and
what its intelligence should consist in. Two main approaches are emerging,
referred to as the weak and the strong artificial intelligence hypothesis. The
weak hypothesis of artificial intelligence assumes that an intelligent machine
is able to simulate the human cognitive process, but it cannot experience
any mental states by itself. It is possible that such machine succeeds in
the Turing test. The strong hypothesis of artificial intelligence leads to the
construction of machines that are able to reach cognitive mental states. This
approach allows to build a machine which is conscious of its own existence,
with real emotions and consciousness. Many research centers lead research
on human brain and the entire nervous system of the human being. The
understanding of rules functioning in nature will allow to build a “thinking
robot”. One of the examples is the “Dynamic Brain” robot, the creators of
which (neurophysicists Stefan Schaal and Mitsuo Kawato) searched for the
rules of learning and self-organization which enable a system to develop its
own intelligence. This robot, by watching a film with a woman performing
a Japanese folk dance, learned to dance. The project authors use the robot
for research on the human brain functioning and interactions occurring
between the brain and the human body.

The robot called Cog, created by Rodney Brooks, was supposed to have
the intelligence of a six-year old child. The objective of this project was
to study the issue of robot development, its physical personification and
combination of sensory and motorical skills as well as social interactions.
Cog imitated human reactions, was able to focus its vision on objects and
extend its arms toward them. When moving, it corrected its actions. Its
capabilities were developed towards the ability to recognize objects and
living organisms. The opinion that a robot’s skills may be very extensive
was expressed by Cynthia Breazeal. She built the “Kismet” robot able to
learn many behaviors. It was supposed to be able to communicate with
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people, understand their emotions and express its own emotions using
“facial” expressions. The perspectives of robotics achieve unprecedented
perspectives. For example, in the USA at the end of the 20th century,
an extensive program of research in the area of molecular machines was
initiated. One of the basic objectives of nanotechnology development are
miniature robots – nanorobots, which may be helpful in supporting the
immunological system, detecting bacteria, viruses and cancer cells.

2.5 Processing of speech and natural language

The obvious manner of communication between people is speech. Commu-
nicating with the computer or with other devices using spoken language
may be a significant facilitation in the life of orally and aurally challenged
or physically disabled people. The author of the “Chinese Room” concept,
John Searle, answered the question concerning the most important achieve-
ments of AI: “I do not know the technological progresses in this domain well
enough to give a specific answer. However, I have always been fascinated
by achievements in the domain of natural language processing. I believe
these works are worth real recognition”. Research in the scope of speech
and natural language processing covers the following issues:

a) speech synthesis,

b) automatic speech recognition,

c) natural language recognition,

d) automatic translation.

Speech synthesis may be considered equal to the attempt made by a
computer to read a book. Speech synthesis has many applications, e.g. to
learn foreign languages or to read information for blind people. The study
of speech is not an easy task. This results from the fact that a person,
when uttering words, intones them appropriately. In order to utter a given
sentence, we have to understand its sense, and the computer is not con-
scious in this matter (as well as in all other issues). An interesting idea was
the application by T.V. Raman, manager of IT specialist teams at Adobe,
of different typefaces depending on how the computer should read a given
text. For example, sentences written in italics are read more loudly. The
program on which he worked is called ASTER (Audio System for Tech-
nical Readings). The application of ASTER for its author is basically a
must, as he lost sight at the age of 14, but it is also used by his colleagues
at Adobe, for whom it is a significant facilitation of their daily work. At
first, creators of systems imitating human speech attempted to create de-
vices modeled after the human speech organ. Unfortunately, the effects of
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operation of machines and programs based on formants were not satisfying
and significantly differed from human speech. Therefore, such approach was
abandoned, and the researchers started to use in algorithms pre-recorded
fragments of speech, which were to be put together in an appropriate way.
It appeared that it was a very good idea. This idea was applied later in
various modifications and improvements of this method.

Another issue studied by AI researchers is automatic speech recognition.
The development of this research will enable the communication with the
computer, e.g. dictating texts, giving oral commands or voice user recog-
nition (authorization). As we have already mentioned, people pronounce
words in different manners (intonation, rate of speech, etc.), often at vari-
ance with the rules of grammar. The example of an operational system is the
“Dragon Dictate”. In the first phase of experiments, this program required
a few hours of “adjustment” to the manner of speaking of the person who
would dictate the text. Currently, this system is commercialized, just like
its competitor, program called Angora. These systems utilize databases, in
which words are placed together with their sound or phonemic representa-
tion. Based on comparisons, the system recognizes the word. The example
application is, for instance, voice selection in cell phones, where each name
has its voice label recorded by the user.

Another AI issue is natural language recognition. The problem comes
down to retrieving essential data from sentences recorded in the form
of text. The researchers create systems to capture knowledge from sen-
tences and the computer should make the division of the sentence into
parts of speech. This way, it is able to extract from the contents the ob-
jects (nouns), their qualities (adjectives) and relations between them. Ear-
lier, the systems were prepared to work for specific branches of science and
they included data from a given branch in a knowledge base. The example
may be the Lunar system which answered the questions concerning rock
samples brought from the moon.

The last AI issue is automatic translation. It consists in translating texts
between various languages. Systems of this type are used by the European
Union institutions. It should be noted that the problem may consist in
different meaning of words depending on the context. Forty years ago in
the USA, a report was formulated, which contained the statement: “No
automatic translation of a general scientific text has ever succeeded, and
there are no prospects for a quick progress in this scope.” Currently, there
are translation programs operating on PCs available on the market. How-
ever, there are still problems with translation of texts containing sentences
from a narrow domain, e.g. different technical documents. The Transcend
software may be used as an example. It operates on personal computers
and is able to process several thousand words per minute. There are also
systems which are able to translate spoken utterances (e.g. over the phone)
in real time. Very fast, usually multiprocessor computers are used for this
purpose.
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2.6 Heuristics and research strategies

The word “heuristics” comes from the Greek words heurisco, which means
to discover, to find. The easiest description of heuristics may be “creative
solution of problems”, both logical and mathematical, by way of experi-
ment, trial-and-error method or by using analogies. Heuristic methods are
applicable everywhere, where a solution of a problem requires large vol-
umes of computation. Thanks to heuristics, we may eliminate some areas
of the space searched. As a result, we may decrease computation costs, and
at the same time speed up the discovery of solution. The literature does
not provide any formal proofs for the correctness of operation of heuris-
tic algorithms, but their efficiency is confirmed by simulations made. They
are widely applied, among others, in expert systems, decision support sys-
tems and operation research. The defeat of the chess world champion by a
computer was possible also thanks to heuristic techniques, which allowed
to exclude variants not portending success. To understand what heuristics
are, let us present a well known example in literature [70]. Let us assume
that someone dropped a contact lens. Here are some possibilities for search:

1. Blind search – bending down and feeling around for the lens. Such
search does not guarantee a positive result.

2. Methodical search – it consists in expanding the space of research me-
thodically and in an organized way. It always guarantees the success,
but is very time-consuming.

3. Analytical search – requires the solution of a mathematical equation
concerning the fall of the contact lens, taking into consideration the
air resistance, wind power, gravitation. It also guarantees the success,
but is impractical.

4. Lazy search – consists in finding the nearest optician and purchasing
a new lens.

5. Heuristic search – we define the approximate direction of the fall and
we presume how far the lens could fall and then we search the selected
area. It is the most natural behavior and we most often unconsciously
select this method of proceeding.

In the example above, blind and heuristic search were referred to. We talk
about blind search when we do not use information on the domain of the
problem to be solved. In heuristic search, we use additional information on
the space of states and we also are able to estimate the progress improving
the efficiency of operation. The process of heuristic search is best presented
in the form of tree or graph. In the literature, different strategies of graph
search and defining the heuristic solution are considered.
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Returning to chess: we may state that as soon as after just a few moves,
there is such an unimaginable number of combinations that it is difficult
to analyze them even using the best existing computer. Therefore, the cur-
rent computer programs apply the techniques of artificial intelligence and in
particular specially selected and well-developed heuristic methods. Thanks
to it, chess computers are able to play a fair match with the best chess
players of the world. Let us remind that in 1996, Garry Kasparov won by
4:2 the match with the first model of the Deep Blue computer. However,
the following year he lost the match by 2.5:3.5 with the second model of this
computer called Deep Blue II. Deep Blue II was a super-machine manufac-
tured by IBM, with 32 nodes, and each of them was equipped with a board
containing eight specialized chess processors. Therefore, each current move
was analyzed simultaneously by 256 processors. Such processor capacity
allowed to analyze 200 million positions on the board in one second. Addi-
tionally, this computer had a database containing all the openings from the
last 100 years and a database with over a billion possible game ends. So,
to win with a human being, incredible processing capacity was used. Next
time, Kasparov met with a machine in 2003. This time, his opponent was
a computer program called Deep Junior 7. It was written by two Israeli
developers – Amir Ban and Shay Bushinsky. This program operated on a
computer with 8 processors, much slower than Deep Blue. Its distinctive
feature was a deeper knowledge of chess. The tournament, which lasted
from January 26 to February 7 in New York, ended with a 3:3 draw. Deep
Junior 7 analyzed 3 to 7 million positions of the chess board per second,
and Garry Kasparov – a maximum of only 3. Only this comparison may be
enough to convince that the computers are very far from the human way of
thinking. However, humans are hampered by the fact that they tire quickly
and are moreover led by emotions, which also impacts the game result.

2.7 Cognitivistics

Cognitivistics as a science exists for several decades now. In 1976, the quar-
terly magazine Cognitive Science was issued for the first time; it published
the results of scientific research in that domain, and in 1979 the Cognitive
Science Society, seated at the University of Michigan, was created. From
that year, also scientific conferences have been organized, attracting re-
searchers from all over the world. Apart from the name cognitivistics, we
can come across other names like cognitive sciences or cognition science.
Cognitivistics is the discipline of science which tries to understand the na-
ture of the mind and which studies the phenomena concerning the mind.
An essential issue of the cognitive sciences is the analysis of our method of
perceiving the world and an attempt to understand what is going on in our
minds when we perform basic mental operations. To this aim, studies on the



2.8 Intelligence of ants 17

functioning of the brain and models of its operation are used. The science
uses scientific achievements of neurobiology and psychology. Cognitivis-
tics is interdisciplinary by nature, therefore this science uses the methods
and studies of other sciences, such as anthropology, psychophysics, artifi-
cial life, logic, linguistics, neurophysiology, philosophy, artificial intelligence
and many other branches of science. We should firmly state that the inter-
disciplinarity is absolutely necessary for the development of cognitivistics.
This science studies an extremely difficult research problem, which is the
description of the functioning of the mind. It is obvious that the theo-
ries and methods developed only within one branch of science cannot lead
to the solution of this problem. That is why any effective results may be
obtained only by large research teams consisting of representatives of all
the abovementioned disciplines. We should add that cognitivistics has a
whole range of practical applications. For example, such domains as neuro-
biology, psychology and linguistics require the cooperation of appropriate
specialists to develop methods of treating speech disorders after a cerebral
hemorrhage. Another area of application are the cognitive models used to
create computer software interfaces. One of the concepts provides for a
possibility to create the image of associations we have in our minds on a
computer screen.

A large challenge for the cognitive sciences is the creation of adequate
brain models. Current models in the form of artificial neural networks are
insufficient and have few things in common with their real equivalent. More-
over, the researchers in the area of cognitivistics will undoubtedly dwell for
a long time on the issue of the so-called weak and strong artificial intelli-
gence, which was already discussed in Subchapter 2.4.

2.8 Intelligence of ants

Ants are insects the survival of which depends mainly on cooperation. Many
times, we have watched the anthill and dozens of ants wandering chaoti-
cally in search of food. When one of them managed to find its source, then
other ants followed it shortly. The researchers were interested in the way
ants find their way from the anthill to food. It turns out that ants usu-
ally choose the shortest route possible. The anthill was separated from the
source of food and only two sticks were left – longer and shorter – as the
only path. After a few minutes, it appeared that the ants started to return
from the food source by the shorter way. The second experiment was made,
during which only the longer stick was left. Of course, the ants immediately
found their way, but when the shorter stick was added, they continued to
walk the old way. After a closer study of their behavior, the researchers
found out that an ant, during its march, leaves a trail behind it, in the
form of a substance called pheromone, and thus creating a scent path. Its
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companion, when smelling such path, follows it, also leaving a trail. The
next ant selects the path depending on the concentration of the pheromone
in any given place. They then head where the largest number of their com-
panions have passed. But what will happen when the source of food runs
out? It appears that there is a solution to that as well. The pheromone
volatilizes after some time, loosing its intensity. A path less frequented will
just vanish after some time. Another behavior of ants attracted special
interest from the researchers. Ants remove the bodies of their dead com-
panions by piling them in stacks. It turns out that a small heap of bodies
is enough for a “cemetery” to come into existence at this very spot. Also
here, ants apply a very simple principle – they transport dead bodies to the
place where there are already other bodies. This ant clustering may also
be used in practice, for example in banking. The credit decision consists
in reviewing customer details and defining whether he/she is creditworthy
or not. Such factors as age, work, marital status, use of other bank ser-
vices, etc. are taken into consideration. By imitating the behavior of ants,
it is possible to create clusters of people with similar features. It turns out
that dishonest customers are usually characterized by similar features. Ver-
ifying the customer will therefore consist in matching his/her data to an
appropriate cluster and checking whether the customers classified therein
are creditworthy. There are similar systems operating by this principle, but
the advantage of the method described above is that the clusters are not
defined top-down – they are created naturally.

Based on these observations, a certain type of algorithms has been cre-
ated, called ants algorithms. The work of “artificial ants” applied in these
algorithms differs a little from their living counterparts, and namely:

a) they live in an artificial discrete world, therefore they move on a
completely different ground, for example between the graph vertexes;

b) their pheromone trail vanishes faster than in the real world;

c) the amount of pheromone secreted by an artificial ant depends on the
quality of solution it obtained;

d) in most cases, the pheromone trail is updated only after the solution
is generated.

These algorithms are used to solve difficult problems of combinatorial
optimization, such as the Traveling Salesman Problem, for instance. The
Traveling Salesman Problem is that he is supposed to visit a given number
of cities by the shortest possible way. The cities are variously distant from
one another, he cannot miss any of them and he cannot visit the same
city twice. The task seems easy to solve using the algorithm checking all
the variants. However, when we have just a dozen of cities, the number
of possible ways increases to billions. Nevertheless, this may be perfectly
solved using ants algorithms, i.e. using the work of “artificial ants”.
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Ants algorithms can be also used to solve discrete optimization problems,
for instance to define vehicle routes, sequence sorting or defining routes
in computer networks. They are applied in practice in telecommunications
networks of France Telecom and British Telecommunications. Telephone ex-
changes are sometimes interconnected by low-capacity connections. When
the load of the network increases, for example during TV phone contests,
these connections get clogged. The solution is to use virtual agents, the work
of which is based on ants behavior, thanks to which subsequent telephone
exchanges may increase the capacity by avoiding overloaded segments of
the network.

2.9 Artificial life

Artificial life is a relatively new branch of science. It was born in 1987 at
the conference in Santa Fe in New Mexico (USA), where the term Artificial
Life appeared for the first time. Christopher Langton, organizer of the said
conference, defined artificial life as follows: “Artificial life is a domain of
science dedicated to understanding life by attempting to extract the basic
rules of dynamics which influence the biological phenomena. These phe-
nomena are reproduced using different media – for example in computers
– to be able to fully use new experimenting methods”. It is a discipline
of science which uses, among others, the achievements of biology, chem-
istry, physics, psychology, robotics and computer sciences. It deals with
the simulation of life as we know it, but there are also works that study be-
haviors of organisms built on completely other basis than earthly creatures.
However, the basis of this discipline of science is the definition of life. Un-
fortunately, researchers are not unanimous in this issue. The main reason
why it is difficult to define this term is certainly the fact that we are dealing
only with the forms of life present on Earth. The earliest, simple and well
known example of artificial life is the Game of Life. The game was cre-
ated in 1968 by the mathematician John Conway, who based its operation
on cellular automatons. In this case, the environment is a two-dimensional
grid of cells, the state of which may be described as full – representing a
live cell, or empty – lack of live cell. The rules are very simple. A cell dies
of loneliness or overcrowding, and a new one appears when it has exactly
three neighbors. During the simulation, when visualizing it, we could ob-
serve quick, dynamic growth of cells, creating wonderful patterns, and just
after it, declines of entire colonies, for instance. Initial, even only slightly
differing settings of cells lead during simulation to very complicated and
interesting patterns.

Another very interesting example of artificial life are biomorphs. Their
creator is Richard Dawkins, a British zoologist. They were created in order
to study the evolution of forms. Biomorphs are graphic shapes recorded in
genotypes, the appearance of which reminds of living organisms. Dawkins
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applied simple genetic operations to obtain new shapes in subsequent gen-
erations. By starting the evolution from simple figures similar to trees, we
can obtain shapes of insects and bugs. The simulation of growth of organ-
isms was conducted using a formal description of development of so-called
L-systems, proposed in 1968 by Aristid Lindenmayer. They were later used
to describe and model plants growth. The effects were similar to the oper-
ation of fractals.

Tierra system is a virtual world created by the biologist Tom Ray. The
environment is in this case a virtual computer, where programs-individuals
live. These programs are written in a special, simple language reminding
of an assembler. The evolution of individuals progresses using mutations,
or a random exchange of one instruction, or recombination consisting in
replacing a part of the code. The individuals compete with each other for
resources, or the virtual machine memory, and for the time of processor
use. Thus, they try to take as much space as possible, and use as much of
their instructions as possible as compared to other individuals.

Framstick system is currently one of the most advanced artificial life
projects. It has been conducted since 1997 by two Poles: Maciej Komosiński
and Szymon Ulatowski. The simulations are performed in a virtual, three-
dimensional world, where there are both land and water environment. The
organisms (framsticks) are build of sticks, which additionally can play the
role of receptors (having the sense of touch, balance or smell) or the func-
tion of the movement organs (using appropriate muscles). The organs of
movement are steered with the help of the nervous system based on a
neural network. Framsticks compete with each other for existence in the
environment by fighting with each other and searching for food. Each of the
individuals is described with a genotype, which is a special code describing
its construction. Three types of chromosome notation are available: the first
one – the simplest and describing directly the construction of framstick, the
second has the form of a recurring notation, and the third one consists in
notating the information on particular cell. The evaluation of adaptation
is performed in the same environment and may take different forms. An
individual may be assessed depending on its movement, size or resistance.
The simulation may also take different forms, e.g. searching for the highest
individual. Next generations of individuals are created by way of evolution,
which consists of selection, mutation and crossover of genes. The evolution
relates both to the external form of organism and the nervous system.

2.10 Bots

A bot is an automaton, a software tool, a program used most often to search
and retrieve data. Intelligent bots can additionally make decisions based on
knowledge acquired earlier. Currently, we may differentiate several kinds of
bots, which due to their capabilities have been divided to:



2.10 Bots 21

1) chatterbots – these are automata for chats. They imitate natural
language conversation, acquire information from the interlocutor;

2) searchbots – they maintain automatically databases, are used to
search, index and collect data;

3) shoppingbots – these are automata help us when shopping over the
Internet. They browse sites in search of given products, creating a
report on price differences;

4) databots – automata to search data, solve problems; their construc-
tion is based on neural networks;

5) updatebots – are used to update data possessed by the user. They
inform on changes in network resources;

6) infobots – programs automatically providing answers using e-mail.
They are used to provide technical support and marketing
information.

Among the bots, the greatest popularity and interest is shared by chat-
terbots, especially as a tool to analyze customer expectations in marketing.
They are most often placed on web sites, used to promote products and
help the navigation. For the companies that use them, they are a source
of knowledge on customers, as during a conversation a lot of information
can be obtained. We should watch whom we are chatting to, using the In-
ternet, as it may be a chatterbot? Internet users find it difficult to identify
the interlocutor, all the more as they do not expect to be chatting with an
automaton. They are very surprised when they discover that it was only a
computer program on the other side.

The first chatterbots appeared around 1966 as attempts to execute the
CMC (Computer Mediated Communication) project, the objective of which
was to initiate the human-computer communication. In 1968 Eliza was cre-
ated – a program made only of 240 lines of code, simulating a conversation
with a psychotherapeutist. The program was able to understand the struc-
ture of a sentence by analyzing the key words and formulate questions on
this basis.

For many years, the developers specializing in writing intelligent chat-
ting programs have been competing in a special contest. Several times in
a row, the best developer was Richard Wallace, who created the bot called
ALICE (Artificial Linguistic Internet Computer Entity). It is one of the
best existing bots (www.alicebot.org). It owes its advantages to the users,
with whom it talked, enriching its knowledge base. It is worth noting that
even such a good program did not pass the Turing test as part of the men-
tioned competition. Different versions of ALICE program have commercial
applications, e.g. to promote new products.
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2.11 Perspectives of artificial intelligence
development

For years, the researchers have been arguing on the perspectives of arti-
ficial intelligence development. Let us quote some statements of renown
specialists in this domain.

Roger Penrose (professor of mathematics at Oxford University) in his
book The Emperor’s New Mind expresses the opinion that mind processes
of humans differ fundamentally from computer operations. No machine
working on the basis of calculations will be able to think and understand
like we do. Processes in our brain are “non-computational”. Moreover, Roger
Penrose believes that human brain is completely explainable in the cate-
gories of physical world, but only the existing physical theories are incom-
plete to explain how our thinking processes proceed. Dr. Ray Kurzweil,
studying, among others, the commercial application of artificial intelligence,
claims that the disappearance of differences between machine and human
is only a matter of time, as human brain in the last few centuries almost
did not develop. Meanwhile, in the last twenty years, its electronic counter-
parts are developing at an incredible pace, and this trend is certainly going
to hold in the years to come. Hans Moravec (director of the mobile robots
laboratory at Carnegie Mellon University) thinks that “man is a compli-
cated machine... and nothing more”. He gained reputation with a daring
statement that “in the future, human nervous system may be replaced by a
more complex, artificial equivalent”. He claims that sooner or later, Earth
will be populated by products of our technology, more perfect and better
managing the difficulties of life than sensitive and vulnerable representa-
tives of the homo sapiens species. Kevin Warwick (professor of cybernetics
at Reading University) claims that after we switch on the first powerful
machine with intelligence comparable to human intelligence, most proba-
bly we will not be able to ever switch it off. We will set up a time bomb,
ticking over human species, and we will be unable to disarm it. There will
be no way to stop the march of the machines.

As we can see, research on artificial intelligence fascinates the scien-
tists, but also stirs great controversies. When summing up the opinions
and experiences of different researchers and eliminating extreme views, we
may claim the following:

1) No machine made by humans so far ever managed to go outside of
the set of rules programmed by man.

2) Artificial intelligent systems will not simulate exactly the function-
ing of human brain. It relates to hardware limitations and a large
complexity of the brain.

3) Machines may pass the Turing test in a limited thematic scope (sports,
chess, advisory system in economy or medicine).
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4) In the future, it may seem to us that machines show signs of con-
sciousness. However, machines will not be conscious in the philosoph-
ical sense.

5) In the perspective of several decades, intelligent machines will be our
partners at work and home.

6) Computers will design next generations of computers and robots and
will play a significant (dominant?) part in development of intelligence
of inhabitants of Earth.

2.12 Notes

In this chapter, we have discussed, in a way accessible to the Reader, some
selected issues of artificial intelligence. Detailed information can be found
in many literature items on this subject. The most important directions
of research in the scope of human intelligence were discussed in the mono-
graph [143]. Historic and philosophic threads of discussion in the domain of
artificial intelligence are contained in monographs [105,168]. Chess games
between the machine and man have been discussed in articles [81, 124,
229]. The issues of expert systems are presented in monographs [5, 25, 89,
141, 146, 170, 179, 268]. The issues of robot construction and their applica-
tions discussed by authors of book [61] and [135]. The issues of speech and
natural language processing have been discussed in works [45, 154, 228].
The idea of heuristic search and algorithms applied have been explained in
works [62, 70]. The history and development of cognitivistics is presented
in article [46]. Ants behavior and ants algorithms have been explained in
study [14]. Different models of artificial life have been discussed in articles
[114, 169]. Work [75] presents the applications of artificial intelligence in
electrical power engineering, work [170] – in technical diagnostics, work
[268] – in economics and management. Following monographs on artificial
intelligence, classics of the world literature, are well worth recommending
[129, 147, 184]. In monograph [245], the authors presented a very inter-
esting approach to the issue of image recognition using artificial intelli-
gence methods, and in particular they introduced the term of so-called
“automatic understanding of images”. In this chapter, we discussed only a
few threads of the artificial intelligence issue. We refer the Reader inter-
ested for instance in multiagent intelligent systems to monographs [52, 109,
127, 255]. On the other hand, monograph [27] is a comprehensive study of
learning systems and presents classic methods of artificial intelligence, like,
for instance, the issue of decision trees induction and rules inductions as
well as probabilistic methods and induction logical programming.



3
Methods of knowledge representation
using rough sets

3.1 Introduction

In the physical world around us, it is impossible to find any two object
(things) that are identical. By comparing any two objects, even if very
similar, we will always be able to find differences between them, in partic-
ular if we consider a sufficiently large number of their features (attributes)
with a sufficiently great accuracy. Of course, such a detailed description of
the world is not always needed. If we decrease the precision of description,
it may happen that some or even several objects that were distinguish-
able before become indiscernible. For example, all cities in Poland may be
discernible with respect to the exact number of inhabitants. If we are in-
terested in cities with the number of inhabitants within a given interval,
e.g. from 100 to 300 thousand people, then some cities will be indiscernible
with respect to the feature (attribute) “number of inhabitants”. Moreover,
in the description of any given object, we only consider a limited number
of features, adequate to a given purpose. Quite often, we want to reduce
that number to the necessary minimum. These are the problems dealt with
by the theory of rough sets.

In order to facilitate further discussion, we shall introduce several notions
and symbols. First, we shall define the universe of discourse U . It is the set
of all objects which constitute the area of our interest. A single j -th element
of this space will be denoted as xj . Each object of the space U may be
characterized using specific features. If it is a physical object, most certainly
it has infinitely many features, however, we shall limit the selection to their
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specific subset. Let us denote the interesting set of object features of space
U by the symbol Q. Let us denote the individual features by the symbol q
appropriately indexed, e.g. qi. What differentiates one object from another
and makes other objects similar, these are the values of their features. Let
us denote by Vq the set of values that the feature q can take. The value of
feature q of the object x will be denoted as vx

q . The vector of all object x

features may be presented as vx =
[
vx

q1
, vx

q2
, ..., vx

qn

]
.

In this chapter the rough sets theory will be presented in the form of a
series of definitions illustrated by examples. Table 3.1 will allow the reader
an easier handling of them.

TABLE 3.1. List of definitions and examples

Definition Examples
3.1. Information system 3.1, 3.2, 3.3
3.2. Decision table 3.4
3.3. Indiscernibility relation
3.4. Equivalence class 3.5, 3.6, 3.7
3.5. Lower approximation of the set 3.8, 3.9, 3.10
3.6. Upper approximation of the set 3.11, 3.12, 3.13
3.7. Positive region of the set 3.8, 3.9, 3.10
3.8. Boundary region of the set 3.14, 3.15, 3.16
3.9. Negative region of the set 3.17, 3.18, 3.19

3.10. P̃ -exactly set 3.20, 3.21, 3.22
3.11. P̃ -definable set 3.20, 3.21, 3.22
3.12. P̃ -accuracy of an approximation of the set 3.23, 3.24, 3.25
3.13. Lower approximation of the family of sets 3.26
3.14. Upper approximation of the family of sets 3.27
3.15. Positive region of the family of sets 3.28
3.16. Boundary region of the family of sets 3.29
3.17. Negative region of the family of sets 3.30
3.18. Quality of approximation of the family of sets 3.31
3.19. Accuracy of approximation of the family of sets 3.32
3.20. Dependence degree of attributes 3.33
3.21. Deterministic rules 3.33
3.22. Set of independent attributes 3.34
3.23. Set of relatively independent attributes 3.35
3.24. Reduct 3.36
3.25. Relative reduct 3.36
3.26. Indispensable attribute 3.37
3.27. Core 3.38
3.28. Normalized coefficient of attributes significance 3.39
3.29. Error of approximate reduct 3.40
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3.2 Basic terms

One of methods to present the information on objects characterized by the
same set of features is the information system.

Definition 3.1
The information system is referred toanordered4-tupleSI = 〈U,Q, V, f〉 [1],
where U is the set of objects, Q is the set of features (attributes), V =

⋃

q∈Q

Vq

is the set of all possible values of features, while f : U×Q → V is called the
information function. We can say that vx

q = f (x, q), of course f (x, q) ∈ Vq.
The notation vx

q = fx (q), which treats the information function as a family
of functions, will be considered as equivalent. Then fx : Q → V .

Example 3.1
Let us consider a used car dealer. Currently, there are 10 cars. The universe
of discourse U is therefore composed of 10 objects, which can be notated
as

U = {x1, x2, ..., x10} . (3.1)

The car dealer notes in his documents four features of each car, which are
usually referred to by customers during phone calls. These are: number of
doors, horsepower, colour and make. Therefore, the set of features can be
written as

Q = {q1, q2, q3, q4} (3.2)
= {number of doors, horsepower, colour, make} .

Based on the contents of Table 3.2 we can define the domains of particular
features:

TABLE 3.2. Example of an information system

Object Number Horsepower Colour Make
(U) of doors (q1) (q2) (q3) (q4)
x1 2 60 blue Opel
x2 2 100 black Nissan
x3 2 200 black Ferrari
x4 2 200 red Ferrari
x5 2 200 red Opel
x6 3 100 red Opel
x7 3 100 red Opel
x8 3 200 black Ferrari
x9 4 100 blue Nissan
x10 4 100 blue Nissan
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Vq1 = {2, 3, 4} , (3.3)

Vq2 = {60, 100, 200} , (3.4)

Vq3 = {black, blue, red} , (3.5)

Vq4 = {Ferrari, Nissan, Opel} . (3.6)

Example 3.2
Let us consider the set of real numbers in the interval U (see Fig. 3.1),
where

U = [0, 10) . (3.7)

0 1 2 3 4 5 6 7 8 9 10

U

x = q1+q2

FIGURE 3.1. One-dimensional universe of discourse U

Let each element x ∈ U be defined by two features making up the set of
features

Q = {q1, q2} , (3.8)

where q1 is the integral part of the number x and q2 is the decimal part of
this number. Of course x = {q1, q2} . The information functions may be
defined as follows

fx (q1) = Ent (x) , (3.9)

fx (q2) = x − Ent (x) , (3.10)

where function Ent(·) (fr. entier) means the integral part of the argument.
Knowing the definition of information functions, it is usually easy to

define the domains of variability of particular features. In our example,
they will be as follows:

Vq1 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} , (3.11)

Vq2 = [0; 1) . (3.12)

Example 3.3
In the following example, let us consider the space of pairs

U = {x = [x1;x2] ∈ [0; 10) × [0; 10)} . (3.13)
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FIGURE 3.2. Two-dimensional universe of discourse U

The objects belonging to the space defined in this way may be interpreted
as points located on a plane, as shown in Fig. 3.2. The most natural features
of points are their coordinates x1 and x2. In our example, however, they
will be defined otherwise. Let us define four features

Q = {q1, q2, q3, q4} (3.14)

where q1 is the integral part of the first coordinate of point x, q2 is its
decimal part, and q3 and q4 are the integral and the decimal part of the
second coordinate of the point, respectively. The information functions will
therefore be defined as follows:

fx (q1) = Ent (x1) , (3.15)

fx (q2) = x1 − Ent (x1) , (3.16)

fx (q3) = Ent (x2) , (3.17)

fx (q4) = x2 − Ent (x2) . (3.18)

Knowing the definition of information functions, it is usually easy to
define the domains of variability of particular features. In this example,
they will be as follows:

Vq1 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} , (3.19)

Vq2 = [0; 1) , (3.20)



30 3. Methods of knowledge representation using rough sets

Vq3 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} , (3.21)

Vq4 = [0; 1) . (3.22)

The special case of the information system is the decision table.

Definition 3.2
The decision table is the ordered 5-tuple DT = 〈U,C,D, V, f〉. The ele-
ments of the set C we call conditional features (attributes), and elements
of D-decision features (attributes).

The information function f described in Definition 3.1 defines unam-
biguously the set of rules included in the decision table. In the notation,
in the form of family of functions, the function fl : C × D → V defines l
the decision rule of the table. The difference between the above definition
and Definition 3.1 consists in separation of the set of features Q into two
disjoint subsets C and D, complementary to Q. The decision tables are an
alternative way of representing the information with relation to the rules:

Rl : IF c1 = vl
c1

AND c2 = vl
c2

AND...AND cnc
= vl

cnc
THEN d1 = vl

d1

AND d2 = vl
d2

AND . . .AND dnd
= vl

dnd
.

Example 3.4
Let us assume that basing on notes of the car dealer from Example 3.1, we
shall build an expert system, which will define the car make based on infor-
mation on the number of doors, horsepower and colour. We should divide
the set Q (defined by formula (3.2)) into the set of conditional features

C = {c1, c2, c3} = {q1, q2.q3} (3.23)
= {number of doors, horsepower, colour}

and a single-element set of decision features

D = {d1} = {q4} = {make} . (3.24)

Information included in the information system presented in Table 3.2 will
be used to build a decision table (Table 3.3). The description of each object
of space U constitutes the basis to create a single rule.

The contents included in the decision table (Table 3.3) may also be pre-
sented in the form of rules:

R1 : IF c1 = 2 AND c2 = 60 AND c3 = blueTHEN d1 = Nissan
R2 : IF c1 = 2 AND c2 = 100 AND c3 = black THEN d1 = Nissan
· · ·
R10 : IF c1 = 4 AND c2 = 100 AND c3 = blue THEN d1 = Nissan
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TABLE 3.3. Example of the decision table

Rule Number Horsepower Colour Make
(l) of doors (c1) (c2) (c3) (d1)
1 2 60 blue Opel
2 2 100 black Nissan
3 2 200 black Ferrari
4 2 200 red Ferrari
5 2 200 red Opel
6 3 100 red Opel
7 3 100 red Opel
8 3 200 black Ferrari
9 4 100 blue Nissan
10 4 100 blue Nissan

Now we shall present two definitions that are very important in the rough
sets theory. If given two objects x1, xb ∈ U have the same values of all fea-
tures q belonging to the set P ⊆ Q, which may be notated as ∀q ∈ P,
fxa

(q) = fxb
(q), then we say that these objects are P -indiscernible or that

they are to each other in P -indiscernibility relation
(
xa, P̃ xb

)
.

Definition 3.3
The P -indiscernibility relation refers to a P̃ relation defined in the space
U × U satisfying

xaP̃ xb ⇐⇒ ∀q ∈ P ; fxa
(q) = fxb

(q) , (3.25)

where xa, xb ∈ U, P ⊆ Q.

It is easy to verify that the P̃ relation is reflexive, symmetrical and tran-
sitive, and thus it is a relation of equivalence. The relation of equivalence
divides a set in which it is defined, into a family of disjoint sets called
equivalence classes of this relation.

Definition 3.4
The set of all objects x ∈ U being in relation P̃ we call the equivalence
class of relation P̃ in the space U . For each xa ∈ U , there is exactly one
such set denoted by the symbol [xa]P̃ , i.e.

[xa]P̃ =
{

x ∈ U : xaP̃ x
}

. (3.26)

The family of all equivalence classes of the relation P̃ in the space U (called
the quotient of set U by relation P̃ ) will be denoted using the symbol P ∗

or U/P̃ .
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Example 3.5
Let us define the equivalence classes of relation C-indiscernibility C̃ defined
by the set of features C given by formula (3.23) for the information system
defined in Example 3.1:

[x1]C̃ = {x1} , (3.27)

[x2]C̃ = {x2} , (3.28)

[x3]C̃ = {x3} , (3.29)

[x4]C̃ = [x5]C̃ = {x4, x5} , (3.30)

[x6]C̃ = [x7]C̃ = {x6, x7} , (3.31)

[x8]C̃ = {x8} , (3.32)

[x9]C̃ = [x10]C̃ = {x9, x10} . (3.33)

We therefore can say that the objects x4 and x5 are C-indiscernible, sim-
ilarly to x6 and x7 as well as x9 and x10. The family of above specified
equivalence classes will be the set

c∗ = {{x1} , {x2} , {x3} , {x4, x5} , {x6, x7} , {x8} , {x9, x10}} . (3.34)

Example 3.6
For the set of features Q = {q1, q2} defined in Example 3.2 all objects are
discernible, i.e. there are infinitely many one-element equivalence classes of
Q-indiscernibility relation and each element of space U forms its own class.
It will be different when we divide the set Q into two features sets:

P1 = {q1} , (3.35)

P2 = {q2} . (3.36)

For P1-indiscernibility relation, 10 equivalence classes are formed

[0]P1
= [0; 1) , (3.37)

[1]P1
= [1; 2) , (3.38)

· · ·

[9]P1
= [9; 10) . (3.39)

Their family is the set

P ∗
1 ={[0; 1); [1; 2); [2; 3); [3; 4); [4; 5); [5; 6); [6; 7); [7; 8); [8; 9); [9; 10)}. (3.40)

Figure 3.3 shows the exemplary equivalence class [1]P̃1
.
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0 1 2 3 4 5 6 7 8 9 10

U

x = q1+q2

FIGURE 3.3. Example of equivalence class [1]P̃1

U

x=q1+q2

543210 6 7 8 9 10

FIGURE 3.4. Example of equivalence class [0.33]P̃2

For P2-indiscernibility relation, infinitely many ten-element equivalence
classes are formed. These are sets of numbers from the space U with the
same decimal part

[x]P2
= {x̂ ∈ U : x̂ − Ent (x̂) = x − Ent (x)} . (3.41)

Their family is the set

P ∗
2 =
{
[x]P2

= {x̂ ∈ U : x̂ − Ent (x̂) = x − Ent (x)} : x ∈ [0; 1)
}

(3.42)

=
{
[x]P2

= {x̂ ∈ U : x̂ − Ent (x̂) = x} : x ∈ [0; 1)
}

.

Figure 3.4 shows the exemplary equivalence class [0.33]P̃2
.

Example 3.7
Like in Example 3.6, for the set of features Q defined by formula (3.14) in
Example 3.3, all the objects are discernible, i.e. there are infinitely many
one-element equivalence classes of Q-indiscernibility relation and each ele-
ment of space U forms its own class. It will be different, if we consider the
features set P ⊆ Q given by

P = {q1, q3} . (3.43)

For the P -indiscernibility relation thus defined in the space U , we have
100 equivalence classes. The equivalence class of point x = (x1, x2) may be
described as

[x]P̃ ={x̂ =(x̂1, x̂2)∈U: Ent (x̂1)=Ent (x1)∧Ent (x̂2)=Ent (x2)} . (3.44)

Figure 3.5 presents the exemplary equivalence class.
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FIGURE 3.5. Example of equivalence class [(5; 4)]P̃

Their family is the set of all square fields visible in Figs. 3.2 and 3.5. We
can describe this set as follows:

P ∗ =
{
[x]P̃ = {x̂ = (x̂1; x̂2) ∈ U : Ent (x̂1) = Ent (x1) ∧ Ent (x̂2) (3.45)

= Ent (x2) : x = (x1;x2) ;x1;x2 = 0; . . . ; 9}

=
{
[x]P̃ = {x̂ = (x̂1; x̂2) ∈ U : Ent (x̂1) = x1 ∧ Ent (x̂2) = x2} :

x = (x1;x2) ;x1;x2 = 0; . . . ; 9} .

3.3 Set approximation

In the space U , certain sets X may exist. We can infer that particular
objects x ∈ U belong to sets X based on the knowledge of values of their
features. The set of available features P ⊆ Q is usually limited and the
determination of membership of the object to a specific set may not be
unequivocal. This situation is described by the terms of lower and upper
approximation of set X ⊆ U .

Definition 3.5
The set P̃X described as follows:

P̃X =
{
x ∈ U : [x]P̃ ⊆ X

}
(3.46)

is called P̃ -lower approximation of the set X ⊆ U .
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Therefore, the lower approximation of the set X is the set of the objects
x ∈ U , with relation to which on the basis of values of features P , we can
certainly state that they are elements of the set X.

Example 3.8
In the space U , defined by equation (3.1) in Example 3.1 there are three
sets of car makes: Ferrari, Nissan and Opel (see Table 3.2). Let us mark
them with letters XF, XN and XO:

XF = {x3, x4, x8} , (3.47)

XN = {x2, x9, x10} , (3.48)

XO = {x1, x5, x6, x7} . (3.49)

We will infer the membership of various space objects based on based on
the value of features of set C defined by notation (3.23). Applying directly
Definition 3.5, let us determine C̃-lower approximation of sets XF, XN and
XO. This definition says that the object x ∈ U is an element of the lower
approximation, if the whole equivalence class, to which it belongs, is a
subset of the set X. Among the equivalence classes defined in Example 3.5,
only classes [x3]C̃ and [x8]C̃ are the subsets of the set XF, that is

C̃XF = {x3} ∪ {x8} = {x3, x8} . (3.50)

The object x4 does not belong to C̃XF, even if it belongs to XF, as the ob-
ject x5 with identical feature values from the set C, and therefore belonging
to the same equivalence class, is not an element of XF.

Sets [x2]C̃ and [x9]C̃ = [x10]C̃ are subsets of the set XN, hence

C̃XN = {x2} ∪ {x9, x10} = {x2, x9, x10} . (3.51)

Sets [x1]C̃ and [x6]C̃ = [x7]C̃ are subsets of the set XO, hence

C̃XO = {x1} ∪ {x6, x7} = {x1, x6, x7} . (3.52)

Example 3.9
Let us assume that in the space U defined in Example 3.2 there is a set X
defined as follows:

X = [1, 75; 6, 50] . (3.53)

Let us define the P̃1 and P̃2-lower approximation of this set. Four equiv-
alence classes of P1-indiscernibility relation (Example 3.6) belong entirely
to the set X. Therefore, the P̃1-lower approximation will be their sum

P̃1X = [2]P1
∪ [3]P1

∪ [4]P1
∪ [5]P1

= [2, 6) , (3.54)

which is illustrated in Fig. 3.6.
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543210 6 7 8 9 10

U

x=q1+q2

X

~P1X

FIGURE 3.6. Lower approximation in one-dimensional universe of discourse

No equivalence class of the P2-indiscernibility relation belongs entirely
to the set X, therefore its P̃2-lower approximation is an empty set, i.e.

P̃2X = ∅ (3.55)

Example 3.10
Let us in the space U , defined by notation (3.13), define the set X as
shown in Fig. 3.7. This figure shows the marked equivalence classes making
up the P̃ -lower approximation of the set X. Among the 100 equivalence
classes defined by formula (3.44), the lower approximation is made up by
25 equivalence classes – squares which are entirely subsets of the set X.

FIGURE 3.7. Lower approximation in two-dimensional universe of discourse
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Definition 3.6
The set P̃X described as follows:

P̃X =
{
x ∈ U : [x]P̃ ∩ x �= ∅

}
(3.56)

is called P̃ -upper approximation of the set X ⊆ U .

The upper approximation of the set X is the set of the objects x ∈ U ,
with relation to which, on the basis of values of features P , we can not
certainly state that they are not elements of the set X.

Example 3.11
Applying directly Definition 3.6, let us determine C̃-upper approximation
of sets XF, XN, and XO defined in Example 3.8. This definition says that
the object x ∈ X is an element of the upper approximation, if the whole
equivalence class, to which it belongs, has a non-empty intersection with
the set X. In other words, if at least one element of a given equivalence class
belongs to the set X, then each element of this equivalence class belongs
to the upper approximation of the set X. Among the equivalence classes
defined in Example 3.5, elements of classes [x3]C̃ , [x4]C̃ , and [x8]C̃ belong
to the set XF, hence

C̃XF = {x3} ∪ {x4, x5} ∪ {x8} = {x3, x4, x5, x8} . (3.57)

The object x5 belongs to C̃-upper approximation of the set XF, even though
it does not belong to XF, as the object x4 with identical values of features
from set C, and therefore belonging to the same equivalence class, is an
element of the set XF. The set XN contains elements from classes [x2]C̃
and [x2]C̃ = [x10]C̃ , hence

C̃XN = {x2} ∪ {x9, x10} = {x2, x9, x10} . (3.58)

The set XO contains elements from classes [x1]C̃ , [x4]C̃ and [x6]C̃ , so

C̃XO = {x1} ∪ {x4, x5} ∪ {x6, x7} = {x1, x4, x5, x6, x7} . (3.59)

Example 3.12
Let us determine P̃1 and P̃2-upper approximation of the set X defined
in Example 3.9. Objects of six equivalence classes of P1-indiscernibility
relation belong to the set X. Therefore the P̃1-upper approximation will
be their sum, i.e.

P̃ 1X = [1]P̃1
∪ [2]P̃1

∪ [3]P̃1
∪ [4]P̃1

∪ [5]P̃1
∪ [6]P̃1

= [1, 7) , (3.60)

which is illustrated by Fig. 3.8.
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FIGURE 3.8. Upper approximation in one-dimensional universe of discourse

As the elements of all equivalence classes of the P2-indiscernibility relation
belong to the set X, so its P̃2-upper approximation is equal to the universe
of discourse U , i.e.

P̃ 2X = U. (3.61)

Example 3.13
Figure 3.9 shows the marked equivalence classes included in the P -upper
approximation of the set X described in the space U defined by formula
(3.13).

FIGURE 3.9. Upper approximation in two-dimensional universe of discourse

Definition 3.7
P̃ -positive region of the set X is defined as

PosP̃ (X) = P̃X. (3.62)

The positive region of the set X is equal to its lower approximation.
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Definition 3.8
P̃ -boundary region of the set X is defined as

BnP̃ (X) = P̃X \ P̃X. (3.63)

Example 3.14
By directly applying Definition 3.8, we shall find the boundary region of sets
XF, XN and XO defined in Example 3.8. We shall perform that by defining
the difference of sets described in Examples 3.11 and 3.8. Therefore, we
obtain

BnC̃ (XF) = C̃XF \ C̃XF (3.64)
= {x3, x4, x5, x8} \ {x3, x8} = {x4, x5} ,

BnC̃ (XN) = C̃XN \ C̃XN = ∅, (3.65)

BnC̃ (XO) = C̃XO \ C̃XN = {x4, x5} . (3.66)

Example 3.15
Let us define the boundary region of set X defined in Example 3.9 for the
set of features P1 and P2. In the first case, we have

BnP̃1
(X) = P̃1X \ P̃1X (3.67)

= [1; 7) \ [2; 6) = [1; 2) ∪ [6; 7) ,

which is illustrated by Fig. 3.10. In the second case

543210 6 7 8 9 10

U

X

~BnP1(X )

x=q1+q2

FIGURE 3.10. Boundary region in one-dimensional universe of discourse

BnP̃2
(X) = P̃2X \ P̃2X (3.68)

= U \ ∅ = U.
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Example 3.16
Figure 3.11 shows the marked equivalence classes included in the boundary
region BnP̃ (X) described in the space U defined by formula (3.13).

FIGURE 3.11. Boundary region in two-dimensional universe of discourse

Definition 3.9
P̃ -negative region of the set X is defined as

NegP̃ (X) = U \ P̃X. (3.69)

The negative region of the set X is the set of the objects x ∈ U , with
relation to which, on the basis of values of features P , we can certainly
state that they are not elements of the set X.

Example 3.17
According to Definition 3.9, we shall define the negative regions of the sets
XF, XN and XO considered in Example 3.8. By defining the complement
of sets defined in Example 3.11 to the space U , we shall obtain

NegC̃ (XF) = U \ C̃X = {x1, x2, x6, x7, x9, x10} , (3.70)

NegC̃ (XN) = U \ C̃X = {x1, x3, x4, x5, x6, x7, x8} , (3.71)

NegC̃ (XO) = U \ C̃X = {x2, x3, x8, x9, x10} . (3.72)

Example 3.18
Let us define the boundary region of set X defined in Example 3.9 for the
set of features P1 and P2. In the first case, we have

NegP̃1
(X) = U \ P̃ 1X (3.73)

= U \ [1; 7) = [0; 1) ∪ [7; 10) ,



3.3 Set approximation 41

which is illustrated by Fig. 3.12. In the second case, we have

NegP̃2
(X) = U \ P̃ 2X (3.74)

= U \ U = ∅.

543210 6 7 8 9 10

U

X

~NegP1
(X)

x=q1+q2

FIGURE 3.12. Negative region in one-dimensional universe of discourse

Example 3.19
Figure 3.13 shows the marked equivalence classes included in the negative
region NegP̃ (X), determined in the space U defined by formula (3.13).

FIGURE 3.13. Negative region in two-dimensional universe of discourse

Definition 3.10
The set X is called a P̃ -exactly set, if its lower and upper approximation
are equal

P̃X = P̃X (3.75)
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and P̃ -rough set otherwise
P̃X �= P̃X. (3.76)

Definition 3.11
The set X is called
a) roughly P̃ -definable set, if ⎧

⎨

⎩

P̃X �= ∅

P̃X �= U,
(3.77)

b) internally P̃ -non definable set, if
⎧
⎨

⎩

P̃X = ∅

P̃X �= U,
(3.78)

c) externally P̃ -non definable set, if
⎧
⎨

⎩

P̃X �= ∅

P̃X = U,
(3.79)

d) totally P̃ -non definable set, if
⎧
⎨

⎩

P̃X = ∅

P̃X = U.
(3.80)

Example 3.20
By comparing the lower and upper approximations of sets XF, XN and XO,
described in Examples 3.8 and 3.11, we can easily notice that only the set
XN satisfies Definition 3.10 and is a C̃-exactly set. The sets XF and XO
satisfy equation (3.77) in Definition 3.11 and are roughly C̃-definable sets,
as well as C̃-rough sets according to Definition 3.10.

Example 3.21
By comparing the lower and upper approximations of the set X defined
in Example 3.9, determined in Examples 3.9 and 3.12, we can easily state
that this set is both a P̃1– and P̃2-rough set (Definition 3.10). Moreover,
according to Definition 3.11, it is a roughly P̃1-definable set and at the
same time a totally P̃2-non definable set.

Example 3.22
By analyzing Figs. 3.7 and 3.9, we can state that the set X, defined in
Example 3.10 and shown in Fig. 3.7, is a P̃ -rough set and at the same time
a P̃ -definable set.
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Definition 3.12
The value expressed by formula

µP̃ (X) =
P̃X

P̃X

(3.81)

is called P̃ -accuracy of approximation of the set X. The symbol A denotes
the measure of the set A. In case of finite sets, we can use the cardinality as
the measure, in case of continuous bounded sets, we can use such measures
as the length of the interval, surface area, volume, etc.

Example 3.23
Let us determine C̃-accuracy of sets XF, XN and XO, defined in Example
3.8. By applying formula (3.81), we obtain

µC̃ (XF) =
C̃XF

C̃XF

=
2
4

= 0.5, (3.82)

µC̃ (XN) =
C̃XN

C̃XN

=
3
3

= 1, (3.83)

µC̃ (XO) =
C̃XO

C̃XO

=
3
5

= 0.6. (3.84)

As we can see, C̃-accuracy of the approximation of the set XN is 1, which
confirms the previous observation that this set is a C̃-exact set. In other
words, it is unambiguously defined by the features belonging to the set C
given by formula (3.23).

Example 3.24
In case of continuous spaces of discourses, we can define the C̃-accuracy,
using the length of appropriate intervals. Therefore, for the set X defined
in Example 3.9, we have

µP̃1
(X) =

P̃1X

P̃1X

=
3
3
, (3.85)

µP̃2
(X) =

P̃2X

P̃2X

= 0. (3.86)
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Example 3.25
In case of the set X, defined in Example 3.10, we can determine the
P̃ -accuracy of approximation using the surface area, as the measure. Based
on Figs. 3.7 and 3.9 we have

µP̃ (X) =
P̃X

P̃X

=
8
21

. (3.87)

3.4 Approximation of family of sets

Definitions 3.5 - 3.9 and 3.12 may be easily generalized for a certain family
of sets of the space U . Let us denote the abovementioned family of sets by
X = {X1,X2, ...,Xn}.

Definition 3.13
The set P̃X described as follows:

P̃X =
{

P̃X1, P̃X2, ..., PXn

}
(3.88)

is called P̃ -lower approximation of the family of sets X.

Example 3.26
Let the elements of family of sets X be the sets XF, XN and XO, defined
in Example 3.8. We shall notate this as follows:

X = {XF,XN,XO} (3.89)

= {{x3, x4, x8} , {x2, x9, x10} , {x1, x5, x6, x7}} .

Using the sets determined in Example 3.8, according to Definition 3.13, we
can write

C̃X =
{

C̃XF, C̃XN, C̃XO

}
(3.90)

= {{x3, x8} , {x2, x9, x10} , {x1, x6, x7}} .

Definition 3.14
The set P̃X described as follows:

P̃X =
{

P̃X1, P̃X2, ..., P̃Xn

}
(3.91)

is called P̃ -upper approximation of family of sets X.
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Example 3.27
According to Definition 3.14, using the sets determined in Example 3.11,
C̃-upper approximation of the family of sets X defined in Example 3.26,
will be

C̃X =
{

C̃XF, C̃XN, C̃XO

}
(3.92)

= {{x3, x4, x5, x8} , {x2, x9, x10} , {x1, x4, x5, x6, x7}} .

Definition 3.15
P̃ -positive region of family of the sets X is defined as

PosP̃ (X) =
⋃

XiεX
PosP̃ (Xi) . (3.93)

Example 3.28
The C̃-positive region of family of sets X, defined in Example 3.26, we can
determine as follows:

PosC̃ (X) = PosC̃ (XF) ∪ PosC̃ (XN) ∪ PosC̃ (XO) (3.94)

= {x1, x2, x3, x6, x7, x8, x9, x10} .

As it can be inferred from the example, the term of the positive region
of family of sets is not equal to the term of its lower approximation – by
contrast with the terms of positive region and lower approximation of sets.

Definition 3.16
P̃ -boundary region of family of the sets X is defined as

BnP̃ (X) =
⋃

XiεX
BnP̃ (Xi) . (3.95)

Example 3.29
According to Definition 3.16, C̃-boundary region of family of sets X, defined
in Example 3.26, takes the form

BnC̃ (X) = BnC̃ (XF) ∪ BnC̃ (XN) ∪ BnC̃ (XO) (3.96)
= {x4, x5} .

Definition 3.17
P̃ -negative region of family of the sets X is defined as

NegP̃ (X) = U\
⋃

XiεX
P̃Xi. (3.97)
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Example 3.30
C̃-negative region of family of sets X, defined in Example 3.26, according
to Definition 3.17 takes the form

NegC̃ (X) = U\
⋃

XiεX
C̃Xi = ∅. (3.98)

Definition 3.18
P̃ -quality of approximation of family of sets X is determined by the expres-
sion

γP̃ (X) =
PosP̃ (X)

U
. (3.99)

Example 3.31
C̃-quality of approximation of family of sets X, defined in Example 3.26, is

γC̃ (X) =
PosC̃ (X)

U
=

8
10

. (3.100)

Definition 3.19
P̃ -accuracy of approximation of family of sets X is defined by

βP̃ (X) =
PosP̃ (X)
∑

XiεX P̃Xi

. (3.101)

Example 3.32
Using Definition 3.19 and notations (3.92) and (3.94), it is easy to check that
C̃-accuracy of approximation of family of sets X, defined in Example 3.26, is

βC̃ (X) =
PosC̃ (X)
∑

XiεX C̃Xi

=
8

4 + 3 + 5
=

2
3
. (3.102)

3.5 Analysis of decision tables

The theory of rough sets introduces the notion of dependency between fea-
tures (attributes) of the information system. Thanks to that, we can check
whether it is necessary to know the values of all features in order to unam-
biguously describe the object belonging to the set U .

Definition 3.20
Dependence degree of set of attributes P2 on the set of attributes P1, where
P1, P2 ⊆ Q, is defined as follows:
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k = γP̃1
(P ∗

2 ) , (3.103)

where γP̃1
(P ∗

2 ) is determined pursuant to Definition 3.18.

The notation P1
k−→ P2 means that the set of attributes P2 depends on

the set of attributes P1 to the degree k < 1. In case where k = 1, we shall
simply write P1 → P2.

The notion of dependence degree of attributes is used to define the cor-
rectness of construction of the decision table (Definition 3.2).

Definition 3.21
The rules of decision table are called deterministic, provided that for each
pair of rules la �= lb from the equality of values of all conditional attributes
C, we can infer an equality of values of decision attributes D, i.e.

∀la,lb=1,...,N
la �=lb

: ∀c∈C fla (c) = flb (c) → ∀d∈D fla (d) = flb (d) . (3.104)

If for a certain pair of rules la �= lb the above condition is not met, i.e.
the equality of values of all conditional attributes C does not result in
the equality of values of decision attributes D, we shall call these rules as
non-deterministic, i.e.

∃ la,lb
la �=lb

: ∀c∈C fla (c) = flb (c) → ∃d∈D fla (d) �= flb (d) . (3.105)

The decision table (Definition 3.2) is well defined, if all its rules are deter-
ministic. Otherwise, we say that it is not well defined.

Let us notice that the decision table having a set of conditional attributes
C and a set of decision attributes D is well defined, if the set of decision
attributes depends on the set of conditional attributes to a degree which is
equal to 1 (C → D), that is

γC̃ (D∗) = 1. (3.106)

The reason for the decision table to be not well defined is that it con-
tains the so-called non-deterministic rules. The decision table that is not
well defined may be “repaired” by removing the non-deterministic rules or
expanding the set of conditional attributes C.

Example 3.33
Let us examine the dependence degree of the set of attributes D on the set
of attributes C defined in Example 3.4. According to Definition 3.20, we
have

k = γC̃ (D∗) =
PosC̃ (D∗)

U
. (3.107)
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Let us notice that the equivalence classes of D-indiscernibility relation are
the sets XF, XN and XO defined in Example 3.8. Therefore

D∗ = {XF,XN,XO} . (3.108)

Based on Definition 3.15, using the lower approximations of sets XF, XN
and XO defined in Example 3.8, we obtain

PosC̃ (D∗) = PosC̃ (XF) ∪ PosC̃ (XN) ∪ PosC̃ (XO) (3.109)

= C̃XF ∪ C̃XN ∪ C̃XO

= {x3, x8} ∪ {x2, x9, x10} ∪ {x1, x6, x7}

= {x1, x2, x3, x6, x7, x8, x9, x10} .

By substituting the dependence (3.109) to formula (3.107), we obtain the
result

k =
{x1, x2, x3, x6, x7, x8, x9, x10}

{x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}
=

8
10

. (3.110)

We can therefore state that the set of attributes D depends on the set
of attributes C to the degree k = 0.8, which is notated as C

0.8−→ D. The
obtained value k < 1 informs us that the decision table given in Example
3.4 is not well defined. Based on the set of conditional attributes C, we
cannot unambiguously infer on the membership of objects of the space U
to the particular sets XF, XN and XO, which are equivalence classes of
the D-indiscernibility relation.

The used cars dealer from Example 3.1 should expand the set of condi-
tional attributes C, if he wants to infer unambiguously on the car make on
the basis of these attributes.

The non-deterministic rules in the decision table described in Example
3.4 are the rules 4 and 5. If they are removed, a not well-defined deci-
sion table (Table 3.3) is transformed into a well defined decision table
(Table 3.4).

For the decision table thus defined, it is easy to check that

γC̃ (D∗) =
{x1, x2, x3, x6, x7, x8, x9, x10}
{x1, x2, x3, x6, x7, x8, x9, x10}

= 1. (3.111)

Hence, it is well defined.
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TABLE 3.4. A well-defined decision table (after removing non-deterministic rules)

Rule Number Horsepower Colour Make
(l) of doors (c1) (c2) (c3) (d1)
1 2 60 blue Opel
2 2 100 black Nissan
3 2 200 black Ferrari
6 3 100 red Opel
7 3 100 red Opel
8 3 200 black Ferrari
9 4 100 blue Nissan
10 4 100 blue Nissan

The second method used to create a well-defined table is to expand the
sets of conditional attributes. The car dealer decided to add the type of
fuel used, the type of upholstery and wheel rims, to the features considered
so far. The new set of conditional attributes takes the following form

C = {c1, c2, c3, c4, c5, c6} (3.112)
= {number of doors, horsepower, colour, fuel, upholstery, rims} .

The domains of new features are

VC4 = {Diesel oil, Ethyl gasoline, gas} , (3.113)
VC5 = {woven fabric, leather} , (3.114)

VC6 = {steel, aluminium} . (3.115)

Table 3.5 presents the decision table completed with new attributes and
their values.

Let us determine for decision Table 3.5 the C̃-quality and the C̃-accuracy
of approximation of family of sets D∗. The first step is to define the family
of equivalence classes of the relation C̃ in the space U . Each element of the
space U has at least one different value of the feature, hence

C∗={{x1}, {x2}, {x3}, {x4}, {x5}, {x6}, {x7}, {x8}, {x9}, {x10}}. (3.116)

Therefore, the following positive regions of family of sets B∗ are defined:

PosC̃ (XF) = C̃XF = {x3} ∪ {x4} ∪ {x8} = {x3, x4, x8} = XF, (3.117)

PosC̃ (XN) = C̃XN = {x2} ∪ {x9} ∪ {x10} = {x2, x9, x10} = XN, (3.118)

PosC̃ (XO) = C̃XO = {x1} ∪ {x5} ∪ {x6} ∪ {x7} (3.119)

= {x1, x5, x6, x7} = XO.
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TABLE 3.5. A well-defined decision table (after adding attributes)

Rule Number Horsepower Colour Fuel Upholstery Rims Make
(l) of doors (c2) (c3) (c4) (c5) c6 (d1)

(c1)
1 2 60 blue Ethyl woven steel Opel

gasoline fabric
2 2 100 black Diesel woven steel Nissan

oil fabric
3 2 200 black Ethyl leather Al Ferrari

gasoline
4 2 200 red Ethyl leather Al Ferrari

gasoline
5 2 200 red Ethyl woven steel Opel

gasoline fabric
6 3 100 red Diesel leather steel Opel

oil
7 3 100 red gas woven steel Opel

fabric
8 3 200 black Ethyl leather Al Ferrari

gasoline
9 4 100 blue gas woven steel Nissan

fabric
10 4 100 blue Diesel oil woven Al Nissan

fabric

The C̃-upper approximations of these sets may be defined similarly

C̃XF = {x3} ∪ {x4} ∪ {x8} = {x3, x4, x8} = XF, (3.120)

C̃XN = {x2} ∪ {x9} ∪ {x10} = {x2, x9, x10} = XN, (3.121)

C̃XO = {x1} ∪ {x5} ∪ {x6} ∪ {x7} = {x1, x5, x6, x7} = XO. (3.122)

C̃-positive region of family of sets D∗ takes the form

PosC̃ (D∗) = {x3, x4, x8} ∪ {x2, x9, x10} ∪ {x1, x5, x6, x7} (3.123)
= {x1, x2, x3, x4, x5, x6, x7, x8x9, x10} = U.

Now, using Definition 3.18 and 3.19, we can directly determine:

γC̃ (D∗) =
PosC̃ (D∗)

U
=

U

U
=

10
10

= 1, (3.124)

βC̃ (D∗) =
PosC̃ (D∗)
∑

XiεD∗ C̃Xi

=
10

3 + 3 + 4
= 1. (3.125)

On this basis, we can unambiguously state that the decision Table 3.5 is
well defined.
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Definition 3.22
The set of attributes P1 ⊆ Q is independent in a given information system,
if for each P2 ⊂ P1 the inequality P̃1 �= P̃2 occurs. Otherwise, the set P1 is
a dependent one.

Example 3.34
Let us consider data given in decision Table 3.5. It is easy to notice that the
set C described by formula (3.112) is a dependent set. Exemplary subsets
of the set C, C1 = {c1, c2, c3, c5, c6} and C2 = {c1, c2, c3, c4, c5}, gener-
ate such quotient of the space U , as the set C (see. 3.116). The sets C1

and C2 are also dependent, as the sets C3 = {c1, c3, c5, c6} ⊂ C1 and
C4 = {c1, c3, c4, c5} ⊂ C2 also generate the quotient of the space U de-
scribed by formula (3.116). On the other hand, the sets C3 and C4 are
independent sets.

Definition 3.23
The set of attributes P1 ⊆ Q is independent with respect to the set of
attributes P2 ⊆ Q (P2-independent), if for each P3 ⊂ P1 the following
inequality holds

PosP̃1
(P ∗

2 ) �= PosP̃3
(P ∗

2 ) . (3.126)

Otherwise, the set P1 is P2-dependent.

Example 3.35
The set C3 is an independent set in a given information system (Defini-
tion 3.22). According to Definition 3.23, it is a D-dependent set. We shall
demonstrate that the set C3 together with its subset C5 = {c1, c3, c6} does
not meet condition (3.126), i.e.

PosC̃3
(D∗) �= PosC̃5

(D∗) . (3.127)

Let us notice that

PosC̃3
(D∗) = PosC̃3

(XF) ∪ PosC̃3
(XN) ∪ PosC̃3

(XO) (3.128)

= XF ∪ XN ∪ XO = U

and

PosC̃5
(D∗) = PosC̃5

(XF) ∪ PosC̃5
(XN) ∪ PosC̃5

(XO) (3.129)

= XF ∪ XN ∪ XO = U

hence
PosC̃3

(D∗) = PosC̃5
(D∗) . (3.130)
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Definition 3.24
Every independent set P2 ⊂ P1 for which P̃2 = P̃1 is called the reduct of
the set of attributes P1 ⊆ Q.

Definition 3.25
Every P2-independent set P3 ⊂ P1 for which P̃3 = P̃1 is called the rela-
tive reduct of a set of attributes P1 ⊆ Q with respect to P2 (the so-called
P2-reduct).

Example 3.36
If we return to the discussions in Examples 3.34 and 3.35; we can notice
that the sets C3 and C4 presented therein are the reducts of the set C,
whereas the set C5 is the D-reduct of the set C3 and C.

Definition 3.26
The attribute p ∈ P1 is indispensable from P1, if for P2 = P1\ {p}, the
equation P̃2 �= P̃1 holds. Otherwise, the attribute p is dispensable.

Example 3.37
Using Definition 3.26, we shall check the indispensability of particular
attributes c ∈ C in the information system forming the decision Table 3.5.
It is easy to check that

C∗ = {{x1} , {x2} , {x3} , {x4} , {x5} , (3.131)

{x6} , {x7} , {x8} , {x9} , {x10}} ,

(C\ {c1})∗ = {{x1} , {x2} , {x3, x8} , {x4} , {x5} , (3.132)

{x6} , {x7} , {x9} , {x10}} �= C∗,

(C\{c2})∗ = {{x1} , {x2} , {x3} , {x4} , {x5} , (3.133)

{x6} , {x7} , {x8} , {x9} , {x10}} =C∗,

(C\ {c3})∗ = {{x1} , {x2} , {x3, x4} , {x5} , (3.134)

{x6} , {x7} , {x8} , {x9} , {x10}} �= C∗,

(C\ {c4})∗ = {{x1} , {x2} , {x3} , {x4} , {x5} , (3.135)

{x6} , {x7} , {x8} , {x9} , {x10}} = C∗,
(C\ {c5})∗ = {{x1} , {x2} , {x3} , {x4} , {x5} , (3.136)

{x6} , {x7} , {x8} , {x9} , {x10}} = C∗,

(C\ {c6})∗ = {{x1} , {x2} , {x3} , {x4} , {x5} , (3.137)

{x6} , {x7} , {x8} , {x9} , {x10}} = C∗.
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As we can see, the attributes c1 and c3 are indispensable, while the
attributes c2, c4, c5 and c6 are superfluous.

Definition 3.27
The set of all indispensable attributes from the set P is called a core of P ,
which is notated as follows:

CORE (P ) =
{

p ∈ P : P̃ ′ �= P̃ , P ′ = P\ {p}
}

. (3.138)

Example 3.38
Using the results from Example 3.37, we can define the core of the set of
attributes C as

CORE (C) = {c1, c3} . (3.139)

Definition 3.28
The normalized coefficient of significance of subset of the set of conditional
attributes C ′ ⊂ C is expressed by the following formula

σ(C,D) (C ′) =
γC̃ (D∗) − γC̃′′ (D∗)

γC̃ (D∗)
, (3.140)

where C ′′ = C \ C ′. Of course, in a special case the set C ′ may be a one-
element set, then the coefficient (3.140) will express the significance of one
conditional attribute.

The coefficient of significance plays an important role in the analysis of
decision tables. The zero value obtained for a given subset of conditional
attributes C indicates that this subset may be deleted from the set of con-
ditional attributes without any detriment to the approximation of family
of sets D∗.

Example 3.39
Let us determine the significance of an exemplary subset of the set of con-
ditional attributes C defined by the notation (3.112). In Example 3.33,
we have demonstrated (formula (3.124)), that C̃-quality of approximation
of family of sets D∗ for a well-defined decision table amounts to 1. For
C ′ = {c1}, we have C ′′ = {c2, c3, c4, c5, c6} and

γC̃′′ (D∗) =
PosC̃′′ (D∗)

U
(3.141)

=
XF ∪ XN ∪ XO

U
= 1.

Hence
σ(C,D) ({c1}) =

1 − 1
1

= 0. (3.142)
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Therefore, the attribute c1 in the given decision table is insignificant, and
due to that, its removal will not impact the quality of approximation of
family of sets D∗.

For C ′ = {c4, c5, c6}, we get C ′′ = {c1, c2, c3}, hence

γC̃′′ (D∗) =
{x3, x8} ∪ {x2, x9, x10} ∪ {x1, x6, x7}

U
=

8
10

, (3.143)

which, after substituting to formula (3.140), gives the value

σ(C,D) ({c4, c5, c6}) =
1 − 0.8

1
= 0.2. (3.144)

Based on the above discussion we see the attributes c4, c5 and c6 added in
Example 3.33 (Table 3.5) are of low significance.

Definition 3.29
Any given subset of the set of conditional attributes C ′ ⊂ C is called a
rough D-reduct of the set of attributes C, and the approximation error of
this reduct is defined as follows:

ε(C,D) (C ′) =
γC̃ (D∗) − γC̃′ (D∗)

γC̃ (D∗)
. (3.145)

Example 3.40
Let us determine an approximation error of the set C ′ = {c1, c2, c3} which
is the rough D-reduct of set of attributes C (decision Table 3.5). Using the
result (3.143), we have

ε(C,D) ({c1, c2, c3}) =
1 − 0.8

1
= 0.2. (3.146)

3.6 Application of LERS software

LERS (Learning from Examples based on Rough Sets) software [67] has
been created by RS Systems company. Its task is to generate the rule base,
based on examples entered and to test the rule base generated or prepared
independently. The data entered may be subject to some initial process-
ing, among others by removing contradictions, eliminating or completing
missing data and quantization of numerical values.

In order to present the capabilities of LERS software, let us consider two
cases of data analysis. The first case, already discussed in the Example 3.1 –
it is the case of the used car dealer. The second case – the problem of
classification of Iris flowers, an example often used to illustrate and compare
the performance of computational intelligence algorithms.
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Example 3.41 (Cars in the parking lot)
Let the decision table describing the used car dealer from Example 3.1
have the form as in Table 3.5. In order to have a clear presentation of this
example, it has been presented again in Table 3.6.

TABLE 3.6. Original decision table (before reduction)

Number Horsepower Colour Fuel Upholstery Rims Make
of doors (c2) (c3) (c4) (c5) (c6) (d1)
(c1)
2 60 blue Ethyl woven steel Opel

gasoline fabric
2 100 black Diesel woven steel Nissan

oil fabric
2 200 black Ethyl leather Al Ferrari

gasoline
2 200 red Ethyl leather Al Ferrari

gasoline
2 200 red Ethyl woven steel Opel

gasoline fabric
3 100 red Diesel leather steel Opel

oil
3 100 red gas woven steel Opel

fabric
3 200 black Ethyl leather Al Ferrari

gasoline
4 100 blue gas woven steel Nissan

fabric
4 100 blue Diesel oil woven Al Nissan

fabric

In order to enter the data from Table 3.6 to LERS software, the following
file must be prepared:
< a, a, a a a a d >

[doors horsepower] colour fuel upholstery rims make
2 60 blue Ethyl gasoline woven fabric steel Opel
2 100 black Diesel oil woven fabric steel Nissan
2 200 black Ethyl gasoline leather alum Ferrari
2 200 red Ethyl gasoline leather alum Ferrari
2 200 red Ethyl gasoline woven fabric steel Opel
3 100 red Diesel oil leather steel Opel
3 100 red gas woven fabric steel Opel
3 200 black Ethyl gasoline leather alum Ferrari
4 100 blue gas woven fabric steel Nissan
4 100 blue Diesel oil woven fabric alum Nissan
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In the first row of the file, the division to conditional attributes (a) and
decision attributes (d) has been made. The second row contains the names
of particular attributes. Based on data entered, LERS software generated
5 rules containing 8 conditions in total:

IF rims is steel AND colour is red THEN make is Opel
IF horsepower is 60 THEN make is Opel
IF doors is 4 THEN make is Nissan
IF colour is black AND fuel is Diesel oil THEN make is Nissan
IF horsepower is 200 AND upholstery is leather THEN make is Ferrari

TABLE 3.7. Decision table after removing redundant data

Number Horsepower Colour Fuel Upholstery Rims Make
of doors (c2) (c3) (c4) (c5) (c6) (d1)
(c1)

60 Opel
black Diesel oil Nissan

200 leather Ferrari
200 leather Ferrari

red steel Opel
red steel Opel
red steel Opel

200 leather Ferrari
4 Nissan
4 Nissan

The process of rules generation may be interpreted as removing redundant
data from the decision table, which is shown in Table 3.7. The algorithm
used for rules generation and removal of redundant data uses the rough
sets theory.

By removing repeating entries from 3.7, we obtain Table 3.8, identical
with the generated set of rules.

TABLE 3.8. Decision table obtained after reduction

Number Horsepower Colour Fuel Upholstery Rims Make
of doors (c2) (c3) (c4) (c5) (d4)
(c1)

red steel Opel
60 Opel

4 Nissan
black Diesel oil Nissan

200 leather Ferrari
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Example 3.42 (Classification of Iris flowers)
As it has been mentioned before, the problem of classification of Iris flowers
is often used as an example to illustrate the performance of different types
of computational intelligence algorithms. The task consists in determining
the membership of flowers to one of three classes: Setosa, Virginica and
Versicolor. The decision is made based on the value of four conditional
attributes describing the dimensions (length and width) of the leaf and the
flower petal.

We have 150 samples in our disposal, including 147 unique ones (not
recurrent); 50 of them belongs to each of three classes. Table 3.9 presents
the ranges of variability of particular attributes.

TABLE 3.9. Ranges of variability of attributes (classification of Iris flowers)

Attribute Range Number of unique
values

p1 〈4.3; 7.9〉 35
p2 〈2.0; 4.4〉 23
p3 〈1.0; 6.9〉 43
p4 〈0.1; 2.5〉 22
Iris Setosa, Virginica, Versicolor 3

The data have been divided into a learning and a testing part; 40 samples
from each class have been selected randomly for the learning part and the
remaining 30 samples have been used to create the testing part. Based on
the contents of the learning sequence, the input file for LERS software has
been prepared in the form:

< a a a a d >
[p1 p2 p3 p4 iris]
4.4 2.9 1.4 0.2 Setosa
4.8 3.0 1.4 0.1 Setosa
5.4 3.4 1.7 0.2 Setosa
. . .

Based on data entered, LERS generated 34 rules containing 41 conditions
in total:

IF p4 is 0.2 THEN iris is Setosa
IF p4 is 0.4 THEN iris is Setosa
IF p4 is 0.3 THEN iris is Setosa
IF p4 is 0.1 THEN iris is Setosa
IF p4 is 0.5 THEN iris is Setosa
IF p4 is 0.6 THEN iris is Setosa
IF p4 is 1.3 THEN iris is Versicolor
IF p4 is 1.5 AND p3 is 4.5 THEN iris is Versicolor
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IF p4 is 1.0 THEN iris is Versicolor
IF p4 is 1.4 THEN iris is Versicolor
IF p4 is 1.5 AND p3 is 4.9 THEN iris is Versicolor
IF p4 is 1.2 THEN iris is Versicolor
IF p4 is 1.5 AND p1 is 5.9 THEN iris is Versicolor
IF p3 is 4.7 THEN iris is Versicolor
IF p4 is 1.1 THEN iris is Versicolor
IF p3 is 4.8 AND p1 is 5.9 THEN iris is Versicolor
IF p3 is 4.6 THEN iris is Versicolor
IF p4 is 1.6 AND p1 is 6.0 THEN iris is Versicolor
IF p4 is 2.1 THEN iris is Virginica
IF p4 is 2.3 THEN iris is Virginica
IF p3 is 5.5 THEN iris is Virginica
IF p4 is 2.0 THEN iris is Virginica
IF p1 is 7.3 THEN iris is Virginica
IF p3 is 6.0 THEN iris is Virginica
IF p3 is 5.1 THEN iris is Virginica
IF p3 is 5.8 THEN iris is Virginica
IF p3 is 6.1 THEN iris is Virginica
IF p4 is 2.4 THEN iris is Virginica
IF p4 is 1.8 AND p1 is 6.2 THEN iris is Virginica
IF p4 is 1.7 THEN iris is Virginica
IF p3 is 6.7 THEN iris is Virginica
IF p3 is 5.0 THEN iris is Virginica
IF p3 is 5.7 THEN iris is Virginica
IF p3 is 4.9 AND p2 is 2.7 THEN iris is Virginica

In the next step, data included in the learning sequence have been quantized
so that the corresponding decision table remained still deterministic. LERS
software defined the intervals given in Table 3.10 for particular conditional
attributes.

The original input file has been replaced with the file presented below.
Each value of the decision attribute has been replaced with an interval
identifier it belongs to.
! Decision table produced by LERS (C version 1.0)
! First the attribute names list . . .
!
[p1 p2 p3 p4 iris]
!
! Now comes the actual data. Please note that one example
! does NOT necessarily occupy one physical line
!
4.4..5.05 2.75..2.95 1..2.6 0.1..0.8 Setosa
4.4..5.05 2.95..3.05 1..2.6 0.1..0.8 Setosa
5.05..5.65 3.25..3.45 1..2.6 0.1..0.8 Setosa
. . .
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TABLE 3.10. Result of quantization (classification of iris flowers)

Attribute Range Number of samples
〈4.4; 5.05〉 26
〈5.05; 5.65〉 26

p1 〈5.65; 6.15〉 22
〈6.15; 6.65〉 22
〈6.65; 7.9〉 24

〈2; 2.75〉 24
〈2.75; 2.95〉 18

p2 〈2.95; 3.05〉 21
〈3.05; 3.25〉 21
〈3.25; 3.45〉 17
〈3.45; 4.4〉 19

〈1; 2.6〉 40
p3 〈2.6; 4.85〉 40

〈4.85; 6.9〉 40

〈0.1; 0.8〉 40
p4 〈0.8; 1.65〉 42

〈1.65; 2.5〉 38

Setosa 40
Iris Virginica 40

Versicolor 40

Based on the file so prepared, LERS software generated 11 rules containing
altogether 41 conditions:

IF p3 is > THEN iris is Setosa
IF p4 is <0.8; 1.65> AND p3 is <2.6; 4.85> THEN iris is Versicolor
IF p2 is <3.05; 3.25> AND p1 is <5.65; 6.15> THEN iris is Versicolor
IF p4 is <0.8; 1.65> AND p2 is <3.05; 3.25> THEN iris is Versicolor
IF p1 is <6.15; 6.65> AND p2 is <2; 2.75> AND p4 is <0.8; 1.65>
THEN iris is Versicolor
IF p3 is <4.85; 6.9> AND p4 is <1.65; 2.5> THEN iris is Virginica
IF p3 is <4.85; 6.9> AND p2 is <2.75; 2.95> THEN iris is Virginica
IF p1 is <5.65; 6.15> AND p3 is <4.85; 6.9> THEN iris is Virginica
IF p4 is <1.65; 2.5> AND p2 is <2.75; 2.95> THEN iris is Virginica
IF p2 is <2.95; 3.05> AND p1 is <6.65; 7.9> THEN iris is Virginica
IF p2 is <2; 2.75> AND p4 is <1.65; 2.5> THEN iris is Virginica
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The rules obtained in the first and in the second trial have been used
to classify the samples included in the testing set. The results of both
experiments have been presented in Table 3.11. The first four columns
contain the values of conditional attributes for test samples, the fifth col-
umn contains the correct result (decision attribute), the sixth column is
the result obtained using the first set of rules, and the seventh column is
the result obtained using the second set of rules.

By analyzing Table 3.11, one can notice, among others things, that the
initial quantization of data, which resulted in the set of rules operating on
intervals, leads to a more efficient inference system.

TABLE 3.11. Results of classification of iris flowers

p1 p2 p3 p4 pattern classification 1 classification 2
5.0 3.6 1.4 0.2 Setosa Setosa Setosa
4.9 3.1 1.5 0.1 Setosa Setosa Setosa
4.3 3.0 1.1 0.1 Setosa Setosa Setosa
5.0 3.0 1.6 0.2 Setosa Setosa Setosa
5.5 4.2 1.4 0.2 Setosa Setosa Setosa
5.1 3.4 1.5 0.2 Setosa Setosa Setosa
5.1 3.8 1.5 0.3 Setosa Setosa Setosa
5.1 3.5 1.4 0.3 Setosa Setosa Setosa
4.6 3.1 1.5 0.2 Setosa Setosa Setosa
5.1 3.8 1.9 0.4 Setosa Setosa Setosa
5.1 2.5 3.0 1.1 Versicolor Versicolor Versicolor
6.1 2.8 4.7 1.2 Versicolor Versicolor Versicolor
6.0 2.7 5.1 1.6 Versicolor ??? Virginica
5.5 2.4 3.8 1.1 Versicolor Versicolor Versicolor
4.9 2.4 3.3 1.0 Versicolor Versicolor Versicolor
6.7 3.0 5.0 1.7 Versicolor Virginica Virginica
6.2 2.2 4.5 1.5 Versicolor Versicolor Versicolor
6.8 2.8 4.8 1.4 Versicolor Versicolor Versicolor
5.7 2.8 4.5 1.3 Versicolor Versicolor Versicolor
5.8 2.6 4.0 1.2 Versicolor Versicolor Versicolor
6.3 2.5 5.0 1.9 Virginica Virginica Virginica
6.1 3.0 4.9 1.8 Virginica ??? Virginica
6.3 2.9 5.6 1.8 Virginica ??? Virginica
6.7 3.1 5.6 2.4 Virginica Virginica Virginica
5.8 2.8 5.1 2.4 Virginica Virginica Virginica
6.1 2.6 5.6 1.4 Virginica Versicolor Virginica
6.4 2.7 5.3 1.9 Virginica ??? Virginica
6.9 3.1 5.4 2.1 Virginica Virginica Virginica
6.0 3.0 4.8 1.8 Virginica ??? ???
6.4 2.8 5.6 2.2 Virginica ??? Virginica
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3.7 Notes

The theory of rough sets was created by professor Zdzisław Pawlak
[161 - 164]. The definitions provided in this chapter, as well as various ap-
plications of rough sets, are presented in a monograph [140], which is the
first more comprehensive study on this subject in the Polish language. We
refer the Reader interested in various aspects of rough sets to a rich set of
publications [66, 67, 158, 177, 180, 233]. In Section 3.6, the LERS software
has been used to generate the rules using the rough sets method. This soft-
ware has been kindly made available for the purposes of this publication
by professor Jerzy Grzymała-Busse of Kansas University, USA.



4
Methods of knowledge representation
using type-1 fuzzy sets

4.1 Introduction

In everyday life, we come across phenomena and notions, the nature of
which is ambiguous and imprecise. Using the classical theory of sets and
bivalent logic, we are unable to formally describe such phenomena and
notions. We are supported by the fuzzy sets theory, which in the last dozen
of years has found many interesting applications.

In this chapter, we shall present, in a Reader friendly manner, the basic
terms and definitions of fuzzy sets theory (points 4.2 – 4.7). We shall then
discuss the issues of approximate reasoning, i.e. the reasoning on the basis
of fuzzy antecedents (point 4.8). The next point relates to the problem of
construction of fuzzy inference systems (point 4.9). The chapter is finalized
by some examples of application of fuzzy sets in the issues of forecasting,
planning and decision making.

4.2 Basic terms and definitions of fuzzy sets theory

Using the fuzzy sets, we can formally define imprecise and ambiguous no-
tions, such as “high temperature”, “young man”, “average height” or “large
city”. Before providing the definition of a fuzzy set, we must determine
the so-called universe of discourse. In case of an ambiguous term “a lot of
money”, a different sum will be considered to be large (in USD) if we limit
the universe of discourse to [0; 1000], and a different one – if we assume



64 4. Methods of knowledge representation using type-1 fuzzy sets

the interval of [0; 1000000]. The universe of discourse, will be denoted by
the letter X. Let us remember that X is a non-fuzzy set.

Definition 4.1
The fuzzy set A in a given (non-empty) space X, which is denoted as
A ⊆ X, is the set of pairs

A = {(x, µA (x)) ;x ∈ X} , (4.1)

in which
µA : X → [0, 1] (4.2)

is the membership function of a fuzzy set A. This function assigns to each
element x ∈ X its membership degree to the fuzzy set A, and we can
distinguish 3 cases:

1) µA (x) = 1 means the full membership of element x to the fuzzy set
A, i.e. x ∈ A,

2) µA (x) = 0 means the lack of membership of element x to the fuzzy
set A, i.e. x /∈ A,

3) 0 < µA (x) < 1 means a partial membership of element x to the fuzzy
set A.

In the literature some authors use symbolic notations of fuzzy sets. If X is
a space with a finite number of elements, X = {x1, ..., xn} , then the fuzzy
set A ⊆ X shall be notated as

A =
µA (x1)

x1
+

µA (x2)
x2

+ . . . +
µA (xn)

xn
=

n∑

i=1

µA (xi)
xi

. (4.3)

It should be reminded that the elements of xi ∈ X may be not only
numbers, but also persons, objects or other notions. Notation (4.3) has
a symbolic character. The line of fraction does not symbolize the division,
but means the assigning of membership degrees µA (x1) , . . . , µA (xn) to
particular elements x1, . . . , xn. In other words, the notation

µA (xi)
xi

i = 1, ..., n (4.4)

shall mean the pair
(xi, µA (xi)) i = 1, ..., n. (4.5)

Similarly, the “+” sign does not mean the addition, but the union of sets
(4.5). It is worth noting that the non-fuzzy sets may be notated symbolically
in a similar convention. For example, the set of school grades shall be
symbolically noted as

D = 1 + 2 + 3 + 4 + 5 + 6, (4.6)
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which is equal to the notation

D = {1, 2, 3, 4, 5, 6} . (4.7)

If X is a space with an infinite number of elements, then the fuzzy set
A ⊆ X is notated symbolically as

A =
∫

X

µA (x)
x

. (4.8)

Example 4.1
Let us assume that X = N is a set of natural numbers. We shall define the
term of a natural numbers set “close to number 7”. This can be achieved
by defining the following fuzzy set A ⊆ X:

A =
0.2
4

+
0.5
5

+
0.8
6

+
1
7

+
0.8
8

+
0.5
9

+
0.2
10

. (4.9)

Example 4.2
If X = R, where R is a set of real numbers, then the set of real numbers
“close to number 7” shall be defined by the following membership function

µA (x) =
1

1 + (x − 7)2
. (4.10)

Therefore, the fuzzy set of real numbers “close to number 7” shall be
notated as

A =
∫

X

[
1 + (x − 7)2

]−1

x
. (4.11)

Remark 4.1
The fuzzy sets of natural and real numbers “close to number 7” may be
notated in many ways. For example, membership function (4.10) may be
replaced by the formula

µA (x) =

⎧
⎨

⎩
1 −
√

|x − 7|
3

, if 4 ≤ x ≤ 10,

0, otherwise.
(4.12)

Figures 4.1a and 4.1b show two membership functions of the fuzzy set A
of real numbers “close to number 7”.
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x x

1 1

7 4a) b) 0

mA(x) mA(x)

FIGURE 4.1. Illustration to Example 4.2 and Remark 4.1: membership functions
of the fuzzy set A of real numbers “close to number 7”

Example 4.3
Let us formalize the imprecise notion “appropriate temperature of water
in the Baltic Sea for swimming”. Let us define the universe of discourse as
the set X = [15◦, ..., 25◦] . The vacationer I, who prefers swimming in the
water of 21◦, would define the following fuzzy set:

A =
0.1
16

+
0.3
17

+
0.5
18

+
0.8
19

+
0.95
20

+
1
21

+
0.9
22

(4.13)

+
0.8
23

+
0.75
24

+
0.7
25

.

The vacationer II, preferring the temperature of 20◦, would give a different
definition of this set

B =
0.1
15

+
0.2
16

+
0.4
17

+
0.7
18

+
0.9
19

+
1
20

+
0.9
21

(4.14)

+
0.85
22

+
0.8
23

+
0.75
24

+
0.7
25

.

Using fuzzy sets A and B, we have formalized the imprecise notion “appro-
priate temperature of water in the Baltic Sea for bathing”.

Remark 4.2
We should stress that the fuzzy sets theory describes the uncertainty in a
different sense than the probability theory. Using the probability theory, we
may define, for instance, the probability of casting 4, 5 or 6 while tossing
the dice. Of course, this probability is 0.5. On the other hand, using fuzzy
sets, we may describe the imprecise notion “casting a large number of pips”.
The appropriate fuzzy set may take the form

A =
0.6
4

+
0.8
5

+
1
6

or
A =

0.1
3

+
0.5
4

+
0.85
5

+
1
6

.
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The only similarity between the fuzzy sets theory and the probability theory
is the fact that both the fuzzy set membership function and the probability
take the values in the interval [0, 1].

In some applications, the standard forms of membership function are
used. Below we shall specify these functions and will present their graphic
representations.

1. The singleton function shall be defined as follows:

µA (x) =
{

1, if x = x,
0, if x �= x.

(4.15)

The singleton is a specific membership function, as it takes the value 1
only in a single point of the universe of discussion, belonging fully to the
fuzzy set. In other points, it takes the value of 0. This membership function
characterizes a single-element fuzzy set. The only element having the full
membership to the fuzzy set A is the point x. The singleton membership
function is mainly used to perform fuzzification operation applied in fuzzy
inference systems.

2. Gaussian membership function (Fig. 4.2) is described by the formula

µA (x) = exp

(

−
(

x − x

σ

)2
)

, (4.16)

where x is the middle and σ defines the width of the Gaussian curve. It is
the most common membership function.

0

1

FIGURE 4.2. Gaussian membership function

3. Bell membership function (Fig. 4.3) takes the form of

µ (x; a, b, c) =
1

1 +
∣
∣
∣
∣
x − c

a

∣
∣
∣
∣

2b
, (4.17)

where the parameter a defines its width, the parameter b its slopes, and
the parameter c its center.
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0

1

FIGURE 4.3. Bell membership function

4. Membership function of class s (Fig. 4.4) is defined as

s (x; a, b, c) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 for x ≤ a,

2
(

x − a

c − a

)2

for a < x ≤ b,

1 − 2
(

x − c

c − a

)2

for b < x ≤ c,

1 for x > c.

(4.18)

where b = (a + c) /2. The graph of the membership function belonging
to this class takes a graphic form reminding of the letter “s”, and its
shape depends on the selection of the a, b and c parameters. In the point
x = b = (a + c) /2 the membership function of class s takes the value of 0.5.

x

1

a b0 c

2
1

m(x)

FIGURE 4.4. Membership function of class s

5. The membership function of class π (Fig. 4.5) is defined by the mem-
bership function of class s

π (x; b, c) =
{

s (x; c − b, c − b/2, c) for x ≤ c,
1 − s (x; c, c + b/2, c + b) for x > c.

(4.19)

The membership function of class π takes the zero values for x ≥ c+ b and
x ≤ c − b. In points x = c ± b/2 its value is 0.5.
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0

1

x

2
1

b

m(x)

c-b/2 c+bc-b c c+b/2

FIGURE 4.5. Membership function of class π

6. The membership function of class γ (Fig. 4.6) is given by the formula

γ (x; a, b) =

⎧
⎪⎨

⎪⎩

0 for x ≤ a,
x − a

b − a
for a < x ≤ b,

1 for a > b.

(4.20)

The Reader will easily notice the analogies between the shapes of the mem-
bership function of class s and γ.

0 ba

1

( )xµ

x

FIGURE 4.6. Membership function of class γ

7. The membership function of class t (Fig. 4.7) is defined as follows:

t (x; a, b, c) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 for x ≤ a,
x − a

b − a
for a < x ≤ b,

c − x

c − b
for b < x ≤ c,

0 for x > c.

(4.21)

In some applications, the membership function of class t may be alternative
to the function of class π.

8. The membership function of class L (Fig. 4.8) is defined by the formula

L (x; a, b) =

⎧
⎪⎨

⎪⎩

1 for x ≤ a,
b − x

b − a
for a < x ≤ b,

0 for a > b.

(4.22)
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0

1

x

(x)µ

cba

FIGURE 4.7. Membership function of class t

xba0

1

m(x)

FIGURE 4.8. Membership function of class L

Remark 4.3
Above, we provided some examples of standard membership function for
fuzzy sets defined in the space of real numbers i.e. X ⊂ R. When
X ⊂ Rn, x = [x1, ..., xn]T, n > 1, we may distinguish two cases. The first
case occurs when we assume the independence of particular variables xi,
i = 1, ..., n. Then the multidimensional membership functions are created
by applying the definition of Cartesian product of fuzzy sets (Definition
4.14) and using standard membership functions of one variable. In case the
variables xi are dependent, we apply the multidimensional membership
function. Below, three examples of such functions are specified:

1. The membership function of class Π (Fig. 4.9) is defined as follows:

µA (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − 2 ·
(
‖x − x‖

α

)2

for ‖x−x‖ ≤ 1
2
α,

2 ·
(

1 − ‖x − x‖
α

)2

for
1
2
α < ‖x − x‖ ≤ α,

0 for ‖x − x‖ > α,

(4.23)

when x is the center of the membership function, α > 0 is the parameter
defining its spread.
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(x)Aµ

x2 x1

FIGURE 4.9. Two-dimensional membership function of class Π

2. The radial membership function (Fig. 4.10) takes the form

µA (x) = e
‖x−x‖2

2·σ2 , (4.24)

where x is the center, and the value of the parameter σ influences the shape
of this function.

(x)Aµ

x2
x1

FIGURE 4.10. Two-dimensional radial membership function

3. The ellipsoidal membership function (Fig. 4.11) is defined as follows:

µA (x) = exp

(

− (x−x)T Q−1 (x−x)
α

)

, (4.25)

where x is the center, α > 0 is the parameter defining the spread of this
function, and Q is the so-called covariance matrix. By modifying this ma-
trix, we may model the shape of this function.

(x)Aµ

x1
x2

FIGURE 4.11. Two-dimensional elipsoidal membership function



72 4. Methods of knowledge representation using type-1 fuzzy sets

We shall provide below two examples illustrating the application of stan-
dard membership functions of one variable.

Example 4.4
Let us consider three imprecise statements:
1) “low speed of the car”,
2) “medium speed of the car”,
3) “high speed of the car”.

We shall assume the interval [0, xmax] as the universe of discourse X, where
xmax is the maximum speed. Figure 4.12 illustrates fuzzy sets A, B, C
corresponding to the above statements. Let us notice that the membership
function of the set A is of the L type, of the set B is of the t type, and of
the set C is the class γ. In the fixed point x = 40 km/h the membership
function of the fuzzy set “low speed of the car” takes the value 0.5, i.e.
µA = (40) = 0.5. The same value is taken by the membership function
of the fuzzy set “medium speed of the car”, i.e. µB = (40) = 0.5 and
µC = (40) = 0.

30 50 70 xmax

1

0.5

mA(x) mB(x) mC(x)

FIGURE 4.12. Illustration to Example 4.4

Example 4.5
Figure 4.13 illustrates the membership function of the fuzzy set “a lot of
money” (in USD). It is the function of the class s, and X = [0; 100000],
a = 1000, c = 10000. Therefore, we can certainly consider amounts exceed-
ing 10000 USD as “large”, as then, the values of the membership function
are equal to 1. Amounts lower than 1000 USD are not “large”, as the val-
ues of the relevant membership functions are equal to 0. Such definition of
the fuzzy set “a lot of money” has a subjective nature. The Reader may
have his/her own opinion on the issue of the ambiguous statement “a lot of
money”. This opinion will be reflected by other values of the parameters a
and c of the function of class s.
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(x)Aµ

10 000

1

100 0001 000 x

FIGURE 4.13. Illustration to Example 4.5

Definition 4.2
The set of elements of the universe X, for which µA (x) > 0, is called the
support of a fuzzy set A and is denoted as supp A (support), i.e.

supp A = {x ∈ X; µA (x) > 0} . (4.26)

Definition 4.3
The height of a fuzzy set A shall be denoted as h (A) and defined as

h (A) = sup
x∈X

µA (x) . (4.27)

Example 4.6
If X = {1, 2, 3, 4, 5} and

A =
0.2
1

+
0.4
2

+
0.7
4

, (4.28)

then supp A = {1, 2, 4} .
If X = {1, 2, 3, 4} and

A =
0.3
2

+
0.8
3

+
0.5
4

, (4.29)

then h (A) = 0.8.

Definition 4.4
The fuzzy set A is called normal if and only if h (A) = 1. If the fuzzy set
A is not normal, it can be normalized using the transformation

µAnor
(x) =

µA (x)
h (A)

, (4.30)

where h (A) is the height of this set.

Example 4.7
The fuzzy set

A =
0.1
2

+
0.5
4

+
0.3
6

(4.31)
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after normalizing takes the form

Anor =
0.2
2

+
1
4

+
0.6
6

. (4.32)

Definition 4.5
The fuzzy set A is called empty which shall be notated A = ∅, if and only
if µA (x) = 0 for each x ∈ X.

Definition 4.6
The fuzzy set A is included in the fuzzy set B, which shall be notated
A ⊂ B, if and only if

µA (x) ≤ µB (x) (4.33)

for each x ∈ X. An example of inclusion of the fuzzy set A in the fuzzy set
B is illustrated by Fig. 4.14.

x

mB(x)

mA(x)

FIGURE 4.14. Inclusion of the fuzzy set A in the fuzzy set B

Definition 4.7
The fuzzy set A is equal to the fuzzy set B, which shall be notated A = B,
if and only if

µA (x) = µB (x) (4.34)

for each x ∈ X. The above definition, similarly to Definition 4.6, is not
“flexible”, as it does not consider the case when the values of the membership
functions µA (x) and µB (x) are almost equal. Then we can introduce the
term of equality degree of fuzzy sets A and B as for example

E (A = B) = 1 − max
x∈T

|µA (x) − µB (x)| , (4.35)

where T = {x ∈ X : µA (x) �= µB (x)} . Different definitions of the inclusion
degree and the equality degree of fuzzy sets have been presented in detail
in monograph [94].
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Definition 4.8
α-cut of the fuzzy set A ⊆ X, notated as Aα is called the following non-
fuzzy set:

Aα = {x ∈ X : µA (x) ≥ α} , ∀α∈[0,1], (4.36)
or the set defined by the characteristic function

χAα
(x) =

{
1 for µA (x) ≥ α,
0 for µA (x) < α.

(4.37)

mA(x)
1α

2α

3α

1αA

2αA

3αA

x

FIGURE 4.15. Illustration of α-cuts of the fuzzy set A

The definition of α-cut of a fuzzy set is illustrated by Fig. 4.15. It can
be easily noted that there is the following implication:

α2 < α1 =⇒ Aα1 ⊂ Aα2 . (4.38)

Example 4.8
Let us consider the fuzzy set A ⊆ X

A =
0.1
2

+
0.3
4

+
0.7
5

+
0.8
8

+
1
10

, (4.39)

while X = {1, ..., 10} . According to Definition 4.8 particular α-cuts are
defined as follows:

A0 = X = {1, ..., 10} ,
A0.1 = {2, 4, 5, 8, 10} ,
A0.3 = {4, 5, 8, 10} ,
A0.7 = {5, 8, 10} ,
A0.8 = {8, 10} ,
A1 = {10} .

Definition 4.9
The fuzzy set A ⊆ R is convex if and only if for any x1, x2 ∈ R and
λ ∈ [0, 1] the following occurs

µA [λx1 + (1 − λ)x2] ≥ min {µA (x1) , µA (x2)} . (4.40)
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Figure 4.16 illustrates an example of a convex fuzzy set.

0

1

x

mA(x)

FIGURE 4.16. Convex fuzzy set A

Definition 4.10
The fuzzy set A ⊆ R is concave if and only if there are such points x1,
x2 ∈ R and λ ∈ [0, 1], that the following inequality holds

µA [λx1 + (1 − λ)x2] < min {µA (x1) , µA (x2)} . (4.41)

Figure 4.17 illustrates a concave fuzzy set.

x

mA(x)

FIGURE 4.17. Concave fuzzy set A

4.3 Operations on fuzzy sets

In this subchapter, we shall present the basic operations on fuzzy sets, both
set operations and algebraic operations.

Definition 4.11
The intersection of fuzzy sets A, B ⊆ X is the fuzzy set A ∩ B with the
membership function

µA∩B (x) = min (µA (x) , µB (x)) (4.42)

for each x ∈ X. This operation has been presented graphically in Fig. 4.18.
The intersection of fuzzy sets A1, A2, ..., An is defined by the membership
function
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µA1∩A2···∩An
(x) = min [µA1 (x) , µA2 (x) , ..., µAn

(x)] (4.43)

for each x ∈ X.

x

mA(x) mB(x)

FIGURE 4.18. Intersection of fuzzy sets A and B

Remark 4.4
Apart form the definition of intersection of fuzzy sets, the literature also
contains the definition of algebraic product of these sets. The algebraic
product of fuzzy sets A and B is the fuzzy set C = A ·B defined as follows:

C = {(x, µA (x) · µB (x)) | x ∈ X} . (4.44)

The operation of algebraic product is illustrated by Fig. 4.19.

1

2
1

4
1

x

mA(x) mB(x)

FIGURE 4.19. Algebraic product of fuzzy sets A and B

Definition 4.12
The union of fuzzy sets A and B is the fuzzy set A ∪ B defined by the
membership function

µA∪B (x) = max (µA (x) , µB (x)) (4.45)

for each x ∈ X.
This operation is illustrated by Fig. 4.20. The membership function of

the union of fuzzy sets A1, A2, ..., An is expressed by the formula

µA1∪A2∪···∪An
(x) = max [µA1 (x) , µA2 (x) , ..., µAn

(x)] (4.46)

for each x ∈ X.
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x

mA(x)
mB(x)

FIGURE 4.20. Union of fuzzy sets A and B

Example 4.9
Let us assume that X = {1, 2, 3, 4, 5, 6, 7} and

A =
0.9
3

+
1
4

+
0.6
6

, (4.47)

B =
0.7
3

+
1
5

+
0.4
6

. (4.48)

According to Definition 4.11, we have

A ∩ B =
0.7
3

+
0.4
6

. (4.49)

By virtue of Definition 4.12, we have

A ∪ B =
0.9
3

+
1
4

+
1
5

+
0.6
6

(4.50)

whereas the product of fuzzy sets A and B given by formula (4.44) takes
the form of

A · B =
0.63
3

+
0.24
6

. (4.51)

In the literature a very useful is the so-called decomposition theorem. It
allows to represent any fuzzy set A in the form of union of fuzzy sets gen-
erated by α-cuts of the set A.

Theorem 4.1
Any fuzzy set A ⊆ X may be presented in the form

A =
⋃

α∈[0,1]

αAα, (4.52)

where αAα means a fuzzy set, to the elements of which the following mem-
bership degrees have been assigned:

µαAα
(x) =

{
α for x ∈ Aα,
0 for x /∈ Aα.

(4.53)
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Example 4.10
We shall decompose fuzzy set (4.39). In accordance with formula (4.52),
we have

A =
(

0.1
2

+
0.1
4

+
0.1
5

+
0.1
8

+
0.1
10

)
∪
(

0.3
4

+
0.3
5

+
0.3
8

+
0.3
10

)

∪
(

0.7
5

+
0.7
8

+
0.7
10

)
∪
(

0.8
8

+
0.8
10

)
∪ 1

10
(4.54)

=
0.1
2

+
0.3
4

+
0.7
5

+
0.8
8

+
1
10

.

Remark 4.5
Definitions 4.11 and 4.12 are not the only known in literature definitions
of intersection and union of fuzzy sets. Instead of the equalities (4.42) and
(4.45) repeated below,

{
µA∩B (x) = min (µA (x) , µB (x))
µA∪B (x) = max (µA (x) , µB (x))

we can find alternative definitions using the terms of the so-called t-norm
and t-conorm. Therefore, operation (4.42) is an example of the operation
of t-norm (intersection operation), and operation (4.45) is an example of
the operation of t-conorm (union operation). Subchapter 4.6 will present
the formal definitions of t-norm and t-conorm and more general definitions
of intersection and union of fuzzy sets.

Remark 4.6
The literature contains attempts to analytically find the “best” operations
of intersection and union of fuzzy sets. For example, Bellman and Giertz
[8] defined and solved the problem of finding two such functions f and g

f, g : [0, 1] × [0, 1] → [0, 1]

that
µA∩B (x) = f (µA (x) , µB (x)) , (4.55)

µA∪B (x) = g (µA (x) , µB (x)) . (4.56)

The authors of the above mentioned publication imposed many conditions
on functions f and g, and then they demonstrated that these conditions are
met only by operation (4.42) and (4.45) This does not mean that operation
(4.42) and (4.45) are adequate in all applications, e.g. if

µA (x) < µB (x) , ∀x⊆X, (4.57)

then as a result of operation (4.42), we will have

µA∩B (x) = µA (x) (4.58)
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regardless of µB (x). In other words, the membership function of the fuzzy
set B has no influence whatsoever on the definition of the intersection of
fuzzy sets A and B. This fact is illustrated by Fig. 4.21. In such case, it
seems more reasonable to apply, for instance, formula (4.44) as the inter-
section operation. Then the intersection of two fuzzy sets will be identical
to the product of these sets (see Remark 4.4).

x

mA(x)=mA∩B(x)

mB(x)

FIGURE 4.21. Intersection of fuzzy sets A and B when µA (x) < µB (x)

Definition 4.13
The complement of a fuzzy set A ⊆ X is the fuzzy set Â with the mem-
bership function

µÂ (x) = 1 − µA (x) (4.59)

for each x ∈ X. The complement operation is illustrated by Fig. 4.22.

1

x

ˆmA(x)mA(x)

FIGURE 4.22. Complement of fuzzy set A

Example 4.11
Let us assume that X = {1, 2, 3, 4, 5, 6} and

A =
0.3
2

+
1
3

+
0.7
5

+
0.9
6

. (4.60)

According to Definition 4.13, the complement of the set A is the set

Â =
1
1

+
0.7
2

+
1
4

+
0.3
5

+
0.1
6

. (4.61)
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Let us notice that

A ∩ Â =
0.3
2

+
0.3
5

+
0.1
6

�= ∅ (4.62)

and
A ∪ Â =

1
1

+
0.7
2

+
1
3

+
1
4

+
0.7
5

+
0.9
6

�= X. (4.63)

We may demonstrate that the above presented operations on fuzzy sets
(Definitions 4.11 – 4.13) have the properties of commutativity, associativity
and distributivity and moreover de Morgan’s laws and absorption laws
occur. However, in case of fuzzy sets, the laws of crisp sets are not met, i.e.

A ∩ Â �= ∅, (4.64)

A ∪ Â �= X. (4.65)

This fact is illustrated by Fig. 4.23 and Example 4.11. It is worth noting
that the membership function of the intersection of fuzzy sets A and Â
meets the inequality (see [42]):

µA∩Â (x) = min
(
µA (x) , µÂ (x)

)
≤ 1

2
. (4.66)

Similarly, in case of the union, we have

µA∪Â (x) = max
(
µA (x) , µÂ (x)

)
≥ 1

2
. (4.67)

ˆ

x

x

ˆ

mA(x)mA(x)

mA∩A(x)

ˆmA∪A(x)

FIGURE 4.23. Fuzzy sets A ∩ Â and A ∪ Â
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Definition 4.14
The Cartesian product of fuzzy sets A ⊆ X and B ⊆ Y is notated as A×B
and defined as

µA×B (x, y) = min (µA (x) , µB (y)) (4.68)

or
µA×B (x, y) = µA (x) µB (y) (4.69)

for each x ∈ X and y ∈ Y. The Cartesian product of fuzzy sets
A1 ⊆ X1, A2 ⊆ X2, ..., An ⊆ Xn is notated as A1 × A2 × ...× An and
defined as

µA1×A2×...×An
(x1, x2, ..., xn) = min(µA1(x1) , µA2(x2) , ..., µAn

(xn)) (4.70)

or

µA1×A2×...×An
(x1, x2, ..., xn) = µA1 (x1) µA2 (x2) , ..., µAn

(xn) (4.71)

for each x1 ∈ X1, x2 ∈ X2, . . . , xn ∈ Xn.

Example 4.12
Let us assume that X = {2, 4} , Y = {2, 4, 6} and

A =
0.5
2

+
0.9
4

, (4.72)

B =
0.3
2

+
0.7
4

+
0.1
6

. (4.73)

By applying Definition 4.14 of the Cartesian product of sets A and B, we
obtain

A × B =
0.3

(2, 2)
+

0.5
(2, 4)

+
0.1

(2, 6)
+

0.3
(4, 2)

+
0.7

(4, 4)
+

0.1
(4, 6)

. (4.74)

The following algebraic operations on fuzzy sets play a significant role in
the semantics of linguistic variables (Subchapter 4.8).

Definition 4.15
The concentration of a fuzzy set A ⊆ X shall be notated as CON (A) and
defined as

µCON(A) (x) = (µA (x))2 (4.75)

for each x ∈ X.

Definition 4.16
The dilation of a fuzzy set A ⊆ X shall be notated as DIL (A) and defined
as

µDIL(A) (x) = (µA (x))0.5 (4.76)

for each x ∈ X.
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x

mCON(A)(x)

mDIL(A)(x)

mA(x)

1

FIGURE 4.24. The operation of concentration and dilation of fuzzy sets

The operation of concentration and dilation of fuzzy sets is illustrated
by Fig. 4.24.

Example 4.13
If X = {1, 2, 3, 4} and

A =
0.4
2

+
0.7
3

+
1
4
, (4.77)

then according to Definitions 4.15 and 4.16, we have

CON (A) =
0.16
2

+
0.49
3

+
1
4
, (4.78)

DIL (A) =
0.63
2

+
0.84
3

+
1
4
. (4.79)

4.4 The extension principle

The extension principle allows to extend different mathematical operations
from non-fuzzy sets to fuzzy sets. Let us consider a non-fuzzy mapping f
of the space X in the space Y

f : X → Y. (4.80)

Let A be a given fuzzy set defined in the space X, i.e. A ∈ X. If the fuzzy
set A has the form (4.3), i.e.

A =
µA (x1)

x1
+

µA (x2)
x2

+ · · · + µA (xn)
xn

and the mapping f is one-to-one, then the extension principle says that the
fuzzy set B induced by this mapping and defined in the space Y takes the
form

B = f (A) =
µA (x1)
f(x1)

+
µA (x2)
f(x2)

+ · · · + µA (xn)
f(xn)

. (4.81)
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Example 4.14
Let us assume that

A =
0.1
3

+
0.4
2

+
0.7
5

(4.82)

and f (x) = 2x + 1. In accordance with the extension principle, we have

B = f (A) =
0.1
7

+
0.4
5

+
0.7
11

. (4.83)

Now, let us consider a situation, in which more than one element of the set
X is mapped in the same element y ∈ Y (the mapping f is not one-to-one).
Then the membership degree of the element y to the fuzzy set B = f (A)
is equal to the maximum degree from the membership degrees of elements
of set X, which are mapped in the same element y. The following example
shall illustrate this case of the extension principle.

Example 4.15
If

A =
0.3
−2

+
0.5
3

+
0.7
2

(4.84)

and f (x) = x2, then the fuzzy set B induced by the mapping f is equal to

B = f (A) =
0.5
9

+
0.7
4

, (4.85)

as max{0.3; 0.7} = 0.7. Let us notate by f−1 (y) the set of the elements
x ∈ X which are mapped in the element y ∈ Y by transformation of f. If
f−1 (y) is an empty set, i.e. f−1 (y) = ∅, then the membership degree of
the element y to the fuzzy set B is equal to zero. The above discussion and
the example that illustrate it allow to formulate the following extension
principle.

Extension principle I
If we have a given non-fuzzy mapping (4.80) and some fuzzy set A ⊆ X,
then the extension principle says that the fuzzy set B induced by this
mapping has the form of

B = f (A) = {(y, µB (y)) | y = f (x) , x ∈ X} , (4.86)

where

µB (y) =

⎧
⎪⎨

⎪⎩

sup
x∈f−1(y)

µA (x) , if f−1 (y) �= ∅,

0, if f−1 (y) = ∅.

(4.87)

The extension principle I includes both the case of the space X with a
finite number of elements (set B is defined by formula (4.81)), and with an
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infinite number of elements. In the latter case, the fuzzy set B induced by
the mapping f may be notated as

B = f (A) =
∫

y

µA (y)
f (x)

. (4.88)

In some applications (e.g. fuzzy numbers, Subchapter 4.5), a different form
of the extension principle is useful.

Extension principle II
Let X be the Cartesian product of non-fuzzy sets X1 × X2 × . . . × Xn. If
we have a given non-fuzzy mapping

f : X1 × X2 × . . . × Xn → Y (4.89)

and given fuzzy sets A1 ⊆ X1, A2 ⊆ X2, ..., An ⊆ Xn, then the extension
principle says that the fuzzy set B induced by the mapping f has the form

B =f(A1, ..., An)={(y, µB (y)) | y =f (x1, ..., xn), (x1, ..., xn)∈ X},
(4.90)

while

µB(y)=

⎧
⎪⎨

⎪⎩

sup
(x1,...,xn

∈f−1(y))

min {µA1 (x1) , ..., µAn
(xn)}, if f−1 (y) �= ∅,

0, if f−1 (y) = ∅.

(4.91)

In formula (4.91), the minimum operation may be replaced with an alge-
braic product or, more generally, with the so-called t-norm (Subchapter
4.6). The following three examples illustrate the fact that the extension
principle allows to extend the arithmetical operations onto fuzzy sets.

Example 4.16
Let us consider the function

f (x1, x2) =
x1x2

(x1 + x2)
. (4.92)

Let us determine a fuzzy set B = f (A1, A2) induced by mapping (4.92).
In accordance with formula (4.90), we have

B = f (A1, A2) =
∫

x1∈X1

∫

x2∈X2

sup
(x1,...,xn

∈f−1(y))

min (µAi
(x1) , µA2 (x2))

∣
∣
∣
∣

x1x2

x1 + x2
.

Example 4.17
Let us assume that X is the Cartesian product of sets X1 = X2 =
{1, 2, 3, 4, 5, 6} . Let A1 be the fuzzy set of numbers “close to number 2”

A1 =
0.7
1

+
1
2

+
0.8
3

(4.93)
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and let A2 be the fuzzy set of numbers “close to number 4”

A2 =
0.8
3

+
1
4

+
0.9
5

. (4.94)

If

y = f (x1, x2) = x1x2, (4.95)

then the set B = f (A1, A2) induced by mapping (4.95) will be a fuzzy set
of numbers “close to number 8”, while B ⊆ Y = {1, 2, ..., 36}. By virtue of
the extension principle II, we have

B = f (A1, A2) =
3∑

i,j=1

[
min
(
µA1

(
x

(i)
1

)
, µA2

(
x

(j)
2

))]
/x

(i)
1 x

(j)
2

=
min(0.7; 0.8)

3
+

min(0.7; 1)
4

+
min(0.7; 0.9)

5

+
min(1; 0.8)

6
+

min(1; 1)
8

+
min(1; 0.9)

10
+

min(0.8; 0.8)
9

(4.96)

+
min(0.8; 1)

12
+

min(0.8; 0.9)
15

=
0.7
3

+
0.7
4

+
0.7
5

+
0.8
6

+
1
8

+
0.8
9

+
0.9
10

+
0.8
12

+
0.8
15

.

The following example illustrates the case when the element y=f
(
x

(i)
1 , x

(j)
2

)

takes the same value for different values of elements x
(i)
1 and x

(j)
2 .

Example 4.18
Let us assume that X is the Cartesian product of sets X1 =X2 ={ 1, 2, 3, 4} .
We shall define the following fuzzy set A1 of numbers “close to number 2”

A1 =
0.7
1

+
1
2

+
0.8
3

(4.97)

and the fuzzy set A2 of numbers “close to number 3”

A2 =
0.8
2

+
1
3

+
0.6
4

. (4.98)

Currently, the set B = f (A1, A2) induced by mapping (4.95) will be a
fuzzy set of numbers “close to number 6”, while B ⊆ Y = {1, 2, ..., 16}. In
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accordance with the extension principle II, we have

B = f (A1, A2) =
min(0.7; 0.8)

2
+

min(0.7; 1)
3

+
max[min(0.7; 0.6);min(1; 0.8)]

4

+
max[min(1; 1); min(0.8; 0.8)]

6
(4.99)

+
min(1; 0.6)

8
+

min(0.8; 1)
9

+
min(0.8;0.6)

12

=
0.7
2

+
0.7
3

+
0.8
4

+
1
6

+
0.6
8

+
0.8
9

+
0.6
12

.

4.5 Fuzzy numbers

In the fuzzy sets theory, we can differentiate the fuzzy sets defined on the
axis of real numbers. For example, fuzzy sets of numbers “close to number 7”
(Fig. 4.25) are defined in the set R, and in addition, are normal and convex
and have a continuous membership function.

Such fuzzy sets are called fuzzy numbers. Below, we will present the
definition of a fuzzy number.

Definition 4.17
A fuzzy set A defined on the set of real numbers, A ⊆ R, the membership
function of which

µA : R → [0, 1]

meets the conditions:
1) supx∈R µA (x) = 1, i.e. the fuzzy set A is normal,
2) µA [λx1 + (1 − λ)x2] ≥ min {µA (x1) , µA (x2)} , i.e. the set A is convex,
3) µA (x) is a continuous function by intervals, is called a fuzzy number.

Figure 4.25 illustrates an example of fuzzy numbers. The theory of fuzzy
numbers distinguishes the positive and negative fuzzy numbers.

x

mA(x)

FIGURE 4.25. Examples of fuzzy numbers
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Definition 4.18
The fuzzy number A ⊆ R is positive, if µA (x) = 0 for all x < 0.
The fuzzy number A ⊆ R is negative, if µA (x) = 0 for all x > 0.

Figure 4.26 illustrates an example of the positive fuzzy number, negative
fuzzy number and a number that is neither positive not negative.

x

1

mA(x)

FIGURE 4.26. Examples of the positive fuzzy number, negative fuzzy number
and a number that is neither positive nor negative

The Reader, who has studied Subchapter 4.4, will have no difficulties in
defining the basic arithmetical operations on fuzzy numbers. We shall define
these operations using the extension principle, which allows to formulate
the definition of adding, subtracting, multiplying and dividing two fuzzy
numbers A1, A2 ⊆ R.

Definition 4.19 is the consequence of extension principle II, in which
mapping (4.89) takes the form

y=f (x1, x2)=

⎧
⎪⎪⎨

⎪⎪⎩

x1 + x2 in case of adding fuzzy numbers A1 and A2

x1 − x2 in case of subtracting fuzzy numbers A1 and A2

x1 · x2 in case of multiplying fuzzy numbers A1 and A2

x1 : x2 in case of dividing fuzzy numbers A1 and A2

Definition 4.19
The basic arithmetic operations on fuzzy numbers A1, A2 ⊆ R shall be
defined as follows:

a) Adding two fuzzy numbers A1 and A2 shall be notated

A1 ⊕ A2
def= B, (4.100)

while the membership function of sum (4.100) is defined by formula (4.91)
taking the form of

µB (y) = sup
x1,x2

y=x1+x2

min {µA1 (x1) , µA2 (x2)} . (4.101)



4.5 Fuzzy numbers 89

b) Subtracting two fuzzy numbers A1 and A2 shall be notated

A1 � A2
def= B, (4.102)

while the membership function of difference (4.102) is defined by formula
(4.91) taking the form of

µB (y) = sup
x1,x2

y=x1−x2

min {µA1 (x1) , µA2 (x2)} . (4.103)

c) Multiplication of two fuzzy numbers A1 and A2 shall be notated

A1 � A2
def= B, (4.104)

while the membership function of product (4.104) is defined by formula
(4.91) taking the form of

µB (y) = sup
x1,x2

y=x1·x2

min {µA1 (x1) , µA2 (x2)} . (4.105)

d) Division of two fuzzy numbers A1 and A2 shall be notated

A1 ©÷ A2
def= B, (4.106)

while the membership function of quotient (4.106) is defined by formula
(4.91) taking the form of

µB (y) = sup
x1,x2

y=x1 : x2

min {µA1 (x1) , µA2 (x2)} . (4.107)

Although from the application perspective, we are interested in fuzzy num-
bers having continuous membership functions, we shall consider a discrete
case to illustrate the above definition.

Example 4.19
Let us add and multiply two fuzzy numbers of the following form

A1 =
0.7
2

+
1
3

+
0.6
4

, (4.108)

A2 =
0.8
3

+
1
4

+
0.5
6

. (4.109)
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In accordance with formula (4.101), we have

A1 ⊕ A2=
min (0.7; 0.8)

5
+

max {min (0.7; 1) ,min (1; 0.8)}
6

+
max {min (1; 1),min (0.6; 0.8)}

7

+
max {min (0.7; 0.5),min (0.6; 1)}

8
(4.110)

+
min (1; 0.5)

9
+

min (0.6; 0.5)
10

=
0.7
5

+
0.8
6

+
1
7

+
0.6
8

+
0.5
9

+
0.5
10

.

On the basis of formula (4.105), we obtain

A1 � A2 =
min (0.7; 0.8)

6
+

min (0.7; 1)
8

+
min (1; 0.8)

9

+
max {min (0.7; 0.5) ,min (1; 1) ,min (0.6; 0.8)}

12
(4.111)

+
min (0.6; 1)

16
+

min (1; 0.5)
18

+
min (0.6; 0.5)

24

=
0.7
6

+
0.7
8

+
0.8
9

+
1
12

+
0.6
16

+
0.5
18

+
0.5
24

.

Arithmetical operations on fuzzy number do not necessarily result in a
fuzzy number. This problem is eliminated when we perform operations on
fuzzy numbers with continuous membership functions, which is stated in
the following theorem.

Theorem 4.2 (Dubois and Prade [42])
If the fuzzy numbers A1 and A2 have continuous membership functions,
then arithmetical operations of adding, subtracting, multiplying and divid-
ing result in fuzzy numbers.

We have discussed the basic binary operations on fuzzy numbers. Unary
operations are performed also using the extension principle. If f is the
mapping

f : R → R (4.112)

and A ⊆ R, y = f (x) , then according to formula (4.87) we have

µB (y) = sup
x

y=f(x)

µA (x) , (4.113)

where B = f (A) .
Below, we shall present some examples of unary operations on fuzzy

numbers.



4.5 Fuzzy numbers 91

1) Reversal of sign operation

As a result of operation f (x) = −x we obtain a fuzzy number which
is opposite to the fuzzy number A ⊆ R. This number shall be notated
−A ⊆ R, and its membership function is equal to

µ−A (x) = µA (−x) . (4.114)

The fuzzy numbers A and −A are symmetrical about the x axis.

2) Inverse operation

As a result of operation f (x) = x−1, x �= 0, we obtain a fuzzy number
which is inverse to the fuzzy number A ⊆ R.This number shall be notated
A−1 ⊆ R, and its membership function is equal to

µA−1 (x) = µA

(
x−1
)
. (4.115)

Let us assume that A is a positive or a negative fuzzy number. If the fuzzy
number A is neither positive nor negative, then the fuzzy set B = f (A) =
A−1 is not convex, and therefore B is not a fuzzy number.

3) Scaling operation

As a result of operation f (x) = λx, λ �= 0, we obtain a fuzzy number which
is scaled in relation to the fuzzy number A ⊆ R. This number shall be
notated λA ⊆ R, and its membership function is equal to

µλA (x) = µA

(
xλ−1
)
. (4.116)

4) Exponent operation

As a result of operation f (x) = ex, x > 0, we obtain the power of the fuzzy
number A ⊆ R. This number shall be notated eA ⊆ R, and its membership
function is equal to

µeA (x) =
{

µA (log x) for x > 0,
0 for x < 0,

(4.117)

and therefore eA is a positive fuzzy number.

5) Absolute value operation

The absolute value of a fuzzy number A ⊆ R shall be notated as |A| ⊆ R
and defined as

µ|A| (x) =
{

max(µA (x) , µA (−x)) for x ≥ 0,
0 for x < 0.

(4.118)

Of course, |A| is a positive fuzzy number.
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Example 4.20
If

A =
0.7
1

+
1
2

+
0.6
5

, (4.119)

then the fuzzy number −A has the form

−A =
0.6
−5

+
1
−2

+
0.7
−1

, (4.120)

while the fuzzy number A−1 shall be notated

A−1 =
0.6
0.2

+
1

0.5
+

0.7
1

. (4.121)

Using Definition 4.19, it is easy to check that in the above example

A + (−A) �= 1
0

(4.122)

and
A · A−1 �= 1

1
. (4.123)

Therefore, the fuzzy numbers are characterized by a lack of opposite and
inverse fuzzy number with relation to adding and multiplication. This fact
makes impossible to use, for instance, the elimination method to solve equa-
tions with fuzzy numbers.

Arithmetical operations on fuzzy numbers call for rather complicated
computations. That is why Dubois and Prade [41] have proposed a cer-
tain particular representation of fuzzy numbers. This representation shows
the fuzzy numbers using 3 parameters, which much simplifies arithmetic
operations. Let L and P be the functions mapping

(−∞,∞) → [0, 1] (4.124)

and meeting the conditions
1) L (−x) = L (x) and P (−x) = P (x),
2) L (0) = 1 and P (0) = 1,
3) L and P are nonincreasing functions in the interval [0,+∞).

We may give the following examples of function L:

L (x) = P (x) = e−|x|p p > 0, (4.125)

L (x) = P (x) =
1

1 + |x|p p > 0, (4.126)

L (x) = P (x) = max (0, 1 − |x|p) p > 0, (4.127)
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L (x) = P (x) =
{

1 for x ∈ [−1, 1] ,
0 for x /∈ [−1, 1] . (4.128)

Below, we present the definition of a fuzzy number of the L − P type.

Definition 4.20
The fuzzy number A ⊆ R is a fuzzy number of the L − P type if and only
if its membership function has the form of

µA (x) =

⎧
⎪⎪⎨

⎪⎪⎩

L

(
m − x

α

)
, if x ≤ m,

P

(
x − m

β

)
, if x ≥ m,

(4.129)

where m is a real number, called the average value of the fuzzy num-
ber A (µA (m) = 1), α-positive real number, called the left-sided spread,
β-positive real number, called the right-sided spread. Let us notice that if
the α and β spreads increase, then number A becomes “more” fuzzy. The
fuzzy number of the L − P type may be notated in the short form as

A = (mA, αA, βA)LP . (4.130)

Example 4.21
The fuzzy number “more or less 9” may be notated in the form

A = (9, 3, 3)LP . (4.131)

The membership function of this number is illustrated in Fig. 4.27, and

L (x) = P (x) =
1

1 + x2
. (4.132)

0

0.1

0.5

1

9 18 x

mA(x)

FIGURE 4.27. Illustration to Example 4.21
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Arithmetic operations on fuzzy numbers L−P come down to operations
on three parameters. The fuzzy number opposite to fuzzy number (4.130)
is equal

−A = (−mA, α, β)LP . (4.133)

The sum of fuzzy numbers A = (mA, αA, βA)LP and B = (mB , αB , βB)LP

has the form of

A ⊕ B = (mA + mB , αA + αB , βA + βB)LP . (4.134)

Other arithmetic operations (e.g. multiplication and division) on fuzzy
numbers of the L − P type are more complicated, and their result is an
approximation.

The membership function µA (x) of the fuzzy number of the L− P type
takes the value 1 only in point x = m. Now, we shall modify Definition 4.20
so that µA (x) = 1 not only in a single point x = m, but in all points of the
interval [m1,m2], while m1 < m2 and m1,m2 ∈ R. We will then obtain the
definition of the so-called flat fuzzy number. This definition may be applied
to modeling fuzzy intervals.

Definition 4.21
A flat fuzzy number of the L−P type is called the fuzzy number with the
membership function

µA (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L

(
m1 − x

α

)
, if x ≤ m1,

1, if m1 ≤ x ≤ m2,

P

(
x − m2

β

)
, if x ≥ m2.

(4.135)

A flat fuzzy number A may be identified with the fuzzy interval A of the
form

A = (m1,m2, α, β)LP . (4.136)

Example 4.22
Let us consider the imprecise statement “the price of the motorbike in
this store varies from approx. 3,000 USD to 6,000 USD”. The appropriate
formalization of this statement may be the fuzzy interval A of the form

A = (3, 6, α, β)LP . (4.137)

Figure 4.28 illustrates an example graph of membership function of fuzzy
interval (4.137).

In the theory of fuzzy numbers, special attention must be paid to trian-
gular fuzzy numbers. We may describe them using membership functions
of class t (4.21). At present, we shall present a different description of these
numbers. A triangular fuzzy number A is defined on the interval [a1, a2],
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xm1=3 m2=6

mA(x)
1

FIGURE 4.28. Illustration to Example 4.22

and its membership function takes the value equal to 1 in the point aM .
Therefore, the triangular fuzzy number may be notated as

A = (a1, aM , a2) . (4.138)

In many applications, there is the need to perform the so-called defuzzi-
fication of a triangular fuzzy number. As a result of defuzzification, the
knowledge described by the fuzzy number is presented as a real number.
Below, we shall present four methods of defuzzification of a triangular fuzzy
number [13]:

y(1) = aM ,

y(2) =
a1 + aM + a2

3
,

y(3) =
a1 + 2aM + a2

4
,

y(4) =
a1 + 4aM + a2

6
,

Let us notice that the values a1 and a2 do not influence the determination of
value of a defuzzified y(1). It is worth noting that the sum of two triangular
fuzzy numbers A1 =

(
a
(1)
1 , a

(1)
M , a

(1)
2

)
and A2 =

(
a
(2)
1 , a

(2)
M , a

(2)
2

)
is also a

triangular number [171]

A1 + A2=
(
a
(1)
1 , a

(1)
M , a

(1)
2

)
+
(
a
(2)
1 , a

(2)
M , a

(2)
2

)
(4.139)

=
(
a
(1)
1 + a

(2)
1 , a

(1)
M + a

(2)
M , a

(1)
2 + a

(2)
2

)
.

This is also true for n > 2 triangular numbers.
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4.6 Triangular norms and negations

In point 4.3, we have defined the operations of intersection and union of
fuzzy sets as

µA∩B (x) = min (µA (x) , µB (x)),
µA∪B (x) = max (µA (x) , µB (x)).

At the same time, we have stressed that these are not the only definitions
of such operations. The intersection of fuzzy sets may be more generally
defined as

µA∩B (x) = T (µA (x) , µB (x)), (4.140)

where the function T is the so-called t-norm. Therefore, min (µA (x) ,
µB (x)) = T (µA (x) , µB (x)) is an example of operation of the t-norm.
Similarly, the union of fuzzy sets is defined as follows:

µA∪B (x) = S (µA (x), µB (x)), (4.141)

where the function S is the so-called t-conorm. In this case, max (µA (x) ,
µB (x)) = S (µA (x) , µB (x)) is an example of the t-conorm. It is worth
noting that the t-norms and the t-conorms belong to the so-called triangu-
lar norms. These norms will be applied several times further in this book,
not only to define the operations of intersection and union of fuzzy sets.

The Reader has been presented with the examples of operation of a
t-norm and a t-conorm, and now we shall present their formal definitions.

Definition 4.22
The function of two variables T

T : [0, 1] × [0, 1] → [0, 1] (4.142)

is called a t-norm, if
(i) function T is nondecreasing with relation to both arguments

T (a, c) ≤ T (b, d) for a ≤ b, c ≤ d (4.143)

(ii) function T satisfies the condition of commutativity

T (a, b) = T (b, a) (4.144)

(iii) function T satisfies the condition of associativity

T (T (a, b) , c) = T (a, T (b, c)) (4.145)

(iv) function T satisfies the boundary condition

T (a, 1) = a, (4.146)

where a, b, c, d ∈ [0, 1] .
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From the assumptions it follows that

T (a, 0) = T (0, a) ≤ T (0, 1) = 0. (4.147)

Therefore, the second boundary condition takes the form

T (a, 0) = 0. (4.148)

Further in this chapter, we shall notate the operation of t-norm on argu-
ments a and b in the following way

T (a, b) = a
T∗ b. (4.149)

If, for instance, a and b are identified with the membership functions of
fuzzy sets A and B, then we shall notate equality (4.140) as

µA∩B (x) = T (µA (x) , µB (x)) = µA (x)
T∗ µA (x) . (4.150)

Using property (4.145), the definition of t-norm may be generalized for the
case of a t-norm of multiple variables

n

T
i=1

{ai} = T

{
n−1

T
i=1

{ai} , an

}
= T {a1, a2, ..., an} = T {a} (4.151)

= a1
T∗ a2

T∗ . . .
T∗ an.

Below, we present the definition of triangular norm with weights 0≤wi≤1,
i = 1, ..., n.

Definition 4.23
A weighted t-norm shall be denoted as T ∗ and defined as follows:

T ∗ {a1, ..., an; w1, ..., wn} =
n

T
i=1

{1 − wi (1 − ai)}, (4.152)

where T is any t-norm, and the weights meet the condition 0 ≤ wi ≤ 1,
i = 1, ..., n.

Let us assume that wi = 1, i = 1, . . . , n. Then the weighted t-norm
T ∗ is reduced to the t-norm T . In Chapters 9 and 10 the weights wi are
interpreted as degrees of truth of the antecedens of fuzzy rules or degrees
of truth of particular rules in the so-called logical model. It can be easily
checked that the weighted t-norm (similarly to the weighted t-conorm –
Definition 4.25) does not meet the boundary conditions of a classic t-norm.
However, as we will demonstrate in Chapters 9 and 10, the application of
this concept allows to design neuro-fuzzy structures characterized by a high
accuracy.
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Definition 4.24
The function of two variables S

S : [0, 1] × [0, 1] → [0, 1] (4.153)

is called a t-conorm, if it is nondecreasing with relation to both arguments,
meets the condition of commutativity and associativity, and the following
boundary condition is met:

S (a, 0) = a. (4.154)

From the assumptions and condition (4.154) we get:

S (a, 1) = S (1, a) ≥ S (1, 0) = 1. (4.155)

Therefore, the second boundary condition takes the form

S (a, 1) = 1. (4.156)

The operation of t-conorm on arguments a and b will be notated in the
following way

S (a, b) = a
S∗ b. (4.157)

Using the property of associativity, the above definition may be generalized
for the case of a t-conorm of multiple variables

n

S
i=1

{ai} = S

{
n−1

S
i=1

{ai} , an

}
= S {a1, a2, ..., an} = S {a} (4.158)

= a1
S∗ a2

S∗ . . .
S∗ an.

Definition 4.25
A weighted t-conorm shall be notated as S∗ and defined as follows:

S∗ {a1, ..., an; w1, ..., wn} =
n

S
i=1

{wiai}. (4.159)

In Chapters 9 and 10 the weights wi are interpreted as degrees of truth of
particular rules in the so-called Mamdani model.

Definition 4.26
Functions T and S, meeting the conditions

n

S
i=1

{ai} = 1 −
n

T
i=1

{1 − ai}, (4.160)
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n

T
i=1

{ai} = 1 −
n

S
i=1

{1 − ai}, (4.161)

are called dual triangular norms.

Definition 4.27
We say that a pair of dual triangular operators T and S has an Archimedean
property, if

T {a, a} < a < S {a, a} (4.162)

for each a ∈ (0, 1) .

Definition 4.28
We say that a pair of dual continuous triangular operators T and S is of np
(nilpotent) type, if for a given sequence of arguments ai ∈ (0, 1), i = 1, 2, ...,
there is an index n such as

T {a1, a2, ..., an} = 0, (4.163)

S {a1, a2, ..., an} = 1. (4.164)

Definition 4.29
We say that a pair of dual continuous triangular operators T and S is of st
(strict) type, if

T {a1, a2, . . . , an} > 0, (4.165)

S {a1, a2, . . . , an} < 1 (4.166)

for 0 < ai < 1, i = 1, ..., n, n ≥ 2 and a1 = a2 = ... = an.
Below, examples of t-norms and corresponding t-conorms have been pre-

sented. Their 2-dimensional representations are depicted in Fig. 4.29–4.32.

Example 4.23 (Triangular norms of the min/max type)
The triangular norms of the min/max type, called the Zadeh triangular
norms, are described by the following dependencies:

TM {a1, a2} = min {a1, a2}, (4.167)

SM {a1, a2} = max {a1, a2}, (4.168)

TM {a1, a2, ..., an} = min
i=1,...,n

{ai}, (4.169)

SM {a1, a2, ..., an} = max
i=1,...,n

{ai}. (4.170)

Min/max triangular norms are dual but are not Archimedean.
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FIGURE 4.29. Triangular norms described by formulas (4.167) and (4.168)

Example 4.24 (Algebraic triangular norms)
Algebraic triangular norms are described by the following formulas:

TP {a1, a2} = a1a2, (4.171)

SP {a1, a2} = a1 + a2 − a1a2, (4.172)

TP {a1, a2, ..., an} =
n∏

i=1

ai, (4.173)

SP {a1, a2, ..., an} = 1 −
n∏

i=1

(1 − ai). (4.174)
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FIGURE 4.30. Triangular norms described by formulas (4.171) and (4.172)

Algebraic triangular norms are dual triangular norms of the strict type.

Example 4.25 (Łukasiewicz triangular norms)
Łukasiewicz triangular norms are described by the following dependencies:

TL {a1, a2} = max {a1 + a2 − 1, 0}, (4.175)

SL {a1, a2} = min {a1 + a2, 1}, (4.176)

TL {a1, a2, ..., an} = max

{
n∑

i=1

ai − (n − 1) , 0

}

, (4.177)
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FIGURE 4.31. Triangular norms described by formulas (4.175) and (4.176)

SL {a1, a2, ..., an} = min

{
n∑

i=1

ai, 1

}

. (4.178)

Łukasiewicz triangular norms are dual triangular norms of the nilpotent
type.

Example 4.26 (Boundary triangular norms)
Boundary triangular norms are described by the following formulas:

TD{a1, a2}=
{

0, if SM{a1, a2}<1,
TM {a1, a2}, if SM{a1, a2}=1.

(4.179)

SD{a1, a2}=
{

1, if TM{a1, a2}>0,
SM {a1, a2}, if TM{a1, a2}=0.

(4.180)

TD{a1, a2, ..., an}=
{

0, if SM{a1, a2, ..., an}<1,
TM{a1, a2, ..., an}, if SM{a1, a2, ..., an}=1.

(4.181)

SD{a1, a2, ..., an}=
{

1, if TM{a1, a2, ..., an}>0,
SM{a1, a2, ..., an}, if TM{a1, a2, ..., an}=0,

(4.182)
It is worth reminding that all the triangular norms satisfy the following
inequalities:

SM {a1, a2, ..., an} ≤ S {a1, a2, ..., an} ≤ SD {a1, a2, ..., an}, (4.183)

0

0.2

0.4
0.6

0.8
1

0

0.5

1

0.2
0.4

0.6
0.8

1
0

0.2

0.4
0.6

0.8
1

0

0.5

1

0.2
0.4

0.6
0.8

1
a1

a1

a2
a2

T{a1,a2}
S{a1,a2}

FIGURE 4.32. Triangular norms described by formulas (4.179) and (4.180)
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TD {a1, a2, ..., an} ≤ T {a1, a2, ..., an} ≤ TM {a1, a2, ..., an}. (4.184)

The generators of triangular norms are directly related to the triangular
norms. Functions called generators of triangular norms allow to define the
properties of triangular norms, e.g. distinguish the nilpotent or strict type
triangular norms, allow to generalize binary triangular norms to multidi-
mensional triangular norms and allow to derive new triangular norms.

Definition 4.30
The function of the form

tmul : [0, 1] → [tmul (0) , 1] (4.185)
is called a multiplicative generator of Archimedean t-norm

T {a1, a2, ..., an} = t−1
mul

((
n∏

i=1

tmul (ai)
)
∨ tmul (0)

)
(4.186)

for a1, a2, ..., an ∈ [0, 1]. For Archimedean t-norm of st (strict) type, we have

tmul (0) = 0. (4.187)

Therefore, formula (4.186) takes the form

T {a1, a2, ..., an} = t−1
mul

(
n∏

i=1

tmul (ai)
)

(4.188)

for a1, a2, ..., an ∈ [0, 1].

Definition 4.31
The function of the form

tadd : [0, 1] → [0, tadd (0)] (4.189)

is called an additive generator of Archimedean t-norm

T {a1, a2, ..., an} = t−1
add

((
n∑

i=1

tadd (ai)

)

∧ tadd (0)

)

(4.190)

for a1, a2, ..., an ∈ [0, 1] .
For Archimedean t-norm of st (strict) type, we have

tadd (0) = ∞. (4.191)

Then formula (4.190) takes the form

T {a1, a2, ..., an} = t−1
add

(
n∑

i=1

tadd (ai)

)

(4.192)

for a1, a2, . . . , an ∈ [0, 1].
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Definition 4.32
The function of the form

smul : [0, 1] → [smul (1) , 1] (4.193)

is called a multiplicative generator of Archimedean t-conorm

S {a1, a2, ..., an} = s−1
mul

((
n∏

i=1

smul (ai)
)
∨ smul (1)

)
(4.194)

for a1, a2, . . . , an ∈ [0, 1].
For Archimedean t-conorm of st (strict) type, we have

smul (1) = 0. (4.195)

Therefore, formula (4.194) takes the form

S {a1, a2, ..., an} = s−1
mul

(
n∏

i=1

smul (ai)
)

(4.196)

for a1, a2, . . . , an ∈ [0, 1].

Definition 4.33
The function of the form

sadd : [0, 1] → [0, sadd (1)] (4.197)

is called an additive generator of Archimedean t-conorm (nilpotent)

S {a1, a2, ..., an} = s−1
add

((
n∑

i=1

sadd (ai)

)

∧ sadd (1)

)

(4.198)

for a1, a2, . . . , an ∈ [0, 1].
For Archimedean t-conorm of st (strict) type, we have

sadd (1) = ∞. (4.199)

Therefore, formula (4.198) takes the form

S {a1, a2, ..., an} = s−1
add

(
n∑

i=1

sadd (ai)

)

(4.200)

for a1, a2, . . . , an ∈ [0, 1] .
The relation of a multiplicative and additive generator of Archimedean

t-norm is as follows:

tmul (a) = exp (−tadd (a)), (4.201)
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tadd (a) = − ln (tmul (a)). (4.202)

The relation of a multiplicative and additive generator of dual triangular
norms is following:

smul (a) = tmul (1 − a), (4.203)

sadd (a) = tadd (1 − a). (4.204)

Remark 4.7
Let f be any multiplicative generator of Archimedean t-norm T. Then
t-norm T is of the nilpotent type if and only if f (0) > 0, and is of the
strict type if and only if, f (0) = 0. This result has been presented in
monograph [144]. If however f is any additive generator of Archimedean
t-norm T , then t-norm T is of the nilpotent type if and only if f (0) < ∞,
and is of the strict type if and only if f (0) = ∞. This result has been
presented in monograph [111].

Example 4.27
Let us consider a multiplicative generator of Archimedean t-norm given by
the formula

tmul (a) = ap, p > 0. (4.205)

Using dependencies (4.201) – (4.204), we may determine an additive gener-
ator of the Archimedean t-norm and a multiplicative and additive generator
of Archimedean t-conorm as follows:

tadd (a) = − ln (tmul (a)) = −p ln (a), (4.206)

smul (a) = tmul (1 − a) = (1 − a)p
, (4.207)

sadd (a) = tadd (1 − a) = −p ln (1 − a). (4.208)

If we want to use the abovementioned generators to generate triangular
norms, we should define their inverse functions

t−1
mul (a) = a

1
p, (4.209)

t−1
add (a) = exp (−a)

1
p , (4.210)

s−1
mul (a) = 1 − a

1
p, (4.211)

s−1
add (a) = 1 − exp (−a)

1
p . (4.212)
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Let us note that for the generator given by formula (4.205), we have

tmul (0) = smul (1) = 0. (4.213)

Boundary conditions indicate that the generators used are related to
triangular norms of the strict type. That is why we shall use dependencies
(4.188), (4.192), (4.196) or (4.200), to determine these norms. Therefore

T {a1, a2} = t−1
mul (tmul (a1) tmul (a2)) (4.214)

= t−1
add (tadd (a1) + tadd (a2))

= a1a2

= TP {a1, a2}

and

S {a1, a2} = s−1
mul (smul (a1) smul (a2)) (4.215)

= s−1
add (sadd (a1) + sadd (a2))

= a1 + a2 − a1a2

= SP {a1, a2} .

Example 4.28
Let us consider a multiplicative generator of Archimedean t-norm

tmul (a) = exp (a − 1). (4.216)

Using dependencies (4.201) – (4.204), we may determine an additive gener-
ator of the Archimedean t-norm and a multiplicative and additive generator
of Archimedean t-conorm as follows:

tadd (a) = − ln (tmul (a)) = 1 − a, (4.217)

smul (a) = tmul (1 − a) = exp (−a), (4.218)

sadd (a) = tadd (1 − a) = a. (4.219)

If we want to use the abovementioned generators to generate triangular
norms, we should define their inverse functions

t−1
mul (a) = 1 + ln (a), (4.220)

t−1
add (a) = 1 − a, (4.221)

s−1
mul (a) = − ln (a), (4.222)

s−1
add (a) = a. (4.223)
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Let us remark that for the generator given by formula (4.216), we have

tmul (0) = smul (1) =
1
e
. (4.224)

Boundary conditions indicate that the generators used are related to trian-
gular norms of the nilpotent type. That is why we shall use dependencies
(4.186), (4.190), (4.194) or (4.198) to determine these norms. Then

T {a1, a2} = t−1
mul ((tmul (a1) tmul (a2)) ∨ tmul (0)) (4.225)

= t−1
add ((tadd (a1) + tadd (a2)) ∧ tadd (0))

= max {a1 + a2 − 1, 0}
= TL {a1, a2}

and

S {a1, a2} = s−1
mul ((smul (a1) smul (a2)) ∨ smul (1)) (4.226)

= s−1
add ((sadd (a1) + sadd (a2)) ∧ sadd (1))

= min {a1 + a2, 1}
= SL {a1, a2} .

In Subchapter 4.3, we have defined the basic operations on fuzzy sets (in-
tersection, union and Cartesian product), using the min/max. type opera-
tors. Now, we shall generalize these definitions, using any triangular norms.

Definition 4.34
The intersection of n fuzzy sets A1, A2, ..., An ⊆ X is the fuzzy set
A = A1 ∩ A2 ∩ . . .∩ An =

⋂n
i=1 Ai defined by the membership function

µA (x) =
n

T
i=1

µAi
(x). (4.227)

Definition 4.35
The union of fuzzy sets A1, A2, ..., An ⊆ X is the fuzzy set A = A1 ∪ A2 ∪
. . .∪ An =

⋃n
i=1 Ai defined by the membership function

µA (x) =
n

S
i=1

µAi
(x). (4.228)

Definition 4.36
The Cartesian product of n fuzzy sets A1 ⊆ X1,A2 ⊆ X2, ..., An ⊆ Xn,
notated as A1 × A2 × ... × An, is defined by

µA1×A2×...×An
(x1,x2, ...,xn) = T {µA1 (x1) , µA2 (x2) (4.229)

..., µAn
(xn)} =

n

T
i=1

{µAi
(xi)}.
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Negations are extensions of a logical contradiction. They have the role of
contradiction operators in fuzzy linguistic models.

Definition 4.37

(i) A nonincreasing function N : [0, 1] → [0, 1] is called a negation, if
N (0) = 1 and N (1) = 0.

(ii) Negation N : [0, 1] → [0, 1] is called a st (strict) type negation, if it is
continuous and decreasing.

(iii) A negation of st (strict) type is called strong type negation, if it is
involution, i.e. N (N (a)) = a.

Below, we have specified a list of selected negations.

Example 4.29
Zadeh negation is described below by the following dependency

N (a) = 1 − a. (4.230)

It may be easily noticed that Zadeh negation is a strong type negation.

Example 4.30
Yager negation is described by the following dependency

N (a) = (1 − ap)
1
p , p > 0. (4.231)

Yager negation is a strict type negation.

Example 4.31
Sugeno negation is described below by the following dependency

N (a) =
1 − a

1 + pa
, p > −1. (4.232)

Sugeno negation is a strong type negation.

Remark 4.8
If t-norm, t-conorm and negation N of the strong type meet the dependencies

n

S
i=1

{ai} = N−1

(
n

T
i=1

{N (ai)}
)

(4.233)

and
n

T
i=1

{ai} = N−1

(
n

S
i=1

{N (ai)}
)

, (4.234)

then T, S and N form the co-called De Morgan triple and we say that
t-norm T and t-conorm S are mutually N -dual. It should be noted that
triangular norms in Definition 4.26 are dual when applying the Zadeh nega-
tion N (a) = 1 − a.
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4.7 Fuzzy relations and their properties

One of the basic notions of the fuzzy sets theory is the notion of a fuzzy
relation. Fuzzy relations allow to formalize the imprecise formulations like
“x is almost equal to y” or “x is much greater than y”. We shall present the
definitions of fuzzy relation and composition of fuzzy relations. From the
perspective of applications, Definition 4.40 concerning the composition of
a fuzzy set and fuzzy relation is particularly important.

Definition 4.38
The fuzzy relation R between two non-empty (non-fuzzy) sets X and Y is
called the fuzzy set determined on the Cartesian product X × Y, i.e.

R ⊆ X × Y = {(x, y) : x ∈ X, y∈ Y}. (4.235)

In other words, the fuzzy relation is a set of pairs

R = {((x, y) , µR (x, y))} , ∀x∈X∀y∈Y, (4.236)

where
µR : X × Y → [0, 1] (4.237)

is the membership function. To each pair (x, y) , x ∈ X, y ∈ Y this function
assigns membership degree µR (x, y) , which is interpreted as strength of
relation between elements x ∈ X and y∈ Y. According to the convention
we adopted (Subchapter 4.2), the fuzzy relation may be notated in the form

R =
∑

X×Y

µR (x, y)
(x, y)

(4.238)

or
R =

∫

X×Y

µR (x, y)
(x, y)

. (4.239)

Example 4.32
We shall apply Definition 4.38 to formalize an imprecise statement
“y is more or less equal to x ”. Let X = {3, 4, 5} and Y = {4, 5, 6}.
Relation R may be defined as follows:

R =
1

(4, 4)
+

1
(5, 5)

+
0.8

(3, 4)
+

0.8
(4, 5)

+
0.8

(5, 4)
(4.240)

+
0.8

(5, 6)
+

0.6
(3, 5)

+
0.6

(4, 6)
+

0.4
(3, 6)

.

Therefore the membership function µR (x, y) of relation R has the form

µR (x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if x = y,
0.8 if |x − y| = 1,
0.6 if |x − y| = 2,
0.4 if |x − y| = 3.

(4.241)
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Relation R may also be notated using the matrix

y1 y2 y3

x1

x2

x3

⎡

⎣
0.8 0.6 0.4
1 0.8 0.6

0.8 1 0.8

⎤

⎦ (4.242)

where x1 = 3, x2 = 4, x3 = 5, and y1 = 4, y2 = 5, y3 = 6.

Example 4.33
Let X = Y = [0, 120] be the human lifespan. Then relation R with the
membership function

µR (x, y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if x − y ≤ 0,

x − y

30
if 0 < x − y < 30,

1 if x − y ≥ 30

(4.243)

represents the imprecise proposition “a person of age x is much older than
a person of age y”. We should stress that the fuzzy relation R is a fuzzy set
and therefore the definitions of intersection, union and complement stated
in Subchapter 4.3 remain valid, i.e.

µR∩S (x, y) = min (µR (x, y) , µS (x, y)), (4.244)

µR∪S (x, y) = max (µR (x, y) , µS (x, y)), (4.245)

µR̂ (x, y) = 1 − µR (x, y). (4.246)

In the fuzzy sets theory, an important role is given to the notion of com-
position of two fuzzy relations. Let us consider three non-fuzzy sets X, Y,
Z and two fuzzy relations R ⊆ X × Y and S ⊆ Y × Z with membership
functions µR (x, y) and µS (y, z) , respectively.

Definition 4.39
Composition of sup-T type of fuzzy relations R ⊆ X × Y and S ⊆ Y × Z
is called a fuzzy relation R ◦ S ⊆ X × Z with the membership function

µR◦S (x, z) = sup
y∈Y

{
µR (x, y)

T∗ µS (y, z)
}

. (4.247)

A specific form of the membership function µR◦S (x, z) of the composition
R ◦S depends on the adopted t-norm in formula (4.247). If we take min as
a t-norm, i.e. T (a, b) = min(a, b), then equality (4.247) may be notated as
follows:

µR◦S (x, z) = sup
y∈Y

{min [µR (x, y) , µS (y, z)]}. (4.248)
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Formula (4.248) is known in the literature as the sup-min type composition.
If the set Y has an infinite number of elements, then the composition sup-
min comes down to the max-min type composition of the form

µR◦S (x, z) = max
y∈Y

{min [µR (x, y) , µS (y, z)]}. (4.249)

Example 4.34
Let us assume that relations R and S are represented by matrices

R =
[

0.2 0.5
0.6 1

]
, S =

[
0.3 0.6 0.8
0.7 0.9 0.4

]
, (4.250)

while X = {x1, x2} , Y = {y1, y2} , Z = {z1, z2, z3}. The max-min type
composition of the relations R and S has the form

Q = R ◦ S =
[

0.2 0.5
0.6 1

]
◦
[

0.3 0.6 0.8
0.7 0.9 0.4

]
(4.251)

=
[

q11 q12 q13

q21 q22 q23

]
,

where

q11 = max [min (0.2; 0.3) ,min (0.5; 0.7)] = 0.5,

q12 = max [min (0.2; 0.6) ,min (0.5; 0.9)] = 0.5,

q13 = max [min (0.2; 0.8) ,min (0.5; 0.4)] = 0.4,

q21 = max [min (0.6; 0.3) ,min (1; 0.7)] = 0.7,

q22 = max [min (0.6; 0.6) ,min (1; 0.9)] = 0.9,

q23 = max [min (0.6; 0.8) ,min (1; 0.4)] = 0.6.

Therefore
Q =
[

0.5 0.5 0.4
0.7 0.9 0.6

]
. (4.252)

Table 4.1 lists the basic properties of fuzzy relations, where I means the
unitary matrix and O the zero matrix.

TABLE 4.1. Basic properties of fuzzy relations

1 R ◦ I = I ◦ R = R
2 R ◦ O = O ◦ R = O
3 (R ◦ S) ◦ T = R ◦ (S ◦ T )
4 Rm ◦ Rn = Rm+n

5 (Rm)n = Rmn

6 R ◦ (S ∪ T ) = (R ◦ S) ∪ (R ◦ T )
7 R ◦ (S ∩ T ) ⊆ (R ◦ S) ∩ (R ◦ T )
8 S ⊂ T → R ◦ S ⊂ R ◦ T
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As we have already mentioned, the composition of a fuzzy set with a
fuzzy relation is particularly important. The composition of this type will
be used repeatedly further in this chapter. Let us consider a fuzzy set
A ⊆ X and a fuzzy relation R ⊆ X × Y with membership functions µA (x)
and µR (x, y), respectively.

Definition 4.40
Composition of a fuzzy set A ⊆ X and a fuzzy relation R ⊆ X × Y shall
be notated A ◦ R and defined as a fuzzy set B ⊆ Y

B = A ◦ R (4.253)

with the membership function

µB (y) = sup
x∈X

{
µA (x)

T∗ µR (x, y)
}

. (4.254)

A specific form of formula (4.254) depends on the chosen t-norm (see Table
4.1) and on properties of set X. Below, we shall present 4 cases:

1) If T (a, b) = min (a, b) , then we obtain a composition of the sup-min
type

µB (y) = sup
x∈X

{min [µA (x) , µR (x, y)]}. (4.255)

2) If T (a, b) = min (a, b) , and X is a set with a finite number of elements,
then we obtain the composition of the max-min type

µB (y) = max
x∈X

{min [µA (x) , µR (x, y)]}. (4.256)

3) If T (a, b) = a · b, then we obtain a composition of the sup-product type

µB (y) = sup
x∈X

{µA (x) · µR (x, y)}. (4.257)

4) If T (a, b) = a · b, and X is a set with a finite number of elements, then
we obtain the composition of the max-product type

µB (y) = max
x∈X

{µA (x) · µR (x, y)}. (4.258)

Example 4.35
Let us assume that X = {x1, x2, x3} and Y = {y1, y2} , fuzzy set A has the
form

A =
0.4
x1

+
1
x2

+
0.6
x3

, (4.259)

and the relation R represents the matrix

y1 y2

R =
x1

x2

x3

⎡

⎣
0.5 0.7
0.2 1
0.9 0.3

⎤

⎦ .
(4.260)
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Composition A◦R of the max-min type is determined according to formula
(4.256). The result of the composition is the fuzzy set B of the form

B =
µB (y1)

y1
+

µB (y2)
y2

, (4.261)

while

µB (y1) = max {min (0.4; 0.5) ,min (1; 0.2) ,min (0.6; 0.9)} (4.262)
= 0.6,

µB (y2) = max {min (0.4; 0.7) ,min (1; 1) ,min (0.6; 0.3)} (4.263)
= 1.

Therefore
B =

0.6
y1

+
1
y2

. (4.264)

Composition A◦R may also be defined as the projection of the intersection
of the cylindrical extension ce (A) of the fuzzy set A and fuzzy relation R,
to space Y, i.e.

B = A ◦ R = proj {ce (A) ∩ R} to Y, (4.265)

where the operations of cylindrical extension and projection have been de-
fined below.

Definition 4.41
Cylindrical extension of set A ⊆ X to set ce (A) ⊆ X × Y is defined as
follows:

ce (A) =
∫

X×Y

µA (x)
(x, y)

. (4.266)

Definition 4.42
Projection of fuzzy set A ⊆ X×Y to space Y is called an operation defined
as follows:

proj A to Y =
∫

y×Y

supx∈X µA (x, y)
y

. (4.267)

4.8 Approximate reasoning

4.8.1 Basic rules of inference in binary logic
In traditional (binary) logic, we infer about the truth of some sentences
based on the truth of some other sentences. This reasoning shall be no-
tated in the form of a schema: above the horizontal line, we shall put all
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the sentences, on the basis of which we make the reasoning, below the line,
we shall put the inference. The schema of correct inference has such prop-
erty that if all sentences above the horizontal line are true, then also the
sentence below the line is true, as true sentences may lead only to a true
inference. In this point capital letters A and B symbolize the sentences
rather than fuzzy sets. Let A and B be the sentences, while the notation
A = 1(B = 1) means that the logical value A(B) is true and the nota-
tion A = 0(B = 0) means, that the logical value of the sentence A(B) is
falsehood. We shall present below two rules of inference used in binary logic.

Definition 4.43
The reasoning rule modus ponens is defined by the following reasoning
schema:

Premise A
Implication A → B

Inference B

(4.268)

Example 4.36
Let sentence A have the form “John is a driver”, and sentence B – “John
has got a driving license”. Pursuant to the rule of modus ponens, if A = 1,
then also B = 1, as if it is true that “John is a driver”, then it is also
true that “John has got a driving license”. In other words, the truth of the
premise and implication (sentences above the line) result in the truth of
the inference (sentence below the line).

Definition 4.44
The reasoning rule modus tollens is defined by the following reasoning
schema:

Premise B
Implication A → B

Inference A

(4.269)

Example 4.37
When continuing Example 4.36 we understand that if “John does not have
a driving license”, or B = 0

(
B = 1

)
, then “John is not a driver”, or A = 0(

A = 1
)
. Also in this example, the truth of the premise and the implication

lead to the truth of the inference.
We have presented only the two inference rules in the binary logic, which

will be generalized to the fuzzy case. Of course, in the binary logic, a series
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of other inference rules is known. We shall refer the interested Reader to a
rich literature in this subject (e.g. [234]).

4.8.2 Basic rules of inference in fuzzy logic
Currently, we shall extend the basic inference rules in binary logic to a
fuzzy case. Let us assume that the sentences occurring in the modus po-
nens (4.268) and modus tollens (4.269) rules are characterized by some
fuzzy sets. In this way, we shall obtain a generalized modus ponens infer-
ence rule and a generalized modus tollens inference rule.

4.8.2.1 A generalized fuzzy modus ponens inference rule

Definition 4.45
A generalized (fuzzy) modus ponens inference rule is defined by the follow-
ing reasoning schema:

Premise x is A′

Implication IF x is A THEN y is B

Inference y is B′

(4.270)

where A,A′ ⊆ X and B,B′ ⊆ Y are fuzzy sets, and x and y are the
so-called linguistic variables.

According to the above definition, linguistic variables are variables which
take as values words or sentences uttered in the natural language.
Examples may be provided by such statements as “low speed”, “temper-
ate temperature” or “young person”. These statements may be formalized
by assigning some fuzzy sets to them. It should be stressed that linguis-
tic variables may, apart from word values, take numerical values just like
ordinary mathematical variables. The following example illustrates the gen-
eralized (fuzzy) modus ponens inference rule and presents the notion of the
linguistic variable.

Example 4.38
Let us consider the following reasoning schema

Premise The car speed is high

Implication If the car speed is very high,
then the noise level is high

Inference The noise level in
the car is medium-high

(4.271)
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In the schema above, the premise, implication and inference are imprecise
statements. We shall distinguish the following linguistic variables: x – car
speed, y – noise level. The set

T1 = {“low”, “medium”, “high”, “very high”}

is a set of values of the linguistic variable x. Similarly, the set

T2 = {“low”, “medium”, “medium-high”, “high”}

is a set of values of the linguistic variable y.
Each element of the set T1 and T2 may be assigned with an appropriate

fuzzy set. When analyzing the reasoning schema (4.270) and (4.271), we
obtain the following fuzzy sets:

A = “very high speed of the car”,

A′ = “high speed of the car”,

and
B = “high noise level”,

B′ = “medium-high noise level”.

The Reader may propose membership functions for these fuzzy sets, like
it has been presented in Fig. 4.12. Let us discuss the difference between
non-fuzzy rule (4.268) and fuzzy rule (4.270). In both cases the implication
is of the same form A → B, where A and B are sentences (rule (268)) or
fuzzy sets (rule (270)). However, the sentence A in the implication of the
non-fuzzy rule is also included in the premise of this rule. On the other
hand, the premise of the fuzzy rule does not concern the fuzzy set A, but
relates to a certain fuzzy set A′, which may be in a sense close to A, but
not necessarily A = A′. In Example 4.38, the fuzzy set A = “very high
speed of the car” is not equal to the fuzzy set A′ = “high speed of the car”.
As a result, the inferences of schemas (4.268) and (4.270) are different. The
inference of the fuzzy rule relates to a certain fuzzy set B′, which is defined
by the composition of the fuzzy set A′ and a fuzzy implication A → B, i.e.

B′ = A′ ◦ (A → B) . (4.272)

The fuzzy implication A → B is equivalent to a certain fuzzy relation
R ∈ X × Y with the membership function µR (x, y). Therefore, the mem-
bership function of the fuzzy set B′ may be determined using formula
(4.254), which shall be notated as

µB′ (y) = sup
x∈X

{
µA′ (x)

T∗ µA→B (x, y)
}

, (4.273)
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while µA→B (x, y) = µR (x, y) . In the special case, when t-norm is of the
min type, formula (4.273) takes the form

µB′ (y) = sup
x∈X

{min [µA′ (x) , µA→B (x, y)]} . (4.274)

The Reader will easily notice that if

A′ = A, then B′ = B, (4.275)

and the generalized fuzzy modus ponens rule of inference (4.270) is reduced
to the modus ponens rule (4.268) discussed in point 4.8 1.

Let us now assume that there is an implication A → B in schema (4.270),
while the fuzzy set A′ (premise) is equal in turn:
1) A′ = A,
2) A′ = “very A”, while µA′ (x) = µ2

A (x),

3) A′ = “more or less A”, while µA′ (x) = µ
1/2
A (x),

4) A′ = “not A”, while µA′ (x) = 1 − µA (x).
The fuzzy set “very A” is defined through the operation of concentration
(4.75), the fuzzy set “more or less A” is defined through operation of di-
lation (4.76), and the fuzzy set “not A” is defined through the operation
of complement (4.59). Table 4.2 presents (see [58]) the obvious relations
that may exist between fuzzy sets A′ and B′. Relation 1 is a modus ponens
scheme (4.268), relations 2b and 3b occur, when there is no significant re-
lation between A′ and B′, relation 4a means, that from the premise x is
“not A” we cannot infer about y.

TABLE 4.2. Intuitive relations between the premises and inferences of the
generalized modus ponens rule

Relation Premise Inference
x is A′ y is B′

1 x is A y is B
2a x is “very A” y is “very B”
2b x is “very A” y is B
3a x is “more or less A” y is “more or less B”
3b x is “more or less A” y is B
4a x is “not A” y is undefined
4b x is “not A” y is “not B”
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4.8.2.2. Generalized fuzzy modus tollens inference rule

Definition 4.46
A generalized (fuzzy) modus tollens inference rule is defined by the follow-
ing reasoning schema:

Premise y is B′

Implication IF x is A THEN y is B

Inference x is A′

(4.276)

where A, A′ ⊆ X and B, B′ ⊆ Y are fuzzy sets, and x and y are the
linguistic variables.

Example 4.39
This example refers to Example 4.38, and at the same time the description
which follows schema (4.271) remains valid.

Premise The noise level in the car is medium-high

Implication If the car speed is very high, then the
noise level is high

Inference The car speed is high

(4.277)

The fuzzy set A′ in the inference of scheme (4.276) is defined through the
composition of relations

A′ = (A → B) ◦ B′, (4.278)

while
µA′ (x) = sup

y∈Y

{
µA→B (x, y)

T∗ µB′ (y)
}

. (4.279)

If t-norm is of the min type, then formula (4.279) takes the form

µA′ (x) = sup
y∈Y

{min [µA→B (x, y), µB′ (y)]}. (4.280)

If
A′ = A and B′ = B, (4.281)

then the generalized fuzzy modus tollens rule of inference (4.276) is reduced
to the modus tollens rule discussed in point 4.8.1. Table 4.3 shows the
obvious relations [58] between the premises and inferences of the generalized
modus tollens rule.
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TABLE 4.3. Intuitive relations between the premises and inferences of the gen-
eralized modus tollens rule

Relation Premise Inference
y is B′ x is A′

1 y is “not B” x is “not A”
2 y is “not very B” x is “not very A”
3 y is “more or less B” x is “more or less A”
4a y is B x is undefined
4b y is B x is A

4.8.3 Inference rules for the Mamdani model
In the previous point, we have discussed the generalized fuzzy modus po-
nens and modus tollens schemas of inference. Membership functions (4.273)
and (4.279) in the inferences of these schemes depend on membership func-
tion µA→B (x, y) of the fuzzy implication A → B, which is equal to a certain
fuzzy relation R ⊆ X×Y. We shall present different methods of determin-
ing the function µA→B (x, y) based on the knowledge of the membership
function µA (x) and µB (y). In case of the Mamdani model, the membership
functions µA→B (x, y) shall be determined as follows:

µA→B (x, y) = T (µA (x), µB (y)), (4.282)

where T is any t-norm. We may interpret function T in formula (4.282) as
the correlation function between the antecedens and consequences in fuzzy
rules. Most often, the minimum type rule defined below is applied:

• Minimum type rule

µA→B (x, y) = µR (x, y) = µA (x) ∧ µB (y) (4.283)
= min [µA (x), µB (y)].

Another known rule is the product type rule (also referred to as the Larsen
rule):

• Product type rule (Larsen)

µA→B (x, y) = µR (x, y) = µA (x) · µB (y). (4.284)

It should be stressed that Mamdani type rules are not implications in
the logical meaning, which can be easily demonstrated when analyzing
Table 4.4.
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TABLE 4.4. Illustration of the Mamdani type rules

µA (x) µB (y) min [µA (x) , µB (y)] µA (x)µB (y) µA→B (x, y)

0 0 0 0 1
0 1 0 0 1
1 0 0 0 0
1 1 1 1 1

Remark 4.9
Although the Mamdani rules are not implications in the logical sense, we
may encounter in literature an erroneous interpretation of these rules as
fuzzy implications. In monograph [134] Mendel refers to the Mamdani rules
as “engineering implications”, to differentiate them from fuzzy implications
meeting the conditions of Definition 4.47 presented in the following point.

4.8.4 Inference rules for the logical model
We shall present different inference rules for the logical model using the
fuzzy implication definition [55].

Definition 4.47
A fuzzy implication is the function I : [0, 1]2 → [0, 1] meeting the following
conditions:
a) if a1 ≤ a3, then I (a1, a2) ≥ I (a3, a2) for all a1, a2, a3 ∈ [0, 1] ,

b) if a2 ≤ a3, then I (a1, a2) ≤ I (a1, a3) for all a1, a2, a3 ∈ [0, 1] ,
c) I (0, a2) = 1 for all a2 ∈ [0, 1],
d) I (a1, 1) = 1 for all a1 ∈ [0, 1],
e) I (1, 0) = 0.
Table 4.5 presents the most commonly applied fuzzy implications meeting
all or some requirements of Definition 4.47.

Some of the fuzzy implications in Table 4.5 belong to special implication
groups:
a) S -implications defined as follows:

I (a, b) = S {1 − a, b}.
Examples of S-implication are implications 1, 2, 3 and 4 in Table 4.5. They
meet all the conditions of Definition 4.47.
b) R-implications defined as follows:

I (a, b) = sup
z

{z | T {a, z} ≤ b} , a, b ∈ [0, 1].

Examples of R-implication are implications 6 and 7 in Table 4.5. They meet
all the conditions of Definition 4.47.
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TABLE 4.5. Fuzzy implications

No. Name Implication
1 Kleene-Dienes (binary) max {1 − a, b}
2 Łukasiewicz min {1, 1 − a + b}
3 Reichenbach 1 − a + a · b
4 Fodor

{
1, if a ≤ b

max {1 − a, b} , if a > b

5 Rescher
{

1, if a ≤ b
0, if a > b

6 Goguen

⎧
⎨

⎩

1, if a = 0

min
{

1,
b

a

}
, if a > 0

7 Gödel
{

1, if a ≤ b
b, if a > b

8 Yager
{

1, if a = b
ba, if a > b

9 Zadeh max {min {a, b} , 1 − a}
10 Willmott min

{
max {1 − a, b}

max {a, 1 − b,min {1 − a, b}}

}

11 Dubois-Prade

⎧
⎨

⎩

1 − a, if b = 0
b, if a = 1
1, otherwise

c) Q-implications defined as follows:

I (a, b) = S {N (a) , T {a, b}} , a, b ∈ [0, 1],

where N(a) is a negation operator. An example of Q-implication is the Zadeh
implication, which does not meet the condition a) and d) of Definition 4.47.

Using Table 4.5, the membership functions µA→B (x, y) shall be deter-
mined in case of a logical model as follows:

• Binary implication (Kleene-Dienes)

µA→B (x, y) = max [1 − µA (x) , µB (y)]. (4.285)

• Łukasiewicz implication

µA→B (x, y) = min [1.1 − µA (x) + µB (y)]. (4.286)

• Reichenbach implication

µA→B (x, y) = 1.1 − µA (x) + µA (x) · µB (y). (4.287)
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• Fodor implication

µA→B(x, y)=
{

1, if µA(x) ≤ µB(y),
max {1−µA(x) , µB(y)}, if µA(x) > µB(y).

(4.288)

• Rescher implication

µA→B (x, y) =
{

1, if µA (x) ≤ µB (y) ,
0, if µA (x) > µB (y) .

(4.289)

• Goguen implication

µA→B (x, y) =

⎧
⎨

⎩
min
[
1,

µB (y)
µA (x)

]
, if µA (x) > 0,

1, if µA (x) = 0.
(4.290)

• Gödel implication

µA→B (x, y) =
{

1, if µA (x) ≤ µB (y) ,
µB (y) , if µA (x) > µB (y) .

(4.291)

• Yager implication

µA→B (x, y) =
{

1, if µA (x) = 0,
µB (y)µA(x)

, if µA (x) > 0.
(4.292)

• Zadeh implication

µA→B (x, y) = max {min [µA (x) , µB (y)] , 1 − µA (x)} . (4.293)

• Willmott implication

µA→B (x, y) = min

⎧
⎨

⎩

max {1 − µA (x) , µB (y)},
max {µA (x) , 1 − µB (y),
min {1 − µA (x) , µB (y)}}.

⎫
⎬

⎭
(4.294)

• Dubois-Prade implication

µA→B (x, y) =

⎧
⎨

⎩

1 − µA (x), if µB (y) = 0
µB (y), if µA (x) = 1

1, otherwise
(4.295)

It may be easily checked that in case of the logical model, particular infer-
ence rules are implications in the logical meaning. This fact is illustrated
by Tables 4.6, 4.7 and 4.8 for the binary, Łukasiewicz and Reichenbach
implications.
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TABLE 4.6. Illustration of operation of binary implication

µA (x) µB (y) 1 − µA (x) max[1 − µA (x), µB (y)] µA→B (x, y)

0 0 1 1 1
0 1 1 1 1
1 0 0 0 0
1 1 0 1 1

TABLE 4.7. Illustration of operation of Łukasiewicz implication

µA(x) µB(y) 1−µA(x)+µB(y) min[1.1−µA(x) + µB (y)] µA→B(x, y)

0 0 1 1 1
0 1 2 1 1
1 0 0 0 0
1 1 1 1 1

TABLE 4.8. Illustration of operation of Reichenbach implication

µA (x) µB (y) 1−µA (x)+µA (x)·µB (y) 1.1−µA (x)+µA (x)·µB (y) µA→B (x, y)

0 0 1 1 1

0 1 1 1 1

1 0 0 0 0

1 1 1 1 1

4.9 Fuzzy inference systems

In many issues concerning the technological processes control, it will be
necessary to determine a model of the considered process. The knowledge
of the model allows to select the appropriate controller. However, often it is
very difficult to find an appropriate model, it is a problem which sometimes
requires different simplifying assumptions. The application of the fuzzy sets
theory to control technological processes does not require any knowledge of
models of these processes. It is enough to formulate rules of procedure in the
form of sentences like: IF . . .THEN. Similarly, classification tasks may be
solved. The approach using rules of the IF . . .THEN type allows to solve
a classification problem without the knowledge of probability densities of
particular classes. Fuzzy control systems and classifiers are particular cases
of fuzzy inference systems. Figure 4.33 illustrates a typical schema of such
a system. It consists of the following elements:
1) rules base,
2) fuzzification block,
3) inference block,
4) defuzzification block.
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Defuzzification
block

x yBk,k=1,...,NX⊆A′

Rules base

Fuzzification
block

Inference
block (B′)

FIGURE 4.33. Block diagram of fuzzy inference system

Further in this chapter, we will assume that the inference block uses the
Mamdani type model, in which the antecedents and consequents of rules
are combined using a t-norm operation. In Chapter 9, we shall present
in detail the neuro-fuzzy structures built using both the Mamdani and
the logical model. Now, we will discuss particular elements of the fuzzy
inference system.

4.9.1 Rules base
The rules base, sometimes called a linguistic model, is a set of fuzzy rules
R(k), k = 1, ..., N, of the form

R(k) : IF x1 is Ak
1 AND x2 is Ak

2 AND...AND (4.296)

xn is Ak
n THEN y1 is Bk

1 AND y2 is Bk
2 AND...AND ym is Bk

m,

where N is the number of fuzzy rules, Ak
i – fuzzy sets such as

Ak
i ⊆ Xi ⊂ R, i = 1, ..., n, (4.297)

Bk
j – fuzzy sets such as

Bk
j ⊆ Yj ⊂ R, j = 1, ...,m, (4.298)

x1, x2, ..., xn – input variables of the linguistic model, while

[x1, x2, . . . , xn]T = x ∈ X1 × X2 × . . . × Xn, (4.299)

y1, y2, ..., ym – output variables of the linguistic model, while

[y1, y2, . . . , ym]T = y ∈ Y1 × Y2 × . . . × Ym. (4.300)

Symbols Xi, i = 1, ..., n, and Yj , j = 1, ...,m, denote the spaces of input
and output variables, respectively.

Further in our discussion, we shall assume that particular rules R(k),
k = 1, ..., N, are related to each other using a logical operator “or”. More-
over, we shall assume that outputs y1, y2, ..., ym are mutually independent.
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Therefore, without losing the generality, we shall consider fuzzy rules with
a scalar output of the form

R(k) : IF x1 is Ak
1 AND x2 is Ak

2 AND (4.301)

. . .AND xn is Ak
n THEN y is Bk,

where Bk ⊆ Y ⊂ R and k = 1, ..., N. Let us notice that any rule of form
(4.301) consists of the part IF, called antecedent, and a part THEN called
consequent. The antecedent of the rule contains a set of conditions, and
the consequent contains the inference. Variables x = [x1, x2, ..., xn]T and
y may take both linguistic values defined in words, like “small”, “average”
and “high”, and numerical values. Let us denote

X = X1 × X2 × . . . × Xn (4.302)

and
Ak = Ak

1 × Ak
2 × . . . × Ak

n. (4.303)
Applying the above notations, rule (4.301) may be presented in the form

R(k) : Ak → Bk, k = 1, . . . , N. (4.304)

Let us notice that the rule R(k) may be interpreted as a fuzzy relation
defined on the set X×Y i.e. R(k) ⊆ X×Y is a fuzzy set with membership
function

µR(k) (x, y) = µAk→Bk (x, y) . (4.305)
When designing fuzzy controllers, it should be decided whether the number
of rules is sufficient, whether they are consistent and whether there are
interactions between particular rules. These issues have been discussed in
detail in works [33], [40] and [165].

4.9.2 Fuzzification block
A control system with fuzzy logic operates on fuzzy sets. That is why a
specific value x = [x1, x2, ..., xn]T ∈ X of an input signal of the fuzzy
controller is subject to a fuzzification operation, as a result of which it is
mapped into a fuzzy set A′ ⊆ X = X1 ×X2 × ...×Xn. Most often in case
of control problems, singleton type fuzzification is applied as follows

µA′ (x) = δ (x − x) =
{

1, if x = x,
0, if x �= x.

(4.306)

The fuzzy set A′ is an input of the inference block. If the input signal is
measured together with the interference (noise), then the fuzzy set A′ may
be defined using the membership function

µA′ (x) = exp

[

− (x − x)T (x − x)
δ

]

, (4.307)

where δ > 0.
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4.9.3 Inference block
Let us assume that at the input to the inference block we have a fuzzy
set A′ ⊆ X = X1 × X2 × ... × Xn. We shall find an appropriate fuzzy set
at the output of this block. Let us consider two cases to which different
defuzzification methods will correspond.

Case 1. At the output of the inference block we obtain N fuzzy sets
B

k ⊆ Y according to the generalized fuzzy modus ponens inference rule.
The fuzzy set B

k
is determined by the composition of the fuzzy set A′ and

the relation R(k), i.e.

B
(k)

= A′ ◦
(
Ak → Bk

)
, k = 1, . . . , N. (4.308)

Using Definition 4.39, we shall determine the membership function of the
fuzzy set B

k
as follows

µ
B

k (y) = sup
x∈X

[
µA′ (x)

T∗ µAk→Bk (x, y)
]
. (4.309)

A specific form of the function µ
B

k (y) depends on the chosen t-norm (Sub-
chapter 4.6), inference rule (points 4.8.3 and 4.8.4) and on the method of
defining the Cartesian product of fuzzy sets (Definition 4.36). We should
note that in case of singleton type fuzzification (4.306), formula (4.309)
takes the form

µ
B

k (y) = µAk→Bk (x, y) . (4.310)

Example 4.40
If n = 2, t-norm is of the min type, the fuzzy inference is defined by a
rule of the min type and the Cartesian product of fuzzy sets is defined by
formula (4.68), then formula (4.309) takes the form

µ
B

k (y) = sup
x∈X

[min (µA′ (x) , µAk→Bk (x, y))] (4.311)

= sup
x∈X

{min [µA′ (x) ,min (µA′ (x) , µBk (y))]}

= sup
x1∈X1,
x2∈X2

{
min
[
µA′

1
(x1), µA′

2
(x2), µAk

1
(x1), µAk

2
(x2) , µBk (y)

]}
.

The last equality results from the fact that

µAk (x) = µAk
1×Ak

2
(x1, x2) = min

[
µAk

1
(x1), µAk

2
(x2)
]

(4.312)

and

µA′ (x) = µA′
1×A′

2
(x1, x2) = min

[
µA′

1
(x1), µA′

2
(x2)
]

(4.313)
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Example 4.41
If n = 2, t-norm is of the product type, the fuzzy inference is defined by a
rule of the product type and the Cartesian product of fuzzy sets is defined
by formula (4.69), then formula (4.309) takes the form

µ
B

k (y) = sup
x∈X

{µA′ (x) · µAk→Bk (x, y)} (4.314)

= sup
x∈X

{µA′ (x) · µAk (x) · µBk (y)}

= sup
x1∈X1,
x2∈X2

{
µA′

1
(x1)·µA′

2
(x2)·µAk

1
(x1)·µAk

2
(x2)·µBk(y)

}
.

Case 2. At the output of the inference block, we obtain one fuzzy set
B′ ⊆ Y, defined by the formula

B′ =
N⋃

k=1

A′ ◦ R(k) =
N⋃

k=1

A′ ◦
(
Ak → Bk

)
. (4.315)

Applying Definition 4.35, we obtain the membership function of a fuzzy
set B′

µB′ (y) =
N

S
k=1

µ
B

k (y), (4.316)

while the membership function µ
B

k (y) is given by formula (4.309).

Example 4.42
Let us consider a fuzzy inference system with a rules base:

R(1) : IF x1 is A1
1 AND x2 is A1

2 THEN y is B1, (4.317)

R(2) : IF x1 is A2
1 AND x2 is A2

2 THEN y is B2. (4.318)

At the input of the controller, signal x = [x1, x2]
T was given. As a result of

singleton type fuzzification at the input to the inference block, we obtain
fuzzy sets A′

1 and A′
2, while

µA′
1
(x1) = δ (x1 − x1), µA′

2
(x2) = δ (x2 − x2). (4.319)

We shall determine the output signal y of a fuzzy controller. As the t-norm
the minimum operation is chosen. On the basis of formula (4.309), we have

µ
B

k (y) = sup
x1∈X1,
x2∈X2

[
min
(
µA′

1×A′
2
(x1, x2), µR(k) (x1, x2, y)

)]
. (4.320)

Additionally, we shall assume that

µA′
1×A′

2
(x1, x2) = min

[
µA′

1
(x1), µA′

2
(x2)
]

(4.321)

= min [δ (x1 − x1), δ (x2 − x2)].
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Therefore

µ
B

k(y) = sup
x1∈X1,x2∈X2

[min (δ(x1 − x1), δ(x2 − x2), µR(k)(x1, x2, y))]

= µR(k) (x1, x2, y) (4.322)

and
µR(k) (x1, x2, y) = µAk

1×Ak
2→Bk (x, x2, y). (4.323)

In case the minimum (Mamdani) type rule is applied, we obtain

µAk
1×Ak

2→Bk (x1, x2, y) = min
[
µAk

1×Ak
2
(x1, x2), µBk (y)

]
. (4.324)

Moreover,
µAk

1×Ak
2
(x1, x2) = min

[
µAk

1
(x1), µAk

2
(x2)
]
. (4.325)

In consequence,

µ
B

k (y) = min
{

min
[
µAk

1
(x1), µAk

2
(x2)
]
, µBk (y)

}
(4.326)

= min
[
µAk

1
(x1), µAk

2
(x2), µBk (y)

]

and

µB′ (y) = max
k=1,2

{
min
[
µAk

1
(x1), µAk

2
(x2), µBk (y)

]}
. (4.327)

Figure 4.34 illustrates the graphic interpretation of the fuzzy inference.
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FIGURE 4.34. Illustration to Example 4.42
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Example 4.43
In this example we will repeat the reasoning made in Example 4.42, but
instead of rule (4.324), we shall apply the product (Larsen) type rule, i.e.

µAk
1×Ak

2→Bk (x1, x2, y) = µAk
1×Ak

2
(x1, x2) · µBk (y). (4.328)

As a result of aggregation of rules 1 and 2, we will obtain the fuzzy set B′

with the membership function

µB′ (y) = max
k=1,2

{
µBk (y) min

[
µAk

1
(x1), µAk

2
(x2)
]}

. (4.329)

In this case,

µ
B

k (y) = µBk (y) · min
[
µAk

1
(x1), µAk

2
(x2)
]
. (4.330)

The graphic interpretation of the fuzzy inference is illustrated in Fig. 4.35.
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FIGURE 4.35. Illustration to Example 4.43

Example 4.44
Let us consider the fuzzy inference system described in Example 4.42 as-
suming that input (numerical) signals x1 and x2 are subject to fuzzifica-
tion, as a result of which at the input of the inference block we obtain
fuzzy sets A′

1 and A′
2 with membership functions µA′

1
(x1) and µA′

2
(x2).

In other words, we withdraw from assumption (4.319) limiting the class of
sets A′

1 and A′
2 to fuzzy singletons. Other assumptions made in Example

4.42 remain valid. Then we have
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µ
B

k (y) = sup
x∈X

[
µA′ (x)

T∗ µR(k) (x, y)
]

(4.331)

= sup
x1∈X1,
x2∈X2

min
{
min
[
µA′

1
(x1), µA′

2
(x2)
]
, µR(k)(x1, x2, y)

}
.

The min operation shall be notated with the symbol ∧. Therefore

µ
B

k(y)= sup
x1∈X1,
x2∈X2

[
µA′

1
(x1)∧µA′

2
(x2)∧µR(k)(x1, x2, y)

]

= sup
x1∈X1,
x2∈X2

{
µA′

1
(x1)∧µA′

2
(x2)∧

[(
µAk

1
(x1)∧µAk

2
(x2)
)
∧µBk(y)

]}

=

⎧
⎪⎨

⎪⎩
sup

x1∈X1,
x2∈X2

[
µA′

1
(x1)∧µA′

2
(x2)∧

(
µAk

1
(x1)∧µAk

2
(x2)
)]
⎫
⎪⎬

⎪⎭
(4.332)

∧ µBk (y)

=
{

sup
x1∈X1

[
µA′

1
(x1)∧µAk

1
(x1)
]
∧ sup

x2∈X2

[
µA′

2
(x2)∧µAk

2
(x2)
]}

∧ µBk (y) .In consequence,

µB′(y)= max
k=1,2

{(
sup

x1∈X1

[
µA′

1
(x1)∧µAk

1
(x1)
]

(4.333)

∧ sup
x2∈X2

[
µA′

2
(x2)∧µAk

2
(x2)
])

∧µBk(y)
}

.

Figure 4.36 illustrates the graphic interpretation of the fuzzy inference.

FIGURE 4.36. Illustration to Example 4.44
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Example 4.45
In Example 4.44 we assumed that the t-norm, the Cartesian product and
the inference rule are defined using the minimum operation. Now, we shall
replace the minimum operation by product. In accordance with formula
(4.309), we have

µ
B

k(y) = sup
x1∈X1,
x2∈X2

[µA′(x1, x2) · µR(k)(x1, x2, y)]

= sup
x1∈X1,
x2∈X2

[
µA′

1
(x1) µA′

2
(x2) µAk

1×Ak
2
(x1, x2) µBk(y)

]
(4.334)

= sup
x1∈X1

[
µA′

1
(x1) µAk

1
(x1)
]

sup
x2∈X2

[
µA′

2
(x2) µAk

2
(x2)
]
µBk(y) .

The membership function of fuzzy set B′ shall be determined based on
dependencies (4.334) and (4.316).

Figure 4.37 illustrates the graphic interpretation of the fuzzy inference.
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FIGURE 4.37. Illustration to Example 4.45

Example 4.46
So far, we have been considering rules of form (4.296). In this example, first
two rules R(1) and R(2) are special cases of notation (4.296), while the rule
R(3) contains the conjunction OR:

R(1) : IF x1 is A1
1 AND x2 is A1

2 THEN y is B1,
R(2) : IF x1 is A2

1 AND x2 is A2
2 THEN y is B2,

R(3) : IF x1 is A3
1 OR x3 is A3

2 THEN y is B3.
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FIGURE 4.38. Illustration to Example 4.46

Figure 4.38 shows a graphic interpretation of a fuzzy inference with the
assumption that the t-norm, Cartesian product and the inference rule are
of the min type. The above problem may be solved in an alternative way.
To do this, we shall notice that the rule R(3) may be notated as two rules
R

(3)
and R

(4)
:

R
(3)

: IF x1 is A3
1 THEN y is B3,

R
(4)

: IF x1 is A3
2 THEN y is B3.

We have obtained rules R(1), R(2), R
(3)

and R
(4)

, which are special cases
of notation (4.296). The Reader will easily derive analytical form of the
membership function of set B′, using the results of Example 4.44 as a
template.

4.9.4 Defuzzification block

The output value of the inference block is either N fuzzy sets B
k

with
membership functions µ

B
k (y) , k = 1, 2, . . . , N, or a single fuzzy set B′

with membership function µB′ (y). Now we consider a problem of mapping
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fuzzy sets B
k

(or fuzzy set B′) into a single value y ∈ Y. This mapping is
called defuzzification and it is made in the defuzzification block.

If the output value of the inference block is N fuzzy sets B
k
, then the

value y ∈ Y may be determined using the following methods:

1. Center average defuzzification method. The value y shall be calculated
using the formula

y =

N∑

k=1

µ
B

k

(
yk
)
yk

N∑

k=1

µ
B

k

(
yk
)

, (4.335)

where yk is the point in which the function µBk (y) takes the maximum
value, i.e.

µBk

(
yk
)

= max
y

µBk (y). (4.336)

Point yk is called center of the fuzzy set Bk. Figure 4.39 shows the concept
of this method for N = 2. Let us notice that value y does not depend on
the shape and support of the membership function µBk (y).

2. Center of sums defuzzification method. The value y is computed as
follows:

y =

∫

Y

y

N∑

k=1

µ
B

k (y)dy

∫

Y

N∑

k=1

µ
B

k (y)dy

. (4.337)

If the output value of the inference block is a single fuzzy set B′, then the
value y may be determined using the following methods:

y

B1
B2

B1

B2

y1 y2y

1

FIGURE 4.39. Illustration of the center average defuzzification method
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FIGURE 4.40. Illustration of the center of gravity method

3. Center of gravity method (or center of area method). The value y is
calculated as the center of gravity of the membership function µB′ (y), i.e.

y =

∫

Y

yµB′ (y)dy
∫

Y

µB′ (y)dy

=

∫

Y

y SN
k=1 µ

B
k (y)

∫

Y

SN
k=1 µ

B
k (y)

, (4.338)

assuming that both integrals in the above formula exist. In a discrete case,
the above formula takes the form

y =

N∑

k=1

µB′
(
yk
)
yk

N∑

k=1

µB′
(
yk
)

. (4.339)

Figure 4.40 shows the method of value y determination using the center of
gravity method.

4. Maximum membership function method. The value y is computed
according to the formula

µB′ (y) = sup
y∈Y

µB′ (y) (4.340)

assuming that µB′ (y) is a unimodal function. This method does not con-
sider the shape of the membership function, which is illustrated in Fig. 4.41.
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yy

mB�(y)

FIGURE 4.41. Illustration of the maximum membership function method

4.10 Application of fuzzy sets

4.10.1 Fuzzy Delphi method
Fuzzy Delphi method is the generalization of the classic Delphi technique
concerning the long-term forecasting. The classic Delphi technique has been
developed in the 1960s by Rand corporation in Santa Monica, California.
The name of the method originates from ancient Greece, namely from the
Delphi oracle, famous for predicting the future. The essence of the Delphi
technique may be described as follows [13]:

• Highly qualified experts in a given discipline express independently
their opinions on a certain event in the domain of science, technology
or business. These opinions may be related to forecasts concerning
the market, economy, technological progress, etc.

• Opinions of the experts are identified with data which are subjective
in nature and are analyzed using statistical methods. Their average
value is determined and the results are analyzed by the company’s
management board.

• In case of results that are not satisfactory for the company’s man-
agement board, experts are requested once again to provide their
opinions. At the same time, experts are provided with results of the
previous round of inquiries.

• The process is repeated until a solution is obtained that is reasonable
for the management board. In practice, usually two or three rounds
are sufficient.

In long-term forecasting, we are dealing with imprecise and incomplete
data. Decisions made by experts are subjective and depend mainly on their
individual concepts. That is why it seems appropriate to present data using
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fuzzy numbers. It is particularly appropriate to use triangular numbers, as
they may be easily constructed using three specific values: the smallest, the
largest and the most probable (in the common meaning of this word). The
analysis is based on the fuzzified average rather than on the real average.
The fuzzy Delphi method consists of the following steps:

Step 1. Experts Ei, i = 1, ..., n, express their opinion on a certain event,
e.g. the lowest a

(i)
1 , the most probable a

(i)
M , and the highest a

(i)
2 price of

Euro. Information provided by experts E(i) are presented by the company’s
management board in the form of fuzzy triangular numbers

Ai =
(
a
(i)
1 , a

(i)
M , a

(i)
2

)
, i = 1, ..., n. (4.341)

Step 2. The average is computed

Aaver = (m1,mM ,m2) =

(
1
n

n∑

i=1

a
(i)
1 ,

1
n

n∑

i=1

a
(i)
M ,

1
n

n∑

i=1

a
(i)
2

)

. (4.342)

Step 3. Each expert Ei expresses his/her opinion again, taking into ac-

count the received averages from the previous round of inquiries and new
fuzzy numbers are created.

Bi =
(
b
(i)
1 , b

(i)
M , b

(i)
2

)
, i = 1, ..., n. (4.343)

The process is repeated from step 2. The average Baver is calculated according
to formula (4.342), only that now a

(i)
1 , a

(i)
M , a

(i)
2 are replaced respectively by

b
(i)
1 , b

(i)
M , b

(i)
2 . If needed, the following triangular numbers Ci =

(
c
(i)
1 , c

(i)
M , c

(i)
2

)

are generated and their average Caver. is computed. The process is repeated
until two subsequent sufficiently close averages (Aaver, Baver, Caver, ...) are
obtained.

Step 4. Later, if new relevant information is obtained concerning a given
problem, the above procedure may be repeated.

The fuzzy Delphi method is a typical multi-expert forecasting procedure
used to connect different views and opinions. We shall now present two
examples of application of the fuzzy Delphi method using triangular fuzzy
numbers.

Example 4.47. Estimate values of the Euro exchange rate in July
next year
A group of 16 experts Ei, i = 1, ..., 16, was requested to express their
opinions on the value of the Euro exchange rate (EUR/PLN) in July next
year, using the fuzzy Delhi method. It is assumed that the experts’ opin-
ions have the same weight. Experts’ forecasts, represented by triangular
numbers Ai, i = 1, ..., 16 (4.341) have been placed in Table 4.9.
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TABLE 4.9. Experts’ forecasts (first inquiry)

Expert Fuzzy Lowest value Most probable Highest value
number value

E1 A1 a
(1)
1 = 3.5882 a

(1)
M = 4.2062 a

(1)
2 = 4.5060

E2 A2 a
(2)
1 = 3.9854 a

(2)
M = 4.2070 a

(2)
2 = 4.6020

E3 A3 a
(3)
1 = 3.4868 a

(3)
M = 4.2071 a

(3)
2 = 4.8524

E4 A4 a
(4)
1 = 3.9201 a

(4)
M = 4.2065 a

(4)
2 = 4.7925

E5 A5 a
(5)
1 = 4.0012 a

(5)
M = 4.2080 a

(5)
2 = 4.5900

E6 A6 a
(6)
1 = 3.8724 a

(6)
M = 4.2063 a

(6)
2 = 4.9825

E7 A7 a
(7)
1 = 3.7760 a

(7)
M = 4.2062 a

(7)
2 = 4.8250

E8 A8 a
(8)
1 = 3.8925 a

(8)
M = 4.2065 a

(8)
2 = 4.6872

E9 A9 a
(9)
1 = 3.6823 a

(9)
M = 4.2085 a

(9)
2 = 4.6257

E10 A10 a
(10)
1 = 4.0010 a

(10)
M = 4.2067 a

(10)
2 = 4.6889

E11 A11 a
(11)
1 = 3.8926 a

(11)
M = 4.2051 a

(11)
2 = 4.9820

E12 A12 a
(12)
1 = 3.5868 a

(12)
M = 4.2061 a

(12)
2 = 4.9560

E13 A13 a
(13)
1 = 3.8101 a

(13)
M = 4.2055 a

(13)
2 = 4.9920

E14 A14 a
(14)
1 = 3.7865 a

(14)
M = 4.2082 a

(14)
2 = 5.0101

E15 A15 a
(15)
1 = 3.7826 a

(15)
M = 4.2069 a

(15)
2 = 4.9840

E16 A16 a
(16)
1 = 3.7824 a

(16)
M = 4.2067 a

(16)
2 = 4.7805

To obtain the average Aaver, first we shall sum up the numbers in the
last three columns of Table 4.9

16∑

i=1

a
(i)
1 = 60.8469;

16∑

i=1

a
(i)
M = 67.3075;

16∑

i=1

a
(i)
2 = 76.8568,

and then we use formula (4.342)

Aaver =
(

60.8469
16

,
67.3075

16
,
76.8568

16

)
= (3.80293; 4.20671; 4.80355).

The approximate result has the form

Ap
aver = (3.8029; 4.2067; 4.8036).

It may be easily noticed that, for instance, opinions of experts E7 and E16

are close to the average Ap
aver, while the opinions of experts E1 and E12

differ from it significantly. Let us assume that the company’s management
board decided to repeat the inquiry addressed to the experts, who receive
the results of the previous round of inquiries. The experts propose new
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TABLE 4.10. Experts’ forecasts (second inquiry)

Expert Fuzzy Lowest value Most probable Highest value
number value

E1 B1 b
(1)
1 = 3.6892 b

(1)
M = 4.2060 b

(1)
2 = 4.7892

E2 B2 b
(2)
1 = 3.8026 b

(2)
M = 4.2072 b

(2)
2 = 4.8020

E3 B3 b
(3)
1 = 3.7956 b

(3)
M = 4.2060 b

(3)
2 = 4.8024

E4 B4 b
(4)
1 = 3.8026 b

(4)
M = 4.2064 b

(4)
2 = 4.7824

E5 B5 b
(5)
1 = 3.9217 b

(5)
M = 4.2050 b

(5)
2 = 4.7986

E6 B6 b
(6)
1 = 3.8056 b

(6)
M = 4.2077 b

(6)
2 = 4.8008

E7 B7 b
(7)
1 = 3.7856 b

(7)
M = 4.2066 b

(7)
2 = 4.8125

E8 B8 b
(8)
1 = 3.7985 b

(8)
M = 4.2067 b

(8)
2 = 4.7892

E9 B9 b
(9)
1 = 3.8006 b

(9)
M = 4.2079 b

(9)
2 = 4.9254

E10 B10 b
(10)
1 = 3.9121 b

(10)
M = 4.2067 b

(10)
2 = 4.7986

E11 B11 b
(11)
1 = 3.8564 b

(11)
M = 4.2066 b

(11)
2 = 4.7891

E12 B12 b
(12)
1 = 3.7859 b

(12)
M = 4.2070 b

(12)
2 = 4.7682

E13 B13 b
(13)
1 = 3.8026 b

(13)
M = 4.2065 b

(13)
2 = 4.7851

E14 B14 b
(14)
1 = 3.7998 b

(14)
M = 4.2070 b

(14)
2 = 4.8102

E15 B15 b
(15)
1 = 3.7548 b

(15)
M = 4.2067 b

(15)
2 = 4.7986

E16 B16 b
(16)
1 = 3.7266 b

(16)
M = 4.2066 b

(16)
2 = 4.7256

forecasts of Euro exchange rate, which are transformed by the company’s
board onto triangular numbers Bi. Experts’ new forecasts have been pre-
sented in Table 4.10.

By reapplying formula (4.342), we shall determine

Baver = (3.80258; 4.206663; 4.798619).

The approximate result is as follows:

Bp
aver = (3.8026; 4.2067; 4.7986).

Now, the company’s management board is satisfied, as the averages Ap
aver

and Bp
aver are very close, and in consequence the algorithm is stopped and

the triangular number Bp
aver is considered as the inference connecting the

experts’ opinions. This result is interpreted as follows: the estimated val-
ues of the Euro exchange rate in July next year are within the interval
[3.8026; 4.7986], while the forecasted price of the Euro is PLN 4.2067. This
forecast has been obtained by defuzzifying the fuzzy triangular number
Bp

aver = (3.8026; 4.2067; 4.7986).
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4.10.2 Weighted fuzzy Delphi method
In many domains of our lives (e.g. economy, finance, management), the
knowledge, experience and expertise of a certain group of experts are of-
ten more valued than the knowledge and expertise of other experts. It
is expressed using weights wi assigned to experts. We shall now describe
the weighted fuzzy Delphi method. Let us assume that the competence
of expert Ei, i = 1, ..., 16, is reflected by the weight wi, i = 1, ..., 16,
wi + ... + wn = 1. Next steps in the fuzzy Delphi method will be sub-
ject to slight changes, namely: in step 2 instead of triangular average Aaver

weighted average Aw
aver appears. It is also the case of step 3, where instead

of arithmetic averages, we have weighted averages.

Example 4.48
Let us return to Example 4.47, where 16 experts presented their opinions
expressed using triangular numbers Ai placed in Table 4.9. Let us assume
now that the competences of experts E10, E16 are estimated as the highest
(weight 0.13), competences of experts E4, E8 and E15 have the weight of
0.1 and of other experts 0.04; the sum of all weights is equal to 1. Table 4.11
illustrates the weighted forecasts of experts.

Having summed up the values in the last line of Table 4.11, we obtain a
weighted triangular average

TABLE 4.11. Weighted forecasts of experts

Expert wi wi × a
(i)
1 wi × a

(i)
M wi × a

(i)
2

E1 0.04 0.1435 0.1682 0.1802
E2 0.04 0.1594 0.1683 0.1841
E3 0.04 0.1395 0.1683 0.1941
E4 0.1 0.3920 0.4207 0.4793
E5 0.04 0.1600 0.1683 0.1836
E6 0.04 0.1549 0.1683 0.1993
E7 0.04 0.1510 0.1682 0.1930
E8 0.1 0.3893 0.4207 0.4687
E9 0.04 0.1473 0.1683 0.1850
E10 0.13 0.5201 0.5469 0.6096
E11 0.04 0.1557 0.1682 0.1993
E12 0.04 0.1435 0.1682 0.1982
E13 0.04 0.1524 0.1682 0.1997
E14 0.04 0.1515 0.1683 0.2004
E15 0.1 0.3783 0.4207 0.4984
E16 0.13 0.4917 0.5469 0.6215

Sum: 1 3.830094 4.2067 4.79434
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Aw
aver = (3.830094; 4.2067; 4.79434).

The approximate result is as follows:

Awp
aver = (3.8301; 4.2067; 4.7943).

The result obtained is almost the same as in Example 4.47. As a re-
sult of defuzzification of the weighted average Awp

aver we obtain the value
of 4.2067.

4.10.3 Fuzzy PERT method
Planning of the order of actions is a complicated undertaking that requires
taking into account many actions which are to be performed in the process
of design of new product or technology. In the second half of 1950s in the
USA, two new methods were proposed to be used in organizing large, com-
plex production or construction enterprises in which many cooperating par-
ties and contractors participate. The literature knows these methods under
the name of PERT (Project Evaluation and Review Technique) and Criti-
cal Path Method (CPM). PERT and CPM techniques are similar and often
used together as one method. For the first time, the PERT method was used
in the USA in 1957 with relation to the construction of nuclear submarines
and Polaris rockets. On the other hand, CPM was used more or less at
the same time in research facilities of Remington Rand and DuPont com-
panies working in the planning strategy in chemical factories. The PERT
method consists in creating a model of the network of activities aiming to
achieve the expected objective, taking into account the duration of each
of them (the shortest, the longest and the most probable). The sequence
of operations, of which each subsequent one depends on the execution of
the previous one, creates the so-called critical path determining the longest
time of task execution. Its shortening may be obtained by excluding from
the critical path any activities that may be performed in parallel, and by
hastening the execution of the remaining ones. A developed form of this
method takes into account also the costs of execution of particular activi-
ties (stages) of the task. The PERT method allows to prepare a schedule of
works which optimizes the time and costs of task execution, allowing for a
smooth cooperation of all its participants, elimination of downtimes and so-
called bottlenecks. We shall present the operation of the PERT method on
a simplified example of designing production process for household appli-
ances. The project of a given appliance requires that particular components
be designed, manufactured and assembled and the ready product be tested.
In our example, the project is made of ten different actions A, B, C, D,
E, F, G, H and I. The required completion time for each activity has been
presented in the last column of Table 4.12. It was estimated by managers
responsible for particular activities.
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TABLE 4.12. Weighted forecasts of experts

Type of activity Preceding Parallel Subsequent Required
activities activities activities completion time

(days)

A Designing of
mechanical – – B, C 30

parts
B Designing of

electrical A C, E D 30
installation

C Production of
mechanical A B E 28

parts
D Production of

electrical B E, G F 28
parts

E Assembly of
mechanical C B, D G 25

parts
F Assembly of

electrical D, E – H 20
parts

G Assembly of
electronic E – H 12

parts
H Start up of G, F – I 8

a new product
I Tests H – – 10

At first, let us build a network model of planning which takes into ac-
count the data included in Table 4.12. This model has been presented in
Fig. 4.42. Each activity is represented by a rectangle in the middle of which
the symbol of the activity type is placed together with the number of days
necessary for its completion. A network model of planning shows the se-
quential relations between activities. A critical path is defined as the se-
quence of activities ranged from the first to the last in the Project, that
requires the longest completion time. As a consequence, the total required
time of project execution is identical to the time needed to complete the
activities in the critical path.

The network planning model allows to set a critical path which in
Fig. 4.42 has been represented using blocks connected by arrows which
link activities A, B, D, F, H, I. Therefore the whole project completion
time amounts to: 30 + 30 + 28 + 20 + 8 + 10 = 126 days. In Fig. 4.42,
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FIGURE 4.42. A network model of planning

TABLE 4.13. Estimated time of task A completion

Expert TA
i Optimistic time Most probable Pessimistic time

time
E1 TA

1 28 29 33
E2 TA

2 27 30 32
E3 TA

3 27 31 34

Sum:
∑3

i=1
TA

i 82 90 99

we may notice that activities C, E and G are not on the critical path.
Therefore, their completion may take longer than 28 + 25 + 12 = 65 days,
however, the delay may not be greater than 13 days so as not to cause the
extension of the critical path.

In our example, the time of each kind of activity will be estimated by
three experts. The experts’ task will be to estimate an optimistic, most
probable (in the common meaning of this word) and a pessimistic time
of completion of tasks A, B, ...,I. Experts’ opinions have been notated as
triangular fuzzy numbers TA

i , TB
i , ..., T I

i , i = 1, 2, 3. Table 4.13 illustrates
the experts’ opinions concerning task A completion time.

Average time of task A completion is represented by a fuzzy triangular
number of the form

TA
ave =
(

82
3

,
90
3

,
99
3

)
≈ (27.3; 30; 33).

shall obtain the actual task completion time by defuzzifying the triangu-
lar number TA

aver. Depending on the method of defuzzification used (see
Subchapter 4.5), we will obtain the following results:

y(1) = 30,

y(2) =
27.3 + 30 + 33

3
= 30.1,

y(3) =
27.3 + 2(30) + 33

4
= 30.075,

y(4) =
27.3 + 4(30) + 33

6
= 30.05.
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TABLE 4.14. Average time of completion of particular tasks

Activity Average activity Optimistic Most probable Pessimistic
time time t1 time tM time t2

A TA
aver 27 30 33

B TB
aver 28 30 32

C TC
aver 24 27 31

D TD
aver 24 26 29

E TE
aver 22 25 27

F TF
aver 17 20 23

G TG
aver 10 12 14

H TH
aver 6 8 11

I T I
aver 7 9 12

FIGURE 4.43. A modified network model of planning

Similarly, eight other three expert groups expressed their opinions concerning
the estimation of required completion time for particular tasks. Table 4.14
presents the average times TB

aver, . . . , T
I
aver (the time TA

aver is also included).
Each triangular number in Table 4.14, representing the average time of
completion of a given time, is defuzzified (max operation) in order to obtain
the actual time of completion of this task.

Figure 4.43 illustrates the network planning model taking into account
the experts’ opinion.

Total time needed to complete the project is

T = TA
aver + TB

aver + TD
aver + TF

aver + TH
aver + T I

aver = (109, 123, 140).

As a consequence, the project duration varies from 109 to 140 days, while
the most probable time is, according to experts, 123 days.

4.10.4 Decision making in a fuzzy environment
The fuzzy sets theory allows to make decisions in the so-called fuzzy envi-
ronment, which is made of fuzzy objectives, fuzzy constraints and a fuzzy
decision. Let us consider a certain set of options (also referred to as choices
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or variants) notated using Xop = {x}. A fuzzy objective is defined as a fuzzy
set G defined in the set of options Xop. The fuzzy set G is described by the
membership function µG : Xop → [0, 1]. The function µG (x) ∈ [0, 1] for a
given x defines the membership degree of option x ∈ Xop to the fuzzy set G
(fuzzy objective). A fuzzy constraint is defined as a fuzzy set C also defined
in the set of options Xop. The fuzzy set C is described by the membership
function µC : Xop → [0, 1]. The function µC (x) ∈ [0, 1] for a given x de-
fines the membership degree of option x ∈ Xop to the fuzzy set C (fuzzy
constraint). Let us consider the task of determining a decision, achieving
at the same time the fuzzy objective G and meeting the fuzzy constraint
C. A fuzzy decision D is a fuzzy set created as a result of intersection of
the fuzzy objective and fuzzy constraint:

D = G ∩ C, (4.344)

while
µD (x) = T {µG (x) , µC (x)} (4.345)

for each x ∈ X. It should be noted that notation (4.345) suggests the
following interpretation of the decision making task in a fuzzy environment:
“reach G and meet C”. The specific form of formula (4.345) depends on the
t-norm adopted.

The above considerations can be easily generalized to the case of many
objectives and constraints. Let us assume that we have n > 1 fuzzy ob-
jectives, G1, ..., Gn, and m > 1 fuzzy constraints, C1, ..., Cm, and all are
defined as fuzzy sets in the set of options Xop. A fuzzy decision is deter-
mined as follows:

D = G1 ∩ . . . ∩ Gn ∩ C1 ∩ . . . ∩ Cm, (4.346)

while

µD(x) = T {µG1(x), ..., µGn
(x), µC1(x), ..., µCm

(x)} (4.347)

for each x ∈ Xop. A maximization decision is the option x∗ ∈ X, such as

µD(x∗) = max
x∈X

µD(x). (4.348)

The above considerations shall be illustrated on examples of specific appli-
cations (see [13]) of decision making in a fuzzy environment:
a) division of dividend,
b) employment policy,
c) housing policy for low income families,
d) assessment of students,
e) college selection strategy,
f) setting the price of a new product.
In all examples, we shall determine a fuzzy decision of the minimum type,
i.e. the t-norm in formula (4.345) is defined by the min operation.
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Example 4.49. Division of dividend
The general shareholders’ meeting, having approved the company’s balance
sheet, is considering the amount of dividend for one share. The amount of
the dividend is a linguistic variable taking on two values: attractive div-
idend and moderate dividend. The linguistic value attractive dividend is
an objective described by the fuzzy set G, defined on the set of options
Xop = {x : 0 < x ≤ 70}, where option x is expressed in USD. The mem-
bership function µG(x) is increasing. The linguistic value moderate dividend
is a constraint described by the fuzzy set C, defined on the set of options
Xop, with a decreasing membership function µC(x). Let us assume that
the fuzzy set G attractive dividend has the form of

µG(x) =

⎧
⎪⎨

⎪⎩

0 for 0 < x ≤ 10,
1
40

x − 1
4

for 10 ≤ x ≤ 50,

1 for 50 ≤ x ≤ 70,

while the fuzzy set C moderate dividend is given on Xop as follows:

µC(x) =

⎧
⎪⎨

⎪⎩

1 for 0 < x ≤ 20,

− 1
40

x +
3
2

for 20 ≤ x ≤ 60,

0 for 60 ≤ x ≤ 70.
The fuzzy decision of the minimum type has the form

µD (x) = min (µG (x), µC (x)),

which is illustrated in Fig. 4.44. The point of intersection of function

µG (x) =
1
40

x− 1
4

and µC (x) = − 1
40

x +
3
2

is (35; 0.625). Therefore x∗ = 35
and the amount of the dividend to be paid is 35 USD.

FIGURE 4.44. Illustration to Example 4.49
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Example 4.50. Employment policy
Let us consider a company which organized a competition for the position of
director’s assistant. During the interview, the candidates were asked about
their qualifications, experience, knowledge in a given domain, etc. In our
example, the following criteria for assessing the candidates were set:
G1 – experience,
G2 – computer literacy,
G3 – young age,
G4 – foreign language.
The company’s objective is to hire for the position of the director’s assistant
the best candidate who will accept the remuneration offered by the com-
pany. Individual candidates xk, k = 1, ..., 4, are evaluated from the point
of view of meeting the objectives G1, G2, G3 and G4 and meeting the con-
straint C. The result of this evaluation are fuzzy sets defined on the set
Xop = {x1, x2, x3, x4}

G1 =
0.7
x1

+
0.2
x2

+
0.5
x3

+
0.3
x4

,

G2 =
0.8
x1

+
0.8
x2

+
0.5
x3

+
0.2
x4

,

G3 =
0.7
x1

+
0.8
x2

+
0.4
x3

+
0.5
x4

,

G4 =
0.5
x1

+
0.6
x2

+
0.7
x3

+
0.8
x4

.

The constraint C is understood as the willingness of the candidates to
accept the remuneration offered by the company and according to the
company’s views, is as follows:

C =
0.3
x1

+
0.4
x2

+
0.6
x3

+
0.9
x4

.

The decision D is determined on the basis of the following formula:

D = G1 ∩ G2 ∩ G3 ∩ G4 ∩ C.

As a result of some simple computations, we obtain

D =
0.3
x1

+
0.2
x2

+
0.4
x3

+
0.2
x4

.

Candidate No. 3 is characterized by the greatest membership degree equal
to 0.4, and hence, he is the best candidate for the position offered by
the company. The decision model for recruitment policy presented in our
example may be applied in similar situations.
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Example 4.51. Housing policy for low income families
The city council intends to implement a housing policy for low income fam-
ilies living in old apartment houses located on large plots. Three alternative
projects are being considered:
x1 – renovation and management of the buildings,
x2 – Social Building Program,
x3 – preferential credit to purchase new apartaments.
The set of options is Xop = {x1 x2, x3}. These projects will require a partial
or total relocation of families. The city council, having studied the experts’
opinions, proposed three objectives and two constraints described by the
fuzzy sets defined on Xop. They are as follows:

“Improvement of the living standards” = G1 =
0.7
x1

+
0.8
x2

+
0.9
x3

,

“Greater number of apartaments in the same area” = G2 =
0
x1

+
0.9
x2

+
0.9
x3

,

“Better housing conditions” = G3 =
0.3
x1

+
0.7
x2

+
0.8
x3

,

“Reasonable cost” = C1 =
0.8
x1

+
0.6
x2

+
0.3
x3

,

“Short realization time” = C2 =
0.9
x1

+
0.2
x2

+
0.7
x3

.

We shall determine the fuzzy decision as follows:

D = G1 ∩ G2 ∩ G3 ∩ C1 ∩ C2.

For t-norm of the minimum type, we obtain

D =
0
x1

+
0.2
x2

+
0.3
x3

.

Project x3 with the highest membership degree 0.3 appeared to be the best
solution.

Example 4.52. Assessment of students
A company offered a summer internship for the students who obtained
the best results in science (electronics, informatics, mathematics) and in
languages (English, German). The word the best is a linguistic value, which
was described separately for science subjects (NS) and languages (NJ) and
presented in Fig. 4.45, assuming that the interval of marks is [2, 5].

The membership functions of fuzzy sets NS and NJ are the following:

µNS(x) =

⎧
⎪⎨

⎪⎩

0 for 2 ≤ x ≤ 4.3;
x − 4.3

0.5
for 4.3 ≤ x ≤ 4.8;

1 for 4.8 ≤ x ≤ 5,

(4.349)
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and

µNJ(x) =

⎧
⎪⎨

⎪⎩

0 for 2 ≤ x ≤ 4.2;
x − 4.2

0.4
for 4.2 ≤ x ≤ 4.6;

1 for 4.6 ≤ x ≤ 5.

(4.350)

The students who obtained in science subjects the average of 4.8 and
higher, are assigned the membership degree equal to 1. In case of languages,
the analogous value is 4.6. In our example, six students (x1 = Kate,
x2 = Margaret, x3 = Ann, x4 = Tom, x5 = Jack, x6 = Michael) are apply-
ing for the internship. The set of options is Xop = {x1, x2, x3, x4, x5, x6}.
Table 4.15 contains the average notes of students in particular subjects.

By substituting the average of students’ marks in science subjects to
formula (4.349), we obtain membership degrees to the fuzzy set NS. Sim-
ilarly, by substituting the average of students’ marks in foreign languages
to formula (4.350), we obtain membership degrees to the fuzzy set NJ.

The next step is to create fuzzy sets corresponding to the data included
in Table 4.16.
“The best in electronics” = G1 =

1
x1

+
0.2
x2

+
1
x3

+
0.4
x4

+
1
x5

+
1
x6

,

“The best in informatics” = G2 =
1
x1

+
0.8
x2

+
1
x3

+
1
x4

+
0.6
x5

+
0.4
x6

,

FIGURE 4.45. Membership functions of fuzzy sets NS and NJ

TABLE 4.15. Average notes of students in particular subjects

Student Electronics Informatics Mathematics English German
Kate (x1) 4.8 5.0 4.7 4.3 4.7
Margaret (x2) 4.4 4.7 4.8 4.4 4.4
Ann (x3) 4.9 4.9 4.6 4.7 4.3
Tom (x4) 4.5 4.8 4.9 5.0 4.5
Jack (x5) 5.0 4.6 4.7 4.4 5.0
Michael (x6) 4.9 4.5 5.0 4.5 4.4
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TABLE 4.16. Values of membership degrees to fuzzy sets NS and NJ

Student Electronics Informatics Mathematics English German
Kate (x1) 1 1 0.8 0.25 1
Margaret (x2) 0.2 0.8 1 0.5 0.5
Ann (x3) 1 1 0.6 1 0.25
Tom (x4) 0.4 1 1 1 0.75
Jack (x5) 1 0.6 0.8 0.5 1
Michael (x6) 1 0.4 1 0.75 0.5

“The best in mathematics” = G3 =
0.8
x1

+
1
x2

+
0.6
x3

+
1
x4

+
0.8
x5

+
1
x6

,

“Perfect in English” = G4 =
0.25
x1

+
0.5
x2

+
1
x3

+
1
x4

+
0.5
x5

+
0.75
x6

,

“Perfect in German” = G5 =
1
x1

+
0.5
x2

+
0.25
x3

+
0.75
x4

+
1
x5

+
0.5
x6

.

By substituting the data to formula (4.346), we obtain

D = G1 ∩ G2 ∩ G3 ∩ G4 ∩ G5.

The fuzzy decision of the minimum type has the form

D =
0.25
x1

+
0.2
x2

+
0.25
x3

+
0.4
x4

+
0.5
x5

+
0.4
x6

.

The student x5 is characterized by the greatest membership degree and
therefore he will be accepted to the summer internship.

Example 4.53. College selection strategy
A talented student applied to several colleges and after exams, he was
accepted to 4 of the colleges that make up the set of options
Xop = {x1, x2, x3, x4}. Now, he must make a decision concerning the col-
lege he will go to. The objective of our student is to learn at a renown
college (i.e. at the top of the ranking of the best colleges). At the same
time, the future college student would like that some conditions be met,
and namely: the school should be located not far from his place of resi-
dence; it should have a program of international exchange; it should have
good technical back-office facilities and after graduating from it, the stu-
dent wants to have high odds to find a job. These constraints were notated
using fuzzy sets:

“Not far from the place of residence” = C1 =
0.8
x1

+
0.9
x2

+
0.4
x3

+
0.5
x4

,
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“International exchange program” = C2 =
0.2
x1

+
0.2
x2

+
0.9
x3

+
0.6
x4

,

“Good technical back-office facilities at the college (equipment of rooms,

labs, etc.)” = C3 =
0.5
x1

+
0.3
x2

+
0.6
x3

+
0.7
x4

,

“High odds to find a job”= C4 =
0.6
x1

+
0.5
x2

+
0.7
x3

+
0.7
x4

.

In Table 4.17, particular colleges were assigned membership degrees
(where x2 with the membership degree equal to 1 is the college which
ranked first in the ranking, etc.)

TABLE 4.17. Colleges together with the membership degrees assigned

College x1 x2 x3 x4

The membership degree of 0.75 1 0.25 0.5
the place in ranking

Using the data included in Table 4.17, we shall create the fuzzy set G
describing the objective

G =
0.75
x1

+
1
x2

+
0.25
x3

+
0.5
x4

.

Using formula (4.346), we shall obtain the following fuzzy decision:

D = G ∩ C1 ∩ C2 ∩ C3 ∩ C4.

The fuzzy decision of the minimum type has the form

D =
0.2
x1

+
0.2
x2

+
0.25
x3

+
0.5
x4

.

The greatest membership degree is 0.5, therefore our student will select the
college x4.

Example 4.54. Determination of price of a new product
Determination of the price for a new product being launched is a compli-
cated process. It requires a joint effort from experts in such domains as
finance, management, marketing and sales. The experts’ task is to define
the product price. Typical requirements concerning the new product price
definition are as follows:
W1 – the product should have a low price,
W2 – the product should have a high price,
W3 – the product should have a price close to the competitive price,
W4 – the product should have a price close to twice the manufacturing cost.
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FIGURE 4.46. Illustration to Example 4.54

Let us consider a pricing model made of three requirements W1,W3,W4.
Let us assume that the competitive price is 35 USD and the double man-
ufacturing cost is 40 USD. The set of option Xop is within the interval
[20, 60], which means that the product price should be included in this
interval. This model has been presented in Fig. 4.46. The linguistic val-
ues in particular requirements are described by fuzzy sets as follows: re-
quirement W1 is expressed by the fuzzy triangular number A1 (low price),
requirements W3 and W4 have been presented using fuzzy triangular num-
bers A3 (close to the competitive price) and A4 (close to twice the man-
ufacturing cost). The membership functions of triangular fuzzy numbers
A1, A3 and A4 are the following:

µA1(x) =

⎧
⎪⎨

⎪⎩

−x + 50
30

for 20 ≤ x ≤ 50,

0 otherwise;

µA3(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x − 30
5

for 30 ≤ x ≤ 35,

−x + 40
5

for 35 ≤ x ≤ 40,

0 otherwise;
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µA4(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x − 35
5

for 35 ≤ x ≤ 40,

−x + 45
5

for 40 ≤ x ≤ 45,

0 otherwise.

The fuzzy decision D of the minimum type has the form

µD(x) = min (µA1(x), µA3(x), µA4(x)) .

By finding the intersection point of lines µ = −x+50
30 and µ = x−35

5 , we
obtain the decision x∗ = 37.14 interpreted as the product price. The ex-
perts accept this price as recommended. We may observe in Fig. 4.46 that
the triangular fuzzy number A3 (close to the competitive price) impacts the
fuzzy decision D, but does not influence the maximizing decision x∗. Only
the triangular fuzzy number A4 (close to twice the manufacturing cost) and
A1 (low price) influence the value of x∗.

Example 4.55. Definition of price of a new product
Let us continue Example 4.54, modifying the requirement W1 as follows:
W1– the product should have a very low price. Other requirements W2,W3

and W4 are not changed.
According to formula (4.75) the membership function of very A1 has the

form

µveryA1(x) = (µA1(x))2 =

⎧
⎨

⎩

(
−x + 50

30

)2

for 20 ≤ x ≤ 50,

0 otherwise.

It is a parabola defined in the interval [20, 50], shown in Fig. 4.47.
The fuzzy decision D is determined as follows:

µD(x) = min (µveryA1(x), µA3(x), µA4(x)).

To define x∗, we should determine the intersection point of the
function µ =

(−x+50
30

)2 and µ = x−35
5 . We will obtain a quadratic equa-

tion x2 − 280x + 8800 = 0, the solutions of which are 36.075 and 243.925.
The solution within the interval [35,40], x∗ = 36.075 ≈ 36, provides the
suggested product price. The modifier very provides a greater focus on low
price, that is why we obtained 36, i.e. a price lower than 37.14 obtained in
the previous example. Like in Example 4.54, triangular number A3 (price
close to the competitive one) impacts the fuzzy decision D, but does not
influence the value of x∗.
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FIGURE 4.47. Illustration to Example 4.55

Example 4.56. Definition of price of a new product
Now, we shall modify in Example 4.54 the requirement W1 as follows:
W1 – the product should have a rather low price. Other requirements
W2,W3 and W4 are not changed.

According to formula (4.76) the membership function of rather A1 has
the form

µratherA1(x) = (µA1(x))
1
2 =

⎧
⎨

⎩

(
−x + 50

30

)
1
2 for 20 ≤ x ≤ 50,

0 otherwise,

or it is a parabola defined in the interval [20, 50], shown in Fig. 4.48.
Figure 4.48 indicates that requirement W1 (rather low price) does not

influence the making of the fuzzy decision D characterized by the member-
ship function µD(x), while x∗ = 37.5.

Let us notice that the pricing models in Examples 4.54 and 4.55 lead
to decisions that respect the low price and the price close to twice the
manufacturing costs without considering the competitive price. A company
with such pricing strategy may create a favorable market for the compe-
tition, but the company may be threatened by losses or elimination from
the market.
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FIGURE 4.48. Illustration to Example 4.56

4.11 Notes

The fuzzy set theory has been introduced in 1965 by Lotfi Zadeh [265]. The
foundations of this theory and its many applications have been presented
in several monographs [17, 33, 79, 94, 118, 130, 165-167, 269]. An extensive
monograph by Piegat [171] is particularly worth mentioning. The issues of
designing fuzzy inference system for controlling purposes are dealt with by
monographs [3, 33, 39, 40, 253]. The excellent monograph by Kacprzyk [95]
on decision making in fuzzy conditions and on multi-stage fuzzy controlling
is also well worth recommending. In monograph [13], the authors provided
many examples of application of fuzzy sets in economy and management.
Similar examples we presented in Subchapter 4.10. Various generators of
triangular norms and their properties have been discussed in monographs
[111, 144]. In works [43, 44, 87, 150, 180], their authors discuss many is-
sues concerning the combination of the fuzzy sets theory with the rough
sets theory. In monographs [116] and [119], the authors presented some
applications of fuzzy sets in industrial processes diagnostic issues. Work
[252] provides the method of generation of fuzzy rules based on a learning
sequence. In monograph [21], the authors present different types of applied
operators, for instance, for fuzzy rules aggregation.



5
Methods of knowledge representation
using type-2 fuzzy sets

5.1 Introduction

The fuzzy sets, discussed in the previous chapter, are called type-1 fuzzy
sets. They are characterized by the membership function, while the value
of this function for a given element x is called the grade of membership of
this element to a fuzzy set. In case of type-1 fuzzy sets, the membership
grade is a real number taking values in the interval [0, 1]. This chapter will
present another concept of a fuzzy description of uncertainty. According to
this concept, the membership grade is not a number any more, but it has
a fuzzy character. Figure 5.1 shows a graphic illustration of type-1 fuzzy
sets A1, ..., A5 and corresponding type-2 fuzzy sets Ã1, ..., Ã5. It should be
noted that in case of type-2 fuzzy sets, for any given element x, we cannot
speak of an unambiguously specified value of the membership function. In
other words, the membership grade is not a number, as in case of type-1
fuzzy sets.

In subsequent points of this chapter, basic definitions concerning type-2
fuzzy sets will be presented and operations on these sets will be discussed.
Then type-2 fuzzy relations and methods of transformation of type-2 fuzzy
sets into type-1 fuzzy sets will be introduced.

In the last part of this chapter, the theory of type-2 fuzzy sets will serve
for the construction of the fuzzy inference system. Particular blocks of such
system will be discussed in details, including type-2 fuzzification, type-2
rules base, type-2 inference mechanisms and the two-stage defuzzification
consisting of type-reduction and defuzzification.
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FIGURE 5.1. Graphic illustrations of type-1 fuzzy sets and corresponding type-2
fuzzy sets

5.2 Basic definitions

Definition 5.1
Type-2 fuzzy set Ã defined on a universe of discourse X, which is denoted
as Ã ⊆ X, is a set of pairs

{x, µÃ (x)}, (5.1)

where x is an element of a fuzzy set, and its grade of membership µÃ (x)
in the fuzzy set Ã is a type-1 fuzzy set defined in the interval Jx ⊂ [0, 1] ,
i.e.

µÃ (x) =
∫

u∈Jx

fx (u) /u. (5.2)

Function fx : [0, 1] → [0, 1] will be called the secondary membership func-
tion, and its value fx (u) will be called the secondary grade or secondary
membership. Of course, u is an argument of the secondary membership
function. The interval Jx, being a domain of the secondary membership
function fx, is called the primary membership of element x. The fuzzy set
Ã may be notated, in the notation of fuzzy sets, as follows:

Ã =
∫

x∈X

µÃ (x) /x (5.3)
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or

Ã =
∫

µÃ (x) /x =
∫

x∈X

[∫

u∈Jx

fx (u) /u

]
/x, Jx ⊆ [0, 1]. (5.4)

Example 5.1
Fig. 5.2a depicts the method of construction of type-2 fuzzy sets. For a
given element x1 we get the interval Jx1 = [0.4, 0.7] being a domain of the
secondary membership function fx1 . Figures 5.2b, 5.2c and 5.2d show exem-
plary secondary membership functions of triangular, interval and Gaussian
types with a finite support [171].

FIGURE 5.2. Illustration of type-2 fuzzy set and secondary membership func-
tions for Jx1 = [0.4; 0.7]

Figure 5.3 depicts the same type-2 fuzzy set, but another element x2

is chosen, x2 ∈ X, as well as a corresponding membership grade being a



158 5. Methods of knowledge representation using type-2 fuzzy sets

type-1 fuzzy set (of a triangular, interval or Gaussian type with a finite
support) defined on the interval Jx2 = [0.1, 0.6].

FIGURE 5.3. Illustration of type-2 fuzzy set and secondary membership func-
tions for Jx2 = [0.1; 0.6]

In a discrete case, the type-2 fuzzy set will be defined in a similar way,
i.e.

Ã =
∑

x∈X

µÃ (x) /x (5.5)

and
µÃ (x) =

∑

u∈Jx

fx (u) /u. (5.6)

Let us assume that the set X has been discretized and takes R values
x1, ..., xR. Moreover, the intervals Jx corresponding to these values, have
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been discretized and each of them takes Mi values, i = 1, ..., R. We can
then note

Ã =
∑

x∈X

[
∑

u∈Jx

fx (u) /u

]

/x =
R∑

i=1

⎡

⎣
∑

u∈Jxi

fxi
(u) /u

⎤

⎦ /xi (5.7)

=

[
M1∑

k=1

fxi
(u1k) /u1k

]

/x1 + . . . +

[
MR∑

k=1

fxR
(uRk) /uRk

]

/xR.

Remark 5.1
The fuzzy membership grade can take two characteristic and extreme forms
of the type-1 fuzzy set:
µÃ (x) = 1/1 meaning a full membership of element x to the fuzzy set Ã,
µÃ (x) = 1/0 meaning the lack of membership of element x to the fuzzy
set Ã,

Example 5.2
Let us assume that X = {1, 2, 3} and Jx1 = {0.2, 0.5, 0.7} , Jx2 = {0.5, 1},
Jx3 = {0.1, 0.3, 0.5}. If we assign appropriate grades of secondary member-
ship to particular elements of sets Jx1 , Jx2 , Jx3 we may define the following
type-2 fuzzy set:

Ã = (0.5/0.2 + 1/0.5 + 0.5/0.7) /1 + (0.5/0.5 + 1/1) /2 (5.8)
+ (0.5/0.1 + 1/0.3 + 0.5/0.5) /3.

Definition 5.2
Let us assume that each secondary membership function fx of a type-2
fuzzy set takes value 1 only for one element u ∈ Jx. Then the union of
elements u forms a so-called principal membership function, i.e.

µAg
(x) =

∫

x∈X

u/x, where fx (u) = 1. (5.9)

The principal membership function defines the appropriate type-1 fuzzy
set denoted as Ag.

Remark 5.2
In case where the secondary membership function fx is an interval func-
tion, then the principal membership function will be determined as a union
of all the elements u being mid-points of the primary membership Jx,x ∈ X.

Example 5.3
We are going to discuss a type-2 fuzzy set given by formula (5.8). Upon
the basis of Definition 5.2 we may determine the following fuzzy set Ag:

Ag =
0.5
1

+
1
2

+
0.3
3

. (5.10)
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5.3 Footprint of uncertainty

The type-2 fuzzy set may be described using the notion of the footprint of
uncertainty.

Definition 5.3
Let us assume that Jx ⊂ [0, 1] means the primary membership of element
x. The footprint of uncertainty (FOU) of a type-2 fuzzy set Ã ⊆ X will
be a bounded region consisting of all the points of primary membership of
elements x, i.e.

FOU
(
Ã
)

=
⋃

x∈X

Jx. (5.11)

Example 5.4
Let us discuss the family of membership functions of the type-1, fuzzy set
which is described by the Gaussian function with the assumption that a
standard deviation σ changes in the interval [σ1, σ2], i.e.:

µA (x) = N (m,σ;x) = exp

[

−1
2

(
x − m

σ

)2
]

, σ ∈ [σ1, σ2]. (5.12)

The family of membership functions (5.12) forms a type-2 fuzzy set. A full
description of this set would require to define the secondary membership
function for each point x and the corresponding interval Jx. Figure 5.4
shows the footprint of uncertainty of the discussed type-2 fuzzy set.

FIGURE 5.4. Footprint of uncertainty of a type-2 fuzzy set: σ ∈ [σ1, σ2]
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Example 5.5
Let us discuss the family of membership functions of the type-1 fuzzy set
which is described by the Gaussian function with the assumption that the
average value m changes in interval [m1,m2], i.e.

µA (x) = exp

[

−1
2

(
x − m

σ

)2
]

, m ∈ [m1,m2]. (5.13)

The family of membership functions (5.13) forms a type-2 fuzzy set. As in
the previous example, a full description of this set would require to define
the secondary membership function for each point x and the corresponding
interval Jx. Figure 5.5 shows the footprint of uncertainty of the discussed
type-2 fuzzy set.

Let us assume that Jx =
[
Jx, Jx

]
, x ∈ X.

FIGURE 5.5. Footprint of uncertainty of a type-2 fuzzy set: m ∈ [m1, m2]

Definition 5.4
The upper membership function (UMF) is the membership function of the
type-1 fuzzy set defined by:

µÃ(x) = UMF (Ã) =
⋃

x∈X

Jx ∀x ∈ X. (5.14)
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Definition 5.5
The lower membership function (LMF) is the membership function of the
type-1 fuzzy set defined by:

µ
Ã
(x) = LMF (Ã) =

⋃

x∈X

Jx ∀x ∈ X. (5.15)

Example 5.6
We are going to determine the footprint of uncertainty for the type-2 fuzzy
set given in Example 5.4. It is easy to notice that the upper membership
function takes the form

µÃ (x) = N (m,σ2;x), (5.16)

and the lower membership function is given by

µ
Ã

(x) = N (m,σ1;x). (5.17)

Example 5.7
For the type-2 fuzzy set given in Example 5.5 the upper membership func-
tion takes the form

µÃ(x) =

⎧
⎨

⎩

N(m1, σ;x) for x < m1,
1 for m1 ≤ x ≤ m2 ,

N(m2 , σ;x) for x > m2,
(5.18)

and the lower membership function is given by

µ
Ã
(x) =

⎧
⎨

⎩

N(m2, σ;x) for x ≤m1 + m2

2
,

N(m1, σ;x) for x >
m1 + m2

2
.

(5.19)

5.4 Embedded fuzzy sets

In type-2 fuzzy sets we can distinguish between so-called embedded type-1
and embedded type-2 fuzzy sets.

Definition 5.6
From each interval Jx, x ∈ X, we will select only one element θ ∈ Jx.

The embedded type-2 set in set Ã is set Ão

Ão =
∫

x∈X

[fx (θ) /θ] /x θ ∈ Jx ⊆ U = [0, 1]. (5.20)
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Of course, there is an uncountable number of embedded sets Ão in set Ã.
In a discrete case, the embedded set Ã0 is defined as follows:

Ão =
R∑

i=1

[fxi
(θi) /θi] /xi θi ∈ Jxi

⊆ U = [0, 1]. (5.21)

It is easy to notice that there are
R∏

i=1

Mi embedded fuzzy sets Ão in set Ã.

Example 5.8
Let us assume that

Ã = (0.5/0.2 + 1/0.5 + 0.5/0.7) /2 + (0.3/0.5 + 1/1) /3 (5.22)
+ (0.5/0.1 + 1/0.3 + 0.5/0.5) /4.

Then one of the 18 embedded fuzzy sets Ão takes the form

Ão = (0.5/0.7) /2 + (0.3/0.5) /3 + (1/0.3) /4. (5.23)

Each embedded type-2, fuzzy set Ão is connected with an embedded type-1
fuzzy set denoted as Ao.

Definition 5.7
The embedded type-1 set is defined as follows:

Ao =
∫

x∈X

θ/x θ ∈ Jx ⊆ U = [0, 1]. (5.24)

There is an uncountable number of embedded fuzzy sets Ao. In a discrete
case, formula (5.24) becomes

Ao =
R∑

i=1

θi/xi θi ∈ Jxi
⊆ U = [0, 1]. (5.25)

The number of all sets Ao is
R∏

i=1

Mi.

A particular case of an embedded type-1 set is fuzzy set Ag defined by
the principal membership function given by formula (5.9). Furthermore,
it should be noted that embedded fuzzy set Ao looses all the information
about secondary grades. Thus, upon the basis of the family of embedded
sets Ao, it is not possible to reconstruct the type-2 fuzzy set, but only its
footprint of uncertainty. However, the notion of embedded set will turn to
be especially useful when discussing the fast algorithm of type-reduction
presented further in this chapter.
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Example 5.9
Figure 5.6 shows three different embedded type-1 sets.

FIGURE 5.6. Embedded type-1 fuzzy sets

Example 5.10
Let us discuss a type-2 fuzzy set given by

Ã = (0.6/0.3 + 1/0.7) /3 + (0.4/0.4 + 1/1) /5. (5.26)

We can distinguish four embedded fuzzy sets Ao in set Ã:

Ao = 0.3/3 + 0.4/5,
Ao = 0.7/3 + 0.4/5,
Ao = 0.3/3 + 1/5,
Ao = 0.7/3 + 1/5.

(5.27)

5.5 Basic operations on type-2 fuzzy sets

The extension principle (Subchapter 4.4) allows to extend operations on
type-1 fuzzy sets to operations on type-2 sets.
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We are going to discuss two type-2 fuzzy sets, Ã and B̃, defined as follows:

Ã =
∫

x∈X

(∫

u∈Ju
x

fx (u) /u

)

/x (5.28)

and

B̃ =
∫

x∈X

(∫

v∈Jv
x

gx (v) /v

)

/x, (5.29)

where Ju
x , Jv

x ⊂ [0, 1]. The sum of sets Ã and B̃ is a type-2 fuzzy set notated
as Ã ∪ B̃ and defined as follows:

µÃ∪B̃ =
∫

w∈Jw
x

hx (w) /w = φ
(
µÃ (x) , µB̃ (x)

)
(5.30)

= φ

(∫

u∈Ju
x

fx (u) /u,

∫

v∈Jv
x

gx (v) /v

)

.

In this case, the extended φ function is any t-conorm, but its arguments
are not common numbers, but type-1 fuzzy sets µÃ (x) and µB̃ (x) for the
given x ∈ X. In accordance with the extension principle

φ

(∫

u∈Ju
x

fx(u)/u,

∫

v∈Jv
x

gx(v)/v

)

=
∫

u∈Ju
x

∫

v∈Jv
x

fx(u)
T∗ gx(v)/φ(u, v).

(5.31)

After substituting t-conorm in place of function φ, the sum of type-2 fuzzy
sets is given by the fuzzy membership function

µÃ∪B̃ (x) =
∫

u∈Ju
x

∫

v∈Jv
x

fx (u)
T∗ gx (v) /u

S∗ v. (5.32)

The formula above allows to determine the sum of type-2 fuzzy sets for
each value of x. The membership function of the resulting set is the high-
est value of expression fx (u)

T∗ gx (v) for all the pairs (u, v) , which give the

same element w = u
S∗ v as a result.

Example 5.11
This example will explain in details the manner of determining the sum
of type-2 fuzzy sets. We assume the minimum operation as the t-norm,
and the maximum operation as the t-conorm. We are going to discuss two
type-2 fuzzy sets, Ã and B̃, defined as follows:

Ã = (0.5/0.2 + 1/0.5 + 0.5/0.7) /1 + (0.5/0.5 + 1/1) /2 (5.33)
+(0.5/0.1 + 1/0.3 + 0.5/0.5) /3
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and

B̃ = (1/0) /1 + (0.5/0.5 + 1/0.8) /2 + (1/0.6 + 0.5/1) 3. (5.34)

In accordance to formula (5.32) for x = 1 we have

µÃ∪B̃ (1) =
0.5 ∧ 1
0.2 ∨ 0

+
1 ∧ 1

0.5 ∨ 0
+

0.5 ∧ 1
0.7 ∨ 0

(5.35)

=
0.5
0.2

+
1

0.5
+

0.5
0.7

.

For x = 2 we obtain

µÃ∪B̃ (2) =
0.5 ∧ 0.5
0.5 ∨ 0.5

+
0.5 ∧ 1

0.5 ∨ 0.8
+

max (1 ∧ 0.5, 1 ∧ 1)
1

(5.36)

=
0.5
0.5

+
0.5
0.8

+
1
1
.

For x = 3 we have

µÃ∪B̃(3) =
max (0.5∧1, 1∧1, 0.5∧1)

0.6
+

max (0.5∧0.5, 1∧0.5, 0.5∧0.5)
1

=
1

0.6
+

0.5
1

. (5.37)

Thus, the sum of sets Ã and B̃ is

Ã ∪ B̃=(0.5/0.2+1/0.5+0.5/0.7)/1 + (0.5/0.5+0.5/0.8+1/1)/2 (5.38)
+ (1/0.6+0.5/1)/3.

The intersection of sets Ã and B̃ is a type-2 fuzzy set with the fuzzy mem-
bership function given by the following formula

µÃ∩B̃ (x) =
∫

w∈Jw
x

hx (w) /w = φ
(
µÃ (x) , µB̃ (x)

)
(5.39)

= φ

(∫

u∈Ju
x

fx (u) /u,

∫

v∈Jv
x

gx (v) /v

)

,

where the extended function φ is any t-norm this time. The arguments
of the function φ are type-1 fuzzy sets, i.e, µÃ (x) and µB̃ (x). Thus, the
intersection of type-2 fuzzy sets is specified as follows:

µÃ∩B̃ (x) =
∫

u∈Ju
x

∫

v∈Jv
x

fx (u)
T∗

∗ gx (v) /u
T∗v. (5.40)

In formula (5.40), the t-norm aggregating secondary memberships has been
denoted by T ∗, and its form can be selected irrespectively of the selection
of the extended t-norm T . Also in this case the membership function of the
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resulting set is the highest value of the expression fx (u)
T∗

∗ gx (v) for all the

pairs (u, v), which bring the same element w = u
T∗v as a result.

Example 5.12
We are going to determine the intersection of the type-2 fuzzy sets dis-
cussed in Example 5.11. We assume the minimum operation as t-norm T ∗

and T . In accordance with formula (5.40), for x = 1 and x = 2, we obtain

µÃ∩B̃ (1) =
max (0.5 ∧ 1, 1 ∧ 1, 0.5 ∧ 1)

0
=

1
0

(5.41)

and

µÃ∩B̃ (2) =
max (0.5 ∧ 0.5, 0.5 ∧ 1, 1 ∧ 0.5)

0.5
+

1 ∧ 1
1 ∧ 0.8

(5.42)

=
0.5
0.5

+
1

0.8
.

A complement of the type-2 fuzzy set is a type-2 fuzzy set with the fuzzy
membership function given by the formula

µ ̂̃
A

(x) = φ
(
µÃ (x)

)
(5.43)

=
∫

u∈Ju
x

fx (u) / (1 − u).

Example 5.13
Let us discuss a type-2 fuzzy set defined by the following formula:

µÃ (x) = (0.4/0.6 + 1/0.7) /9. (5.44)

In accordance with formula (5.43), we have

µ ̂̃
A

(x) = (0.4/0.4 + 1/0.3) /9. (5.45)

Remark 5.3
Sum (5.32) and intersection (5.40) of type-2 fuzzy sets may be treated as
a result of applying the operator of the extended t-norm T̃ and extended
t-conorm S̃. These operators may also be discussed in the context of type-1
fuzzy sets defined in the interval [0, 1]. We are going to discuss two such
sets

F =
∫

u∈Ju

f (u) /u and G =
∫

v∈Jv

g (v) /v. (5.46)

The operator of the extended t-norm, whose arguments and resulting value
are type-1 fuzzy sets defined within the universe of discourse [0, 1] is given by

F
T̃∗G =

∫

u∈Ju

∫

v∈Jv

g (u)
T∗

∗ f (v) /u
T∗v. (5.47)
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An analogic result may be obtained in a discrete case. We are going to
discuss two type-1 sets

F =
∑

u∈Ju

f (u)/u and G =
∑

v∈Jv

g (v) /v. (5.48)

The operator of the extended t-norm is given by the formula

µÃ

T̃∗µB̃ =
∑

u∈Ju

∑

v∈Jv

(
f (u)

T∗

∗ g (v)
)

/u
T∗v, (5.49)

and the operator of the extended t-conorm takes the form

µÃ

S̃∗µB̃ =
∑

u∈Ju

∑

v∈Jv

(
f (u)

T∗g (v)
)

/u
S∗v. (5.50)

The introduction of extended triangular norms operating on type-1 sets
allows to simplify considerably the notation of complicate operations on
type-2 fuzzy sets.

Remark 5.4
The extended function φ may also be a function of many variables. Then
the operations of the extended t-norm and t-conorm take the following
forms:

n

T̃
i=1

Fi =
∫

u1∈J1

· · ·
∫

un∈Jn

n

T
i=1

∗fi (ui) /
n

T
i=1

ui, (5.51)

n

S̃
i=1

Fi =
∫

u1∈J1

· · ·
∫

un∈Jn

n

T
i=1

fi (ui) /
n

S
i=1

ui, (5.52)

where Fi =
∫

ui∈Ji
fi (ui) /ui, i = 1, . . . , n.

Remark 5.5
The operations of extended t-norm and t-conorm are easier to be made
with specified assumptions concerning the membership function of partic-
ular fuzzy sets. We are going to discuss n convex, normal type-1 fuzzy
sets F1, ..., Fn with membership functions f1, ..., fn. Let us assume that
f1 (υ1) = f2 (υ2) = · · · = fn (υn) = 1, where υ1, υ2, ..., υn are real numbers
such that υ1 ≤ υ2 ≤ · · · ≤ υn Then the extended minimum type t-norm,
known as the meet operation, is specified as follows ([97, 134]):

µ∩n
i=1Fi

(θ) =

⎧
⎨

⎩

∨n
i=1fi (θ) , θ < υ1,

∧k
i=1fi (θ) , υk ≤ θ < υk+1, 1 ≤ k ≤ n − 1,

∧n
i=1fi (θ) , θ ≥ υn,

(5.53)

whereas the extended maximum type t-conorm takes the form

µ∪n
i=1Fi

(θ) =

⎧
⎨

⎩

∧n
i=1fi (θ) , θ < υ1,

∧n
i=k+1fi (θ) , υk ≤ θ < υk+1, 1 ≤ k ≤ n − 1,

∨n
i=1fi (θ) , θ ≥ υn.

(5.54)
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Remark 5.6
Let us discuss n Gaussian fuzzy sets F1, F2, ..., Fn with means m1,m2, ...,mn

and with standard deviations σ1, σ2, ..., σn. Then, as a result of an approx-
imate extended operation of the algebraic t-norm we have [97]

µF1∩F2∩···∩Fn
(θ) ≈ e(−1/2)((θ−m1m2···mn)/σ)2, (5.55)

while

σ =
√

σ2
1

∏

i;i	=1

m2
i + · · · + σ2

j

∏

i;i	=j

m2
i + · · · + σ2

n

∏

i;i	=n

m2
i , (5.56)

where i = 1, ..., n.

5.6 Type-2 fuzzy relations

At first, we are going to define the Cartesian product of type-2 fuzzy sets.

Definition 5.8
The Cartesian product of n type-2 fuzzy sets Ã1⊆X1, Ã2⊆X2, . . . , Ãn⊆Xn

is the fuzzy set Ã = Ã1 × Ã2 × . . .× Ãn defined on set X1 ×X2 × . . .×Xn,
while the membership function of set Ã is given by the formula

µÃ (x) = µÃ1×Ã2×...×Ãn
(x1, x2, . . . , xn) =

n

T̃
i=1

µÃi
(xn), (5.57)

where x1 ∈ X1, ..., xn ∈ Xi, and the operation of the extended t-norm is
described by dependency (5.51).

Definition 5.9
The binary type-2 fuzzy relation R̃ between two non-empty non-fuzzy sets
X and Y is the type-2 fuzzy set determined on the Cartesian product X×Y ,
i.e.

R̃ (X,Y ) =
∫

X×Y

µR̃ (x, y) / (x, y), (5.58)

while x ∈ X, y ∈ Y, and the membership grade of the pair (x, y) to the
fuzzy set R̃ is a type-1 fuzzy set defined in the interval Jv

x,y ⊂ [0, 1], i.e.

µR̃ (x, y) =
∫

v∈Jv
x,y

rx,y (v) /v, (5.59)

where rx,y (v) is the secondary grade.
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Example 5.13
Let X = {3, 4} and Y = {4, 5}. We are going to formalize an imprecise
statement “y is more or less equal to x ”. At first, we are going to determine
the type-1 relation R in the following way:

R =
0.8

(3.4)
+

0.6
(3.5)

+
1

(4.4)
+

0.8
(4.5)

. (5.60)

An analogic type-2 fuzzy relation may take on the form

R̃ = (0.6/0.7 + 1/0.8 + 0.5/0.6) / (3, 4) (5.61)
+ (0.3/0.5 + 1/0.6 + 0.4/0.3) / (3, 5)
+ (1/1 + 1/1 + 1/1) / (4, 4)
+ (0.6/0.7 + 1/0.8 + 0.5/0.6) / (4.5).

Example 5.14
We are going to formalize an imprecise statement “number x slightly differs
from number y”. This problem may be solved with the type-1 fuzzy relation
described by the membership function

µR (x, y) = max {(4 − |x − y|) /4.0}. (5.62)

An analogic type-2 fuzzy relation may take on the form

µR̃ (x, y) =
∫

v∈[0,1]

exp

[

−
(

v − m (x, y)
σ

)2
]

/v , (5.63)

where σ > 0 and

m (x, y) = max {(4 − |x − y|) /4.0}. (5.64)

Alternatively, the secondary membership function of Gaussian type may
be substituted by a fuzzy triangular number. Figure 5.7a depicts the illus-
tration of the type-1 fuzzy relation given by formula (5.62). Figure 5.7b
depicts the possibility of uncertainty in the specification of the statement
“number x slightly differs from number y”. The figure depicts the footprint
of uncertainty while the level of shading corresponds to the value of the
secondary grade. Figure 5.7c presents the triangular secondary membership
function defined in the interval Jx = [0.2, 0.4].

It is worth mentioning that fuzzy relations may be made with the use of
extended norms. We are going to discuss the membership function of the
type-2 fuzzy set defined on set X, Ã ⊆ X, i.e.

µÃ (x) =
∫

u∈Ju
x

fx (u) /u (5.65)
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FIGURE 5.7. Illustration of type-1 and type-2 fuzzy relations

and the membership function of fuzzy set B̃ defined on another set Y,
B̃ ⊂ Y , i.e.

µB̃ (y) =
∫

v∈Jv
y

gy (v) /v, (5.66)

where Ju
x , Jv

y ⊂ [0, 1]. The extended t-conorm of the type-2 fuzzy sets
defined on different spaces forms a certain fuzzy relation R̃, determined
as follows:

µR̃ (x, y) = µÃ (x)
S̃∗ µB̃ (y) =

∫

u∈Ju
x

∫

v∈Jv
y

fx (u)
T∗ gy (v) /u

S∗ v (5.67)

=
∫

w∈Jw
x,y

rx,y (w) /w.

Similarly, the extended t-norm creates a fuzzy relation in the form of

µR̃ (x, y) = µÃ (x)
T̃∗ µB̃ (y) =

∫

u∈Ju
x

∫

v∈Jv
y

fx (u)
T∗

∗ gy (v) /u
T∗ v (5.68)

=
∫

w∈Jw
x,y

rx,y (w) /w.

In the application of the theory of fuzzy sets to the construction of infer-
ence systems it is necessary to use the concept of the composition of fuzzy
relations, which, in the context of type-2 fuzzy sets, are defined as follows:



172 5. Methods of knowledge representation using type-2 fuzzy sets

Definition 5.10
The sup-T type (sup-star) extended composition of type-2 fuzzy relations
R̃ ⊆ X × Y and S̃ ⊆ Y × Z is the fuzzy relation R̃ ◦ S̃ ⊆ X × Z with the
membership function

µR̃◦S̃ (x, z) = S̃
y∈Y

(
µR̃ (x,y)

T̃∗ µS̃ (x, z)
)

. (5.69)

Definition 5.11
The extended composition of the type-2 fuzzy set Ã, Ã ⊂ X, and of the
type-2 fuzzy relation R̃ ⊆ X × Y is denoted as Ã ◦ R̃ and determined as
follows:

µB̃ (y) = S̃
x∈X

(
µÃ (x)

T̃∗ µR̃ (x, y)
)

. (5.70)

5.7 Type reduction

The defuzzification of the type-2 fuzzy sets consists of two stages: At first,
a so-called type reduction should be made, which is the transformation of
the type-2 fuzzy set into the type-1 fuzzy set. This way we are going to
obtain the type-1 fuzzy set called a centroid, which may be defuzzified to
a non-fuzzy value. We are going to show the method for the determination
of the centroid of the type-2 fuzzy set.

Let us discuss a fuzzy set A (type-1) defined on set X. Let us assume
that set X has been discretized and takes R values x1, ..., xR. The centroid
of fuzzy set A is determined as follows:

CA =

R∑

k=1

xkµA (xk)

R∑

k=1

µA (xk)
. (5.71)

We are going to determine the centroid of the type-2 fuzzy set,
Ã =
{(

x, µÃ (x)
)
|x ∈ X

}
, which, as a result of an analogic discretizaton

is notated as follows:

Ã =
R∑

k=1

[∫

u∈Jxk

fxk
(u) /u

]

/xk. (5.72)

Applying the extension principle to formula (5.71) we get

CÃ =
∫

θ1∈Jx1

· · ·
∫

θR∈JxR

[fx1 (θ1) ∗ · · · ∗ fxR
(θR)] /

R∑

k=1

xkθk

R∑

k=1

θk

. (5.73)
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Of course, the centroid CÃ is a type-1 fuzzy set. Let us note that any selec-
tion of elements θ1 ∈ Jx1 , ..., θR ∈ JxR

along with corresponding secondary
grades fx1 (θ1) , ..., fxR

(θR), creates an embedded fuzzy set Ão (type-2).

Example 5.15
Let X = {2, 5}. We are going to perform the type reduction of the following
type-2 fuzzy set:

Ã = (0.6/0.4 + 1/0.8) /2 + (0.3/0.7 + 1/0.6) /5. (5.74)

The centroid of the type-2 fuzzy set given by formula (5.74) is a type-1
fuzzy set taking the form

CÃ =
0.6 × 0.3

a1
+

0.6 × 1
a2

+
1 × 0.3

a3
+

1 × 1
a4

(5.75)

=
0.18
a1

+
0.6
a2

+
0.3
a3

+
1
a4

,

while

a1 =
2 × 0.4 + 5 × 0.7

0.4 + 0.7
=

43
11

,

a2 =
2 × 0.4 + 5 × 0.6

0.4 + 0.6
= 3.8,

a3 =
2 × 0.8 + 5 × 0.7

0.8 + 0.7
= 3.4,

a4 =
2 × 0.8 + 5 × 0.6

0.8 + 0.6
=

23
7

.

In a continuous case, the determination of the centroid of the type-2 fuzzy
set is a much more complicated task from the computational point of view.
The problem becomes easier to solve, if the secondary membership func-
tions are interval ones. Then formula (5.73) takes the form

CÃ =
∫

θ1∈Jx1

· · ·
∫

θR∈JxR

1/

R∑

k=1

xkθk

R∑

k=1

θk

. (5.76)

We are going to show the method of the determination of the centroid of
the type-2 fuzzy set having an interval secondary membership function.
With reference to formula (5.76), let us define

s (θ1, ..., θR) =

R∑

k=1

xkθk

R∑

k=1

θk

. (5.77)
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It is obvious that centroid (5.76) will be an interval type-1 fuzzy set, i.e.

CÃ =
∫

x∈[xl,xp]

1/x ≡ [xl, xp]. (5.78)

From the observations shown above, it may be concluded that the deter-
mination of centroid (5.76) comes down to the optimization (maximization
and minimization) with respect to θk of function given by formula (5.77),
taking account of constraints

θk ∈
[
θk, θ

k
]
, (5.79)

where k = 1, ..., R and

θk = Jx, θ
k

= Jx. (5.80)

Differentiating expression (5.77) with respect θj , we get

∂

∂θj
s (θ1, ..., θR) =

∂

∂θj

⎡

⎢
⎢
⎢
⎣

R∑

k=1

xkθk

R∑

k=1

θk

⎤

⎥
⎥
⎥
⎦

=
∂

∂θj

⎡

⎢
⎣

xjθj +
∑

k 	=j

xkθk

θj +
∑

k 	=j

θk

⎤

⎥
⎦ (5.81)

=

⎡

⎢
⎣

1
θj +
∑

k 	=j

θk

⎤

⎥
⎦ (xj)

⎛

⎝xjθj +
∑

k 	=j

xkθk

⎞

⎠

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−1
(

θj +
∑

k 	=j

θk

)2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=
xj

R∑

k=1

θk

−

R∑

k=1

xkθk

(
R∑

k=1

θk

)2 =
xj

R∑

k=1

θk

−

⎡

⎢
⎢
⎢
⎣

R∑

k=1

xkθk

R∑

k=1

θk

⎤

⎥
⎥
⎥
⎦

1
R∑

k=1

θk

=
xj − s (θ1, ..., θR)

R∑

k=1

θk

.

Of course
∑R

k=1 θk > 0. Hence, from the last equality we have

∂

∂θj
s (θ1, ..., θR) ≥ 0, if xj ≥ s (θ1, ..., θR) (5.82)

and
∂

∂θj
s (θ1, ..., θR) ≤ 0, if xj ≤ s (θ1, ..., θR). (5.83)
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When equating the right side of expression (5.81) to zero we get

∑R
k=1 xkθk
∑R

k=1 θk

= xj . (5.84)

Therefore
R∑

k=1

xkθk = xj

R∑

k=1

θk (5.85)

and

xjθj +
R∑

k=1
k �=j

xkθk = xjθj + xj

R∑

k=1
k �=j

θk. (5.86)

In consequence ∑
k 	=j xkθk
∑

k 	=j θk
= xj . (5.87)

We find out that the necessary condition for the extremum s to exist does
not depend in any way on parameter θk with respect to which the derivative
was calculated. However, inequalities (5.82) and (5.83) show in which di-
rection we should go in order to increase or decrease the value of expression
s (θ1, ..., θR). Upon the basis of these inequalities we conclude that

i) if xj > s (θ1, ..., θR) , thens (θ1, ..., θR) is increasing along with the de-
crease of parameter θj ,

ii) if xj < s (θ1, ..., θR) , thens (θ1, ..., θR) is increasing along with the
increase of parameter θj .
Let us remind that θk ≤ θk ≤ θk. Hence, function s reaches the maximum
if

a) θk = θk for these values k, for which xk > s,
b) θk = θk for these values k, for which xk < s,

Upon this basis we are going to present an iterative algorithm (known as
Karnik - Mendel type reduction algorithm) for the search of the maximum
of function s:

1) Determine θk = θk+θk

2 , k = 1, ..., R, calculate s′ = s (θ1, ..., θR).
2) Find j (1 ≤ j ≤ R − 1) so that xj ≤ s′ < xj+1.
3) Substitute θk = θk for k ≤ j and θk = θk for k > j.

Calculate s′′ = s
(
θ1, ..., θj , θj+1, ..., θR

)
.

4) If s′′ = s′ then s′′ is the maximum value of function s.
If s′′ �= s′ then pass on to step 5.

5) Substitute s′ = s′′ and pass on to step 2.
In an analogic way, we may determine the minimum of function s. This
function reaches the minimum if

a) θk = θk for these values k, for which xk < s,
b) θk = θk for these values k, for which xk > s,
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The iterative algorithm for the search of the minimum of function s is given
as follows:

1) Determine θk = θk+θk

2 , k = 1, ..., R, calculate s′ = s (θ1, ..., θR).
2) Find j (1 ≤ j ≤ R − 1) so that xj < s′ ≤ xj+1.
3) Substitute θk = θk for k < j and θk = θk for k ≥ j, calculate

s′′ = s
(
θ1, ..., θj , θj+1, ..., θR

)
.

4) If s′′ = s′ then, s′′ is the minimum value of function s.
If s′′ �= s′ then pass on to step 5.

5) Substitute s′ = s′′ and pass on to step 2.

Example 5.16
Figures 5.8 – 5.10 depict the method of working of the iterative algorithm
for the search of the centroid of the type-2 fuzzy set with the interval sec-
ondary membership function. In Fig. 5.8, the footprint of uncertainty of
the type-2 fuzzy set, which will be subject to type reduction, is marked.
The thick line in this picture corresponds with point 1 of the iterative al-
gorithm, which starts with the determination of the centre of particular
intervals Jx, x ∈ X and the value of expression (5.77).

FIGURE 5.8. The footprint of uncertainty of type-2 fuzzy set; the thick line
corresponds with point 1 of the K -M iterative type-reduction algorithm

The centroid is a type-1 fuzzy set given by formula (5.78). By iteration,
we search for point xp, determining the centroid of an embedded fuzzy set
(Fig. 5.9) consisting first of a piece of the lower membership function, and
then of a piece of the upper membership function. Similarly, we search for
point xl, determining the centroid of an embedded fuzzy set (Fig. 5.10)
consisting first of a piece of the upper membership function, and then of a
piece of the lower membership function.

The obtained fuzzy set CÃ = [xl, xp] may be deffuzified (Fig. 5.11) in
the following way:

x̂w =
xl + xp

2
. (5.88)
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FIGURE 5.9. Iterative search for point xp determining the centroid of an embed-
ded fuzzy set

FIGURE 5.10. Iterative search for point xl determining the centroid of an em-
bedded fuzzy set
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FIGURE 5.11. Fuzzy set CÃ

5.8 Type-2 fuzzy inference systems

We are going to discuss the type-2 fuzzy system having n input variables
xi ∈ Xi ⊂ R, i = 1, . . . , n, and a scalar output y ∈ Y . Figure 5.12 depicts
the block diagram of such a system. It consists of the following elements:
the type-2 fuzzification block, rule base described by type-2 fuzzy relations,
type-2 inference mechanism, and the deffuzification block.

The deffuzification has two stages: at first, the type reduction is per-
formed (Subchapter 5.7) and then the classic defuzzification is applied
(Subchapter 4.9).

5.8.1 Fuzzification block

Let x = (x1, ..., xn)T ∈ X = X1 ×X2 × · · · ×Xn be the input signal of the
fuzzy inference system. In type-1 fuzzy systems, the singleton type fuzzifi-
cation is applied. Its equivalence in type-2 fuzzy systems is the singleton-
singleton type fuzzification defined as follows:

µ̃A′ (x) =
{

1/1, if x = x,
1/0, if x �= x.

(5.89)

INFERENCE
OF TYPE 2

RULE BASE

Type
reducer

Type 2
antecedents

Type 2
consequents

Type 2 fuzzy relations

Type
defuzzifier

A′′x B ′ yTYPE 2
FUZZIFIER

TYPE 2 DEFUZZIFIER

FIGURE 5.12. Block diagram of a type-2 fuzzy inference system
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In caseof the independenceofparticular inputvariables, theabove-mentioned
operation takes the form of:

µ̃A′ (xi) =
{

1/1 , if xi = xi,
1/0 , if xi �= xi.

(5.90)

for i = 1, ..., n. As a result of the fuzzification, we obtain n input type-2
fuzzy sets described by:

Ã′
i = (1/1) /xi, i = 1, . . . , n, (5.91)

where xi is a specific value of i-th input variable.
It is worth mentioning that other methods for the fuzzification of the

input signal are also possible. Figure 5.13 depicts a graphic illustration
of these methods. For instance, the fuzzification of singleton-interval type
(Fig. 5.13b) means that the secondary membership function is an interval
fuzzy set. The non-singleton-singleton fuzzification (Fig. 5.13c) means that
the secondary membership function is a singleton type fuzzy set, and in this
case the fuzzification is identical to the non-singleton type fuzzification for
type-1 fuzzy sets. The non-singleton-triangular fuzzification (Fig. 5.13e)
means that the secondary membership function is triangular fuzzy set,
while the level of shading on Fig. 5.13e reflects the value of the secondary
membership function (triangular) for given element u ∈ Jx.

FIGURE 5.13. Illustration of different fuzzification methods: a) singleton-sin-
gleton, b) singleton-interval, c) nonsingleton-singleton, d) nonsigleton-interval,
e) nonsingleton-triangular, f) nonsingleton-gaussoidal
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5.8.2 Rules base
The linguistic model consists of N rules in the form of:

R̃k : IF x1 is Ãk
1 AND x2 is Ãk

2 AND . . .AND xn is Ãk
n

THEN y is B̃k, k = 1, . . . , N. (5.92)

Denote
Ã = Ãk = Ãk

1 × Ãk
2 × . . . × Ãk

n. (5.93)

Of course

µÃk (x) =
n

T̃
i=1

µÃk
i
(xi) . (5.94)

It is easily seen that rule (5.92) may be presented in the form of implication

Ãk → B̃k, k = 1, ..., n. (5.95)

5.8.3 Inference block
At first, we are going to determine membership function µÃk→B̃k (x, y).
Each k -th rule is represented in a fuzzy system by a certain type-2 fuzzy
relation.

R̃k (x, y) =
∫

X×Y

µR̃k (x, y) / (x, y), (5.96)

where
µR̃k (x, y) =

∫

v∈Vx,y

rk
x,y (v) /v. (5.97)

Therefore
µÃk→B̃k (x, y) = µR̃(k) (x, y) . (5.98)

Membership function µÃk→B̃k (x, y) will be determined, analogically as in
case of type-1 systems, upon the basis of the knowledge of membership
function µÃk (x) and µB̃k (y). Using the operator of the extended t-norm
we have

µÃk→B̃k (x, y) = µÃk (x)
T̃∗ µB̃k (y). (5.99)

The Mamdani and Larsen rules used in type-1 systems now take the form of

• extended min rule (Mamdami)

µÃk→B̃k (x, y) =
∫

u∈Ju
x

∫

v∈Jν
y

(
fx (u)

T∗gy (v)
)

/min (u, v), (5.100)

• extended product rule (Larsen)

µÃk→B̃k (x, y) =
∫

u∈Ju
x

∫

v∈Jν
y

(
fx (u)

T∗gy (v)
)

/uv. (5.101)
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At the output of the inference block, we obtain a type-2 fuzzy set B̃′k.
This set is determined by the composition of the input fuzzy set Ã′ and
the fuzzy relation R̃k, i.e.

B̃′k = Ã′ ◦ R̃k = Ã′ ◦
(
Ãk → B̃k

)
. (5.102)

Using Definition 5.11, we determine the membership function of the fuzzy
set B̃′k

µB̃′k (y) = µÃ′◦R̃k (y) = S̃
x∈X

(
µÃ′ (x)

T̃∗ µB̃k (x, y)
)

(5.103)

= S̃
x∈X

(
µÃ′ (x)

T̃∗ µÃ′→B̃k (x, y)
)

.

In case of singleton-singleton type fuzzification (5.84) the formula above
takes the form

µB̃′k (y) = µÃk→B̃k (x, y). (5.104)

Using formulae (5.99) and (5.94), we obtain

µB̃′k (y) = µÃk
1×...×Ãk

n
(x)

T̃∗ µB̃k (y) =

(
n

T̃
i=1

µÃk
i
(xi)

)
T̃∗ µB̃k (y). (5.105)

Let us denote the firing strength of k -th rule in the following way:

τk =
n

T̃
i=1

µÃk
i
(xi). (5.106)

Then dependency (5.105) takes the form

µB̃′k (y) = τk
T̃∗ µB̃k (y). (5.107)

Remark 5.7
In case of type-1 fuzzy sets the firing strength of τk rule is a real number
while τk ∈ [0, 1]. In case of type-2 fuzzy sets the firing strength of τk rule
is a type-1 fuzzy set defined in [0, 1].

Having inference results B̃′k for all N rules, we make an aggregation
using the operator of the extended t-conorm

µB̃′ (y) =
N

S̃
k=1

µB̃′k (y). (5.108)

We are going to show the inference process in interval systems. In such
systems the secondary membership functions of fuzzy sets Ãk

i and B̃k,
i = 1, ..., n, k = 1, ..., N , are constant functions taking value 1 in all in-
tervals Jx, x ∈ X. Within further discussion we are going to apply two



182 5. Methods of knowledge representation using type-2 fuzzy sets

properties ([97, 134]) of interval type-1 fuzzy sets F1, ..., Fn, defined on
intervals [l1, p1] , ..., [ln, pn], where li ≥ 0 and pi ≥ 0, i = 1, ..., n.

1) Extended t-norm T̃n
i=1Fi is an interval type-1 fuzzy set defined on

interval
[(

l1
T∗ l2

T∗ . . .
T∗ ln

)
,
(
p1

T∗ p2
T∗ . . .

T∗ pn

)]
, where

T∗ denotes t-norm
of minimum type or product.

2) Extended t-conorm S̃n
i=1Fi is an interval type-1 fuzzy set defined in

the interval [(l1 ∨ l2 ∨ . . . ∨ ln), (p1 ∨ p2 ∨ . . . ∨ pn)], where ∨ means a max-
imum operation.

We are going to introduce a symbolic notation, according to which the
interval fuzzy set A will be denoted as

A =
∫

x∈[a,b]

1/x ≡ [a, b]. (5.109)

Using property 1, we are going to express the firing strength of rule τk,
being now an interval type-1 fuzzy set, through the values of the lower and
upper membership functions of fuzzy sets Ãk

i . Based on property 1, we may
denote

τk = [τk, τk] , (5.110)

where
τk (x) = µ

Ãk
1
(x1) ∗ . . . ∗ µ

Ãk
n

(xn) (5.111)

and
τk (x) = µÃk

1
(x1) ∗ · · · ∗ µÃk

n
(xn) . (5.112)

Using formulas (5.107), (5.110), and property 1, we obtain

µB̃′k (y) = µB̃k (y)
T̃∗
[
τk, τk
]
≡
[
bk (y) , b

k
(y)
]
, y ∈ Y, (5.113)

where
bk (y) = τk T∗ µ

B̃k (y) (5.114)

and
b
k
(y) = τk T∗ µB̃k (y). (5.115)

Using formulas (5.113), (5.108), and property 2, we may determine

µB̃′ (y) =
N

S̃
k=1

µB̃′k (y) =
N

S̃
k=1

[
bk (y), b

k
(y)
]

=
[
b (y), b (y)

]
, (5.116)

where
b (y) = b1 (y) ∨ b2 (y) ∨ . . . ∨ bN (y) (5.117)
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and

b (y) = b
1
(y) ∨ b

2
(y) ∨ . . . ∨ b

N
(y).
∑

k 	=j
. (5.118)

Example 5.17
Figure 5.14 shows the method of determining the firing strength of a type-2
system with two rules. As the t-norm the minimum operation was chosen.
Therefore,

τk = min
[
µ

Ãk
1
(x1) , µ

Ãk
2
(x2)
]

(5.119)

and

τk = min
[
µÃk

1
(x1) , µÃk

2
(x2)
]

(5.120)

for k = 1, 2. As we have emphasized earlier, the firing strengths are interval
type-1 fuzzy sets.

FIGURE 5.14. The method of determining the firing strength of a type-2 fuzzy
system with singleton-singleton fuzzification

Example 5.18
Figures 5.15 and 5.16 show output type-2 fuzzy sets B̃1 and B̃2, as well
as fuzzy sets (shaded ones) B̃′1 and B̃′2 resulting from inference given by
formula (5.113).
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FIGURE 5.15. Output type-2 fuzzy set B̃1 and corresponding inferred type-2
fuzzy set B̃′1

FIGURE 5.16. Output type-2 fuzzy set B̃2 and corresponding inferred type-2
fuzzy set B̃′2

FIGURE 5.17. Type-2 fuzzy set B̃′ resulting from the aggregation of fuzzy sets
B̃′1 and B̃′2

Figure 5.17 presents fuzzy set (shaded one) B̃′ given by formula (5.116)
and resulting from the aggregation of fuzzy sets B̃′1 and B̃′2. In order to
determine this set we have used the operation

max
(
min τ1, µB̃1 (y),min τ2, µB̃2 (y)

)
(5.121)
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and
max
(
min τ1, µB̃1 (y) ,min τ2, µB̃2 (y)

)
. (5.122)

Example 5.19
Examples 5.17 and 5.18 present the results obtained for interval type-2
fuzzy systems with singleton fuzzification given by formula (5.89). These
results can be generalized for the case where the input signal is a type-1
fuzzy set (nonsingleton-singleton fuzzification) or an interval type-2 fuzzy

FIGURE 5.18. The method of determining the firing strength of a type-2 fuzzy
system with nonsigleton-singleton fuzzification

FIGURE 5.19. The method of determining the firing strength of a type-2 fuzzy
system with nonsigleton (type-2) – interval fuzzification
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set (type-2 nonsingleton fuzzification – interval). Figures 5.18 and 5.19 show
the method of determining the firing strength illustrating both cases.

5.9 Notes

The notion of the type-2 fuzzy set has been introduced by Lotfi Zadeh
[266]. In his article the author also defines the amount and the intersection
of the type-2 fuzzy sets using the extension principle for that purpose. The
basic notions characterizing type-2 fuzzy sets, i.e. the secondary member-
ship functions and grades, the upper and lower membership functions, as
well as the notions of embedded fuzzy sets and the footprint of uncertainty,
have been successively introduced to the global literature by Mendel, and
their review is contained in his monography [134]. The method of inference
with the use of interval type-2 fuzzy sets was first described by Gorzałczany
[64]. Basic operations on type-2 fuzzy sets have been provided by Dubois
and Prade [42], and Karnik and Mendel [97,100]. The interval fuzzy sets of
higher levels have been examined by Hisdal [80]. The iterative algorithm
of type reduction for the interval type-2 fuzzy sets has been introduced by
Karnik and Mendel [97, 101]. This has allowed to construct the interval
type-2 fuzzy logic systems. The first such constructions have been pre-
sented by Karnik, Mendel and Liang [99]. The analysis of the differences
between the interval inference systems and type-1 systems is presented in
an article by Starczewski [240]. An interesting method of type reduction
has been presented by Wu and Mendel in article [261]. The interval type-2
systems have been used for the prediction of chaotic series [98]. A novelty
is the construction of the type-2 fuzzy inference system with the trian-
gular secondary membership function, presented by Starczewski [238]. On
the webpage http://ieee-cis.org/standards/ Mendel, Hagras and John have
presented basic information on the type-2 fuzzy sets. This subject is also
discussed on http://www.type2fuzzylogic.org/.



6
Neural networks and their learning
algorithms

6.1 Introduction

For many years, scientists have tried to learn the structure of the brain and
discover how it works. Unfortunately, it still remains a fascinating riddle not
solved completely. Based on observation of people crippled during different
wars or injured in accidents, the scientists could assess the specialization of
particular fragments of the brain. It was found, for example, that the left
hemisphere is responsible for controlling the right hand, whereas the right
hemisphere – for the left hand. The scientists still do not have any detailed
information on higher mental functions. We can assume hypothetically that
the left hemisphere controls speech function and scientific thinking, whereas
the right hemisphere is its opposite as it manages artistic capabilities, spa-
tial imagination etc. The nervous system is made of cells called neurons.
There are about 100 billion of them in the human brain. The function-
ing of a single neuron consists in the flow of so-called nerve impulses. The
impulse induced by a specific stimulus encountering a neuron causes its
spreading along all its dendrones. As a result, a muscle contraction can
occur or another neuron can be stimulated. Why, then, appropriately con-
nected artificial neurons could not, instead of controlling muscles, manage,
for example, the work of a device or solve various problems requiring intel-
ligence? This chapter discusses artificial neural networks. We will present
a mathematical model of a single neuron, various structures of artificial
neural networks and their learning algorithms.
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6.2 Neuron and its models

6.2.1 Structure and functioning of a single neuron
The basic element of the nervous system is a nervous cell called neuron.
Figure 6.1 presents its simplified scheme. In a neuron, we can distinguish
nerve cell body (called soma) and two types of surrounding dendrones:
dendrones introducing information to neuron, so called dendrites and a
dendrone leading the information out of the neuron, so-called axon. Each
neuron has exactly one dendrone leading information out through which it
can send impulses to many other neurons. A single neuron receives stimula-
tion from an enormous number of neurons reaching as much as a thousand.
As mentioned before, in a human brain there are about 100 billion of neu-
rons which interact with one another through an enormous number of con-
nections. One neuron stimulates other neurons through neuron junctions
called synapses, while signals are transmitted through complex chemical
and electric processes. The synapses function as information transmitters
and as a result of their functioning the stimulation can be strengthened or
weakened. As a result, the neuron receives signals and some of them are
stimulating whereas others are suppressing. The neuron sums stimulating
and suppressing impulses. If their algebraic sum exceeds a certain thresh-
old value, the signal at neuron output is transmitted – via axon – to other
neurons.

We will present now a model of neuron referring to the first attempts to
formalize the description of the nerve cell functioning. Let us introduce the
following notations: n – a number of inputs in a neuron, x1, .., xn – input
signals, x = [x1, . . . , xn]T , w0, ..., wn – synaptic weights, w = [w0, . . . , wn]T ,
y – neuron output value, w0 – threshold value, f – activation function.

Formula describing neuron functioning is expressed by the dependency

y = f(s), (6.1)

where

s =
n∑

i=0

xiwi. (6.2)

FIGURE 6.1. Simplified scheme of the neuron: 1- soma, 2 - axon, 3 - dendrites,
4 - synapses



6.2 Neuron and its models 189
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FIGURE 6.2. Model of a neuron

Formulas (6.1) and (6.2) describe a neuron presented in Fig. 6.2. Activation
function f can take various forms depending on a specific model of the
neuron.

As it can be inferred from the above formulas, neuron functioning is very
simple. First, input signals x0, x1, . . . , xn are multiplied by corresponding
weights w0, w1, . . . , wn. The values obtained in this way, should be then
summed up. The result is a s signal reflecting the functioning of linear
part of the neuron. This signal is subject to the operation of activation
function, which is most frequently not a linear one. We assume that the
value of the signal x0 equals 1, whereas the weight w0 is called a bias. Where
then is the knowledge hidden in the neuron described in this way? The
knowledge is encrypted precisely in weights. And the biggest phenomenon is
that neurons may be easily (using algorithms described in the following part
of this chapter) trained, by changing weights appropriately. In Fig. 6.2, we
presented a general scheme of neuron, however in networks various models
are used. Some of them will be discussed in following points. It should
be mentioned that similarly to brain where the nerve cells join one with
another, also in case of mathematical models artificial neurons presented in
Fig. 6.2 are connected to one another creating multilayer neural networks.
Method of neuron connection as well as learning methods for structures
created in this manner will be described further in this chapter.
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6.2.2 Perceptron
Figure 6.3, illustrates the scheme of perceptron.

Operation of perceptron can be described by the formula

y = f

(
n∑

i=1

wixi + θ

)

. (6.3)

Let us notice that formula (6.3) corresponds to the general notation (6.1) if
θ = w0. Function f can be a discontinuous step function – bipolar function
(takes the value −1 or 1) or unipolar function (takes the value 0 or 1).
For the purpose of further discussion we will assume that the activation
function is bipolar, i.e.

f(s) =
{

1, if s > 0,
−1, if s ≤ 0.

(6.4)

The perceptron, due to its activation function, takes only two different
output values, so it may classify signals applied at its input in the form
of vectors x = [x1, ..., xn]T to one of two classes. For example, perceptron
with one input can evaluate if the input signal is positive or negative. In
case of two inputs x1 and x2 perceptron divides the plane into two parts.
The partition is determined by a line of equation

w1x1 + w2x2 + θ = 0. (6.5)

FIGURE 6.3. Scheme of perceptron
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Therefore, equation (6.5) can be written as follows

x2 = −w1

w2
· x1 −

θ

w2
. (6.6)

In general, when perceptron has n inputs, it divides n-dimensional space of
input vectors x into two half spaces. They are separated by n −
1-dimensional hyperplane, called decision boundary given by the formula

n∑

i=1

wixi + θ = 0. (6.7)

Figure 6.4, illustrates the decision boundary for n = 2. It should be noted
that the line determining the partition of space is always perpendicular to
the vector of weights w = [w1, w2]T .

According to our introduction, the perceptron can learn. During this
process its weights are modified. The perceptron learning method belongs to
the group of algorithms called learning with teacher or supervised learning.
Learning of this type consists in applying signals x(t) = [x0(t), x1(t), . . . ,
xn(t)]T , t = 1, 2, . . . , at perceptron input for which we know correct values
of output signals d(t), t = 1, 2, . . . , called output desired signals. A set of
such input samples together with corresponding values of output desired
signals is called a learning sequence. In these methods, after input values
are applied, the output signal of neuron is computed. Then the weights are
modified to minimize the error between output desired signal and percep-
tron output. As the teacher determines the desired value, this method is
called “learning with teacher”. Of course, we can presume that there are
algorithms for learning networks without teacher, but they will be pre-
sented in the following points of this chapter. The algorithm for perceptron
learning is presented below:

FIGURE 6.4. Decision boundary for n = 2



192 6. Neural networks and their learning algorithms

1. We select initial weights of perceptron at random.

2. At neuron inputs, we present a learning vector x, while x = x(t) =
[x0(t), x1(t), . . . , xn(t)]T , t = 1, 2, . . . .

3. We compute the output value of the perceptron y, according to for-
mula (6.3).

4. We compare the output value y(t) with the desired output value
d = d(x(t)) occurring in the learning sequence.

5. We modify weights according to dependencies:

a) if y(x(t) �= d(x(t)), then wi(t + 1) = wi(t) + d(x(t))xi(t);
b) if y(x(t) = d(x(t)), then wi(t + 1) = wi(t), i.e. weights remain

unchanged.

6. We go back to point 2.

The algorithm is repeated until for all input vectors included in the learning
sequence the error at the output will be smaller than the assumed tolerance.
Figure 6.5, illustrates the flowchart of perceptron learning. Operation of
internal loop in this figure refers to so-called one epoch, which consists of
data creating the learning sequence. The operation of the external loop
reflects the possibility of multiple use of the same learning sequence until
the algorithm stopping criterion is satisfied.

We shall demonstrate that the algorithm for perceptron learning is con-
vergent. The theorem on the convergence of algorithm for perceptron learn-
ing is formulated as follows:

If a set of weights w∗ = [w∗
1 , . . . , w∗

n]T exists which correctly classifies
learning signals x = [x1, . . . , xn]T i.e. determines mapping y = d (x), then
the learning algorithm will find a solution in a finite number of iterations
for any initial values of the vector of weights w.

We assume that the learning data represent linearly separable classes
because only then perceptron can learn. We will demonstrate that a finite
number of weight modification steps exist after which the perceptron will
realize mapping y = d(x). Due to the fact that the activation function is
of sgn type in the perceptron, we can assume any length of vector w∗, e.g.
equal 1, i.e. ‖w∗‖ = 1.

Thus, during learning it is enough to modify the vector w so that the
angle α presented in Fig. 6.6 equals 0. Then, of course cos(α) = 1. The
fact that |w∗ ◦ x| > 0 (symbol ◦ in this case means a scalar product of
vectors) and w∗ is a solution, results in existence of such a constant δ > 0
for which |w∗ ◦ x| > δ for all vectors x from the learning sequence. From
the definition of the scalar product it results that

cos(α) =
w∗ ◦ w

√
‖w∗‖2 ‖w‖2

. (6.8)
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FIGURE 6.5. Flowchart of perceptron learning algorithm

Since √
‖w∗‖2 = ‖w∗‖ = 1, (6.9)

therefore

cos(α) =
w∗ ◦ w
‖w‖ . (6.10)
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FIGURE 6.6. Illustration of perceptron learning

In accordance with the algorithm for perceptron learning, the weights are
modified for a given input vector x according to the following dependency:
w′ = w+∆w, where ∆w = d(x)x. Of course, we assume that an error oc-
curred at the network output and the correction of weights is indispensable.
Let us notice that

w′ ◦ w∗ = w ◦ w∗ + d(x)w∗ ◦ x (6.11)

therefore
w′ ◦ w∗ = w ◦ w∗ + sgn (w∗ ◦ x)w∗ ◦ x. (6.12)

There are the following facts:

(i) If w∗ ◦x < 0, then sgn(w∗ ◦x) = −1, therefore sgn(w∗ ◦x)w∗ ◦x =
−1(w∗ ◦ x) > 0,

(ii) If w∗ ◦ x > 0, then sgn(w∗ ◦ x) = 1, therefore sgn(w∗ ◦ x)w∗ ◦ x =
1(w∗ ◦ x) > 0.

Therefore
sgn(w∗ ◦ x)w∗ ◦ x = |w∗ ◦ x|. (6.13)

In accordance with formulas (6.12) and (6.13), we can write

w′ ◦ w∗ = w ◦ w∗ + |w∗ ◦ x|. (6.14)

We also know that |w∗ ◦ x| > δ, hence

w′ ◦ w∗ > w ◦ w∗ + δ. (6.15)

Let us now estimate the value ‖w′‖2, bearing in mind that we are analyzing
a case where, after applying a learning vector x at input, an error occurs
at the network output, i.e.

d(x) = −sgn(w ◦ x). (6.16)
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Of course,

‖w′‖2 = ‖w + d(x)x‖2 = ‖w‖2 + 2d(x)w ◦ x + ‖x‖2
. (6.17)

Using the dependencies (6.16) and (6.17) and assuming the input signals
are bounded, we have

‖w′‖2
< ‖w‖2 + ‖x‖2 = ‖w‖2 + C. (6.18)

After t steps of network weights modification, dependencies (6.15) and
(6.18) take the form

w(t) ◦ w∗ > w ◦ w∗ + tδ (6.19)

and
‖w(t)‖2

< ‖w‖2 + tC. (6.20)

Using formulas (6.10), (6.19) and (6.20), we get

cos α(t) =
w∗ ◦ w(t)
‖w(t)‖ >

w∗ ◦ w + tδ
√

‖w‖2 + tC
. (6.21)

Therefore a t = tmax, must exist for which cos(α) = 1. Hence, there is
a finite number of weights modification steps, after which the vector of
initial weights will satisfy the mapping y = d(x). If we assume that the
initial values of weights equal 0, then

tmax =
C

δ2
. (6.22)

Example 6.1
Now, we will present an example of perceptron learning. When discussing
its operation, we have stated that this two-input neuron model divides
the plane into two parts (cf. 6.5). Therefore, if we place on the plane two
classes of samples, which may be separated by means of a line, then the
perceptron in the learning process will be able to find this division line. In
our experience, we shall draw an output desired line, denoted by the letter
L in Fig. 6.7. Let us assume that all the points of the plane located over
this line represent the class 1 samples whereas the points located under
line L represent class 2. There are infinitely many such points on both half-
planes, and that is why we have to select a few samples of each class. We
want that after training, the perceptron for samples from class one gives
an output signal equal to 1, and for class two samples a signal equal to −1.
So we have built a learning sequence presented in Table 6.1.

We shall assume the following initial values of perceptron weights: w1 = 2,
w2 = 2, θ = −4. Based on these parameters as well as earlier information,
we shall draw a line K, which shows the division of space (decision bound-
ary), defined by the perceptron before starting the learning process. After
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FIGURE 6.7. Decision boundaries in Example 6.1

ten epochs of the learning algorithm (we applied at neuron input 10 times
all the elements of the learning sequence), the perceptron started to clas-
sify the learning sequence vectors correctly. Its weights took the following
values: w1 = 4, w2 = 1, θ = −1, which is reflected by line M being the de-
cision boundary. In Fig. 6.7, we can see that after learning, the perceptron
classifies the learning samples correctly, although line M is not identical to
the desired output line L.

TABLE 6.1. A learning sequence from Example 6.1

x1 x2 d (x)

2 1 1
2 2 1
0 6 1
−2 8 −1
−2 0 −1
0 0 −1
4 −20 −1

6.2.3 Adaline model
Figure 6.8 illustrates the scheme of Adaline (Adaptive Linear Neuron) neu-
ron. The construction of this neuron is very similar to the perceptron model,
and the only difference relates to the learning algorithm. The determina-
tion method of output signal is identical to the one presented in previous
point concerning the perceptron. However, in case of the Adaline neuron,
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FIGURE 6.8. The scheme of Adaline neuron

the output desired signal d is compared to signal s at the output of the
linear part of the neuron (adder). Thus, the name of this type of neurons.
Therefore, we get an error given by the formula

ε = d − s. (6.23)

Neuron learning, or the selection of weights, comes down to minimization
of the function defined as follows:

Q (w) =
1
2
ε2 =

1
2

[

d −
(

n∑

i=0

wixi

)]2

. (6.24)

The error measure (6.24) is called the mean squared error. By taking into
account only the linear part of the neuron, we may use the gradient algo-
rithms to modify the weights, as the objective function defined by depen-
dency (6.24) is differentiable. We shall use the steepest descent method to
minimize this function. This method will be discussed in more detail when
we will be describing the backpropagation algorithm. The weights in an
Adaline neuron are modified according to the formula

wi(t + 1) = wi(t) − η
∂Q(wi)

∂wi
, (6.25)

where η is the learning coefficient. Let us notice that

∂Q(wi)
∂wi

=
∂Q(wi)

∂s
· ∂s

∂wi
. (6.26)

As s is a linear function with relation to the weights vector, we have

∂s

∂wi
= xi. (6.27)



198 6. Neural networks and their learning algorithms

Moreover,
∂Q(wi)

∂s
= −(d − s). (6.28)

Therefore, dependency (6.25) takes the form

wi(t + 1) = wi(t) + ηδxi, (6.29)

where δ = d − s. The above rule is called delta rule (it is a special form
of this rule, as it does not take into account neuron activation function).
Figure 6.9 presents the flowchart of the Adaline neuron learning algorithm
using this rule.

Adaline neurons may also learn using the Recursive Least Squares method
(RLS). As the error measure, the following expression is adopted:

Q (t) =
t∑

k=1

λt−kε2 (k) (6.30)

=
t∑

k=1

λt−k
[
d (k) − xT (k) w (t)

]
2,

in which λ is the forgetting factor selected from the interval [0, 1]. Let
us notice that the previous errors have a lesser influence on the value of
expression (6.30). When computing the error measure gradient, we get the
following dependency:

∂Q (t)
∂w (t)

=
∂
∑t

k=1 λt−kε2

∂w (t)

=
∂
∑t

k=1 λt−k
[
d (k) − xT (k) w (t)

]2

∂w (t)
(6.31)

= −2
t∑

k=1

λt−k
[
d (k) − xT (k) w (t)

]
x (k).

The optimum values of weights should satisfy the so-called normal equation

t∑

k=1

λt−k
[
d (k) − xT (k) w (t)

]
x (k) = 0. (6.32)

Equation (6.32) may be presented in the form

r (t) = R (t) w (t), (6.33)

where

R (t) =
t∑

k=1

λt−kx (k)xT (k) (6.34)
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FIGURE 6.9. Flowchart of the Adaline neuron learning algorithm

is n × n-dimensional autocorrelation matrix, and

r (t) =
t∑

k=1

λt−kd (k)x (k) (6.35)
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is n×1-dimensional cross-correlation vector of the input signal and output
desired signal. We shall assume that these signals are the realization of
stationary stochastic processes. The solution of the normal equation (6.33)
takes the form

w (t) = R−1 (t) r (t), (6.36)

if det R (t) �= 0. We now shall apply the RLS algorithm in order to avoid
the matrix inversion operation in equation (6.36) and we will solve the
normal equation (6.33) using recurrence method.

Let us notice that matrix R (t) and vector r (t) may be presented in the
form

R (t) = λR (t − 1) + x (t)xT (t) (6.37)

and
r (t) = λr (t − 1) + x (t) d (t). (6.38)

Now, we shall apply the inverse matrix lemma. Let A and B be positively
defined n × n-dimensional matrices such as

A = B−1 + CD−1 CT (6.39)

where D is a positively definite m × m-dimensional matrix, while C is
n × m-dimensional matrix. Then

A−1 = B − BC
(
D + CT BC

)−1
CT B. (6.40)

By comparing formulas (6.40) and (6.37), we receive

A = R (t) , (6.41)

B−1 = λR (t − 1) ,

C = x (t) ,

D = 1.

Therefore,
P (t) = λ−1

[
I − g (t)xT (t)

]
P (t − 1), (6.42)

where
P (t) = R−1 (t) (6.43)

and
g (t) =

P (t − 1)x (t)
λ + xT (t)P (t − 1)x (t)

. (6.44)

We shall demonstrate the truth of the following equation:

g (t) = P (t)x (t). (6.45)

As a result of some simple algebraic operations, we get

g (t) =
P (t − 1) x (t)

λ + xT (t) P (t − 1) x (t)
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=
λ−1
[
λP (t − 1)x (t) + P (t − 1) x (t) xT (t)P (t − 1)x (t)

]

λ + xT (t)P (t − 1) x (t)

−
λ−1
[
P (t − 1)x (t) xT (t) + P (t − 1) x (t)

]

λ + xT (t)P (t − 1)x (t)

=
λ−1
[(

λ + xT (t)P (t − 1) x (t)
)

I
]
P (t − 1)x (t)

λ + xT (t)P (t − 1)x (t)
(6.46)

−
λ−1
[
P (t − 1)x (t)xT (t)

]
P (t − 1)x (t)

λ + xT (t)P (t − 1)x (t)

= λ−1

[
I − P (t − 1)x (t)xT (t)

λ + xT (t)P (t − 1)x (t)

]
P (t − 1)x (t)

= λ−1
[
I − g (t)xT (t)

]
P (t − 1)x (t) = P (t)x (t).

It results from the dependencies (6.38) and (6.36) that

w (t) = R−1 (t) r (t) = λP (t) r (t − 1) + P (t)x (t) d (t). (6.47)

From equation (6.42) and (6.47) we get

w (t) =
[
I − g (t)xT (t)

]
P (t − 1) r (t − 1) + P (t)x (t) d (t). (6.48)

The consequence of the dependency (6.38) and (6.36) is the following rela-
tion:

w (t) = w(t − 1) − g (t)xT (t)w (t − 1) + P (t)x (t) d (t). (6.49)

Taking into consideration relation (6.45) in dependency (6.49), we get the
following recursion:

w (t) = w (t − 1) + g (t)
[
d (t) − xT (t)w (t − 1)

]
. (6.50)

In consequence, the RLS algorithm used for learning of Adaline neuron
takes the following form:

ε (t) = d (t) − xT (t)w (t − 1) = d (t) − y (t), (6.51)

g (t) =
P (t − 1)x (t)

λ + xT (t)P (t − 1)x (t)
, (6.52)

P (t) = λ−1
[
I − g (t)xT (t)

]
P (t − 1), (6.53)

w (t) = w (t − 1) + g (t) ε (t). (6.54)

As initial values, it is usually assumed

P (0) = γI, γ > 0, (6.55)

where γ is a constant, while I is an identity matrix.
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6.2.4 Sigmoidal neuron model
Construction of a sigmoidal neuron is analogical to the two models previ-
ously discussed, i.e. the perceptron and Adaline neuron. The name derives
from an activation function which takes the form of a unipolar or bipolar
sigmoidal function. These are continuous functions and are expressed by
the following dependencies:

f (x) =
1

1 + e−βx
— unipolar function

and

f (x) = tanh (βx) =
1 − eβx

1 + e−βx
— bipolar function

Figure 6.10 presents characteristics of a unipolar function for different val-
ues of parameter β. The Reader may notice that with a low value of the
coefficient β, the function has a gentle shape, when the coefficient value
increases, the graph becomes increasingly steeper, and finally the function
presents threshold characteristics. The feature which is undeniably a great
advantage of sigmoidal neurons, is the differentiability of the activation
function.

Moreover, the derivatives of these functions may be easily calculated, as
they take the following form:

f ′(x) = βf(x)(1 − f(x)) for unipolar function, (6.56)

f ′ (x) = β
(
1 − f2(x)

)
for bipolar function. (6.57)

Figure 6.11 illustrates the scheme of a sigmoidal neuron.

FIGURE 6.10. Characteristics of unipolar activation functions for different values
of parameter β
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FIGURE 6.11. The scheme of a sigmoidal neuron

The output signal is given by the following formula

y (t) = f

(
n∑

i=0

wi (t) xi (t)

)

. (6.58)

The error measure Q is defined as a square of difference of the desired
output value and value obtained at the neuron output, i.e.

Q (w) =
1
2

[

d − f

(
n∑

i=0

wixi

)]2

. (6.59)

Like in the case of Adaline type neuron, the steepest descent rule is used
for learning purposes; however, now in derivations we will take into account
the activation function as well. The neuron weights are updated according
to the formula

wi(t + 1) = wi(t) − η
∂Q(wi)

∂wi
. (6.60)

We will determine the derivative of the error measure with respect to the
weights. Of course,

∂Q(wi)
∂wi

=
∂Q(wi)

∂s
· ∂s

∂wi
(6.61)

and
∂s

∂wi
= xi. (6.62)

Hence,
∂Q(wi)

∂wi
=

∂Q(wi)
∂s

· xi. (6.63)
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It is easy to see that

∂Q(wi)
∂s

= −(d − f(s)) · f ′(s). (6.64)

Let us denote
δ = −(d − f(s)) · f ′(s). (6.65)

According to formulas (6.60) and (6.65), the modification of weights in step
t + 1 is made in the following way:

wi(t + 1) = wi(t) − ηδxi = wi(t) + η(d − f(s))f ′(s)xi. (6.66)

Now, we will present an alternative method of learning of sigmoidal neu-
ron using the RLS algorithm. Let us consider two cases which differ in the
error definition method. In the first case, the error signal is determined at
the output of the linear part of the neuron. Therefore, the error measure
has the form

Q (t) =
t∑

k=1

λt−ke2 (k) (6.67)

=
t∑

k=1

λt−k
[
b (k) − xT (k)w (t)

]
2,

where

b(k) = f−1(d(k)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ln
d (k)

1 − d (k)
in case of a unipolar function

1
2

ln
1 + d (k)
1 − d (k)

in case of a bipolar function

(6.68)

has the interpretation of a desired signal at the output of the linear part
of neuron. At present, the normal equation takes the form

Q (t)
∂w (t)

= −2
t∑

k=1

λt−k
[
b (k) − xT (k) w (t)

]
xT (k) (6.69)

or in vector form
r (t) = R (t)w (t), (6.70)

where

R (t) =
t∑

k=1

λt−k x (k)xT (k) (6.71)

and

r (t) =
t∑

k=1

λt−kb (k)x (k). (6.72)
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Let us notice that equation (6.71) and (6.72) are similar to equation
(6.34) and (6.35). Thus, the RLS algorithm takes the following form:

e (t) = b (t) − xT (t)w (t − 1) = b (t) − s (t), (6.73)

g (t) =
P (t − 1)x (t)

λ + xT (t)P (t − 1)x (t)
, (6.74)

P (t) = λ−1
[
I − g (t)xT (t)

]
P (t − 1), (6.75)

w (t) = w (t − 1) + g (t) e (t), (6.76)

while the initial conditions are defined by formula (6.55).
In the second case, the error is determined at the output of the nonlinear

part of neuron. The error measure takes the form

Q (t) =
t∑

k=1

λt−kε2 (k) (6.77)

=
t∑

k=1

λt−k
[
d (k) − f

(
xT (k)w (t)

)]
2.

By determining a partial derivative of measure (6.77) with respect to vector
w (t) and equating the result to 0, we get

∂Q (t)
∂w (t)

= 2
t∑

k=1

λt−k ∂ε (k)
∂w (t)

ε (k) (6.78)

= −2
t∑

k=1

λt−k ∂y (k)
∂s (k)

∂s (k)
∂w (t)

ε (k) = 0.

As a result of some further computations, we get

t∑

k=1

λt−k ∂y (k)
∂s (k)

∂s (k)
∂w (t)

[d (k) − y (k)]

=
t∑

k=1

λt−k ∂y (k)
∂s (k)

xT (k) [d (k) − y (k)] (6.79)

=
t∑

k=1

λt−k ∂y (k)
∂s (k)

xT (k) [f (b(k) − f (s(k)))] = 0.

As a result of applying the Taylor expansion to the expression in square
bracket of formula (6.79), we get

f (b (k)) ≈ f (s (k)) + f ′ (s (k)) (b (k) − s (k)) , (6.80)
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where
b (t) = f−1 (d (t)) . (6.81)

As a consequence of formulas (6.79) and (6.80), we get the equation

t∑

k=1

λt−kf ′2 (s (k))
[
b (k) − xT (k)w (t)

]
x (k) = 0. (6.82)

Equation (6.82) in the vector form takes the form

r (t) = R (t)w (t) , (6.83)

where

R (t) =
t∑

k=1

λt−kf ′2 (s (k))x (k)xT (k) (6.84)

and

r (t) =
t∑

k=1

λt−kf ′2 (s (k)) b (k)x (k) . (6.85)

By applying the following substitutions in formulas (6.73) – (6.76):

x (k) → f ′ (s (k))x (k) , (6.86)

b (k) → f ′ (s (k)) b (k) , (6.87)

we get the following form of the RLS algorithm applied to learning sig-
moidal neuron:

ε (t) = f ′ (s (t))
[
b (t) − xT (t)w (t − 1)

]
≈ d (t) − y (t) , (6.88)

g (t) =
f ′ (s (t))P (t − 1)x (t)

λ + f ′2 (s (t))xT (t)P (t − 1)x (t)
, (6.89)

P (t) = λ−1
[
I − f ′ (s (t))g (t)xT (t)

]
P (t − 1) , (6.90)

w (t) = w (t − 1) + g (t) ε (t) . (6.91)

The initial conditions are defined by the dependency (6.55).

6.2.5 Hebb neuron model
Figure 6.12 illustrates the Hebb neuron model. It is a structure identical
to Adaline neuron model and sigmoidal neuron model, but is characterized
by a specific learning method, known as Hebb rule. This rule occurs in
the version without the teacher and with the teacher. Hebb [74] studied
the functioning of neural cells. During his research, he noticed that the
connection between two cells was strengthened if the two cells became
active at the same time.
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FIGURE 6.12. Scheme of the Hebb neuron model

In an analogical way, he proposed an algorithm pursuant to which the
modification of weights is made as follows:

wi(t + 1) = wi(t) + ∆wi, (6.92)

whereas

∆wi = ηxiy. (6.93)

In case of a single neuron, during learning we will modify the value of
weight wi proportionally both to the value of the signal input to the i-th
input, and the output signal y, taking into account the learning coefficient
η. Let us notice that in this case we do not present a desired output value,
therefore, we apply here the learning without teacher. A slight modification
of dependency (6.93) leads to the second learning method of Hebb neuron –
learning with teacher

∆wi = ηxid, (6.94)

where d is the output desired signal. A certain disadvantage of the algo-
rithm discussed is the fact that the values of weights may increase to any
high values. That is why different modifications of the Hebb rule are intro-
duced in the literature.

Example 6.2
Now, we will present an example of neuron learning using Hebb rule in the
version with teacher. Our task will be to modify the neuron weights in such
a way as to recognize digits 1 and 4, schematically presented in Fig. 6.13.
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FIGURE 6.13. Illustration to Example 6.2

By assigning digit 1 to the white fields and digit −1 to the black fields in
the figure, we will get two vectors included in a learning sequence:

[−1 − 1 1 − 1 − 1 1 − 1 − 1 1 − 1 − 1 1] — for digit 1,

[1 − 1 1 1 1 1 − 1 − 1 1 − 1 − 1 1] — for digit 4.

For the first pattern (digit 1), we will demand that at the neuron output the
signal d = −1 appeared, while for the second (digit 4) we have determined
the desired output value as d = 1. As we know the input and output
patterns, the neuron weights in subsequent iterations of the algorithm will
be subject to modification according to dependency (6.94). Their initial
values are equal to 0. The neuron with the signum type activation function
learnt during 100 epochs, we have assumed the learning coefficient equal
to 0.2. After having the neuron learnt and giving the first learning vector
at its input, the signal s = −120 appeared at the output, while in case of
the second learning vector the signal s = 120 appeared at the output. We
may justly assume that if the number of epochs increases, these values will
also increase. The vector of weights after being learnt took the following
form: w = [40 0 0 40 40 0 0 0 0 0 0 0]. We can see that only the
components of the vector of weights that corresponded to the differences
between individual components of the learning vectors have changed.

6.3 Multilayer feed-forward networks

6.3.1 Structure and functioning of the network
In the previous chapter, we have discussed different neuron models. We have
shown that these neurons may learn, i.e. adjust the values of their weights
to the values of a learning sequence. Moreover, when describing the percep-
tron, we have demonstrated that if it had n inputs, it divided n-dimensional
space into two half spaces. They are divided by n − 1-dimensional hyper-
plane. The scope of possible problems which may be solved using a single
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perceptron is rather limited. As an example, we present the problem of
the logical XOR function. The learning sequence for this problem has been
presented in Table 6.2.

Values of the learning sequence from Table 6.2 are marked in Fig. 6.14.
As we may see in this figure there is no line which divides the points with
XOR function values equal to −1 from points with values equal to 1. In this
case, a decision boundary is described by an ellipse, therefore the algorithm
presented in Fig. 6.5 would not be convergent. We are unable to find the
weights of a single perceptron as to solve the XOR problem. Fortunately,
we are supported by multilayer networks. We will return to XOR problem
when we present the learning methods of these networks. What actually are
multilayer networks? Nothing more than appropriately connected neurons
arranged in two or more layers. Generally, these are sigmoidal neurons,
but also neurons with other activation functions are used, e.g. linear –
most commonly used in the last layers of the neural network structure.
In multilayer neural networks, at least two layers must exist: input and
output one. Between them, however, there may be some hidden layers.
If the network contains only two layers, then the input layer is identified

TABLE 6.2. Learning sequence for the XOR problem

x1 x2 d = XOR(x1, x2)

+1 +1 −1
+1 −1 1
−1 +1 1
−1 −1 −1

FIGURE 6.14. Illustration of the XOR problem
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FIGURE 6.15. A typical scheme of a three-layer feed-forward neural network

with a hidden layer. In some studies, the input layer is understood as the
vector of input signals applied to the neural network. In the discussed
structures the neurons transmit the signals only between different layers.
Within the same layer, the neurons can not connect with each other. The
signals are transmitted from the input to the output layer (hence the name:
feed-forward), and there is no feedback to the previous layers. Figure 6.15
illustrates a typical scheme of a three-layer feed-forward neural network.

In the following points, we will present different algorithms for learning of
multilayer neural networks with teacher. At the beginning, we will present
the operation of the backpropagation algorithm and its several modifica-
tions. Another algorithm to be discussed in this chapter will be the RLS
algorithm. Then we will demonstrate, what is the influence of selecting
an appropriate network structure on network learning and operation. As
we have mentioned before, the algorithms presented in this chapter belong
to the group of algorithms for learning networks with teacher, also called
supervised learning. Let us remind what this term means. In case of these
algorithms, we assume that in a learning sequence there are the following
pairs: vector of input values and vector of desired output signals. Hence, the
learning will go as follows: first, we apply the input values from a learning
sequence at the network input and then we compute the output values for
each neuron from the input layer to the output layer, one by one. Thus,
we will get the response of the network to the signal (pattern) entered at
its input. As we know the expected output value (it is in the learning se-
quence), we will try to modify the weights in the network in such a way so
the output value was possibly close to the desired output value. Hence the
name of this type of algorithms (with teacher or supervised learning), as
the “teacher” indicates what should be the network’s response.

6.3.2 Backpropagation algorithm
When presenting different neuron models, we discussed some of their basic
learning techniques. Most often, it was as follows: we computed the sum
of values of input signal products and their corresponding weights. Then
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we subjected the value thus obtained to the operation of appropriately
defined activation function and we received the neuron output value. As
we knew the expected output value (desired output value obtained from the
learning sequence), we could easily define the error at the neuron output.
This error was the difference between the value obtained at its output and
the desired output value. In the same way we may define the error for the
last layer in case of multilayer networks. However, the problem of defining
error for the hidden layers appears, as the teacher does not know what
should be the output value of particular hidden layer neurons. The most
common technique of learning of multilayer neural networks called error
backpropagation algorithm or backpropagation algorithm is very helpful in
solving the problem.

In order to derive this algorithm, we must appropriately define the error
measure. It will be a function in which all weights of a multilayer neural
network play the role of variables. Let us denote this function as Q(w),
where w is the vector of all network weights. During the network learning,
we will aim to find a minimum of function Q with respect to vector w.
Let us therefore expand the function considered into a Taylor series in the
closest neighborhood of the known current solution w. This expansion will
be presented along the direction p as follows:

Q(w + p) = Q(w) + [g(w)]T p + 0.5pT H(w)p + . . . , (6.95)

where g(w) means the gradient vector, i.e.

g(w) =
[

∂Q

∂w1
,

∂Q

∂w2
,

∂Q

∂w3
, ...,

∂Q

∂wn

]T
, (6.96)

while H(w) is the Hessian, i.e. the matrix of the second-order derivatives

H(w) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂2Q

∂w1∂w1
· · · ∂2Q

∂w1∂wn
...

...
∂2Q

∂wn∂w1
· · · ∂2Q

∂wn∂wn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (6.97)

The modification of these weights is made as follows:

w(t + 1) = w(t) + η(t)p(t), (6.98)

where η is the learning coefficient (the method of selecting this parameter
will be described further in this chapter). The modification of weights may
be repeated as many times as function Q reaches the minimum or its value
drops below the assumed threshold. So, the task comes down to determining
such a direction vector p that in further steps of the algorithm the error at
network output would decrease. This means that we require the satisfaction
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of the inequality Q(w(t + 1)) < Q(w(t)) in subsequent steps of iterations.
Let us limit the Taylor series approximating the Q error function to a linear
expansion, i.e.

Q(w + p) = Q(w) + [g(w)]T p. (6.99)

As function Q(w) depends on the weights determined in step t, and
Q(w + p) depends on the weights determined in step t + 1, then in or-
der to obtain the dependency Q(w(t + 1)) < Q(w(t)), we should select
the vector p(t), so that g(w(t))T p(t) < 0. It is easy to notice that this
condition is satisfied if we assume

p(t) = −g(w(t)). (6.100)

By substituting dependency (6.100) to formula (6.98), we get the following
formula, which defines the method of changing the weights of a multilayer
neural network

w(t + 1) = w(t) − ηg(w(t)). (6.101)

Dependency (6.101) is known in the literature as the steepest descent rule.
In order to use effectively dependency (6.101) to derive the backpropagation
algorithm, we must formally describe the scheme of a multilayer neural
network and introduce appropriate notations.

Such scheme is presented in Fig. 6.16. In each layer, there are Nk el-
ements, k = 1, ..., L, denoted as Nk

i , i = 1, ..., Nk. Elements Nk
i will be

called neurons, and each of them may be a sigmoidal neuron. The dis-
cussed neural network has N0 inputs, to which signals x1(t), ..., xN0(t) are
applied, notated in the form of a vector

x = [x1 (t) , ..., xN0 (t)]T t = 1, 2, ... (6.102)

The output signal of i -th neuron in k -th layer is denoted as y
(k)
i (t) ,

i = 1, ..., Nk, k = 1, ..., L.

FIGURE 6.16. Scheme of a multilayer neural network
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FIGURE 6.17. A detailed scheme of i-th neuron in k -th layer

Figure 6.17 presents a detailed scheme of i -th neuron in k -th layer.
Neuron Nk

i has Nk inputs making up the vector

x(k) (t) =
[
x

(k)
0 (t) , ..., x

(k)
Nk−1

(t)
]T

, (6.103)

while x
(k)
i (t) = +1 for i = 0 and k = 1, ..., L. Let us notice that the input

signal of neuron Nk
i is related to the output signal of layer k − 1 in the

following way

x
(k)
i (t) =

⎧
⎨

⎩

xi (t) for k = 1,

y
(k−1)
i (t) for k = 2, ..., L,

+1 for i = 0, k = 1, ..., L.

(6.104)

In Fig. 6.17 w
(k)
ij (t) is the weight of i -th neuron, i = 1, ..., Nk, of layer

k, connecting this neuron to the j -th input signal x
(k)
j (t) , j = 0, 1, ..., Nk.

The vector of weights of neuron Nk
i shall be denoted as

w(k)
i (t) =

[
w

(k)
i,0 (t) , ..., w

(k)
i,Nk−1

(t)
]T

, k = 1, ..., L, i = 1, ..., Nk. (6.105)

The output signal of neuron Nk
i at the instant t, t = 1, 2, ..., is defined as

y
(k)
i (t) = f

(
s
(k)
i (t)
)

, (6.106)

while

s
(k)
i (t) =

Nk−1∑

j=0

w
(k)
ij (t) x

(k)
j (t) . (6.107)

Let us notice that output signals of neurons in L-th layer

yL
1 (t) , yL

2 (t) , ..., yL
NL

(t) (6.108)
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are at the same time output signals of the whole network. They are com-
pared to the so-called output desired signals

dL
1 (t) , dL

2 (t) , ..., dL
NL

(t) . (6.109)

The error measure Q at network output will be defined as follows:

Q (t) =
NL∑

i=1

(
ε
(L)
i

)2
(t) =

NL∑

i=1

(
d
(L)
i (t) − y

(L)
i (t)

)2
. (6.110)

Using dependency (6.101) and (6.110), we get

w
(k)
ij (t + 1) = w

(k)
ij (t) − η

∂Q (t)

∂w
(k)
ij (t)

. (6.111)

Let us notice that

∂Q (t)

∂w
(k)
ij (t)

=
∂Q (t)

∂s
(k)
i (t)

∂s
(k)
i (t)

∂w
(k)
ij (t)

=
∂Q (t)

∂s
(k)
i (t)

x
(k)
j (t) . (6.112)

By determining

δ
(k)
i (t) = −1

2
∂Q (t)

∂s
(k)
i (t)

, (6.113)

we get the equality

∂Q (t)

∂w
(k)
ij (t)

= −2δ
(k)
i (t) x

(k)
j (t) , (6.114)

and hence algorithm (6.111) takes the form

w
(k)
ij (t + 1) = w

(k)
ij (t) + 2ηδ

(k)
i (t) x

(k)
j (t) . (6.115)

The method of determining the value δ
(k)
i depends on the network layer.

For the last layer we get

δ
(L)
i (t) = −1

2
∂Q (t)

∂s
(L)
i (t)

= −1
2

∂
NL∑

m=1
Q

(L)2

m (t)

∂s
(L)
i (t)

= −1
2

∂Q
(L)2

i (t)

∂s
(L)
i (t)

= −1
2

∂
(
d
(L)
i (t) − y

(L)
i (t)

)2

∂s
(L)
i (t)

(6.116)

= Q
(L)
i (t)

∂y
(L)
i (t)

∂s
(L)
i (t)

= Q
(L)
i (t) f ′

(
s
(L)
i (t)
)

.
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For any layer k �= L we have

δ
(k)
i (t) = −1

2
∂Q (t)

∂s
(L)
i (t)

= −1
2

Nk+1∑

m=1

∂Q (t)

∂s
(k+1)
m (t)

∂s
(k+1)
m (t)

∂s
(k)
i (t)

=
Nk+1∑

m=1
δ(k+1)
m (t) w

(k+1)
mi (t) f ′

(
s
(k)
i (t)
)

(6.117)

= f ′
(
s
(k)
i (t)
)Nk+1∑

m=1
δ(k+1)
m (t) w

(k+1)
mi (t) .

We shall define the error in the k -th layer (except for the last one) for the
i -th neuron

ε
(k)
i (t) =

Nk+1∑

m=1
δ(k+1)
m (t) w

(k+1)
mi (t) , k = 1, ..., L − 1. (6.118)

By substituting expression (6.118) to formula (6.117), we get

δ
(k)
i (t) = ε

(k)
i (t) f ′

(
s
(k)
i (t)
)

. (6.119)

In consequence, the backpropagation algorithm takes the form:

y
(k)
i (t) = f

(
s
(k)
i (t)
)

, s
(k)
i (t) =

Nk−1∑

j=0

w
(k)
ij (t) x

(k)
j (t) , (6.120)

Q
(k)
i (t) = d

(L)
i (t) − y

(L)
1 (t) for k = L, (6.121)

Q
(k)
i (t) =

Nk+1∑

m=1
δ(k+1)
m (t) w

(k+1)
mi (t) for k = 1, ..., L − 1, (6.122)

δ
(k)
i (t) = ε

(k)
i (t) f ′

(
s
(k)
i (t)
)

, (6.123)

w
(k)
ij (t + 1) = w

(k)
ij (t) + 2ηδ

(k)
i (t) x

(k)
j (t) . (6.124)

Above, we have presented a series of mathematical dependencies, describ-
ing the learning method of multilayer neural network. The operation of the
algorithm begins with presenting a learning signal at the network input.
At first, it is processed by neurons of the first layer. By processing, here
we shall understand determining of output signal (formulas (6.106) and
(6.107)) for each neuron in a given layer. The signals thus obtained become
the inputs for the neurons of the next layer. This cycle is repeated, i.e. we
determine the values of signals at neurons outputs of the next layer and
transfer them further, finally to the last layer. Knowing the output signal of
the last layer and the output desired signal from the learning sequence, we
may compute the error at network output according to formula (6.121). Us-
ing the delta rule, like in case of a single sigmoidal neuron, we may modify
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the weights of neurons of the last layer, using formulas (6.121), (6.123) and
(6.124). However, in such a way, we will not modify the weights in neurons
of the hidden layers (we do not know the value δ

(k)
i for neurons of these

layers), and after all the objective function defined by formula (6.110) is a
function in which the variables are all the weights of the network. That is
why the output error is propagated from the back (from the output layer to
the input layer) according to neuron connections between layers and taking
into consideration their activation functions (see formulas: (6.122), (6.123)
and (6.124)). The name of the algorithm derives from the method of its
realization, i.e. the error is “backed” from the output to the input layer.

In the discussion concerning the backpropagation method, we have stated
that network learning (modification of weights) is made each time after
applying a learning vector at the input. This operation is called an on-line
updating of weights or instantaneous training of weights. However, there
is another method of operation. At the input of network we may in turn
apply learning vectors, determine their corresponding signals at the network
output, and then, having them compared to their desired output values,
sum up the errors obtained in subsequent iterations. When we complete
applying of samples of the entire epoch at the network input, we perform
a correction of values of all weights using the cumulated error value. This
algorithm is called an accumulative updating of weights or batch procedure.

A very important problem, often discussed in articles concerning neural
networks, is the initiation of weights of networks. It is obvious that the more
the initial values of weights are close to the optimum values (minimizing
error measure (6.110)), the less time the learning will take. As mentioned
before, network learning consists in finding the minimum of an error func-
tion. It is the function of many variables, which are all the weights. Such
function may have many local minima. Figure 6.18 presents a hypothetical
graph of the error function for one variable (one weight).

Even in such a simple case, there may be many local minima, which oc-
curs very often. Unfortunately, the steepest descent method is not a method
resistant (robust) to the occurrence of local minima and the algorithm,
looking for solution, may get stuck in them. That is why the modifica-
tions of backpropagation algorithm are often used, which will be discussed
further in this chapter. The simplest method that may eliminate the prob-
lem of local minima is to start learning the neural network for different

FIGURE 6.18. A hypothetical graph of the error function for one variable (one
weight)
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values of the initial weights. We proceed as follows. We select the weights
at random, assuming a uniform distribution in a defined interval. Then,
by applying the backpropagation algorithm, we train the neural network.
When the learning error stops decreasing or starts to increase, we again
select at random the weights, only now from a different interval of their
values. We repeat the operation of network learning and observe whether
the final value of error in this cycle is smaller than in the previous one.
If it is so, then in the first cycle we could get stuck in a local minimum.
Of course, the procedure described prolongs the network learning process.
When selecting high values of initial weights the mean squared error at the
network output is basically constant. This may be caused by the fact that
the output signal of the linear part of the neuron is very large, and therefore
we are dealing with a saturation of the activation function. The change of
values of weights in the error backpropagation algorithm is proportional to
the derivative of this function. As shown in Fig. 6.19, this derivative has
the shape of a bell function with the midpoint in zero point.

Therefore, the higher the absolute value of the signal at output of the
linear part of neuron is, the smaller the correction of weights, and hence the
learning process will be very slow. In general, the initial weights selected at
random should give a signal close to one at the output of the linear part of
the neuron. The element that has a large influence on the convergence of the
error backpropagation algorithm is the learning coefficient η. Unfortunately,
there is no general method of selecting its value. In principle, the correction
step is taken from the interval (0, 1). If we are dealing with a flat objective
function, then the values of the gradient are low, and with higher values of
the learning coefficient the algorithm will faster find the solution. On the
other hand, if the objective function is steep, then adopting a high value of
the coefficient will cause an oscillation around the solution and, thus, will
lengthen the learning process. The learning coefficient is selected depending

FIGURE 6.19. The derivative of sigmoidal activation function
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on the problem which is to be solved and to a large extent depends on the
experience of the person performing the learning.

An important issue is the selection of the stopping criterion of the error
backpropagation algorithm. It is obvious that in case the minimum (local or
global) is reached, the gradient vector (6.96) takes the value 0. Therefore,
the operation of the algorithm may be stopped if the value of the Euclidean
norm of the gradient vector drops below a fixed threshold. Alternatively, we
may check whether the mean squared error determined within one epoch
dropped below another fixed threshold. Sometimes, a combination of both
mentioned methods is applied, i.e. the algorithm is stopped if one of the
listed values drops below the assumed fixed threshold. Another option is
to test continuously the neural network during learning (after each itera-
tion). The learning process may be stopped when the network has good
generalization properties.

6.3.3 Backpropagation algorithm with momentum term
As we have mentioned before, during learning of a neural network the error
backpropagation algorithm is not doing its best: it may get stuck in a local
minimum or oscillate around the final solution. That is why the standard
form of this method is introduced with an additional coefficient α called
momentum, according to which formula (6.124) is modified as follows:

w
(k)
ij (t + 1) = w

(k)
ij (t) + 2ηδ

(k)
i x

(k)
j (t) + α

[
w

(k)
ij (t) − w

(k)
ij (t − 1)

]
. (6.125)

This coefficient makes the value of weight in the next step (t+1) dependent
not only on its value in the current step (as in the classic backpropagation
method) but also on the previous step (t−1). If in subsequent iterations the
direction of the weight modification was the same, then the term containing
the momentum coefficient causes an increase in the weight increment value
and its shifting with increased strength towards the minimum. In opposite
case this term causes slowing down of sharp changes of weights. In general,
the operation of the momentum term is activated on flat sections of the
objective function, as well as near the local minimum. In particular on flat
sections of the objective function a significant acceleration of the learning
process takes place, owing to that term. But, near a local minimum the
value of the objective function gradient is near zero and the momentum
term becomes dominant in formula (6.125), which allows to leave the area
of the local minimum. Coefficient α takes the values in the interval (0, 1),
most often α = 0.9 is assumed. Defining its specific value depends on the
problem considered and on the experience of the person conducting the
learning process.
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Example 6.3
In Fig. 6.20, we present the graph of the algorithm of searching for the
minimum of function F (w1, w2) = w2

1 + w0.08
2 using the steepest descent

method. The learning coefficient η is equal to 0.9 and the starting point
[w1 (0) , w2 (0)] = [−2.90]. For such value of coefficient η the subsequent
solutions slowly converge to the optimum point w = [0, 0]T , and the whole
course of the algorithm is characterized by the occurrence of oscillations.
Figure 6.21 illustrates the solution of the same problem using the algorithm
(6.125), where η = 0.2, and α = 0.9. As we may see in the figure, the
momentum coefficient causes the algorithm to be convergent faster, and
there are no oscillations around the minimum.

FIGURE 6.20. Illustration to Example 6.3 - the steepest descent method

FIGURE 6.21. Illustration to Example 6.3 - the momentum algorithm
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6.3.4 Variable-metric algorithm
Another modification of the error backpropagation algorithm is the variable-
metric algorithm. In order to derive this algorithm, we will consider the
three initial terms in the expansion of the objective function into a Taylor
series. The objective functions will now be defined as follows:

Q(w(t) + p(t)) = Q(w(t)) + (g (w(t)))T p(t) + 0.5pT H (w(t))p(t).
(6.126)

Let us now remind the necessary and sufficient conditions for the existence
of the minimum of the function. The necessary condition is zeroing of the
first derivative in this point. Unfortunately, it is not a sufficient condition,
which may be easily checked on the example of function f(x) = x3 (in point
x = 0, the first derivative is equal to zero but this point is not a minimum).
A sufficient condition for the existence of the function minimum in point
x0 is the satisfaction of two conditions: 1) zeroing of the first derivative
in this point and 2) value of the second derivative in this point should be
bigger than 0. Analogous conditions must be satisfied in case of function
of many variables. Let us now derive the variable-matrix algorithm. We
shall minimize the criterion Q given by formula (6.126) with respect to the
vector p. Of course,

∂Q(w(t) + p(t))
∂p(t)

= (g (w(t)))T + H (w(t))p(t). (6.127)

Vector p(t) minimizing the criterion Q must satisfy the equation

g (w(t)) + H (w(t))p(t) = 0. (6.128)

In consequence
p(t) = − [H (w(t))]−1 g (w(t)) . (6.129)

In order to reach the minimum in a given point by the objective function
Q(w(t)+p(t)), the Hessian (matrix of the second-order derivatives) should
be in this point positively defined. Unfortunately, this condition is very
difficult to satisfy. That is why in practice, its approximated value G(w(t))
is determined. Let us assume that c(t) = w(t)−w(t−1), r(t) = g(w(t))−
g(w(t−1)), V(t) = [G(w(t))]−1 and V(t−1) = [G(w(t−1))]−1. To update
the values of matrix V, two known methods are applied:

i) Davidon-Fletcher-Powell method

V (t) = V(t − 1) +
c (t) cT (t)
cT (t)r (t)

− V(t − 1)r (t) rT (t)V(t − 1)
rT (t)V(t − 1)r (t)

; (6.130)

ii) Broyden-Fletcher-Goldfarb-Shano method

V(t) = V(t − 1) +
[
1 +

rT (t)V(t − 1)r(t)
cT (t)r(t)

]
c(t)cT (t)
cT (t)r(t)

(6.131)
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−c(t)rT (t)V(t − 1) + V(t − 1)r(t)cT (t)
cT (t)r(t)

,

where V (0) = I. By combining formula (6.129) with formula (6.130) or
(6.131), we get

p(t) = −V(t)g (w(t)) . (6.132)

The variable-matrix algorithm is characterized by a quite fast conver-
gence. Its disadvantage is a relatively high computational complexity re-
sultant from the need to determine, in every step, all the Hessian elements.
That is why this algorithm is applied rather to small networks.

6.3.5 Levenberg-Marquardt algorithm
Like in previous points, we shall assume that Q(w) is an error function and
we will attempt to find its minimum. The Levenberg-Marquardt algorithm
uses the expansion of the function Q(w), expressed by formula (6.95), to the
third term. The search for the minimum of the expression obtained in this
way has been already described in the previous point. The minimization
direction is identical as in the case of the variable-matrix algorithm, i.e.
p(t) = − [H (w(t))]−1 g (w(t)).

Let us consider a neural network with NL outputs. Let us assume the
error measure in the form

Q(w) =
1
2

NL∑

i=1

e2
i (w), (6.133)

where
ei = di − yi. (6.134)

In literature the following formulas defining the gradient vector

g(w) = [J(w)]T e(w) (6.135)

and approximated Hessian matrix

H(w) = [J(w)]T J(w) + S(w), (6.136)

are presented where

J(w) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂e1

∂w1

∂e1

∂w2
· · · ∂e1

∂wn
∂e2

∂w1

∂e2

∂w2
· · · ∂e2

∂wn
· · · · · · · · · · · ·

∂eNL

∂w1

∂eNL

∂w2
· · · ∂eNL

∂wn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.137)
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and
e(w) = [e1(w), ..., eNL

(w)]T . (6.138)

The part S(w) in formula (6.136) corresponds to the terms of the Hessian
expansion, containing the higher derivatives with respect to vector w.
This part may be approximated as S(w) = µI, where µ is the so-called
Levenberg-Marquardt parameter. Using this approximation and substitut-
ing dependencies (6.135) and (6.136) to formula (6.129), we get

p(t) = −[JT (w(t))J(w(t)) + µ(t)I]−1[JT (w(t))]T e(w(t)). (6.139)

Parameter µ is selected depending on the error at network output during
its learning process. This parameter takes on high values at the algorithm
start, and as it is closer to optimum solution, its value decreases to zero.

Example 6.4
We shall compare the algorithms discussed so far using the example of the
XOR problem. The experiments were repeated ten times for each algo-
rithm (we changed the learning parameters, e.g. learning coefficient) and
the best results were selected. All the experiences were carried out using
the Matlab package. The learning was stopped when the mean squared
error dropped below 0.012. The results are illustrated in Table 6.3. As it
may be noticed, the fastest method is the Levenberg – Marquardt method.
Unfortunately, this algorithm may not always be used, as it requires large
sizes of computers’ RAM .

TABLE 6.3. Comparison of operation of neural networks learning algorithms

Name of learning algorithm Number of epochs
Steepest descent 415
Momentum 250
Variable-matrix 8
Levenberg-Marquardt 3

6.3.6 Recursive least squares method
In Sections 6.2.3 and 6.2.4, we have presented models of neurons trained
using the RLS method. Currently, we will apply this method to learning of
multilayer neural networks. Let as define the following error measure

Q (t) =
t∑

l=1

λt−l
NL∑

j=1

ε
(L)2

j (l) (6.140)

=
t∑

l=1

λt−l
NL∑

j=1

[
d
(L)
j (l) − f

(
x(L)T

(l)w(L)
j (t)
)]2

,
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where λ is the forgetting factor selected from the interval (0, 1]. Let us notice
that the previous errors have a lesser influence on the value of expression
(6.140). Further in our discussion, we will apply notations introduced in
Section 6.3.2. Moreover, let us denote

ε
(k)
i (l) = d

(k)
i (l) − y

(k)
i (l) (6.141)

and
b
(k)
i (l) = f−1

(
d
(k)
i (l)
)

, (6.142)

assuming that f is an invertible function, l = 1, ..., t, i = 1, ..., Nk, k =
1, ..., L.

When calculating the error measure gradient and equating it to zero, we
get the equation

∂Q (t)

∂w(k)
i (t)

= 2
t∑

l=1

λt−l
NL∑

j=1

∂ε
(L)
j (l)

∂w(k)
i (t)

ε
(L)
j (l) (6.143)

= −2
t∑

l=1

λt−l
NL∑

j=1

∂y
(L)
j (l)

∂w(k)
i (t)

ε
(L)
j (l) = 0.

Using dependency (6.106) and (6.107), the equation (6.143) will be con-
verted as follows:
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NL−1∑

p=1

∂y
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p (l)

∂w(k)
i (t)

NL∑

j=1

∂y
(L−1)
j (l)

∂s
(L)
j (l)

w
(L)
jp ε

(L)
j (l) (6.144)

=
t∑

l=1

λt−l
NL−1∑

p=1

∂y
(L−1)
p (l)

∂w(k)
i (t)

ε(L−1)
p (l) =

t∑

l=1

λt−l
Nk∑

q=1

∂y
(k)
p (l)

∂w(k)
i (t)

ε(k)
q (l) = 0,

where

ε(k)
p (l) =

Nk+1∑

j=1

∂y
(k+1)
j (l)

∂s
(k+1)
j (l)

w
(k+1)
jp (t) ε

(k+1)
j (l) . (6.145)

Expression (6.145) defines the error determination method in subsequent
layers, starting from the last one. By further converting expression (6.144),
we get a sequence of equalities

t∑

l=1

λt−l
Nk∑

q=1

∂y
(k)
q (l)

∂w(k)
i (t)

ε(k)
q (l) =

t∑

j=1

λt−l ∂y
(k)
i (l)

∂s
(k)
i (t)

y(k−1)T

(l) ε
(k)
i (l) (6.146)

=
t∑

l=1

λt−l ∂y
(k)
i (l)

∂s
(k)
i (t)

y(k−1)T

(l)
[
d
(k)
i (l) − y

(k)
i (l)

]
= 0.
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where
y(k) =

[
y
(k)
1 , ..., y

(k)
Nk

]T
.

By applying the approximation

f
(
b
(k)
i (l)
)
≈ f
(
s
(k)
i (l)
)

+ f ′
(
s
(k)
i (l)
)(

b
(k)
i (l) − s

(k)
i (l)
)

, (6.147)

we get the normal equality
t∑

l=1

λt−lf ′2
(
s
(k)
i (l)
) [

b
(k)
i (l) − x(k)T

(l)w(k)
i (t)
]
x(k)T

(l) = 0, (6.148)

the vector notation of which is

r(k)
i (t) = R(k)

i (t)w(k)
i (t) , (6.149)

where

R(k)
i (t) =

t∑

l=1

λt−lf ′2
(
s
(k)
i (l)
)
x(k) (l)x(k)T

(l) , (6.150)

r(k)
i (t) =

t∑

l=1

λt−lf ′2
(
s
(k)
i (l)
)

b
(k)
i (l)x(k) (l) . (6.151)

Equation (6.149) may be solved using recurrence method, without the need
to inverse the matrix R(k)

i (t). This calls for the application of the RLS
algorithm, as it was done in points 6.2.3 and 6.2.4 in case of a single neuron
model. As a result, the adaptive correction of all weights w(k)

i is made as
follows

ε
(k)
i (t)=

⎧
⎨

⎩

d
(L)
i (t)−y

(L)
i (t) for k=L,

∑

j=1

f ′
(
s
(k+1)
j (t)

)
w

(k+1)
ji (t) ε

(k+1)
j (t) for k=1, ..., L−1, (6.152)

g(k)
i (t) =

f ′
(
s
(k)
i (t)
)
P(k)

i (t − 1)x(k) (t)

λ + f ′2
(
s
(k)
i (t)
)
x(k)T (t)P(k)

i (t − 1)x(k) (t)
, (6.153)

P(k)
i (t) = λ−1

[
I − f ′

(
s
(k)
i (t)
)
g(k)

i (t)x(k)T

(t)
]
P(k)

i (t − 1) , (6.154)

w(k)
i (t) = w(k)

i (t − 1) + g(k)
i (t)ε(k)

i (t) (6.155)

where i = 1, ..., Nk, k = 1, ..., L.
Initial values of the RLS algorithm are usually assumed as follows:

P(k)(0) = δI, δ � 0, (6.156)

w(k)
i (0) = 0. (6.157)

Initial weights w(k)
i (0) of the neural network may also be selected randomly

in a given interval.
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6.3.7 Selection of network architecture
The term of designing neural networks architecture the Reader should un-
derstand as the selection of the number of network layers and selection
of the number of neurons in each layer. As we may suppose, these values
depend on the problem we are trying to solve. Let us think how the num-
ber of network layers impacts its operation. According to what was said
earlier, a single neuron divides a plane into two parts. But two layers may
map simplexes, i.e. convex areas bounded with hyperplanes. Using three
layers, we may define any area. Therefore, a three-layer network is able to
solve a wide range of classification and approximation problems. Here, it
is well worth to present the Kolmogorov theorem, pursuant to which any
given continuous real function f(x1, .., xn), defined on [0, 1]n, n ≥ 2, may
be approximated using the function F given by formula

F (x) =
2n+1∑

j=1

gj

(
n∑

i=1

φij(xi)

)

, (6.158)

where x = [x1, .., xn]T , gj , j = 1, ..., 2n + 1 are appropriately selected con-
tinuous functions of one variable and φij , i = 1, ..., n, j = 1, ..., 2n + 1, are
continuous and monotonically increasing functions which are independent
of f . Let us consider for a moment a dependency (6.158) and let us analyze
how it may be related to the neural network structure. We may easily no-
tice that the structure corresponding to the dependency (6.158) is created
by the two-layer neural network with n inputs, 2n+1 neurons in the hidden
layer and one neuron with linear activation function in the output layer.
Based on the above considerations, we may state that the structure of net-
work presented in Fig. 6.22 is able to approximate any continuous function
of n variables defined on [0, 1]n. The Kolmogorov theorem is theoretical in
nature, as it does not present any type of non-linear functions and network
learning methods.

In literature we may also find another theorem, which directly relates to
a multilayer neural network.

FIGURE 6.22. Structure of neural network which is able to approxamate any
continuous function of n variables
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Let us assume that φ is any continuous sigmoidal function. Then for
each continuous function f defined on [0, 1]n,n ≥ 2, and for any ε > 0,
there is an integer N and a set of constants αi,θi and wij , i = 1, . . . , N,
j = 1, . . . , n, so that the function

F (x1, .., xn) =
N∑

i=1

αiφ

⎛

⎝
n∑

j=1

wijxj − θi

⎞

⎠ (6.159)

approximates the function f , i.e.

|F (x1, .., xn) − f(x1, .., xn)| < ε

for all {x1, ..., xn} ∈ [0, 1]n. Based on the above theorem, we may state
that the neural network with a linear output neuron and one hidden layer
with neurons having sigmoidal activation function may approximate any
real continuous function defined on [0, 1]n. In practice, it appears that are
very few problems which require more than two hidden layers to be solved
by feed-forward neural networks.

The number of neurons in particular layers has a very large impact on
network operation. It should be stressed that an extensive number of neu-
rons lengthens the learning process. Moreover, if the number of learning
samples is small compared to the size of the network, we may “over-train”
the structure and it will lose its capability of generalizing knowledge. The
network will learn the learning sequence “by heart” and will correctly map
only the samples included in it.

Example 6.5
In order to familiarize the Reader with this problem, we will try to perform
an experiment, in which we will learn the neural network so that it approx-
imates the function f(x) = sin(x) in a closed interval [0, 2π]. Before we
start building an appropriate structure of the neural network, we must cre-
ate a learning sequence. As it can be easily guessed, different arguments x
of function f(x) = sin(x) create the network inputs and the corresponding
output values y are the desired output values. It follows that the learning
sequence will be composed of pairs {x, sin(x)}. Let us notice that the func-
tion we approximate is continuous. Hence, we cannot build the learning
sequence of all x from the interval [0, 2π] and the corresponding values y.
We have to select a certain number of characteristic pairs {x, f(x)} and
train the neural network using these pairs. At this moment, the Reader
should notice a very important fact: the network will learn based on a cer-
tain subset of samples from interval [0, 2π], but we want the network to
operate correctly in the entire interval [0, 2π]. This is exactly the phenom-
enon of generalization of knowledge included in the weights of the network.
Despite learning only some selected examples, the network is able to gen-
eralize the knowledge and answer correctly to signals applied at its input
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which were not in the learning sequence. That is why after having network
learnt, we should check its operation on a testing sequence, consisting of
samples which did not participate in the learning process. After a success-
ful completion of this test, we may state that the structure (i.e. weights)
has been learnt and operates correctly. Let us assume that the learning
sequence consists of samples presented in Table 6.4.

TABLE 6.4. Learning sequence in Example 6.5

Sample No. 1 2 3 4 5 6 7 8

Input x 0
π

6
π

3
π

4
π 2π

7π

6
4π

3
Desired

output 0 0.5
√

3
2

√
2

2
0 0 −0.5 −

√
3

2
d = f (x)

Sample No. 9 10 11 12 13 14 15

Input x
5π

4
5π

6
2π

3
3π

4
5π

3
11π

6
7π

4
Desired

output −
√

2
2

1
2

√
3

2

√
2

2
−
√

3
2

−1
2

−
√

2
2

d = f (x)

Network structure used in the simulation is made of one hidden layer
with sigmoidal neurons and one linear neuron in the output layer. The
simulations will be performed three times with a different number of neu-
rons in the hidden layer: 2, 3 and 15. The learning sequence is created by
discretization of the interval [0, 2π] with step 0.1. Figures 6.23, 6.24 and 6.25
illustrate the result of network operation, i.e. the abilities of generalization
when presenting a testing sequence at its input.

In each of the below figures, a graph of function f(x) = sin(x) has been
presented, as well as the points of the learning sequence given in Table 6.4
and points reflecting the network output signals after presenting at its input
the testing sequence. As it can be observed in Fig. 6.23, a too small number
of neurons as compared to the number of the learning samples will cause
the network be unable to approximate the function. On the other hand,
Fig. 6.25 illustrates the fact that a too large number of neurons will cause
an excessive adjustment of the network to the learning sequence.

Error at network output decreases to 0 during learning, and increases dra-
matically in case of a testing sequence. Therefore, it is natural to raise the
question: how to define the number of neurons hidden in the network? To
a certain extent, we may be helped by the so-called Vapnik-Chervonenkis
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FIGURE 6.23. Illustration of the generalization effect of the neural network - 2
neurons in the hidden layer

FIGURE 6.24. Illustration of the generalization effect of the neural network - 3
neurons in the hidden layer

FIGURE 6.25. Illustration of the generalization effect of the neural network - 15
neurons in the hidden layer
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dimension (VC). The VC dimension for the set of functions is denoted
by letter h and defined as the maximum number of vectors that may be
separated (shattered) in all possible ways using the functions from this
set. Let us notice that in case of a binary classification l vectors may be
divided into two classes in all 2l possible ways. If we find a set of functions
which will be able to make such classification (in all 2l ways), then the VC
dimension for this set of functions will be h = l. Let if (x,w) be a function
taking only two values, i.e.

if (x,w) ∈ {−1, 1}. (6.160)

The above condition is met by the function describing the perceptron

if (x,w) = sign(xT ,w). (6.161)

In the two-dimensional case, we have

if (x,w) = sign

(
2∑

i=1

wixi + w0

)

, (6.162)

where x = [x1, x2]T and w = [w0, w1, w2]T . As mentioned before, the oper-
ation of the perceptron with two inputs is illustrated by a line which divides
the plane into two parts. This means that depending on the value of the
weights, it creates a set of functions which may assign to input vectors the
values +1 or −1, depending on which side of the line their coordinates are
located. Figure 6.26 presents all the possible partitions of the plane deter-
mined by the perceptron with appropriately selected weights for the three
input vectors. In this figure, the arrows mark the half spaces corresponding
to positive values of function if . In this case, the VC dimension is 3.

If VC dimension is h, this means that there is at least one set h of vectors
which may be divided into all possible ways. This does not mean that this

FIGURE 6.26. The partition determined by the perceptron with appropriately
selected weights for the three input vectors
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property must concern all the vectors of the given set. In the case of a
function defined by dependency (6.161) in an n-dimensional space, the VC
dimension is h = n + 1.

In particular, it equals 3 for a plane. Form the above statement, it may
be concluded that the VC dimension increases together with the increase of
number of weights in the neuron (when the dimension of the space increases,
the number of weights in the neuron increases as well). However, it has been
demonstrated that the increase in the number of weights does not always
impact the increase in the VC [108] dimension. In fact, it is very difficult
to define the value of the VC dimension. However, this number should be
treated as an indication when defining the generalization possibilities of
multilayer neural networks, which is illustrated by dependency [73]

QG(w) ≤ QU (w) + Φ
(

M

h
,QU (w)

)
, (6.163)

where M is the number of learning samples, QU means the learning error,
QG is a generalization error, while Φ is a certain function dependent on
M , QU and VC dimension. When building and training a neural network,
we should attempt to get the generalization error as small as possible.
We should also remember that together with the increase in the number
of neurons in the network, its time of operation also increases. That is
why many methods were created which are used to extend and reduce the
network structure.

In the algorithms that reduce the network structure, the neurons or con-
nections (weights) which have no or little significance are removed from
the network. An intervention in the network structure is always made af-
ter it has been learnt. The network error for the entire testing sequence is
defined before and then after removing the weight. If the error does not
increase, this means that the appropriate weights were removed. The sim-
plest method is the removal of those weights which have lower values than
the fixed threshold. One might expect that the low value of the weight
has a small impact on the total stimulation of the neuron. Unfortunately,
not always such an approach is reasonable. As it turns out, sometimes the
removal of such weight may cause a sudden increase of the output error of
the network. That is why after removing the weight, the network should
always learn again, and then it should be checked whether the structure
works better or whether the weight removed earlier should rather be rein-
serted in the network structure. An example of such procedure may be the
weight decay method. In this algorithm, the standard form of network error
function is added with a regularization term and as a result, this function
is defined as follows:

Q =
1
2

NL∑

i=1

(yi − f(xi))
2 + λ

I∑

i=1

w2
i , (6.164)
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where I is the number of all weights in the network. After having the
network learnt, the weights the values of which are lower that the fixed
threshold may be removed from the structure. However, the above change
causes that as a result of learning, a large number of weights with low
values is created in the structure. That is why the literature (e.g. [12]) pro-
poses many modifications of formula (6.164). Another method of network
structure reduction is the OBD algorithm (Optimal Brain Damage). As we
want to remove certain weights in the learnt structure, we should estimate
their impact on the network operation. Let us denote the network error
after removing the weights by Q(w), and before removal but after network
learning – by Q(w∗). As we remember, deriving the backpropagation al-
gorithm, we approximated the error function with the Taylor series, using
dependency (6.95). As the reduction of weights is made when the neural
network has already learnt, we may assume that the error function has
reached a minimum. Accordingly, the components of the gradient vector of
function Q would take zero values. If we want to estimate the value of the
difference of errors before and after reduction of the structure, omitting the
gradient vector and cutting the expansion of the series to the third term,
we get

Q(w) − Q(w∗) ≈ 0.5(w − w∗)T H(w∗)(w − w∗). (6.165)

Determination of the hessian in formula (6.165) is problematic due to a
large number of neuron weights in the network. That is why the OBD
method authors assumed that the value of the hessian is most impacted by
its diagonal elements. Therefore, the sensitivity measure for the j -th weight
in i -th neuron has been defined as

Sij =
1
2

∂2Q

∂w2
ij

w2
ij . (6.166)

The OBD algorithm consists in the following stages:

1. Initial selection of the network structure and its learning.

2. Calculation of the sensitivity coefficient for all the weights according
to formula (6.166) and removing the ones, for which the value Sij is
rather low.

3. Repeated learning of the network.

The hessian matrix of weights is a non-diagonal matrix and the OBD algo-
rithm may cause the removal of significant weights from the network. That
is why the so-called OBS method (Optimal Brain Surgeon), in which all
the hessian components are taken into account has been proposed. At first,
we compute the coefficients

sj =
1
2

w2
j

H−1
jj

. (6.167)
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Then the weights with the lowest values of coefficient (6.167) are removed.
The corrections, with which the weights should be modified, are defined
according to the dependency

∆w = − wj

H−1
jj

H−1 · ij , (6.168)

where ij is the vector composed of only zeros and 1 on the j -th position.

6.4 Recurrent neural networks

In all networks discussed so far, we did not consider the case in which the
signal received at the output was sent again to the network input. Such
circulation of the signal is called feedback. The structures in which this
phenomenon occurs are called recurrent neural networks. A single stimu-
lation of the structure with feedback may generate the sequence of many
new phenomena and signals, as the signals from the network output are
resent again to its inputs, generating new signals until the output signals
are stabilized. Suppressions, oscillations, sudden rises or falls of the sig-
nals often occur during such circulation. We shall present the architectures
and will briefly discuss the operation of the best known recurrent neural
networks, namely the Hopfield neural network, Hamming neural network,
RTRN (Real Time Recurrent Network), Elman neural network and BAM
(Bidirectional Associative Memory). It should be mentioned that the recur-
rent neural networks are applied as associative memories. For instance, the
Hopfield neural networks may serve as autoassociative memories, whereas
the Hamming neural networks and BAM networks are examples of het-
eroassociative memories (association of two different vectors).

6.4.1 Hopfield neural network
Figure 6.27 presents the Hopfield neural network. It is a one-layer network
with a regular structure, made of many neurons connected one to the other.
There are no feedbacks in the same neuron. This means that the output
signal of a given neuron does not reach its input, and thus the values
of weights wii equal 0. The weights in this network are symmetrical, i.e.
the weight wkj connecting the neuron k to the neuron j is equal to the
weight wjk connecting the neuron j to the neuron k. The Hopfield neural
network during learning modifies its weights wkj depending on the value
of learning vector x. In retrieval mode, the weights are not subject to
modifications, but the input signal stimulates the network which, through
the feedback, repeatedly receives the output signal at its input, until the
answer is stabilized. If we assume that the neuron activation function is
of the signum type, then the operation of the network in step t may be
described as follows
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FIGURE 6.27. Scheme of the Hopfield neural network

yk(t) = sgn

⎛

⎝
n∑

j=1,j 	=k

wkjyj(t − 1) + θk

⎞

⎠ , k = 1, ..., N, (6.169)

while yj (0) = xj . The signal at the output will change until in the step
t − 1 will be equal to signal in step t, and so yk(t) = yk(t − 1) for all N
neurons making up the network. Let us demonstrate that if the weights
in the Hopfield neural network are symmetrical, then this network always
gets stabilized. Let us denote the output of the linear part of k -th neuron
in the moment t + 1 by sk(t + 1), i.e.

sk(t + 1) =
n∑

j=1,j 	=k

wkjyj(t) + θk, (6.170)

where θ k is the threshold value of the neuron. The activation function may
be defined as follows:

yk(t + 1) = sgn (sk(t + 1)) . (6.171)

The network is stabilized, if

yk(t) = yk(t − 1) (6.172)
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for each neuron. Assuming the activation function (6.171), dependency
(6.172) becomes

yk(t) = sgn (sk(t − 1)) . (6.173)

The energetic state of the network is expressed by the Lyapunov function
in the form

E = −1
2

∑

j

∑

k
j 	=k

yjykwkj −
∑

k

θkyk. (6.174)

Let us notice that the energetic function (6.174) is bounded from the bot-
tom, while the weights and the threshold values are constant. It is easy to
check that the change of energy

∆E = −∆yk

⎛

⎝
∑

j 	=k

yjwkj + θk

⎞

⎠ (6.175)

is always negative, when the signal yk changes according to dependency
(6.171). Therefore, the energetic function E is a decreasing function in
subsequent steps t. That is why we may be certain that it will reach a
minimum, in which the network will be stable. We shall now discuss the
method of selecting the weights in Hopfield neural networks. One of the
learning methods for Hopfield neural networks in the generalized Hebb rule.
According to this rule, the weights are modified using the dependency

wkj =
1
N

M∑

i=1

xi
kxi

j , (6.176)

in which xi = [xi
1, ..., x

i
n], i = 1, . . . ,M . Unfortunately, the Hebb rule does

not guarantee the best results. It can be proved that the network capacity
(maximum number of patterns which the network is able to memorize)
trained using this rule is only 13.8% of the number of neurons. That is why
in practice, pseudoinverse method is often applied. Let X be the matrix of
M learning vectors, i.e. X =

[
x1,x2...xM

]
. It is assumed that the objective

of network learning is such a selection of weights, so that after providing
signal x at its input the same signal was created at the output, i.e.

WX = X, (6.177)

where W denotes the matrix of weights with the dimension n × n. The
solution of the system of equations (6.177) is as follows:

W = XX+, (6.178)

where symbol + means the pseudoinverse. If we assume that the learning
vectors are linearly independent, then the equation (6.178) takes the form

W = X(XT X)−1XT . (6.179)
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Example 6.6
Now, we will attempt to train the Hopfield neural network to recognize
three digits: 1, 4, 7. This experiment will be carried out in the Matlab
environment. Based on the patterns presented in Fig. 6.28, we create a
learning sequence (white fields are denoted as −1, black as 1)

x(1) = [−1 − 1 1 − 1 − 1 1 − 1 − 1 1 − 1 − 1 1]
x(2) = [1 − 1 1 1 1 1 − 1 − 1 1 − 1 − 1 1]
x(3) = [1 1 1 − 1 − 1 1 − 1 − 1 1 − 1 − 1 1]

FIGURE 6.28. Patterns in Example 6.6

Next, we train the Hopfield neural network using the above patterns. In
order to check the correctness of operation of a trained network, we shall
apply subsequent learning signals at its input. As it results from Table 6.5,
the network perfectly solved the association problem for noise-free learning
vectors.

TABLE 6.5. Result of operation of Hopfield neural network for noise-free patterns

Input Output

−1 − 11 − 1 − 11 − 1 − 11 − 1 − 11 −1 − 11 − 1 − 11 − 1 − 11 − 1 − 11
1 − 11111 − 1 − 11 − 1 − 11 1 − 11111 − 1 − 11 − 1 − 11
111 − 1 − 11 − 1 − 11 − 1 − 11 111 − 1 − 11 − 1 − 11 − 1 − 11

Now we will distort the signals (Fig. 6.29) and will check out the network
answer. In case of noisy signals, the input signals xz have the form

xz(1) = [−1 − 11 − 1 − 11 − 111 − 1 − 11]
xz(2) = [1 − 111 − 11 − 1 − 11 − 1 − 11]
xz(3) = [1 − 11 − 1 − 11 − 1 − 11 − 1 − 11]

The effect of noisy signals is presented in Table 6.6.
For the third noisy vector the network output did not stabilize even

after 12 iterations, which means that the network could not recognize the
distorted sample.
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FIGURE 6.29. Distorted patterns in Example 6.6

TABLE 6.6. Result of operation of Hopfield neural network for noise patterns

Input Output Number
of iterations

−1 − 11 − 1 − 11 − 111 −1 − 11 − 1 − 11 − 1 − 11 − 1 2
−1 − 11 −11

(the network recognized the digit 1)
1 − 111 − 11 − 1 − 11 1 − 11111 − 1 − 11 − 1 − 11 2
−1 − 11 (the network recognized the digit 4)
1 − 11 − 1 − 11 − 1 −0.0571 0.0571111 − 1 − 11 12
−11 − 1 − 11 −1 − 11 − 1 − 11

6.4.2 Hamming neural network
The structure of the Hamming neural network presented in Fig. 6.30 is a
three-layer network used to classify images.

FIGURE 6.30. Structure of the Hamming neural network
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In the first layer, there are p neurons, which determine the Hamming
distance between the input vector and each of the p desired vectors coded
in the weights of this layer. The second layer is called MAXNET. It is a
layer corresponding to the Hopfield network the operation of which has
been discussed earlier. However, in this layer feedbacks covering the same
neuron are added. The weights in these feedbacks are equal to 1. The values
of weights of other neurons of this layer are selected so that they inhibit
the process, e.g. taking negative values. Thus, in the MAXNET layer there
is the extinction of all outputs except the one which was the strongest in
the first layer. The neuron of this layer, which is identified with the winner,
through the weights of output neurons with a linear activation function,
will retrieve the output vector associated with the vector coded in the first
layer.

Example 6.7
In order to present the operation of the Hamming neural network, we have
created a learning sequence in the form of a binary representation of the
subsequent digits: 1, 2, 3 and 4 (Fig. 6.31a).

FIGURE 6.31. Illustration to Example 6.7

In the first phase the network learnt, using each of these patterns. Next,
the vectors, which represented noisy output desired signals were applied
at the input. The results have been presented in Fig. 6.31b, 6.31c, 6.31d,
6.31e. In the simulations, the NetLab [271] program was used, which num-
bers classes corresponding to digits 1 to 4 from 0 to 3. The numbers on the
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right side of the Fig. 6.31 mean the states of output neurons for each of the
desired classes. As it may be noted, in all cases the network classified the
noisy images correctly.

6.4.3 Multilayer neural networks with feedback
The literature describes different structures of multilayer neural networks
with feedback. Most often, Elman neural networks and RTRN (Real Time
Recurrent Network) networks are used. Figure 6.32 presents a scheme of
the Elman neural network, which was named after its originator. In this
structure, we may differentiate neurons with feedback which are contained
in the hidden layers. Each of the neurons of the hidden layer processes the
external input signals and as well as signals from feedback. The signals
from the output layer are not subjected to the feedback operation.

Another well-known structure is the RTRN network presented in
Fig. 6.33. Contrary to Elman neural network, the feedback connects both
network output signals and the hidden neurons. The Elman neural net-
work and RTRN network may learn using gradient algorithms, which take
a more complex form than in case of network learning without feedback.
Multilayer recurrent neural networks are applied to model time sequences
and to identify dynamic objects.

6.4.4 BAM network
BAM network is a recurrent network, which enables to memorize the set
of vector pairs mutually associated with each other. The scheme of this
structure has been presented in Fig. 6.34. It is a bi-directional network.

FIGURE 6.32. Scheme of the Elman neural network
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FIGURE 6.33. Scheme of the RTRN neural network

FIGURE 6.34. Scheme of the BAM neural network

Signals received at the neurons output of the first layer are transmitted
through the weights making up the matrix W to the neurons inputs in the
second layer. The neuron output signals of this layer are directed through
the matrix WT again to the inputs of the neurons in the first layer. This
cycle is repeated until the equilibrium state of the network is obtained. The
matrix of weights W is determined based on the following formula:



240 6. Neural networks and their learning algorithms

W =
M∑

i=1

xT
i yi, (6.180)

where M means the number of learning vectors, x = [xi, ..., xn]T is the
vector of the input signals, while y = [yi, ..., yl]

T is the vector of output
signals. The activation functions in neurons are unipolar or bipolar. In the
learning process, the learning unipolar vectors are changed into bipolar
vectors, as the network which learns using bipolar signals shows better
properties in retrieval mode. Moreover, different modifications of formula
(6.180) are used in order to improve the operation of the BAM network in
the retrieval phase.

6.5 Self-organizing neural networks
with competitive learning

The networks presented in Subchapter 6.3 learn using algorithms with
teacher. This means that we knew the desired answer of the structure to
the input signal. Now, we will demonstrate self-organizing neural networks.
Their learning is called unsupervised learning or learning without teacher.
As we might expect, the learning sequence is made only of input values,
without the desired output signal. Self-organizing neural networks have a
simple structure, and no great knowledge of mathematics is sufficient to un-
derstand them. Despite their simplicity, these networks are widely applied,
e.g. in data clastering tasks.

6.5.1 WTA neural networks
The first self-organizing neural network we will describe, will be the network
which learns using the WTA (Winner Takes All) algorithm. Figure 6.35
presents a scheme of this type of neural network. Signal x = [x1, x2, ..., xn]T

applied at the network input is directed to the inputs of all N neurons.
Here, the similarity measure (distance) of the input signal x to all vectors
of weights wi = [wi1, wi2, ..., win]T , i = 1, ..., N, is determined. Most often
the Euclidean measure is applied

d(x,wi) = ‖x − wi‖ =

√√
√
√

n∑

j=1

(xj − wij)2 (6.181)

or the scalar product

d(x,wi) = 1 − x ◦ wi = 1 − ‖x‖ ‖wi‖ cos(x,wi). (6.182)

The neuron characterized by the smallest distance of the vector of weights
from the input signal takes the value 1 at its output, and all the remaining
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FIGURE 6.35. Scheme of the WTA neural network

neurons take the value 0 (hence the name: “winner takes all”). Therefore
for the j -th neuron – the winner, we have

d(x,wj) = min
1≤i≤N

d(x,wi), (6.183)

where d is one of the above similarity measures. In the learning process
only the weights of the winner are modified, pursuant to the rule

wj(t + 1) = wj(t) + η(t) [x(t) − wj(t)] , (6.184)

where η is the parameter of the weight modification step. In self-organizing
networks, it is recommended to perform the normalization of input signals
(norm of vector x is equal to 1), as it will ensure a coherent partition of the
data space. The normalization may be made by redefining the components
of vector x as follows:

x′
i =

xi√∑n
i=1 x2

i

. (6.185)

The normalization of the learning vector x causes the normalization of the
vector of weights during the learning process. Moreover, the operation of
the neuron will not be impacted by the length of the vector of weights, but
only by the cosine of the angle between the vector of weights and the input
vector x (Euclidean measure and the scalar product are equal in this case).

Figure 6.36a presents the vectors of weights and normalized inputs while
Fig. 6.36b presents vectors without normalization with the same directions.
It is easy to note that if the vectors are standardized, then the scalar
product x ◦ w1 = ‖x‖ ‖w1‖ cos α is bigger than the scalar product of
vectors x and w2 (because cos α increases when the angle α decreases). In
Fig. 6.36b also the scalar product x and w1 is bigger than x and w2, even
though when watching the scheme, we have the impression that vectors x
and w2 are more “similar to each other”.
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FIGURE 6.36. a) Normalized vectors of weights and inputs; b) vectors without
normalization

The operation of a self-organizing neural network comes down to dividing
M learning signals into N classes (N means the number of neurons in
the network). Following learning, each neuron represents a different class,
the vectors of weights w become centers of classes discriminated by the
structure we trained. We may attempt to define the error measure of the
classification for self-organizing neural network. We may state that the task
of the network is such a selection of values of weights so that the distance
of the input vector x, which belongs to i -th class (i -th neuron should be
the winner), from the i -th vector of weights would be as small as possible.
Generally speaking: we should modify the weights in such a way that for
all M learning signals x, their distances from appropriate mid-points of
classes were as small as possible. Our task is to minimize the quantization
error given by the formula

Q =
1
M

M∑

t=1

‖w∗(t) − x(t)‖ , (6.186)

where w∗(t) is the weight of the winner neuron when applying the vector
x(t).

Example 6.8
We will apply the WTA algorithm to solve the problem of Iris flower. Based
on its four features: length and width of the petal and length and width of
the leaf, we will define to which of the three species it belongs. As we might
guess, each input learning vector is made of four components (n = 4). It
may be inferred that each neuron must have four inputs so also four weights.
The number of differentiated species suggests that we need three neurons
in the network (N = 3). Therefore, in the learning process we will select
the values of 12 weights in total. We have 120 learning vectors in total.

Figure 6.37 presents the distribution of values of weights before learning
and after learning for different combinations of features. Before learning,
the initial values of weights in particular figures are equal. After completion
of the learning process, the values of weights may be presented in the form
of the following matrix:
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W =

⎡

⎣
58.3060 27.2904 43.2095 13.969
50.0810 34.3020 14.6303 2.4686
67.7765 30.3668 56.0270 20.0741

⎤

⎦ .

Based on the distribution of values of features (Fig. 6.37), we may infer
which values determine a given class. To test the neural network, we decided
to apply 150 testing vectors (including 120 learning vectors). Each testing
vector consisted of 4 input signals and the output desired signal informing
to which species a given pattern belongs. The simulation results have been
presented in Table 6.7.

TABLE 6.7. The testing results in Example 6.8

121 140
120 , . . .

52 122 123 139 142
Sample 1 51 , 77 79 103 118 115 , . . . , ,
number . . . , 54 , . . . 101 102 . . . 107 . . . 114 . . . 127 126 143 144

50 53 . . . 78 100 106 113 119 , , . . .
75 128 129 150

. . .
138

Number
of
winner 2 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
- the
neuron

The
value
of the 1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3
desired
signal

Error N Y N Y N N Y N Y N Y N Y N Y N
Yes/No

In the first row of the table, there are numbers of subsequent samples.
The second row contains information which neuron won after presenting
samples with specific numbers at the input of the self-organizing neural
network. In the third row, we entered the information, included in the test-
ing sequence, stating to which class a given sample belongs. The Reader,
when analyzing data in the table, may find that the structure learnt does
not operate correctly, as the numbers of the winning neurons and the num-
bers of classes to which a given sample should belong are not the same. In
fact, it is not true. While teaching the network, we did not “tell” it which
neuron corresponds to a given species (class). That is why neuron 2 should
be treated as a representative of species 1, neuron 1 as representative of
species 2, neuron three should be identified with species 3. Only now we can
come to correct conclusions. Namely, the first species of the iris is recog-
nized by the neural network correctly (for the first 50 samples the network
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Matching

Distribution of neuron weights
values before learning and
values of learning data de-
pending on matching of fea-
tures weights are marked with
crosses

Distribution of neuron
weights values after learning
(300 epochs) and values of
learning data depending on
matching of features weights
are marked with crosses

(X axis)
values of
the first
feature in
relation to
(Y axis)
values of
the second
feature

(X axis)
values of
the second
feature in
relation to
(Y axis)
values of
the third
feature

(X axis)
values of
the third
feature in
relation to
(Y axis)
values of
the fourth
feature

(X axis)
values of
the fourth
feature in
relation to
(Y axis)
values of
the first
feature

FIGURE 6.37. Illustration to Example 6.8
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indicates the same class – neuron 2 wins), whereas errors occur in case of
species two and three.

Example 6.9
Another problem is the task of recognizing a circle and a square. At first, we
defined a circle on a plane and then we set up initial values of the weights of
ten neurons in its center. The learning sequence has been generated based
on the selected points located on the circle. During 250 epochs of operating
the WTA algorithm (n = 2, N = 10), every 25 epochs we drew the reloca-
tion of weights. As a result the values of weights of neurons moved to the
boundary of the circle, creating “paths” shown in Fig. 6.38.

FIGURE 6.38. Relocation of weights during learning process (experiment with a
circle) in Example 6.9

The experiment for a square was planned analogically. In Fig. 6.39, we
may observe changes of the values of weights which occurred in the learning
process every 40 epochs.

When initial values of weights of networks are selected (initialized) at
random, it may happen that some neurons will never win during com-
petition. The distance of their weights from learning samples and other
neurons becomes too large, that is why these weights will not be subject
to adaptation. Such units are called dead neurons. In order to increase
their chances in the competition, the notion of potential pi is introduced
as follows:

pi(t + 1) =
{

pi(t) + 1
N for i �= j,

pi(t) − pmin for i = j,
(6.187)

where j denotes the number of the winning neuron. If the value of the
potential drops for the i -th neuron below pmin, then this neuron does not
participate in the competition and the winner is one neuron from the group
with potential pi ≥ pmin. It is assumed that the maximum value of the
potential may amount to 1. If pmin = 0 all the neurons take part in the
competition. If pmin = 1, only one neuron takes part in the competition, as
it has the potential allowing it to win.
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FIGURE 6.39. Relocation of weights during learning process (experiment with a
square) in Example 6.9

6.5.2 WTM neural networks
So far, we considered self-organizing networks, where in the learning process
only one neuron, the so-called the winner, could modify its weights. Now
we will deal with algorithms, operation of which causes not only correction
of the weight of the winner, but also the weights of the neurons in its
neighborhood. These algorithms are called WTM (Winner Takes Most)
algorithms. The first of them will be the algorithm of neuronal gas. The
correction of weights in this case is very similar to the WTA method. At
first, we calculate the distance of the input vector from the vectors of
all weights in the network. In case of the WTA method, we modified the
weights of the neuron which was the closest to the given input according to
dependency (6.184). In the algorithm of “neuronal gas”, we sort in ascending
order all the vectors of neuron weights depending on their distance from
the input signal. The smaller the distance, the bigger change of the value
of neuron weights. Let m(i) means the order of i-th neuron obtained in
the process of sorting; for the j neuron (winner) we have m(j) = 0, and
for the most distant neuron m(i) = N − 1. Let us therefore introduce the
neighborhood function for i -th neuron as follows:

G(i,x) = exp
(
−m(i)

R

)
, (6.188)

where R is the neighborhood radius. The weights of neurons are modified
according to the dependency

wi(t + 1) = wi(t) + ηG(i,x)[x − wi], (6.189)
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where wi means the vector of weights in i -th neuron, t-number of iteration
step, η-learning coefficient. In formula (6.188), in case where R → 0, only
the winner modifies its weights (we then get the WTA algorithm). Whereas
for R > 0 the weights of all neurons are updated, but the learning coefficient
of distant neurons quickly goes to zero. To get good results, at the beginning
of the algorithm a high R value must be assumed and then it should be
decreased as the number of its iterations increases.

Another WTM algorithm is the classic Kohonen algorithm. In this me-
thod, the neighborhood is introduced for good, i.e. it is defined which neu-
rons are connected with each other, creating a net. Figure 6.40 presents
some examples which may be defined in Matlab environment.

NAME OF THE NET SCHEMAAND ITS SIZE

GRIDTOP 12 × 12

NEXTOP 12 × 12

RANDTOP 12 × 12

FIGURE 6.40. Examples of different neighborhood topologies (dots denote loca-
tion of neurons)
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In this algorithm, distances of all neurons from the input signal are calcu-
lated. Next, the winner is selected (the smallest distance) and its weights
and the weights of its neighbors are modified according to dependency
(6.189), where

G(i,x) =
{

1 for d (i, j) ≤ R,
0 for others. (6.190)

In dependency (6.190) d(i, j) means the Euclidean distance between the
j neuron (winner) and i -th neuron from neighborhood G or the distance
calculated as the number of neurons. The neighborhood radius R should
decrease as the learning time increases. The size of correction often depends
on the distance from the winner and also on the size of radius R, i.e.

G(i,x) = exp(−d2(i, j)
2R2

), (6.191)

where j is the number of the winning neuron. In such case, particular
neurons are subject to adaptation to various degrees. As it can be noted,
together with the increase of the distance from the winner, the value of
function G (i,x) decreases and so the value of the correction of weights.
The neighborhood defined by formula (6.190) is called neighborhood of a
rectangular type, and neighborhood (6.191) of the Gaussian type. The value
of parameter η has a big impact on the learning process. The literature
contains the following selection strategies of this parameter:

a) Linear decrease of the learning coefficient

η(t) =
η0

T
(T − t), t = 1, 2, ...,

where T denotes the maximum number of iterations of the learning algo-
rithm, while η0 is the initial learning coefficient.

b) Exponential decrease of the learning coefficient

η(t) = η0e−Ct, t = 1, 2, ...,

where C > 0 is a constant.

c) Hyperbolic decrease of the learning coefficient

η0 =
C1

C2 + t
, t = 1, 2, ...,

where C1, C2 > 0 are constants.
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Example 6.10
We will now present an example of application of the Kohonen network
which is used to recognize a circle with different topologies of networks. On
a plane we have defined a circle. Our task is to modify the weights which
are located in the middle of the circle when the algorithm starts, in such a
way that they would be on its boundary after completion of the learning
process. Figure 6.41 presents the location of the neuron weights after the
learning process for different network topologies, while n = 2, N = 25.

NEIGHBOURHOOD LEARNING RESULTTOPOLOGY

GRIDTOP

NEXTOP

RANDTOP

FIGURE 6.41. Distribution of neuron weights in Example 6.10 after the learning
process for different network topologies
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6.6 ART neural networks

Adaptive Resonance Theory, in short ART, relates to learning of neural net-
works without a teacher. The objective of network operation is the competi-
tive recognition of binary images memorized earlier. Moreover, this network
should be able to learn to differentiate the unknown shapes, if there is such
a need. The new patterns are memorized in the network when the degree
of similarity to the currently stored images is too small. It is determined
by the so-called vigilance parameter τ . There is a network equivalent for
continuous images, the so-called ART2 modified later to ART3, both are
suitable to classify binary images. ART network consists of two layers. The
first layer, input, consists of n neurons. Its task is to compare the input
images with the ones stored in memory and determining the degree of
similarity. It is also called the comparising layer. The second layer, output,
consists of m neurons and is supposed to recognize an input shape, in other
words, to recognize the class to which the image belongs. Both layers inter-
act and work out the final decision on recognition of the image or learning
a new one.

Figure 6.42 presents a schematic connection structure of ART network.
Let us denote the input signal (shape) vector as x = [x1, . . . , xn]T and up-
per layer output signals vector as y = [y1, . . . , yl]T . We denote the weights
of connections between upper layer neuron outputs and inputs of lower layer
neurons by vij , i = 1, .., n, j = 1, . . . , l. The weights of connections between
lower layer neuron outputs and inputs of the upper layer neurons are de-
noted by wij . It is therefore characteristic that two types of inter-neuron

vijwij

ni ...,,1=

lj ...,,1=

ni ...,,1=

lj ...,,1=

x1 x2 xn

y1 yly2

FIGURE 6.42. Scheme of the ART network
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connections of both layers exist, “from bottom up” (weights wij) and “from
top down” (weights vij). Now, we will present the learning algorithm of
ART1 network. In this algorithm two following steps may be distinguished:

Step 1. The operation of the algorithm is started from initialization of the
values of weights in both sets of connections. Usually for the initial values
of weights of top-down connections we have vij (0) = 1, and for bottom-up
connections we take wij (0) = 1

1+n , where n is the number of neurons of
the input layer. As the vigilance parameter τ , a small positive number from
the interval (0, 1) is assumed.

Step 2. In this step after applying an input vector x = [x1, . . . , xn]T ,
where xi ∈ {0, 1}, i = 1, 2, ...n, the sum

∑n
i=1 wijxi, j = 1, ..., l is cal-

culated. This sum is treated as the measure of image adjustment to the
currently memorized patterns. Its maximum value decides which neuron of
the output layer (let us denote its number as j∗) will take the value 1 or
will become the winner of the competition. At the same time it indicates
the class to which the recognized shape is classified. The remaining neurons
take the value 0 at their outputs. It is a normal phase of network operation
recognizing a previously memorized image.

Step 3. After the winner neuron indicates the class to which the investi-
gated image fits best, it is necessary to determine how similar it is to the
vectors earlier assigned to this class. It is checked whether

D =
∑n

i=1 υij∗xi∑n
i=1 xi

> τ. (6.192)

If not, then the output of the current winner neuron is zeroed and the
most stimulated neuron from among other neurons is considered to be the
winner. We are coming next to step 3. If as a result of this operation (which
may be repeated many times) a positive result is not achieved, then the
studied image must be categorized as belonging to a new, yet unknown
class, assigning it the first, free so far neuron of the output layer. It the
test of degree of similarity is positive, we say that the network and the input
signal are in “resonance”, which justifies the name ART. The selection of a
low value of the vigilance parameter τ (i.e. close to zero) causes that the
meeting of condition (6.192) is possible even with a relatively small number
of the same pixels of the pattern and of the image recognized. In this case,
the network classifies the images, sometimes not very similar, to a small
number of possible classes. One could say that the network then classifies
the images only “roughly”. If the vigilance parameter is closer to 1, then
many categories are created with quite subtle differences between them and
quite a precise recognition of images by the network takes place.

Step 4. After selecting the winning neuron, the correction of related
weights is made, both for input weights wij∗ and υij∗ according to for-
mulas



252 6. Neural networks and their learning algorithms

υij∗ (t + 1) = υij∗ (t) xi, (6.193)

wij∗ (t + 1) =
υij∗ (t + 1)

0.5 +
∑n

j=1 υij∗ (t + 1) xi
. (6.194)

In this step the network is “tuned”, which should be understood as adap-
tation of the stored pattern to the currently recognized shape. It may be
achieved by a specific superposition of both shapes and aims to achieve
their binary compliance. The weights of connections for the same bits are
reinforced and for others weakened or left unchanged.

Step 5. Processing of an input signal by the ART network is stopped when
the values of weights are not changed or for neither of neurons condition
(6.192) is met and there is no “free” neuron to which a new class could be
assigned in the first layer.

ART network uses two sets of weights which in fact decide on the net-
work memory, i.e. its possibility to recognize. The set of weights “from
bottom up” is responsible for the so-called long-term memory and the set
of weights “from top down” for the so-called short-term memory. It should
be noted that due to the method of “tuning” (modifications of weights in
step 4 of the algorithm) and a relatively uncomplicated test of similarity
(6.192), the network does not well recognize images distorted by interfer-
ences or the noisy ones. In these conditions, only a rough recognition is
possible, i.e. the selection of a small vigilance parameter τ .

Example 6.11
In order to illustrate the operation of ART1 networks, we will consider
the problem of classification of subsequent digits from 1 to 4. Their binary
representation has been entered at the network input for different values of
the vigilance parameter. Figure 6.43 presents the results of simulation, in
which the sequence of shapes applied at the input was the following: 1, 3,

FIGURE 6.43. Results of simulations in Example 6.11: τ = 0.6
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2, 4, distorted digit 1 and distorted digit 3. The vigilance parameter was
equal to 0.6, or we should say “average”. As it may be seen, the network did
not differentiate the shapes 3 and 2 and classified them as identical (identi-
fied with pattern 3). On the other hand the distorted digit 1 was correctly
classified as class of pattern 1, and the distorted digit 3 also correctly, i.e.
to the class of pattern 3.

Figure 6.44 illustrates a situation where the vigilance parameter of the
network was increased to τ = 0.75. The sequence of applied images was as
before. In this case the distorted digit 1 was deemed to be a new (fourth)
pattern.

FIGURE 6.44. Results of simulations in Example 6.11: τ = 0.75

Figure 6.45 illustrates the result of simulation where the vigilance para-
meter is 0.4 (is “small”). Then the digits 1 and 4 belong to the same class
(which means that they are not differentiated by the network), patterns 2,

FIGURE 6.45. Results of simulations in Example 6.11: τ = 0.4
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3 and the distorted number 3, like previously, were qualified to class two,
and the distorted digit 1 is a pattern of a new class. Figure 6.46 illustrates
the case for vigilance parameter equal to 0.9 (“very big”). Currently each
shape of the sequence studied is a pattern of a separate class, but provid-
ing the distorted digit 3 triggers a message on the impossibility to create a
new class, which means that this shape does not “match” any of the earlier
patterns.

FIGURE 6.46. Results of simulations in Example 6.11: τ = 0.9

The above example is only an illustration of the ART1 network proper-
ties, showing its very interesting possibilities of shapes recognition, learning
without supervision, i.e. possibility to make independent decisions on cre-
ating of a new and unknown class. At the same, we may see how a difficult
issue is the appropriate selection of the vigilance parameter which should
be determined by an expert depending on the specific task.

6.7 Radial-basis function networks

Radial-basis function networks consist of neurons, of which activation func-
tions perform the mapping

x → ϕ(‖x − c‖), x ∈ Rn, (6.195)

where (‖ · ‖) most often means an Euclidean norm. Functions ϕ(‖x − c‖)
are called radial-basis functions. Their values change radially around the
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FIGURE 6.47. Scheme of the radial-basis neural network

center c. Figure 6.47 presents a scheme of radial-basis neural network called
an RBF (Radial Basis Functions) network. Input signals x1, x2, . . . , xn

making up the vector x are applied to each neuron in the hidden layer
(identical to input layer). The neurons in the hidden layer satisfy mapping
(6.195). The number of these neurons is equal to the number of vectors x
in a learning set or it is smaller. The neuron in the output layer executes
the operation of weighted sum of output signals of neurons in the hidden
layer, which may be expressed using the following formula:

y =
∑

i

wiϕi =
∑

i

wiϕ(‖x − ci‖). (6.196)

Below, we will present some typical examples of radial basis functions:

ϕ(‖x − ci‖) = exp(−‖x − c‖2
/r2), (6.197)

ϕ(‖x − ci‖) = ‖x − c‖ /r2, (6.198)

ϕ(‖x − ci‖) = (r2 + ‖x − c‖2)−α, α > 0, (6.199)

ϕ(‖x − ci‖) = (r2 + ‖x − c‖2)β , 0 < β < 1, (6.200)

ϕ(‖x − ci‖) = (r ‖x − c‖)2 ln(r ‖x − c‖), (6.201)

while r > 0. In order to simplify the notation, we shall temporarily assume
that the scalar parameters in formulas (6.197) – (6.201) are the same for
all neurons in the network. The analysis of operation of a radial network
includes two cases depending on the number of neurons in the hidden layer:

Case a. Let us assume that at the input of a network which solves inter-
polation problems M different input vectors x (1) , . . . ,x(M), were entered;
the vectors are to be mapped into a set of real numbers d (1) , . . . , d(M).
The problem consists in finding such function F satisfying the mapping
Rn → R, so that the following equality occurs

F (xi) = di (6.202)
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for i = 1, 2, . . . , M . As function F , we will take

F (x) =
M∑

i=1

wiϕ(‖x − ci‖). (6.203)

Let us assume that centers c1, . . . , cM are equal to subsequent values of vec-
tors x (1) , . . . ,x(M). By substituting the condition (6.202) to dependency
(6.203), we get the following matrix equation:

⎡

⎢
⎢
⎣

ϕ11 ϕ12 ... ϕ1M

ϕ21 ϕ22 ... ϕ2M

... ... ... ...
ϕM1 ϕM2 ... ϕMM

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

w1

w2

...
wM

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

d1

d2

...
dM

⎤

⎥
⎥
⎦ , (6.204)

where ϕji = ϕ(‖xj − xi‖). With notations

d = [d1, d2, ..., dM ]T , (6.205)

w = [w1, w2, ..., wM ]T , (6.206)

Φ = {ϕji | j, i = 1, 2, ...,M} (6.207)

dependency (6.204) takes the form

Φw = d. (6.208)

For a given class of radial basis functions ϕ(‖x − c‖), e.g. for function
(6.197) and (6.199), the matrix Φ is positive definite if the input vectors
satisfy the condition

x (1) �= x (2) �= · · ·x(M). (6.209)

Then the solution of equation (6.208) takes the form

w = Φ−1d. (6.210)

Case b. The assumption of a number of radial neurons equal to the num-
ber of learning signals causes the network to lose its generalization abilities.
Moreover, with a large number of output desired signals, the network struc-
ture would have to grow to a huge size. Therefore we now assume that the
radial structure satisfies the following mapping

F (x) =
K∑

i=1

wiϕ ‖x − ci‖ , (6.211)

where K < M . In this way, we are searching for an approximated solution.
We must appropriately select not only the weights wi, but also to find
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centres ci for the radial neurons. The proper minimization criterion takes
the form

E =
M∑

i=1

⎡

⎣
K∑

j=1

wjϕ(‖xi − cj‖) − di

⎤

⎦

2

. (6.212)

Let us denote:

G =

⎡

⎢
⎢
⎣

ϕ(‖x1 − c1‖) ϕ(‖x1 − c2‖) ... ϕ(‖x1 − cK‖)
ϕ(‖x2 − c1‖) ϕ(‖x2 − c2‖) ... ϕ(‖x2 − cK‖)

... ... ... ...
ϕ(‖xM − c1‖) ϕ(‖xM − c2‖) ... ϕ(‖xM − cK‖)

⎤

⎥
⎥
⎦ , (6.213)

d = [d1, d2, ..., dM ]T , (6.214)

w = [w1, w2, ..., wM ]T . (6.215)

The matrix G defined by (6.213) is the so-called Green matrix. By mini-
mizing criterion (6.212) and taking into account formulas (6.213) – (6.215),
we get

Gw = d, (6.216)

w = G+d, (6.217)

where G+ denotes the pseudoinverse of the rectangular matrix G, i.e.

G+ = (GT G)−1GT . (6.218)

Criterion (6.212) may be supplemented by the so-called regularization term
which results from the Tichonov regularization method

E(f) =
M∑

i=1

⎡

⎣
K∑

j=1

wjϕ(‖xi − cj‖)2 − di

⎤

⎦+ λ ‖Pf‖2 (6.219)

= ‖Gw − d‖2 + λ ‖Pf‖2
,

where P is a certain linear differential operator. In approximation tasks, the
introduction of this operator is related to the assumption on the smoothness
of the function which approximates the unknown solution. The right side
of expression (6.219) may be presented in the form [73]

‖Pf‖2 = wT G0w, (6.220)

where matrix G0 is a square matrix, of the dimension K × K, defined as
follows:

G0 =

⎡

⎢
⎢
⎣

ϕ(‖c1 − c1‖) ϕ(‖c1 − c2‖) ... ϕ(‖c1 − cK‖)
ϕ(‖c2 − c1‖) ϕ(‖c2 − c2‖) ... ϕ(‖c2 − cK‖)

... ... ... ...
ϕ(‖cK − c1‖) ϕ(‖cK − c2‖) ... ϕ(‖cK − cK‖)

⎤

⎥
⎥
⎦ . (6.221)
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By minimizing dependency (6.219) and using equations (6.220) and (6.221),
we obtain the vector of weights w given by

w = (GT G + λG0)−1GT d. (6.222)

It has been proved that the neural network with radial-basis functions based
on Green functions is a universal approximator. The radial-basis function
network learning algorithm consists of two stages:
1. At first, the location and the shape of base functions is selected by means
of the following methods:
– random selection,
– selection with application of the self-organization process,
– selection using the error backpropagation method.
2. In the second phase, the matrix of weights of the output layer is selected,
and this problem is much simpler to solve than the selection of the radial
basis functions parameters. The matrix of weights w is determined in one
step by pseudoinverse of Green matrix G, i.e. w = G+d.

Now we will present one of the selected methods of parameters selection
using the self-organization process. The self-organization process divides
the space of input signals into the so-called Voronoi diagrams. Each such
diagram is called a group or cluster. It contains a central point which is the
average of all elements in the group. At the same time, it is the centre of
the radial-basis function. There are two versions of the algorithm:

1. direct – updating of centers is made after each presentation of vector
x from the learning sequence;

2. cumulated – the update is made after all the learning vectors have
been presented.

Also a variation of the direct version of the algorithm is used, in which
the adaptation involves the centers from the nearest neighborhood of the
winner. They are modified according to the WTM rule.

Another method of selecting parameters for the RBF network is applied
in the Matlab software. In this environment, there are two methods used
to create such a structure. In case of the first one, by means of NEWRBE
instruction, for each learning vector x (1) , . . . ,x (M) we create a separate
radial-basis neuron in the first layer. Then, weights for the neuron of the
second layer are selected. It is a situation identical to the case discussed
earlier and concerning the analysis of operation of a radial-basis function
network. The second method, resulting from the operation of another in-
struction called NEWRB, triggers the following algorithm:
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1. A two-layer network is created, with no neuron in the first layer.

2. At the network input, subsequent learning vectors are applied and
for them the output error is calculated (for each learning sample the
error is recorded separately).

3. The learning vector with the biggest error is chosen and the radial-
basis neuron with weights equal to the components of this learning
vector is added to the first layer.

4. Next, the weights of the linear neuron in the second layer are selected
so as to minimize the network error.

5. Points 2 – 4 are repeated until the network error drops below the
threshold set by the user as the NEWRB function parameter. Another
parameter of the NEWRB method is the number of neurons above
which the operation of the algorithm should be stopped. By default,
this number is equal to the size of the learning sequence.

Example 6.12
Using the NEWRB instruction from Matlab package, we made an ex-
periment consisting in the RBF network learning to map the function
f(x) = sin(x), where x ∈ [−10, 10]. The learning sequence consists of points
x generated by discretization of the interval [−10, 10] with step 0.1 and the
corresponding values of function f(x). The error threshold, below which
the network is deemed to be learnt, amounts to 0.000001. In Fig. 6.48, we
present the operation of the structure created for a different number of
neurons. The solid line represents the graph of the function y = sin(x).
The symbol + denotes the network answers to the testing signals applied.

Radial-basis neural networks are applied in classification and approxi-
mation problems, as well as in prediction tasks. These are tasks in which
sigmoidal neural networks have been applied for many years. However, the
radial-basis structures utilize a different method of data processing, result-
ing in shortening of the learning process. When solving classification tasks,
the radial-basis function network does not only provide information about
the pattern class, but it also indicates the possibility of creation of a new
class. A significant advantage is a much simplified network learning algo-
rithm. The starting point may be selected so as to locate it much closer to
the optimum solution than in the case of sigmoidal neural networks. The
basic differences between the radial-basis and the sigmoidal neural networks
are:

1. Radial-basis function neural networks have a pre-defined architecture
consisting of two layers while sigmoidal neural networks may consist
of any number of layers.
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NUMBER OF ERROR GRAPHNEURONS

2 65.3489

6 2.96629

20 0.000001

FIGURE 6.48. Simulation results in Example 6.12

2. Radial-basis function networks may apply any base functions in the
hidden layer, while a multi-layer network most often applies sigmoidal
functions.

3. In radial-basis function neural networks, different learning techniques
may be used for both layers, e.g. the first (hidden) layer may learn us-
ing the gradient method or self-organization method, and the second
layer the pseudoinverse method. In case of multilayer sigmoidal neural
networks, neurons of all layers most often learn using the backprop-
agation method.
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6.8 Probabilistic neural networks

In many identification, classification and prediction problems, there is a
need to estimate the probability density function. In order to estimate this
function, we may apply the estimator

f̂M (x) =
1
M

M∑

i=1

KM (x, Xi) , (6.223)

where X1, ...,XM is a sequence of observation of an n-dimensional random
variable X with probability density f , while KM is an appropriately se-
lected kernel. Figure 6.49 presents a network realization of the estimator
(6.223).
It should be stressed that the proposed network does not require the learn-
ing process (optimum selection of the connections weights), as the role of
weights is played by subsequent components of observation vectors Xi. As
function KM the so-called Parzen kernel may be assumed, in the following
form

KM (x,u) = h−n
M K

(
x − u
hM

)
, (6.224)

while the sequence hM is a function of the length of the learning sequence
M and should meet the conditions

lim
M→∞

hM = 0 and lim
M→∞

Mhn
M = ∞. (6.225)

It may be demonstrated (Cacoullos [20]) that

E
[
f̂M (x) − fM (x)

]2 M−→ 0 (6.226)

in continuity points of density f . Function K in formula (6.224) may be
presented in the form

K (x) =
n∏

i=1

H
(
x(i)
)

. (6.227)

FIGURE 6.49. Probabilistic neural network for density estimation
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Assuming that the function H is of Gaussian type, we have

f̂M (x) =
1

(2π)
n
2 nhn

M

M∑

i=1

exp

(

− (x − Xi)
T (x − Xi)

2h2
M

)

. (6.228)

In analogical way, we may construct a probabilistic neural network in order
to estimate the regression function. Let (X, Y ) be a pair of random vari-
ables. Let us assume that X takes the values in set Rn, while Y in set R.
Let f be the probability density function of the random variable X. Based
on M independent observations (X1, Y1) , ..., (XM , YM ) of variables (X, Y ),
we should estimate the regression function R of the random variable Y with
respect to X, i.e.

φ (x) = E [Y | X = x] . (6.229)

Let us define the function

R (x) = φ (x) · f (x) . (6.230)

To estimate function (6.230), we may apply an estimator similar to proce-
dure (6.223), i.e.

R̂M (x) =
1
M

M∑

i=1

Yi KM (x,Xi) . (6.231)

Therefore the regression function shall be estimated using

φ̂M (x) =
R̂M (x)

f̂M (x)
. (6.232)

In consequence, we get the following estimator:

φ̂M (x) =

∑M
i=1 Yi K

(
x − Xi

hM

)

∑M
i=1 K

(
x − Xi

hM

) . (6.233)

Figure 6.50 presents the neural realization of the regression function es-
timator referring in its structure to the structure given in Fig. 6.49. The
probabilistic neural networks structures do not require learning. Moreover,
the application of these networks with an appropriately selected hM se-
quence guarantees the convergence of the estimators. These are, however,
asymptotic results. In practice, we must ensure that we have learning se-
quences of a significant length. Both structures may be used to solve the
classification problem and then we achieve a convergence to the Bayes rule.
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FIGURE 6.50. Probabilistic neural network for regression estimation

6.9 Notes

Knowledge concerning biological neuron contributed to creating its mathe-
matical model. This domain was pioneered by American scientists
McCulloch and Pitts, who in 1943 created the first neuron model [133].
Their idea was developed until 1969, when Minsky and Papert published
book [138] stressing the limited abilities of artificial neural networks with
one-layer and at the same time demonstrating the lack of algorithms for
learning of multilayer neural networks. This book caused a suspension of
research on neural networks. By this time however, many publications in
this scope saw light worldwide. Among others, Donald Hebb developed a
network learning rule called today the “Hebb rule” [74], Rosenblatt built
the perceptron [181], while Widrow constructed the model of neuron called
Adaline [257 – 259]. The research on neural networks was restarted as a
result of publication in 1986 of work [183]. This study presented a descrip-
tion of learning method of multilayer neural network which was called the
“error backpropagation” method. This fact caused a return to neural net-
works. Still today, they are studied by dozens of thousands of researchers
worldwide. Probabilistic neural networks have been proposed by Specht
[236, 237]. Their concept is derived from non-parametrical methods of es-
timation of density and regression functions [20, 69, 157, 159, 188 – 203].
Probabilistic neural networks are also applied in case of non-stationary
distributions of probabilities [221 – 224]. The RLS algorithm of neural net-
works learning has been explained in study [11]. Among many monographs
and handbooks on neural network, several may be referenced [12, 26, 47,
51, 72, 73, 76, 86, 91, 93, 96, 115, 117, 121, 123, 131, 155, 156, 178, 204,
241, 242, 244, 270, 271]. The issue of neural networks has been the sub-
ject of many conferences organized by Polish Neural Network Society e.g.:
[206, 209, 219, 226, 243]. The Levenberg-Marquardt algorithm has been
explained in study [68]. Gradient optimization methods are discussed in
detail in monographs [24, 53, 108]. Elman and RTRN neural networks have
been presented in works [49] and [52]. Approximation properties of neural
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networks have been proven by Hornik [84, 85]. Kohonen [113] published a
well-known monograph on self-organizing networks with competitive learn-
ing, while the application of these networks in image compression tasks have
been presented in studies [205, 207]. The relations of rough sets and neural
networks have been discussed in monograph [158]. Computer simulations
concerning the ART neural networks and Hamming neural networks were
made using the NetLab software attached to book [271].



7
Evolutionary algorithms

7.1 Introduction

The beginning of research into evolutionary algorithms was inspired by the
imitation of nature. All the living organisms live in certain environment.
They have a specific genetic material containing information about them
and allowing them to transfer their features to new generations. During
reproduction, a new organism is created, which takes certain features af-
ter its parents. These features are coded in genes, and these are stored in
chromosomes, which in turn constitute genetic material – genotype. Dur-
ing the transfer of features, genes become modified. Then the crossover of
different paternal and maternal chromosomes occurs. Mutation often oc-
curs additionally, which is the exchange of single genes in a chromosome.
An organism is created which differs from that of its parents and contains
genes of its predecessors but also has certain features specific to itself. This
organism starts to live in a given environment. If it turns out that it is well
fit to the environment, in other words – if the combination of genes turns
out to be advantageous – it will transfer its genetic material to its offspring.
The individual that is poorly fit to the environment will find it difficult to
live in this environment and transfer its genes to subsequent generations.

The presented idea has been applied to solve optimization problems. It
turns out that an analogous approach to numerical calculations can be
proposed – using so-called evolutionary algorithms. The environment is
defined upon the basis of the solved problem. A population of individuals
constituting potential solutions of a given problem lives in this environment.
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With the use of appropriately defined fitness function, we check to what
extent they are adapted to the environment. Individuals exchange genetic
material with each other, crossover and mutation operators are introduced
in order to generate new solutions. Among potential solutions, only the
best fit ones “survive”.

This chapter will discuss the family of evolutionary algorithms, i.e. the
classical genetic algorithm, evolution strategies, evolutionary programming,
and genetic programming. We are also going to present advanced techniques
used in evolutionary algorithms. The second part of the chapter will dis-
cuss connections between evolutionary techniques and neural networks and
fuzzy systems.

7.2 Optimization problems and evolutionary
algorithms

Literature [63] lists three types of methods of search of optimum solutions.
They include analytical methods, enumerative methods, and random meth-
ods. The analytical methods comprise two classes: indirect methods and
direct methods. In indirect methods, we search for local function extrema,
solving the system of equations (usually nonlinear). We obtain this sys-
tem as a result of equating the objective function gradient to zero. Direct
methods search for a local optimum through “jumping” on the function
graph towards the direction specified by the gradient. Both methods are
not free from disadvantages. First of all, they have a local scope, because
they search for optimum solutions in the neighborhood of a given point.
Their application depends on the existence of derivatives. In practice, many
of the solved problems have discontinued functions in the complicated space
of solutions. Thus, analytical methods have a limited scope of application.

Enumerative methods exist in many forms. Let us assume that we have
a finite search space. The simplest method would consist in calculating the
objective function value and reviewing all points of space one after another.
In spite of its simplicity and similarity to human reasoning, this method
has one serious disadvantage – ineffectiveness. Many problems have such
a large search space that it is impossible to search all the points within a
reasonable time-limit.

The last one of the search method is the random method. It became
popular at the moment when scientists became aware of the weaknesses
of analytical and enumerative methods. Random search algorithms, which
consisted in random space searching and remembering the best solution,
also turned out to be ineffective. However, they should be distinguished
from techniques based on the pseudorandom numbers and evolutionary
search of the space of solutions. Evolutionary algorithms are an example
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of the approach where the random selection is only a tool for supporting
search in the coded space of solutions.

The evolutionary algorithm is a method of solving problems – mainly
optimization problems – that is based on natural evolution. Evolutionary
algorithms are search procedures based on the natural selection and inher-
itance mechanisms. They apply the evolutionary principle of the survival
of the individuals that are the best fit. They are different from traditional
optimization methods by the following elements:

1. Evolutionary algorithms do not directly process the task parameters,
but their coded form.

2. Evolutionary algorithms make a search starting from a population of
points instead of a single point.

3. Evolutionary algorithms use only the objective function and not its
derivatives or other supplementary information.

4. Evolutionary algorithms apply probabilistic selection rules instead of
deterministic rules.

These four features, i.e. parameters coding, operation on populations,
using the minimum information about the task, and randomized opera-
tions, provide for the robustness of the evolutionary algorithm and for its
consequent advantage over the other above-mentioned techniques.

7.3 Type of algorithms classified as evolutionary
algorithms

Evolutionary algorithms apply terms borrowed from genetics. For instance,
we speak about a population of individuals, and basic terms are gene, chro-
mosome, genotype, phenotype, and allel. The terms corresponding to them
and coming from the technical vocabulary are also used, such as chain,
binary sequence, and structure.

• Population is a set of individuals of a specified size.

• Individuals of a population in genetic algorithms are sets of task
parameters coded in the form of chromosomes, which means solutions
otherwise called search space points. Individuals are sometimes called
organisms.

• Chromosomes – otherwise chains or code sequences – are ordered
sequences of genes.

• Gene – also called a feature, sign, or detector – constitutes a single
element of the genotype, of the chromosome in particular.
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• Genotype – otherwise structure – is a set of chromosomes of a given
individual. Thus, individuals of a population may be genotypes or
single chromosomes (if a genotype consists of only one chromosome,
and such is often the assumption).

• Phenotype is a set of values corresponding to a given genotype,
which is a decoded structure, and thus, a set of task parameters (a
solution, search space point).

• Allel is the value of a given gene, also specified as the feature value
or the feature variant.

• Locus is a position indicating the place of the location of a given
gene in the chain, that is in the chromosome (its plural form, that
means “positions”, is loci).

A very important notion in genetic algorithms is the fitness function oth-
erwise called the adaptation function or evaluation function. It constitutes
the measure of fitness (adaptation) of a given individual in the popula-
tion. This function is extremely important, because it allows to evaluate
the degree of fitness of particular individuals in a population, and based
on this degree select the individuals that are the best fit (that is, having
the highest fitness function), in accordance with the evolutionary principle
of the survival of “the strongest” (the best fit) ones. The fitness function
also takes its name directly from genetics. It has a strong impact on the
operation of evolutionary algorithms and must be appropriately defined. In
optimization related questions, the fitness function is usually an optimized
function (strictly speaking, a maximized function) called the objective func-
tion. In minimization issues the objective function is transformed and the
problem is reduced to the maximization issue. In the control theory the
fitness function can be the error function, and in the theory of games –
the cost function. In an evolutionary algorithm, in each of its iterations the
fitness of each individual of a given population is assessed by the fitness
function, and upon this basis a new population of individuals is created,
which individuals constitute a set of potential solutions of the problems,
e.g. optimization tasks.

Another iteration in the evolutionary algorithm is called generation, and
a newly created population of individuals is also called the new generation
or the offspring generation.

7.3.1 Classical genetic algorithm
The basic (classical) genetic algorithm, also called the elementary or simple
genetic algorithm comprises the following steps:

1) initiation, which is the selection of the initial population of chromo-
somes,
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2) evaluation of the fitness of chromosomes in the population,

3) checking the stopping criterion,

4) selection of chromosomes,

5) using genetic operators,

6) creating a new population,

7) presentation of the “best” chromosome.

The flowchart for the basic genetic algorithm is depicted in Fig. 7.1. Let us
present particular components of this algorithm in more details.

Initiation, which is the creation of an initial population, consists of the
random selection of the demanded number of chromosomes (individuals)
represented by binary sequences having a determined length.

The evaluation of the fitness of chromosomes in a population consists
in calculating the value of the fitness function for each chromosome of this
population. The higher the value of this function, the better the “quality”
of the chromosome. The form of the fitness function depends on the type

FIGURE 7.1. Flowchart for the genetic algorithm
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of the solved problem. It is assumed that the fitness function always takes
nonnegative values and, furthermore, the solved optimization problem is a
problem of searching for the maximum of this function. If the initial form of
the fitness function does not meet these assumptions then an appropriate
transformation is made (e.g. the problem of searching for the minimum
of the function may easily be reduced to the problem of searching for the
maximum).

Checking the stopping criterion. The determination of the criterion
for stopping the genetic algorithm depends on a specific application of this
algorithm. In optimization issues, if the maximum (or minimum) value of
the fitness function is known the stopping of the algorithm may occur after
obtaining the desired optimum value, possibly with a specified accuracy.
The stopping of the algorithm may also occur if its further operation no
longer improves the best obtained value. The algorithm may also be stopped
after the lapse of a determined period of time or after a determined number
of generations. If the stopping criterion is met then the last step is taken,
that is the presentation of the “best” chromosome. Otherwise the next step
is selection.

The selection of chromosomes consists in selecting, based on the
calculated values of the fitness function (step 2), these chromosomes which
will take part in the creation of offspring until the next generation. This
selection takes place in accordance with the natural selection rule, i.e. the
chromosomes having the highest value of the fitness function have the most
of the chances for the participation in the creation of new individuals.
There are many selection methods. The most popular is a so-called roulette-
wheel selection method, which takes its name after the analogy with the
roulette wheel game. Each chromosome may be assigned a sector of the
roulette wheel of a size that is proportional to the value of the fitness
function of the given chromosome. Thus, the higher the value of the fitness
function, the larger the sector on the roulette wheel. The entire roulette
wheel corresponds to the sum of the fitness functions’ values of all the
chromosomes in the considered population. Each chromosome denoted by
chi for i = 1, 2, ...,K, where K is the size of the population, corresponds
to a wheel sector ν (chi) constituting a part of the entire wheel expressed
in percentage, in accordance with formula:

ν (chi) = ps(chi) · 100%, (7.1)

in which

ps(chi) =
F (chi)

∑K
j=1 F (chj)

, (7.2)

while F (chi) means the value of the fitness function of chromosome chi,
and ps(chi) is the probability of selecting chromosome chi. The selection of
a chromosome may be perceived as a turn of a roulette wheel, as a result
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of which the chromosome belonging to the roulette wheel sector drawn this
way “wins” (is selected). Certainly, the larger the wheel sector, the higher
the probability of the “victory” of a given chromosome. Thus, the proba-
bility of selecting a given chromosome grows in proportion to the growth
of its fitness function. If we treat the entire circle of the roulette wheel
as a numeral interval [0, 100] then the drawing of a chromosome may be
treated as drawing a number of range [a, b] where a and b mean, respec-
tively, the beginning and the end of the circle fragment corresponding to
that wheel sector, certainly 0 ≤ a < b ≤ 100. Then, selection with the
use of the roulette wheel is reduced to drawing a number of range [0, 100],
which corresponds to a specific point on the circle of the roulette wheel.
Other methods will be presented in point 7.4.2.

As a result of the selection process the parents population is created, also
called as the mating pool, with the size equal to K, i.e. the same as the size
of the current population.

Applying genetic operators to chromosomes selected with the selec-
tion method leads to the creation of a new population constituting the
offspring population derived from the parents population.

In the classical genetic algorithm two basic genetic operators are used:
crossover operator and mutation operator. It should, however, be empha-
sized that the mutation operator has a definitely secondary role in com-
parison to the crossover operator. This means that in the classical genetic
algorithm, crossover is almost always present while mutation occurs quite
rarely. The probability of crossover is usually assumed to be high (gener-
ally 0.5 ≤ pc ≤ 1), and, in turn, a very small probability of the occurrence
of mutation is assumed (often 0 ≤ pm ≤ 0.1). This also results from the
analogy to the world of living organisms, where mutations rarely occur.

In the genetic algorithm the mutation of a chromosome may be made on
a parents population before the crossover operation, or on a population of
offspring created as a result of the crossover.

Crossover operator. The first stage of crossover is the selection of
pairs of chromosomes of the parents population (mating pool). This is a
temporary population consisting of chromosomes selected with the selec-
tion method and intended for further processing with the crossover and
mutation operators in order to create a new offspring population. At this
stage the chromosomes of the parents population are mated in pairs. This
is made randomly, in accordance with the probability of crossover pk. Next,
for each pair of the parents selected this way, the gene position in the chro-
mosome (locus) is drawn, which specifies the so-called crossover point. If
a chromosome of each of the parents consists of L genes then, certainly,
the crossover point lk is a natural number less than L. Therefore, the se-
lection of the crossover point is reduced to drawing a number from interval
[1,L − 1]. As a result of the crossover of a pair of parent chromosomes the
following pair of offspring is created:
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1) offspring whose chromosome consists of genes on positions from 1 to
lk coming from the first parent, and next genes, on positions from
lk + 1 to L coming from the second parent;

2) offspring whose chromosome consists of genes on positions from 1 to
lk coming from the second parent, and next genes, on positions from
lk + 1 to L coming from the first parent.

Example 7.1
Let us discuss two chromosomes ch1 = [1001001110] and ch2 = [1001111110]
which undergo the crossover operation . In this case the chromosomes con-
sist of 10 genes (L = 10), we therefore draw an integer number from interval
[1, 9]. Let us assume that number 5 was drawn. The course of the crossover
operation is as follows:

Pair of parents:
ch1 = [10010 | 01110]
ch2 = [10011 | 11110]

crossover−−−−−−→
Pair of offspring:
[10010 | 11110]
[10011 | 01110]

where symbol | denominates the crossover point and the replaced genes are
in bold.

The mutation operator, in accordance with the probability of muta-
tion pm replaces the gene value in the chromosome to the opposite value
(i.e. from 0 into 1, or from 1 into 0). As it has already been mentioned,
the probability of the occurrence of mutation is usually very small and
certainly, whether or not a given gene in the chromosome will undergo mu-
tation depends on this probability. Making mutation in accordance with
probability pm consists in, for instance, drawing a number from interval
[0, 1] for each gene and selecting those genes for mutation, for which the
drawn number is equal to probability pm or less.

Example 7.2
We perform mutation on chromosome [1001101010]. The value of pm is
0.02. We draw the following numbers from interval [0, 1]:

0.23 0.76 0.54 0.10 0.28 0.68 0.01 0.30 0.95 0.12.

The gene located on position 7, undergoes mutation since the drawn ran-
dom number 0.01 is less than the value of the probability of mutation pm.
Therefore, its value is changed from 1 to 0, and we obtain chromosome
[1001100010].

Creation of a new population. The chromosomes obtained as a re-
sult of the operation of genetic operators belong to a new population. This
population becomes the so-called current population for a given generation
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of the genetic algorithm. In each subsequent generation, the value of the fit-
ness function of each of this population’s chromosomes is calculated. Next,
the algorithm stopping criterion is checked and either a result in the form
of chromosome with the highest value of the fitness function is presented,
or the next step of the genetic algorithm, i.e. selection, is taken. In the
classical genetic algorithm, the entire previous population of chromosomes
is replaced by an equally large new offspring population.

Presentation of the “best” chromosome. If the stopping criterion
for the genetic algorithm is satisfied then the result of the algorithm op-
eration should be presented, that means the solution of the problem. The
best solution is a chromosome with the highest value of the fitness function.

Example 7.3
We are going to show, on a simple example, how the genetic algorithm
works in practice. We will find the maximum of function

y = 2x + 1,

assuming that x takes integer numbers in interval [0, 31]. In this case the
task parameter is x. The set {0, 1, ..., 31} constitutes the search space. This
is at the same time a set of potential solutions of the task. Each of 32 num-
bers belonging to this set is called the search point, solution, parameter’s
value, phenotype. The solution optimizing the function is called the best
solution or optimum solution. The solution of the task undergoes binary
coding with the use of five bits. The created code sequences are also called
chains or chromosomes. In our example they are also genotypes. The value
of a gene on a specified position is called allel, these are certainly values 0
or 1. Thus, the optimization task consists in searching a space composed of
32 points and finding the point for which the function takes on the high-
est value. We can guess that the solution is 31, that is the chromosome
containing only numbers 1.

In accordance with the algorithm, we begin with drawing the initial pop-
ulation. We are going to operate on a small population comprising eight
individuals. As a result of drawing, we obtain

ch1 = [00110] ,
ch3 = [01101] ,
ch5 = [11010] ,
ch7 = [01000] ,

ch2 = [00101] ,
ch4 = [10101] ,
ch6 = [10010] ,
ch8 = [00101] .

We start the main loop of the genetic algorithm, which means that we
calculate the fitness of particular individuals. We decode information from
chromosomes and obtain the following phenotypes:

ch∗
1 = 6,

ch∗
3 = 13,

ch∗
5 = 26,

ch∗
7 = 8,

ch∗
2 = 5,

ch∗
4 = 21,

ch∗
6 = 18,

ch∗
8 = 5.
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We calculate fitness with the use of a function which is the same as the
function we optimize. Since we search for the maximum, the individuals
with the highest value of the fitness function will be considered the best
fit. In place of parameter x we substitute the value of the phenotype. For
instance, for the first two individuals we obtain

F (ch1) = 2 · ch∗
1 + 1 = 13, F (ch2) = 2 · ch∗

2 + 1 = 11.

By analogy, we determine

F (ch3) = 27,
F (ch5) = 53,
F (ch7) = 17,

F (ch4) = 43,
F (ch6) = 37,
F (ch8) = 11.

We may now distinguish between the best and the worst fit individuals. As
it is shown, chromosome ch5 has the highest value of the fitness function,
as opposed to chromosomes ch2 and ch8 which have identical the lowest
fitness. The next step is the selection of chromosomes. We are going to
apply the roulette wheel method. Upon the basis of formulae (7.1) and (7.2)
we obtain sectors of the roulette wheel expressed in percentage (Fig. 7.2)

ν (ch1) = 6.13,
ν (ch3) = 12.74,
ν (ch5) = 25,
ν (ch7) = 8.02,

ν (ch2) = 5.19,
ν (ch4) = 20.28,
ν (ch6) = 17.45
ν (ch8) = 5.19.

Drawing with the use of the roulette wheel is reduced to a random selection
of a number from interval [0, 100] indicating the appropriate sector on the
wheel, a consequently a specific chromosome. Let us assume that 8 following
numbers were drawn:

79 44 9 74 45 86 48 23.

FIGURE 7.2. Roulette wheel - Example 7.3
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This means that the following chromosomes were selected:

ch6, ch4, ch2, ch6, ch5, ch6, ch5, ch3.

As it is shown, chromosome ch5 was drawn twice. It should be noted that
this is a chromosome with the highest value of the fitness function. Fur-
thermore, chromosome ch6 with a quite high value of the fitness function
was drawn. However, chromosome ch2 with the lowest value of the fitness
function was also drawn. All the chromosomes selected in this way belong
to the so-called mating pool.

Let us assume that none of the chromosomes selected during the selec-
tion undergoes mutation, i.e. probability pm = 0. We only make crossover,
assuming the crossover probability as pc = 0.75. We mate the individuals
in pairs as they are set in the mating pool. We draw a number from interval
[0, 1] for each of them

0.12 0.73 0.65 0.33.

All the drawn numbers are lower than the crossover probability pc. Thus,
crossover occurs for each of the pairs. Next, for each pair we find crossover
points through drawing integer numbers from interval [1, 4]. As a result,
we obtain

First pair of parents:
ch6 = [10010]
ch4 = [10101]

crossover−−−−−−→
First pair of offspring:
[10001]
[10110]

lk = 3

Second pair of parents:
ch2 = [00101]
ch6 = [10010]

crossover−−−−−−→
Second pair of offspring:
[00100]
[10011]

lk = 4

Third pair of parents:
ch5 = [11010]
ch6 = [10010]

crossover−−−−−−→
Third pair of offspring:
[11010]
[10010]

lk = 3

Fourth pair of parents:
ch5 = [11010]
ch3 = [01101]

crossover−−−−−−→
Fourth pair of offspring:
[11101]
[01010]

lk = 2
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As a result of the crossover operation, we obtain the following offspring
population:

Ch1 = [10001] ,
Ch3 = [00100] ,
Ch5 = [11010] ,
Ch7 = [11101] ,

Ch2 = [10110] ,
Ch4 = [10011] ,
Ch6 = [10010] ,
Ch8 = [01010] .

Chromosomes of the new population are marked by a capital letter. Now,
we pass on again to step 2 of the algorithm, that is to the evaluation of the
fitness function of the new population chromosomes, which population will
become the current population. When decoding the information from the
new population of chromosomes, we obtain the phenotype values

Ch∗
1 = 17,

Ch∗
3 = 4,

Ch∗
5 = 26,

Ch∗
7 = 29,

Ch∗
2 = 22,

Ch∗
4 = 19,

Ch∗
6 = 18,

Ch∗
8 = 10,

and next, the values of the fitness function

F (Ch1) = 35,
F (Ch3) = 9,
F (Ch5) = 53,
F (Ch7) = 59,

F (Ch2) = 45,
F (Ch4) = 39,
F (Ch6) = 37,
F (Ch8) = 21.

As it is shown, the offspring population is characterized by a much higher
average value of the fitness function than the parents population. Let us no-
tice that as a result of crossover, chromosome Ch7 was obtained, which has
the highest value of the fitness function that none of the parent chromosome
has had. The opposite could happen, that is – after the first generation, as
a result of the crossover operation, a chromosome which had the highest
value of the fitness function in the parents population could be “lost”. In
spite of this, the average “fitness” of the new population would be better
than the one of the previous population, and chromosomes having a higher
value of the fitness function would have the chance to appear in subsequent
generations.

Example 7.4
Next example illustrating the operation of the classical genetic algorithm
will consist in finding a chromosome having the highest number of num-
bers one. Let us assume that chromosomes consist of 9 genes, and the size
of the population is 8 chromosomes. We presume that the probability of
crossover is pc = 0.75 and the probability of mutation is pm = 0.02. The
determination of the fitness function in this example is very simple. This
function will reflect the number of “ones” in a chromosome. The individuals



7.3 Type of algorithms classified as evolutionary algorithms 277

that are better fit will have a higher number of “ones”, which means that
the value of the fitness function will be higher accordingly.

As it happened in the previous example, we start with drawing the initial
population of individuals.

ch1 = [100111001] ,
ch3 = [010100110] ,
ch5 = [110100010] ,
ch7 = [010011011] ,

ch2 = [001011000] ,
ch4 = [101011110] ,
ch6 = [100101001] ,
ch8 = [001010011] .

Let as make a simulation of one generation. We start with determining
the value of the fitness function for particular chromosomes

F (ch1) = 5,
F (ch3) = 4,
F (ch5) = 4,
F (ch7) = 5,

F (ch2) = 3,
F (ch4) = 6,
F (ch6) = 4,
F (ch8) = 4.

As it is shown, the number of “ones” and “zeros” in the chromosomes is
rather balanced. Only chromosome ch4 is distinguished, which has as many
as 6 “ones”. We pass on to the next step, that is selection. We are going
to apply the roulette wheel method, which is already known. Upon the
basis of formulae (7.1) and (7.2) we obtain the following sectors of the
roulette wheel (expressed in the percentage of the probability of particular
chromosomes selection):

ν (ch1) = 14.29,
ν (ch3) = 11.43,
ν (ch5) = 11.43,
ν (ch7) = 14.29,

ν (ch2) = 8.57,
ν (ch4) = 17.14,
ν (ch6) = 11.43,
ν (ch8) = 11.43.

The partition of the roulette wheel is presented in Fig. 7.3. We draw 8
numbers from interval [0, 100] in order to select appropriate chromosomes.
Let us assume that the following numbers were drawn:

67 7 84 50 68 38 83 11.

This means that the following chromosomes were selected:

ch6, ch1, ch7, ch4, ch6, ch4, ch7, ch1.

It turned out that the best fit chromosome ch4 was selected as many
times as twice, and the worst of the individuals, ch2, was not selected at
all. Next step of this generation is the modification of chromosomes with
the use of genetic operators. We start with the crossover operator. Let us
assume that chromosomes are combined in the following pairs:

ch6 and ch1, ch7 and ch4, ch6 and ch4, ch7 and ch1.
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FIGURE 7.3. Roulette wheel - Example 7.4

We draw the following numbers from interval [0, 1]:

0.42 0.30 0.18 0.19.

and next, we compare them with the probability of crossover pc = 0.75. All
the drawn numbers are less than the probability of crossover and thus, each
pair undergoes the operation of crossover. Thus, let us make a simulation
of this process, similarly to the previous example.

First pair of parents:
ch6 = [100101001]
ch1 = [100111001]

crossover−−−−−−→
First pair of offspring:
[100111001]
[100101001]

lk = 4

As the place of crossover, position No. 4 in the chromosome was drawn. As
it is shown, this crossover did not principally impact the improvement of
the fitness of chromosomes ch6 and ch1. The number of “ones” remains the
same, i.e. 4 and 5. Let’s cross the next pair

Second pair of parents:
ch7 = [010011011]
ch4 = [101011110]

crossover−−−−−−→
Second pair of offspring:
[010011010]
[101011111]

lk = 7

This time, the place of crossover turned out to be advantageous. One
of the offspring chromosomes has already 7 “ones”. Let us have a look at
subsequent crossovers:
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Third pair of parents:
ch6 = [100101001]
ch4 = [101011110]

crossover−−−−−−→
Third pair of offspring:
[100011110]
[101101001]

lk = 3

Fourth pair of parents:
ch7 = [010011011]
ch1 = [100111001]

crossover−−−−−−→
Fourth pair of offspring:
[010011001]
[100111011]

lk = 5

Let us see how the new population looks like after the crossover. Indi-
viduals of the new population are marked by a capital letter.

Ch1 = [100111001] ,
Ch3 = [010011010] ,
Ch5 = [100011110] ,
Ch7 = [010011001] ,

Ch2 = [100101001] ,
Ch4 = [101011111] ,
Ch6 = [101101001] ,
Ch8 = [100111011] .

The mutation is made on the new population. As we remember, the prob-
ability of mutation is pm = 0.02. For each of the genes, we draw a number
from interval [0, 1] and check whether this number is less than probabil-
ity pm. The mutation consists in replacing the gene’s value with the opposite
value. Let us see the course of this process:

Ch1 = [100111001] ,
Ch3 = [010011010] ,
Ch5 = [100011110] ,
Ch7 = [010011001] ,

Ch2 = [100101001] ,
Ch4 = [111011111] ,
Ch6 = [101101101] ,
Ch8 = [100111011] .

The probability of mutation is so small that it occurred only in two places,
i.e. in individuals Ch4 and Ch6. Let us check the value of the fitness function
of particular individuals after one generation:

F (Ch1) = 5,
F (Ch3) = 4,
F (Ch5) = 5,
F (Ch7) = 4,

F (Ch2) = 4,
F (Ch4) = 8,
F (Ch6) = 6,
F (Ch8) = 6.

As it is shown, after one generation we managed to find an individual
having a higher value of the fitness function. Besides, the average value
of the fitness function of the entire population improved. Individuals that
are better fit will have the chance to appear more often in subsequent
generations and give rise to new ones, which are better fit.
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Example 7.5
Let us apply the classical genetic algorithm in a so-called “knapsack prob-
lem”. Let us imagine a bag which has a certain capacity W . It is possible
to put n items having the weight wi and the importance pi, i = 1, . . . , n
in there. The task consists in loading the bag in a manner so that we have
items that will bring us the most of the profits possible (that is, so that we
get the highest possible sum pi of the importance of the items). Of course,
we cannot surpass capacity W , i.e.

n∑

i=1

wixi ≤ W. (7.3)

Without taking condition (7.3) into consideration, the chromosomes cor-
responding to the occurrence of all the items in the bag would turn out
to be the best ones. The solution to the problem is imposing a penalty
on such chromosomes. In this example, the method of punishment of in-
dividuals that do not meet specified requirements will be the assumption
of zero value of the fitness function. Such individuals have no chance for
reproduction.

Let us try to code the solution using the notation of the binary chromo-
some. Values 0 and 1 of subsequent gene xi would correspond to the lack
or the occurrence of the i -th item in the bag. The fitness function takes the
form

f (x) =
n∑

i=1

pixi. (7.4)

In our task, we take n = 10 items into consideration, each of importance
pi = 1 and weight from 1 to 10, which makes wi = i, i = 1, . . . , 10. Since
the importance of all the items is the same, the solution comes down to
placing as much items as possible in the bag. We assume that the capacity
is 27, which means that it is equal to almost the half sum of the weights of
all the items. In order to find an optimum filling of the bag, we are going to
use the classical genetic algorithm with the proportional selection (roulette
wheel) and with the probability of crossover pc = 0.7, and the probability
of mutation pm = 0.01. The number of individuals in the population is 10.
Let us follow the changes in the value of the fitness function for individuals
during 100 subsequent generations of the algorithm (Fig. 7.4).

The graph reflects the change in the average value of the fitness of in-
dividuals in subsequent generations (dotted curve). These values were not
significantly different from the results of the best chromosome (continuous
curve). Therefore, it can also be concluded that the diversity of the popula-
tion was not very high. In the 43rd generation the best solution was found
and the fitness of the entire population was improved. The solution of the
problem turned out to be six items with weight 1, 2, 4, 5, 7 and 8 placed
in the bag.
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FIGURE 7.4. Fitness function for the best chromosome (continous curve) and
average value (dotted curve) of the fitness of individuals in 100 subsequent gen-
erations in Example 7.5

The above-mentioned algorithm was started 100 times. The following
were received:
– 2 solutions with 4 items;
– 24 solutions with 5 items;
– 74 solutions with 6 items.

Example 7.6
We are going to solve again the bag problem presented in Example 7.5.
This time, we are going to assume that n = 50, and the bag capacity W
is 318, which makes almost half of the sum of all the items. We assume
pi = 1 and wi = i, identical as in Example 7.5. Due to the complicated
task, the size of the population will be set as 100 individuals. We use the
same genetic algorithm, but the number of generations is 200.

Figure 7.5 depicts the operation of the algorithm, and Fig. 7.6 depicts the
frequency of the occurrence of various solutions in 100 starts of the genetic

FIGURE 7.5. Fitness function for the best chromosome (continous curve) and
average value (dotted curve) of the fitness of individuals in 200 subsequent gen-
erations in Example 7.6
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FIGURE 7.6. Histogram of various solutions in 100 runs of the genetic algorithm
in Example 7.6

algorithm. From the analysis of the histogram (Fig. 7.6) it results that 38
solutions guaranteeing the placement of 31 items in the bag were found,
and only 2 solutions with 33 items in the bag. As it is shown, the problem
is more complex than the one described in Example 7.5. The chromosome
has now a much larger length and it is worth thinking about a method for
improving the operation of the algorithm, which is going to be presented
in Example 7.16.

7.3.1.1. Theoretical bases for the operation of genetic algorithms

In order to better understand the genetic algorithm, we are going to discuss
the topic based on the notion of scheme, and present basic theorem con-
cerning the genetic algorithms, a so-called schemata theorem. The notion of
schema was introduced in order to determine the set of chromosomes hav-
ing certain common features and similarities. If allels take values 0 or 1,
which means that we consider chromosomes having a binary alphabet, then
the schema is a set of chromosomes containing zeros and ones on selected
positions. It is convenient to consider schemata using the extended alpha-
bet {0, 1, ∗} in which symbol ∗ was introduced, apart from 0 and 1, in order
to specify any value from among these values, i.e. 0 or 1, symbol ∗ on a
given position means “don’t care”.

Example 7.7
Two examples of schemata are given below

10∗1 = {1001, 1011} ,

∗ 01∗10 = {001010, 001110, 101010, 101110} .
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We say that a chromosome belongs to a given schema if for each position
(locus) j = 1, 2, ..., L, where L is the length of the chromosome, and the
symbol on j -th position of the chromosome corresponds to the symbol on
j -th position of the schema, while both 0 and 1 correspond to symbol ∗.
The same can be expressed by saying that a chromosome fits to the schema
or is a representative of the schema. Let us note that if there are m symbols
∗ in a schema then this schema contains 2m chromosomes. Furthermore,
each chromosome (chain) with length L belongs to 2L schemata.

Example 7.8
Chain 01 fits to 4 schemata: ∗∗, ∗1, 0∗, 01, and chain 100 fits to 8 schemata:
∗∗∗, ∗∗0, ∗0∗, 1∗∗, ∗00, 1∗0, 10∗, 100.

The genetic algorithm is based on the rule of processing the best fit
individuals (chromosomes). Let P (0) mean the initial population of indi-
viduals, and P(t) the current population in generation t of the algorithm
operation. The chromosomes with the best fitness are selected, using the se-
lection method, out of each population P(t), t = 0, 1, ... to the mating pool
denoted by M(t). Next, when mating parent individuals from M(t) popu-
lation in pairs and performing the crossover operation with the probability
of crossover pc and the operation of mutation with the probability of mu-
tation pm, we obtain a new population P (t + 1) , containing the offspring
of individuals of population M(t).

We would like that the number of chromosomes fitting the schema repre-
senting a good solution in population P(t) increase along with an increase
in the number of generations t.

Three factors impact the appropriate processing of schemata in the ge-
netic algorithm: the selection, crossover and mutation of chromosomes. We
are going to analyze the operation of each of them, examining their impact
on the expected number of representatives of a given schema.

Let S be a given schema, and c(S, t) – the number of chromosomes in
population P(t) fitting to schema S. Therefore, c(S, t) is the number of
elements of set P(t) ∩ S.

Let us begin with examining the impact of selection. During selection,
chromosomes of population P(t) are copied to the mating pool M(t) with
the probability given by formula (7.2). Let F (S, t) means the average value
of the fitness function of chromosomes in population P(t) fitting to schema
S . If

P (t) ∩ S =
{
chi, ..., chc(S,t)

}
,

then

F (S, t) =
∑c(S,t)

i=1 F (chi)
c (S, t)

. (7.5)

F (S, t) is also called the fitness of schema S in generation t .
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Let �(t) means the sum of the values of the fitness function of chromo-
somes in population P(t) with size K , i.e.

�(t) =
K∑

i=1

F
(
ch(t)

i

)
. (7.6)

Let F (t) denotes the average value of the fitness function of the chromo-
somes in this population, that means:

F (t) =
1
K

�(t). (7.7)

Let chr(t) be an element of the mating pool M(t). For each chr(t) ∈ M(t)
and for each i = 1, .., c(S, t) the probability that chr(t) = chi is given by
formula F (chi) /�(t). Therefore, the expected number of chromosomes in
population M(t) equal to chi is

K
F (chi)
�(t)

=
F (chi)
F (t)

.

The expected number of chromosomes in set P(t) ∩ S selected to mating
pool M(t) is, therefore, equal to

c(S,t)∑

i=1

F (chi)
F (t)

= c(S, t)
F (S, t)
F (t)

,

which results from formula (7.5). Since each chromosome from mating pool
M(t) is at the same time a chromosome belonging to population P(t), then
chromosomes from set M(t) ∩ S are simply the same chromosomes which
were selected to population M(t) from set P(t) ∩ S. If b(S, t) denotes the
number of chromosomes from mating pool M(t) that fit to schema S, that
is the number of elements of set M(t) ∩ S, then the following is concluded
from the above-mentioned discussion:

Corollary 7.1 (impact of selection)
The expected value b(S, t), that is the expected number of chromosomes in
mating pool M(t) that fit to schema S, is given by formula:

E [b (S, t)] = c (S, t)
F (S, t)
F (t)

. (7.8)

The conclusion is that if schema S contains chromosomes with the value
of the fitness function that is above the average, that means that the
fitness of schema S in generation t is higher than the average value of
the fitness function of chromosomes in population P(t), which means that
F (S, t) /F (t) > 1, then the expected number of chromosomes that fit to
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schema S in mating pool M(t) is higher than the number of chromosomes
that fit to schema S of population P(t). Therefore, it can be concluded that
selection causes the dissemination of schemata with fitness that is “better”
than the average one and the vanishing of schemata with a “worse” fitness.

Before we start the analysis of the impact of the operation of genetic
operators, i.e. crossover and mutation, on chromosomes from the mating
pool, we are going to define the notion of order and length of schema, which
are necessary for further discussions. Let L means the length of the chro-
mosomes belonging to schema S.

Definition 7.1
The order of schema S, otherwise called the size of a schema and denoted
by o(S), is the number of fixed positions in a schema, i.e. the number of
zeros and ones in case of alphabet {0, 1, ∗}.

Example 7.9
Orders for 4 schemata are determined below:

o(10∗1) = 3, o(∗ 01∗ 10) = 4, o(∗∗0∗1∗) = 2, o(∗101∗∗) = 3.

Order o(S) of the schema is equal to length L minus the number of sym-
bols ∗, which can be easily verified on the above-mentioned examples (for
L = 4 with one symbol ∗ and for L = 6 with two, four and three sym-
bols ∗). It is easy to notice that the order of a schema having nothing but
symbols ∗ is equal to zero, i.e. o (∗∗∗∗) = 0, and the order of a schema with
no symbol ∗ is equal to L, e.g. o (10011010) = 8. The order of schema o(S)
is an integer number from interval [0, L].

Definition 7.2
The defining length of schema S, also referred to as the length of a schema
(which should not be confused with length L), denoted by d(S), is a dis-
tance between the first and the last fixed symbol.

Example 7.10
The lengths of schemata indicated in Example 7.9 are as follows:

d (10∗1) = 4 − 1 = 3, d (∗01∗10) = 6 − 2 = 4,
d (∗∗0∗1∗) = 5 − 3 = 2, d (∗101∗∗) = 4 − 2 = 2.

The length of schema d(S) is an integer number from interval [0, L − 1].
Let us note that the length of a schema with fixed symbols on the first and
the last position is equal to L − 1 (as in the first of the above-mentioned
examples). The length of a schema with one fixed position is equal to zero,
e.g. d (∗∗1∗) = 0. The length of the schema specifies the content of the
information contained in the schema.

Let us move on to discuss the impact of the crossover operation on the
processing of schemata in the genetic algorithm. Let us note first that some
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schemata are more susceptible to damage during crossover than other
ones. For instance, let us have a look at schemata S1 = 1∗∗∗∗0∗ and
S2 = ∗∗01∗∗∗ and chromosome ch = [1001101] that fits both schemata. It
is shown that schema S2 has a higher chance to survive the crossover opera-
tion than schema S1, which is more prone to a “split” in cross-
over point 1, 2, 3, 4 or 5. Schema S2 may be splitted only when the crossover
point is equal to 3. Let us note the length of both schemata, which – as it
is shown – is important in the crossover process.

When analyzing the impact of the crossover operation on mating pool
M(t), let us discuss a given chromosome from set M(t)∩S, that is a chro-
mosome from the mating pool, which fits schema S. The probability that
this chromosome will be selected for crossover is pc. If none of the offspring
of this chromosome belongs to schema S this means that the crossover point
must be placed between the first and the last fixed symbol in schema S.
The probability of this is d(S)/(L−1). Further corollaries are drawn below.

Corollary 7.2 (impact of crossover)
For a given chromosome in M(t)∩S, the probability that this chromosome
is selected for crossover and none of its offspring belongs to schema S has
an upper bound given by

pc
d(S)
L − 1

which is called the probability of destruction of schema S.

Corollary 7.3
For a given chromosome in M(t)∩S, the probability that this chromosome
will not be selected for crossover or at least one of its offspring will belong
to schema S after the crossover has a lower bound given by

1 − pc
d(S)
L − 1

which is called the probability of survival of schema S .
It is easy to demonstrate that when a given chromosome belongs to

schema S and is selected for crossover, and the other parent chromosome
also belongs to schema S, then both chromosomes being their offspring also
belong to schema S. Corollaries 7.2 and 7.3 confirm the significant role of
the length of schema d(S) in the probability of destruction or survival of a
schema.

Let us discuss the impact of mutation on mating pool M(t). The mu-
tation operator changes at random, with probability pm, the value on a
fixed position from 0 to 1 or in the opposite direction. It is evident that
if the schema is to survive the mutation then all the fixed positions in the
schema must remain unchanged. A given chromosome from the mating pool
belonging to schema S, that is the chromosome from set M(t)∩S, remains
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in schema S only when none of the symbols in this chromosome, corre-
sponding to the fixed symbols in schema S, is changed during mutation.
The probability of such an event is (1− pm)o(S). This result is presented as
yet another corollary.

Corollary 7.4 (impact of mutation)
For a given chromosome in M(t)∩S, the probability that this chromosome
will belong to schema S after the operation of mutation is given by

(1 − pm)o(S)
. (7.9)

This notion is called the probability of mutation survival by schema S.

Corollary 7.5
If the probability of mutation pm is low (pm << 1) , then it may be as-
sumed that the probability of survival of mutation of schema S specified
in Corollary 7.4 is roughly equal to

1 − pmo (S) . (7.10)

The effect of combining the impact of selection, crossover and mutation
(Corollaries 7.1 – 7.4), and taking into consideration the fact that if a
chromosome from set M(t) ∩ S gives an offspring that fits to schema S,
then it belongs to P(t + 1)∩S, leads to the following reproduction schema
[24]:

E [c (S, t + 1)] ≥ c (S, t)
F (S, t)
F (t)

(
1 − pc

d (S)
L − 1

)
(1 − pm)o(S)

. (7.11)

Dependency (7.11) shows how the number of chromosomes that fit to
a given schema changes from one population to another. Three factors
reflected on the right side of expression (7.11) have an impact on this
change, that is: F (S, t) /F (t) indicating the role of the average value of
the fitness function, 1−pcd (S) / (L − 1) indicating the impact of crossover,
and (1 − pm)o(S) indicating the impact of mutation. The higher the value
of each of these factors, the higher the expected number of adaptations
to schema S in the subsequent population. Corollary 7.5 allows to present
dependency (7.11) in the form of

E [c (S, t + 1)] ≥ c (S, t)
F (S, t)
F (t)

(
1 − pc

d (S)
L − 1

− pmo (S)
)

. (7.12)

For large populations formula (7.12) may be approximated by

c (S, t + 1) ≥ c (S, t)
F (S, t)
F (t)

(
1 − pc

d (S)
L − 1

− pmo (S)
)

. (7.13)
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Dependencies (7.11) and (7.12) imply that the expected number of chro-
mosomes that fit to schema S in the subsequent generation is the function
of the current number of chromosomes belonging to this schema, relative
fitness of the schema and the order and length of the schema. It is shown
that schemata with a fitness above the average and with a low order and
low length are characterized by a growing number of their representatives
in subsequent populations. This growth is exponential, which results from
dependency (7.8), which, for large populations, can be replaced by an ap-
proximated recurrence dependency in the form of [136]

c (S, t + 1) = c (S, t)
F (S, t)
F (t)

. (7.14)

If we assume that schema S has a fitness of ε % above the average, i.e.

F (S, t) = F (t) + εF (t) , (7.15)

then substituting dependency (7.13) to inequality (7.12) and assuming that
ε does not change with time, and starting from t = 0, we obtain

c (S, t) = c (S, 0) (1 + ε)t

and
ε =
(
F (S, t) − F (t)

)
/F (t) , (7.16)

i.e. ε > 0 for a schema with the fitness above the average and ε < 0 for a
schema with the fitness below the average.

Equation (7.16) describes a geometrical sequence. It results that in the
reproduction process schemata that are better (worse) than the average
are selected in an ascending (descending) number exponentially in subse-
quent generations of the genetic algorithm. Let us notice that dependencies
(7.8) – (7.14) are based on the assumption that fitness function F takes
only positive values. In case where genetic algorithms are applied to opti-
mization problems in which the function to be optimized may take negative
values, some supplementary mapping between the function to be optimized
and the fitness function is required. The final effect resulting from depen-
dencies (7.11) – (7.13) may be formulated in the form of theorem. This is
the basic theorem for genetic algorithms, that is the schemata theorem [82].

Theorem 7.1
Schemata with low order and a low length and with the fitness above the
average obtain the exponentially ascending number of their representatives
in subsequent generations of the genetic algorithm.

Given the above-mentioned theorem, an important issue is coding, which
should bring good schemata of a low range, low length and fitness above the
average. The following hypothesis may be considered as an intermediary
result of Theorem 7.1. This is a so-called bricks hypothesis ( or building
blocks hypothesis) [63, 136].
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Hypothesis 7.1
The genetic algorithm aims at reaching a result that is close to the optimum
by listing good schemata (with fitness above the average), of a low order
and low length. These schemata are called bricks (or building blocks).

The building blocks hypothesis was made upon the basis of the schemata
theorem, by inferring that genetic algorithms explore search space via
schemata having a low order and a low length, which schemata will next
take part in the exchange of information during crossover.

Although some research was made towards proving this hypothesis, still
in case of the majority of non-trivial applications we base mainly on empiri-
cal results. During the last dozen of years, many papers have been produced
on the application of genetic algorithms supporting this hypothesis. When
assuming that the hypothesis is correct the coding problem seems to be crit-
ical for the operation of the genetic algorithm; the coding should fulfill the
concept of small building blocks. Undoubtedly, the strength of the genetic
algorithms is based on the processing of a large number of schemata, owing
to which these algorithms have advantage over other traditional methods.

7.3.2 Evolution strategies
The best way to get familiarized with evolution strategies is to begin with
comparing them to the operation of genetic algorithms. Certainly, the main
similarity is that both methods operate on the populations of potential
solutions and use the selection principle and the principle of processing
the best fit individuals. However, there are many differences between these
two algorithms. The first difference concerns the method of representing
the individuals. Evolution strategies operate on vectors of floating-point
numbers while classical genetic algorithms operate on binary vectors.

The second difference between evolution strategies and genetic algo-
rithms is hidden in the selection process. In the genetic algorithm, certain
number of individuals corresponding to the size of the parents population
is selected to the new population. This is made by means of sampling dur-
ing which the chance to select an individual depends on the value of its
fitness function. This results in a fact that the worst chromosomes may
also be drawn. In turn, in evolution strategies, a temporary population is
created during the selection procedure, and its size differs from the size of
the parents population. The subsequent generation of individuals is cre-
ated through the selection of the best ones. Irrespectively of the selection
method applied in the genetic algorithm (the roulette wheel method or e.g.
the ranking method), the individuals that are better fit may be selected
several times. In evolution strategies, individuals are selected without re-
currence. The selection is deterministic.

The third difference between evolution strategies and genetic algorithms
concerns the order of processes of selection and recombination (that is the
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change of genes through the operation of genetic operators). In evolution
strategies, the recombination process occurs first, and next – the selection
process. An offspring is a result of the crossover of two parent individuals
and mutation, while in some versions of evolution strategies only mutation
is applied. The above mentioned temporary population created in this way
undergoes the selection process, which reduces the size of this population
down to the size of the parents population. Genetic algorithms work the
opposite way. First, the selection of individuals occurs on which genetic
operators (crossover and mutation) are applied later in accordance with the
determined probability. Next difference between evolution strategies and
genetic algorithms consists in the fact that genetic algorithms’ parameters,
such as the probability of crossover and the probability of mutation, remain
constant during the evolution process, while in evolution strategies these
parameters undergo a permanent change (self-adaptation of parameters).

Evolution strategies may be divided into several basic types. We are go-
ing present below three strategies.

7.3.2.1. Evolution strategy (1 + 1)

The first algorithm that gave rise to the entire family of evolution strategies
is strategy (1 + 1). The general schema of strategy (1 + 1) is presented in
Fig. 7.7.

In the (1 + 1) evolution strategy one base chromosome x is processed.
The algorithm begins with a random choosing of the values of particular
components of vector x.

In each generation, a new individual y is created as a result of mutation.
When comparing the values of the fitness function of both individuals,
i.e. F (x) and F (y), the one having higher value of the fitness function is
selected (in case when the maximum is searched). It is this chromosome
that becomes the new base chromosome x in the next generation. In this
algorithm, the crossover operator does not occur. Chromosome y is created
through adding, to each gene of chromosome x, certain random number
generated in accordance with normal distribution, i.e.

yi = xi + σNi (0, 1) , (7.17)

where yi means i-th gene of chromosome y; xi – i -th gene of chromosome
x; σ – a parameter determining the range of mutation; Ni (0, 1) – a random
number generated in accordance with normal distribution for the i -th gene.

The adaptation of parameters in this strategy is made through a change
of the mutation range, i.e. parameter σ. The 1/5 success rule is applied in
this case. In terms of this rule, the best results in the search of the optimum
solution are obtained where the relation between the successful mutations
and all the mutations is precisely 1/5. If during subsequent k generations
the relation between successful mutations and all the mutations is higher
than value 1/5, then we increase the value of parameter σ. If this relation is
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FIGURE 7.7. The flowchart diagram of strategy (1 + 1)

lower than 1/5 then we reduce the range of mutation. Parameter σ remains
unchanged when the relation between the successful mutations and all the
mutations is precisely 1/5. The 1/5 success rule appeared in literature as
a result of the process of the optimization of the speed of convergence of
some multidimensional test functions, the so-called corridor and spherical
model. Let ϕ(k) be the coefficient of the mutation operator’s success in
previous k generations. The 1/5 success rule may be formally denoted as
follows:

σ′ =

⎧
⎨

⎩

c1 · σ for ϕ(k) < 1/5,
c2 · σ for ϕ(k) > 1/5,

σ for ϕ(k) = 1/5,
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where coefficients c1 and c2 govern the speed of the growth or reduction
of the mutation range σ. In literature, experimental values of these coeffi-
cients were chosen: c1 = 0.82, c2 = 1/c1 = 1.2.

Example 7.11
Let us analyze the operation of one generation of the evolution strategy
(1 + 1) in order to find the maximum of the function

f (x1, x2) = −x2
1 − x2

2 + 2 (7.18)

for −2 ≤ x1 ≤ 2 and −2 ≤ x2 ≤ 2. The shape of this function is depicted in
Fig. 7.8. This is a function of two variables and chromosome x consists of
the same number of genes. The initial value of the mutation range σ = 1.

FIGURE 7.8. Function f (x1, x2) = −x2
1 − x2

2 + 2 in Example 7.11

The operation of the algorithm begins, in accordance with the schema of
Fig. 7.7, with drawing initial values of vector x from interval [−2, 2]. The
range of our search will be limited to this interval. The vector of numbers
[−1.45,−1.95] was drawn. We evaluate the fitness of the individual with
the use of the fitness function, which in our case will be function (7.18). We
obtain F (x) = −3.91. The main loop of the algorithm begins. In order to
carry out the operation of mutation, we draw two numbers from the normal
distribution N1 (0, 1) = −0.90 and N2 (0, 1) = −0.08. Applying formula
(7.17), we create a new individual y = [−2.35,−2.03]. We check whether
its fitness F (y) = −7.64 is higher than the fitness of individual x. We notice
that in the future generation x will again be the base chromosome. We are
going to determine the parameters of the (1 + 1) strategy. We assume that
if the 1/5 success rule requires an increase in the mutation range then we
increase this range applying coefficient c2 = 1.2. In case the mutation range
needs to be reduced this coefficient is c1 = 0.82.

A change of parameter σ will be made every k = 5 generations. Changes
in the value of the fitness of the base chromosome during 100 generations
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FIGURE 7.9. Fitness function in Example 7.11

FIGURE 7.10. Mutation range changes in Example 7.11

are presented in Fig. 7.9, and changes in the value of the mutation range
are depicted in Fig. 7.10.

7.3.2.2. Evolution strategy (µ + λ)

The extension of the (1 + 1) evolution strategy is the (µ + λ) strategy, of
which flowchart is depicted in Fig. 7.11. This algorithm, owing to a larger
number of individuals and, in consequence, a larger diversity of genotypes,
allows to avoid the final solution obtained in the form of the local minimum,
which is often found in the previously described (1 + 1) strategy.

We start the algorithm with a random generation of the initial parents
population P containing µ individuals. Next, a temporary population T
is created by means of reproduction, which population contains λ individ-
uals, while λ ≥ µ. Reproduction consists in a multiple random selection
of λ individuals out of population P (multiple sampling) and placing the
selected ones in temporary population T. Individuals of population T un-
dergo crossover and mutation operations as a result of which an offspring
population O is created, which also has size λ. The last step is the selection
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FIGURE 7.11. Flowchart of the evolution strategy (µ+λ)

of µ best offspring from both populations P ∪ O, which will constitute a
new parent population P.

Strategy (µ + λ) is extended with the self-adaptation of the mutation
range, which replaces the previously described 1/5 success method. For the
needs of self-adaptation, chromosome σ was added to the description of
each individual, which chromosome contains the values of standard devi-
ations applied during the mutation of particular genes of chromosome x.
Additionally, the crossover operator was introduced. It is important that
both chromosomes undergo genetic operations, both vector x and standard
deviation vector σ.

The operation of the crossover operator consists in drawing two indi-
viduals and exchanging or averaging the value of their genes. Two new
individuals created this way replace their parents. We are going to describe
a crossover consisting in exchanging the value of genes. Let us select two
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individuals
(x1, σ1) =

([
x1

1, ..., x
1
n

]T
,
[
σ1

1 , ..., σ1
n

]T)

and
(x2, σ2) =

([
x2

1, ..., x
2
n

]T
,
[
σ2

1 , ..., σ2
n

]T)
.

In case where the value of the genes is replaced, the offspring takes on the
form

(x′, σ′) =
(
[xq1

1 , ..., xqn
n ]T , [σq1

1 , ..., σqn
n ]T
)

, (7.19)

where qi = 1 or qi = 2 (each gene comes from the first or the second selected
parent). In case of a crossover consisting in averaging the value of the genes
of two individuals, the new offspring is created following the formula

(x′, σ′) =
([(

x1
1 + x2

1

)
/2, ...,

(
x1

n + x2
n

)
/2
]T

,
[(

σ1
1 + σ2

1

)
/2, ...,

(
σ1

n + σ2
n

)
/2
]T)

.
(7.20)

Averaging may also be made with coefficient α drawn from the uniform
distribution U (0, 1), and then the crossover is following:

x′1
i = αx1

i + (1 − α) x2
i ,

x′2
i = αx2

i + (1 − α) x1
i ,

σ′1
i = ασ1

i + (1 − α) σ2
i ,

σ′2
i = ασ2

i + (1 − α) σ1
i .

(7.21)

The mutation operation is made on a single individual. The first one to
undergo this operation is chromosome σ = [σ1, ..., σn]T according to the
formula

σ′
i = σi exp (τ ′N (0, 1) + τNi (0, 1)) , (7.22)

in which i = 1, . . . , n, n is the length of the chromosome, N (0, 1) – a
random number from the normal distribution (drawn once for the entire
chromosome), Ni (0, 1) – a random number from the normal distribution
(drawn separately for each gene), τ ′ and τ are parameters of the evolu-
tion strategy that impact the convergence of the algorithm. The following
formula can be found in literature:

τ ′ =
C√
2n

, τ =
C√
2n

, (7.23)

where C takes value 1 the most frequently. New ranges of mutation σ′
i

impact the change of value xi in the following manner:

x′
i = xi + σ′

iNi (0, 1) , (7.24)

where Ni(0, 1) is a random number from the normal distribution, i =
1, . . . , n.

As it is easy to notice, the introduction of parameter σ′
i given by formula

(7.22) allows the self-adaptation of the mutation process.



296 7. Evolutionary algorithms

Example 7.12
We are going to present the operation of the evolution strategy (µ+λ) and
follow some of its steps. The task on the basis of which we are going to
learn about this algorithm is the minimization of function

f (x1, x2) = x2
1 + x2

2 (7.25)

with constraints −1 ≤ x1 ≤ 1 and −1 ≤ x2 ≤ 1. The shape of this function
is depicted in Fig. 7.12.

FIGURE 7.12. Function f (x1, x2) = x2
1 + x2

2 in Example 7.12

The global minimum is in point (0, 0), while f (0, 0) = 0. We assume the
following parameters of the algorithm: µ = 4 and λ = 4. We are going to
apply only the mutation operator within genetic operations. The fitness of
particular individuals is specified by function (7.25), and the individuals
that we are going to be considered as the best fit will be the ones for which
this function’s value is the lowest.

The parents population P consists of four individuals (µ = 4), and each
of them contains two-element vectors x = [x1, x2]T and σ = [σ1, σ2]T . The
initial parents population will be generated at random. Values x1 and x2

are drawn from interval [−1, 1] and we assume that σ1 = σ2 = 1. Table 7.1
presents chromosomes of the initial population P and the values of their
fitness function.

TABLE 7.1. Parents population P

Individual’s number x1 x2 σ1 σ2 f (x1, x2)

1 0.63 0.41 1 1 0.57
2 0.57 −0.91 1 1 1.15
3 −0.67 −0.62 1 1 0.83
4 0.38 0.65 1 1 0.57

It is easy to notice that chromosomes number 1 and 4 are characterized
by the lowest value of the fitness function. Now we create a temporary pop-
ulation T having a size of λ = 4. With multiple drawing out of the parents
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TABLE 7.2. Temporary population T

Individual’s number x1 x2 σ1 σ2 f (x1, x2)

1 0.38 0.65 1 1 0.57
2 0.57 −0.91 1 1 1.15
3 −0.67 −0.62 1 1 0.83
4 0.38 0.65 1 1 0.57

population P, we select individuals holding numbers 4, 2, 3 and 4. The
temporary population T is presented in Table 7.2. Let us note that only
one best chromosome was selected from population P to population T.

Next step are genetic operations made on individuals of the temporary
population, the result of which will be offspring population O. The mu-
tation of chromosome σ needs the determination of parameters τ ′ and τ
according to formula (7.23). We assume that C = 1. Then, for n = 2, pa-
rameters τ ′ and τ are equal, respectively, 0.5 and 0.5946. The course of the
mutation of elements σi is presented in Table 7.3, and of elements xi – in
Table 7.4.

TABLE 7.3. Course of mutation of chromosome σ of particular individuals of
population T

Individual’s
number

N (0, 1)
Gen 1

σ1 N1(0, 1) exp (τ ′N(0, 1) + τN1(0, 1)) σ′
1

1 1.27 1 0.47 2.50 2.50
2 −0.58 1 0.05 0.77 0.77
3 0.47 1 −0.82 0.78 0.78
4 −2.38 1 0.31 0.37 0.37

Individual’s
number

N (0, 1)
Gen 2

σ2 N2(0, 1) exp (τ ′N(0, 1) + τN2(0, 1)) σ′
2

1 1.27 1 −0.38 1.51 1.51
2 −0.58 1 −0.46 0.57 0.57
3 0.47 1 0.44 1.64 1.64
4 −2.38 1 −1.05 0.16 0.16

After carrying out genetic operations, we obtain eventually population
O presented in Table 7.5.

According to the mechanism of the operation of strategy (µ+λ), the new
mating pool P is created by µ best chromosomes of the old population P
(Table 7.1) and population O (Table 7.5). Thus, we select the individual
holding number 4 out of population O and individuals holding numbers 1,
4 and 3 out of population P. The new population is presented in Table 7.6.
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TABLE 7.4. Course of mutation of chromosome x of particular individuals of
population T

Individual’s
number

Gen 1
x1 N1(0, 1) σ1N1(0, 1) x′

1

1 0.38 −0.27 −0.67 −0.29
2 0.57 0.20 0.15 0.72
3 −0.67 −1.14 −0.89 −1.56
4 0.38 −0.27 −0.10 0.28

Individual’s
number

Gen 2
x2 N2(0, 1) σ2N2(0, 1) x′

2

1 0.65 −1.03 −1.55 −0.90
2 −0.91 −0.30 −0.17 −1.08
3 −0.62 −1.32 −2.17 −2.79
4 0.65 −1.71 −0.28 0.37

TABLE 7.5. Offspring population O

Individual’s number x1 x2 σ1 σ2 f (x1, x2)

1 −0.29 −0.90 2.50 1.51 0.89
2 0.72 −1.08 0.77 0.57 1.68
3 −1.56 −2.79 0.78 1.64 10.22
4 0.28 0.37 0.37 0.16 0.22

TABLE 7.6. New parents population P

Individual’s number x1 x2 σ1 σ2 f (x1, x2)

1 0.28 0.37 0.37 0.16 0.22
2 0.63 0.41 1 1 0.57
3 0.38 0.65 1 1 0.57
4 −0.67 −0.62 1 1 0.83

Let us note the best individual in the new population. It was created
as a result of the operation of genetic operations and is characterized by
values x1 and x2 that are close to the optimum solution (the minimum
of the function). Let us note that the values of elements σ1 and σ2 corre-
sponding to the best individual are clearly lower that the ones that were
initially assumed. Such a small range of mutation allowed to obtain a more
accurate solution and, which is more important, will be transferred to the
new population, thus enabling to narrow the searched space. Individual
number 1 from the old population P noticed earlier is still one of the best
individuals and found its place in the new mating pool.
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FIGURE 7.13. The best (continuous curve) and average (dotted curve) values
of the fitness function of individuals in the 20 subsequent generations of the
evolution strategy (µ + λ) in Example 7.12

FIGURE 7.14. Average values of the mutation range in 20 subsequent generations
in Example 7.12

Figure 7.13 presents the best (continuous curve) and average (dotted
curve) values of the fitness function of individuals in the 20 subsequent
generations of the evolution strategy (µ+λ). Convergence to the minimum
of function (7.25) is shown clearly.

Figure 7.14 shows average values of the mutation range in 20 subsequent
generations. These values, in spite of certain fluctuations, have a descend-
ing tendency.

Example 7.13
Next example of applying the evolution strategy (µ + λ) will be the search
of the minimum of the Ackley test function. The test functions are used
to check the correctness and effectiveness of the operation of evolutionary
algorithms. The Ackley function is given by formula

f (x) = −20 exp

⎛

⎝−0.2

√√
√
√ 1

n

n∑

i=1

x2
i

⎞

⎠−exp

(
1
n

n∑

1

cos (2πxi)

)

+20+e (7.26)
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with constraints −30 ≤ xi ≤ 30, while n is the number of variables. There
is one global minimum of this function x = 0 and then f(x) = 0. For
two variables x1 and x2, a fragment of the function graph is presented in
Fig. 7.15.

In our task, we search for the minimum of the 10 – dimensional Ackley
function. A single individual consists of 10 – element vectors x and σ. We
are going to adopt the following parameters of strategy (µ + λ) for ex-
periment: µ = 50 and λ = 200. The number of generations is 100. The
components of vectors x of particular chromosomes will be initiated by
random values out of interval [−30, 30], but all the mutation ranges, i.e.
components of vectors σ initially take the value that is equal to 1. In ac-
cordance with formula (7.23) parameters τ ′ and τ for C = 1 and n = 10
will be determined in the following manner:

τ ′ =
1√
20

= 0.2236 τ =
1

√
2
√

10
= 0.3976. (7.27)

The crossover operator is not used in our example. In Fig. 7.16 we may ob-
serve the course of the operation of 100 generations of the evolution strategy

FIGURE 7.15. Function (7.26) for n = 2

FIGURE 7.16. The best (continuous curve) and average (dotted curve) values
of the fitness function of individuals in the 100 subsequent generations of the
evolution strategy (µ + λ) in Example 7.13
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FIGURE 7.17. Average values of the mutation range in 20 subsequent generations
in Example 7.13

(µ+λ). In the vicinity of the 70th generation, the best values of the fitness
function are getting close to the global minimum. Let us compare this with
a change of the average value of the mutation range (Fig. 7.17). Its initial
growth may be interpreted as an increase in the variety in the population
and thus, an extension of the search range. Just after that moment a strong
decrease occurs and the differences in chromosomes caused by the genetic
operator are getting reduced. Individuals begin to oscilate around the final
solution.

7.3.2.3. Evolution strategy (µ, λ)

A strategy used more frequently than (µ + λ) is the strategy (µ, λ). The
operation of both algorithms is almost identical. The difference is that the
new population P containing µ individuals is selected only out of the best
λ individuals of population O. Condition µ > λ must be met in order to
make it possible. The flowchart presenting the operation of the algorithm
is shown in Fig. 7.18.

This method has an advantage over strategy (µ + λ) in one point that is
quite important: so far the population could be dominated by one individ-
ual with a high value of the fitness function, but too high or too low values
of standard deviations. This would hamper the determination of better
solutions. Strategy (µ, λ) does not have this disadvantage since old indi-
viduals are not transferred to the new mating pool. The genetic operators
that can be applied are not different from crossover (7.19) – (7.21) that is
already known and mutation (7.22) and (7.24).

Example 7.14
Let us follow some steps of the operation of evolution strategy (µ, λ), by
solving a simple task of finding the maximum of function

f (x1, x2) = −x2
1 − x2

2, (7.28)
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while −1 ≤ x1 ≤ 1 and −1 ≤ x2 ≤ 1. Similarly as in Example 7.12 a
single individual will consist of two-element vectors x and σ. We assume
the following parameters: µ = 4, λ = 8. We begin the evolution strat-
egy algorithm with generating the initial values of chromosomes of the
parents population. We will initiate the components of vector x with ran-
dom numbers from the range of the searched solution, that is [−1, 1], and
the elements of vector σ will be initiated with values that are equal to 1.
Table 7.7 presents the initial values of the components of vectors x and σ
of four drawn individuals.

FIGURE 7.18. Flowchart for the evolution strategy (µ, λ)

TABLE 7.7. Initial parents population P

Individual’s number x1 x2 σ1 σ2 f (x1, x2)

1 −0.67 −0.68 1 1 −0.91
2 0.36 −1.00 1 1 −1.13
3 −0.97 −0.83 1 1 −1.63
4 −0.19 0.98 1 1 −1.00
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The chromosomes in the population that are considered to be the best fit
will be those which have the highest value of function (7.28). We select now,
by means of multiple drawing, 8 individuals to the temporary population
T. Let us assume that the chromosomes holding the following numbers
were drawn: 2, 2, 2, 3, 3, 1, 3, and 4. Population T is shown in Table 7.8.

Similarly as in Example 7.12 for C = 1 and n = 2, τ ′ = 0.5 and τ =
0.5946. The course of the mutation operation for particular components of
vectors σ are shown in Table 7.9.

The second column of Table 7.9 contains the values of numbers (ran-
dom variables with the normal distribution) drawn for this chromosome.
However, the remaining columns present the values of parameter σi before

TABLE 7.8. Temporary population T

Individual’s number x1 x2 σ1 σ2 f (x1, x2)

1 0.36 −1.00 1 1 −1.13
2 0.36 −1.00 1 1 −1.13
3 0.36 −1.00 1 1 −1.13
4 −0.97 −0.83 1 1 −1.63
5 −0.97 −0.83 1 1 −1.63
6 −0.67 −0.68 1 1 −0.91
7 −0.97 −0.83 1 1 −1.63
8 −0.19 0.98 1 1 −1.00

TABLE 7.9. Course of the mutation of genes of chromosome σ

Individual’s
number N (0, 1)

Gen 1
σ1 N1(0, 1) exp (τ ′N(0, 1) + τN1(0, 1)) σ′

1

1 −0.94 1 1.16 1.25 1.25
2 0.15 1 −0.67 0.72 0.72
3 0.80 1 −1.74 0.53 0.53
4 −1.44 1 −1.01 0.27 0.27
5 −0.77 1 0.05 0.70 0.70
6 −1.67 1 0.27 0.51 0.51
7 −0.11 1 1.31 2.06 2.06
8 −2.36 1 0.71 0.47 0.47

Individual’s
number N (0, 1)

Gen 2
σ2 N2(0, 1) exp (τ ′N(0, 1) + τN2(0, 1)) σ′

2

1 −0.94 1 −0.04 0.61 0.61
2 0.15 1 −1.00 0.59 0.59
3 0.80 1 −0.42 1.16 1.16
4 −1.44 1 −1.37 0.22 0.22
5 −0.77 1 −0.36 0.55 0.55
6 −1.67 1 0.80 0.70 0.70
7 −0.11 1 −0.03 0.93 0.93
8 −2.36 1 0.49 0.41 0.41
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mutation, drawn values Ni (0, 1) for a given gene, coefficient exp (τ ′N(0, 1)+
τNi(0, 1)) by which the previous value σi will be multiplied, and the new
value of the mutation range for both genes of chromosome σ = [σ1, σ2].
Table 7.10 shows the course of the mutation of chromosomes x with the
use of the new values of the range of mutation of σ′.

TABLE 7.10. Course of the mutation of genes of chromosome x

Individual’s
number

Gen 1
x1 N1(0, 1) σ1N1(0, 1) x′

1

1 0.36 −0.50 −0.62 −0.26
2 0.36 1.04 0.75 1.11
3 0.36 0.78 0.41 0.77
4 −0.97 1.23 0.33 −0.64
5 −0.97 −0.48 −0.34 −1.31
6 −0.67 0.84 0.43 −0.24
7 −0.97 −0.42 −0.87 −1.84
8 −0.19 0.81 0.38 0.19

Individual’s
number

Gen 2
x2 N2(0, 1) σ2N2(0, 1) x′

2

1 −1.00 −0.05 −0.03 −1.03
2 −1.00 −0.70 −0.42 −1.42
3 −1.00 −1.90 2.21 1.21
4 −0.83 −1.54 −0.33 −1.16
5 −0.83 −0.70 −0.38 −1.21
6 −0.68 0.44 0.31 −0.37
7 −0.83 0.51 0.47 −0.36
8 0.98 −0.12 −0.05 0.93

Subsequent columns of Table 7.10 present the values of genes xi before
mutation, the drawn numbers Ni (0, 1), coefficients by which genes xi will
be changed and the new values of genes x′

i. Offspring population O is
presented in Table 7.11.

TABLE 7.11. Offspring population O

Individual’s number x1 x2 σ1 σ2 f (x1, x2)

1 −0.26 −1.03 1.25 0.61 −1.13
2 1.11 −1.42 0.72 0.59 −3.25
3 0.77 1.21 0.53 1.16 −2.06
4 −0.64 −1.16 0.27 0.22 −1.76
5 −1.31 −1.21 0.70 0.55 −3.18
6 −0.24 −0.37 0.51 0.70 −0.19
7 −1.84 −0.36 2.06 0.93 −3.52
8 0.19 0.93 0.47 0.41 −0.90
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The new parents population is created by four best individuals from
population O. In our case they hold numbers 6, 8, 1 and 4. Individuals of
the new population P are shown in Table 7.12.

When comparing the Tables: 7.7 and 7.12, we can see an improvement
in the results. The new population P is close to the optimum solution.
It is also worth noting that the mutation ranges are reduced. Let us fol-
low the operation of the algorithm and analyze the course of subsequent
generations. Figure 7.19 shows the values of the best fitness function (con-
tinuous curve) and the values of the average fitness function (dotted curve)

TABLE 7.12. New parents population P

Individual’s number x1 x2 σ1 σ2 f (x1, x2)

1 −0.24 −0.37 0.51 0.70 −0.19
2 0.19 0.93 0.47 0.41 −0.90
3 −0.26 −1.03 1.25 0.61 −1.13
4 −0.64 −1.16 0.27 0.22 −1.76

FIGURE 7.19. The best (continuous curve) and average (dotted curve) values
of the fitness function of individuals in the 20 subsequent generations of the
evolution strategy (µ + λ) in Example 7.14

FIGURE 7.20. Average values of the mutation range in 20 subsequent generations
in Example 7.14
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of the entire population. Figure 7.20 presents the course of changes in the
mutation range in this example

It is worth reminding that the best fit individuals from the previous pop-
ulation are not transferred to the newly created population, as in strategy
(µ + λ). It is clearly shown in the graph that in the 2nd generation the re-
sult of the operation of the algorithm was improved, but we observe worse
results in the next step.

Example 7.15
We are going to apply strategy (µ, λ) to search for the minimum of quite
complicated Rastingir test function, which is described by formula

f (x) = An +
n∑

i=1

x2
i − A cos (2πxi) . (7.29)

We assume that A = 10 and n = 10, −5.21 ≤ xi ≤ 5.21, i = 1, .., 10. This is
a function (Fig. 7.21) with a grid of local minima and one global minimum
in point x = 0 for which f(x) = 0.

FIGURE 7.21. Function (7.29) for n = 2

We determine the following parameters of the algorithm: µ = 100 and
λ = 400. The number of generations is 100. We are going to apply the
mutation operator and the crossover operator (7.21).Initially, the drawn
values of elements of vector x of all the individuals from the mating pool
come from interval [−5.21, 5.21]. The components of vector σ, similarly to
previous examples, take value 1 at the beginning. The course of changes
in the value of the best fitness function (continuous curve) and in the
average value of the fitness function (dotted curve) of the entire population
in subsequent generations of the algorithm may be observed in Fig. 7.22.
As early as after around 40th generation it is shown that the solution comes
close to the value of the search minimum. The graph presenting the values
of the fitness of the best individuals is clearly “jagged”. This results from
the fact that information on the previous best solution is lost in subsequent
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steps. As we have mentioned before, this is important in order to avoid local
minima. Figure 7.23 presents the course of changes in the mutation range.
As we are getting closer to the optimum solution, the average value of the
mutation range is definitely decreasing.

FIGURE 7.22. The best (continuous curve) and average (dotted curve) values
of the fitness function of individuals in the 100 subsequent generations of the
evolution strategy (µ + λ) in Example 7.15

FIGURE 7.23. Average values of the mutation range in 20 subsequent generations
in Example 7.15

7.3.3 Evolutionary programming
Initially, evolutionary programming was developed within the context of dis-
covering thegrammarof anunknown language.Grammarused tobemodelled
with the use of a finite automat which was subject to evolution. The results
turned out to be promising, however, evolutionary programming gained its
popularity when it developed towards numerical optimization. Figure 7.24
presents a flowchart of the evolutionary programming algorithm.
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FIGURE 7.24. Flowchart for the evolutionary programming algorithm

Looking at this schema a large similarity with the evolution strategy (µ + λ)
may be observed.

However, there is quite a significant difference. During each generation of
the evolutionary programming algorithm, the new population O is created
by means of mutation of each of the individuals of the parents population
P. In turn, in the evolution strategy (µ + λ) each of the individuals has the
same chance to appear in the temporary population T on which genetic
operations are carried out, while λ ≥ µ. In the evolutionary programming,
populations P and O are of the same size, i.e. µ = λ. Finally, the new
parents population P is created with the use of ranking selection which
operates on both individuals from the old population P and mutated indi-
viduals from population O. It should be noted that mutations of individuals
in evolutionary programming consist of a random perturbation of the value
of particular genes.
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7.3.4 Genetic programming
Genetic programming is an extension of the classical genetic algorithm and
may be used in the automatic generation of computer programs. Genetic
programming uses programming language LISP in which the program is
represented in the same way as data, i.e. in the form of a tree. There-
fore, in genetic programming, binary coding was replaced by tree coding.
Non-binary values appear in the nodes of the tree, e.g. numerical values,
variables, functions or symbols of an alphabet. The introduction of such
coding entailed the introduction of new genetic operators. Chromosomes
are of a specific construction and thus, traditional crossover and mutation
methods that are known from the classical genetic algorithm are of no use
here. In genetic programming, chromosomes are coded as trees consisting of
nodes and edges. The proper information is contained in nodes. And edges
specify mutual relations between nodes. We distinguish between terminal
nodes (not having subordinated nodes) and intermediate nodes (opposi-
tion to terminal nodes – have connections with subsequent nodes). In tree
coding we have one node constituting the root of a tree. This node has no
superordinated node. Figure 7.25 shows an example of tree coding. Coded
information is a function x + b · b − (8 + cos(x)).

As we have already mentioned, in the case of tree coding there are specific
crossover and mutation operators. Crossover consists in using two parents
chromosomes and creating two new offspring individuals upon their basis.
We select one node at random in each of the chromosomes intended for
crossover. It may be both a terminal node and an intermediate node. These
nodes, along with corresponding sub-trees, replace each other. As a result
of this operation we obtain two individuals that are different from their
parents (Fig 7.26).

FIGURE 7.25. Example of tree coding of function x + b · b − (8 + cos(x))
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FIGURE 7.26. Example of crossover in tree coding

Mutation is an operation that is a little bit more complicated. As in the
previous case, one node is selected at random in the chromosome on which
the operation is to be carried out. One of several operations may be made
on the content of this node. If it is a terminal node its content may be
replaced with another one, and this node still remains a terminal node.
Alternatively, a terminal node may be replaced by an intermediate node
with a sub-tree generated at random. If an intermediate node is drawn
it may be replaced with a terminal node. Then the entire sub-tree of the
node is removed. Another possibility is to replace the intermediate node
with another node with a sub-tree generated at random.

7.4 Advanced techniques in evolutionary algorithms

7.4.1 Exploration and exploitation
In Subchapter 7.3 we studied different types of evolutionary algorithms.
In spite of differences between them, a common schema of operation may
be drawn, which generally comes down to the processing of certain popu-
lation of individuals. During selection, the probability of multiplication of
individuals with a better fitness to the new population is higher than in
the case of individuals whose fitness is worse. Owing to this operation, the
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evolutionary algorithm has a tendency to go towards better solutions. This
capacity to improve the average value of the fitness of the parents pop-
ulation is called selective pressure. We say that the algorithm has a high
selective pressure if the expected value of the number of copies of a better
individual is higher than the expected value of the number of copies of a
worse individual.

Selective pressure is strictly connected with the relation between the
exploration and the exploitation of search space. We speak of two extreme
cases where, on one hand, the evolutionary algorithm performs exploration,
that is the search of the entire space of solutions in order to approach the
global point being the solution to the problem. Another extreme case is
exploitation, that is moving within a fragment of space close to the global
solution. Exploration is reached by reducing selective pressure. Individu-
als that are selected are not the ones which are the best fit but the ones
which can bring us closer to the optimum solution in the future. Exploita-
tion is reached by increasing selective pressure, because individuals that
are transferred to the next population have values which are each time
closer to the expected albeit not necessarily global solution. Other para-
meters of the evolutionary algorithm also have impact on exploration and
exploitation. Increasing the probability of mutation and crossover causes a
higher diversity of individuals, which, as we can guess, leads to the exten-
sion of search space and prevents premature convergence. In consequence,
decreasing these probabilities contributes to the creation of individuals that
become each time more similar to one another. The evolutionary algorithm
may balance between these two extreme cases, and the instrument intended
for steering are its parameters. If we balance exploration and exploitation,
the average value of fitness of individuals in the population should increase,
which may significantly influence the effectiveness of the operation of the
evolutionary algorithm.

7.4.2 Selection methods
Weare going to present several selectionmethods that are themost frequently
used in genetic algorithms. These methods consist in selecting individ-
uals from the parents population for further processing with the use of
genetic operators. One of them, the roulette wheel method, has already
been described on the occasion of discussing the classical genetic algorithm
(Section 7.3.1). The remaining methods to be presented are the ranking
method and the tournament method. There are, of course, other selection
methods apart from these ones.

7.4.2.1. Roulette wheel method

A selection method using the roulette wheel mechanism, although it is a
random procedure, allows the selection of parent individuals proportionally
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to the value of their fitness function, i.e. in accordance with the probability
of selection given by formula (7.2). Each of the individuals obtains such a
number of its copies in the mating pool as it results from the formula

e (chi) = ps (chi) · K, (7.30)

where K is the number of chromosomes chi, i = 1, 2, ...,K, in the popula-
tion, and pss (chi) means the probability of selecting chromosome chi given
by formula (7.2). Precisely, the number of copies of a given individual in the
mating pool equals the number representing the integer part of e (chi). Let
us note when applying formulae (7.2) and (7.30) that e (chi) = F (chi) /F ,
where F is the average value of the fitness function in the population. It is
obvious that the roulette wheel method may be applied if the values of the
fitness function are positive. This method may only be applied in tasks of
function maximization (and not minimization).

The minimization problem may, of course, be easily converted to the
issue of function maximization and the opposite. However, the possibil-
ity to apply the roulette wheel method to one class of tasks only, i.e. to
maximization only (or only to minimization) is undoubtedly a disadvan-
tage. Another weak point of the roulette wheel method is the fact that
individuals with a very low value of fitness function are eliminated from
the population too early, which may cause a premature convergence of the
genetic algorithm. In order to prevent this, the scaling of fitness function
is applied (Section 7.4.3).

7.4.2.2. Ranking selection

In the ranking selection otherwise called the rank selection, the individ-
uals of a population are set in an order proportionally to the value of their
fitness function. It can be figured out as a ranking list of individuals ranked
from the best fit one to the worst (or in the opposite direction), where a
number specifying the order of an individual on the list and called rank is
assigned to each of the individuals. The number of copies of each individual
entered to the mating pool M (t) is determined according to the previously
defined function depending on the rank of the individual. An example of
such a function is shown in Fig. 7.27.

The advantage of the ranking method is the possibility to apply this
method both to the function maximization and minimization. There is no
need of scaling due to the problem of premature convergence, which may
occur with the roulette method.

7.4.2.3. Tournament selection

In the tournament selection, individuals of a population are divided into
sub-groups and next the individual with the best fitness is selected out of
each of the sub-groups. There are two types of such selection: deterministic
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FIGURE 7.27. Ranking selection

tournament selection and stochastic tournament selection. In the deter-
ministic case, the selection is made with the probability equal to 1, and in
the case of the stochastic selection – with the probability less than 1. The
subgroups may be of any size, most frequently a population is divided into
sub-groups composed of 2 or 3 individuals. The tournament method can be
applied both to maximization and minimization problems. Besides, it can
be easily extended to tasks concerning multi-criterion optimization, that is
the optimization of several functions at a time. In the tournament method,
the size of the sub-groups constituting a population may be changed. Re-
search shows that the tournament method works better than the roulette
method.

Figure 7.28 presents a block diagram illustrating the tournament selec-
tion method for sub-groups composed of 2 individuals. It is easy to gener-
alize it to a larger size of sub-groups.

7.4.2.4. Other selection methods

Therearemanydifferenttypesofselectionalgorithms.Themethodspreviously
presented (the roulette, tournament and ranking methods) are the most
frequently used. Other methods constitute a modification or combination
of them.

Threshold selection is a particular case of ranking selection where the
function determining the probability of transferring an individual to the
mating pool has a form of threshold. This allows the determination of an
appropriate selective pressure by steering the threshold value, on which the
selection of fit individuals depends.

An interesting selection method is crowding selection where the newly
created individuals replace parent individuals that are the most similar to
them, irrespectively of the value of their fitness function. The purpose of
such a procedure is to keep the biggest possible diversity of the population.
The introduced parameter CF (crowding factor) determines the number of
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FIGURE 7.28. Block diagram illustrating the tournament selection method for
sub-groups composed of 2 individuals

parents that are similar to the newly created individual and out of which
the individual to be removed will be drawn. The similarity between the
new and the old individuals is indicated by the Hamming distance.

7.4.3 Scaling the fitness function
The scaling of the fitness function is made mainly due to two reasons.
Firstly, in order to prevent a premature convergence of the genetic algo-
rithm. Secondly, in the final phase of the algorithm, in case where the
population keeps a significant diversity but the difference between the av-
erage fitness values and the maximum value is minor. The scaling of the
fitness function may then prevent such a situation in which average and
best individuals obtain almost the same number of offspring in next gener-
ations, which is an unwanted phenomenon. But a premature convergence
of the algorithm means that the best but not yet optimal chromosomes
dominate in the population. This phenomenon may occur in an algorithm
with the roulette wheel selection method. During several generations, with
a selection that is proportional to the value of the fitness function, the
population will contain only the copies of the best chromosome from the
initial population. It is not probable that such a chromosome represent an
optimum solution given the fact that the initial population is only a small
sample of the entire search space. Scaling the fitness function protects the
population against the domination of a chromosome that is not optimal
and thus, prevents a premature convergence of the evolutionary algorithm.
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Scaling consists of an appropriate transformation of the fitness function.
We can distinguish between 3 basic scaling methods: linear scaling, sigma
truncation, and power law scaling.

7.4.3.1. Linear scaling

Linear scaling consists in transforming the fitness function F to form F ′

through the following linear dependency:

F ′ = a · F + b, (7.31)

where a and b are constants selected in a way allowing the average value of
the fitness function after scaling to be equal to the average value of the fit-
ness function before scaling, and the maximum value of the fitness function
after scaling to be a multiple of the average value of the fitness function.
The multiplication coefficient is often assumed to be between 1.2 and 2. It
should be ensured that function F ′ does not take negative values.

7.4.3.2. Sigma truncation

Sigma truncation is a scaling method consisting in transforming the fit-
ness function F to F ′ according to the following dependency:

F ′ = F +
(
F − c · σ

)
, (7.32)

where F is an average value of the fitness function in the population, c is a
small natural number (usually from 1 to 5), and σ is the standard deviation
in the population. In case where negative values of F ′ occur then they are
assumed to be equal to zero.

7.4.3.3. Power law scaling

Power law scaling is a scaling method transforming the fitness function
F according to the dependency:

F ′ = F k, (7.33)

where k is a number close to 1. The selection of k usually depends on the
problem. For instance, it can be assumed that k = 1.005.

In paper [75] other types of scaling are also described, for example, loga-
rithmic scaling, “window scaling”, Boltzmann scaling and exponential rank-
ing scaling.

7.4.4 Specific reproduction procedures
The specific reproduction procedures are the elitist strategy and the genetic
algorithm with a partial replacement of the population.
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7.4.4.1. Elitist strategy

The elitist strategy consists in protecting the best chromosomes in subse-
quent generations. In the classical genetic algorithm the best fit individuals
are not always transferred to the next generation. It does not always happen
that the new population P (t + 1) contains a chromosome from population
P (t), having the highest value of the fitness function. The elitist strategy
is applied in order to protect populations against the loss of such an indi-
vidual. It is always included in the new population.

7.4.4.2. Genetic algorithm with a partial replacement
of the population

The genetic algorithm with a partial replacement of population, also called
the steady-state algorithm, is characterized by the fact that a part of the
population is transferred to the next generation without any changes. This
means that this part of the population does not undergo crossover and
mutation operations. It often happens in a specific implementation of this
algorithm that only one or two individuals are replaced in a given moment
instead of crossover and mutation within the entire population.

Example 7.16
We are going to solve again the knapsack problem presented in Example
7.6. This time we are going to use the roulette wheel method and the elitist
strategy. The elitist strategy will consist of an automatic transfer of 2 best
fit individuals to the next population.

Figure 7.29 shows graphs representing the value of the fitness function
of the best individual (continuous curve) and the average value of all the
individuals of the population (dotted curve) in subsequent generations of
the genetic algorithm. It is easy to notice that changes in the value of the
fitness function of the best individual occur in a less chaotic way than in
Example 7.6. In subsequent generations the best solutions are not lost and
thus, in Fig. 7.29 the maximum value of the fitness function grows or does
not change. It is worth to emphasize one more advantage of applying the
elitist strategy. New solutions have been found, which allow packing 34 or
35 items into the bag. Let us analyse the histogram (Fig. 7.30) of solutions
in 100 subsequent runs of the genetic algorithm and compare with a similar
graph (Fig. 7.6) from Example 7.6. We can see a visible improvement in
the results. Only one solution with 33 items was found (which was the
best solution last time), 57 solutions gave 34 items, and in 42 cases the
chromosome was the solution allowing to pack 35 items to the bag.
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FIGURE 7.29. Fitness function for the best chromosome (continous curve) and
average value (dotted curve) of the fitness of individuals in 200 subsequent gen-
erations in Example 7.16

FIGURE 7.30. Histogram of various solutions in 100 runs of the genetic algorithm
in Example 7.16

7.4.5 Coding methods
In the classical genetic algorithm the binary coding of chromosomes is used.
We apply the known method of representing decimal numbers in the binary
system where each bit of the binary code corresponds to the subsequent
power of number 2. For instance, the binary sequence [10011] is a code of
number 19, because 1 ·24 +0 ·23 +0 ·22 +1 ·21 +1 ·20 = 19. In case of coding
real numbers the value of independent variable xi ∈ [ai, bi] ∈ R coded with
the use of ni bits is determined upon the basis of the value of genes of
chromosome x having subsequent numbers from s (i) to s (i) + ni − 1:

xi = ai +
bi − ai

2ni − 1

ni−1∑

j=0

2jxs(i)+j . (7.34)

The formula presented above results from a simple mapping of the linear
interval [ai, bi] into interval [0, 2ni − 1] where 2ni − 1 is a decimal number
coded in the form of binary sequence with length ni composed of nothing
but numbers one, and 0 is, of course, a decimal value of a binary sequence
with length ni composed of nothing but zeros.

In genetic algorithms, the Gray code may be applied for instance, which
code is characterized by the fact that binary sequences corresponding to
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two subsequent integer numbers differ by one bit only. Such a manner of
coding the chromosomes may turn out to be justified due to the operation
of mutation.

Logarithmic coding is applied in order to reduce the length of chromo-
somes in the genetic algorithm. This coding is used mainly in optimization
problems with many parameters and having large search spaces.

In the logarithmic coding the first bit (α) of a code sequence is a bit
of the exponential function’s sign, the second bit (β) is a bit of the sign
of the exponential function’s exponent, and the remaining bits (bin) are a
representation of the exponential function’s exponenty, i.e.

[αβbin] = (−1)β e(−1)α[bin]10 , (7.35)

while [bin]10 means a decimal value of a number coded in the form of binary
code bin.

Example 7.17
It is easy to verify that [10110] is a code sequence of number

x1 = (−1)0 e(−1)[110]10 = e−6 = 0.002478752.

Similarly, [01010] is a code sequence of number

x2 = (−1)0 e(−1)[010]10 = −e2 = −7.389056099.

Let us note that this way, using 5 bits we can code numbers from interval[
−e7, e7

]
. This is a much larger range than [0, 31] used in binary coding.

The advantage of the binary coding is the simplicity in usage and the
possibility to use simple genetic operators; however, there are also disadvan-
tages. The binary alphabet is not natural for the majority of optimization
problems. This causes the appearance of huge solution spaces. Even the
coding of several independent variables in a chromosome, with a quite high
accuracy (a significant number of bits intended for coding the value of the
variables), causes a rapid growth of the chromosome length. Coding with
floating-point numbers seems to be a much better method, especially in
problems of numerical optimization.

Example 7.18
We are going to use the classical genetic algorithm in order to find the
maximum of function

f (x1, x2) = 2 (1 − x1) e−x2
1−x2

2 + 3e−x2
1−(x2−2)2 + 4e−(x1−2)2−x2

2 (7.36)

with constraints −3 < x1 < 3 and −3 < x2 < 3. The graph of this function
is depicted in Fig. 7.31. Variables x1 and x2 are coded with the use of
linear mapping (7.34), using 20 bits for each variable. For instance, for
chromosome

[00010111101101011101 00011001100101101000]
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we may determine the phenotype

[1.3797, − 2.4703] ,

where αi = −3, bi = 3, i = 1, 2. We assume the probability of mutation
pm = 0.01 and the probability of crossover pc = 0.7, and the population
comprises 20 individuals. The algorithm is going to be stopped after 100
generations. Changes in the maximum (continuous curve) and average (dot-
ted curve) value of the fitness function may be observed in Fig. 7.32. We
can see that the solution was found quite quickly, that is as early as in the
37th generation.

FIGURE 7.31. Function (7.36) for n = 2

FIGURE 7.32. Fitness function for the best chromosome (continous curve) and
average value (dotted curve) of the fitness of individuals in 100 subsequent gen-
erations in Example 7.18

Let us have a look at Figs. 7.33 and 7.34. Figure 7.33 shows the so-
lutions generated initially. Points which are solutions coded in particular
chromosomes are marked by “x”. Let us note that at the end of the algo-
rithm operation (Fig. 7.34) the majority of individuals are found in the
neighborhood of the searched maximum.
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FIGURE 7.33. Distribution of solutions after generation of initial population in
Example 7.18
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FIGURE 7.34. Distribution of solutions after 100 generations in Example 7.18

7.4.6 Types of crossover
In the classical genetic algorithm, the crossover operation is a so-called
one-point crossover presented in section 7.3.1. Other types of crossover are
also applied: two-point, multiple-point or uniform crossover.

7.4.6.1. Two-point crossover

The difference between the two-point crossover and the one-point crossover
is, as the very name suggests, that in the two-point crossover the offspring
inherit fragments of parents chromosomes indicated by 2 drawn crossover
points.

Example 7.19
Let us discuss two chromosomes ch1 = [1101001110] and ch2 = [1011111100]
which undergo two-point crossover. Two crossover points were drawn: 2 and
7. The crossover process is as follows:

Pair of parents:
ch1 = [11 | 01001 | 110]
ch2 = [10 | 11111 | 100]

crossover−−−−−−→
Pair of offspring:
[11 | 11111 |110]
[10 | 01001 |100]
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where symbol | denotes the crossover point and the bold font denotes the
replaced fragments of chromosomes.

7.4.6.2. Multiple-point crossover

The multiple-point crossover is a generalization of previous operations and
is characterized by an appropriately larger number of crossover points.

Example 7.20
We are going to perform multiple-point crossover using four crossover
points, on chromosomes ch1 and ch2, which are presented in Example 7.19.
The following crossover points were drawn: 1, 4, 6, and 9. The crossover
process is as follows:

Pair of parents:
ch1 = [1 | 101 | 00 | 111 | 0]
ch2 = [1 | 011 | 11 | 110 | 0]

crossover−−−−−−→
Pair of offspring:
[1 | 011 |00| 110 | 0]
[1 | 101 |11| 111 | 0]

Example 7.21
For chromosomes ch1 and ch2, presented in Example 7.19 we are going to
perform multiple-point crossover taking into consideration three crossover
points. The following crossover points were drawn: 4, 6 and 8. The crossover
process is as follows:

Pair of parents:
ch1 = [1101 | 00 | 11 | 10]
ch2 = [1011 | 11 | 11 | 00]

crossover−−−−−−→
Pair of offspring:
[1101 | 11 |11| 00]
[1011 | 00 |11| 10]

Crossover for 5 or a higher odd number of crossover points is performed
analogically. One-point crossover is of course a particular case of such a
crossover.

7.4.6.3. Uniform crossover

The uniform crossover also called steady crossover is performed accord-
ing to a drawn pattern indicating which genes are inherited from the first
one of the parents (the remaining genes come from the other parent). This
type of crossover may be applied to different types of the coding of the
chromosome. Only one condition must be met – the chromosomes must be
of the same length.

Example 7.22
Let us assume that for the same pair of parents as in Example 7.19 the
following pattern was drawn: 0101101110 in which 1 means the takeover of
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the gene on an appropriate position (locus) from parent 1, and 0 – from
parent 2. Then the crossover is performed in the following way:

Pair of parents:
ch1 = [1101001110]
ch2 = [1011111100]

crossover−−−−−−→
Pair of offspring:
[1001101100]
[1111011110]

The drawn pattern
0101101110

The replaced genes are in bold.

7.4.7 Types of mutation
The classical genetic algorithm is equipped with a mutation operator. Its
task is to introduce certain diversity in the population; however its role is
rather small. In other types of evolutionary algorithms, it is the dominant
operator. We are going to describe several methods of mutation.

7.4.7.1. Mutation in case of binary coding

We met one of the types of mutation intended for binary coding in Section
7.3.1, on the occasion of discussing the classical genetic algorithm. The
mutation operation was applicable to those genes in the chromosome for
which the drawn number from interval [0, 1] was less than the probability
of mutation pm. Mutation may consist of the negation of the bit value or
of the replacement of the bit with the value drawn from set {0, 1}.

7.4.7.2. Mutation in case of coding with floating-point numbers

If a chromosome is coded with the use of real numbers a simple nega-
tion can not be performed. Certain generalization of the binary mutation
should be made. We assume that the value of the i -th gene xi is bound
by interval [ai, bi]. For each gene, we draw a number from interval [0, 1],
and if it is lower than the probability of mutation pm, then we perform the
mutation according to formula

yi = ai + (bi − ai)Ui (0, 1) , (7.37)

where yi is a new value of the gene, and Ui (0, 1) – random variable gener-
ated from the uniform distribution in interval (0, 1). Let us note that the
value of yi does not depend on xi thus, the higher the value of probability
pm, the more similar this operator’s operation is to the random search of
the space.

A more frequently used method is a mutation consisting in adding certain
random variable Zi to each value of gene xi, i.e.

yi = xi + Zi. (7.38)
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The most frequently used distributions are the normal distribution or
Cauchy distribution.

7.4.8 Inversion
Holland [82] presents three techniques allowing to obtain offspring different
than parent chromosomes. These are: crossover, mutation and inversion.
Inversion operates on a single chromosome, changing the order of allels
between two randomly selected positions (locus) of the chromosome. Al-
though this operator was defined by the analogy to the biological process
of chromosome inversion, still it is not frequently used in genetic algorithms.

Example 7.23
Let us discuss chromosome [001100111010] as an example of inversion. Let
us assume that the following positions were drawn: 4 and 10. After the
inversion we will obtain chromosome [001101110010], where the replaced
genes are in bold.

7.5 Evolutionary algorithms in the designing
of neural networks

The use of neural networks for solving any task requires that these networks
be designed earlier. An appropriate networks architecture should be deter-
mined, and the number of layers, number of neurons in each of them, and
the manner of their connection should be specified. Next, learning process
is carried out with the use, for instance, of the error backpropagation al-
gorithm. These actions sometimes need quite a lot of time and experience,
but evolutionary algorithms can be helpful here.

Evolutionary methods may be applied to solving the following tasks:

• to the learning of weights of neural networks,

• to the determination of optimal architecture,

• to the simultaneous determination of structure and weights value.

The idea that neural networks may be learned with the use of the evo-
lutionary algorithms has appeared in papers of many researchers. First
papers on this subject concerned the application of the genetic algorithm
as a method for learning small feed-forward neural networks, and a success-
ful use of this algorithm in case of relatively large networks was noted next.
The two of the most important arguments for the use of evolutionary algo-
rithms to the problems of optimization of neural networks’ weights are, first
of all, a global search of the space of weights and avoiding local minima.
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Besides, evolutionary algorithms may be used in problems where obtain-
ing information about gradients is difficult or expensive. The evolutionary
learning of neural networks’ weights is discussed further in Subsection 7.5.1.
Optimal designing of the architecture of neural network can be treated as
the search of structure which is the best for a specific task. This means the
search of the space of architectures and the selection of the best element
of this space using a specific criterion of optimum. A typical cycle of the
evolution of architectures is presented in Section 7.5.2.

Methods of simultaneous evolutionary learning of the neural network’s
weights and of searching the optimal architecture can be combined within
one evolutionary algorithm. This subject is further discussed in Section
7.5.3.

7.5.1 Evolutionary algorithms applied to the learning
of weights of neural networks

The learning of the neural network consists in determining the values of
the weights of the network, the topology of which has been determined ear-
lier. Weights are coded in a chromosome in the form of binary sequence or
vector of real numbers. Each individual of the population is determined by
a total set of the neural network’s weights. An example of such a chromo-
some is presented in Fig. 7.35. In this chromosome, the weights of a network
with two inputs, two hidden layers, two neurons in each of these layers and
one neuron in the output layer have been mapped. Along with polarization
weights, the chromosome contains information about 15 weights. The or-
der of placing the weights in the chromosome is arbitrary, but cannot be
changed from the beginning of learning.

FIGURE 7.35. Coding of the neural network weights in a chromosome
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The fitness of individuals will be evaluated upon the basis of the fit-
ness function defined as the sum of squares of errors, being the differences
between the network desired signal and network output signal for differ-
ent input data. Let us now discuss the selection of the schema of weights
representation. It should be decided whether binary representation or the
presentation of weights in form of real numbers is to be applied. Apart
from the natural binary code, the Gray code, logarithmic coding (Section
7.4.5) or other more complex coding methods can also be applied to the bi-
nary coding of weights. In some cases we have problems with the accuracy
of weights representation. If too few bits were used for the presentation
of each weight then learning may take too long and even bring no result,
since some combinations of real weights cannot be approximated by dis-
crete values within certain range of tolerance. On the other hand, if we use
too many bits then the binary sequences representing large neural networks
will be very long, which will considerably prolong the evolution process and
make the evolutionary approach to learning impractical. In order to avoid
disadvantages of the binary representation schema, the representation of
weights with real number was proposed, i.e. one real number to represent
one weight.

After selecting the schema of the chromosomes representation, for in-
stance in the way it is depicted in Fig. 7.35, the evolutionary algorithm op-
erates on the population of individuals (chromosomes representing neural
networks with the same architecture but with different weights’ values)
according to the typical evolution cycle comprising the following steps:

1) Decoding each individual of the current population to the set of
weights and constructing the corresponding neural network with this
set of weights, while the network architecture and the learning rule
are specified earlier.

2) Calculating the total mean squared error of the difference between
the desired signals and output signals for all the networks. This error
determines the fitness of the individual (constructed network); the
fitness function can be defined in a different way depending on the
type of network.

3) The reproduction of individuals with the probability that is appro-
priate to their fitness or rank, depending on the selection method
applied.

4) Using genetic operators, such as crossover, mutation and/or inversion
and obtaining a new generation.

Example 7.24
Let us consider the neural network presented in Fig. 7.36. This network will
be used for the realization of XOR system (see Chapter 6). We are going
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to determine weights w1
1.1, w1

1.2, w1
2.1, w1

2.2, w2
1.1, w2

1.2 and w1
1.0, w1

2.0, w2
1.0,

which minimize the error.

FIGURE 7.36. Structure of the neural network for solving the XOR problem
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The task comes down to finding the value of the nine above-listed weights
for which the network will learn how to correctly perform the XOR task.
Information in the chromosome will be stored analogically to what is shown
in Fig. 7.35. In order to determine the optimal weights, we are going to use
the classical genetic algorithm implemented in FlexTool [54] program.

A population consists of 31 individuals. The roulette wheel method was
chosen as the selection method. Each value of the weight, being an integer
number in interval [−10, 10], undergoes binary coding with the use of five
bits. The probability of crossover and mutation is respectively pc = 0.77
and pm = 0.0077, while crossover is performed on two points. The genetic
algorithm operates during 200 generations.

The result of the operation of the genetic algorithm is to find weights
having values: w1

1.1 = −10, w1
1.2 = 9, w1

2.1 = 8, w1
2.2 = −9, w2

1.1 = 10,
w2

1.2 = 10 and w1
1.0 = −4, w1

2.0 = −4, w2
1.0 = −4. The mean squared error

for these values of weights is Q = 2.7260 ·10−4. As it is shown, the network
performs its task with quite low value of this error. Figure 7.37 presents
the values of the mean squared error for subsequent generations.
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FIGURE 7.37. The best (continuous curve) and average (dotted curve) values
of the fitness function of individuals in the 200 subsequent generations of the
genetic algorithm in Example 7.24

7.5.2 Evolutionary algorithms for determining the topology
of the neural network

In previous section concerning the evolutionary learning of the neural net-
work it was assumed that the network architecture is previously determined
and does not change during the process of weights evolution. However, the
question how to select the network architecture is essential. It is known
that architecture has a decisive impact on the processing of information
by the neural network. Unfortunately, in the majority of cases it is created
by experts using the trial and error method. It is worth considering an
automatic method of designing the architecture of the neural network for
solving a specific task. Such a method may be the evolutionary designing
of architecture using the evolutionary algorithm.

As in the case of evolutionary learning, the first stage of the evolution-
ary designing of architecture is taking a decision concerning its appropriate
representation in the chromosome. However, in this case the problem does
not concern the choice between binary representation and real representa-
tion (real numbers), since we deal only with discrete values. At present, this
issue is more connected with the concept of the representation structure,
i.e. a matrix, graph, or certain general rules. Generally, the types of coding
may be divided between direct coding and indirect coding. Direct coding
consists in representing, in a chromosome, the smallest units that we select
in order to specify the construction of the neural network. These may be
connections, neurons (network nodes) or layers. Depending on the choice
we may distinguish between the following network coding in chromosomes.

• Connection-based encoding – this is one of the first methods of
representing the network structure. The chromosome is a chain of
weights values or information on the occurrence of connections. Such
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an approach requires the determination of the maximum size of the
architecture in which there is a specified number of connections, neu-
rons and layers that can occur in the largest neural network.

• Node-based encoding – in this method a chromosome represents
a chain or a tree of nodes. Each piece of information about the node
coded in the chromosome may contain its relative position, connec-
tions with previous layers, activation function and others. When per-
forming the operations of crossover and mutation we should ensure
that the entire information on coded neurons is exchanged.

• Layer-based encoding – in this method, the basic information
coded in the chromosome is the layer. This method can be applied to
the designing of larger networks. The coding schema is a complicated
description of connections between layers and thus, special genetic
operators are required.

• Pathway-based encoding – the network is presented as a set of
pathways from the input to the output of the neuron. This type of
coding may be used for the designing of recurrence neural networks.
Special operators of genetic algorithms are also used here.

The simplest method of direct coding is the coding of connections in the
neural network with the use of connection matrix. Matrix C having a size of
n×n, C = [cij ]n×n may represent connections of the neural network having
n nodes (neurons) where cij means the connection or the lack of connection
between neurons i and j, i.e. cij = 1, if such a connection exists, and in case
of the lack of such a connection cij = 0. The binary sequence (chromosome)
representing connections in the neural network is simply a composition of
rows (or columns) of matrix C. An example of such a method of coding
for n = 5 is shown in Fig. 7.38. If n means the number of neurons in the
network then connections between these neurons are presented in the form

FIGURE 7.38. Coding of connections in the neural network with the use of con-
nection matrix C
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of binary sequence having a length of n2. An obvious disadvantage of such
a coding schema is a rapid growth of the genotype’s length along with
an increase in the neural network. However, certain bounds may be easily
connected to such a representation schema, which brings the shortening
of the length of chromosomes [137]. For instance, we may consider only
feed-forward connections, i.e. take into consideration only these elements
of matrix C which concern a connection of a given node (neuron) with the
next one. Then the chromosome from the example in Fig. 7.38 will be the
following: 0110110011.

Direct coding has its advantages, namely, it is quite easy to assess the
architecture of the neural network and the easiness of structure coding or
decoding. This is quite convenient and effective in case of designing small
neural networks. In case of coding large networks longer chromosomes are
generated and the effectiveness of the operation of the genetic algorithm
is reduced. A solution to the situation may be to apply indirect coding
which consists in coding only the most important features instead of each
connection of the neural network. It is generally assumed that this coding
consists in searching useful common blocks which are repeated in the neural
network construction. This representation uses, among other things, coding
applied in genetic programming (see Section 7.3.5) or in other methods
based on graphs. This schema is more justified biologically, since, following
discoveries in the field of neurology, it is not possible for genetic information
coded in chromosomes to determine the entire nervous system directly and
independently. This results from the fact that, for instance, the genotype
of a human being contains much less genes than the number of neurons the
human brain contains.

The second phase of the evolutionary designing of the neural network
architecture goes along the following steps, in accordance with a typical
evolution cycle:

1) Decoding each individual of the current generation to the architecture
resulting from the adopted coding schema.

2) Learning each neural network with an architecture obtained in step
1, with the use of a learning rule (certain parameters of the learning
rule may be updated during the learning process). Learning should
begin with randomly selected initial weights values and parameters
of the learning rule, if they occur.

3) The assessment of the fitness of each individual (coded architecture)
upon the basis of the above-mentioned learning results, i.e. the small-
est total mean squared error or upon the basis of testing if more
emphasis is put on generalization, the shortest learning time, the
complexity of architecture (e.g. the smallest number of neurons and
connections between them), etc.
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4) The reproduction of individuals with the probability that is appro-
priate to their fitness or rank, depending on the selection method
applied.

5) Using genetic operators, such as crossover, mutation and/or inversion
and obtaining a new generation.

7.5.3 Evolutionary algorithms for learning weights
and determining the topology of the neural network

The process of the evolution of architectures described in the previous
section has many disadvantages. Learning requires a long time for com-
puter calculations and its result depends on the initiation of connections’
weights at the beginning. Another disadvantage is a so-called permutation
problem: one phenotype may have many different equivalents in genotypes,
i.e. a given neural network may be encoded in a chromosome in different
ways. These disadvantages may be eliminated by combining the methods
of coding weights and structures (based on connections coding), which are
presented in Sections 7.5.1 and 7.5.2. The simplest method of representing
the neural network is shown in Fig. 7.39. The connection of neurons in the
network is determined, as in case of matrix representation, with the use
of one bit. Additionally, the values of connections’ weights after a binary
coding were introduced. Alternatively, a two-level representation may be
applied where the weights values are separated from connections. One part
of a chromosome will contain the formula of connections, the other part –
the weights values. The main characteristic of both methods is that if the
gene responsible for connection is inactive (holds the value of zero) then the
coded weights values are not taken into consideration when the structure
is decoded.

Another method of the simultaneous coding of information about the
weights and connections of the network uses the representation presented

Bits corresponding to connections

Bits of encoded weight connections

FIGURE 7.39. Simultaneous coding of structure and weights of the neural
network
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in Fig. 7.35. The information on the existence of the connection is con-
tained in the weight value itself. If this value is zero then the connection
of this weight is not taken into consideration. This method needs to use
an additional genetic operator which would remove or create, with certain
probability, new connections (zeroing or drawing the values of connections
weights). The cycle of the operation of the evolutionary algorithm applied
to the simultaneous learning of weights and determining the neural network
structure is similar to the one described in Section 7.5.2.

Example 7.25
We are going to demonstrate an example of using a modified genetic algo-
rithm in order to find an appropriate architecture and the values of weights
of the neural network connections. The network will be used to solve the
XOR problem, we, thus, have two inputs and one output. We look for a
network with a layer structure (x; 1) where x means an unknown number
of neurons in the first layer (which in this case is equivalent to the hidden
layer). We are going to apply connection-based encoding (Section 7.5.2).
Firstly, we are going to determine the maximum network size in order to
be able to code all possible connections between neurons. We assume that
the first layer may have maximum 5 neurons. The maximum structure of
the network is shown in Fig. 7.40.

We begin the preparation of the genetic algorithm with determining the
method of task coding. Weights will be coded using the binary method, each
with the use of 8 bits s(i) ∈ {0, 1}, i = 0, ..., 7 in the following manner:

w = (−1)s(0)

(
7∑

i=1

2i−2s(i)

)

.

We assume the first one of the bits s (0) as a sign of the weight value. The
application of the formula presented above allows to determine the range
of search of the weights value from −31.5 to 31.5. As it is easy to verify,
the maximum network structure has 17 connections between neurons and
additionally, 6 connections through which the constant value is indicated.

1

1

x1

x2

y

FIGURE 7.40. The maximal structure of the neural network in Example 7.25
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FIGURE 7.41. Final structure of the neural network obtained after 211 genera-
tions in Example 7.25

Therefore, a chromosome will represent 23 connection weights, each of them
being coded with the use of 8 bits, which brings 184 genes. We use a two-
point operator for crossover, but we are going to distinguish between two
mutation operators. The operation of the first of them consists in drawing
a new weight value. The second mutation operator will be responsible for
the change of the network structure, since we assume that a connection
exists where the value of this weight is different than zero. When all the
coding bits have their weights equal to zero then a given connection is not
taken into consideration. This way the lack of input or output connections
in certain neuron results in omitting this neuron in the network structure.
Owing to this, the architecture of the neural network is modified. The
operation of the second mutation operator will consist in removing (we
assume weight values equal to 0) or adding a connection (we draw the
values of 8 genes). The task of the fitness function is the assessment of the
network. We take into consideration the network size, while a reduction of
the number of neurons is of great importance. Furthermore, an important
coefficient is the mean squared error which we will obtain when testing the
network. The result of the algorithm operation is illustrated in Fig. 7.41,
where the network obtained after 211 generations is shown. The population
contained 100 individuals. As it is shown, the network structure is quite
different than the one presented in Example 7.24 as it consists of two
neurons only. The mean squared error obtained for this network was 0.0372.
The network may learn more with the use of the error backpropagation
algorithm.

7.6 Evolutionary algorithms vs fuzzy systems

The literature describes various methods of connecting evolutionary algo-
rithms and fuzzy systems. One of the possibilities consists in controlling the
evolutionary algorithm operation with the use of fuzzy knowledge base.
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Such a connection permits to steer the algorithm parameters and monitor
its operation in order to avoid undesired behavior, such as premature con-
vergence. Another option is to use fuzzy logic in the evolutionary algorithm
itself; there is a possibility to define fuzzy genetic operations, and even fuzzy
genes. One of the most frequently described hybrid methods consists in the
use of evolutionary algorithms for optimization of fuzzy systems.

7.6.1 Fuzzy systems for evolution control
In point 7.4.1 we focused on the problem of exploration and exploitation
of the evolutionary algorithm. It is particularly important that the algo-
rithm should be appropriately balanced between those two extreme cases.
If, for example, all individuals are similar to each other, yet we are still
far from the optimal solution, we should focus on greater exploration of
search space. And vice versa, excessive diversity of population results in
inability to find the optimum. Thus, we could slightly increase the selective
pressure and, consequently, cause the increase in exploitation. It is one of
the possibilities to influence the evolutionary algorithm operation. Beside
the selective pressure, we can change the crossover and mutation probabil-
ities. While the algorithm is in operation, the expert checks its behavior.
On the basis of appropriately selected statistics we can change algorithm
parameters so that premature convergence could be avoided. Moreover, we
can decide on the solution quality, depending on the time of the algorithm
operation.

An alternative to the expert’s intervention in algorithm operation are
the so-called adaptive evolutionary algorithms, capable of setting their own
parameters independently while being in operation so as to achieve the
best results possible. To modify those parameters, fuzzy inference systems
are used. The general schema of an adaptive evolutionary algorithm is
presented in Fig. 7.42.

While the evolutionary algorithm is in operation, various statistics are
generated. On the basis of this information, a fuzzy inference system checks
correctness of the algorithm operation and dynamically influences its op-
eration by changing some of the parameters (e.g. mutation probability).
A fuzzy inference system has an implemented knowledge base, appropri-
ately prepared by an expert in the form of linguistic rules. Information
on the algorithm operation (statistics) is fed at the system input, next
is subject to fuzzification, i.e. is converted into fuzzy sets. The result of
a fuzzy system operation may be a decision to change some of the evolu-
tionary algorithm parameters. The parameters controlled may be mutation
and crossover probabilities, size of population, selective pressure or other
parameters depending on the problem, which is being solved. Such control
is performed systematically. The algorithm operation is then steered au-
tomatically in a manner permitting to retain an appropriate relationship
between exploration and exploitation.
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FIGURE 7.42. Block diagram of an adaptive evolutionary algorithm

The statistics of evolutionary algorithm on the basis of which a fuzzy
driver makes decisions are checked every fixed number of generations. Those
statistics may be divided into two groups. The first one refers to relations
between genotypes of individuals in the population, e.g. examining diversity
of individuals by means of a certain measure function. The other deals with
examining the fitness of phenotypes. The maximum, average and minimum
value of the fitness function in the population or the ratio of the best fitness
value to the average one could be adopted as the measure. We could also use
completely different statistics, for example the number of mutations which
improved their fitness, compared to the number of all mutations (which
leads to the same calculations as in the 1/5 success rule – point 7.3.3).

Example 7.26
We will show an example illustrating how the rule base looks by means
of which we can steer the evolutionary algorithm parameters. The input
data for a fuzzy driver will be four parameters; two of them are statistical
data reflecting the algorithm behavior, i.e. the ratio of the average value
of fitness function to the best value of that function and the ratio of the
worst value of fitness function to the average value of that function. In ad-
dition, we must take into account the crossover probability pc and the size
of population. The following linguistic values shall be input into the rule
base: big, medium and small. Let’s denote the following:

α =
average fitness

best fitness
,

β =
worst fitness

average fitness
.
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An example fragment of the rule base may look as follows [125]:
IF α is big THEN increase the population
IF β is small THEN decrease the population
IFpc is small AND the population is small THEN increase the population

We can see that the steered parameter is the size of population through
which we can influence the diversity of individuals.

7.6.2 Evolution of fuzzy systems
When designing a fuzzy system, we face the task of selecting an appropriate
rule base. Like in the case of designing neural networks, it takes time,
experience and expert knowledge. This process may be automated thanks
to evolutionary algorithms, the flexibility of which and independence of the
problem solved is used, among other things, at the following moments of
designing a fuzzy system:

• When we have a fuzzy system at our disposal and strive for improving
the efficiency of its operation. Evolutionary algorithms may be used
for tuning of a membership function, i.e. changing their location or
shape.

• When a set of membership functions of linguistic terms is defined,
we may generate a rule base by means of evolutionary methods.
Three approaches to solve this problem are used – Michigan approach,
Pittsburgh approach and iterative rule learning, which stand out due
to the method of coding and constructing a rule base.

The Michigan approach uses the concept of the so-called classifier sys-
tems. Each of the individuals represents one coded rule. All or only part
of chromosomes of the population are treated as the rule base which is
searched for.

The Pittsburgh approach is a coding method which corresponds rather
to the operation of evolutionary algorithms. The whole rule base is coded
in one chromosome. Thus, the solution searched for is found in the best fit
individual.

The third approach to the search for a rule base is the so-called iterative
rule learning. It combines the best features of the Michigan and Pittsburgh
approaches. The concept of coding one rule per chromosome was used here,
yet the creation of the entire base happens gradually. The final rule base is
made up of the best individuals being the result of operation of subsequent
activations of the evolutionary algorithm.

We will discuss the methods of evolutionary tuning of membership func-
tions, in particular coding methods for those functions. Next, we will present
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the concept of the Michigan approach, the Pittsburgh approach as well as
the iterative rule learning.

7.6.2.1. Tuning of membership functions

The effectiveness of the fuzzy system operation could be increased by ap-
propriate tuning of the fuzzy sets, while the rule base remains unchanged.
The evolutionary algorithm modifies membership functions by changing
the location of characteristic points of their shapes. Most frequently, they
are coordinates of vertices of the figures described by those functions. The
information on vertices is coded in chromosomes. The shape of sets and cod-
ing are strictly interrelated. Several popular functions can be distinguished
(Fig. 7.43):

• isosceles triangle – the functions are coded in a chromosome by means
of two extreme points of the triangle: a and b (Fig. 7.43a).

• asymmetrical triangle – location and shape of the asymmetrical tri-
angle is coded by means of three parameters: a, b and c (Fig. 7.43b).
In comparison to the isosceles triangle, the location of the central
vertex is additionally defined. Instead of coordinates of two extreme
points, we can also give distances from the central point.

• trapezoid – a trapezoid is characterized by four points (Fig. 7.43c)
but it should be remembered, like in the case of triangles, that the
points: a, b, c and d, which represent the trapezoid, must fulfill the
condition a < b < c < d.

• also other functions could be distinguished, e.g. the Gaussian function
which could be described by means of two parameters: center x and
width σ. The other functions used include the radial function and the
sigmoidal function (for extreme fuzzy sets which represent the values
of linguistic variables).

FIGURE 7.43. Different membership functions with characteristic points
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Depending on the evolutionary algorithm applied, the characteristic
points of membership functions are coded in the chromosome in the bi-
nary form or by means of real numbers. After the appropriate representa-
tion of fuzzy sets in the chromosome has been selected, the evolutionary
algorithm operates on the population of individuals (of chromosomes con-
taining coded shapes of fuzzy system membership functions) according to
the evolutionary cycle which may comprise the following steps:

1) Decoding each of the individuals of the population consists in recre-
ation of the set of membership functions and constructing an appro-
priate fuzzy system. The rule base is pre-defined.

2) The operation of a fuzzy system is evaluated on the basis of the dif-
ference (error) between the system’s responses and the desired values.
This error defines the individual’s fitness.

3) Reproduction of individuals and application of genetic operators. Spe-
cific techniques depend on the evolutionary algorithm selected, as the
genetic algorithm and evolution strategies are characterized by vari-
ous selection and recombination mechanisms.

4) If the stopping criterion is not met, we proceed to point 1.

Example 7.27
Let us consider example fuzzy sets (linguistic values) of cold, moderate
and warm, which may serve the purpose of describing the surrounding
temperature (Fig. 7.44a). At first we assume that the term cold refers to
temperatures below 5◦C, moderate – when the temperature varies between
0 to 20◦C, while warm – for temperatures above 15◦C. The vertex cor-
responding to the temperature of –5◦C (cold) and temperature of 25◦C
(warm) does not undergo any evolutionary changes. Membership functions
have the shape of triangles which may be described by means of charac-
teristic points in the following manner (Fig. 7.44b): two extreme sets by
means of one point (cold – c, warm – d, the other vertices of the triangle
are constant), while the central set moderate – by means of two points (a
and b, vertex of the triangle is halfway between those two points). Let us
try to code those fuzzy sets in the chromosome by placing characteristic
points one by one next to each other (Fig. 7.44c). The first one refers to
the linguistic value of cold and is defined by one value c, the fuzzy set of
moderate by two points a and b, while the fuzzy set of warm by point d.
Those values can be presented as real numbers or binary chains by applying
one of the coding methods presented above (point 7.4.5).
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FIGURE 7.44. Coding of triangular membership functions in Example 7.27

Example 7.28
In this example we will show how to code a Mamdani fuzzy set with N
rules and n inputs, with trapezoid membership functions. Let us consider
the k-th rule of the form (Subchapter 4.9)

R(k) : IF x1 is Ak
1 ANDx2 is Ak

2 ...ANDxn is Ak
n THEN y is Bk

All fuzzy sets Ak
i , i = 1, ..., n, k = 1, ..., N , are coded, as shown in Fig. 7.45.

Those sets are represented by the following chromosomes:
Ci,k = (ai,k, bi,k, ci,k, di,k) .

Taking into consideration all fuzzy sets in the k-th rule, we obtain

Ck = (a1,k, b1,k, c1,k, d1,k , ..., , an,k, bn,k, cn,k, dn,k, a′
k, b′k, c′k, d′k) ,

while set Bk is also a trapezoid set described by means of points (a′
k, b′k, c′k,

d′k). The final chromosome C, coding all rules, will be obtained by com-
bining the subsequent fragments Ck, k = 1, ..., N , i.e.
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FIGURE 7.45. Coding of the trapezoidal membership function in Example 7.28

C = (C1, C2, ..., CN ).

The length of this chromosome equals 4N(n + 1). Therefore, for a larger
number of rules it is worth applying coding with the use of real numbers.

Example 7.29
We will demonstrate coding of the Takagi-Sugeno fuzzy system rules (see
Chapter 9) in a chromosome. We assume that the system has N rules and n
inputs, while membership functions of particular fuzzy sets are trapezoidal
functions. Below is presented the k -th rule of the system

R(k): IFx1 is Ak
1 ...ANDxn is Ak

n THEN y = c
(k)
0 + c

(k)
1 x1 + ... + c(k)

n xn

As we can see, there occur functional dependencies (linear functions) with
parameters c

(k)
j , j = 0, ..., n, k = 1, ..., N, in the rule consequents. Those

parameters must also be coded in the chromosome. Two parts could be
distinguished in a fragment of the individual describing this rule. The first of
them describes coordinates of all membership functions of rule antecedents
and looks as follows:

C1
k = (a1,k, b1,k, c1,k, d1,k, ..., ai,k, bi,k, ci,k, di,k, ..., an,k, bn,k, cn,k, dn,k) .

In the second part we will place parameters of rule consequents

C2
k =
(
c
(k)
0 , c

(k)
1 , ..., c(k)

n

)
.
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While encoding parameters c
(k)
j , we must know the range of values which

decide what is essential, for instance, for binary coding. Unfortunately, most
frequently we do not know this range. In this case we can apply a method
known in the literature in English as angular coding [28]. Instead of direct
coding of parameters c

(k)
j , we could code values αj,k = arctan c

(k)
j , which

are in the interval
(
−π

2 , π
2

)
. This allows the choice of any coding method.

Like in the previous example, the whole chromosome consists of pieces of
the above coded rules. A chromosome with N rules could look as follows

C = (C1
1 , C1

2 , ..., C1
N , C2

1 , C2
2 , ..., C2

N ).

7.6.2.2. Evolution of rules

As has been mentioned in the introduction to this subchapter, we can
distinguish between three methods of using evolutionary algorithms in the
generation process of fuzzy system rules: Michigan approach, Pittsburgh
approach and iterative learning process. Let us have a look at individual
methods.

7.6.2.2.1. Michigan approach

This approach has been developed at the University of Michigan. A charac-
teristic feature of this approach is that particular rules are coded in separate
chromosomes. The original Michigan method uses the concept of the so-
called classifier system. We refer the interested reader to the literature on
this subject [29, 35, 63]. Now we will only present the coding method of
particular rules in separate chromosomes.

Example 7.30
Let us consider a fuzzy system with three inputs and one output. The
linguistic variables take the following values:

1: very little,

2: little,
3: medium,
4: much,
5: very much.

Each of the terms will be coded by means of a corresponding digit. Let
us also add a symbol denoting that a relevant linguistic value is missing:
#. In Fig. 7.46 two rules have been coded (Parent 1 and Parent 2). For
example, chromosome 4#12 denotes the following rule:

IF x1 is much AND x3 is very little THEN y is little



7.6 Evolutionary algorithms vs fuzzy systems 341

FIGURE 7.46. Genetic operations in the Michigan approach

Variable x2, as we can see, does not occur, as in the relevant place of
the chromosome the sign # is placed. Generating new individuals is per-
formed by means of genetic operators already known to us – crossover and
mutation. Example operations have been shown in Fig. 7.46. A homoge-
nous crossover and a mutation consisting in drawing a new gene value have
been used in this case. Selection consists in rejecting the worst fit indi-
viduals and replacing them with new ones, created by means of genetic
operators. The literature specifies a number of methods of rule base auto-
matic generation which are referred to as the Michigan approach. Most of
them, however, have nothing in common with the operation algorithm of
classifier systems from which the original Michigan method derives. What
they have in common, however, is the concept of representation of one rule
in the chromosome and regarding the whole population as a set of rules
searched for.
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7.6.2.2.2. Pittsburgh approach

This approach originated at the University of Pittsburgh, hence the name.
A characteristic feature of this method is placing the whole solution in a
single chromosome. Each individual represents a complete set of rules. Indi-
viduals compete with each other, the weak ones die, the strong survive and
reproduce. It happens on the basis of selection and crossover and mutation
operators. It is possible to keep balance between exploration of new solu-
tions and exploitation of the best solution. The operation of the Pittsburgh
approach does not differ from the operation of the classical genetic algo-
rithm. Unfortunately, it has faults, as well. The chromosome coding all rules
is much bigger than in the Michigan method, which extends the operation
time of the evolutionary algorithm, additionally the chance to find a correct
solution also decreases. In the simplest algorithm of searching for a fuzzy
rule base we must determine a priori the maximum number of rules. The
set of all fuzzy system rules is stored in the form of a chain of constant
length with division into subchains in which particular rules are coded.

Example 7.31
We will show the coding method in the Pittsburgh method, considering a
fuzzy system described in Example 7.30. In Fig. 7.47 two rule bases have
been coded, each of them is composed of 3 rules (Parent 1 and Parent 2).
Similarly to Example 7.30, the chromosome corresponding to Parent 1 can
be decoded in the following way:

R(1): IFx1 is very little THEN y is very little

R(2): IFx2 is medium AND x3 is very little THEN y is very little

R(3): IFx1 ismuch AND x2 is medium AND

x3 is very little THEN y is little

The operation of genetic operators is illustrated in Fig. 7.47. Those opera-
tors work in a similar way as in the Michigan method (Fig. 7.46), yet we
can clearly see the difference in the chromosome length.

Obviously, it is a very simple algorithm of rules generation, however we
can apply its numerous modifications, for instance a variable chromosome
length, to generate a various number of rules. Additionally, by coding the
shapes of membership functions in the manner specified in point 7.6.2.1,
beside rules generation we can tune at the same time the parameters of
membership functions of particular fuzzy sets.
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FIGURE 7.47. Genetic operations in the Pittsburgh approach

7.6.2.2.3. Iterative rule learning

Iterative rule learning was developed as an attempt to combine the best
features of the previously described Michigan and Pittsburgh approaches.
This method is characterized by the fact that each chromosome in the pop-
ulation represents a single rule, like in the Michigan approach. In contrast,
what is characteristic for the Pittsburgh approach is the fact that only the
best individual in the population is chosen. The complete rule base can be
obtained by repeating the evolutionary algorithm many times, each time
adding the best rule to the rule base until the entire solution is found. The
rule base generation algorithm based on the iterative rule learning could
be presented as follows:

1) Apply an evolutionary algorithm to find a rule. As the fitness of the
chromosome coding a rule we can take e.g. the number of correctly
classified learning data or the rule simplicity.
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2) Attach the rule to the ultimate set of rules.

3) Evaluate the effectiveness of the set of rules, particularly taking into
consideration the newly found rule.

4) If the set of generated rules is adequate to the problem solved, finish
the operation of this algorithm. Otherwise proceed to point 1.

Generation of rules in the Pittsburgh and Michigan methods consisted
in simultaneous obtaining the entire rule base. In the iterative rule learning
particular rules develop independently of each other, without any informa-
tion on the previously generated ones. It may result in repetition of rules
or their mutual exclusion. Therefore, after the operation of the algorithm
is finished, rule base simplification procedures are frequently applied. How-
ever, already when the algorithm is in operation, we can prevent identical
rules from appearing. The method is based on removing such data from
the learning sequence which were used for the purpose of correct learning
of the previously found rules.

7.7 Notes

The pioneer of classical genetic algorithms was Alex Fraser, who pub-
lished his first work [57] on this subject in 1957. His scientific activity
is almost completely unknown in the worldwide literature. Goldberg [63],
Holland [82] and Michalewicz [136] are authors of well-known monographs
on evolutionary algorithms. In Poland, the monograph by Arabas [2] is
well worth recommending. The authors of monographs [59, 60, 248, 260]
discuss various issues concerning evolutionary algorithms and their appli-
cations. A popular program for simulation of genetic algorithms is Evolver
[50]. In monographs [2] and [136] the authors describe the historic works
by Ingo Rechenberg and Hans-Paul Schwefel on evolution strategies and by
Lawrence Fogel on evolutionary programming.

The author of the concept of genetic programming is John Koza [120].
Monographs [24, 63, 82, 136] and work [175] discuss the schemata theorem,
bricks (or building blocks) hypothesis as well as the theoretical basis for
the operation of genetic algorithms.Various selection and scaling algorithms
have been described in papers [38] and [75]. The advantages of Gray coding
have been described in monographs [2] and [31]. A detailed description of
crossover methods can be found in studies [35] and [63].

Evolutionary learning of small feed-forward neural networks has been de-
scribed in work [256], while the use of evolutionary algorithms for learning
of relatively large networks has been presented in work [230]. The descrip-
tion of the evolutionary design of the neural network architecture can be
found in works [232, 263, 264]. Various methods of coding the weights of
neural networks have been suggested in works [6, 7, 139]. Methods of direct
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TABLE 7.13a. List of main features of evolutionary algorithms

Genetic
algorithm
(GA)

Evolution
strategies (ES)

Evolutionary
programming
(EP)

Genetic
programming
(GP)

Coding,
represen-
tation

In the classical
GA the binary
coding occurs.
It could be
replaced by
Gray coding or
another coding
with fixed
alphabet may
be applied

Representation
by means of
vectors of
floating point
numbers,
consisting of
the values of
variables of the
task solved and
information on
the mutation
range

Representation
adequate to
the problem
solved, often
similar to the
representation
in ES

Tree coding
(originally use
of the LISP
language)

Mutation
operator

Switch of the
value of genes
for the
opposite one

At first
random
modification of
the values of
an individual’s
standard
deviations
occurs, then
modification of
values of
independent
variables

Similar to ES,
self-adaptation
of the
mutation range
is possible

Change of the
contents of the
terminal node
or swap from
the terminal
node to the
intermediate
node. Swap
from the
intermediate
node along
with its
subtree to the
terminal node
or to another
intermediate
node with a
randomly
generated
subtree.

Mutation
role

Secondary, pm

of order [0, 0.1]
Primary,
self-adaptation
of the
mutation range
is applied

The only
genetic
operator

Secondary

coding of neural networks structure have been discussed in paper [112].
Papers [110, 230, 263] describe the methods of indirect coding of neural
networks with the use of graphs. Simultaneous coding of weights and con-
nections between neural networks has been presented in papers [15, 250,
251]. Paper [22] describes the application of fuzzy systems for evolution
control. The issue of using fuzzy logic in evolutionary algorithms has been
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TABLE 7.13b. List of main features of evolutionary algorithms

Genetic
algorithm
(GA)

Evolution
strategies (ES)

Evolutionary
programming
(EP)

Genetic
programming
(GP)

Crossover
(recombi-
nation)
operator

One-point,
multi-point (in
particular
two-point),
homogenous

No occurrence
in the classical
version.
Averaging
crossover or
crossover
exchanging
values of
elements of
parent vectors
is possible.

None Exchange of
subtrees in
chromosomes

Crossover
role

Primary, pc in
the interval
[0.5, 1] and
pc � pm

Secondary, lack
of crossover
possible

None Primary

Selection of
parents or
creation of
temporary
population

Probability of
choosing an
individual for
mating pool
depends on the
value of its
fitness
function. The
roulette-wheel
method is
applied as well
as the
tournament,
ranking and
other methods

A temporary
population is
created (of size
λ) by means of
multiple
sampling
among µ
individuals,
the individuals
of which are
subjected to
genetic
operators.

Each of the
parents creates
one offspring,
using a
mutation
operator

Probability of
choosing an
individual for
mating pool
depends on the
value of its
fitness function

described in papers [77] and [78]. Methods of coding various membership
functions have been given in papers [29, 102, 103]. The Michigan approach
along with the description of classifier systems are presented in monograph
[29] and in paper [249]. Methods of coding the rule base with the use of
the Michigan and Pittsburgh approaches have been described in paper [88].
A detailed description of the iterative rule learning can be found in mono-
graph [29]. In papers [36, 37, 182] the authors discuss the applications of
evolutionary algorithms for designing electric machines, in paper [75] for
optimization of power grids, in paper [160] for production planning, while
in monograph [153] for technical diagnostics.

The differences between the evolutionary algorithms discussed in this
chapter increasingly diminish. At present those algorithms occur only rarely
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TABLE 7.13c. List of main features of evolutionary algorithms

Genetic
algorithm
(GA)

Evolution
strategies (ES)

Evolutionary
programming
(EP)

Genetic
programming
(GP)

Creation of
a new pop-
ulation

All individuals
selected in the
selection
process are
subjected to
genetic
operators and
create a new
population. In
particular the
elitist strategy
is applied

Depending on
the strategy:
(1+1) – choice
of the best of
two
individuals,
(µ + λ) –
choice of µ
individuals
from the old
and new
populations,
(µ, λ) – choice
of µ from the
new, bigger
population

µ best
individuals
from the old
and new
populations
are chosen
(equivalent of
ES (µ+µ))

All individuals
selected in the
selection
process are
subjected to
genetic
operators and
create a new
population

Application Combinatorial
optimization

Optimization
in case of
continuous
independent
variables

Majority of
optimization
tasks

Generation of
programs or
optimization of
problems
described in
the form of
trees

Authors Alex Fraser,
the 1950s John
Holland, the
1960s and
1970s

Ingo
Rechenberg,
Hans-Paul
Schwefel, the
1960s

Lawrence
Fogel, the
1960s

John Koza, the
1990s

in their original forms. They are most frequently used for comparative tests.
It should be added that the term “genetic algorithms” is used both in a nar-
row sense to mean classical genetic algorithms or their minor modifications,
and in a broad sense meaning evolutionary algorithms which significantly
differ from the classical genetic algorithm.

To sum up this chapter, in Tables 7.13a, 7.13b and 7.13c we compare
the most important features of evolutionary algorithms, such as: coding
methods, crossover and mutation methods and their significance in the
algorithm process, selection methods as well as the method of creating a
new population. We have presented potential applications and the names of
authors of various algorithms. The list enclosed may be helpful in choosing
a proper type of algorithm to solve a specific problem.
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Data clustering methods

8.1 Introduction

In daily life as well as in different fields of science we encounter big, some-
times enormous volume of information. One look is enough for humans to
distinguish the shapes of objects being of interest to us from a specific
image. Intelligent machines, however, are still incapable of prompt and
unerring distinguishing of objects in the image, due to the lack of universal
algorithms which would work in every situation.

The objective of data clustering is a partition of data set into clusters of
similar data. Objects in the data set may be e.g. bank customers, figures or
things in a photograph, sick and healthy persons. A human being may effec-
tively group only one- and two-dimensional data, while three-dimensional
data may cause serious difficulties. The scale of the problem is intensified
by the fact that the number of samples in real tasks may amount to thou-
sands and millions. In the light of those facts it would be very useful to
have algorithms for automatic data clustering. Operation of those algo-
rithms would result in a fixed structure of data partition, i.e. location and
shape of the clusters and membership degrees of each sample to each clus-
ter. Data clustering is a complicated issue as the structures hidden in the
data set may have any shapes and sizes. Moreover, the number of clusters
is usually unknown. Unfortunately, the literature so far does not provide
any algorithm which would work in the case of any shapes of clusters.
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FIGURE 8.1. Various shapes of clusters in two-dimensional space

When choosing the proper clustering algorithm, we should use the knowl-
edge of the problem described by the data set. Generally, data partition
should have two features:

• homogeneity in clusters, i.e. data within a given cluster should be as
similar to each other as possible,

• heterogeneity between clusters, i.e. data belonging to different clusters
should be as different from each other as possible.

Similarity of data vectors may be defined in different ways, depending on
the type of data being clustered. As data most often describe features of
objects in a numerical form (as numbers), the most appropriate similarity
measure is to measure the distance between objects. We may use e.g. the
Euclidean norm which is the most frequently used method of measuring
the similarity of objects. Clusters may be represented in different ways.
Most frequently the cluster is represented by its central point in the data
space. By using various similarity measures we can obtain different shapes
of clusters, with the center represented by the central point. Figure 8.1
illustrates examples of various clusters in the two-dimensional space.

In the data clustering tasks we do not have at our disposal the so-called
desired output signal, from the teacher. Thus, the process of data clustering
may be equated with unsupervised learning. This chapter presents various
methods of data partitioning and algorithms for automatic data clustering.
Data clustering validity measures are also discussed in this chapter.

8.2 Hard and fuzzy partitions

Data subject to clustering will be represented by n-dimensional vectors
xk = [xk1, . . . , xkn]T,xk ∈ Rn, k = 1, . . . ,M , which consist of numerical
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values describing the objects. The set of M vectors creates matrix X of
dimension n × M

X =

⎡

⎢
⎢
⎢
⎣

x11 x21 · · · xM1

x12 x22 · · · xM2

...
...

...
...

x1n x2n · · · xMn

⎤

⎥
⎥
⎥
⎦

. (8.1)

In case of classification, matrix columns (8.1) are objects, and the rows are
features (attributes). In the case of medical diagnostics, objects may be
identified with patients, while features will be identified with symptoms of
a disease or with results of laboratory analysis of those patients.

If clusters are represented by their centers, the objective of clustering
algorithms is to obtain c vectors vi = [vi1, . . . , vin], i = 1, . . . , c, which are
representatives of particular clusters in the data space.

It must be emphasized that from the computational point of view it
would be very hard to analyze all possible partitions of M objects into c
clusters as their number equals [48]

1
c!

c∑

i=1

(
c

i

)
(−1)(c−i)

iM . (8.2)

Example 8.1
Let us consider the problem of partitioning 100 patients (M = 100) into 5
different clusters, characterizing particular pathological cases (c = 5). It
is easy to check that by using formula (8.2), we obtain approximately
6.57 ·1067 different partitions. Thus it is extremely important to find meth-
ods which would perform optimal partition without the necessity to analyze
all possible results of clustering.

In the data clustering tasks it is essential to define the type of data
partition. The literature distinguishes between hard, fuzzy and possibilis-
tic partitions, where possibilistic partitions are treated as modification of
fuzzy partitions.

In the hard data clustering the object entirely belongs or does not belong
to a given cluster. The objective of data clustering is data partitioning into
c clusters Ai so that

c⋃

i=1

Ai = X, (8.3)

Ai ∩ Aj = Ø, 1 ≤ i �= j ≤ c, (8.4)

Ø ⊂ Ai ⊂ X, 1 ≤ i ≤ c. (8.5)

Assumption (8.3) means that the set of all clusters contains all data vectors,

and each object belongs to exactly one cluster. The clusters are disjoint
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(condition (8.4)), and none of them is empty nor contains the whole data
set X (condition (8.5)). In order to partition data into c clusters, it is
comfortable to use the partition matrix U of the dimension c × M , con-
taining the membership degrees µik of the k-th data xk to the i-th cluster,
k = 1, ...,M, i = 1, ..., c.

Definition 8.1
Let X = {x1, . . . ,xM} be a finite set. Let c, 2 ≤ c < M, be an integer.
Hard partitioning space of the set X is defined in the following way:

Z1 =

{

U ∈ Rc×M | µik ∈ {0, 1} , ∀i, k;
c∑

i=1

µik (8.6)

= 1, ∀k; 0 <

M∑

k=1

µik < M, ∀i

}

.

The partition above assumes that the object belongs to one cluster only
and there are no empty clusters or clusters containing all objects.

Example 8.2
Let us consider the data presented in Fig. 8.1. For such data hard partitioning
into three clusters (c = 3) may be represented by the following matrix U:

U =

⎡

⎣
1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 1
0 0 0 0 0 0 1 1 1 0

⎤

⎦ . (8.7)

Let us notice that the object x10 is assigned to cluster 2, although in-
tuitively we would not include it in any of the clusters. However, hard
partition makes it necessary for each of the objects to belong to one of the
clusters.

The most frequently considered problems do not permit such an unam-
biguous data partition as in Definition 8.1, as the areas of clusters occur-
rence may overlap. What is helpful in such a case are algorithms which cause
that objects may belong to many clusters with different membership de-
grees at the same time. It is a natural extension of the hard partition where,
like in real problems, a given object may not always be classified unambigu-
ously to one category. For example the boundaries between small, compact
and big cars are not strictly defined. There are two types of soft partition:
fuzzy and possibilistic. In both partitions the objects may belong to any
number of clusters with a membership degree which is a number from the
range [0, 1]. In the fuzzy partition there is additionally a constraint imposed
on membership degrees of a particular object so that the sum of member-
ship degrees of this object to each of c clusters equals 1. This constraint is
analogous to the constraint occurring in the probabilistics, therefore this
partition is also called probabilistic partition.
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Definition 8.2
Let X = {x1, . . . ,xM} be a finite set. Let c, 2 ≤ c < M , be an integer.
Fuzzy partition of the set X is defined in the following way:

Z2 =

{

U ∈ Rc×M | µik ∈ [0, 1] , ∀i, k;
c∑

i=1

µik (8.8)

= 1, ∀k; 0 <

M∑

k=1

µik < M, ∀i

}

.

The partition above assumes that the object may at the same time belong
to all clusters with a certain membership degree but the sum of all mem-
bership degrees must equal 1. Moreover, there may be no empty clusters
or clusters containing all data.

Example 8.3
Let us consider the data presented in Fig. 8.2. For such data the fuzzy
partition into three clusters may be represented by the following matrix U:

U =

⎡

⎣
0 0.06 0.02 0.98 0.98 0.99 0.01 0.01 0 0.29
1 0.89 0.93 0.01 0.01 0.00 0.01 0.01 0 0.33
0 0.05 0.05 0.01 0.01 0.01 0.98 0.98 1 0.38

⎤

⎦. (8.9)

x7 x8

x9

x10

x3

x2

x1

x6
x5

x4

FIGURE 8.2. A dataset in Example 8.3

Let us notice that object x10 is characterized by similar degrees of mem-
bership to all three clusters, which corresponds to its almost equal distance
from the centers of those clusters. This object may be identified as an out-
lier (noise). Intuitively we would assign very low membership degrees to
noise x10, equal to e.g. 0.1, to all three clusters. However, then the condi-
tion that the sum of all membership degrees of a given object must equal
1 would not be met.
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Historically in the literature the next partition was a possibilistic parti-
tion getting rid of the restriction that the sum of membership degrees is
equal one. The only restriction for the object is to belong at least to one
cluster. In practice it is not a big inconvenience as the low value of mem-
bership degree may be regarded as the lack of membership.

Definition 8.3
Let X = {x1, . . . ,xM} be a finite set. Let c, 2 ≤ c < M , be an integer.
Possibilistic partition of the set X is defined in the following way:

Z3 =

{

U∈Rc×M | µik∈[0,1], ∀i, k; ∀k, ∃i, µik>0; 0<
M∑

k=1

µik<M, ∀i

}

. (8.10)

Example 8.4
Let us consider the data presented in Fig. 8.2. For such data the possibilistic
partition into three clusters may be represented by the following matrix U:

U=

⎡

⎣
0.01 0.02 0.01 0.52 0.39 0.87 0.01 0.01 0.01 0.03
0.87 0.44 0.79 0.04 0.03 0.03 0.05 0.04 0.05 0.12
0.01 0.01 0.02 0.01 0.01 0.01 0.53 0.63 0.79 0.03

⎤

⎦

(8.11)

Currently the condition that the sum of membership degrees is equal to
one does not have to be met. Therefore the noise x10 belongs to all clusters
but with a small membership degree.

8.3 Distance measures

An important factor influencing the result of data partition is the method of
determining distances between objects. In case of data clustering we mea-
sure the distance in the features space in which there are clustered objects
and centers (prototypes) of clusters. The most frequently used distance
measure is the Euclidean norm, interpreted as geometric distance between
two points in the space X. Let us consider two points xd = [xd1, ..., xdn]T

and vi = [vi1, ..., vin]T . The Euclidean distance between those points is
defined in the following way:

Did =

√√
√
√

n∑

j=1

(xdj − vij)
2 = ‖xd − vi‖2 , (8.12)

and in the vector notation

Did =
[
(vi − xd)

T (vi − xd)
] 1

2
. (8.13)
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x2

x1

FIGURE 8.3. Illustration of the Euclidean and Manhattan distance

This measure is a generalization of the Minkowski metric

Did =

⎛

⎝
n∑

j=1

|xdj − vij |r
⎞

⎠

1
r

. (8.14)

For different values of the parameter r we may obtain other than the
Euclidean norm distance measures. For example for r = 1 we obtain the
Manhattan distance (also called the city block measure). The interpretation
of this measure may be identified with moving along city streets where we
are forced to keep to the network of streets and only 90-degree turns are
allowed. Figure 8.3 illustrates the interpretation of the Euclidean norm and
Manhattan distance. In case of binary variables the Manhattan distance is
called the Hamming distance. This measure gives the number of bits by
which two bit strings differ. Those strings may represent for example black
and white images.

Minkowski measures are susceptible to differences in size (scale) of partic-
ular variables. High value variables will dominate low value variables which
are for example in a different scale. The method to avoid this problem is
variables scaling, which leads to the weighted Euclidean norm

Did =

√√
√
√

n∑

j=1

wj (xdj − vij)
2
, (8.15)

where wj is the weight of a given dimension. Assigning the weights to
particular variables is useful if we want to obtain the same importance
of variables without scaling the data set, or to impose another dimension
hierarchy.

If we introduce an additional matrix A to the Euclidean norm, the clus-
ters may take the shape of ellipses of any orientation. Then we obtain the
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family of norms induced by a scalar product. In the simplest case the ma-
trix A is an identity matrix, i.e. A = I. The measure then becomes the
Euclidean distance given by the formula (8.12), and from the geometric
point of view the clusters constitute hyperspheres. Figure 8.4 shows how
the Euclidean norm operates for n = 2. The dotted lines have been used to
mark circles characterized by a constant distance between the points lying
on those circles from the central point (center). In general the matrix A is
an n × n diagonal matrix of the form of

A =

⎡

⎢
⎢
⎢
⎣

c1 0 · · · 0
0 c2 · · · 0
...

...
. . .

...
0 0 · · · cn

⎤

⎥
⎥
⎥
⎦

, (8.16)

where ci > 0, i = 1, ..., n. The clusters generated by the norm with such a
matrix are hyperellipses with main diagonals perpendicular to the axis of
data space, which is illustrated in Fig. 8.5. The dotted lines have been used
to mark ellipses characterized by a constant distance between the points
lying on those ellipses from the central point.

x2

x1

FIGURE 8.4. Euclidean norm

x2

x1

FIGURE 8.5. Diagonal norm
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x1

x2

FIGURE 8.6. Mahalanobis norm

Now we will show another method of creation of the matrix A. Let us
define the covariance matrix of data from the set X

R =
1
M

M∑

k=1

(xk − x) (xk − x)T
, (8.17)

where x means the average of data xk, k = 1, ...,M . Matrix A is defined
in the following way:

A = R−1. (8.18)

Matrix A created in this way induces the Mahalanobis norm in the space
Rn, and the clusters are now hyperellipses with any shape and orientation,
which is illustrated in Fig. 8.6.

8.4 HCM algorithm

The HCM algorithm (Hard C-Means) unambiguously partitions the data
contained in the matrix X into c clusters. When executing this algorithm,
we compute the distance between each vector xk ∈ Rn, k = 1, . . . ,M
and the cluster center vi, i = 1, ..., c. The cluster center is the average
of the location of all objects belonging to this cluster. It is convenient to
describe the membership in a cluster by means of matrix U = [µik] ∈ Z1

(see Definition 8.1). Elements of this matrix are zeros and ones saying that
the object xk belongs to the i-th cluster. The algorithm is performed in the
following stages:

1. Algorithm initialization.

2. Determining the membership of objects on the basis of their distance
from the cluster centers.



358 8. Data clustering methods

3. Determining new cluster centers by computing the average of the
location of the objects belonging to a given cluster.

4. Checking the algorithm stopping criterion. If the condition is not met,
then we proceed to step 2.

The algorithm initialization consists in the choice of the number of clusters
c and determining the initial location of their centers. This location may
be chosen at random. Alternatively, the initial location of the centers may
be identical with c vectors xk chosen at random or with first c objects in
the data set. A detailed flowchart of the algorithm is illustrated in Fig. 8.7.

The algorithm stopping criterion is the most frequently an appropriately
small change of the value of elements of the matrix U, that is

∥
∥U(t+1)−U(t)

∥
∥

< ε, where ε is a fixed constant. Alternatively, we may check the change
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FIGURE 8.7. Flowchart of the HCM algorithm
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of cluster centers location, i.e.
∥
∥V(t+1) − V(t)

∥
∥ < ε. The HCM algorithm

may give various results, depending on the initial location of the cluster
centers.

8.5 FCM algorithm

Now let us present the FCM algorithm (Fuzzy C-Means) which allows as-
signing the same objects to various clusters with appropriate membership
degrees. The FCM algorithm is the most frequently used algorithm of fuzzy
clustering. It detects clusters with prototypes which are points in the data
space. All clusters have the same shape dependent on the norm chosen in
advance since the algorithm has no possibility to adjust the matrix A to
existing data. This algorithm is derived by minimization of the criterion

J (X;U,V) =
c∑

i=1

M∑

k=1

(µik)m ‖xk − vi‖2
A , (8.19)

where

U = [µik] ∈ Z2 (8.20)

is the matrix of the set X partition, whereas

V = [v1,v2, . . . ,vc] (8.21)

is the vector of centers which are to be defined as a result of the algorithm
operation, vi ∈ Rn, i = 1, ..., c. The following term appearing in formula
(8.19)

D2
ikA = ‖xk − vi‖2

A = (xk − vi)
T A (xk − vi) (8.22)

permits to compute the distance between vector xk and cluster center vi,
and m ∈ (1,∞) is a coefficient indicating the fuzziness degree of formed
clusters. When m → 1, the partition becomes less and less fuzzy. When
m → ∞, the partition becomes more and more fuzzy (then µik = 1/c). In
practice the value m = 2 is chosen. In order to execute the algorithm, having
a given data set X, we must choose the number of clusters c, fuzziness
degree m, parameter ε in the algorithm stopping criterion and initiate at
random matrix U(0) ∈ Z2 and vector of clusters prototypes V(0). The
algorithm stopping criterion is the same as in case of the HCM algorithm.
The FCM algorithm, like HCM, may give various results depending on
the initialization. The shape of clusters depends on the adopted distance
measure. The flowchart of the FCM algorithm operation is illustrated in
Fig. 8.8.
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8.6 PCM algorithm

When deriving the FCM algorithm it is assumed that the sum of the mem-
bership degrees of a given object to each of the clusters always equals 1.
This restriction may cause undesirable shift of cluster centers in a situation
when single incidental objects (noise) occur which sometimes lie far away
from the proper clusters. Giving up this constraint, we will get the PCM
algorithm (Possibilistic C-Means) which may be obtained as a result of
minimization of the following objective function:

J (X, η;U,V) =
c∑

i=1

M∑

k=1

(µik)m ‖xk − vi‖2
A+

c∑

i=1

ηi

M∑

k=1

(1 − µik)m
, (8.23)
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where ηi is a certain positive constant. The first term of criterion (8.23) is
the same as in criterion (8.19) concerning the FCM algorithm. The second
term, however, makes it necessary for membership degrees to be as big
as possible, without which the solution would be achieved for matrix U
with elements equal 0. Such a solution would result from giving up the
assumption saying that the sum of membership degrees of a given object
to each of the clusters always equals 1. It is easy to notice that the global
objective function (8.23) can be decomposed into c objective functions for
particular clusters. As a result of minimization we get

µik =

(

1 +
(

DikA

ηi

) 2
m−1
)−1

, (8.24)

where distance DikA is given by (8.22). The coefficient ηi defines the so-
called width of resulting possibilistic distribution. We can choose the same
value of the coefficient ηi for all clusters or compute it separately for each
of the clusters, proportionally to the average distance of the objects from
the center of a given cluster, i.e.

ηi =
∑M

k=1 (µik)m
D2

ikA∑M
k=1 (µik)m

. (8.25)

The algorithm stopping criterion is chosen in the same way as in case of
the HCM algorithm. We must note the fact that improper initialization
of the PCM algorithm may lead to partitioning in which all membership
degrees are equal. Therefore the initial partitioning in the PCM algorithm
usually takes place with use of the FCM algorithm. The flowchart of the
PCM algorithm is illustrated in Fig. 8.9.

8.7 Gustafson-Kessel algorithm

In the algorithms presented so far the type of norm must be defined in
advance. Therefore we must know what cluster shapes occur in the data.
The main disadvantage of the algorithms with a constant norm is search-
ing for clusters with the shape which may not occur in the data set. The
Gustafson-Kessel algorithm (GK) is a modification of the FCM algorithm.
In this algorithm each cluster is associated with a separate matrix Ai, and
the distance between object xk and the cluster center vi equals

D2
ik = (xk − vi)

T Ai (xk − vi) . (8.26)

During the algorithm operation also matrices Ai, inducing the distance
measure, i = 1, ..., c, are modified. The objective function in the GK
algorithm is defined in the same way as in the FCM algorithm (8.19),
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FIGURE 8.9. Flowchart of the PCM algorithm

but now distance measure (8.26) is used. Thus the objective function takes
the form of

J (X;U,V,A) =
c∑

i=1

M∑

k=1

(µik)m
D2

ik, (8.27)

where A = (A1,A2, . . . ,Ac). Let us notice that the direct minimization
of criterion (8.27) does not lead to an effective solution as the value of
this criterion may have any small value, e.g. for matrix Ai with almost
exclusively zero-value elements. In order to obtain a correct result, matrices
Ai must be constrained, e.g. by setting the values of their determinants, i.e.

det (Ai) = ρi, ρi > 0, ∀i, i = 1, . . . , c, (8.28)

where ρi is a chosen constant reflecting the information of data subject to
clustering. In case of lack of such information it is assumed that ρi = 1 for
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i = 1, ..., c. The constraint (8.28) causes that the volumes of clusters are
constant, and we only permit a change of the shape of clusters. As a result
of the minimization of criterion (8.27) with respect to matrix Ai we get

Ai = [ρi det (Fi)]
1
n F−1

i , (8.29)

where Fi is the so-called fuzzy covariance matrix of the i-th cluster

Fi =
∑M

k=1 (µik)m (xk − vi) (xk − vi)
T

∑M
k=1 (µik)m

. (8.30)

The algorithm initialization requires determining the same parameters as in
the FCM algorithm, and additionally coefficients ρi defining the volumes of
particular clusters (if we do not have the knowledge on the problem, we may
assume that ρi = 1). The GK algorithm finds clusters of any shapes but
requires more computations than the FCM algorithm due to the necessity
to compute the determinant and inverse of the matrix Fi. The flowchart of
the GK algorithm is illustrated in Fig. 8.10.

8.8 FMLE algorithm

In the FMLE clustering algorithm (Fuzzy Maximum Likelihood Estimates)
the distance measure refers to the form of maximum likelihood estimates.
This measure is given by the following formula:

DikGi
=

[det (Gi)]
1
2

Pi
exp
[
1
2

(xk − vi)
T G−1

i (xk − vi)
]
, (8.31)

where Gi is the covariance matrix of the i-th cluster

Gi =
∑M

k=1 µik (xk − vi) (xk − vi)
T

∑M
k=1 µik

, (8.32)

and Pi is the a priori probability of choosing the i-th cluster

Pi =
1
M

M∑

k=1

µik. (8.33)

Membership degree µik may be interpreted as the probability of assigning
object xk to the i-th cluster. Convergence of the FMLE algorithm strongly
depends on the initialization as it often gets stuck in the local minimum.
Contrary to the GK algorithm, realization of the FMLE algorithm does not
require the knowledge or arbitrary assumption of the value of parameter ρi

for i = 1, ..., c. The algorithm flowchart is illustrated in Fig. 8.11.
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FIGURE 8.10. Flowchart of the Gustafson-Kessel algorithm

8.9 Clustering validity measures

The number of clusters is an important factor influencing clustering valid-
ity. It should reflect the actual number of clusters of objects similar to each
other in the set X. The proper number of clusters may be found by clus-
tering the data set for a different number of clusters and different values
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of parameters (e.g. parameter m in the FCM algorithm). Each time we
must also evaluate the partition obtained. Such evaluation is performed by
means of special indexes called clustering validity indexes. Below is the list
of several best-known clustering validity indexes.
a) Fuzziness in partition matrix U
It is the simplest index measuring the fuzziness degree of a partition matrix

V1 (U) =
1
M

c∑

i=1

M∑

k=1

(µik)2 . (8.34)

The best partition is a partition where index V1 (U) reaches the maximum
value, that is

max
c

{
max
Z2

V1 (U)
}

, c = 2, . . . ,M − 1. (8.35)

Coefficient V1 (U) evaluates the distance of all objects to the cluster centers.
If each data is strongly connected with one cluster only, i.e. if for each k
membership degree µik is big for only one cluster i, the uncertainty of data
is low, and consequently V1 (U) takes a high value. It is easy to notice that
the value of index (8.34) depends on the distance of particular objects xk

from the centers of created clusters. Index (8.34) is connected with the
index defining the entropy of data partition

V2 (U) = − 1
M

c∑

i=1

M∑

k=1

µik ln (µik) . (8.36)

The best partition is a partition which minimizes index (8.36) that is

min
c

{
min
Z2

V2 (U)
}

c = 2, . . . , M − 1. (8.37)

When all degrees have values close to 1/c, which means a high degree
of clusters fuzziness, then measure V2 (U) takes high values, which means
that the result of clustering is unsatisfactory. By analogy, if all membership
degrees µik take values close to 0 or 1, then measure V2 (U) takes low values,
which indicates a good result of clustering.

b) Fukuyama-Sugeno index

The inconvenience of the above indexes is dependence of their values on
the number of clusters c and lack of connection between those values and
geometric shape of clusters.

The Fukuyama-Sugeno index enables connection of partition with geo-
metric properties of clustered data. It is given by the following formula:

V3 (U,V;X) =
c∑

i=1

M∑

k=1

(µik)m
(
‖xk − vi‖2

A − ‖xk − v‖2
A

)
, (8.38)
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where v is an average of all points in the data set, i.e.

v =
1
M

M∑

k=1

xk. (8.39)

The optimal data partition minimizes index V3.

c) Xie-Beni index

Xie-Beni index is given by the formula

V4 (U,V;X) =
∑c

i=1

∑M
k=1 (µik)m ‖xk − vi‖2

M
(
mini,j {‖vi − vj‖}2

) , (8.40)

and the optimal selection of the number of classes is given by the formula

min
c

{
min
M2

V4 (U)
}

c = 2, . . . , M − 1. (8.41)

The best partition minimizes index (8.40) which is a quotient of the average
of all distances between clusters and objects and the smallest distance be-
tween clusters. The proper clustering procedure should result in a situation
in which all data will be as close to the centers of the respective clusters as
possible and all centers will be as far from each other as possible.

8.10 Illustration of operation of data clustering
algorithms

The most frequently used algorithm of data clustering is the FCM algorithm.
Therefore in this chapter we will perform a simulation of this algorithm and
compare it with the HCM and PCM algorithms.

Example 8.5
Figure 8.12 presents an exemplary data set composed of 9 two-dimensional
objects, i.e. M = 9 and n = 2. Matrix X corresponding to this set is in the
form of

FIGURE 8.12. Comparison of three clustering algorithms
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X =
[

98 97 111 109 178 178 190 189 143
86 99 99 85 85 95 97 85 46

]
. (8.42)

It is easy to notice two separate groups of objects and one object number
9 which “does not fit” in those groups. Symbol “+” has been used to mark
the cluster centers obtained by means of the HCM algorithm. As one can
see, object 9 has been qualified to cluster 2 and influenced the position
of this cluster’s center, by “drawing” this center towards itself. As a result
of the HCM algorithm operation, the following partition matrix has been
created:

UHCM =
[

0 0 0 0 1 1 1 1 1
1 1 1 1 0 0 0 0 0

]
. (8.43)

The FCM algorithm assigned object number 9 to both groups with the
same membership degree equal to 0.5. In such a case the centers of both
clusters are moved towards object number 9. As a result of clustering using
the FCM algorithm, the following partition matrix has been created:

UFCM =
[

0.99 0.98 0.98 0.99 0.00 0.01 0.02 0.01 0.50
0.01 0.02 0.02 0.01 1.00 0.99 0.98 0.99 0.50

]
.

(8.44)

The problem of noise has been best dealt with by the PCM algorithm
which assigned membership degrees equal to 0.04 and 0.03 to the object
number 9, which can be seen when analyzing the partition matrix created

UPCM =
[

0.76 0.56 0.53 0.73 0.03 0.03 0.02 0.02 0.04
0.02 0.02 0.02 0.02 0.74 0.73 0.54 0.65 0.03

]
.

(8.45)

The centers of both clusters have only slightly been moved comparing to the
results of the HCM and PCM algorithms. Table 8.1 shows the coordinates
of cluster centers which were created as a result of clustering set (8.42).

TABLE 8.1. Coordinates of cluster centers which were created as a result of
clustering the set (8.42)

HCM algorithm x1 x2

Cluster 1 175.60 81.60
Cluster 2 103.75 92.25
FCM algorithm x1 x2

Cluster 1 106.13 89.38
Cluster 2 181.20 87.73
PCM algorithm x1 x2

Cluster 1 103.58 90.19
Cluster 2 182.41 89.86
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8.11 Notes

This chapter presents only basic methods of data clustering. In order to
illustrate their operation we compared the HCM, FCM and PCM algo-
rithms. The most frequently used FCM method is sensitive to occurrence
of noisy data. This method may serve as an initialization of the PCM
algorithm, which is resistant to noise and outliers. It is also applied for
preliminary setup of membership functions during design of neural and
fuzzy systems (Chapters 9 and 10). Data clustering methods constitute an
extremely important research tool in computational intelligence and have
numerous applications. Both, basic algorithms presented in this chapter as
well as more advanced methods, e.g. oriented at detection of clusters of
specific shapes, have been discussed in detail in the literature [3, 9, 23, 34,
83]. It is worth noting that pioneers in the field of data clustering methods
are James C. Bezdek and Enrique H. Ruspini whose original works have
been reprinted in the book [10].



9
Neuro-fuzzy systems of Mamdani,
logical and Takagi-Sugeno type

9.1 Introduction

Within the last dozen of years, different structures of neuro-fuzzy networks
have been presented, often referred to in the world literature as neuro-fuzzy
systems. They combine the advantages of neural networks and classic fuzzy
systems. In particular, the neuro-fuzzy networks are characterized – in con-
trast with neural networks – by a interpretable representation of knowledge
represented by fuzzy rules. As generally known, the knowledge in neural
networks is represented by the values of synaptic weights, and therefore
is completely not interpretable, for instance, for a user of a medical ex-
pert system that uses neural networks. Moreover, neuro-fuzzy networks
can be trained, using the idea of error backpropagation method, which is
the basis of learning of multilayer neural networks. The learning usually
applies to membership function parameters of the IF and THEN part
of the fuzzy rules. As shown in Chapter 7, there is also the possibility to
apply the evolutionary algorithms to learn not only the parameters of the
membership functions but also the fuzzy rules themselves. The above dis-
cussed advantages of the neuro-fuzzy networks are the reason for their com-
mon application in classification, approximation and prediction problems.
Most of neuro-fuzzy structures described in the world literature utilizes
the Mamdani type inference or the Takagi-Sugeno schema. As mentioned
in Chapter 4, the Mamdani type inference consists in connecting the an-
tecedents and the consequents of rules using a t-norm (most often the
t-norm of the min type or of the product type). Then the aggregation of
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particular rules is made using a t-conorm. In case of the Takagi-Sugeno
schema, the consequents of the rules are not fuzzy in nature, but are func-
tions of the input variables. Less often the logical inference is applied, which
consists in connecting the antecedents and the consequents of rules using
a fuzzy implication that satisfies the conditions of Definition 4.47. In case
of an inference of logical type the aggregation of particular rules is made
using a t-conorm. It is obvious that the designers and users of neuro-fuzzy
systems would like to obtain a possibly high accuracy of these systems op-
eration in the sense of the chosen quality criterion. In approximation and
prediction problems, such quality criterion is the mean squared error, and
in classification problems – the number of erroneously classified samples. In
both problems, the experiments are made on learning sequences and test-
ing sequences. It should be stressed that the satisfactory results obtained
on a learning sequence do not guarantee a correct system operation on a
testing sequence. In other words, the neuro-fuzzy system should have good
properties of the so-called generalization. In particular, neuro-fuzzy systems
designed using both the membership function and the weights describing
the importance of rules and importance of linguistic variables in individual
rules should be characterized by an appropriate number of all parameters
which are to be subject of learning. A big number of parameters ensures
a small learning error, but usually leads to wrong generalization. On the
other hand, a small number of parameters in the system leads to a larger
learning error. In this chapter, we will present the Mamdani, logical and
Takagi-Sugeno systems, their learning algorithms and we will make a com-
parative analysis of their effectiveness. We will solve the issue of designing
neuro-fuzzy systems, which are a compromise between accuracy and the
number of parameters describing this system.

9.2 Description of simulation problems used

Neuro-fuzzy system discussed in this and the next chapter will be tested
using standard testing problems (benchmarks).

Table 9.1 presents the name of the problem, number of input data, length
of the learning sequence and length of the testing sequence.

Below, we present a detailed description of the problems listed in
Table 9.1. Information on the number of rules and the number of epochs
relates to the simulations performed in this chapter (problems 9.2.1 - 9.2.4).

9.2.1 Polymerization
We consider the problem of modeling the polymer manufacturing process.
The device produces polymers (macromolecular compounds obtained from
monomers, i.e. small-molecule compounds) as a result of chemical reaction



9.2 Description of simulation problems used 373

TABLE 9.1. Simulation problems

No. Name of problem Number of Length of Length of
inputs the learning the testing

sequence sequence
1 Polymerization 3 70 20
2 HANG (modeling a static 2 50 20

nonlinear function)
3 NPD (modeling a dynamic 2 1000 200

nonlinear function)
4 Modeling the taste of rice 5 75 30
5 Distinguishing of the brand 13 125 53

of wine
6 Classification of iris flower 4 90 60

called polymerization, during which many small molecules of the same com-
pound connect spontaneously (or under the influence of catalytic agents).
In order to model the system, three continuous input variables are selected.
They include: monomer concentration, change of monomer concentration
and its current flow rate. Based on the values of input variables, the next
value of the monomer flow rate should be determined. Simulation tests of
systems made of 3 inputs, one output and 6 rules have been performed. The
experiment was repeated many times for 6000 epochs (420 000 iterations)
and its results were averaged.

9.2.2 Modeling a static non-linear function
It is an issue of approximation of a non-linear function – HANG, described
by the formula

y (x1, x2) =
(
1 + x−2

1 + x−1.5
2

)2
, (9.1)

where x1, x2 ∈ [1, 5]. The learning sequence consists of 50 input data vectors
and the corresponding function values. Simulation tests of systems made
of 2 inputs, one output and 8 rules were performed. The experiment was
repeated many times for 8000 epochs (400 000 iterations) and its results
were averaged.

9.2.3 Modeling a non-linear dynamic object (Nonlinear
Dynamic Problem - NDP)
It is the problem of modeling a nonlinear dynamic object the behavior of
which is described by the formula

y (t) = g (y (t − 1) , y (t − 2)) + u (t) , (9.2)
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where

g (u (t − 1) , y (t − 2)) =
y (t − 1) y (t − 2) (y (t − 1) − 0.5)

1 + y2 (t − 1) + y2 (t − 2)
, (9.3)

and u (t) is the output signal.
For the purpose of learning neuro-fuzzy systems, a sequence of model

states of the objects for a random input signal with uniform distribution is
used (first 500 samples) and for a sinusoidal input signal u (t) = sin (2πt/25)
(next 500 samples). The sequence has been generated for a zero initial
state. Simulation tests of systems made of 3 inputs, one output and 6 rules
were performed. The experiment was repeated many times for 500 epochs
(500 000 iterations) and its results were averaged.

9.2.4 Modeling the taste of rice
The problem to be solved in this example is to find a nonlinear dependency
between input data, characterizing the rice samples, and the output signal
containing the interpretation of the taste of rice. Data consist of 105 cases.
Each sample has been described by 5 features: flavor, appearance, taste,
viscosity and hardness, constituting the system input data. The system
output is a general assessment of the taste of rice. Input and output data
have been normalized to the interval [0, 1]. Simulation tests of systems made
of 2 inputs, one output and 6 rules were performed. The experiment was
repeated many times for 5000 epochs (375 000 iterations) and its results
were averaged.

9.2.5 Distinguishing of the brand of wine
The problem to be solved is the correct classification of wine samples. Data
in the problem of wine distinguishing consist of chemical analysis of 178
wines from same region of Italy, but from three different vineyards. The
input data consist of 13 continuous attributes which include among other
thing: alcohol contents, malic acid contents, sediment, sediment alkalinity,
magnesium contents, total phenol contents, color intensity and shade. In
the experiment discussed, all the data have been divided into a learning
sequence (125 samples) and a testing sequence (53 samples).

9.2.6 Classification of iris flower
The problem consist in the classification of the Iris flower based on the length
of the leaf in cm, width of the leaf in cm, length of the petal in cm, width of
the petal in cm. We distinguish three classes: Iris setosa, Iris Versicolor and
Iris Virginica. Data include 150 sets, which were divided at random into the
learning sequence (90 sets) and the testing sequence (60 sets).



9.3 Neuro-fuzzy systems of Mamdani type 375

Remark 9.1
Gradient algorithms of the momentum type with learning coefficient η =
0.25 and with momentum coefficient 0.1 have been used for learning of all
the neuro-fuzzy systems presented in this chapter. These algorithms have
been derived in Subchapter 9.6 without taking account of the momentum
term in particular iteration procedures. In all neuro-fuzzy systems consid-
ered in this chapter, the following principle has been adopted:

• particular rules are aggregated using a t-conorm of the max type in
case of the Mamdani system and a t-norm of the min type in case of
a logical system,

• the antecedents of rules are aggregated by means of t-norm of the
product type.

The basis for assessment of neuro-fuzzy systems will be the value of
error (mean squared error in case of approximation issues or number of
erroneously classified samples in case of classification issues). At first, the
mean error in particular epochs is determined, and then the minimum error
is found among these errors.

9.3 Neuro-fuzzy systems of Mamdani type

Let us consider two types of neuro-fuzzy systems of Mamdani type, the
so-called A type and B type systems. In both cases, the antecedents and
the consequents of rules are connected by means of a t-norm. In A type
systems at the inference block output we have N fuzzy sets, while in B-type
systems at the block output we have one fuzzy set which is the result of
aggregation of inference results in particular rules.

9.3.1 A-type systems
In A-type systems, the defuzzification is realized using the dependency:

y =
∑N

r=1 yr · µB
r (yr)

∑N
r=1 µB

r (yr)
. (9.4)

The membership functions of fuzzy sets B
r
, r = 1, 2, . . . , N, are defined

using the following formula:

µB
r (y) = sup

x∈X

{
µAr (x)

T∗ µAr→Br (x, y)
}

. (9.5)

With singleton type fuzzification, formula (9.5) takes the form

µB
r (y) = µAr→Br (x, y) = T (µAr (x) , µBr (y)) . (9.6)
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Since
µAr (x) =

n

T
i=1

(
µAr

i
(xi)
)
, (9.7)

we have

µ
Br (y) = µAr→Br (x, y) = T

[
n

T
i=1

(
µAr

i
(xi)
)
, µBr (y)

]
, (9.8)

where T is any t-norm. Owing to the fact that

µBr (yr) = 1 (9.9)

and
T (a, 1) = a, (9.10)

we obtain the following dependency:

µB
r (yr) =

n

T
i=1

(
µAr

i
(xi)
)
. (9.11)

By substituting dependency (9.11) to formula (9.4), we get

y =
∑N

r=1 yr · Tn
i=1

(
µAr

i
(xi)
)

∑N
r=1 Tn

i=1

(
µAr

i
(xi)
) . (9.12)

In A-type systems, separate inference is made within each rule and
µB

r (yr), r = 1, 2, . . . , N, is computed. Let us assume that input and out-
put linguistic variables are described by means of Gaussian membership
functions, that is

µAr
i
(xi) = exp

[

−
(

xi − xr
i

σr
i

)2
]

, (9.13)

µBr (y) = exp

[

−
(

y − yr

σr

)2
]

. (9.14)

By substituting the above dependencies to formula (9.4) and applying the
Larsen rule, we will get the following formula:

y =

∑N
r=1 yr

(
∏n

i=1 exp

[

−
(

xi − xr
i

σr
i

)2
])

∑N
r=1

(
∏n

i=1 exp

[

−
(

xi − xr
i

σr
i

)2
]) . (9.15)

Let us notice that in dependency (9.15), there is no parameter σr of the
output fuzzy set Br, r = 1, 2, . . . , N . Figure 9.1 presents a block schema of
the structure reflecting dependency (9.15). As we can see, it is a multilayer
network structure. Such a structure is called a neuro-fuzzy network. To
train it, the idea of error backpropagation method may be applied.
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x1

x2

xn

FIGURE 9.1. Network structure of a system described by formula (9.15)

9.3.2 B-type systems
In B-type systems, the defuzzification is made using the dependency

y =
∑N

r=1 yr · µB′ (yr)
∑N

r=1 ·µB′ (yr)
. (9.16)

In these systems, aggregation of particular fuzzy sets B
k

given by formula
(9.6) is made, which means that the fuzzy set B′ is determined through
operation of union of fuzzy sets B

k

B′ =
N⋃

k=1

B
k
. (9.17)

The membership function of fuzzy set B′ is determined using a t-conorm, i.e.

µB′ (y) =
N

S
k=1

{
µ

B
k (y)
}

. (9.18)

Therefore

µB′ (yr) =
N

S
k=1

{
µ

B
k (yr)
}

=
N

S
k=1

{T (µAk (x) , µBk (yr))} (9.19)

=
N

S
k=1

{
T

(
n

T
i=1

µAk
i
(xi) , µBk (yr)

)}
.
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x1

x2

xn
y

y

y

y

FIGURE 9.2. Network structure of a system described by formula (9.20)

By substituting formula (9.19) to dependency (9.16), we get

y =

∑N
r=1 yr · SN

k=1

{
T
(
Tn

i=1

{
µAk

i
(xi)
}

, µBk (yr)
)}

∑N
r=1 SN

k=1

{
T
(
Tn

i=1

{
µAk

i
(xi)
}

, µBk (yr)
)} . (9.20)

In Fig. 9.2 the network structure of the system described by formula (9.20)
is presented.

In B-type systems, separate inference is also made within each rule, but
next, the aggregation of inference results is made in individual rules and
only then µB′(yr), r = 1, 2, . . . , N, is computed.

9.3.3 Mamdani type systems in modeling problems
Mamdani type systems will be applied to modeling problems. These prob-
lems were described in detail in Subchapter 9.2. We will assume that fuzzy
sets Ar

i and Br are characterized by Gaussian membership functions given
by formula (9.13) and (9.14).

9.3.3.1. M1-type systems

Let us consider Mamdani type systems which are constructed using defin-
itions of triangular norms without taking the weights into account. Using
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dependency (9.20) and min type Mamdani rule, we obtain the following
description of the neuro-fuzzy system:

y =

∑N
r=1 yr · SN

k=1

{
min
(
Tn

i=1

{
µAk

i
(xi)
}

, µBk (yr)
)}

∑N
r=1 SN

k=1

{
min
(
Tn

i=1

{
µAk

i
(xi)
}

, µBk (yr)
)} . (9.21)

Substituting dependencies (9.13) and (9.14) to formula (9.21) and using
the contents of Remark 9.1, we obtain

y =

∑N
r=1 yr · SN

k=1

{
min

(
T n

i=1

{
exp

[
−
(

xi−xk
i

σk
i

)2]}
, exp

[
−
(

yr−yk

σk

)2])}

∑N
r=1 SN

k=1

{
min

(
T n

i=1

{
exp

[
−
(

xi−xk
i

σk
i

)2]}
, exp

[
−
(

yr−yk

σk

)2])}

=

∑N
r=1 yr · max

1≤k≤N

{
min

(
∏n

i=1 exp

[
−
(

xi−xk
i

σk
i

)2])
· exp

[
−
(

yr−yk

σk

)2]}

∑N
r=1 max

1≤k≤N

{
min

(
∏n

i=1 exp

[
−
(

xi−xk
i

σk
i

)2]
· exp

[
−
(

yr−yk

σk

)2])} .

(9.22)

Using dependency (9.20) and product type Mamdani rule (known as Larsen
rule), we obtain the following description of the neuro-fuzzy system:

y =

∑N
r=1 yr · SN

k=1

{
Tn

i=1

{
µAk

i
(xi)
}
· µBk (yr)

}

∑N
r=1 SN

k=1

{
Tn

i=1

{
µAk

i
(xi)
}
· µBk (yr)

} . (9.23)

Substituting dependencies (9.13) and (9.14) to formula (9.23) and using
the contents of Remark 9.1, we obtain

y =

∑N
r=1 yr · SN

k=1

{
Tn

i=1

{
exp
[
−
(

xi−xk
i

σk
i

)2]}
· exp
[
−
(

yr−yk

σk

)2]}

∑N
r=1 SN

k=1

{
Tn

i=1

{
exp
[
−
(

xi−xk
i

σk
i

)2]}
· exp
[
−
(

yr−yk

σk

)2]}

=

∑N
r=1 yr · max

1≤k≤N

{
∏n

i=1 exp
[
−
(

xi−xk
i

σk
i

)2]
· exp
[
−
(

yr−yk

σk

)2]}

∑N
r=1 max

1≤k≤N

{
∏n

i=1 exp
[
−
(

xi−xk
i

σk
i

)2]
· exp
[
−
(

yr−yk

σk

)2]} .

(9.24)

Further in this chapter, we will not remind the wording of Remark 9.1.
We should however remember that particular rules are aggregated using a
t-conorm of the max type in case of the Mamdani system and a t-norm of
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the min type in case of a logic system and that the antecedents of the rules
are aggregated using a t-norm of the product type. Neuro-fuzzy systems
(9.22) and (9.24) are special cases of B-type system described in point 9.3.2.
In systems (9.22) and (9.24) the following parameters of the membership
functions are subject to learning; xk

i , σk
i , yk, σk, k = 1, 2, . . . , N . One of

subjects of studies is also A-type Mamdani system described in point 9.3.1,
the description of which, for the Reader’s convenience, is recalled below:

y =

∑N
r=1 yr ·

[
∏n

i=1

(
exp
[
−
(

xi−xr
i

σr
i

)2])]

∑N
r=1

[
∏n

i=1

(
exp
[
−
(

xi−xr
i

σr
i

)2])] . (9.25)

System (9.25) has been called a simplified Larsen structure. In this sys-
tem, the parameters xr

i , σr
i , yr, r = 1, 2, . . . , N, are subject to learning.

It may be shown that system (9.25) is a special case of system (9.24)
Neuro-fuzzy systems (9.22), (9.24) and (9.25) have been used to solve four
problems specified in Table 9.1: polymerization, HANG, NDP and model-
ing the taste of rice. All the parameters of the neuro-fuzzy systems have
been trained using error backpropagation method: centers and widths of
Gaussian functions were trained. In case of structure (9.25), there are no
widths of consequents of the Gaussian function.

9.3.3.1.1. Polymerization

Table 9.2 presents the smallest error for individual structures and the num-
ber of epochs corresponding to this error. Table 9.3 presents three desired
error values and the number of epochs, after which this error was obtained.

As it may be inferred from Table 9.3, for the Larsen structure, it was
impossible to train the system with error 0.0045.

9.3.3.1.2. HANG

Table 9.4 presents the smallest error for individual structures and the
number of epochs corresponding to this error. Table 9.5 presents three

TABLE 9.2. The smallest error obtained as a result of learning

POLYMERIZATION
Structure The smallest error Number of epochs
Mamdani 0.0041 3734
Larsen 0.0049 5984
Larsen (simplified) 0.0042 4689
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TABLE 9.3. Number of epochs required to train the system which is characterized
by a definite error

POLYMERIZATION
Structure Value of error

0.0055 0.0050 0.0045
Mamdani 1086 1479 1943
Larsen 3621 5984 –
Larsen (simplified) 807 2718 4454

TABLE 9.4. The smallest error obtained as a result of learning

HANG
Structure The smallest error Number of epochs
Mamdani 0.0340 7848
Larsen 0.0387 8000
Larsen (simplified) 0.0240 7102

TABLE 9.5. Number of epochs required to train the system which is characterized
by a given error

HANG
POLYMERIZATION

Structure Value of error
0.028 0.026 0.024

Mamdani – – –
Larsen – – –
Larsen (simplified) 4071 6024 7102

desired values of error and the number of epochs, after which this error
was obtained.

As it may be inferred from Table 9.5, neither the Mamdani nor the Larsen
structure did achieve any of the desired values of error.

9.3.3.1.3. NDP

Table 9.6 presents the smallest error for individual structures and the num-
ber of epochs corresponding to this error.

Table 9.7 presents three desired values of error and the number of epochs,
after which this error was obtained.

As it may be inferred from Table 9.7, the Mamdani structure did not
attain any of the desired values of error.
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TABLE 9.6. The smallest error obtained as a result of learning

NDP
Structure The smallest error Number of epochs
Mamdani 0.0263 436
Larsen 0.0176 433
Larsen (simplified) 0.0140 393

TABLE 9.7. Number of epochs required to train the system which is characterized
by a given error

NDP
Structure Value of error

0.026 0.023 0.020
Mamdani – – –
Larsen 172 233 302
Larsen (simplified) 74 82 93

9.3.3.1.4. Modeling the taste of rice

Table 9.8 presents the smallest error for individual structures and the num-
ber of epochs corresponding to this error.

As it may be inferred from Table 9.9, only the simplified Larsen structure
obtained all the desired values of error.

9.3.3.2. M2-type systems

Let us consider Mamdani type systems which are constructed using de-
finitions of triangular norms taking into account the weights wk, character-
izing the importance of particular rules. Using the definition of weighted
t-conorm and dependency (9.22), (9.24) and (9.25) we obtain the following
description of the neuro-fuzzy systems:
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TABLE 9.8. The smallest error obtained as a result of learning

MODELING THE TASTE OF RICE
Structure The smallest error Number of epochs
Mamdani 0.0244 4459
Larsen 0.0252 2501
Larsen (simplified) 0.0205 3888

TABLE 9.9. Number of epochs required to train the system which is characterized
by a definite error

MODELING THE TASTE OF RICE
Structure Value of error

0.028 0.025 0.022
Mamdani 233 1978 –
Larsen 506 – –
Larsen (simplified) 67 451 2936

a) Mamdani system with weights of rules

y =

∑N
r=1 yr · S∗N

k=1

{
min
(
T n

i=1

{
µAk

i
(xi)
}

, µBk (yr)
)

, wk

}

∑N
r=1 S∗N

k=1

{
min
(
T n

i=1

{
µAk

i
(xi)
}

, µBk (yr)
)

, wk

} (9.26)

=

∑N
r=1 yr · S∗N

k=1

{

min

(

T n
i=1

{

exp

[

−
(

xi−xk
i

σk
i

)2
]}

, exp

[
−
(

yr−yk

σk

)2]
)

, wk

}

∑N
r=1 S∗N

k=1

{

min

(

T n
i=1

{

exp

[

−
(

xi−xk
i

σk
i

)2
]}

, exp

[
−
(

yr−yk

σk

)2]
)

, wk

} .

b) Larsen system with weights of rules

y =

∑N
r=1 yr ·S∗N

k=1

{
Tn

i=1

({
µAk

i
(xi)
}
· µBk (yr)

)
,wk

}

∑N
r=1 S∗N

k=1

{
Tn

i=1

({
µAk

i
(xi)
}
· µBk (yr)

)
,wk

} (9.27)

=

∑N
r=1 yr ·S∗N

k=1

{
Tn

i=1

{
exp
[
−
(

xi−xk
i

σk
i

)2]}
·exp
[
−
(

yr−yk

σk

)2]
,wk

}

∑N
r=1 S∗N

k=1

{
Tn

i=1

{
exp
[
−
(

xi−xk
i

σk
i

)2]}
·exp
[
−
(

yr−yk

σk

)2]
,wk

} .

In both a) and b) systems, the parameters of membership function, i.e.
xk

i , σk
i , yk, σk and weights wk are subject to learning.
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c) Simplified Larsen system with weights of rules

y =
∑N

r=1y
r · wr ·

∏n
i=1

(
µAr

i
(xi)
)

∑N
r=1wr ·

∏n
i=1

(
µAr

i
(xi)
) (9.28)

=

∑N
r=1 yr · wr ·

∏n
i=1

(
exp
[
−
(

xi−xr
i

σr
i

)2])

∑N
r=1 wr ·

∏n
i=1

(
exp
[
−
(

xi−xr
i

σr
i

)2]) .

In c) system, the parameters of membership function xr
i , σ

r
i , yr and weights

wr. are subject to learning. Neuro-fuzzy systems (9.26), (9.27) and (9.28),
have been used to solve four problems specified in Table 9.1.

9.3.3.2.1. Polymerization

Table 9.10 presents the smallest error for individual structures and the
number of epochs corresponding to this error.

Table 9.11 presents three desired values of error and the number of
epochs, after which this error was obtained.

9.3.3.2.2. HANG

Table 9.12 presents the smallest error for individual structures and the
number of epochs corresponding to this error. Table 9.13 presents three

TABLE 9.10. The smallest error obtained as a result of learning

POLYMERIZATION
Structure The smallest error Number of epochs
Mamdani with weights 0.0039 4088
Larsen with weights 0.0043 4501
Larsen (simplified) weights 0.0039 3691

TABLE 9.11. Number of epochs required to train the system which is character-
ized by a definite error

POLYMERIZATION
Structure Value of error

0.0055 0.0050 0.0045
Mamdani with weights 26 44 2440
Larsen with weights 2646 3154 4099
Larsen (simplified) with weights 1633 1633 3443
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TABLE 9.12. The smallest error obtained as a result of learning

HANG
Structure The smallest error Number of epochs
Mamdani with weights 0.0318 7848
Larsen with weights 0.0353 6773
Larsen (simplified) with weights 0.0183 1955

TABLE 9.13. Number of epochs required to train the system which is character-
ized by a definite error

HANG
Structure Value of error

0.028 0.026 0.024
Mamdani with weights – – –
Larsen with weights – – –
Larsen (simplified) with weights 191 366 632

TABLE 9.14. The smallest error obtained as a result of learning

NDP
Structure The smallest error Number of epochs
Mamdani with weights 0.0238 389
Larsen with weights 0.0164 495
Larsen (simplified) with weights 0.0136 487

desired values of error and the number of epochs, after which this error
was obtained.

As it may be inferred from Table 9.13, neither for the Mamdani nor for
the Larsen structure the system was able to learn as to obtain the desired
values of error.

9.3.3.2.3. NDP

Table 9.14 presents the smallest error for individual structures and the
number of epochs corresponding to this error. Table 9.15 presents three
desired values of error and the number of epochs, after which this error
was obtained.

As it may be inferred from Table 9.15, for the Mamdani structure with
weights of rules, the system was unable to learn as to obtain the error 0.020
and 0.023.
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9.3.3.2.4. Modeling the taste of rice

Table 9.16 presents the smallest error for individual structures and the
number of epochs corresponding to this error. Table 9.17 presents three
desired values of error and the number of epochs, after which this error
was obtained.

As it may be inferred from Table 9.17, for the Larsen structure with
weights of rules, the system was unable to learn as to obtain the error 0.022.

9.3.3.3. M3-type systems

Let us consider Mamdani type systems which are constructed using defini-
tions of triangular norms taking into account the weights wk, characterizing

TABLE 9.15. Number of epochs required to train the system which is character-
ized by a definite error

NDP
Structure Value of error

0.028 0.020 0.023
Mamdani with weights 157 – –
Larsen with weights 121 180 272
Larsen (simplified) with weights 55 59 90

TABLE 9.16. The smallest error obtained as a result of learning

MODELING THE TASTE OF RICE
Structure The smallest error Number of epochs
Mamdani with weights 0.0178 4978
Larsen with weights 0.0229 4154
Larsen (simplified) with weights 0.0199 4935

TABLE 9.17. Number of epochs required to train the system which is character-
ized by a definite error

MODELING THE TASTE OF RICE
Structure Value of error

0.028 0.025 0.022
Mamdani with weights 335 716 1751
Larsen with weights 562 1479 –
Larsen (simplified) with weights 421 852 3264
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the importance of particular rules, and the weights wi,k, characterizing the
importance of particular input linguistic variables. Using the definition of
weighted t-conorm and dependencies (9.22), (9.24) and (9.25), we obtain
the following description of the neuro-fuzzy systems:
a) Mamdani system with weights of inputs and rules

y =

∑N
r=1 yr ·S∗N

k=1

{
min
(
T ∗n

i=1

{
µAk

i
(xi) , wi,k

}
, µBk (yr)

)
,wk

}

∑N
r=1 S∗N

k=1

{
min
(
T ∗n

i=1

{
µAk

i
(xi) , wi,k

}
, µBk (yr)

)
,wk

} (9.29)

=

∑N
r=1y

r ·S∗N
k=1

⎧
⎪⎪⎨

⎪⎪⎩
min

⎛

⎜
⎜
⎝

T ∗n
i=1

{
exp
[
−
(

xi−xk
i

σk
i

)2]
, wi,k

}
,

exp
[
−
(

yr−yk

σk

)2]

⎞

⎟
⎟
⎠,wk

⎫
⎪⎪⎬

⎪⎪⎭

∑N
r=1S

∗N
k=1

⎧
⎪⎪⎨

⎪⎪⎩
min

⎛

⎜
⎜
⎝

T ∗n
i=1

{
exp
[
−
(

xi−xk
i

σk
i

)2]
, wi,k

}
,

exp
[
−
(

yr−yk

σk

)2]

⎞

⎟
⎟
⎠,wk

⎫
⎪⎪⎬

⎪⎪⎭

.

b) Larsen system with weights of inputs and rules

y =

∑N
r=1 yr ·S∗N

k=1

{
T ∗n

i=1

{
µAk

i
(xi), wi,k

}
·µBk (yr),wk

}

∑N
r=1 S∗N

k=1

{
T ∗n

i=1

{
µAk

i
(xi), wi,k

}
·µBk (yr),wk

} (9.30)

=

∑N
r=1 yr ·S∗N

k=1

{
T ∗n

i=1

{
exp
[
−
(

xi−xk
i

σk
i

)2]
,wi,k

}
·exp
[
−
(

yr−yk

σk

)2]
,wk

}

∑N
r=1 S∗N

k=1

{
T ∗n

i=1

{
exp
[
−
(

xi−xk
i

σk
i

)2]
,wi,k

}
·exp
[
−
(

yr−yk

σk

)2]
,wk

} .

In both a) and b) systems, the parameters of membership function, i.e.
xk

i , σk
i , yk, σk and weights wi,k and wk are subject to learning.

c) Simplified Larsen system with weights of inputs and rules

y =
∑N

r=1 yr · wr

[
Tn

i=1

{
1 − wi,r

(
1 − µAr

i
(xi)
)}]

∑N
r=1 wr

[
Tn

i=1

{
1 − wi,r

(
1 − µAr

i
(xi)
)}] (9.31)

=

∑N
r=1 yr · wr

[
Tn

i=1

{
1 − wi,r

(
1 −
(

exp
[
−
(

xi−xr
i

σr
i

)2]))}]

∑N
r=1 wr

[
Tn

i=1

{
1 − wi,r

(
1 −
(

exp
[
−
(

xi−xr
i

σr
i

)2]))}] .
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In system c) the parameters of membership function, i.e. xr
i , σ

r
i , yr and

weights wi,r and wr are subject to learning. Neuro-fuzzy systems (9.29),
(9.30) and (9.31) have been used to solve four problems specified in Table 9.1.

9.3.3.3.1. Polymerization

Table 9.18 presents the smallest error for individual structures and the
number of epochs corresponding to this error. Table 9.19 presents three
desired values of error and the number of epochs, after which this error
was obtained.

9.3.3.3.2. HANG

Table 9.20 presents the smallest error for individual structures and the
number of epochs corresponding to this error. Table 9.21 presents three
desired values of error and the number of epochs, after which this error
was obtained.

As it may be inferred from Table 9.21, the desired error values could not
be obtained for the Larsen structure with weights of inputs and rules.

TABLE 9.18. The smallest error obtained as a result of learning

POLYMERIZATION
Structure The smallest error Number of epochs
Mamdani with weights of 0.0034 4704
inputs and rules
Larsen with weights of 0.0035 3822
inputs and rules
Larsen (simplified) with 0.0031 2953
weights of inputs and rules

TABLE 9.19. Number of epochs required to train the system which is character-
ized by a definite error

POLYMERIZATION
Structure Value of error

0.0055 0.0050 0.0045
Mamdani with weights of 1915 2303 2549
inputs and rules
Larsen with weights of 1 1 1
inputs and rules
Larsen (simplified) with 1 6 13
weights of inputs and rules
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TABLE 9.20. The smallest error obtained as a result of learning

HANG
Structure The smallest error Number of epochs
Mamdani with weights of 0.0209 5474
inputs and rules
Larsen with weights of 0.0346 1541
inputs and rules
Larsen (simplified) with 0.0124 4252
weights of inputs and rules

TABLE 9.21. Number of epochs required to train the system which is character-
ized by a definite error

HANG
Structure Value of error

0.028 0.026 0.024
Mamdani with weights of
inputs and rules

4213 5474 5474

Larsen with weights of
inputs and rules

– – –

Larsen (simplified) with
weights of inputs and rules

628 750 750

TABLE 9.22. The smallest error obtained as a result of learning

NDP
Structure The smallest error Number of epochs
Mamdani with weights of
inputs and rules

0.0181 498

Larsen with weights of
inputs and rules

0.0146 500

Larsen (simplified) with
weights of inputs and rules

0.0188 484

9.3.3.3.3. NDP

Table 9.22 presents the smallest error for individual structures and the
number of epochs corresponding to this error. Table 9.23 presents three
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TABLE 9.23. Number of epochs required to train the system which is character-
ized by a definite error

NDP
Structure Value of error

0.026 0.023 0.020
Mamdani with weights
of inputs and rules

60 126 294

Larsen with weights
of inputs and rules

24 31 74

Larsen (simplified) with
weights of inputs and rules

– – –

TABLE 9.24. The smallest error obtained as a result of learning

MODELING THE TASTE OF RICE
Structure The smallest error Number of epochs
Mamdani with weights of
inputs and rules

0.0168 2218

Larsen with weights of
inputs and rules

0.0218 2325

Larsen (simplified) with
weights of inputs and rules

0.0190 4975

desired values of error and the number of epochs, after which this error
was obtained.

As it may be inferred from Table 9.23, the desired error values could not
be obtained for the simplified Larsen structure with weights of inputs and
rules.

9.3.3.3.4. Modeling the taste of rice

Table 9.24 presents the smallest error for individual structures and the
number of epochs corresponding to this error.

Table 9.25 presents three desired values of error and the number of
epochs, after which this error was obtained.

9.4 Neuro-fuzzy systems of logical type

In the previous subchapter, we have discussed neuro-fuzzy systems with
Mamdani type inference. Currently, we will consider systems in which the
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TABLE 9.25. Number of epochs required to train the system which is character-
ized by a definite error

MODELING THE TASTE OF RICE
Structure Value of error

0.028 0.025 0.022
Mamdani with weights of
inputs and rules

1 3 3

Larsen with weights of
inputs and rules

295 528 2325

Larsen (simplified) with
weights of inputs and rules

1 1 5

antecedents and the consequents of rules are connected with each other
using a fuzzy implication.

In logical type systems, the defuzzification is made by means of depen-
dency

y =
∑N

r=1 yr · µB′ (yr)
∑N

r=1 ·µB′ (yr)
. (9.32)

In these systems, the fuzzy set B′ is created as a result of intersection of
fuzzy sets B

k
, i.e.

B′ =
N⋂

k=1

B
k
. (9.33)

The membership function of fuzzy set B′ is determined using a t-norm,
which shall be notated as follows:

µB′ (y) =
N

T
k=1

{
µ

B
k (y)
}

. (9.34)

Using formulas (9.34), (9.6) and (9.7), we have

µB′ (yr) =
N

T
k=1

{
µ

B
k (yr)
}

=
N

T
k=1

{I (µAk (x) , µBk (yr))} (9.35)

=
N

T
k=1

{
I

(
N

T
i=1

µAk
i
(xi) , µBk (yr)

)}
,

where I is a fuzzy implication defined in point 4.8.4. By substituting for-
mula (9.35) to dependency (9.32), we obtain

y =

∑N
r=1 yr · TN

k=1

{
I
(
Tn

i=1

{
µAk

i
(xi)
}

, µBk (yr)
)}

∑N
r=1 TN

k=1

{
I
(
Tn

i=1

{
µAk

i
(xi)
}

, µBk (yr)
)} . (9.36)
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The specific form of formula (9.36) depends on the chosen definition of I
function. Logical type systems will be applied to solve modeling problems.
We will consider M1 systems (without weights), M2 systems (with weights
of rules) and M3 systems (with weights of rules and weights of input linguis-
tic variables). We will apply the Łukasiewicz, binary, Reichenbach, Zadeh
and Willmott fuzzy implications. Moreover we will present and test simpli-
fied neuro-fuzzy structures using Łukasiewicz and Zadeh implications.

9.4.1 M1-type systems
Let us consider logical type systems which are constructed using definitions
of triangular norms without taking the weights into account. First, we will
use Łukasiewicz implication. As a result of applying this implication, we
will obtain the following dependency:

µAk→Bk(x, y) = I (µAk(x) , µBk(y)) = I

(
n

T
k=1

(
µAk

i
(xi)
)
, µBk(y)

)
(9.37)

= min
[
1, 1 −

n

T
i=1

(
µAk

i
(xi)
)

+ µBk (y)
]

.

By substituting dependency (9.37) to formula (9.36), we obtain

y =

∑N
r=1 yrTN

k=1

{
min
[
1, 1 − Tn

i=1

(
µAk

i
(xi)
)

+ µBk (yr)
]}

∑N
r=1 TN

k=1

{
min
[
1, 1 − Tn

i=1

(
µAk

i
(xi)
)

+ µBk (yr)
]} . (9.38)

By substituting dependencies (9.13) and (9.14) to formula (9.38), we obtain

y =

∑N
r=1 yrTN

k=1

⎧
⎪⎪⎨

⎪⎪⎩
min

⎡

⎢
⎢
⎣

1, 1 − Tn
i=1

(
exp
[
−
(

xi−xk
i

σk
i

)2])

+ exp
[
−
(

yr−yk

σk

)2]

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

∑N
r=1 TN

k=1

⎧
⎪⎪⎨

⎪⎪⎩
min

⎡

⎢
⎢
⎣

1, 1 − Tn
i=1

(
exp
[
−
(

xi−xk
i

σk
i

)2])

+ exp
[
−
(

yr−yk

σk

)2]

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

. (9.39)

By applying the binary fuzzy implication, we obtain

µAk→Bk (x, y) = I (µAk (x) , µBk (y)) = I

(
n

T
i=1

(
µAk

i
(xi)
)
,µBk (y)

)
(9.40)

= max
[
1 −

n

T
i=1

(
µAk

i
(xi)
)

, µBk (y)
]

.
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By substituting dependency (9.40) to formula (9.36), we obtain

y =

∑N
r=1 yrTN

k=1

{
max
[
1 − Tn

i=1

(
µAk

i
(xi)
)

, µBk (yr)
]}

∑N
r=1 TN

k=1

{
max
[
1 − Tn

i=1

(
µAk

i
(xi)
)

, µBk (yr)
]} . (9.41)

By substituting dependencies (9.13) and (9.14) to formula (9.41), we obtain

y =

∑N
r=1 yrTN

k=1

⎧
⎪⎪⎨

⎪⎪⎩
max

⎡

⎢
⎢
⎣

1 − Tn
i=1

(
exp
[
−
(

xi−xk
i

σk
i

)2])
,

exp
[
−
(

yr−yk

σk

)2]

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

∑N
r=1 TN

k=1

⎧
⎪⎪⎨

⎪⎪⎩
max

⎡

⎢
⎢
⎣

1 − Tn
i=1

(
exp
[
−
(

xi−xk
i

σk
i

)2])
,

exp
[
−
(

yr−yk

σk

)2]

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

. (9.42)

Applying Reichenbach fuzzy implication we get:

µAk→Bk (x, y) = I (µAk (x) , µBk (y)) = I

(
n

T
i=1

(
µAk

i
(xi)
)
, µBk (y)

)
(9.43)

= 1 −
n

T
i=1

(
µAk

i
(xi)
)

(1 − µBk (y)) .

By substituting dependency (9.43) to formula (9.36), we obtain

y =

∑N
r=1 yrTN

k=1

{
1 − Tn

i=1

(
µAk

i
(xi)
)

(1 − µBk (yr))
}

∑N
r=1 TN

k=1

{
1 − Tn

i=1

(
µAk

i
(xi)
)

(1 − µBk (yr))
} . (9.44)

By substituting dependencies (9.13) and (9.14) to formula (9.44), we have

y =

∑N
r=1 yrTN

k=1

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − Tn
i=1

(

exp

[

−
(

xi − xk
i

σk
i

)2
])

(

1 − exp

[

−
(

yr − yk

σk

)2
])

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

∑N
r=1 TN

k=1

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − Tn
i=1

(

exp

[

−
(

xi − xk
i

σk
i

)2
])

(

1 − exp

[

−
(

yr − yk

σk

)2
])

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (9.45)
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Applying Zadeh fuzzy implication we get:

µAk→Bk (x, y) = I (µAk (x) , µBk (y)) = I

(
n

T
i=1

(
µAk

i
(xi)
)
, µBk (y)

)
(9.46)

= max
{
min
[

n

T
i=1

(
µAk

i
(xi)
)
, µBk(y)

]
, 1 −

n

T
i=1

(
µAk

i
(xi)
)}

.

By substituting dependency (9.46) to formula (9.36), we obtain

y =

∑N
r=1 yrT

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max
{

n

T
i=1

{
µAr

i
(xi)
}

, 1 −
n

T
i=1

{
µAr

i
(xi)
}
}

,

N

T
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k 	=r

⎧
⎪⎨

⎪⎩
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⎧
⎪⎨

⎪⎩
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n

T
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{
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i
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]
,

1 −
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T
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{
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i
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}

⎫
⎪⎬

⎪⎭

⎫
⎪⎬
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⎫
⎪⎪⎪⎪⎪⎬
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T
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{
µAr

i
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}

, 1 −
n

T
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{
µAr

i
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}

,

N

T
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⎧
⎪⎨

⎪⎩
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⎧
⎪⎨

⎪⎩
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[

n

T
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{
µAk

i
(xi)
}
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]
,

1 −
n

T
i=1

{
µAk

i
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}

⎫
⎪⎬

⎪⎭

⎫
⎪⎬

⎪⎭

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

(9.47)
By substituting dependencies (9.13) and (9.14) to formula (9.47), we get:

y =

N∑

r=1
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(9.48)
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FIGURE 9.3. Example fuzzy sets satisfying the assumption µBk (yr) ≈ 0

The simplified systems were also studied which are characterized by a
small coincidence or total separation one from another of output fuzzy
sets Bk. In this situation, the condition µBk (yr) ≈ 0 is satisfied, which is
illustrated by Fig. 9.3.

If µBk (yr) ≈ 0, then we will obtain from dependency (9.39) a simplified
Łukasiewicz structure of the following form
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Similarly, if µBk (yr) ≈ 0, then we will obtain from dependency (9.48) a
simplified Zadeh structure given by the formula
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. (9.50)

In systems (9.39), (9.42), (9.45) and (9.48) the following parameters of the
membership functions are subject to learning: xk

i , σk
i , yk, σk. In simplified
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systems (9.49) and (9.50), the parameters xk
i , σk

i , yk are subject to learning.
We will solve the modeling problems using Łukasiewicz structure, binary
structure, Reichenbach structure, Łukasiewicz simplified structure, Zadeh
structure, Willmott structure and Zadeh simplified structure.

9.4.1.1. Polymerization

Table 9.26 presents the smallest error for individual structures and the
number of epochs corresponding to this error.

As it may be inferred from Table 9.26, the smallest error was 0.0038 and
was obtained for Zadeh structure.

Table 9.27 presents three desired values of error and the number of
epochs, after which this error was obtained. As it may be inferred from this
table, not all the structures were able to obtain the desired error value.

TABLE 9.26. The smallest error obtained as a result of learning

POLYMERIZATION
Structure The smallest error Number of epochs

Łukasiewicz 0.0065 5863
Binary 0.0063 5980
Reichenbach 0.0040 5494
Łukasiewicz simplified 0.0059 3385
Zadeh 0.0038 3648
Willmott 0.0056 5918
Zadeh simplified 0.0049 3432

TABLE 9.27. Number of epochs required to train the system which is character-
ized by a definite error

POLYMERIZATION
Structure Value of error

0.0055 0.0050 0.0040
Łukasiewicz – – –
Binary – – –
Reichenbach 1627 1903 2783
Łukasiewicz simplified – – –
Zadeh 949 1022 1809
Willmott – – –
Zadeh simplified 2844 3432 –
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9.4.1.2. HANG

Table 9.28 presents the smallest error for individual structures and the
number of epochs corresponding to this error.

As it may be inferred from Table 9.28, the smallest error was 0.0177 and
was obtained for binary structure. Table 9.29 presents three desired values
of error and the number of epochs, after which this error was obtained.

As it may be inferred from Table 9.29, not all the structures were able
to obtain the desired value of error.

9.4.1.3. NDP

Table 9.30 presents the smallest error for individual structures and the
number of epochs corresponding to this error.

TABLE 9.28. The smallest error obtained as a result of learning

HANG
Structure The smallest error Number of epochs
Łukasiewicz 0.0289 3908
Binary 0.0177 7773
Reichenbach 0.0320 7989
Łukasiewicz simplified 0.0361 6536
Zadeh 0.0216 5288
Willmott 0.0366 7327
Zadeh simplified 0.0265 2317

TABLE 9.29. Number of epochs required to train the system which is character-
ized by a definite error

HANG
Structure Value of error

0.028 0.026 0.024
Łukasiewicz – – –
Binary 1795 2996 3762
Reichenbach – – –
Łukasiewicz simplified – – –
Zadeh 3382 3875 4218
Willmott – – –
Zadeh simplified 1787 – –
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TABLE 9.30. The smallest error obtained as a result of learning

NDP
Structure The smallest error Number of epochs
Łukasiewicz 0.0166 457
Binary 0.0149 437
Reichenbach 0.0157 454
Łukasiewicz simplified 0.0229 497
Zadeh 0.0156 498
Willmott 0.0180 488
Zadeh simplified 0.0156 496

TABLE 9.31. Number of epochs required to train the system which is character-
ized by a definite error

NDP
Structure Value of error

0.026 0.023 0.020
Łukasiewicz 255 276 313
Binary 74 111 166
Reichenbach 166 173 251
Łukasiewicz simplified 190 497 –
Zadeh 38 59 109
Willmott 121 171 303
Zadeh simplified 39 83 147

As it may be inferred from Table 9.30, the smallest error was 0.0149 and
was obtained for the binary structure. Table 9.31 presents three desired
values of error and the number of epochs, after which this error was ob-
tained. As it may be inferred from Table 9.31, for the simplified Łukasiewicz
structure, it was impossible to obtain the error equal to 0.020.

9.4.1.4. Modeling the taste of rice

Table 9.32 presents the smallest error for individual structures and the
number of epochs corresponding to this error.

As it may be inferred from Table 9.32, the smallest error was 0.0211 and
was obtained for Willmott structure. Table 9.33 presents three desired val-
ues of error and the number of epochs, after which this error was obtained.

As it may be inferred from Table 9.33, not all the structures were able
to obtain the desired value of error equal to 0.022.
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TABLE 9.32. The smallest error obtained as a result of learning

MODELING THE TASTE OF RICE
Structure The smallest error Number of epochs
Łukasiewicz 0.0221 4048
Binary 0.0230 3201
Reichenbach 0.0212 4575
Łukasiewicz simplified 0.0243 2328
Zadeh 0.0219 4534
Willmott 0.0211 2605
Zadeh simplified 0.0246 4588

TABLE 9.33. Number of epochs required to train the system which is character-
ized by a definite error

MODELING THE TASTE OF RICE
Structure Value of error

0.028 0.025 0.022
Łukasiewicz 408 2327 –
Binary 286 817 –
Reichenbach 313 938 2354
Łukasiewicz simplified 1030 1850 –
Zadeh 344 1484 4534
Willmott 134 517 2605
Zadeh simplified 998 4588 –

9.4.2 M2-type systems
Let us consider logical type systems which are constructed using definitions
of triangular norms taking into account the weights wk, characterizing the
importance of particular rules. Using the definition of weighted t-norm
and dependencies (9.39), (9.42), (9.45), and (9.48) - (9.50), we obtain the
following neuro-fuzzy systems:
a) Neuro-fuzzy system with weights of rules and the Łukasiewicz implication
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b) Neuro-fuzzy system with weights of rules and the binary implication
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c) Neuro-fuzzy system with weights of rules and the Reichenbach implica-
tion
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d) Neuro-fuzzy system with weights of rules and a fuzzy Zadeh implication
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e) Simplified neuro-fuzzy system with weights of rules and a fuzzy
Łukasiewicz implication

y =

N∑

r=1
yr

N

T
k=1
k 	=r

{
1 −

n

T
i=1

{
exp
[
−
(

xi−xk
i

σk
i

)2]}
, wk

}

N∑

r=1

N

T
k=1
k 	=r

{
1 −

n

T
i=1

{
exp
[
−
(

xi−xk
i

σk
i

)2]}
, wk

} . (9.55)

f) Simplified neuro-fuzzy system with weights of rules and the Zadeh impli-
cation
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In systems (9.51) - (9.54) the parameters of the membership functions,
i.e. xk

i , σk
i , yk, σk and weights wk are subject to learning. In systems (9.55)

and (9.56), the parameters of membership function xk
i , σk

i , yk and weights
wk are subject to learning.

9.4.2.1. Polymerization

Table 9.34 presents the smallest error for individual structures and the
number of epochs corresponding to this error. As it may be inferred from
the table, the smallest error was 0.0030 and was obtained for Zadeh struc-
ture with weights of rules. Table 9.35 presents three desired values of error
and the number of epochs, after which this error was obtained.

As it may be inferred from the table, not all the structures were able to
obtain the desired value of error.

9.4.2.2. HANG

Table 9.36 presents the smallest error for individual structures and the
number of epochs corresponding to this error.



402 9. Neuro-fuzzy systems of Mamdani, logical and Takagi-Sugeno type

TABLE 9.34. The smallest error obtained as a result of learning

POLYMERIZATION
Structure The smallest Number of

error epochs
Łukasiewicz with weights of rules 0.0041 4765
Binary with weights of rules 0.0054 5980
Reichenbach with weights of rules 0.0037 4653
Łukasiewicz simplified with weights of rules 0.0039 4694
Zadeh with weights of rules 0.0030 5650
Willmott with weights of rules 0.0047 5539
Zadeh simplified with weights of rules 0.0041 5151

TABLE 9.35. Number of epochs required to train the system which is character-
ized by a definite error

POLYMERIZATION
Structure Value of error

0.0055 0.0050 0.0040
Łukasiewicz with weights of rules 1258 1662 3266
Binary with weights of rules 5980 – –
Reichenbach with weights of rules 1385 1385 2521
Łukasiewicz simplified with weights of
rules

4 4 209

Zadeh with weights of rules 1497 1497 2726
Willmott with weights of rules 1405 3084 –
Zadeh simplified with weights of rules 367 701 3103

As it may be inferred from Table 9.36, the smallest error was 0.0115 and
was obtained for Reichenbach structure with weights of rules. Table 9.37
presents three desired values of error and the number of epochs, after which
this error was obtained.

As it may be inferred from Table 9.37, not all the structures were able
to obtain the desired value of error.

9.4.2.3. NDP

Table 9.38 presents the smallest error for individual structures and the
number of epochs corresponding to this error.
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TABLE 9.36. The smallest error obtained as a result of learning

HANG
Structure The smallest Number of

error epochs
Łukasiewicz with weights of rules 0.0247 6500
Binary with weights of rules 0.0161 6525
Reichenbach with weights of rules 0.0115 7580
Łukasiewicz simplified with weights of
rules

0.0350 1840

Zadeh with weights of rules 0.0202 5290
Willmott with weights of rules 0.0335 7977
Zadeh simplified with weights of rules 0.0231 7935

TABLE 9.37. Number of epochs required to train the system which is character-
ized by a definite error

HANG
Structure Value of error

0.028 0.026 0.024
Łukasiewicz with weights of rules 3771 3908 –
Binary with weights of rules 1320 1320 1929
Reichenbach with weights of rules 506 660 660
Łukasiewicz simplified with weights of
rules

– – –

Zadeh with weights of rules 3380 3393 4089
Willmott with weights of rules – – –
Zadeh simplified with weights of rules 2483 2483 4139

As it may be inferred from Table 9.38, the smallest error was 0.0131 and
was obtained for binary structure with weights of rules. Table 9.39 presents
three desired values of error and the number of epochs, after which this error
was obtained.

9.4.2.4. Modeling the taste of rice

Table 9.40 presents the smallest error for individual structures and the
number of epochs corresponding to this error.

As it may be inferred from Table 9.40, the smallest error was 0.0199
and was obtained for Willmott structure with weights of rules. Table 9.41
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TABLE 9.38. The smallest error obtained as a result of learning

NDP
Structure The smallest Number of

error epochs
Łukasiewicz with weights of rules 0.0161 492
Binary with weights of rules 0.0131 498
Reichenbach with weights of rules 0.0140 489
Łukasiewicz simplified with weights of
rules

0.0177 459

Zadeh with weights of rules 0.0148 499
Willmott with weights of rules 0.0165 486
Zadeh simplified with weights of rules 0.0142 448

TABLE 9.39. Number of epochs required to train the system which is character-
ized by a definite error

NDP
Structure Value of error

0.026 0.023 0.020
Łukasiewicz with weights of rules 170 218 274
Binary with weights of rules 101 119 151
Reichenbach with weights of rules 139 153 186
Łukasiewicz simplified with weights of
rules

267 277 364

Zadeh with weights of rules 222 281 352
Willmott with weights of rules 86 121 331
Zadeh simplified with weights of rules 58 78 212

TABLE 9.40. The smallest error obtained as a result of learning

MODELING THE TASTE OF RICE
Structure The smallest Number of

error epochs
Łukasiewicz with weights of rules 0.0207 3257
Binary with weights of rules 0.0219 3897
Reichenbach with weights of rules 0.0205 3800
Łukasiewicz simplified with weights of
rules

0.0222 2841

Zadeh with weights of rules 0.0205 3531
Willmott with weights of rules 0.0199 3805
Zadeh simplified with weights of rules 0.0227 4432
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TABLE 9.41. Number of epochs required to train the system which is character-
ized by a definite error

MODELING THE TASTE OF RICE
Structure Value of error

0.028 0.025 0.022
Łukasiewicz with weights of rules 1 16 462
Binary with weights of rules 143 1117 3387
Reichenbach with weights of rules 38 185 394
Łukasiewicz simplified with weights of
rules

397 1152 –

Zadeh with weights of rules 108 314 879
Willmott with weights of rules 22 78 374
Zadeh simplified with weights of rules 461 696 –

presents three desired values of error and the number of epochs, after which
this error was obtained.

As it may be inferred from Table 9.41, the error of 0.022 could not be
obtained for the simplified Łukasiewicz structure with weights of rules and
Zadeh structure with weights of rules.

9.4.3 M3-type systems
Let us consider logical type systems which are constructed using definitions
of triangular norms taking into account the weights wk, characterizing the
importance of particular rules, and the weights wi,k, characterizing the
importance of particular input linguistic variables. Using the definition of
weighted t-norm and dependencies (9.37), (9.40), (9.43), (9.46), (9.49) and
(9.50), we obtain the following neuro-fuzzy systems:

a) Neuro-fuzzy system with weights of inputs and rules and the
Łukasiewicz implication

y =
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b) Neuro-fuzzy system with weights of inputs and rules and the binary im-
plication
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c) Neuro-fuzzy system with weights of inputs and rules and the Reichenbach
implication
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d) Neuro-fuzzy system with weights of inputs and rules and the Zadeh im-
plication
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e) Simplified neuro-fuzzy system with weights of inputs and rules and the
Łukasiewicz implication
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f) Simplified neuro-fuzzy system with weights of inputs and rules and the
Zadeh implication
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In systems (9.57) - (9.60), the parameters of membership function, i.e. xk
i ,

σk
i , yk, σk and weights wi,k and wk are subject to learning. In systems (9.61)

and (9.62), the parameters of membership function xk
i , σk

i , yk and weights
wi,k and wk are subject to learning. Neuro-fuzzy systems (9.57) - (9.62)
have been used to solve four problems specified in Table 9.1.

9.4.3.1. Polymerization

Table 9.42 presents the smallest error for individual structures and the
number of epochs corresponding to this error.

As it may be inferred from Table 9.42, the smallest error was 0.0028 and
was obtained for Zadeh structure with weights of inputs and rules. Table
9.43 presents three desired values of error and the number of epochs, after
which this error was obtained.



408 9. Neuro-fuzzy systems of Mamdani, logical and Takagi-Sugeno type

TABLE 9.42. The smallest error obtained as a result of learning

POLYMERIZATION
Structure The smallest Number of

error epochs
Łukasiewicz with weights of inputs and
rules

0.0038 4773

Binary with weights of inputs and rules 0.0036 4896
Reichenbach with weights of inputs
and rules

0.0034 4704

Łukasiewicz simplified with weights of
inputs and rules

0.0037 4815

Zadeh with weights of inputs and rules 0.0028 5064
Willmott with weights of inputs and
rules

0.0039 4810

Zadeh simplified with weights of inputs
and rules

0.0038 5515

TABLE 9.43. Number of epochs required to train the system which is character-
ized by a definite error

POLYMERIZATION
Structure Value of error

0.0055 0.0050 0.0040
Łukasiewicz with weights of inputs
and rules

1 9 867

Binary with weights of inputs and
rules

2305 2386 2798

Reichenbach with weights of inputs
and rules

1915 2303 2549

Łukasiewicz simplified with weights
of inputs and rules

2502 2821 3225

Zadeh with weights of inputs and
rules

1 1 6

Willmott with weights of inputs and
rules

11 90 1341

Zadeh simplified with weights of
inputs and rules

2 2 206
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9.4.3.2. HANG

Table 9.44 presents the smallest error for individual structures and the
number of epochs corresponding to this error. Table 9.45 presents the re-
sults analogous to those given in Table 9.43.

TABLE 9.44. The smallest error obtained as a result of learning

HANG
Structure The smallest Number of

error epochs
Łukasiewicz with weights of inputs and
rules

0.0207 6502

Binary with weights of inputs and rules 0.0110 7882
Reichenbach with weights of inputs and
rules

0.0092 7390

Łukasiewicz simplified with weights of
inputs and rules

0.0203 7996

Zadeh with weights of inputs and rules 0.0105 5533
Willmott with weights of inputs and
rules

0.0300 6545

Zadeh simplified with weights of inputs
and rules

0.0178 8000

TABLE 9.45. Number of epochs required to train the system which is character-
ized by a definite error

HANG
Structure Value of error

0.028 0.026 0.024
Łukasiewicz with weights of inputs
and rules

3724 3771 3771

Binary with weights of inputs and
rules

556 608 608

Reichenbach with weights of inputs
and rules

603 678 978

Łukasiewicz simplified with weights
of inputs and rules

7992 7992 7992

Zadeh with weights of inputs and
rules

666 666 1115

Willmott with weights of inputs and
rules

– – –

Zadeh simplified with weights of
inputs and rules

3943 4408 5407
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TABLE 9.46. The smallest error obtained as a result of learning

NDP
Structure The smallest Number of

error epochs
Łukasiewicz with weights of inputs and
rules

0.0140 498

Binary with weights of inputs and rules 0.0121 479
Reichenbach with weights of inputs and
rules

0.0133 497

Łukasiewicz simplified with weights of
inputs and rules

0.0162 457

Zadeh with weights of inputs and rules 0.0140 4
Willmott with weights of inputs and
rules

0.0141 496

Zadeh simplified with weights of inputs
and rules

0.0135 496

9.4.3.3. NDP

Table 9.46 presents the smallest error for individual structures and the
number of epochs corresponding to this error.

As it may be inferred from Table 9.46, the smallest error was 0.0121 and
was obtained for binary structure with weights of inputs and rules. Table
9.47 presents three desired values of error and the number of epochs, after
which this error was obtained

9.4.3.4. Modeling the taste of rice

Table 9.48 presents the smallest error for individual structures and the
number of epochs corresponding to this error.

As it may be inferred from Table 9.48 the smallest error was 0.0164
and was obtained for Zadeh structure with weights of inputs and rules.
Table 9.49 presents three desired values of error and the number of epochs,
after which this error was obtained.

9.5 Neuro-fuzzy systems of Takagi-Sugeno type

In the fuzzy Takagi-Sugeno type model [246], the base of rules is of a
fuzzy character only in the IF part, whereas in the THEN part, there are
functional dependencies

R(r) : IF (x1 is Ar
i AND x2 is Ar

2...AND xn is Ar
n)

THEN yr = f (r) (x1, x2, ..., xn)
(9.63)
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TABLE 9.47. Number of epochs required to train the system which is character-
ized by a definite error

NDP
Structure Value of error

0.026 0.023 0.020
Łukasiewicz with weights of inputs
and rules

279 295 368

Binary with weights of inputs and
rules

61 80 94

Reichenbach with weights of inputs
and rules

107 176 237

Łukasiewicz simplified with weights of
inputs and rules

285 299 315

Zadeh with weights of inputs and rules 95 109 142
Willmott with weights of inputs and
rules

80 109 150

Zadeh simplified with weights of
inputs and rules

60 82 170

TABLE 9.48. The smallest error obtained as a result of learning

MODELING THE TASTE OF RICE
Structure The smallest Number of

error epochs
Łukasiewicz with weights of inputs and
rules

0.0192 3031

Binary with weights of inputs and rules 0.0194 4164
Reichenbach with weights of inputs and
rules

0.0191 4460

Łukasiewicz simplified with weights of
inputs and rules

0.0201 4804

Zadeh with weights of inputs and rules 0.0164 3994
Willmott with weights of inputs and rules 0.0187 3916
Zadeh simplified with weights of inputs and
rules

0.0186 3646

If we assume that the input of the fuzzy system is signal x =
(x1, x2, ..., xn), then in order to obtain the output signal y of the system,
first we will determine

T
(
µAr

1
(x1) , µAr

2
(x2) , ..., µAr

n
(xn)
)
, r = 1, . . . , N. (9.64)
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TABLE 9.49. Number of epochs required to train the system which is character-
ized by a definite error

MODELING THE TASTE OF RICE
Structure Value of error

0.028 0.025 0.022
Łukasiewicz with weights of inputs and
rules

74 331 2045

Binary with weights of inputs and rules 143 317 1679
Reichenbach with weights of inputs and
rules

2 3 8

Łukasiewicz simplified with weights of
inputs and rules

165 450 1702

Zadeh with weights of inputs and rules 40 143 197
Willmott with weights of inputs and rules 1 1 37
Zadeh simplified with weights of inputs
and rules

76 202 404

The next step is to compute

yr = f (r) (x1, x2, ..., xn) , r = 1, . . . , N. (9.65)

The output signal of the fuzzy Takagi-Sugeno system is a normalized
weighted sum of particular inputs y1, ..., yN , i.e.

y =
∑N

r=1 yrT
n
i=1

{
µAr

i
(xi)
}

∑N
r=1 Tn

i=1

{
µAr

i
(xi)
} . (9.66)

In the following part of this subchapter, we will consider the Takagi-
Sugeno systems with linear dependencies in consequents of the base of
rules, i.e.

R(r) : IF (x1 is Ar
i AND x2 is Ar

2...AND xn is Ar
n)

THEN yr = c
(r)
0 + c

(r)
1 x1 + ... + c

(r)
n xn

(9.67)

for r = 1, ..., N . It should be noted that if c
(r)
i = 0, i = 1, . . . , n, then

system (9.66) is reduced to a simplified Mamdani system given by formula
(9.12), and then c

(r)
0 = yr, r = 1, ..., N .

The systems of Takagi-Sugeno type have been used to solve approxima-
tion and identification problems (polymerization, HANG, NDP, modeling
the taste of rice). Like in case of Mamdani type structures and logical type
structures, we will consider three types of systems, i.e. without weights,
with weights of rules and with weights of rules and weights of inputs re-
flecting the importance of individual linguistic variables.
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9.5.1 M1-type systems
To construct a neuro-fuzzy system, Gaussian membership functions and the
assumption that the antecedents in each rule are connected by a t-norm
of the product type have been used. In this situation, dependency (9.66)
takes the following form

y =

∑N
r=1 Tn

i=1

{
µAr

i
(xi)
}(

c
(r)
0 + c

(r)
1 x1 + . . . + c

(r)
n xn

)

∑N
r=1 Tn

i=1

{
µAr

i
(xi)
} (9.68)

=

∑N
r=1 Tn

i=1

{
exp
[
−
(

xi−xr
i

σr
i

)2]}(
c
(r)
0 + c

(r)
1 x1 + . . . + c

(r)
n xn

)

∑N
r=1 Tn

i=1

{
exp
[
−
(

xi−xr
i

σr
i

)2]}

=

∑N
r=1

[
n∏

i=1

(
exp
[
−
(

xi−xr
i

σr
i

)2])
]
(
c
(r)
0 + c

(r)
1 x1 + . . . + c

(r)
n xn

)

∑N
r=1

[
n∏

i=1

(
exp
[
−
(

xi−xr
i

σr
i

)2])
] .

All the parameters of the neuro-fuzzy systems have been subject to learn-
ing using error backpropagation method: centers and widths of Gaussian
functions and function parameters c

(r)
0 , ..., c

(r)
n , r = 1, ..., N .

9.5.1.1. Polymerization

The smallest error for the Takagi-Sugeno structure was 0.0034 and was
obtained in the 3430th epoch. Table 9.50 presents three desired error val-
ues and the number of epochs, after which this error was obtained.

9.5.1.2. HANG

The smallest error for the Takagi-Sugeno structure was 0.0197 and was
obtained in the 7551st epoch. Table 9.51 presents three desired values of
error and the number of epochs, after which this error was obtained.

TABLE 9.50. Number of epochs required to train the system which is character-
ized by a definite error

POLYMERIZATION
Structure Value of error

0.0055 0.0050 0.0045
Takagi-Sugeno 72 83 83
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9.5.1.3. NDP

The smallest error for the Takagi-Sugeno structure was 0.0156 and was
obtained in the 481st epoch. Table 9.52 presents three desired values of
error and the number of epochs, after which this error was obtained.

9.5.1.4. Modeling the taste of rice

The smallest error for the Takagi-Sugeno structure was 0.0176 and was
obtained in the 1264th epoch. Table 9.53 presents three desired values of
error and the number of epochs, after which this error was obtained.

9.5.2 M2-type systems
By introducing to system (9.68) the weights specifying the importance of
particular rules, we will obtain the following dependency:

TABLE 9.51. Number of epochs required to train the system which is character-
ized by a definite error

HANG
Structure Value of error

0.028 0.026 0.024
Takagi-Sugeno 4280 5159 5593

TABLE 9.52. Number of epochs required to train the system which is character-
ized by a definite error

NDP
Structure Value of error

0.026 0.023 0.020
Takagi-Sugeno 36 66 122

TABLE 9.53. Number of epochs required to train the system which is character-
ized by a definite error

MODELING THE TASTE OF RICE
Structure Value of error

0.028 0.025 0.022
Takagi-Sugeno 546 1060 1951
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y =

∑N
r=1wrT

n
i=1

{
exp
[
−
(

xi−xr
i

σr
i

)2]}(
c
(r)
0 + c

(r)
1 x1+ . . . +c

(r)
n xn

)

∑N
r=1 wrTn

i=1

{
exp
[
−
(

xi−xr
i

σr
i

)2]} (9.69)

=

∑N
r=1 wr

[
n∏

i=1

(
exp
[
−
(

xi−xr
i

σr
i

)2])
]
(
c
(r)
0 + c

(r)
1 x1 + . . . + c

(r)
n xn

)

∑N
r=1 wr

[
n∏

i=1

(
exp
[
−
(

xi−xr
i

σr
i

)2])
] .

All the parameters of the neuro-fuzzy systems have been subject to learning
using the error backpropagation method: centers and widths of Gaussian
functions, weights of rules and function parameters c

(r)
0 , ..., c

(r)
n , r = 1, ..., N .

9.5.2.1. Polymerization

The smallest error for the Takagi-Sugeno structure was 0.0031 and was
obtained in the 3098th epoch. Table 9.54 presents three desired values of
error and the number of epochs, after which this error was obtained.

9.5.2.2. HANG

The smallest error for the Takagi-Sugeno structure with weights of rules
was 0.0145 and was obtained in the 3008th epoch. Table 9.55 presents three
desired values of error and the number of epochs, after which this error was
obtained.

9.5.2.3. NDP

The smallest error for the Takagi-Sugeno structure with weights of rules was
0.0140 and was obtained in the 497th epoch. Table 9.56 presents three
desired values of error and the number of epochs, after which this error
was obtained.

TABLE 9.54. Number of epochs required to train the system which is
characterized by a definite error

POLYMERIZATION
Structure Value of error

0.0055 0.0050 0.0045
Takagi-Sugeno with weights of rules 56 57 95
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TABLE 9.55. Number of epochs required to train the system which is character-
ized by a definite error

HANG
Structure Value of error

0.028 0.026 0.024
Takagi-Sugeno with weights of rules 478 779 1132

TABLE 9.56. Number of epochs required to train the system which is character-
ized by a definite error

HANG
Structure Value of error

0.026 0.023 0.020
Takagi-Sugeno with weights of rules 20 40 79

TABLE 9.57. Number of epochs required to train the system which is character-
ized by a definite error

MODELING THE TASTE OF RICE
Structure Value of error

0.028 0.025 0.022
Takagi-Sugeno with weights of rules 8 35 67

9.5.2.4. Modeling the taste of rice

The smallest error for the Takagi-Sugeno structure with weights of rules
was 0.0149 and was obtained in the 1620th epoch. Table 9.57 presents three
desired values of error and the number of epochs, after which this error was
obtained.

9.5.3 M3-type systems
By introducing to system (9.69) the weights specifying the importance of
particular linguistic variables in each rule, we will obtain the following
dependency:

y =

∑N
r=1

(
wr

[
Tn

i=1

{
1 − wi,r

(
1 − µAr

i
(xi)
)}]

·
·
(
c
(r)
0 + c

(r)
1 x1 + . . . + c

(r)
n xn

)
)

∑N
r=1 wr

[
Tn

i=1

{
1 − wi,r

(
1 − µAr

i
(xi)
)}] (9.70)
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All the parameters of the neuro-fuzzy systems have been subject to learning
using the error backpropagation method: centers and widths of Gaussian
functions, weights of inputs and rules and function parameters c

(r)
0 , ..., c

(r)
n ,

r = 1, ..., N .

9.5.3.1. Polymerization

The smallest error for the Takagi-Sugeno structure with weights of rules
was 0.0030 and was obtained in the 4859th epoch. Table 9.58 presents three
desired values of error and the number of epochs, after which this error was
obtained.

9.5.3.2. HANG

The smallest error for the Takagi-Sugeno structure with weights of rules
was 0.0116 and was obtained in the 2381st epoch. Table 9.59 presents three

TABLE 9.58. Number of epochs required to train the system which is character-
ized by a definite error

POLYMERIZATION
Structure Value of error

0.0055 0.0050 0.0045
Takagi-Sugeno with weights
of inputs and rules

36 110 324

TABLE 9.59. Number of epochs required to train the system which is character-
ized by a definite error

HANG
Structure Value of error

0.028 0.026 0.024
Takagi-Sugeno with weights
of inputs and rules

265 465 478
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TABLE 9.60. Number of epochs required to train the system which is character-
ized by a definite error

NDP
Structure Value of error

0.026 0.023 0.020
Takagi-Sugeno with weights
of inputs and rules

60 77 111

TABLE 9.61. Number of epochs required to train the system which is character-
ized by a definite error

MODELING THE TASTE OF RICE
Structure Value of error

0.028 0.025 0.022
Takagi-Sugeno with weights
of inputs and rules

1 1 1

desired values of error and the number of epochs, after which this error was
obtained.

9.5.3.4. Modeling the taste of rice

The smallest error for the Takagi-Sugeno structure with weights of rules
was 0.0129 and was obtained in the 4008th epoch. Table 9.61 presents three
desired values of error and the number of epochs, after which this error was
obtained.

9.5.3.3. NDP

The smallest error for the Takagi-Sugeno structure with weights of rules
was 0.0085 and was obtained in the 495th epoch. Table 9.60 presents three
desired values of error and the number of epochs, after which this error was
obtained.

9.6 Learning algorithms of neuro-fuzzy systems

In Subchapters 9.3, 9.4 and 9.5 we have discussed the neuro-fuzzy systems
of the Takagi-Sugeno, Mamdani and logical type. In this subchapter, we
will derive the learning algorithms of the above specified systems. They
have been used in simulation examples (Subchapters 9.3-9.5).
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We will use the idea of error backpropagation method, which is the basic
learning method of neural networks. Learning of the neuro-fuzzy systems
will come down to application of gradient algorithms, minimizing the ap-
propriately formulated quality criterion. By x (t) ∈ Rn and d (t) ∈ R we
will notate, a sequence of input and desired (at the output of the neuro-
fuzzy system) signals, respectively. The problem of learning of those sys-
tems comes down to determining, based on the learning sequence

(x (1) , d (1)) , (x (2) , d (2)) , . . . (9.71)

all the parameters of the membership function and weights (weights de-
scribing the importance of rules and importance of particular linguistic
variables in each rule) so as to minimize the criterion

Q (t) =
1
2

[f (x (t)) − d (t)]2 , (9.72)

where
y = f (x (t)) (9.73)

is the output of the neuro-fuzzy systems of the Mamdani, logical and
Takagi-Sugeno type presented in previous subchapters. For example, in
the Mamdani and logical type systems, the parameter yr, r = 1, . . . , N,
may be determined using the gradient algorithm

yr (t + 1) = yr (t) − η
∂Q (t)
∂yr (t)

. (9.74)

The direct determination of gradient ∂Q(t)
∂yr(t) in the above procedure is

complicated from a computational point of view. That is why an anal-
ogy between the neural networks and the neuro-fuzzy networks has been
used, considering the fact that the latter also have a multilayer structure.
Therefore, the error backpropagation method may be applied to learning
of neuro-fuzzy networks. The notation used in this subchapter shall be
explained on the example of a single neuron described by formula

y = f (s) , s =
n∑

i=0

xiwi, (9.75)

where f is a sigmoidal function, xi and wi, i = 0, . . . , n are inputs and
weights of the neuron. Let d be the desired signal at the neuron output.
Then

εf = ε = y − d (9.76)

is the error at neuron output and the expression

εs = εf {s} = εf ∂f (s)
∂s

= (y − d) f ′ (s) (9.77)
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FIGURE 9.4. Flow of signals and errors in a single neuron

describes the error propagated from the functional block f to the summa-
tion block s. Figure 9.4 presents the flow of signals and errors in a single
neuron.

At first, we will derive the learning algorithm for the Takagi-Sugeno
system and next, for the Mamdani and logical type systems. We will modify
the symbols used before to describe these systems, so that it would be
possible to clearly present the flow of errors through particular blocks of
the specified systems. The output signal of the Takagi-Sugeno system may
be described as follows:

y =

∑N
r=1

⎛

⎜
⎝

wdef
r · T ∗

{
µAr

1
(x1) , µAr

2
(x2) , . . . , µAr

n
(xn) ;

wτ
1,r, w

τ
2,r, . . . , w

τ
n,r

}

·
(
cf
0,r +
∑n

i=1 cf
i,r · xi

)

⎞

⎟
⎠

∑N
r=1

⎛

⎝
wdef

r ·

· T ∗
{

µAr
1
(x1) , µAr

2
(x2) , . . . , µAr

n
(xn) ;

wτ
1,r, w

τ
2,r, . . . , w

τ
n,r

}
⎞

⎠

, (9.78)

where wτ
i,r ∈ [0, 1], i = 1, 2, . . . , n, r = 1, 2, . . . , N , mean the weights of

antecedents of rules and wdef
r ∈ [0, 1], r = 1, 2, . . . , N , mean the weights of

rules. By substituting

T ∗
{

µAr
1
(x1) , µAr

2
(x2) , . . . , µAr

n
(xn) ;

wτ
1,r, w

τ
2,r, . . . , w

τ
n,r

}
= τr (x) (9.79)

and

cf
0,r +

n∑

i=1

cf
i,r · xi = fr (x) , (9.80)
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FIGURE 9.5. Network structure of the Takagi-Sugeno system

we get

y =
∑N

r=1 wdef
r · τr (x) · fr (x)

∑N
r=1 wdef

r · τr (x)
= def

⎛

⎜
⎜
⎜
⎜
⎝

τ1 (x) , . . . , τN (x) ,

f1 (x) , . . . , fN (x) ;

wdef
1 , . . . , wdef

N

⎞

⎟
⎟
⎟
⎟
⎠

. (9.81)

The network structure of the Takagi-Sugeno system is presented in Fig. 9.5.
In the Takagi-Sugeno system, the following parameters are subject to

learning:

• pA
u,i,r, u = 1, 2, . . . , PA, parameters of input membership functions of

the fuzzy sets,

• cf
i,r, i = 0, 1, . . . , n, r = 1, 2, . . . , N , parameters of the functional

blocks,

• wτ
i,r, i = 1, 2, . . . , n, r = 1, 2, . . . , N , weights of antecedents,

• wdef
r , r = 1, 2, . . . , N , weights of rules.

The Takagi-Sugeno system parameters are modified by iteration according
to the dependencies below:

pA
u,i,r (t + 1) = pA

u,i,r (t) − η∆pA
u,i,r (t) , (9.82)

wτ
i,r (t + 1) = wτ

i,r (t) − η∆wτ
i,r (t) , (9.83)

cf
0,r (t + 1) = cf

0,r (t) − η∆cf
0,r (t) , (9.84)

cf
i,r (t + 1) = cf

i,r (t) − η∆cf
i,r (t) , i = 1, . . . , n, (9.85)
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wdef
r (t + 1) = wdef

r (t) − η∆wdef
r (t) . (9.86)

The terms ∆ in the above dependencies are defined as follows:

∆pA
u,i,r (t) = ετ

r

{
pA

u,i,r

}
, (9.87)

∆wτ
i,r (t) = ετ

r

{
wτ

i,r

}
(9.88)

∆cf
0,r (t) = εf

r

{
cf
0,r

}
, (9.89)

∆cf
i,r (t) = εf

r

{
cf
i,r

}
, (9.90)

∆wdef
r (t) = εdef

{
wdef

r

}
. (9.91)

The errors propagated by individual layers of the Takagi-Sugeno system
are defined as follows (Fig. 9.6):

ετ
r = εdef {τr (x)} , (9.92)

εf
r = εdef {fr (x)} , (9.93)

εdef = ε = y − d. (9.94)

FIGURE 9.6. Flow of errors in the Takagi-Sugeno system
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FIGURE 9.7. Block of rules activation of the Takagi-Sugeno system

The errors propagated by blocks of rules activation of the Takagi-Sugeno
system are defined as follows (Fig. 9.7):

ετ
r

{
pA

u,i,r

}
= ετ

r

∂T ∗
{
µAr

1
(x1) , µAr

2
(x2) , . . . , µAr

n
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τ
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τ
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}

∂µAr
i
(xi)

· (9.95)

·
∂µAr

i
(xi)

∂pA
u,i,r

,

ετ
r

{
wτ

i,r

}
= ετ

r

∂T ∗
{

µAr
1
(x1) , µAr

2
(x2) , . . . , µAr

n
(xn) ;

wτ
1,r, w

τ
2,r, . . . , w

τ
n,r

}

∂wτ
i,r

. (9.96)

We should notice that we are solving an optimization problem with
constraints. That is why further in our considerations, we will apply the
so-called constraint function fz(·) given by dependency

fz (x) =
1

1 + exp (− (p1x − p2))
, (9.97)

while
∂fz (x)

∂x
= p1 (1 − fz (x)) fz (x) . (9.98)

In the simulations, it has been assumed that p1 = 10 and p2 = 5.

Example 9.1
We will show the method for the determination of partial derivatives in
formula (9.95) and (9.96). Using the notation of the constraint function in
the definition of weighted t-norm, we get

T ∗
{

a1, a2, . . . , an;
w1, w2, . . . , wn

}
= T ∗ {a;w} = Tn

i=1 {1 − fz (wi) (1 − ai)} . (9.99)
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In case of an algebraic t-norm, we have

T ∗ {a;w} =
n∏

i=1

(1 − fz (wi) (1 − ai)) . (9.100)

Then
∂T ∗ {a;w}

∂ai
= fz (wi)

n∏

u=1
u	=i

(1 − fz (wu) (1 − au)) (9.101)

and

∂T ∗ {a;w}
∂wi

= − (1 − ai)
∂fz (wi)

∂wi

n∏

u=1
u	=i

(1 − fz (wu) (1 − au)) . (9.102)

Example 9.2
We will determine the partial derivatives of the Gaussian membership func-
tion of the input fuzzy set A (in order to have a clear notation, we will omit
appropriate indexes)

µA (x) = exp

(

−
(

x − x

σ

)2
)

. (9.103)

Let us notice that:

PA = 2, pA
1,i,r = x, pA

2,i,r = σ. (9.104)

Appropriate derivatives take the form

∂µA (x)
∂x

= −µA (x)
2 (x − x)

σ2
, (9.105)

∂µA (x)
∂x

= µA (x)
2 (x − x)

σ2
, (9.106)

∂µA (x)
∂σ

= µA (x)
2 (x − x)2

σ3
. (9.107)

The errors propagated by functional blocks of the Takagi-Sugeno system
are determined as follows (Fig. 9.8):

εf
r

{
cf
0,r

}
= εf

r , (9.108)

εf
r

{
cf
i,r

}
= εf

r xi. (9.109)

The errors propagated by the defuzzification block of the Takagi-Sugeno
system are determined as follows (Fig. 9.9):

εdef {τr(x)} = εdef ∂

∂τr(x)
def

⎛

⎝
τ1 (x) , . . . , τN (x) ,
f1 (x) , . . . , fN (x) ;

wdef
1 , . . . , wdef

N

⎞

⎠ , (9.110)
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FIGURE 9.8. Functional block of the Takagi-Sugeno system

FIGURE 9.9. Defuzzification block of the Takagi-Sugeno system

εdef {fr(x)} = εdef ∂

∂fr(x)
def

⎛

⎝
τ1 (x) , . . . , τN (x) ,
f1 (x) , . . . , fN (x) ;
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1 , . . . , wdef

N

⎞

⎠ , (9.111)

εdef {wdef
r

}
= εdef ∂

∂wdef
r

def

⎛
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τ1 (x) , . . . , τN (x) ,
f1 (x) , . . . , fN (x) ;
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1 , . . . , wdef

N

⎞

⎠ , (9.112)

where

def

⎛

⎝
a1, a2, . . . , an,
b1, b2, . . . , bn;
w1, w2, . . . , wn

⎞

⎠ = def (a,b;w) =
∑n

i=1 wiaibi∑n
i=1 wiai

, (9.113)

∂def (a,b;w)
∂aj

= (bj − def (a,b;w))
wj∑n

i=1 wiai
, (9.114)

∂def (a,b;w)
∂wj

= (bj − def (a,b;w))
aj∑n

i=1 wiai
, (9.115)
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∂def (a,b;w)
∂bj

=
wjaj∑n
i=1 wiai

. (9.116)

Now we will derive learning algorithms of the neuro-fuzzy systems of
Mamdani and logical type. We will start our considerations with a gener-
alized model which describes both types of systems. The output signal of
such system may be described as follows:

y =
∑N

r=1 yr · agrr (x, yr)
∑N

r=1 agrr (x, yr)
. (9.117)

The operation of operators agrr (x, yr), r = 1, 2, . . . , N, depends on the
type of inference applied in a given system, i.e.

agrr (x, yr) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗
{

I1,r (x, yr) , . . . , IN,r (x, yr) ;
wagr

1 , . . . , wagr
N

}

for Mamdani inference,

T ∗
{

I1,r (x, yr) , . . . , IN,r (x, yr) ;
wagr

1 , . . . , wagr
N

}

for logical inference,

(9.118)

where

Ik,r (x, yr) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T {τk (x) , µBk (yr)}
for Mamdani inference

Ifuzzy (τk (x) , µBk (yr))
for logical inference

(9.119)

and

Ifuzzy (τk (x) , µBk (yr)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S {N (τk (x)) , µBk (yr)}
for S − implication,

t−1
mul

(
min
{

1,
tmul (µBk (yr))
tmul (τk (x))

})

for R − implication,

S {N (τk (x)) , T {τk (x) , µBk (yr)}}
for Q − implication,

(9.120)

In formula (9.120), the definition of R-implication has been used, tak-
ing into consideration the multiplicative generators tmul(·) of Archimedean
t-norm. The rules activation operator τk (x), k = 1, 2, . . . , N , has been de-
scribed similarly to the Takagi-Sugeno system considered earlier.
Figure 9.10 presents the network structure of a generalized neuro-fuzzy
system.

In the considered neuro-fuzzy system, the following parameters are sub-
ject to learning:
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FIGURE 9.10. Network structure of the neuro-fuzzy system

• pA
u,i,k, u = 1, 2, . . . , PA, i = 1, 2, . . . , n, k = 1, 2, . . . , N , parameters of

input membership functions of the fuzzy sets,

• pB
1,k = yk, k = 1, 2, . . . , N , centers of membership functions of output

fuzzy sets,

• pB
u,k, u = 2, 3, . . . , PB , k = 1, 2, . . . , N , other parameters of member-

ship functions of output fuzzy sets,

• wτ
i,k, i = 1, 2, . . . , n, k = 1, 2, . . . , N , weights of antecedents,

• wagr
k , k = 1, 2, . . . , N , weights of rules.

The system parameters are modified by iteration according to the
dependencies below:

pA
u,i,k (t + 1) = pA

u,i,k (t) − η∆pA
u,i,k (t) , (9.121)

wτ
i,k (t + 1) = wτ

i,k (t) − η∆wτ
i,k (t) , (9.122)

pB
u,k (t + 1) = pB

u,k (t) − η∆pB
u,k (t) , u = 2, . . . , PB , (9.123)

yr (t + 1) = pB
1,r (t + 1) = yr (t) − η∆yr (t) , (9.124)

wagr
k (t + 1) = wagr

k (t) − η∆wagr
k (t) . (9.125)
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The terms ∆ in the above dependencies are defined as follows:

∆pA
u,i,k = ετ

k

{
pA

u,i,k

}
, (9.126)

∆wτ
i,k = ετ

k

{
wτ

i,k

}
, (9.127)

∆pB
u,k =

N∑

r=1

εI
k,r

{
pB

u,k

}
, u = 2, . . . , PB , (9.128)

∆yr = ∆pB
1,r = εdef {yr} +

N∑

k=1

εI
k,r {yr} +

N∑

k=1

εI
r,k

{
pB
1,r

}
, (9.129)

∆wagr
k =

N∑

r=1

εagr
r {wagr

k } . (9.130)

The errors propagated by particular layers of the system are determined
as follows (Fig. 9.11):

ετ
k =

N∑

r=1

εI
k,r {τk (x)} , (9.131)

εI
k,r = εagr

r {Ik,r (x, yr)} , (9.132)

εagr
r = εdef {agrr (x, yr)} , (9.133)

εdef = ε = y − d. (9.134)

FIGURE 9.11. Flow of errors in the neuro-fuzzy system
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The errors propagated by blocks of rules activation of the system are
determined similarly as in Takagi-Sugeno system. The method of determi-
nation of errors propagated by implication blocks of the system depends of
the chosen inference model (Mamdani or logical) as well as type of applied
fuzzy implication (S, R, Q-implication) in case of logical inference.

The errors propagated by implication blocks of the system with Mamdani
type inference are determined as follows (Fig. 9.12):

εI
k,r

{
pB

u,k

}
= εI

k,r

∂T {τk (x) , µBk (yr)}
∂µBk (yr)

∂µBk (yr)
∂pB

u,k

, (9.135)

εI
k,r {yr} = εI

k,r

∂T {τk (x) , µBk (yr)}
∂µBk (yr)

∂µBk (yr)
∂yr , (9.136)

εI
k,r {τk (x)} = εI

k,r

∂T {τk (x) , µBk (yr)}
∂τk (x)

, (9.137)

whereas the derivatives ∂µ
Bk (yr)

∂pB
u,k

, ∂µ
Bk (yr)

∂yr ,
∂T{τk(x),µ

Bk (yr)}
∂τk(x) and

∂T{τk(x),µ
Bk (yr)}

∂µ
Bk (yr) are determined using the dependencies provided with the

description of the learning method of the Takagi-Sugeno system.

FIGURE 9.12. Implication block of the system with Mamdani type inference

FIGURE 9.13. Implication block of the neuro-fuzzy system with inference of
logical type (S-implication)
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The errors propagated by implication blocks of the system with inference
of logical type using the S -implication are determined as follows (Fig. 9.13):

εI
k,r

{
pB

u,k

}
= εI

k,r

∂S {N (τk (x)) , µBk (yr)}
∂µBk (yr)

∂µBk (yr)
∂pB

u,k

, (9.138)

εI
k,r {yr} = εI

k,r

∂S {N (τk (x)) , µBk (yr)}
∂µBk (yr)

∂µBk (yr)
∂yr , (9.139)

εI
k,r {τk (x)} = εI

k,r

∂S {N (τk (x)) , µBk (yr)}
∂N (τk (x))

∂N (τk (x))
∂τk (x)

, (9.140)

while
N (a) = 1 − a, (9.141)

∂N (a)
∂a

= −1 (9.142)

and the derivatives ∂µ
Bk (y)

∂pB
u,k

and ∂µ
Bk (yr)

∂yr are determined using the de-
pendencies provided with the description of the learning method of the
Takagi-Sugeno system.

The method of determination of partial derivatives in formulas (9.138) -
(9.140) will be shown in Example 9.3. This example relates to a more gen-
eral case, taking into account any number of arguments and their weights
in the definition of the t-conorm.

Example 9.3
Using the notation of the constraint function in the definition of weighted
t-conorm, we get

S∗
{

a1, a2, . . . , an;
w1, w2, . . . , wn

}
= S∗ {a;w} =

n

S
i=1

{fz (wi) ai} . (9.143)

In case of an algebraic t-conorm, we have

S∗ {a;w} = 1 −
n∏

i=1

(1 − fz (wi) ai) . (9.144)

Then
∂S∗ {a;w}

∂ai
= fz (wi)

n∏

u=1
u	=i

(1 − fz (wu) au) (9.145)

and
∂S∗ {a;w}

∂wi
= ai

∂fz (wi)
∂wi

n∏

u=1
u	=i

(1 − fz (wu) au) . (9.146)
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FIGURE 9.14. Implication block of the neuro-fuzzy system with inference of
logical type (R-implication)

The errors propagated by implication blocks of the system with inference
of logical type using the R-implication are determined as follows (Fig. 9.14):

εI
k,r

{
pB

u,k

}
=

= εI
k,r

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂t−1
mul

(
min
{

1,
tmul (µBk (yr))
tmul (τk (x))

})

∂ min
{

1,
tmul (µBk (yr))
tmul (τk (x))

}

∂ min
{

1,
tmul (µBk (yr))
tmul (τk (x))

}

∂
tmul (µBk (yr))
tmul (τk (x))

·
∂

tmul (µBk (yr))
tmul (τk (x))

∂tmul (µBk (yr))

∂tmul (µBk (yr))
∂µBk (yr)

∂µBk (yr)
∂pB

u,k

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (9.147)

εI
k,r {yr} =

= εI
k,r

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂t−1
mul

(
min
{

1,
tmul (µBk (yr))
tmul (τk (x))

})

∂ min
{

1,
tmul (µBk (yr))
tmul (τk (x))

}

∂ min
{

1,
tmul (µBk (yr))
tmul (τk (x))

}

∂
tmul (µBk (yr))
tmul (τk (x))

·
∂

tmul (µBk (yr))
tmul (τk (x))

∂tmul (µBk (yr))

∂tmul (µBk (yr))
∂µBk (yr)

∂µBk (yr)
∂yr

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (9.148)
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εI
k,r {τk (x)} =

= εI
k,r

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂t−1
mul

(
min
{

1,
tmul (µBk (yr))
tmul (τk (x))

})

∂ min
{

1,
tmul (µBk (yr))
tmul (τk (x))

}

∂ min
{

1,
tmul (µBk (yr))
tmul (τk (x))

}

∂
tmul (µBk (yr))
tmul (τk (x))

·
∂

tmul (µBk (yr))
tmul (τk (x))

∂tmul (τk (x))

∂tmul (τk (x))
∂τk (x)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (9.149)

In the above formulas, there are derivatives of the division operator and the
minimum operator. The method of their determination has been provided
in Subchapter 10.6 of the following chapter.

Example 9.4
To generate the Goguen R-implication, the following multiplicative gener-
ator of the t-norm may be used:

tmul (a) = ap, p > 0. (9.150)

Then in formulas (9.147) - (9.149) the following dependencies are used:

∂tmul (a)
∂a

= pap−1, (9.151)

t−1
mul (a) = a

1
p , (9.152)

∂t−1
mul (a)
∂a

=
1
p
a

1
p−1. (9.153)

The errors propagated by implication blocks of the system with inference
of logical type using the Q-implication are determined as follows (Fig. 9.15):

εI
k,r

{
pB

u,k

}
= εI

k,r

∂S {N (τk (x)) , T {τk (x) , µBk (yr)}}
∂T {τk (x) , µBk (yr)} (9.154)

·∂T {τk (x) , µBk (yr)}
∂µBk (yr)

∂µBk (yr)
∂pB

u,k

,

εI
k,r {yr} = εI

k,r

∂S {N (τk (x)) , T {τk (x) , µBk (yr)}}
∂T {τk (x) , µBk (yr)} (9.155)

·∂T {τk (x) , µBk (yr)}
∂µBk (yr)

∂µBk (yr)
∂yr ,
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FIGURE 9.15. Implication block of the neuro-fuzzy system with inference of
logical type (Q-implication)

εI
k,r {τk (x)}

= εI
k,r

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂S {N (τk (x)) , T {τk (x) , µBk (yr)}}
∂N (τk (x))

·∂N (τk (x))
∂τk (x)

+
∂S {N (τk (x)) , T {τk (x) , µBk (yr)}}

∂T {τk (x) , µBk (yr)}
·∂T {τk (x) , µBk (yr)}

∂τk (x)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (9.156)

and the derivatives

∂µBk (yr)
∂pB

u,k

,
∂µBk (yr)

∂yr ,
∂T {τk (x) , µBk (yr)}

∂τk (x)
,
∂T {τk (x) , µBk (yr)}

∂µBk (yr)
,

∂S {N (τk (x)), T {τk (x), µBk (yr)}}
∂N (τk (x))

,
∂S {N (τk (x)), T {τk (x), µBk (yr)}}

∂T {τk (x) , µBk (yr)}

and
∂N (τk (x))

∂τk (x)

are determined using the dependencies provided earlier and with the de-
scription of the learning method of the Takagi-Sugeno system.

Errors propagated by aggregation blocks of the system are determined
depending on the chosen inference method. The errors propagated by ag-
gregation blocks of the system with Mamdani type inference are determined
as follows (Fig. 9.16):

εagr
r {wagr

r } = εagr
r

∂S∗
{

I1,r (x, yr) , . . . , IN,r (x, yr) ;
wagr

1 , . . . , wagr
N

}

∂wagr
r

, (9.157)

εagr
r {Ik,r (x, yr)} = εagr

r

∂S∗
{

I1,r (x, yr) , . . . , IN,r (x, yr) ;
wagr

1 , . . . , wagr
N

}

∂Ik,r (x, yr)
, (9.158)
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FIGURE 9.16. Aggregation block of the neuro-fuzzy system with Mamdani type
inference

FIGURE 9.17. Aggregation block of the neuro-fuzzy system with inference of
logical type

while the derivatives

∂S∗
{

I1,r(x,yr),...,IN,r(x,yr);
wagr

1 ,...,wagr
N

}

∂Ik,r (x, yr)
and

∂S∗
{

I1,r(x,yr),...,IN,r(x,yr);
wagr

1 ,...,wagr
N

}

∂wagr
k

are determined based on the dependencies presented above.
The errors propagated by aggregation blocks of the system with inference

of logical type are determined as follows (Fig. 9.17):

εagr
r {wagr

k } = εagr
r

∂T ∗
{

I1,r (x, yr) , . . . , IN,r (x, yr) ;
wagr

1 , . . . , wagr
N

}

∂wagr
k

, (9.159)

εagr
r {Ik,r (x, yr)} = εagr

r

∂T ∗
{

I1,r (x, yr) , . . . , IN,r (x, yr) ;
wagr

1 , . . . , wagr
N

}

∂Ik,r (x, yr)
, (9.160)

while the derivatives

∂T ∗
{

I1,r(x,yr),...,IN,r(x,yr);
wagr

1 ,...,wagr
N

}

∂Ik,r (x, yr)
and

∂T ∗
{

I1,r(x,yr),...,IN,r(x,yr);
wagr

1 ,...,wagr
N

}

∂wagr
k

are determined using the dependencies provided with the description of the
learning method of the Takagi-Sugeno system.
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FIGURE 9.18. Defuzzification block of the neuro-fuzzy system

The errors propagated by the defuzzification block of the system are
determined as follows (Fig. 9.18):

εdef {yr} = εdef
∂ def
(

agr1
(
x, y1
)
, . . . , agrN

(
x, yN
)
;

y1, . . . , yN

)

∂yr , (9.161)

εdef {agrr (x, yr)} = εdef
∂ def
(
agr1
(
x, y1
)
, . . . , agrN

(
x, yN
)
;

y1, . . . , yN

)

∂ agrr (x, yr)
, (9.162)

while

def (a1, a2, . . . , an;w1, w2, . . . , wn) = def (a;w) =
∑n

i=1 wiai∑n
i=1 ai

, (9.163)

∂ def (a;w)
∂aj

= (wj − def (a;w))
1

∑n
i=1 ai

, (9.164)

∂ def (a;w)
∂wj

=
(

aj − def (a;w)
∂aj

∂wj

)
1

∑n
i=1 ai

. (9.165)

Let us notice that dependencies (9.163) - (9.165) are special cases of de-
pendencies – (9.113) - (9.116).

9.7 Comparison of neuro-fuzzy systems

Simulation analyses in Subchapters 9.3 – 9.5 and an attempt to evaluate
the studied neuro-fuzzy systems were based on the mean squared error as
the criterion used to compare these systems. These considerations allow to
conclude that usually the systems containing a higher number of trained
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parameters allowed to obtain better results. However, the desired neuro-
fuzzy system should be characterized by the smallest possible error but at
the same time should be as simple as possible. It should remember that sys-
tems with smaller number of trained parameters are characterized among
others by better capabilities of generalization of the results obtained. Here,
we should mention the so-called parsimony principle [235]. This princi-
ple is very useful when determining the appropriate order of the model.
It may be formulated as follows: from between two alternative and satis-
factory models, we shall choose the one which contains less independent
parameters. This principle remains compliant with common sense: “do not
enter any additional parameters into the process description unless they
are necessary”.

Estimation methods of the system order have been best developed for
autoregression processes [107, 132, 202]. Time series u (n) , u (n − 1) , ..,
u (n − p) is an autoregression process of order p, if the difference equation
is satisfied

u (n) + α1u (n − 1) + ... + αpu (n − p) = e (n) (9.166)

or equivalently

u (n) = −
p∑

k=1

αku (n − k) + e (n) , (9.167)

where α1, ..., αp are process coefficient, while e (n) is the white noise

E [e (n)] = 0, E [e (n) e (m)] =
{

σ2 for n = m,
0 for n �= m.

(9.168)

In the autoregression theory, criteria allowing to estimate the order of pre-
dictor p, determining first the prediction error Q̂p based on the learning
sequence of the length M , are well known. The most important is the Akaike
information criterion (AIC), Schwarz method and the final prediction error
(FPE) method.

In the following point, we will first present the basic models evaluation
criteria (taking into account their complexity), initially applied to the esti-
mation of orders of autoregression processes, and next they will be adapted
to evaluate the effectiveness of neuro-fuzzy systems. By the effectiveness of
operation of a neuro-fuzzy system, we shall understand the precision (accu-
racy) of operation achieved by such a system, (expressed by mean squared
error or by the number of erroneously classified samples) in the context
of its size. By the system size we shall understand the number of all pa-
rameters that are subject to learning. We shall also present the concept
of the so-called criteria isolines, which allow to solve the problem of the
compromise between the system accuracy and the number of parameters
describing this system.
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9.7.1 Models evaluation criteria taking into account
their complexity

Two general criteria taking into account the complexity of the model, the
dependencies between those criteria as well as their special forms are pre-
sented below.

9.7.1.1. Criterion A

The general form of criterion A, taking into account the complexity of
the model, is given by formula

W (p) = Q̂p [1 + β (M,p)] , (9.169)

where Q̂p is the mean square error, and β (M,p) is the function of the length
of the learning sequence M and the number of parameters p of the model.
To eliminate too complex structures (according to the economy principle),
we assume that

lim
p→∞

β (M,p) = ∞. (9.170)

At the same time, in order to avoid the situation where the presence of
the penalizing term in expression (9.169) hampers the observation of the
decreasing of the mean square error Q̂p value with the increase of model
complexity, we shall assume that

lim
M→∞

β (M,p) = 0. (9.171)

The typical choice is β (M,p) = 2p/M and then

W (p) = Q̂p

[
1 +

2p

M

]
. (9.172)

9.7.1.2. Criterion B

An alternative criterion to formula (9.169) may be the following depen-
dence:

W (p) = M log Q̂p + γ (M,p) , (9.173)

where the additional term γ (M,p) should take into account the penalty for
accepting models of an order which is too high. It is easy to check that if

γ (M,p) = Mβ (M,p) , (9.174)

then criteria (9.169) and (9.173) are asymptotically equivalent.
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Below, we shall present the basic methods of the compromise selection
of the model order. Most of these methods are the special cases of criterion
A or B presented above.

9.7.1.3. Akaike information criterion (AIC) method

The assumption that γ (M,p) = 2p in criterion (9.173) results in the so-
called Akaike Information Criterion. The complexity of system p may be
found by searching for the smallest value of the following expression

AIC(p) = M ln Q̂p + 2p (9.175)

9.7.1.4. Final prediction error (FPE) method

The FPE criterion was also proposed by Akaike. In the Final Prediction
Error method, which does not result from any general formulas (9.169)
and (9.173), the complexity of system p may be found by searching for the
smallest value of the expression

FPE(p) =
M + p

M − p
Q̂p. (9.176)

In expression (9.176) together with the increase of parameter p, the factor
M+p
M−p increases and the value of the mean square error Q̂p decreases. We
shall notice that for high values of M , the following approximation may be
used:

FPE(p) = Q̂p

[
1 +

2p/M

1 − p/M

]
≈ Q̂p

[
1 +

2p

M

]
, (9.177)

which is of type (9.169), i.e.

β (M,p) =
2p

M
. (9.178)

Expressions (9.169) and (9.173) are asymptotically equivalent, if condition
(9.174) is satisfied, and hence

γ (M,p) = 2p. (9.179)

In consequence:

FPE(p) ≈ AIC(p) = M ln Q̂p + 2p. (9.180)

FPE and AIC criteria show a tendency to select a model of a too small
order. That is why literature [235] proposes three other methods described
below:
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9.7.1.5. Schwarz method

Assuming γ (M,p) = p log M in criterion (9.173) gives the so-called Schwarz
criterion. In this method, the complexity of system p may be found by
searching for the smallest value of the expression

S(p) = M ln Q̂p + p ln M. (9.181)

9.7.1.6. Södeström and Stoica method

Assuming γ (M,p) = 2pc log (log M) , where c ≥ 1, in criterion (9.173)
gives the so-called Södeström and Stoica criterion. In this method, the
complexity of system p is found by searching for the smallest value of the
expression

H(p) = M ln Q̂p + 2pc log (log M) . (9.182)

9.7.1.7. CAT method

In the CAT (Criterion Autoregressive Transfer Function) method, the com-
plexity of system p may be found by searching for the smallest value of the
expression

CAT (p) =
1
M

p∑

i=1

1
Qi

− 1
Qp

, (9.183)

where Qi = m
M−i Q̂i.

The methods described above for determination of the order of the model
have been first proposed for the analysis of data autoregression processes
using formula (9.166). However, it should be stated that these methods
allow to determine the appropriate order of the model regardless whether
the system belongs to the class of the model structures or not [235].

9.7.2 Criteria isolines method
The estimation methods of the prediction order described in the previous
point will be adapted now to the evaluation of fuzzy systems. Thanks to
this, search for the desired fuzzy system based on two criteria (number of
parameters and mean square error) will come down to one selected crite-
rion, i.e. AIC, Schwarz or FPE. They have been adapted for the needs of
evaluation of neuro-fuzzy systems in the following form:

AIC(p, Q̂p) = M ln Q̂p + 2p, (9.184)

S(p, Q̂p) = M ln Q̂p + p ln M, (9.185)

FPE(p, Q̂p) =
Mn + p

Mn − p
Q̂p, (9.186)
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where p is the number of system parameters subject to learning (number of
parameters of all membership functions and number of all weights if they
occur in a given system), Q̂p is the measure of error used in simulations
described in Subchapters 9.3 - 9.5, M is the number of samples in a learn-
ing sequence, and n is the number of system inputs. The product M · n
may therefore be treated as a measure of size of the problem being solved.
Tables 9.62a, 9.62b, 9.63a and 9.63b contain the computed values of cri-
teria for particular tested structures in case of the learning and testing
sequence used in the polymerization problem. Figures 9.19 - 9.24 illus-
trate the coordinates of the points corresponding to particular neuro-fuzzy
systems tested. The coordinate p defines the number of parameters of a
given system, coordinate Q defines the error with which the system real-
ized the problem to be solved. The criteria isolines present constant values
of the AIC, Schwarz and FPE criteria, with different values of the error and
the number of parameters. Such an approach allows to solve the problem of
the compromise between the system operation error and the number of pa-
rameters describing this system. Points located on the criteria isolines with
the same values of AIC, Schwarz or FPE criterion characterize the neuro-
fuzzy systems making up the Pareto set. In the Pareto set, none of the
two values of contradictory criteria may be improved (mean square error
versus system size), without worsening the other one. Points located on the
criteria isolines with the smallest values of AIC, Schwarz or FPE criterion
characterize the neuro-fuzzy systems which have been called suboptimal
ones. The suboptimal neuro-fuzzy systems presented in graphs ensure the
smallest value of criteria within tested structures (the terminology “opti-
mum systems” is not used as all possible structures have not been tested).

Tables 9.62a, 9.62b, 9.63a and 9.63b and figures indicate that both for the
learning sequence and for the testing sequence, the AIC criterion evaluates
as the best system 1 (simplified Larsen structure), and next, system 29
(Zadeh structure with weights of rules), the FPE criterion – system 29, the
Schwarz criterion – definitely system 1.

Analogically, the criteria isolines may be easily drawn for HANG, NDP
and modeling the taste of rice problems. Having drawn these lines, it may
be checked that in case of the HANG problem, both for the learning and the
testing sequence, the AIC and FPE criteria indicate system 23 (Reichen-
bach structure with weights of rules), and the Schwarz criterion – system
1 (simplified Larsen structure). In case of the NDP problem all three cri-
teria, both for the learning and the testing sequence indicate the selection
of system 3 (simplified Larsen structure with weights of inputs and rules).
In case of modeling the taste of rice, both for the learning and the test-
ing sequence, the AIC and Schwarz criteria indicate system 1 (simplified
Larsen structure) as the best one, and the FPE criterion indicates system
20 (Mamdani structure with weight of rules).
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TABLE 9.62a. Values of criteria for the learning sequence

No. Structure Polymerization

error p AIC FPE Schwarz

1 Larsen simplified 0.0042 42 −299.09 0.0063 −204.65
2 Larsen simplified with

weights of rules
0.0039 48 −292.27 0.0062 −184.35

3 Larsen simplified with
weights of inputs and
rules

0.0031 66 −272.34 0.0059 −123.94

4 Łukasiewicz simplified 0.0059 42 −275.30 0.0089 −180.86
5 Łukasiewicz simplified

with weights of rules
0.0039 48 −292.27 0.0062 −184.35

6 Łukasiewicz simplified
with weights of inputs
and rules

0.0037 66 −259.96 0.0071 −111.56

7 Zadeh simplified 0.0049 42 −288.30 0.0074 −193.86
8 Zadeh simplified with

weights of rules
0.0041 48 −288.77 0.0065 −180.85

9 Zadeh simplified with
weights of inputs and
rules

0.0038 66 −258.09 0.0073 −109.69

10 Binary 0.0063 48 −258.70 0.01 −150.78
11 Binary with weights

of rules
0.0054 54 −257.49 0.0091 −136.08

12 Binary with weights
of inputs and rules

0.0036 72 −249.88 0.0074 −87.99

13 Larsen 0.0049 48 −276.30 0.0078 −168.37
14 Larsen with weights of

rules
0.0043 54 −273.44 0.0073 −152.02

15 Larsen with weights of
inputs and rules

0.0035 72 −251.85 0.0072 −89.96

16 Łukasiewicz 0.0065 48 −256.52 0.0104 −148.59
17 Łukasiewicz with

weights of rules
0.0041 54 −276.77 0.0069 −155.36

18 Łukasiewicz with
weights of inputs and
rules

0.0038 72 −246.09 0.0078 −84.20

19 Mamdani 0.0041 48 −288.77 0.0065 −180.85
20 Mamdani with

weights of rules
0.0039 54 −280.27 0.0066 −158.86

21 Mamdani with
weights of inputs and
rules

0.0034 72 −253.88 0.0069 −91.99

22 Reichenbach 0.0040 48 −290.50 0.0064 −182.57
23 Reichenbach with

weights of rules
0.0037 54 −283.96 0.0063 −162.54
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TABLE 9.62b. Values of criteria for the learning sequence

No. Structure Polymerization

error p AIC FPE Schwarz
24 Reichenbach with

weights of inputs
and rules

0.0034 72 −253.88 0.0069 −91.990

25 Willmott 0.0056 48 −266.95 0.0089 −159.02
26 Willmott with

weights of rules
0.0047 54 −267.21 0.008 −145.79

27 Willmott with
weights of inputs
and rules

0.0039 72 −244.27 0.008 −82.38

28 Zadeh 0.0038 48 −294.09 0.0061 −186.17
29 Zadeh with weights

of rules
0.0030 54 −298.64 0.0051 −177.22

30 Zadeh with weights
of inputs and rules

0.0028 72 −267.47 0.0057 −105.58

31 Takagi-Sugeno 0.0034 60 −277.88 0.0061 −142.97
32 Takagi-Sugeno with

weights of rules
0.0031 66 −272.34 0.0059 −123.94

33 Takagi-Sugeno with
weights of inputs
and rules

0.0030 84 −238.64 0.007 −49.77

In all simulations performed so far, the effectiveness of operation of the
neuro-fuzzy systems, assuming the defined number of rules to solve a spe-
cific problem has been analised. Thanks to it, it was possible to compare
33 different neuro-fuzzy systems. It should be stressed that the method of
criteria isolines may be also applied to the appropriate designing of each
of these systems. If we concentrate on a single specific neuro-fuzzy system,
we may select the number of rules which will ensure the smallest value of
one of the criteria listed in point 9.7.1. For example, for the problem of
modeling the taste of rice, we have applied the simplified Larsen structure,
changing gradually the number of rules from 10 to 2. Individual systems are
characterized by the following number of parameters: 110, 99, 88, 77, 66,
55, 44, 33 and 22. Figures 9.25 and 9.26 show the function of dependency of
the AIC and Schwarz criteria versus the number of parameters. As it may
be inferred from the graphs, the AIC and Schwarz criteria suggest that
four rules should be assumed. In the simulations performed, the problem
of modeling the taste of rice was analyzed, assuming 5 rules, according to
the principle of caution.
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TABLE 9.63a. Value of criteria for the testing sequence

No. Structure Polymerization

error p AIC FPE Schwarz
1 Larsen simplified 0.0045 42 −294.26 0.0068 −199.82
2 Larsen simplified with

weights of rules
0.0041 48 −288.77 0.0065 −180.85

3 Larsen simplified with
weights of inputs and
rules

0.0033 66 −267.97 0.0063 −119.57

4 Łukasiewicz simplified 0.0063 42 −270.70 0.0095 −176.27
5 Łukasiewicz simplified

with weights of rules
0.0041 48 −288.77 0.0065 −180.85

6 Łukasiewicz simplified
with weights of inputs
and rules

0.0039 66 −256.27 0.0075 −107.87

7 Zadeh simplified 0.0053 42 −282.80 0.0080 −188.37
8 Zadeh simplified with

weights of rules
0.0044 48 −283.83 0.0070 −175.90

9 Zadeh simplified with
weights of inputs and
rules

0.0040 66 −254.50 0.0077 −106.10

10 Binary 0.0067 48 −254.40 0.0107 −146.47
11 Binary with weights

of rules
0.0057 54 −253.71 0.0096 −132.29

12 Binary with weights
of inputs and rules

0.0038 72 −246.09 0.0078 −84.20

13 Larsen 0.0052 48 −272.14 0.0083 −164.21
14 Larsen with weights of

rules
0.0045 54 −270.26 0.0076 −148.84

15 Larsen with weights of
inputs and rules

0.0038 72 −246.09 0.0078 −84.20

16 Łukasiewicz 0.0069 48 −252.34 0.0110 −144.41
17 Łukasiewicz with

weights of rules
0.0045 54 −270.26 0.0076 −148.84

18 Łukasiewicz with
weights of inputs and
rules

0.0041 72 −240.77 0.0084 −78.88

19 Mamdani 0.0043 48 −285.44 0.0068 −177.51
20 Mamdani with

weights of rules
0.0042 54 −275.09 0.0071 −153.67

21 Mamdani with
weights of inputs and
rules

0.0037 72 −247.96 0.0076 −86.07

22 Reichenbach 0.0044 48 −283.83 0.0070 −175.90
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TABLE 9.63b. Value of criteria for the testing sequence

No. Structure Polymerization

error p AIC FPE Schwarz

23 Reichenbach with
weights of rules

0.0039 54 −280.27 0.0066 −158.86

24 Reichenbach with
weights of inputs and
rules

0.0037 72 −247.96 0.0076 −86.07

25 Willmott 0.0060 48 −262.12 0.0096 −154.19
26 Willmott with weights

of rules
0.0049 54 −264.30 0.0083 −142.88

27 Willmott with weights
of inputs and rules

0.0043 72 −237.44 0.0088 −75.55

28 Zadeh 0.0043 48 −285.44 0.0068 −177.51
29 Zadeh with weights of

rules
0.0033 54 −291.97 0.0056 −170.55

30 Zadeh with weights of
inputs and rules

0.0031 72 −260.34 0.0063 −98.45

31 Takagi-Sugeno 0.0036 60 −273.88 0.0065 −138.97
32 Takagi-Sugeno with

weights of rules
0.0034 66 −265.88 0.0065 −117.48

33 Takagi-Sugeno with
weights of inputs and
rules

0.0033 84 −231.97 0.0077 −43.09

FIGURE 9.19. Criteria isolines: results obtained by particular systems for the
Akaike criterion for the learning sequence – polymerization problem
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FIGURE 9.20. Criteria isolines: results obtained by particular systems for the
FPE criterion for the learning sequence – polymerization problem

FIGURE 9.21. Criteria isolines: results obtained by particular systems for the
Schwarz criterion for the learning sequence – polymerization problem
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FIGURE 9.22. Criteria isolines: results obtained by particular systems for the
Akaike criterion for the testing sequence – polymerization problem

FIGURE 9.23. Criteria isolines: results obtained by particular systems for the
FPE criterion for the testing sequence – polymerization problem
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FIGURE 9.24. Criteria isolines: results obtained by particular systems for the
Schwarz criterion for the testing sequence – polymerization problem

FIGURE 9.25. Values of the Akaike criterion

FIGURE 9.26. Values of the Schwarz criterion
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9.8 Notes

In this chapter, the object of studies included the neuro-fuzzy systems of
the Mamdani, logical and Takagi-Sugeno type. From the simulations per-
formed we may conclude that if weights reflecting the importance of rules
and importance of linguistic variables in the antecedents of rules are in-
cluded, it significantly improves the operation of neuro-fuzzy systems. The
Takagi-Sugeno systems are characterized by the smallest mean square error,
but this result is obtained with a large number of parameters. Extended
structures (characterized by a more extensive information on membership
functions of the fuzzy sets in the consequents of rules) give better results
than the simplified structures. Moreover, the issue of compromise between
the system operation error and the number of parameters describing it has
been presented in this chapter. From the analysis of criteria isolines corre-
sponding to particular simulations we may conclude that in most cases the
best system, in the meaning of proposed criteria, is the simplified Larsen
structure given by formula (9.25). The logical type systems have been stud-
ied in monographs by Czogała and Łęski [34], Rutkowska [187] as well
as Rutkowski [225]. Different approaches to the issue of designing neuro-
fuzzy networks have been presented in works [65, 126, 142, 145, 148, 149,
176, 185, 186, 213, 214, 216, 239, 253, 254]. Neuro-fuzzy structures associ-
ated with the rough sets theory have been proposed by Nowicki [151, 152],
while in association with the type-2 fuzzy sets theory have been proposed
by Starczewski [238]. Relational neuro-fuzzy systems have been analyzed
by Scherer [231]. The learning method of neuro-fuzzy structures has been
developed by Piliński [172 - 174]. Models evaluation criteria taking into
account their complexity have been discussed in detail in monograph [235].



10
Flexible neuro-fuzzy systems

10.1 Introduction

In the previous chapter we considered Mamdani and logical neuro-fuzzy
systems. In the present chapter we will build a neuro-fuzzy system, the
inference method (Mamdani or logical) of which will be found as a result of
the learning process. The structure of such a system will be changing during
the learning process. Its operation will be possible thanks to specially con-
structed adjustable triangular norms. Adjustable triangular norms, applied
to aggregate particular rules, take the form of a classic t-norm or t-conorm
after the learning process is finished. Adjustable implications, which finally
take the form of a “correlation function” between premises and consequents
(Mamdani approach) or fuzzy S-implication (logical approach), will be con-
structed in analogical way. Moreover, the following concepts will be used
for construction of the neuro-fuzzy systems: the concept of soft triangular
norms, parameterized triangular norms as well as weights which describe
the importance of particular rules and antecedents in those rules.

10.2 Soft triangular norms

Soft equivalents of triangular norms shall be defined in the following way:

T̃ {a;α} = (1 − α)
1
n

n∑

i=1

ai + αT {a1, . . . , an} (10.1)
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and
S̃ {a;α} = (1 − α)

1
n

n∑

i=1

ai + αS {a1, . . . , an} , (10.2)

where a = [a1, ..., an] and α ∈ [0, 1]. The above operators allow smooth
balancing between the arithmetic average of arguments a1, . . . , an and a
classic t-norm or t-conorm operator.

Example 10.1
The soft Zadeh t-norm (of the min type) shall be defined as follows:

T̃ {a1, a2;α} = (1 − α)
1
2

(a1 + a2) + α min {a1, a2} . (10.3)

Its operation is illustrated by Fig. 10.1.

a) b) c)

e)d)

FIGURE 10.1. Hyperplanes of function (10.3) for a) α = 0.00, b) α = 0.25,
c) α = 0.50, d) α = 0.75, e) α = 1.00

The soft Zadeh t-conorm takes the following form

S̃ {a1, a2;α} = (1 − α)
1
2

(a1 + a2) + α max {a1, a2} . (10.4)

Its operation is illustrated by Fig. 10.2.
As we remember, the “correlation function” in the Mamdani approach

shall be defined through the t-norm. A soft equivalent of this function shall
be notated as follows:

Ĩ (a, b;β) = (1 − β)
1
2

(a + b) + βT {a, b} . (10.5)

The soft S-implication takes the form

Ĩ (a, b;β) = (1 − β)
1
2

(1 − a + b) + βS {1 − a, b} , (10.6)

where β ∈ [0, 1] in both cases.
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a) b) c)

e)d)

FIGURE 10.2. Hyperplanes of function (10.4) for a) α = 0.00, b) α = 0.25,
c) α = 0.50, d) α = 0.75, e) α = 1.00

Example 10.2
The soft binary S-implication is given by the following formula

Ĩ (a, b;β) = (1 − β)
1
2

(1 − a + b) + β max {1 − a, b} . (10.7)

Its operation is illustrated by Fig. 10.3.

a) b)

d) e)

c)

FIGURE 10.3. Hyperplanes of function (10.7) for a) β = 0.00, b) β = 0.25,
c) β = 0.50, d) β = 0.75, e) β = 1.00

To construct Mamdani systems, we can use the following soft triangular
norms:

• T̃1 {a;ατ} = (1 − ατ )
1
n

∑n
i=1 ai + ατTn

i=1 {ai} to aggregate the
premises in particular rules;

• T̃2

{
b1, b2;αI

}
=
(
1 − αI

) 1
2

(b1 + b2) + αIT {b1, b2} to combine the
premises and consequents of the rules;

• S̃ {c;αagr} = (1 − αagr)
1
N

∑N
k=1 ck + αagrSN

k=1 {ck} to aggregate the
rules,

where n is the number of inputs while N is the number of rules.
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To construct logical systems using the S-implication, we can use the
following soft triangular norms:

• T̃1 {a;ατ} = (1 − ατ )
1
n

∑n
i=1 ai + ατTn

i=1 {ai} to aggregate the
premises in particular rules;

• S̃
{
b1, b2;αI

}
=
(
1 − αI

) 1
2

(1 − b1 + b2) + αIS {1 − b1, b2} to com-
bine the premises and consequents of the rules;

• T̃2 {c;αagr} = (1 − αagr)
1
N

∑N
k=1 ck +αagrTN

k=1 {ck} to aggregate the
rules,

where n is the number of inputs while N is the number of rules. It should
be emphasized that parameters ατ , αI and αagr can be found as a result
of learning.

10.3 Parameterized triangular norms

In order to construct flexible systems, we can also use parameterized
variations of triangular norms. These include among other things
Dombi, Hamacher, Yager, Frank, Weber, Dubois and Prade, Schweizer
and Mizumoto triangular norms. The notations

↔
T {a1, a2, . . . , an; p} and

↔
S{a1, a2, . . . , an; p} will be used to notate them. Parameterized triangular
norms are characterized by the fact that their corresponding hyperplanes
can be modified as a result of learning the parameter p.

Example 10.3
Parameterized Dombi t-norm is defined as follows:

↔
T {a; p} =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Łukasiewicz t-norm for p = 0,
(

1 +
(

n∑

i=1

(
1 − ai

ai

)p) 1
p

)−1

for p ∈ (0,∞) ,

Zadeh t-norm for p = ∞.

(10.8)

Its operation for n = 2 is illustrated by Fig. 10.4.
Parameterized Dombi t-conorm is defined as follows:

↔
S {a; p} =

⎧
⎪⎪⎨

⎪⎪⎩

Łukasiewicz t − conorm for p = 0 ,

1 −
(

1 +
(∑n

i=1

(
ai

1−ai

)p) 1
p

)−1

for p ∈ (0,∞) ,

Zadeh t − conorm for p = ∞ .

(10.9)

Figure 10.5 illustrates its operation.
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FIGURE 10.4. Hyperplanes of function (10.8) for a) p = 0.10, b) p = 0.25,
c) p = 0.50, d) p = 1.00, e) p = 10.00

FIGURE 10.5. Hyperplanes of function (10.9) for a) p = 0.10, b) p = 0.25,
c) p = 0.50, d) p = 1.00, e) p = 10.00

The additive generator of parameterized Dombi t-norm takes the form

tadd (x) =
(

1 − x

x

)p

, (10.10)

while the additive generator of parameterized Dombi t-conorm is defined
as follows:

sadd (x) =
(

x

1 − x

)p

. (10.11)

Parameterized Dombi t-norm for n = 2 may play the role of a “correlation
function”. By combining the concept of parameterized Dombi t-conorm
with the concept of S-implication we obtain the parameterized Dombi
S-implication which is notated as follows:

↔
I (a, b; p) = 1 −

(

1 +
((

1 − a

a

)p

+
(

b

1 − b

)p) 1
p

)−1

(10.12)

for p ∈ (0,∞). The operation of parameterized Dombi S-implication is
illustrated by Fig. 10.6.
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FIGURE 10.6. Hyperplanes of function (10.12) for a) p = 0.10, b) p = 0.25,
c) p = 0.50, d) p = 1.00, e) p = 10.00

Example 10.4
Parameterized Yager t-norm is defined as follows:

↔
T {a; p} =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Łukasiewicz t-norm for p = 0

max

{

0, 1 −
(

n∑

i=1

(1 − ai)
p

) 1
p

}

for p ∈ (0,∞)

Zadeh t-norm for p = ∞

(10.13)

for p > 0. Its operation for n = 2 is illustrated by Fig. 10.7.
Parameterized Yager t-conorm is defined as follows:

↔
S {a; p} =

⎧
⎪⎨

⎪⎩

boundary t-conorm for p = 0 ,

min
{

1, (
∑n

i=1 (ai)
p)

1
p

}
for p ∈ (0,∞),

Zadeh t-conorm for p = ∞ .

(10.14)

FIGURE 10.7. Hyperplanes of function (10.13) for a) p = 0.1, b) p = 0.5,
c) p = 1.0, d) p = 10.0, e) p = 100.0
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FIGURE 10.8. Hyperplanes of function (10.14) for a) p = 0.1, b) p = 0.5,
c) p = 1.0, d) p = 10.0, e) p = 100.0

Figure 10.8 illustrates its operation.
The additive generator of parameterized Yager t-norm takes the form

tadd (x) = (1 − x)p
, (10.15)

while the additive generator of parameterized Yager t-conorm is defined as
follows:

sadd (x) = xp. (10.16)

Parameterized Yager t-norm for n = 2 can be used as “correlation function”.
By combining the concept of parameterized Yager t-conorm with the con-
cept of S-implication we obtain parameterized Yager S-implication which
is notated as follows:

↔
I (a, b; p) = min

{
1, ((1 − a)p + bp)

1
p

}
. (10.17)

The operation of parameterized Yager S -implication is illustrated by
Fig. 10.9.

FIGURE 10.9. Hyperplanes of function (10.17) for a) p = 0.1, b) p = 0.5,
c) p = 1.0, d) p = 10.0, e) p = 100.0



456 10. Flexible neuro-fuzzy systems

To construct Mamdani systems, we can use the following parameterized
triangular norms:

•
↔
T 1 {a1, a2, . . . , an; pτ} to aggregate the premises in particular rules;

•
↔
T 2

{
b1, b2; pI

}
to combine the premises and consequents of the rules;

•
↔
S {c1, c2, . . . , cN ; pagr} to aggregate the rules,

where n is the number of inputs and N is the number of rules.
In order to construct logical systems using the S-implication, we can use

the following parameterized triangular norms:

•
↔
T 1 {a1, a2, . . . , an; pτ} to aggregate the premises in particular rules;

•
↔
S
{
1 − b1, b2; pI

}
to combine the premises and consequents of the

rules;

•
↔
T 2 {c1, c2, . . . , cN ; pagr} to aggregate the rules,

where n is the number of inputs and N is the number of rules.
It should be emphasized that parameters pτ , pI and pagr can be found

in the process of learning.

10.4 Adjustable triangular norms

We will build the function H (a; ν) which, depending on the value of the
parameter ν, takes the form of t-norm or t-conorm. To construct this func-
tion we will use the compromise operator defined below.

Definition 10.1
Function

Ñν : [0, 1] → [0, 1] (10.18)
defined as

Ñν (a) = (1 − ν) N (a) + νa (10.19)

is called a compromise operator, where ν ∈ [0, 1] and N (a) = Ñ0 (a) = 1−a.

It could be observed that Ñ1−ν (a) = Ñν (1 − a) = 1 − Ñν (a) and

Ñν (a) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

N (a) for ν = 0,

1
2

for ν =
1
2
,

a for ν = 1.

(10.20)
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FIGURE 10.10. Illustration of the operation of the compromise operator (10.19)

Function Ñν for ν = 0 is a strong type negation. Its operation is illustrated
by Fig. 10.10.

Definition 10.2
Function

H : [0, 1]n → [0, 1] (10.21)

defined as

H (a; ν) = Ñν

(
n

S
i=1

{
Ñν (ai)

})
= Ñ1−ν

(
n

T
i=1

{
Ñ1−ν (ai)

})
(10.22)

is called H-function, where ν ∈ [0, 1].

Theorem 10.1
Let T and S be dual triangular norms. Then function H, defined by for-
mula (10.22), changes its shape from the t-norm to the t-conorm, when ν
changes from 0 to 1.

Proof. The assumption says that

T {a} = N (S {N (a1) , N (a2) , . . . , N (an)}) . (10.23)

For ν = 0 formula (10.23) can be notated as follows:

T {a} = Ñ0

(
S
{

Ñ0 (a1) , Ñ0 (a2) , . . . , Ñ0 (an)
})

. (10.24)

At the same time

S {a} = Ñ1

(
S
{

Ñ1 (a1) , Ñ1 (a2) , . . . , Ñ1 (an)
})

(10.25)

for ν = 1. The right sides of formulas (10.24) and (10.25) can be notated
as follows:

H (a; ν) = Ñν

(
n

S
i=1

{
Ñν (ai)

})
(10.26)
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for, respectively, ν = 0 and ν = 1. If parameter ν changes its value from
0 to 1, then function H is smoothly switched between the t-norm and the
t-conorm. It could easily be observed that:

H (a; ν) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T {a} for ν = 0 ,

1
2

for ν =
1
2

,

S {a} for ν = 1.

(10.27)

Example 10.5
The adjustable H -function constructed with the use of Zadeh t-norm or
t-conorm takes the form

H (a1, a2; ν) = Ñ1−ν

(
min
{

Ñ1−ν (a1) , Ñ1−ν (a2)
})

(10.28)

= Ñν

(
max
{

Ñν (a1) , Ñν (a2)
})

,

while ν changes from value 0 to 1. It could easily be observed that:

H (a1, a2; 0) = T {a1, a2} = min {a1, a2} , (10.29)

H (a1, a2; 1) = S {a1, a2} = max {a1, a2} . (10.30)

The operation of Zadeh H -function is illustrated by Fig. 10.11.

FIGURE 10.11. Hyperplanes of function (10.28) for a) ν = 0.00, b) ν = 0.15,
c) ν = 0.50, d) ν = 0.85, e) ν = 1.00

Example 10.6
The adjustable H -function constructed with the use of algebraic t-norm or
t-conorm takes the form:

H (a1, a2; ν) = Ñ1−ν

(
Ñ1−ν (a1) Ñ1−ν (a1)

)
(10.31)

= Ñν

(
1 −
(
1 − Ñν (a1)

)(
1 − Ñν (a1)

))
,
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FIGURE 10.12. Hyperplanes of function (10.31) for a) v = 0.00, b) v = 0.15,
c) v = 0.50, d) v = 0.85, e) v = 1.00

while ν changes from value 0 to 1. It could easily be observed that:

T {a1, a2} = H (a1, a2; 0) = a1a2, (10.32)

S {a1, a2} = H (a1, a2; 1) = a1 + a2 − a1a2. (10.33)

The operation of algebraic H -function is illustrated by Fig. 10.12.
Now we will construct the so-called H -implication which may be switched

between the “correlation function” (t-norm) and fuzzy implication
(S-implication).

Theorem 10.2
Let T and S be dual triangular norms. Then the H -implication defined as
follows:

I (a, b; ν) = H
(
Ñ1−ν (a) , b; ν

)
(10.34)

changes from the “engineering implication”

Icor (a, b) = I (a, b; 0) = T {a, b} (10.35)

to the fuzzy implication

Ifuzzy (a, b) = I (a, b; 1) = S {1 − a, b} (10.36)

when parameter ν changes its value from 0 to 1.

Proof. Theorem 10.2 is a direct consequence of Theorem 10.1.
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Example 10.7
The adjustable H -implication which may be switched between the “corre-
lation function” expressed by the Zadeh t-norm

Ieng (a, b) = H (a, b; 0) (10.37)
= T {a, b}
= min {a, b}

and binary S-implication

Ifuzzy (a, b) = H
(
Ñ0 (a) , b; 1

)
(10.38)

= S {N (a) , b}
= max {N (a) , b}

may be expressed as follows:

I (a, b; ν) = H
(
Ñ1−ν (a) , b; ν

)
, (10.39)

while ν changes from 0 to 1.The operation of H -implication given by for-
mula (10.39) is illustrated by Fig. 10.13.

FIGURE 10.13. Hyperplanes of function (10.39) for a) ν = 0.00, b) ν = 0.15,
c) ν = 0.50, d) ν = 0.85, e) ν = 1.00

Example 10.8
The adjustable H -implication which may be switched between the “corre-
lation function” expressed by algebraic t-norm

Ieng (a, b) = H (a, b; 0) (10.40)
= T{a, b}
= ab,
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FIGURE 10.14. Hyperplanes of function (10.42) for a) ν = 0.00, b) ν = 0.15,
c) ν = 0.50, d) ν = 0.85, e) ν = 1.00

and binary S-implication

Ifuzzy (a, b) = H
(
Ñ0 (a) , b; 1

)
(10.41)

= S {N (a) , b}
= 1 − a + ab,

may be expressed as follows:

I (a, b; ν) = H
(
Ñ1−ν (a) , b; ν

)
, (10.42)

while ν changes from 0 to 1. The operation of H -implication given by
formula (10.42) is illustrated by Fig. 10.14.

10.5 Flexible systems

Using the concept of adjustable triangular norms and adjustable implica-
tions, we will build a neuro-fuzzy system the structure of which can change
between the system of Mamdani type and the logical type system.

Theorem 10.3
Let T and S be dual triangular norms. Then the neuro-fuzzy system

τk (x) = H

(
µAk

1
(x1) , . . . , µAk

n
(xn) ;

0

)
, (10.43)

Ik,r (x, yr) = H

(
Ñ1−ν (τk (x)) , µBk (yr) ;

ν

)
, (10.44)
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agrr (x, yr) = H

(
I1,r (x, yr) , . . . , IN,r (x, yr) ;

1 − ν

)
, (10.45)

y =
∑N

r=1 yr · agrr (x, yr)
∑N

r=1 agrr (x, yr)
(10.46)

changes between the Mamdani type system (ν = 0) and the logical type
system (ν = 1) together with the change of parameter ν from 0 to 1.

Proof. For ν = 0 formula (10.46) takes the form

y =
∑N

r=1 yr · SN
k=1 {T {τk (x) , µBk (yr)}}

∑N
r=1 SN

k=1 {T {τk (x) , µBk (yr)}}
. (10.47)

It could easily be observed that the above formula describes the Mamdani
type system. For ν = 1 we have

y =
∑N

r=1 yr · TN
k=1 {S {N (τk (x)) , µBk (yr)}}

∑N
r=1 TN

k=1 {S {N (τk (x)) , µBk (yr)}}
. (10.48)

Dependency (10.48) describes a logical system using the S-implication. For
the value of parameter ν ∈ (0, 1) the inference is performed according to
the definition of the H -implication, which ends the proof.

Table 10.1 presents implication and aggregation operators for changing
parameter ν. The system described by means of dependencies (10.43) -
(10.46) is a flexible system as it enables the choice of inference model as a
result of the learning process. However, that system does not include the
other flexibility aspects described in Subchapters 10.2 and 10.3.

At present the concept of soft triangular norms, parameterized triangular
norms, weights of rules and weights of rules premises will be introduced to
system (10.46) given in Theorem 10.3. Then the flexible neuro-fuzzy system
takes the following form:

τk (x) =

⎛

⎜
⎝

(1 − ατ ) avg
(
µAk

1
(x1) , . . . , µAk

n
(xn)
)

+

+ατ
↔
H

∗( µAk
1
(x1) , . . . , µAk

n
(xn) ;

wτ
1,k, . . . , wτ

n,k, pτ , 0

)

⎞

⎟
⎠ , (10.49)

TABLE 10.1. Implication and aggregation operators for changing parameter ν

Parameter ν Implication Aggregation
ν = 0 T {a, b} t-conorma
ν = 1 S {1 − a, b} t-norma
0 < ν < 1 H

(
Ñ1−ν (a) , b; ν

)
H (a, b; 1 − ν)

ν = 0.5 H (a, b; 0.5) = 0.5 H (a, b; 0.5) = 0.5
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Ik,r (x, yr) =

⎛

⎜
⎝

(
1 − αI

)
avg
(
Ñ1−ν (τk (x)) , µBk (yr)

)
+

+αI
↔
H

(
Ñ1−ν (τk (x)) , µBk (yr) ;

pI , ν

)

⎞

⎟
⎠ , (10.50)

agrr (x, yr) =

⎛

⎝
(1 − αagr) avg (I1,r (x, yr) , . . . , IN,r (x, yr)) +

+αagr
↔
H

∗( I1,r (x, yr) , . . . , IN,r (x, yr) ;
wagr

1 , . . . , wagr
N , pagr, 1 − ν

)
⎞

⎠ . (10.51)

In the system described by means of dependencies (10.46) and (10.49) -
(10.51) we can distinguish the following parameters:

• ν ∈ [0, 1], parameter of the type of inference model,

• ατ ∈ [0, 1], αI ∈ [0, 1], αagr ∈ [0, 1], flexibility parameters (in the sense
of Yager and Filev) in operators of premises aggregation, operators
of inference and operators of rules aggregation,

• pτ ∈ [0,∞), pI ∈ [0,∞), pagr ∈ [0,∞), parameters of the hyperplanes
shape of premises aggregation operators, operators of inference and
operators of rules aggregation,

• wτ
i,k ∈ [0, 1], i = 1, . . . , n, k = 1, . . . , N , weights of rules premises,

• wagr
k ∈ [0, 1], k = 1, . . . , N , weights of rules,

• pA
u,i,k, u = 1, 2, . . . , PA, i = 1, 2, . . . , n, parameters of the shape of

membership function of input fuzzy sets,

• pB
1,k = yk, k = 1, 2, . . . , N , centers of membership functions of output

fuzzy sets,

• pB
u,k, u = 2, 3, . . . , PB , k = 1, 2, . . . , N , parameters of the shape of

membership functions of output fuzzy sets.

The above mentioned parameters will be subject to learning in the following
subchapter.

10.6 Learning algorithms

Now we will derive gradient learning algorithms of the system described by
means of dependencies (10.46) and (10.49) - (10.51). Those parameters are
modified by iteration according to the dependencies below:

ν (t + 1) = ν (t) − η∆ν (t) , (10.52)

ατ (t + 1) = ατ (t) − η∆ατ (t) (10.53)
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αI (t + 1) = αI (t) − η∆αI (t) , (10.54)

αagr (t + 1) = αagr (t) − η∆αagr (t) (10.55)

pτ (t + 1) = pτ (t) − η∆pτ (t) , (10.56)

pI (t + 1) = pI (t) − η∆pI (t) , (10.57)

pagr (t + 1) = pagr (t) − η∆pagr (t) , (10.58)

wτ
i,k (t + 1) = wτ

i,k (t) − η∆wτ
i,k (t) , (10.59)

wagr
k (t + 1) = wagr

k (t) − η∆wagr
k (t) , (10.60)

pA
u,i,k (t + 1) = pA

u,i,k (t) − η∆pA
u,i,k (t) , (10.61)

pB
u,k (t + 1) = pB

u,k (t) − η∆pB
u,k (t) ; u = 2, . . . , PB , (10.62)

yr (t + 1) = pB
1,r (t + 1) = yr (t) − η∆yr (t) . (10.63)

The terms ∆ in the above dependencies are defined as follows:

∆ν =
N∑

k=1

N∑

r=1

εI
k,r {ν} +

N∑

r=1

εagr
r {ν} , (10.64)

∆ατ =
N∑

k=1

ετ
k {ατ} , (10.65)

∆αI =
N∑

k=1

N∑

r=1

εI
k,r

{
αI
}

, (10.66)

∆αagr =
N∑

r=1

εagr
r {αagr} , (10.67)

∆pτ =
N∑

k=1

ετ
k {pτ} , (10.68)

∆pI =
N∑

k=1

N∑

r=1

εI
k,r

{
pI
}

, (10.69)

∆pagr =
N∑

r=1

εagr
r {pagr} , (10.70)

∆wτ
i,k = ετ

k

{
wτ

i,k

}
, (10.71)

∆wagr
k =

N∑

r=1

εagr
r {wagr

k } , (10.72)
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∆pA
u,i,k = ετ

k

{
pA

u,i,k

}
, (10.73)

∆pB
u,k =

N∑

r=1

εI
k,r

{
pB

u,k

}
; u = 2, . . . , PB , (10.74)

∆yr = ∆pB
1,r = εdef {yr} +

N∑

k=1

εI
k,r {yr} +

N∑

k=1

εI
r,k

{
pB
1,r

}
. (10.75)

The errors propagated through particular system layers are defined simi-
larly to the learning algorithms related to non-flexible systems which have
been described in point 9.6. The method of error propagation is illustrated
in Fig. 9.11.

The errors propagated by blocks of rules activation are defined as follows
(Fig. 10.15):

ετ
k {ατ} = ετ

k

∂τk (x)
∂ατ

, (10.76)

ετ
k {pτ} = ετ

k

∂τk (x)
∂bτ

k (x)
∂bτ

k (x)
∂pτ

, (10.77)

ετ
k

{
wτ

i,k

}
= ετ

k

∂τk (x)
∂bτ

k (x)
∂bτ

k (x)
∂wτ

i,k

, (10.78)

ετ
k

{
pA

u,i,k

}
= ετ

k

⎛

⎜
⎜
⎜
⎜
⎝

∂τk (x)
∂bτ

k (x)
∂bτ

k (x)
∂µAk

i
(xi)

+

+
∂τk (x)
∂aτ

k (x)
∂aτ

k (x)
∂µAk

i
(xi)

⎞

⎟
⎟
⎟
⎟
⎠

∂µAk
i
(xi)

∂pA
u,i,k

, (10.79)

FIGURE 10.15. Block of rules activation of a flexible system
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while
∂τk (x)
∂aτ

k (x)
=

∂

∂aτ
k (x)

G

(
aτ

k (x) , bτ
k (x) ;

ατ

)
, (10.80)

∂τk (x)
∂bτ

k (x)
=

∂

∂bτ
k (x)

G

(
aτ

k (x) , bτ
k (x) ;

ατ

)
, (10.81)

∂τk (x)
∂ατ

=
∂

∂ατ
G

(
aτ

k (x) , bτ
k (x) ;

ατ

)
, (10.82)

∂aτ
k (x)

∂µAk
i
(xi)

=
∂

∂µAk
i
(xi)

avg
(
µAk

1
(x1) , . . . , µAk

n
(xn)
)

, (10.83)

∂bτ
k (x)
∂pτ

=
∂

∂pτ

↔
H

∗( µAk
1
(x1) , . . . , µAk

n
(xn) ;

wτ
1,k, . . . , wτ

n,k, pτ , 0

)
, (10.84)

∂bτ
k (x)

∂wτ
i,k

=
∂

∂wτ
i,k

↔
H

∗( µAk
1
(x1) , . . . , µAk

n
(xn) ;

wτ
1,k, . . . , wτ

n,k, pτ , 0

)
, (10.85)

∂bτ
k (x)

∂µAk
i
(xi)

=
∂

∂µAk
i
(xi)

↔
H

∗( µAk
1
(x1) , . . . , µAk

n
(xn) ;

wτ
1,k, . . . , wτ

n,k, pτ , 0

)
. (10.86)

The derivatives in the above dependencies are determined with use of the
formulas specified in the further part of this subchapter.

The errors propagated by blocks of implications are defined as follows
(Fig. 10.16):

FIGURE 10.16. Block of implications of a flexible system
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εI
k,r {ν} = εI

k,r

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂Ik,r (x, yr)
∂bI

k,r (x, yr)
∂bI

k,r (x, yr)
∂ν

+

+

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂Ik,r (x, yr)
∂bI

k,r (x, yr)
∂bI

k,r (x, yr)

∂Ñ1−ν (τk (x))
+

+
∂Ik,r (x, yr)
∂aI

k,r (x, yr)
∂aI

k,r (x, yr)

∂Ñ1−ν (τk (x))

⎞

⎟
⎟
⎟
⎟
⎟
⎠

·

·∂Ñ1−ν (τk (x))
∂ (1 − ν)

∂N (ν)
∂ν

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (10.87)

εI
k,r

{
αI
}

= εI
k,r

∂Ik,r (x, yr)
∂αI

, (10.88)

εI
k,r

{
pI
}

= εI
k,r

∂Ik,r (x, yr)
∂bI

k,r (x, yr)
∂bI

k,r (x, yr)
∂pI

, (10.89)

εI
k,r

{
pB

u,k

}
= εI

k,r

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂Ik,r (x, yr)
∂bI

k,r (x, yr)
∂bI

k,r (x, yr)
∂µBk (yr)

+

+
∂Ik,r (x, yr)
∂aI

k,r (x, yr)
∂aI

k,r (x, yr)
∂µBk (yr)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∂µBk (yr)
∂pB

u,k

, (10.90)

εI
k,r {yr} = εI

k,r

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂Ik,r (x, yr)
∂bI

k,r (x, yr)
∂bI

k,r (x, yr)
∂µBk (yr)

+

+
∂Ik,r (x, yr)
∂aI

k,r (x, yr)
∂aI

k,r (x, yr)
∂µBk (yr)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∂µBk (yr)
∂yr , (10.91)

εI
k,r{τk(x)}= εI

k,r

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂Ik,r(x, yr)
∂bI

k,r (x, yr)
∂bI

k,r(x, yr)

∂Ñ1−ν (τk (x))
+

+
∂Ik,r(x, yr)
∂aI

k,r(x, yr)
∂aI

k,r(x, yr)

∂Ñ1−ν(τk (x))

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∂Ñ1−ν(τk (x))
∂τk(x)

, (10.92)

while

∂Ik,r (x, yr)
∂aI

k,r (x, yr)
=

∂

∂aI
k,r (x, yr)

G

(
aI

k,r (x, yr) , bI
k,r (x, yr) ;

αI

)
, (10.93)

∂Ik,r (x, yr)
∂bI

k,r (x, yr)
=

∂

∂bI
k,r (x, yr)

G

(
aI

k,r (x, yr) , bI
k,r (x, yr) ;

αI

)
, (10.94)
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∂Ik,r (x, yr)
∂αI

=
∂

∂αI
G

(
aI

k,r (x, yr) , bI
k,r (x, yr) ;

αI

)
, (10.95)

∂aI
k,r (x, yr)

∂Ñ1−ν (τk (x))
=

∂

∂Ñ1−ν (τk (x))
avg
(
Ñ1−ν (τk (x)) , µBk (yr)

)
, (10.96)

∂aI
k,r (x, yr)

∂µBk (yr)
=

∂

∂µBk (yr)
avg
(
Ñ1−ν (τk (x)) , µBk (yr)

)
, (10.97)

∂bI
k,r (x, yr)

∂ν
=

∂

∂ν

↔
H

(
Ñ1−ν (τk (x)) , µBk (yr) ;

pI , ν

)
, (10.98)

∂bI
k,r (x, yr)

∂pI
=

∂

∂pI

↔
H

(
Ñ1−ν (τk (x)) , µBk (yr) ;

pI , ν

)
, (10.99)

∂bI
k,r (x, yr)

∂Ñ1−ν (τk (x))
=

∂

∂Ñ1−ν (τk (x))

↔
H

(
Ñ1−ν (τk (x)) , µBk (yr) ;

pI , ν

)
, (10.100)

∂bI
k,r (x, yr)

∂µBk (yr)
=

∂

∂µBk (yr)

↔
H

(
Ñ1−ν (τk (x)) , µBk (yr) ;

pI , ν

)
. (10.101)

The derivatives in the above dependencies are determined with use of the
formulas specified in the further part of this subchapter.

The errors propagated by blocks of aggregation are defined as follows
(Fig. 10.17):

FIGURE 10.17. Block of aggregation of a flexible system
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εagr
r {ν} = εagr

r

∂agrr (x, yr)
∂bagr

r (x, yr)
∂bagr

r (x, yr)
∂ (1 − ν)

∂N (ν)
∂ν

, (10.102)

εagr
r {αagr} = εagr

r

∂agrr (x, yr)
∂αagr , (10.103)

εagr
r {pagr} = εagr

r

∂agrr (x, yr)
∂bagr

r (x, yr)
∂bagr

r (x, yr)
∂pagr , (10.104)

εagr
r {wagr

k } = εagr
r

∂agrr (x, yr)
∂bagr

r (x, yr)
∂bagr

r (x, yr)
∂wagr

k

, (10.105)

εagr
r {Ik,r (x, yr)} = εagr

r

⎛

⎜
⎜
⎜
⎜
⎝

∂agrr (x, yr)
∂bagr

r (x, yr)
∂bagr

r (x, yr)
∂Ik,r (x, yr)

+

+
∂agrr (x, yr)
∂aagr

r (x, yr)
∂aagr

r (x, yr)
∂Ik,r (x, yr)

⎞

⎟
⎟
⎟
⎟
⎠

, (10.106)

while

∂agrr (x, yr)
∂aagr

r (x, yr)
=

∂

∂aagr
r (x, yr)

G

(
aagr

r (x, yr) , bagr
r (x, yr) ;

αagr

)
, (10.107)

∂agrr (x, yr)
∂bagr

r (x, yr)
=

∂

∂bagr
r (x, yr)

G

(
aagr

r (x, yr) , bagr
r (x, yr) ;

αagr

)
, (10.108)

∂agrr (x, yr)
∂αagr =

∂

∂αagr G

(
aagr

r (x, yr) , bagr
r (x, yr) ;

αagr

)
, (10.109)

∂aagr
r (x, yr)

∂Ik,r (x, yr)
=

∂

∂Ik,r (x, yr)
avg (I1,r (x, yr) , . . . , IN,r (x, yr)) , (10.110)

∂bagr
r (x, yr)

∂ (1 − ν)
=

∂

∂ (1 − ν)

↔
H

∗( I1,r (x, yr) , . . . , IN,r (x, yr) ;
wagr

1 , . . . , wagr
N , pagr, 1 − ν

)
, (10.111)

∂bagr
r (x, yr)
∂pagr =

∂

∂pagr

↔
H

∗( I1,r (x, yr) , . . . , IN,r (x, yr) ;
wagr

1 , . . . , wagr
N , pagr, 1 − ν

)
, (10.112)

∂bagr
r (x, yr)
∂wagr

k

=
∂

∂wagr
k

↔
H

∗( I1,r (x, yr) , . . . , IN,r (x, yr) ;
wagr

1 , . . . , wagr
N , pagr, 1 − ν

)
, (10.113)

∂bagr
r (x, yr)

∂Ik,r (x, yr)
=

∂

∂Ik,r (x, yr)

↔
H

∗( I1,r (x, yr) , . . . , IN,r (x, yr) ;
wagr

1 , . . . , wagr
N , pagr, 1 − ν

)
. (10.114)

The errors propagated by defuzzification block are defined similarly to
the learning algorithms related to non-flexible systems which have been
described in Subchapters 9.3 - 9.5.

The learning algorithms derived above of a flexible neuro-fuzzy system
require determining derivatives for different types of operators. Below a
computation method of those derivatives is presented.
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10.6.1 Basic operators
Summation operator

y =
n∑

i=1

xi (10.115)

∂y

∂xi
= 1 (10.116)

Multiplication operator

y =
n∏

i=1

xi (10.117)

∂y

∂xi
=

n∏

j=1

j 	=i

xj (10.118)

Division operator
y =

a

b
(10.119)

∂y

∂a
=

1
b

(10.120)

∂y

∂b
= − a

b2
(10.121)

Minimum operator
y = min

i=1...n
{xi} (10.122)

∂y

∂xi
=
{

1 for xi = y
0 for xi �= y

(10.123)

Maximum operator
y = max

i=1...n
{xi} (10.124)

∂y

∂xi
=
{

1 for xi = y
0 for xi �= y

(10.125)

Compromise operator

Ñν (a) = (1 − fz (ν)) (1 − a) + fz (ν) a (10.126)

∂Ñν (a)
∂a

= 2fz (ν) − 1 (10.127)
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∂Ñν (a)
∂ν

= (2a − 1)
∂fz (ν)

∂ν
(10.128)

Arithmetic average operator

avg (a1, a2, ..., an) =
1
n

n∑

i=1

ai (10.129)

∂avg (a1, a2, . . . , an)
∂ai

=
1
n

(10.130)

Aggregation operator

G (a1, a2;φ) = (1 − fz (φ)) a1 + fz (φ) a2 (10.131)

∂G (a1, a2;φ)
∂a1

= 1 − fz (φ) (10.132)

∂G (a1, a2;φ)
∂a2

= fz (φ) (10.133)

∂G (a1, a2;φ)
∂φ

= − (a1 − a2)
∂fz (φ)

∂φ
(10.134)

Defuzzification operator

def (a1, a2, . . . , an;w1, w2, . . . , wn) = def (a;w) =
∑n

i=1 wiai∑n
i=1 ai

(10.135)

∂def (a;w)
∂aj

= (wj − def (a;w))
1

∑n
i=1 ai

(10.136)

∂def (a;w)
∂wj

=
(

aj − def (a;w)
∂aj

∂wj

)
1

∑n
i=1 ai

(10.137)

10.6.2 Membership functions

Gaussian membership function

µA (x) = exp

(

−
(

x − x

σ

)2
)

(10.138)

∂µA (x)
∂x

= −µA (x)
2 (x − x)

σ2
(10.139)
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∂µA (x)
∂x

= µA (x)
2 (x − x)

σ2
(10.140)

∂µA (x)
∂σ

= µA (x)
2 (x − x)2

σ3
(10.141)

Triangular membership function

µA (x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for x ≤ a or x ≥ c
x − a

b − a
for a ≤ x ≤ b

c − x

c − b
for b ≤ x ≤ c

(10.142)

∂µA (x)
∂x

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for x < a or x > c
1

2 (b − a)
for x = a

1
b − a

for a < x < b

c − 2b + a

2 (c − b) (b − a)
for x = b

− 1
c − b

for b < x < c

− 1
2 (c − b)

for x = c

(10.143)

∂µA (x)
∂a

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for x ≤ a or x > b
1

2 (b − a)
for x = b

x − a

(b − a)2
for a ≤ x < b

(10.144)

∂µA (x)
∂b

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 for x ≤ a or x ≥ c
a − x

(b − a)2
for a ≤ x < b

a − 2b + c

2 (c − b) (b − a)
for x = b

c − x

(c − b)2
for b < x ≤ c

(10.145)

∂µA (x)
∂c

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 for x ≤ b or x > c
1

2 (c − b)
for x = c

x − b

(c − b)2
for b < x < c

(10.146)
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FIGURE 10.18. Plot of function (10.147) for pz1 = 10, pz2 = 5, pz3 = 0.9,
pz4 = 0.05

10.6.3 Constraints

Constraints for parameters ν ∈ [0, 1], λ ∈ [0, 1], ατ ∈ [0, 1], αI ∈ [0, 1],
αagr ∈ [0, 1], wτ

i,k ∈ [0, 1], i = 1, . . . , n, k = 1, . . . , N , wagr
k ∈ [0, 1], k =

1, . . . , N

fz (x) =
pz3

1 + exp (− (pz1x − pz2))
+ pz4 (10.147)

∂fz (x)
∂x

= −pz1

pz3
(pz3 + pz4 − fz (x)) (pz4 − fz (x)) (10.148)

Constraints for parameters pτ ∈ [0,∞), pI ∈ [0,∞), pagr ∈ [0,∞)

fz (x) =
x

1 + exp (− (pz1x − pz2))
+ pz3 (10.149)

∂fz (x)
∂x

=
−pz3 + fz (x)

x
(1 + pz1 (pz3 + x − fz (x))) (10.150)

In Figures 10.18 and 10.19 we show plots of functions 10.147 and 10.149,
respectively.

10.6.4 H-functions

Argument of H-functions

argi (ai, wi, ν) = G

(
N (fz (wi) N (ai)) , fz (wi) ai;

ν

)
(10.151)

∂ argi (ai, wi, ν)
∂ai

= fz (wi) (10.152)
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FIGURE 10.19. Plot of function (10.149) for pz1 = 10, pz2 = 5, pz3 = 0

∂ argi (ai, wi, ν)
∂wi

= (a + ν − 1)
∂fz (wi)

∂wi
(10.153)

∂ argi (ai, wi, ν)
∂ν

= fz (wi) − 1 (10.154)

Zadeh H -function

H∗ (a;w, ν) = Ñν

(
max

i=1,...,n

{
Ñν (argi (ai, wi, ν))

})
(10.155)

H∗ (a;w, ν) = Ñν (h∗ (a;w, ν)) (10.156)

where
h∗ (a;w, ν) = max

i=1,...,n

{
Ñν (argi (ai, wi, ν))

}
(10.157)

∂H∗ (a;w, ν)
∂ai

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2fz (ν) − 1)2 · ∂ argi (ai, wi, ν)
∂ai

for h∗ (a;w, ν) = Ñν (argi (ai, wi, ν))

0 for h∗ (a;w, ν) �= Ñν (argi (ai, wi, ν))

(10.158)

∂H∗ (a;w, ν)
∂wi

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2fz (ν) − 1)2 ·∂ argi (ai, wi, ν)
∂wi

for h∗ (a;w, ν) = Ñν (argi (ai, wi, ν))

0 for h∗ (a;w, ν) �= Ñν (argi (ai, wi, ν))

(10.159)
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∂H∗ (a;w, ν)
∂ν

=
∂fz (ν)

∂ν
(2h∗ (a;w, ν) − 1)

+ (2fz (ν) − 1) max
i=1,...,n

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(2fz (ν) − 1)
∂ argi (ai, wi, ν)

∂ν
+

+ (2 argi (ai, wi, ν) − 1)
∂fz (ν)

∂ν

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(10.160)

Algebraic H -function

H∗ (a;w, ν) = Ñν

(

1 −
n∏

i=1

(
1 − Ñν (argi (ai, wi, ν))

)
)

(10.161)

H∗ (a;w, ν) = Ñν (h∗ (a;w, ν)) (10.162)

where

h∗ (a;w, ν) = 1 −
n∏

i=1

(
1 − Ñν (argi (ai, wi, ν))

)
(10.163)

∂H∗ (a;w, ν)
∂ai

= (2fz (ν) − 1)2
∂ argi (ai, wi, ν)

∂ai

·
n∏

u=1
u	=i

(
1 − Ñν (argu (au, wu, ν))

) (10.164)

∂H∗ (a;w, ν)
∂wi

= (2fz (ν) − 1)2
∂ argi (ai, wi, ν)

∂wi
·

·
n∏

u=1
u	=i

(
1 − Ñν (argu (au, wu, ν))

) (10.165)

∂H∗ (a;w, ν)
∂ν

= (2h∗ (a;w, ν) − 1)
∂fz (ν)

∂ν
+

+ (2fz (ν) − 1)
n∑

i=1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎝

(2 argi (ai, wi, ν) − 1)
∂fz (ν)

∂ν
+

+ (2fz (ν) − 1)
∂ argi (ai, wi, ν)

∂ν

⎞

⎟
⎟
⎟
⎠

·

·
n∏

u=1
u	=i

(
1 − Ñν (argu (au, wu, ν))

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(10.166)



476 10. Flexible neuro-fuzzy systems

Dombi H -function

↔
H

∗
(a;w, p, ν)

=Ñν

(
1−
(
1 +
(

n∑

i=1

(
Ñν (argi (ai, wi, ν))−1− 1

)
−fz1(p)

)
1

fz1(p)

)
−1

) (10.167)

↔
H

∗
(a;w, p, ν) = Ñν

(
1 −

↔
h
∗
(a;w, p, ν)

)
(10.168)

p ∈ (0,∞) (10.169)

where

↔
h
∗
(a;w, p, ν)

=

(

1 +
(
∑n

i=1

(
Ñν (argi (ai, wi, ν))−1− 1

)−fz1(p)
) 1

fz1(p)
)−1 (10.170)

∂
↔
H

∗
(a;w, p, ν)
∂ai

= (2fz (ν) − 1)2 ·

·

(
↔
h
∗
(a;w, p, ν)−1 − 1

)1−fz1(p)

↔
h
∗
(a;w, p, ν)−2

·

·

(
Ñν (argi (ai, wi, ν))−1 − 1

)−fz1(p)−1

Ñν (argi (ai, wi, ν))2
·

·∂ argi (ai, wi, ν)
∂ai

(10.171)

∂
↔
H

∗
(a;w, p, ν)
∂wi

= (2fz (ν) − 1)2 ·

·

(
↔
h
∗
(a;w, p, ν)−1 − 1

)1−fz1(p)

↔
h
∗
(a;w, p, ν)−2

·

·

(
Ñν (argi (ai, wi, ν))−1 − 1

)−fz1(p)−1

Ñν (argi (ai, wi, ν))2
·

·∂ argi (ai, wi, ν)
∂wi

(10.172)
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∂
↔
H

∗
(a;w, p, ν)

∂p
=

2fz (ν) − 1
fz1 (p)

(
↔
h
∗
(a;w, p, ν)−1 − 1

)1−fz1(p)

↔
h
∗
(a;w, p, ν)−2

·

·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

n∑

i=1

− ln
(
Ñν (argi (ai, wi, ν))−1 − 1

)

(
Ñν (argi (ai, wi, ν))−1 − 1

)fz1(p)
+

+
ln
(

↔
h
∗
(a;w, p, ν)−1 − 1

)

(
↔
h
∗
(a;w, p, ν)−1 − 1

)−fz1(p)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

·

·∂fz1 (p)
∂p

(10.173)

∂
↔
H

∗
(a;w, p, ν)
∂ν

=
(

1 − 2
↔
h
∗
(a;w, p, ν)

)
∂fz (ν)

∂ν
+

+ (2fz (ν) − 1)

(
↔
h
∗
(a;w, p, ν)−1 − 1

)1−fz1(p)

↔
h
∗
(a;w, p, ν)−2

·

·
n∑

i=1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(
Ñν (argi (ai, wi, ν))−1 − 1

)−fz1(p)−1

Ñν (argi (ai, wi, ν))2
·

·

⎛

⎜
⎝

(2fz (ν) − 1)
∂ argi (ai, wi, ν)

∂ν
+

+ (2 argi (ai, wi, ν) − 1)
∂fz (ν)

∂ν

⎞

⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(10.174)

Yager H -function

↔
H

∗
(a;w, p, ν)

= Ñν

(
min
{
1,
(∑n

i=1 Ñν (argi (ai, wi, ν))fz1(p)
) 1

fz1(p)
}) (10.175)

↔
H

∗
(a;w, p, ν) = Ñν

(
min
{

1,
↔
h
∗
(a;w, p, ν)

})
(10.176)

↔
H

∗
(a;w, p, ν) =

⎧
⎪⎨

⎪⎩

Ñν

(
↔
h
∗
(a;w, p, ν)

)
for

↔
h
∗
(a;w, p, ν) ≤ 1

Ñν (1) for
↔
h
∗
(a;w, p, ν) > 1

(10.177)

p ∈ (0,∞) (10.178)
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where

↔
h
∗
(a;w, p, ν) =

(
n∑

i=1

Ñν (argi (ai, wi, ν))fz1(p)

) 1
fz1(p)

(10.179)

∂
↔
H

∗
(a;w, p, ν)
∂ai

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2fz (ν) − 1)2·
·
↔
h
∗
(a;w, p, ν)1−fz1(p)·

·Ñν (argi (ai, wi, ν))fz1(p)−1·
·∂ argi (ai, wi, ν)

∂ai

for
↔
h
∗
(a;w, p, ν) ≤ 1

0 for
↔
h
∗
(a;w, p, ν) > 1

(10.180)

∂
↔
H

∗
(a;w, p, ν)
∂wi

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2fz (ν) − 1)2·
·
↔
h
∗
(a;w, p, ν)1−fz1(p)·

·Ñν (argi (ai, wi, ν))fz1(p)−1·
·∂ argi (ai, wi, ν)

∂wi

for
↔
h
∗
(a;w, p, ν) ≤ 1

0 for
↔
h
∗
(a;w, p, ν) > 1

(10.181)

∂
↔
H

∗
(a;w, p, ν)

∂p
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2fz (ν) − 1
fz1 (p)

↔
h
∗
(a;w, p, ν)1−fz1(p)·

·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

n∑

i=1

ln
(
Ñν (argi (ai, wi, ν))

)

Ñν (argi (ai, wi, ν))−fz1(p)
+

−
ln
(

↔
h
∗
(a;w, p, ν)

)

↔
h
∗
(a;w, p, ν)−fz1(p)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

·

·∂fz1 (p)
∂p

for
↔
h
∗
(a;w, p, ν) ≤ 1

0 for
↔
h
∗
(a;w, p, ν) > 1

(10.182)



10.7 Simulation examples 479

∂
↔
H

∗
(a;w, p, ν)

∂ν
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
2
↔
h

∗
(a;w, p, ν) − 1
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↔
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∗
(a;w, p, ν) ≤ 1

∂fz (ν)

∂ν
for

↔
h

∗
(a;w, p, ν) > 1

(10.183)

10.7 Simulation examples

We will present the results of simulation for previously described flexi-
ble neuro-fuzzy systems. Simulations concern problems of polymerization,
modeling the taste of rice, classification of iris flower and classification of
wine presented in Subchapter 9.2. To remind of those problems, they have
been listed in Table 10.2. Two simulation series have been conducted for
each simulation example. Each series has been conducted and described in
analogic way:

• In the first experiment only the parameters of membership function
of input and output fuzzy sets and the parameter of inference model
ν ∈ [0, 1] were learnt. The value of this parameter after completion
of the learning process belongs to the set ν ∈ {0, 1}.

• In the second experiment the parameters of membership function of
input and output fuzzy sets were also learnt, whereas the value of

TABLE 10.2. Simulation examples used

Simulation Type of Number of Length of Length of
problem the problem inputs the learning the testing

sequence sequence

Polymerization approximation 3 70 –
Modeling the approximation 5 75 30
taste of rice
Classification of classification 4 105 45
iris flowers
Classification classification 13 125 53
of wine
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the parameter of inference model ν was chosen as a opposite value (0
or 1) to the one obtained in the first experiment. As we will see, the
accuracy obtained in this experiment is worse than the one obtained
in the first experiment.

• In the third experiment the same parameters as in the first experiment
and also flexibility parameters ατ ∈ [0, 1], αI ∈ [0, 1], αagr ∈ [0, 1]
and parameters of the shape of the applied operators pτ ∈ [0,∞),
pI ∈ [0,∞), pagr ∈ [0,∞) were learnt. The latter parameters occur
in case of applying adjustable Dombi and Yager H -functions (in the
second series of experiments).

• Inthefourthexperimentthesameparametersas inthethirdexperiment,
as well as weights of rules premises wτ

i,k ∈ [0, 1], i = 1, . . . , n, k =
1, . . . , N and weights of particular rules wagr

k ∈ [0, 1], k = 1, . . . , N
were learnt. The values of weights, after completion of the learning
process, are illustrated in the diagrams in which the weights of premises
and the weights of rules are separated with a vertical dotted line. In
the diagrams we assume that the grayer the field which symbolizes a
given weight, the value of the weight is closer to zero.

In the first simulation series, in each of the four experiments described
above, non-adjustable Zadeh and algebraic H -functions and H -implications
were applied. In the second series of experiments adjustable H -functions
and Dombi and Yager H -implications were applied, instead of non- ad-
justable operators.

10.7.1 Polymerization
The results of simulation for the polymerization problem are presented in
Tables 10.3a and 10.3b for non-adjustable H -functions (Zadeh and alge-
braic) and in Tables 10.4a and 10.4b for adjustable H -functions (Dombi
and Yager). Moreover, for the experiment (iv) the values of weights of
rules premises wτ

i,k ∈ [0, 1] and values of weights of rules wagr
k ∈ [0, 1] of the

considered systems with non-adjustable H -functions are symbolically pre-
sented in Fig. 10.20, while the values of weight of systems with adjustable
H -functions are presented in Fig. 10.21.

10.7.2 Modeling the taste of rice
The results of simulation for the problem of modeling the taste of rice
are presented in Tables 10.5a and 10.5b for non-adjustable H -functions
(Zadeh and algebraic) and in Tables 10.6a and 10.6b for adjustable H -
functions (Dombi and Yager). Moreover, for the experiment (iv) the values
of weights of rules premises wτ

i,k ∈ [0, 1] and values of weights of rules
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TABLE 10.3a. The results of simulation of a flexible system with non-parame-
terized H -functions – the problem of polymerization

Flexible system with non-parameterized H -functions
(Polymerization)

Simulation Name of flexibility Initial value
number parameter
i ν 0.5
ii ν 1

iii

ν 0.5
ατ 1
αI 1

αagr 1

iv

ν 0.5
ατ 1
αI 1

αagr 1
wτ 1
warg 1

TABLE 10.3b. The results of simulation of a flexible system with non-parame-
terized H -functions – the problem of polymerization

Flexible system with non-parametrized H -functions (Polymerization)
Simulation Final value RMSE
number after learning (learning sequence)

Zadeh Algebraic Zadeh Algebraic
H -function H -function H -function H -function

i 0.0000 0.0000 0.0096 0.0060
ii – – 0.0115 0.0063

iii

0.0000 0.0000

0.0059 0.00560.7158 0.9678
0.7613 0.9992
0.7277 0.9930

iv

0.0000 0.0000

0.0056 0.0044

0.6941 0.9987
0.7783 0.9992
0.6713 0.9334

Fig. 10.20a Fig. 10.20b
Fig. 10.20a Fig. 10.20b
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TABLE 10.4a. The results of simulation of a flexible system with parameterized
H -functions – the problem of polymerization

Flexible system with parameterized H -functions
(Polymerization)

Simulation Name of flexibility Initial value
number parameter
i ν 0.5

ii ν 1

iii

ν 0.5
pτ 10
pI 10

pagr 10
ατ 1
αI 1

αagr 1

iv

ν 0.5
pτ 10
pI 10

pagr 10
ατ 1
αI 1

αagr 1
wτ 1
warg 1

wagr
k ∈ [0, 1] of considered systems with non-adjustable H -functions are

symbolically presented in Fig. 10.22, while the values of weights of systems
with adjustable H -functions are presented in Fig. 10.23.

10.7.3 Classification of iris flower
The results of simulation for the problem of classification of iris flower
are presented in Tables 10.7a and 10.7b for non-adjustable H -functions
(Zadeh and algebraic) and in Tables 10.8a and 10.8b for adjustable H -
functions (Dombi and Yager). Moreover, for the experiment (iv) the values
of weights of rules premises wτ

i,k ∈ [0, 1] and values of weights of rules
wagr

k ∈ [0, 1] of the considered systems with non-adjustable H -functions are
symbolically presented in Fig. 10.24, while the values of weight of systems
with adjustable H -functions are presented in Fig. 10.25.
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TABLE 10.4b. The results of simulation of a flexible system with parameterized
H -functions – the problem of polymerization

Flexible system with parameterized H -functions (Polymerization)

Simulation Final value RMSE
number after learning (learning sequence)

Dombi Yager Dombi Yager
H -function H -function H -function H -function

i 0.0000 0.0000 0.0117 0.0110

ii – – 0.0133 0.0113

iii

0.0000 0.0000

0.0077 0.0061

9.9714 10.2089
10.0042 10.2594
9.9835 9.3991
0.6996 0.1624
0.7743 0.5344
0.9941 0.9942

iv

0.0000 0.0000

0.0069 0.0053

13.1310 7.5714
15.3619 11.7834
3.4720 13.9273
0.7127 0.1375
0.7148 0.4742
0.9335 0.9910

Fig. 10.21a Fig. 10.21b
Fig. 10.21a Fig. 10.21b

FIGURE 10.20. Weights of rules premises and weights of rules for a flexible
system which solves the problem of polymerization in case of a) Zadeh H -function,
b) algebraic H -function
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FIGURE 10.21. Weights of rules premises and weights of rules for a flexible system
which solves the problem of polymerization in case of a) Dombi H -function,
b) Yager H -function

TABLE 10.5a. The results of simulation of a flexible system with non-parame-
terized H -functions – the problem of modeling the taste of rice

Flexible system with non-parameterized H -functions
(Modeling the taste of rice)

Simulation Name of flexibility Initial value
number parameter
i ν 0.5

ii ν 1

iii

ν 0.5
ατ 1
αI 1

αagr 1

iv

ν 0.5
ατ 1
αI 1

αagr 1
wτ 1
warg 1

10.7.4 Classification of wine
The results of simulation for the problem of wine classification are presented
in Tables 10.9a and 10.9b for non-adjustable H -functions (Zadeh and alge-
braic) and in Tables 10.10a and 10.10b for adjustable H -functions (Dombi
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TABLE 10.5b. The results of simulation of a flexible system with non-parame-
terized H -functions – the problem of modeling the taste of rice

Flexible system with non-parameterized H -functions
(Modeling the taste of rice)

Simulation Final value RMSE
number after learning (learning sequence)

Zadeh Algebraic Zadeh Algebraic
H -function H -function H -function H -function

i 0.0000 0.0000 0.0184 0.0185

ii – – 0.0186 0.0192

iii

0.0000 0.0000

0.0163 0.01730.2954 0.9972
0.9843 0.9979
0.4658 0.9958

iv

0.0000 0.0000

0.0140 0.0159

0.3101 0.9519
0.9575 0.9512
0.5496 0.9085

Fig. 10.22a Fig. 10.22b
Fig. 10.22a Fig. 10.22b

TABLE 10.6a. The results of simulation of a flexible system with parameterized
H -functions – the problem of modeling the taste of rice

Flexible system with parametrized H -functions
(Modeling the taste of rice)

Simulation number Name of flexibility parameter Initial value
i ν 0.5

ii ν 1

iii

ν 0.5
pτ 10
pI 10

pagr 10
ατ 1
αI 1

αagr 1

iv

ν 0.5
pτ 10
pI 10

pagr 10
ατ 1
αI 1

αagr 1
wτ 1
warg 1
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TABLE 10.6b. The results of simulation of a flexible system with parameterized
H -functions – the problem of modeling the taste of rice

Flexible system with parametrized H -functions
(Modeling the taste of rice)

Simulation Final value RMSE
number after learning (learning sequence)

Dombi Yager Dombi Yager
H -function H -function H -function H -function

i 0.0000 0.0000 0.0186 0.0187

ii – – 0.0192 0.0197

iii

0.0000 0.0000

0.0181 0.0184

9.9268 10.7365
10.0026 10.1154
9.7692 10.8200
0.4606 0.6895
0.9943 0.9993
0.9865 0.9728

iv

0.0000 0.0000

0.0160 0.0169

10.1449 10.9117
9.9448 10.0472
9.2063 10.0148
0.4380 0.6763
0.9201 0.9263
0.8967 0.9927

Fig. 10.23a Fig. 10.23b
Fig. 10.23a Fig. 10.23b

FIGURE 10.22. Weights of rules premises and weights of rules for a flexible
system which solves the problem of modeling the taste of rice in case of a) Zadeh
H -function, b) algebraic H -function
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FIGURE 10.23. Weights of rules premises and weights of rules for a flexible
system which solves the problem of modeling the taste of rice in case of a) Dombi
H -function, b) Yager H -function

TABLE 10.7a. The results of simulation of a flexible system with non-parame-
terized H -functions – the problem of classification of iris flowers

Flexible system with non-parameterized H -functions
(Classification of iris flowers)

Simulation Name of
flexibility
parameter

Initial value Final value
number after learning

Zadeh Algebraic
H -function H -function

i ν 0.5 1.0000 1.0000
ii ν 0 – –

iii

ν 0.5 1.0000 1.0000
ατ 1 0.2032 0.9922
αI 1 0.9891 0.6082

αagr 1 0.9994

iv

ν 0.5 1.0000 1.0000
ατ 1 0.2442 0.9592
αI 1 0.9845 0.5753

αagr 1 0.9650 0.9937
wτ 1 Fig. 10.24a Fig. 10.24b
warg 1 Fig. 10.24a Fig. 10.24b

and Yager). Moreover, for the experiment (iv) the values of weights of rules
premises wτ

i,k ∈ [0, 1] and values of weights of rules wagr
k ∈ [0, 1] of consid-

ered systems with non-adjustable H -functions are symbolically presented
in Fig. 10.26, while the values of weights of systems with adjustable H -
functions are presented in Fig. 10.27.
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TABLE 10.7b. The results of simulation of a flexible system with non-parame-
terized H -functions – the problem of classification of iris flowers

Flexible system with non-parameterized H -functions
(Classification of iris flowers)

Simulation Number of errors Number of errors
number [%] (learning sequence) [%] (testing sequence)

Zadeh Algebraic Zadeh Algebraic
H -function H -function H -function H -function

i 0.95 0.95 4.44 4.44
ii 0.95 0.95 6.67 6.67
iii 0.00 0.95 4.44 4.44
iv 0.00 0.00 4.44 4.44

TABLE 10.8a. The results of simulation of a flexible system with parameterized
H -functions – the problem of classification of iris flowers

Flexible system with parameterized H -functions
(Classification of iris flowers)

Simulation Name of
flexibility
parameter

Initial value Final value
number after learning

Dombi Yager
H -function H -function

i ν 0.5 1.0000 1.0000
ii ν 0 – –

iii

ν 0.5 1.0000 1.0000
pτ 10 13.2031 4.3306
pI 10 10.0001 7.5741

pagr 10 9.9974 10.1209
ατ 1 0.8259 0.7846
αI 1 0.9924 0.9931

αagr 1 0.9985 0.9985

iv

ν 0.5 1.0000 1.0000
pτ 10 13.5253 4.3621
pI 10 10.8610 8.0120

pagr 10 9.4218 9.3590
ατ 1 0.8739 0.8068
αI 1 0.9871 0.9731

αagr 1 0.9698 0.9661
wτ 1 Fig. 10.25a Fig. 10.25b
warg 1 Fig. 10.25a Fig. 10.25b
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TABLE 10.8b. The results of simulation of a flexible system with parameterized
H -functions – the problem of classification of iris flowers

Flexible system with parameterized H -functions
(Classification of iris flowers)

Simulation Number of errors Number of errors
number [%] (learning sequence) [%] (testing sequence)

Dombi Yager Dombi Yager
H -function H -function H -function H -function

i 0.00 0.95 4.44 4.44
ii 0.95 0.95 6.67 6.67
iii 0.00 0.00 4.44 4.44
iv 0.00 0.00 2.22 2.22

FIGURE 10.24. Weights of rules premises and weights of rules for a flexible
system which solves the problem of classification of iris flowers in case of a) Zadeh
H -function, b) algebraic H -function

FIGURE 10.25. Weights of rules premises and weights of rules for a flexible
system which solves the problem of classification of iris flowers in case of a) Dombi
H -function, b) Yager H -function
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TABLE 10.9a. The results of simulation of a flexible system with non-parame-
terized H -functions – the problem of wine classification

Flexible system with non-parameterized H -functions
(Classification of wine)

Simulation Name of
flexibility
parameter

Initial value Final value
number after learning

Zadeh Algebraic
H -function H -function

i ν 0.5 1.0000 1.0000
ii ν 0 – –

iii

ν 0.5 1.0000 1.0000
ατ 1 0.0004 0.0036
αI 1 0.9907 0.9986

αagr 1 0.9938 0.9908

iv

ν 0.5 1.0000 1.0000
ατ 1 0.0329 0.0180
αI 1 0.9987 0.9756

αagr 1 0.9896 0.9861
wτ 1 Fig. 10.26a Fig. 10.26b
warg 1 Fig. 10.26a Fig. 10.26b

TABLE 10.9b. The results of simulation of a flexible system with non-parame-
terized H -functions – the problem of wine classification

Flexible system with non-parameterized H -functions
(Classification of wine)

Simulation Number of errors Number of errors
number [%] (learning sequence) [%] (testing sequence)

Zadeh Algebraic Zadeh Algebraic
H -function H -function H-function H -function

i 0.00 0.00 3.77 1.89
ii 0.80 0.80 3.77 3.77
iii 0.00 0.00 1.89 1.89
iv 0.00 0.00 0.00 0.00
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TABLE 10.10a. The results of simulation of a flexible system with parameterized
H -functions – the problem of wine classification

Flexible system with parameterized H -functions
(Classification of wine)

Simulation Name of
flexibility
parameter

Initial value Final value
number after learning

Dombi Yager
H -function H -function

i ν 0.5 1.0000 1.0000
ii ν 0 – –

iii

ν 0.5 1.0000 1.0000
pτ 10 9.9999 10.0498
pI 10 10.0005 9.9936

pagr 10 9.9991 10.0014
ατ 1 0.0032 0.0029
αI 1 0.9911 0.9917

αagr 1 0.9919 0.9920

iv

ν 0.5 1.0000 1.0000
pτ 10 7.8330 6.9528
pI 10 11.7084 13.3122

pagr 10 14.3699 12.1427
ατ 1 0.0028 0.0389
αI 1 0.9826 0.9740

αagr 1 0.9914 0.9599
wτ 1 Fig. 10.27a Fig. 10.27b
warg 1 Fig. 10.27a Fig. 10.27b

TABLE 10.10b. The results of simulation of a flexible system with parameterized
H -functions – the problem of wine classification

Flexible system with parameterized H -functions
(Classification of wine)

Simulation Number of errors Number of errors
number [%] (learning sequence) [%] (testing sequence)

Dombi Yager Dombi Yager
H -function H -function H -function H -function

i 0.00 0.00 1.89 1.89
ii 0.00 0.00 3.77 3.77
iii 0.00 0.00 1.89 1.89
iv 0.00 0.00 0.00 0.00
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FIGURE 10.26. Weights of rules premises and weights of rules for a flexible system
which solves the problem of distinguishing the brand of wine in case of a) Zadeh
H -function, b) algebraic H -function

FIGURE 10.27. Weights of rules premises and weights of rules for a flexible system
which solves the problem of distinguishing the brand of wine in case of a) Dombi
H -function, b) Yager H -function

10.8 Notes

The concept of flexible neuro-fuzzy systems presented in this chapter al-
lows us to determine the type of system (Mamdani or logical) as a result
of the learning process. It could be inferred from the simulation examples
presented in Subchapter 10.7 that a flexible system becomes a Mamdani
system after completion of the learning process (parameter ν = 0) for
the problems of approximation or identification. In contrast, for the prob-
lems of classification a flexible system becomes a logical system (parameter
ν = 1) as a result of learning. The above results could be treated as a
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recommendation of the Mamdani system to solve the problems of approxi-
mation or identification and the logical system to solve the problems of clas-
sification. It should be mentioned that the concept of soft triangular norms
was presented by Yager and Filev [262], while Klement [111] and Lowen
[128] presented in detail various types of parameterized triangular norms.
Various types of flexible neuro-fuzzy structures were proposed by Cpałka
[30]. The subject of those systems is discussed in more detail in monograph
[225]. We refer the interested Reader to the following works [210–212, 215,
217, 218, 220, 223, 227].
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