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5   Design of Intelligent Systems with Interval Type-2 
Fuzzy Logic 

Uncertainty is an inherent part of intelligent systems used in real-world applications.  
The use of new methods for handling incomplete information is of fundamental im-
portance.  Type-1 fuzzy sets used in conventional fuzzy systems cannot fully handle 
the uncertainties present in intelligent systems.  Type-2 fuzzy sets that are used in 
type-2 fuzzy systems can handle such uncertainties in a better way because they  
provide us with more parameters. This chapter deals with the design of intelligent sys-
tems using interval type-2 fuzzy logic for minimizing the effects of uncertainty pro-
duced by the instrumentation elements, environmental noise, etc. Experimental results 
include simulations of feedback control systems for non-linear plants using type-1 and 
type-2 fuzzy logic controllers; a comparative analysis of the systems’ response is per-
formed, with and without the presence of uncertainty.  

5.1   Introduction 

Uncertainty affects decision-making and appears in a number of different forms. The 
concept of information is fully connected with the concept of uncertainty. The most 
fundamental aspect of this connection is that the uncertainty involved in any problem-
solving situation is a result of some information deficiency, which may be incom-
plete, imprecise, fragmentary, not fully reliable, vague, contradictory, or deficient in 
some other way (Klir and Yuan, 1995). Uncertainty is an attribute of information 
(Zadeh, 2005). The general framework of fuzzy reasoning allows handling much of 
this uncertainty, fuzzy systems employ type-1 fuzzy sets, which represent uncertainty 
by numbers in the range [0, 1].  When something is uncertain, like a measurement, it 
is difficult to determine its exact value, and of course type-1 fuzzy sets make more 
sense than using sets (Zadeh, 1975).  However, it is not reasonable to use an accurate 
membership function for something uncertain, so in this case what we need is another 
type of fuzzy sets, those which are able to handle these uncertainties, the so called 
type-2 fuzzy sets (Mizumoto and Tanaka, 1976) (Mendel, 2001).  So, the amount of 
uncertainty in a system can be reduced by using type-2 fuzzy logic because it offers 
better capabilities to handle linguistic uncertainties by modeling vagueness and  
unreliability of information (Liang and Mendel, 2000). 
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Recently, we have seen the use of type-2 fuzzy sets in Fuzzy Logic Systems (FLS) 
in different areas of application (Lee et al., 2003). A novel approach for realizing the 
vision of ambient intelligence in ubiquitous computing environments (UCEs), is 
based on embedding intelligent agents that use type-2 fuzzy systems which are able to 
handle the different sources of uncertainty and imprecision in UCEs to give a good 
response (Doctor et al., 2005).  There are also papers with emphasis on the implemen-
tation of type-2 FLS (Karnik and Mendel, 1999) and in others, it is explained how 
type-2 fuzzy sets let us model and minimize the effects of uncertainties in rule-base 
FLS (Wu and Mendel, 2001). There is also a paper that provides mathematical formu-
las and computational flowcharts for computing the derivatives that are needed to im-
plement steepest-descent parameter tuning algorithms for type-2 fuzzy logic systems 
(Mendel, 2004).  Some research works are devoted to solve real world applications in 
different areas, for example in signal processing, type-2 fuzzy logic is applied in pre-
diction of the Mackey-Glass chaotic time-series with uniform noise presence (Men-
del, 2000). In medicine, an expert system was developed for solving the problem of 
Umbilical Acid-Base (UAB) assessment (Ozen and Garibaldi, 2003).  In industry, 
type-2 fuzzy logic and neural networks was used in the control of non-linear dynamic 
plants (Melin and Castillo, 2004); also we can find interesting studies in the field of 
mobile robots (Hagras, 2004).   

In this chapter we deal with the application of interval type-2 fuzzy control to non-
linear dynamic systems.  It is a well known fact, that in the control of real systems, 
the instrumentation elements (instrumentation amplifier, sensors, digital to analog, 
analog to digital converters, etc.) introduce some sort of unpredictable values in the 
information that has been collected (Castillo and Melin, 2004).  So, the controllers de-
signed under idealized conditions tend to behave in an inappropriate manner (Castillo 
and Melin, 2001).  Since, uncertainty is inherent in the design of controllers for real 
world applications, we are presenting how to deal with this problem using type-2 
Fuzzy Logic Controller (FLC), to reduce the effects of imprecise information.  We are 
supporting this statement with experimental results, qualitative observations, and 
quantitative measures of errors.  For quantifying the errors, we utilized three widely 
used performance criteria, these are: Integral of Square Error (ISE), Integral of the 
Absolute value of the Error (IAE), and Integral of the Time multiplied by the Abso-
lute value of the Error (ITAE) (Deshpande and Ash, 1988). We also consider the ap-
plication of interval type-2 fuzzy logic to the problem of forecasting chaotic time  
series. 

5.2   Fuzzy Logic Systems  

In this section, a brief overview of type-1 and type-2 fuzzy systems is presented. This 
overview is considered as necessary to understand the basic concepts needed to un-
derstand the methods and algorithms presented later in the chapter. 

5.2.1   Type-1 Fuzzy Logic Systems  

In the 40's and 50's, many researchers proved that dynamic systems could be mathe-
matically modeled using differential equations.  In these works we have the  
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foundations of the Control Theory, which in addition with the Transform Theory 
(Laplace’s Theory), provided an extremely powerful means of analyzing and design-
ing control systems (Mamdani, 1993).  These theories were developed until the 70's, 
when the area was called Systems Theory to indicate its definitiveness. 

Soft computing techniques have become an important research topic, which can be 
applied in the design of intelligent controllers (Jang et al., 1997). These techniques 
have tried to avoid the above-mentioned drawbacks, and they allow us to obtain effi-
cient controllers, which utilize the human experience in a more natural form than the 
conventional mathematical approach (Zadeh, 1973).  In the cases in which a mathe-
matical representation of the controlled system is difficult to obtain, the process op-
erator has the knowledge, the experience to express the relationships existing in the 
process behavior. 

A FLS, described completely in terms of type-1 fuzzy sets is called a type-1 fuzzy 
logic system (type-1 FLS). It is composed by a knowledge base, which comprises the 
information given by the process operator in form of linguistic control rules. A fuzzi-
fication interface, that has the effect of transforming crisp data into fuzzy sets. An in-
ference system, that uses the fuzzy sets in conjunction with the knowledge base to 
make inferences by means of a reasoning method. Finally, a defuzzification interface, 
which translates the fuzzy control action so obtained to a real control action using a 
defuzzification method (Mendel, 2001). 

In this chapter, the implementation of the fuzzy controller in terms of type-1 fuzzy 
sets, has two input variables, which are the error e(t), the difference between the ref-
erence signal and the output of the process, as well as the error variation Δe(t), 

)()()( tytrte −=  (5.1) 

)1()()( −−=Δ tetete  (5.2) 

so the control system can be represented as in Figure 5.1. 

 
Fig. 5.1. System used for obtaining the experimental results for control 

Fuzzy Logic Systems
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5.2.2   Type-2 Fuzzy Logic Systems 

If for a type-1 membership function, as in Figure 5.2, we blur it to the left and to the 
right, as illustrated in Figure 5.3, then a type-2 membership function is obtained. In 
this case, for a specific value 'x , the membership function ( 'u ), takes on different 
values, which are not all weighted the same, so we can assign an amplitude distribu-
tion to all of those points.  

Doing this for all Xx ∈ , we create a three-dimensional membership function –a 
type-2 membership function– that characterizes a type-2 fuzzy set (Mendel, 2001) 
 

 
Fig. 5.2. Type-1 membership function 

 
Fig. 5.3. Blurred type-1 membership function 
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(Mendel and Mouzouris, 1999). A type-2 fuzzy set A~ , is characterized by the mem-
bership function: 

( ){ }]1,0[,|),(),,(~
~ ⊆∈∀∈∀= xA JuXxuxuxA μ  (5.3) 

in which 1),(0 ~ ≤≤ uxAμ .  Another expression for A~  is, 

),/(),(
~

~ uxuxA
Xx Ju A

x
∫ ∫∈ ∈

= μ ]1,0[⊆xJ  (5.4) 

Where ∫ ∫ denotes the union over all admissible input variables x and u.  For dis-

crete universes of discourse ∫ is replaced by ∑ (Mendel and John, 2002).  In fact 

]1,0[⊆xJ  represents the primary membership of x, and ),(~ uxAμ is a type-1 fuzzy 

set known as the secondary set.  Hence, a type-2 membership grade can be any subset 
in [0,1], the primary membership, and corresponding to each primary membership, 
there is a secondary membership (which can also be in [0,1]) that defines the possi-
bilities for the primary membership (Liang and Mendel, 2000). Uncertainty is repre-
sented by a region, which is called the footprint of uncertainty (FOU). When 

]1,0[,1),(~ ⊆∈∀= xA Juuxμ  we have an interval type-2 membership function, 

as shown in Figure 5.4.  The uniform shading for the FOU represents the entire inter-
val type-2 fuzzy set and it can be described in terms of an upper membership func-

tion )(~ xAμ and a lower membership function )(~ xAμ . 

 
Fig. 5.4. Interval type-2 membership function 

Fuzzy Logic Systems
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A FLS described using at least one type-2 fuzzy set is called a type-2 FLS.  Type-1 
FLSs are unable to directly handle rule uncertainties, because they use type-1 fuzzy 
sets that are certain.  On the other hand, type-2 FLSs, are very useful in circumstances 
where it is difficult to determine an exact membership function, and there are meas-
urement uncertainties (Mendel, 2001). 

It is known that type-2 fuzzy sets enable modeling and minimizing the effects of 
uncertainties in rule-based FLS.  Unfortunately, type-2 fuzzy sets are more diffi-
cult to use and understand than type-1 fuzzy sets; hence, their use is not wide-
spread yet.  As a justification for the use of type-2 fuzzy sets, in (Sepulveda et al., 
2007) are mentioned at least four sources of uncertainties not considered in type-1 
FLSs:  

1. The meanings of the words that are used in the antecedents and consequents of 
rules can be uncertain (words mean different things to different people).  

2. Consequents may have histogram of values associated with them, especially when 
knowledge is extracted from a group of experts who do not all agree. 

3. Measurements that activate a type-1 FLS may be noisy and therefore uncertain. 
4. The data used to tune the parameters of a type-1 FLS may also be noisy.  

All of these uncertainties translate into uncertainties about fuzzy set membership 
functions.  Type-1 fuzzy sets are not able to directly model such uncertainties because 
their membership functions are totally crisp.  On the other hand, type-2 fuzzy sets are 
able to model such uncertainties because their membership functions are themselves 
fuzzy.  A type-1 fuzzy set is a special case of a type-2 fuzzy set; its secondary mem-
bership function is a subset with only one element, unity. 

A type-2 FLS is again characterized by IF-THEN rules, but its antecedent or con-
sequent sets are now of type-2.  Type-2 FLSs, can be used when the circumstances are 
too uncertain to determine exact membership grades such as when the training data is 
corrupted by noise.  Similar to a type-1 FLS, a type-2 FLS includes a fuzzifier, a rule  
 

Fig. 5.5. Type-2 Fuzzy Logic System 
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base, fuzzy inference engine, and an output processor, as we can see in Fig. 5.5.  The 
output processor includes type-reducer and defuzzifier; it generates a type-1 fuzzy set 
output (from the type-reducer) or a crisp number (from the defuzzifier) (Mendel, 
2005).  Now we will explain each of the blocks of Figure 5.5. 

5.2.2.1   Fuzzifier 
The fuzzifier maps a crisp point x=(x1,…,xp)

T ∈X1xX2x…xXp ≡ X  into a type-2 fuzzy 

set xA
~

in X (Mendel, 2001), interval type-2 fuzzy sets in this case.  We will use type-2 

singleton fuzzifier, in a singleton fuzzification, the input fuzzy set has only a single 

point on nonzero membership. xA
~

is a type-2 fuzzy singleton if 1/1)x(
xA

~ =μ  for 

x=x' and 0/1)x(
xA

~ =μ  for all other x≠x'[7]. 

5.2.2.2   Rules 
The structure of rules in a type-1 FLS and a type-2 FLS is the same, but in the latter 
the antecedents and the consequents will be represented by type-2 fuzzy sets.  So for a 
type-2 FLS with p inputs x1∈X1,…,xp ∈Xp  and one output y∈Y, Multiple Input Sin-
gle Output (MISO), if we assume there are M rules, the lth rule in the type-2 FLS can 
be written as follows: 

Rl: IF x1 is lF1
~ and ···and xp is l

pF~  , THEN y is lG~       

l=1,…,M 
(5.5) 

5.2.2.3   Inference 
In the type-2 FLS, the inference engine combines rules and gives a mapping from in-
put type-2 fuzzy sets to output type-2 fuzzy sets.  It is necessary to compute the join 

⊔, (unions) and the meet Π (intersections), as well as extended sup-star compositions 

(sup star compositions) of type-2 relations.  If l
p

ll AFF ~~~
1 =××L , equation (5.5) can 

be re-written as 

lll
p

lll GAGFFR ~~~~~: 1 →=→××L  l=1,…,M (5.6) 

Rl is described by the membership function ),,...,(),( 1 yxxy pRR ll μμ =x , where 

),(),( ~~ yy lll GAR
xx →= μμ  (5.7) 

can be written as (Mendel, 2001): 

)(),(),( 1~~~
1

xyy llll FGAR
μμμ == → xx  Π···Π )(~ pF

xl
p

μ Π )(~ ylG
μ        

= [Π p
i 1= )(~ iF

x
i

lμ ]Π )(~ ylG
μ  

(5.8) 
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In general, the p-dimensional input to Rl is given by the type-2 fuzzy set xA~ whose 

membership function is 

)()( 1~~
1

xxAx
μμ =x  Π···Π )(~ ppx xμ =Π p

i 1= )(~ iix xμ  (5.9) 

where ),...,1(~ piX i = are the labels of the fuzzy sets describing the inputs.  Each rule 

Rl determines a type-2 fuzzy set l
x

l RAB o~~ = such that: 

== l
x

l RAB
y

o~~ )( μμ ⊔ [ )(~ xX xAx μ∈ Π ]),( ylR
xμ       y∈Y  l=1,…,M (5.10) 

This equation is the input/output relation in Figure 5.5 between the type-2 fuzzy set 
that activates one rule in the inference engine and the type-2 fuzzy set at the output of 
that engine (Mendel, 2001). 

In the FLS we used interval type-2 fuzzy sets and meet under product t-norm, so 
the result of the input and antecedent operations, which are contained in the firing set 
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Where 
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And 
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−−−
= μμ Lx  (5.13) 

where * is the product operation. 

5.2.2.4   Type Reducer 
The type-reducer generates a type-1 fuzzy set output, which is then converted in a 
crisp output through the defuzzifier.  This type-1 fuzzy set is also an interval set, for 
the case of our FLS we used center of sets (cos) type reduction, Ycos which is ex-
pressed as (Mendel, 2001)  
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(5.14) 

this interval set is determined by its two end points, yl and yr, which corresponds to 

the centroid of the type-2 interval consequent set iG
~

,  
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before the computation of  Ycos (x), we must evaluate equation (5.15), and its two end 
points, yl and yr.  If the values of fi and yi that are associated with yl are denoted fl

i and 
yl

i, respectively, and the values of fi and yi that are associated with yr are denoted fr
i 

and yr
i, respectively, from equation (15.14), we have (Mendel, 2001)  
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5.2.2.5   Defuzzifier 
From the type-reducer we obtain an interval set Ycos, to defuzzify it we use the average 
of yl and yr, so the defuzzified output of an interval singleton type-2 FLS is (Mendel, 
2001)  

2
)( rl yy

y
+

=x  (5.18) 

In this chapter, we are simulating the fact that the instrumentation elements (in-
strumentation amplifier, sensors, digital to analog, analog to digital converters, etc.) 
are introducing some sort of unpredictable values in the collected information.  In the 
case of the implementation of the type-2 FLC, we have the same characteristics as in 
type-1 FLC, but we used type-2 fuzzy sets as membership functions for the inputs and 
for the output. 

5.2.3   Performance Criteria 

For evaluating the transient closed-loop response of a computer control system we 
can use the same criteria that normally are used for adjusting constants in PID (Pro-
portional Integral Derivative) controllers.  These are (Sepulveda et al., 2007): 

1. Integral of Square Error (ISE). 

[ ]∫
∞

=
0

2)(ISE dtte  (5.19) 

Fuzzy Logic Systems
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2 Integral of the Absolute value of the Error (IAE). 

∫
∞

=
0

|)(|IAE dtte  (5.20) 

3. Integral of the Time multiplied by the Absolute value of the Error (ITAE). 

∫
∞

=
0

|)(|ITAE dttet  (5.21) 

The selection of the criteria depends on the type of response desired, the errors 
will contribute different for each criterion, so we have that large errors will in-
crease the value of ISE more heavily than to IAE.  ISE will favor responses with 
smaller overshoot for load changes, but ISE will give longer settling time. In 
ITAE, time appears as a factor, and therefore, ITAE will penalize heavily errors 
that occur late in time, but virtually ignores errors that occur early in time. Design-
ing using ITAE will give us the shortest settling time, but it will produce the larg-
est overshoot among the three criteria considered.  Designing considering IAE will 
give us an intermediate result, in this case, the settling time will not be so large 
than using ISE nor so small than using ITAE, and the same applies for the over-
shoot response.  The selection of a particular criterion is depending on the type of 
desired response. 

5.3   Experimental Results for Intelligent Control 

The experimental results are devoted to show comparisons in the system’s response in 
a feedback controller when using a type-1 FLC or a type-2 FLC. A set of five experi-
ments is described in this section. The first two experiments were performed in ideal 
conditions, i.e., without any kind of disturbance.  In the last three experiments, Gaus-
sian noise was added to the feedback loop with the purpose of simulating, in a global 
way, the effects of uncertainty from several sources. 

Figure 5.1 shows the feedback control system that was used for obtaining the 
simulation results.  The complete system was simulated in the Matlab program-
ming language, and the controller was designed to follow the input as closely as 
possible. The plant is a non-linear system that is modeled using equation (5.22) 

( ) ( ) ( ) ( ) ( ) ( )25.0105.019.0207.032.0 −⋅+−⋅+−⋅+−⋅−⋅= iuiuiyiyiyiy  (5.22) 

To illustrate the dynamics of this non-linear system, two different inputs are ap-
plied, first the input indicated by equation (5.23), which is shown in Figure 5.6, and 
whose system’s response is in Figure 5.7. 
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Fig. 5.6. Test sequence applied to the model of the plant given in equation (5.23) 

 
Fig. 5.7. System´s response for the inputs given in equation (5.23) which is illustrated in Fig. 5.6 

Experimental Results for Intelligent Control
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Fig. 5.8. A second input to the model for testing the plant response 

Now, for a slightly different input given by equation (5.24), see Figure 5.8, we 
have the corresponding system´s response in Figure 5.9. 
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(5.24) 

Going back to the control problem, this system given by equation (5.22) was used 
in Figure 5.1, under the name of plant or process, in this figure we can see that the 
controller’s output is applied directly to the plant’s input.  Since we are interested in 
comparing the performance between type-1 and type-2 FLC systems, the controller 
was tested in two ways:  

1. One is considering the system as ideal, that is, not introducing in the modules of 
the control system any source of uncertainty (experiments 1 and 2). 

2.  The other one is simulating the effects of uncertain modules (subsystems) re-
sponse introducing some uncertainty (experiments 3, 4 and 5). 
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Fig. 5.9. Output of the plant when we applied the input given by equation (5.24) illustrated in 
Fig. 5.8 

For both cases, as it is shown in Figure 5.1, the system’s output is directly con-
nected to the summing junction, but in the second case, the uncertainty was simulated 
introducing random noise with normal distribution (the dashed square in Figure 5.1).  
We added noise to the system’s output y(i) using the Matlab’s function “randn”, 
which generates random numbers with Gaussian distribution. The signal and the 
added noise in turn, were obtained with the programmer’s expression (5.25), the result 
y(i) was introduced to the summing junction of the controller system. Note that in ex-
pression (5.25) we are using the value 0.05, for experiments 3 and 4, but in the set of 
tests for experiment 5, we varied this value to obtain different SNR values. 

randniyiy ⋅+= 05.0)()(  (5.25) 

The system was tested using as input, a unit step sequence free of noise, )(ir .  For 

evaluating the system’s response and comparing between type 1 and type 2 fuzzy con-
trollers, the performance criteria ISE, IAE, and ITAE were used.  In Table 5.3, we 
summarized the values obtained in an ideal system for each criterion considering 400 
units of time.  For calculating ITAE a sampling time of 1.0=sT sec. was considered. 

For all experiments the reference input r is stable and noisy free.  In experiments 3 
and 4, although the reference appears clean, the feedback at the summing junction is 
noisy since noise for simulating the overall existing uncertainty in the system was in-
troduced deliberately, in consequence, the controller’s inputs e (t) (error), and )(teΔ  

contain uncertainty in the data.  
In Experiment 5, we tested the systems, type-1 and type-2 FLCs, introducing dif-

ferent values of noise η , this was done by modifying the signal to noise ratio SNR 

(Proakis and Manolakis, 1996), 

Experimental Results for Intelligent Control
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noise
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∑
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(5.26) 

Because many signals have a very wide dynamic range (Ingle and Proakis, 2000), 
SNRs are usually expressed in terms of the logarithmic decibel scale, SNR(db), 

⎟⎟
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⎞
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⎛
=
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signal

P

P
dbSNR 10log10)(  

(5.27) 

In Table 5.4, we show, for different values of SNR(db), the behavior of ISE, IAE, 
ITAE for type-1 and type-2 FLCs.  In all the cases the results for type-2 FLC are bet-
ter than type-1 FLC.  

In the type-1 FLC, Gaussian membership functions (Gaussian MFs) for the inputs 
and for the output were used.  A Gaussian MF is specified by two parameters {c,σ}: 
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⎞
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⎝

⎛ −
−

= σμ
cx

A ex  

(5.28) 

c  represents the MFs center and σ determines the MFs standard deviation.  

For each of the inputs of the type-1 FLC, e (t) and )(teΔ , three type-1 fuzzy 

Gaussian MFs were defined as: negative, zero, positive. The universe of discourse for 
these membership functions is in the range [-10 10]; their centers are -10, 0 and 10 re-
spectively, and their standard deviations is 4.2466 as is illustrated in Figures 5.10  
and 5.11. 

For the output of the type-1 FLC, we have five type-1 fuzzy Gaussian MFs: NG, N, 
Z, P and PG. They are in the interval [-10 10], their centers are -10, -.5, 0, 5, and 10 re-
spectively; and their standard deviation is 2.1233 as can be seen in Figure 5.12. Table 1 
illustrates the characteristics of the MFs of the inputs and output of the type-1 FLC. 

 
Fig. 5.10. Input e membership functions for the type-1 FLC 
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Fig. 5.11. Input eΔ  membership functions for the type-1 FLC 

 

Fig. 5.12. Output cde membership functions for the type-1 FLC 

In experiments 2, 4, and 5, for the type-2 FLC, as in type-1 FLC, we also selected 
Gaussian MFs for the inputs and for the output, but in this case we have interval type-
2 Gaussian MFs with a fixed center, c, and an uncertain standard deviation,σ , i.e.,  
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(5.29) 

In terms of the upper and lower membership functions, we have for )(~ xAμ , 

)x;,c(N)x( 2A
~ σμ =  (5.30) 
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Table 5.1. Characteristics of the inputs and output of type-1 FLC 

Variable Term Center c  Standard deviation 
σ  

negative -10 4.2466 
zero 0 4.2466 

 
Input e  

positive 10 4.2466 
Negative -10 4.2466 

Zero 0 4.2466 
 

Input eΔ  
positive 10 4.2466 

NG -10 2.1233 
N -5 2.1233 
Z 0 2.1233 
P 5 2.1233 

 

Output cde  

 PG 10 2.1233 

and for the lower membership function )(~ xAμ , 

)x;,c(N)x( 1A
~ σμ =  (5.31) 

where ( ) ≡x,,cN 2σ
2

2

cx

2

1

e
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
σ , and ( ) ≡x,,cN 1σ

2

1

cx

2

1

e
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
σ , (Mendel, 2001). 

Hence, in the type-2 FLC, for each input we defined three interval type-2 fuzzy Gaus-
sian MFs: negative, zero, positive in the interval [-10 10], as illustrated in Figures 
5.13 and 5.14.  For computing the output we have five interval type-2 fuzzy Gaussian  
 

 
Fig. 5.13. Input e membership functions for the type-2 FLC 
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Fig. 5.14. Input eΔ membership functions for the type-2 FLC 

MFs, which are NG, N, Z, P and PG, in the interval [-10 10], as can be seen in Figures 
5.15. Table 5.2 shows the characteristics of the inputs and output of the type-2 FLC. 

For type-2 FLC we used, basically, the software for type-2 fuzzy logic developed 
by our research group.  In all experiments, we have a dash-dot line for illustrating the 
system’s response and behavior of type-1 FLC, in the same sense, a continuous line 
for type-2 FLC. The reference input r is shown with a dot line. 

 

Fig. 5.15. Output cde membership functions for the type-2 FLC 

Experimental Results for Intelligent Control



70 Design of Intelligent Systems with Interval Type-2 Fuzzy Logic 

Table 5.2. Characteristics of the inputs and output of type-2 FLC 

Variable Term Center 
c  

Standard 
deviation 1σ  

Standard 
deviation 2σ  

negative -10 5.2466 3.2466 
zero 0 5.2466 3.2466 

 
Input e  

positive 10 5.2466 3.2466 
Negative -10 5.2466 3.2466 

Zero 0 5.2466 3.2466 
 

Input 
eΔ  positive 10 5.2466 3.2466 

NG -10 2.6233 1.6233 
N -5 2.6233 1.6233 
Z 0 2.6233 1.6233 
P 5 2.6233 1.6233 

 

Output 

cde  PG 10 2.6233 1.6233 

Experiment 1: Simulation of an ideal system with a type-1 FLC.  
In this experiment, uncertainty data was not added to the system, and the system re-
sponse is illustrated in Figure 5.16.  Note that the settling time is of about 140 units of 
time; i.e., the system tends to stabilize with time and the output will follow accurately 
the input.  In Table 5.3, we listed the obtained values of ISE, IAE, and ITAE for this  

 

 
Fig. 5.16. This graphic shows the system’s response to a unit step sequence.  The input refer-
ence r is shown with pointed line, for the type-1 the systems’ output y(i) is shown with dash dot 
line; and for type-2, the system’s output y(i) with continuous line. 
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Table 5.3. Comparison of performance criteria for type-1 and type-2 fuzzy logic controllers for 
20 db signal noise ratio. values obtained after 200 samples 

Type-1 FLC Type-2 FLC Perform-
ance 
Criteria 

Ideal Sys-
tem 

Syst. with un-
certainty 

Ideal Sys-
tem 

Syst. with 
uncertainty 

ISE 7.65 19.4 6.8 18.3 
IAE 17.68 49.5 16.4 44.8 

ITAE 62.46 444.2 56.39 402.9 

experiment.  In Figures 5.17, 5.18 and 5.19, the ISE, IAE, and ITAE behaviors of this 
experiment are shown. 

Experiment 2: Simulation of an ideal system using the type-2 FLC.   
Here, the same test conditions of Experiment 1 were used, but in this case, we imple-
mented the controller’s algorithm with type-2 fuzzy logic. The output sequence is illus-
trated in Figure 5.16, and the corresponding performance criteria are listed in Table 5.3, 
and we can observe that using a type-2 FLC we obtained the lower errors.  By visual in-
spection, we can observe that the output system’ response of the Experiment 1, and this 
one, are similar as it is shown in Figures 5.17, 5.18, and 5.19. 

 
Fig. 5.17. In uncertainty absence, the ISE values are very similar for type-1 and type-2 FLCs 

Experiment 3: System with uncertainty using a type-1 FLC.  
In this case, equation (5.25) was used to simulate the effects of uncertainty introduced 
to the system by transducers, amplifiers, and any other element that in real world ap-
plications affects expected values.  In this experiment the noise level was simulated in 
the range of 20 db of SNR ratio.  Figure 5.20 shows the system’s response output.  In 
Figures 5.21, 5.22, and 5.23, the performance criteria ISE, IAE, ITAE are represented 
graphically.   
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Fig. 5.18. In uncertainty absence, the IAE values obtained at the plant’s output are very similar 
for type-1 and type-2 FLCs, here is more evident that a type-1 FLC works a little better than in 
Fig. 5.17 

 

Fig. 5.19. In uncertainty absence, the ITAE values obtained at the plant’s output are similar for 
type-1 and type-2 FLCs, in accordance with Figure 5.18, it is evident that a type-1 FLC works a 
little better 
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Fig. 5.20. This graphic was obtained with uncertainty presence; compare the system’s outputs 
produced by type-1 and type-2 FLCs. Note that quite the opposite to Figure 5.16, a type-2 FLC 
works much better than a type-1 FLC when the system has uncertainty. The overshoot error is 
lower for a type-2 FLC. 

 
Fig. 5.21. We can see that a type-2 FLC produces lower overshoot errors, quantitatively the ISE 
overall error of using type-2 is 18.3 against 19.4 of the overall error produced by the type-1 
FLC 
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Experiment 4: System with uncertainty using a type-2 FLC. 
In this experiment, uncertainty was introduced in the system, in the same way as in 
Experiment 3.  In this case, a type-2 FLC was used and the results obtained with a 
type-1 FLC (Experiment 3) were improved. We can appreciate from Figure 5.20, that 
the lower overshoot and the best settling times are reached using a type-2 FLC. In  
 

 
Fig. 5.22. In accordance with Fig. 5.20, IAE confirms that we obtained the best system re-
sponse using a type-2 FLC with uncertainty presence.  Moreover, the error of the settling time 
and steady state is lower using a type-2 FLC. 

 
Fig. 5.23. Here we can see that the steady state error of the system produced by a type-2 FLC is 
lower than the error produced by a type-1 FLC with uncertainty present.  ITAE will punish 
heavily all those errors produced with time. 
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Figures 5.21 and 5.22, we can see that with a type-2 FLC the overshoot error de-
creases very quickly and it remains lower than using a type-1 FLC.  In Fig. 5.23, we 
can observe that through time the lower errors are obtained using a type-2 FLC. 

 
Experiment 5:  Varying the Signal to Noise Ratio (SNR) in type-1 and type-2 FLCs.  
To test the robustness of the type-1 and type-2 FLCs, we repeated experiments 3 and 
4 giving different noise levels, going from 30 db to 8 db of SNR ratio in each experi-
ment.  In Table 5.4, we summarized the values for ISE, IAE, and ITAE considering 
200 units of time with a Psignal of 22.98 db in all cases.  As it can be seen in Table 5.4, 
in presence of different noise levels, the behavior of type-2 FLC is in general better 
than type-1 FLC. 

Table 5.4. Behavior of type-1 and type-2 fuzzy logic controllers after variation of signal noise 
ratio. Values obtained for 200 samples. 

Noise variation Type-1  FLC Type-2 FLC 
SNR 
(db) 

Sum 
Noise (db) 

ISE IAE ITAE ISE IAE ITAE 

  8 22.72 321.1 198.1 2234.1 299.4 194.1 2023.1 
10 20.762 178.1 148.4 1599.4 168.7 142.2 1413.5 
12 18.783 104.7 114.5 1193.8 102.1 108.8 1057.7 
14 16.785 64.1 90.5 915.5 63.7 84.8 814.6 
16 14.78 40.9 72.8 710.9 40.6 67.3 637.8 
18 12.78 27.4 59.6 559.1 26.6 54.2 504.4 
20 10.78 19.4 49.5 444.2 18.3 44.8 402.9 
22  8.78 14.7 42 356.9 13.2 37.8 324.6 
24  6.78 11.9 36.2 289 10.3 32.5 264.2 
26  4.78 10.1 31.9 236.7 8.5 28.6 217.3 
28  2.78  9.1 28.5 196.3 7.5 25.5 180.7 
30  0.78 8.5 25.9 164.9 7 23.3 152.6 

From Table 5.4, considering two examples, the extreme cases; we have for an SNR 
ratio of 8 db, in type-1 FLC the following performance values ISE=321.1, IAE=198.1, 
ITAE=2234.1; and for the same case, in type-2 FLC, we have ISE=299.4, IAE=194.1, 
ITAE=2023.1.  

For 30 db of SNR ratio, we have for the type-1 FLC, ISE=8.5, IAE=25.9, 
ITAE=164.9, and for the type-2 FLC, ISE=7, IAE=23.3, ITAE=152.6.  

These values indicate a better performance of the type-2 FLC than type-1 FLC, be-
cause they are a representation of the errors, and as the error increases the perform-
ance of the system goes down.  

5.4   Summary 

We have presented the study of the controllers’ design for nonlinear control systems 
using type-1 and type-2 fuzzy logic. We presented five experiments where we simu-
lated the systems’ responses with and without uncertainty presence. In the experi-
ments, a quantification of errors was achieved and documented in tables for different 

Summary
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criteria such as ISE, IAE, and ITAE, it was shown that the lower overshoot errors and 
the best settling times were obtained using a type-2 FLC. Based on the experimental 
results, we can say that the best results are obtained using type-2 fuzzy systems.  In 
our opinion, this is because type-2 fuzzy sets that are used in type-2 fuzzy systems 
can handle uncertainties in a better way because they provide us with more parame-
ters and more design degrees of freedom.  
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