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3   Type-2 Fuzzy Logic 

We introduce in this chapter a new area in fuzzy logic, which is called type-2 fuzzy 
logic. Basically, a type-2 fuzzy set is a set in which we also have uncertainty about 
the membership function. Of course, type-2 fuzzy systems consist of fuzzy if-then 
rules, which contain type-2 fuzzy sets. We can say that type-2 fuzzy logic is a gener-
alization of conventional fuzzy logic (type-1) in the sense that uncertainty is not only 
limited to the linguistic variables but also is present in the definition of the member-
ship functions.  

Fuzzy Logic Systems are comprised of rules. Quite often, the knowledge that is 
used to build these rules is uncertain. Such uncertainty leads to rules whose antece-
dents or consequents are uncertain, which translates into uncertain antecedent or con-
sequent membership functions (Karnik & Mendel 1998). Type-1 fuzzy systems (like 
the ones seen in the previous chapter), whose membership functions are type-1 fuzzy 
sets, are unable to directly handle such uncertainties. We describe in this chapter, 
type-2 fuzzy systems, in which the antecedent or consequent membership functions 
are type-2 fuzzy sets. Such sets are fuzzy sets whose membership grades themselves 
are type-1 fuzzy sets; they are very useful in circumstances where it is difficult to de-
termine an exact membership function for a fuzzy set. 

The original fuzzy logic, founded by Lotfi Zadeh, has been around for more than 
30 years, and yet it is unable to handle uncertainties (Mendel, 2001). That the original 
fuzzy logic (type-1 fuzzy logic) cannot do this sounds paradoxical because the word 
“fuzzy” has the connotation of uncertainty. The expanded fuzzy logic (type-2 fuzzy 
logic) is able to handle uncertainties because it can model and minimize their effects. 

In what follows, we shall first introduce the basic concepts of type-2 fuzzy sets, and 
type-2 fuzzy reasoning. Then we will introduce and compare the different types of fuzzy 
inference systems that have been employed in various applications. We will also con-
sider briefly type-2 fuzzy logic systems and the comparison to type-1 fuzzy systems.  

3.1   Type-2 Fuzzy Sets 

The concept of a type-2 fuzzy set, was introduced by Zadeh (1975) as an extension of 
the concept of an ordinary fuzzy set (henceforth called a “type-1 fuzzy set”). A type-2 
fuzzy set is characterized by a fuzzy membership function, i.e., the membership grade 
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for each element of this set is a fuzzy set in [0,1], unlike a type-1 set where the mem-
bership grade is a crisp number in [0,1]. Such sets can be used in situations where 
there is uncertainty about the membership grades themselves, e.g., an uncertainty in 
the shape of the membership function or in some of its parameters. Consider the tran-
sition from ordinary sets to fuzzy sets. When we cannot determine the membership of 
an element in a set as 0 or 1, we use fuzzy sets of type-1. Similarly, when the situation 
is so fuzzy that we have trouble determining the membership grade even as a crisp 
number in [0,1], we use fuzzy sets of type-2. 

This does not mean that we need to have extremely fuzzy situations to use type-2 
fuzzy sets. There are many real-world problems where we cannot determine the exact 
form of the membership functions, e.g., in time series prediction because of noise in 
the data. Another way of viewing this is to consider type-1 fuzzy sets as a first order 
approximation to the uncertainty in the real-world. Then type-2 fuzzy sets can be con-
sidered as a second order approximation. Of course, it is possible to consider fuzzy 
sets of higher types but the complexity of the fuzzy system increases very rapidly. For 
this reason, we will only consider very briefly type-2 fuzzy sets. Lets consider some 
simple examples of type-2 fuzzy sets. 

Example 3.1. Consider the case of a fuzzy set characterized by a Gaussian membership 
function with mean m and a standard deviation that can take values in [σ1,σ2], i.e., 

μ(x)=exp {– ½[(x – m)/σ]2 }; σ ∈ [σ1,σ2] (3.1) 

Corresponding to each value of σ, we will get a different membership curve (see 
Figure 3.1). So, the membership grade of any particular x (except x=m) can take any 
of a number of possible values depending upon the value of σ, i.e., the membership 
grade is not a crisp number, it is a fuzzy set. Figure 3.1 shows the domain of the fuzzy 
set associated with x=0.7; however, the membership function associated with this 
fuzzy set is not shown in the figure. 
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Fig. 3.1. A type-2 fuzzy set representing a type-1 fuzzy set with uncertain standard deviation 
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Example 3.2. Consider the case of a fuzzy set with a Gaussian membership function 
having a fixed standard deviation σ, but an uncertain mean, taking values in [m1, m2], i.e., 

μ(x)=exp {– ½[(x – m)/σ]2 }; m ∈ [m1,m2] (3.2) 

Again, μ(x) is a fuzzy set. Figure 3.2 shows an example of such a set.  

Example 3.3. Consider a type-1 fuzzy set characterized by a Gaussian membership 
function (mean M and standard deviation σx), which gives one crisp membership 
m(x) for each input x ∈ X, where 

m(x)=exp {– ½ [(x – M)/σx]
2} (3.3) 

This is shown in Figure 3.3. Now, imagine that this membership of x is a fuzzy set. 
Let us call the domain elements of this set “primary memberships” of x (denoted by 
μ1) and membership grades of these primary memberships “secondary memberships” 
of x [denoted by μ2(x, μ1)]. So, for a fixed x, we get a type-1 fuzzy set whose domain 
elements are primary memberships of x and whose corresponding membership grades 
are secondary memberships of x. If we assume that the secondary memberships fol-
low a Gaussian with mean m(x) and standard deviation σm, as in Figure 3.3, we can 
describe the secondary membership function for each x as 

μ2(x,μ1) = e – ½ [(μ1 - m(x))/ σm]2 (3.4) 

where μ1 ∈ [0,1] and m is as in equation (3.3). 
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Fig. 3.2. A type-2 fuzzy set representing a type-1 fuzzy set with uncertain mean. The mean is 
uncertain in the interval [0.4, 0.6]. 

We can formally define these two kinds of type-2 sets as follows. 
 

Definition 3.1. Gaussian type-2 
A Gaussian type-2 fuzzy set is one in which the membership grade of every domain 
point is a Gaussian type-1 set contained in [0,1]. 

Example 3.3 shows an example of a Gaussian type-2 fuzzy set. Another way of view-
ing type-2 membership functions is in a three-dimensional fashion, in which we 
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Fig. 3.3. A type-2 fuzzy set in which the membership grade of every domain point is a  
Gaussian type-1 set 
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Fig. 3.4. Three-dimensional view of a type-2 membership function 

can better appreciate the idea of type-2 fuzziness. In Figure 3.4 we have a three-
dimensional view of a type-2 Gaussian membership function. 

 

Definition 3.2. Interval type-2 
An interval type-2 fuzzy set is one in which the membership grade of every domain 
point is a crisp set whose domain is some interval contained in [0,1]. 
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Example 3.1 shows an example of an interval type-2 fuzzy set. 

We will give some useful definitions on type-2 fuzzy sets in the following lines. 
 

Definition 3.3. Footprint of uncertainty 
Uncertainty in the primary memberships of a type-2 fuzzy set, Ã, consists of a 
bounded region that we call the “footprint of uncertainty” (FOU). Mathematically, it 
is the union of all primary membership functions (Mendel 2001). 

We show as an illustration in Figure 3.5 the footprint of uncertainty for a type-2 
Gaussian membership function. This footprint of uncertainty can be obtained by pro-
jecting in two dimensions the three-dimensional view of the type-2 Gaussian mem-
bership function. 
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Fig. 3.5. Footprint of uncertainty of a sample type-2 Gaussian membership function 

Definition 3.4. Upper and lower membership functions 
An “upper membership function” and a “lower membership functions” are two type-1 
membership functions that are bounds for the FOU of a type-2 fuzzy set Ã. The upper 
membership function is associated with the upper bound of FOU(Ã). The lower 
membership function is associated with the lower bound of FOU(Ã). 

We illustrate the concept of upper and lower membership functions as well as the 
footprint of uncertainty in the following example. 

Example 3.4. Gaussian primary MF with uncertain standard deviation 
For the Gaussian primary membership function with uncertain standard deviation 
(Figure 3.1), the upper membership function is 
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upper(FOU(Ã)) = N(m, σ2; x) (3.5) 

And the lower membership function is 

lower(FOU(Ã)) = N(m, σ1; x). (3.6) 

We will describe the operations and properties of type-2 fuzzy sets in the following 
section. 

3.2   Operations of Type-2 Fuzzy Sets 

In this section we describe the set theoretic operations of type-2 fuzzy sets. We are 
interested in the case of type-2 fuzzy sets, Ãi (i = 1,…,r), whose secondary mem-
bership functions are type-1 fuzzy sets. To compute the union, intersection, and 
complement of type-2 fuzzy sets, we need to extend the binary operations of 
minimum (or product) and maximum, and the unary operation of negation, from 
crisp numbers to type-1 fuzzy sets, because at each x, μÃi (x, u) is a function 
(unlike the type-1 case, where μÃi (x) is a crisp number). The tool for computing 
the union, intersection, and complement of type-2 fuzzy sets is Zadeh’s extension 
principle (Zadeh, 1975). 

Consider two type-2 fuzzy sets Ã1 and Ã2, i.e., 

Ã1 = ∫x μÃ1 (x)/ x (3.7) 

and 

Ã2 = ∫x μÃ2 (x)/ x (3.8) 

In this section, we focus our attention on set theoretic operations for such general 
type-2 fuzzy sets. 
 

Definition 3.5. Union of type-2 fuzzy sets 
The union of Ã1 and Ã2 is another type-2 fuzzy set, just as the union of type-1 fuzzy 
sets A1 and A2 is another type-1 fuzzy set. More formally, we have the following ex-
pression 

Ã1 ∪ Ã2 = ∫x∈X μÃ1∪Ã2 (x)/ x (3.9) 

We can explain Equation (3.9) by the “join” operation (Mendel, 2001). Basically, 
the join between two secondary membership functions must be performed between 
every possible pair of primary memberships. If more than one combination of  
pairs gives the same point, then in the join we keep the one with maximum member-
ship grade. We will consider a simple example to illustrate the union operation. In  
Figure 3.6 we plot two type-2 Gaussian membership functions, and the union is 
shown in Figure 3.7. 
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Fig. 3.6. Two sample type-2 Gaussian membership functions 
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Fig. 3.7. Union of the two Gaussian membership functions 

Operations of Type-2 Fuzzy Sets



36 Type-2 Fuzzy Logic 

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Intersection of two Interval Type-2 Fuzzy Sets

 

Fig. 3.8. Intersection of two type-2 Gaussian membership functions 

Definition 3.6. Intersection of type-2 fuzzy sets 
The intersection of Ã1 and Ã2 is another type-2 fuzzy set, just as the intersection of 
type-1 fuzzy sets A1 and A2 is another type-1 fuzzy set. More formally, we have the 
following expression 

Ã1 ∩ Ã2 = ∫x∈X μÃ1∩Ã2 (x)/ x (3.10) 

We illustrate the intersection of two type-2 Gaussian membership functions in  
Figure 3.8 

We can explain Equation (3.10) by the “meet” operation (Mendel, 2001). Basi-
cally, the meet between two secondary membership functions must be performed  
between every possible pair of primary memberships. If more than one combination 
of pairs gives the same point, then in the meet we keep the one with maximum  
membership grade. 

Definition 3.7. Complement of a type-2 fuzzy set 
The complement of set Ã is another type-2 fuzzy set, just as the complement of type-1 
fuzzy set A is another type-1 fuzzy set. More formally we have 

Ã’ = ∫x μÃ’1 (x)/ x (3.11) 

where the prime denotes complement in the above equation. In this equation μÃ’1 is a 
secondary membership function, i.e., at each value of x μÃ’1 is a function (unlike the 
type-1 case where, at each value of x, μÃ’1 is a point value). 

 

Example 3.5. Type-2 fuzzy set operations 
In this example we illustrate the union, intersection and complement operations for 
two type-2 fuzzy sets Ã1 and Ã2, and for a particular element x for which the  
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secondary membership functions in these two sets are μÃ1 (x) = 0.5/0.1 + 0.8/0.2 and 
μÃ2 (x) = 0.4/0.5 + 0.9/0.9. Using in the operations the minimum t-norm and the 
maximum t-conorm, we have the following results: 

 

μÃ1∪Ã2 (x) = μÃ1 (x) ∪ μÃ2 (x) = (0.5/0.1 + 0.8/0.2) ∪ (0.4/0.5 + 0.9/0.9) 
= (0.5 ∧ 0.4)/(0.1 ∨ 0.5) + (0.5 ∧ 0.9)/(0.1 ∨ 0.9) + 
(0.8 ∧ 0.4)/(0.2 ∨ 0.5) + (0.8 ∧ 0.9)/(0.2 ∨ 0.9) 
= 0.4/0.5 + 0.5/0.9 + 0.4/0.5 + 0.8/0.9 
= max{0.4, 0.4}/0.5 + max{0.5, 0.8}/0.9 
= 0.4/0.5 + 0.8/0.9 

 

μÃ1∩Ã2 (x) = μÃ1 (x) ∩ μÃ2 (x) = (0.5/0.1 + 0.8/0.2) ∩ (0.4/0.5 + 0.9/0.9) 
= (0.5 ∧ 0.4)/(0.1 ∧ 0.5) + (0.5 ∧ 0.9)/(0.1 ∧ 0.9) + 
(0.8 ∧ 0.4)/(0.2 ∧ 0.5) + (0.8 ∧ 0.9)/(0.2 ∧ 0.9) 
= 0.4/0.1 + 0.5/0.1 + 0.4/0.2 + 0.8/0.2 
= max{0.4, 0.5}/0.1 + max{0.4, 0.8}/0.2 
= 0.5/0.1 + 0.8/0.2 

 

μÃ’1 (x) = 0.5/ (1 – 0.1) + 0.8/ (1 – 0.2) = 0.5/ 0.9 + 0.8/ 0.8. 

3.3   Type-2 Fuzzy Systems 

The basics of fuzzy logic do not change from type-1 to type-2 fuzzy sets, and in gen-
eral, will not change for any type-n (Karnik & Mendel 1998). A higher-type number 
just indicates a higher “degree of fuzziness”. Since a higher type changes the nature of 
the membership functions, the operations that depend on the membership functions 
change; however, the basic principles of fuzzy logic are independent of the nature of 
membership functions and hence, do not change. Rules of inference like Generalized 
Modus Ponens or Generalized Modus Tollens continue to apply. 

The structure of the type-2 fuzzy rules is the same as for the type-1 case because 
the distinction between type-2 and type-1 is associated with the nature of the member-
ship functions. Hence, the only difference is that now some or all the sets involved in 
the rules are of type-2. In a type-1 fuzzy system, where the output sets are type-1 
fuzzy sets, we perform defuzzification in order to get a number, which is in some 
sense a crisp (type-0) representative of the combined output sets. In the type-2 case, 
the output sets are type-2; so we have to use extended versions of type-1 defuzzifica-
tion methods. Since type-1 defuzzification gives a crisp number at the output of the 
fuzzy system, the extended defuzzification operation in the type-2 case gives a type-1 
fuzzy set at the output. Since this operation takes us from the type-2 output sets of the 
fuzzy system to a type-1 set, we can call this operation “type reduction” and call the 
type-1 fuzzy set so obtained a “type-reduced set”. The type-reduced fuzzy set may 
then be defuzzified to obtain a single crisp number; however, in many applications, 
the type-reduced set may be more important than a single crisp number. 

Type-2 sets can be used to convey the uncertainties in membership functions of 
type-1 fuzzy sets, due to the dependence of the membership functions on available 
linguistic and numerical information. Linguistic information (e.g. rules from experts), 
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in general, does not give any information about the shapes of the membership func-
tions. When membership functions are determined or tuned based on numerical data, 
the uncertainty in the numerical data, e.g., noise, translates into uncertainty in the 
membership functions. In all such cases, any available information about the linguis-
tic/numerical uncertainty can be incorporated in the type-2 framework. However, 
even with all of the advantages that fuzzy type-2 systems have, the literature on the 
applications of type-2 sets is scarce. Some examples are Yager (1980) for decision 
making, and Wagenknecht & Hartmann (1988) for solving fuzzy relational equations. 
We think that more applications of type-2 fuzzy systems will come in the near future 
as the area matures and the theoretical results become more understandable for the 
general public in the fuzzy arena. 

3.3.1   Singleton Type-2 Fuzzy Logic Systems 

This section discusses the structure of a singleton type-2 Fuzzy Logic Systems (FLS), 
which is a system that accounts for uncertainties about the antecedents or consequents 
in rules, but does not explicitly account for input measurement uncertainties. More 
complicated (but, more versatile) non-singleton type-2 FLSs, which account for both 
types of uncertainties, are discussed later.  

The basics of fuzzy logic do not change from type-1 to type-2 fuzzy sets, and in 
general will not change for type-n. A higher type number just indicates a higher de-
gree of fuzziness. Since a higher type changes the nature of the membership func-
tions, the operations that depend on the membership functions change, however, the 
basic principles of fuzzy logic are independent of the nature of membership functions 
and hence do not change. Rules of inference, like Generalized Modus Ponens, con-
tinue to apply. 

A general type-2 FLS is shown in Figure 3.9. As discussed before a type-2 FLS is 
very similar to type-1 FLS, the major structural difference being that the defuzzifier 
block of a type-1 FLS is replaced by the output processing block in type-2 FLS. That 
block consists of type-reduction followed by defuzzification.  

During our development of a type-2 FLS, we assume that all the antecedent and 
consequent sets in rules are type-2, however, this need not necessarily be the case in 
practice. All results remain valid as long as long as just one set is type-2. This means 
that a FLS is type-2 as long as any one of its antecedent or consequent sets is type-2.  

In the type-1 case, we generally have fuzzy if-then rules of the form 

Rl : IF x1 is Al
1 and … xp is Al

p , THEN y is Yl  l = 1,…, M (3.12) 

As mentioned earlier, the distinction between type-1 and type-2 is associated with the 
nature of the membership functions, which is not important when forming the rules. 
The structure of the rules remains exactly the same in the type-2 case, but now some 
or all of the sets involved are type-2. 

Consider a type-2 FLS having r inputs x1 ∈ X1, …, xr ∈ Xr and one output y ∈ Y. 
As in the type-1 case, we can assume that there are M rules; but, in the type-2 case the 
lth rule has the form 

Rl : IF x1 is Ãl
1 and … xp is Ãl

p , THEN y is ìl  l = 1,…, M (3.13) 
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Fig. 3.9. Type-2 Fuzzy Logic System 

This rule represents a type-2 fuzzy relation between the input space X1 × …× Xr, and 
the output space, Y, of the type-2 fuzzy system. 

In a type-1 FLS the inference engine combines rules and gives a mapping from in-
put type-1 fuzzy sets to output type-1 fuzzy sets. Multiple antecedents in rules are 
combined by the t-norm. The membership grades in the input sets are combined with 
those in the output sets using composition. Multiple rules may be combined using the 
t-conorm or during defuzzification by weighted summation. In the type-2 case the in-
ference process is very similar. The inference engine combines rules and gives a 
mapping from input type-2 fuzzy sets to output type-2 fuzzy sets. To do this one 
needs to compute unions and intersections of type-2 fuzzy sets, as well as composi-
tions of type-2 relations. 

In the type-2 fuzzy system (Figure 3.9), as in the type-1 fuzzy system, crisp inputs 
are first fuzzified into fuzzy input sets that then activate the inference block, which in 
the present case is associated with type-2 fuzzy sets. In this section, we describe sin-
gleton fuzzification and the effect of such fuzzification on the inference engine. The 
“fuzzifier” maps a crisp point x = (x1,…, xr)

T ∈ X1 × X2 … × Xr ≡ X into a type-2 
fuzzy set Ãx  in X.  

The type-2 output of the inference engine shown in Figure 3.9 must be processed 
next by the output processor, the first operation of which is type-reduction. Type-
reduction methods include (Mendel, 2001): centroid, center-of-sums, height, modified 
height, and center-of-sets. Lets assume that we perform centroid type-reduction. Then 
each element of the type-reduced set is the centroid of some embedded type-1 set for 
the output type-2 set of the FLS. Each of these embedded sets can be thought of as an 
output set of an associated type-1 FLS, and, correspondingly, the type-2 FLS can be 
viewed of as a collection of many different type-1 FLSs. Each type-1 FLS is embed-
ded in the type-2 FLS; hence, the type-reduced set is a collection of the outputs of all 
of the embedded type-1 FLSs (see Figure 3.10). The type-reduced set lets us represent 
the output of the type-2 FLS as a fuzzy set rather than as a crisp number, which is 
something that cannot be done with a type-1 fuzzy system. 

Type-2 Fuzzy Systems
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Referring to Figure 3.10, when the antecedent and consequent membership func-
tions of the type-2 FLS have continuous domains, the number of embedded sets is  
uncountable. Figure 3.10 shows a situation in which we have assumed that the mem-
bership functions have discrete (or discretized) domains. The memberships in the 
type-reduced set, μY(yi), represent the level of uncertainty associated with each em-
bedded type-1 FLS. A crisp output can be obtained by aggregating the outputs of all 
embedded type-1 FLSs by, e.g., finding the centroid of the type-reduced set. 

If all of the type-2 uncertainties were to disappear, the secondary membership 
functions for all antecedents and consequents would each collapse to a single point, 
which shows that the type-2 FLS collapses to a type-1 FLS. 

 
 
 
               y1 
 
 
 
 
 
 
 
                            y2 
          Crisp 
 x           Output 
  • 
  •         
  •                y(x) 
 
 
 
               yα 
 
 
 
 
    Type-reduced set, Y 

Fig. 3.10. A type-2 FLS viewed as a collection of embedded type-1 FLSs 

If we think of a type-2 FLS as a “perturbation” of a type-1 FLS, due to uncertain-
ties in their membership functions, then the type-reduced set of the type-2 FLS can be 
thought of as representing the uncertainty in the crisp output due to the perturbation. 
Some measure of the spread of the type-reduced set may then be taken to indicate the 
possible variation in the crisp output due to the perturbation. This is analogous to us-
ing confidence intervals in a stochastic-uncertainty situation. 
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We defuzzify the type-reduced set to get a crisp output from the type-2 FLS. The 
most natural way to do this seems to be finding the centroid of the type-reduced set. 
Finding the centroid is equivalent to finding the weighted average of the outputs of all 
the type-1 FLSs that are embedded in the type-2 FLS, where the weights correspond 
to the memberships in the type-reduced set (see Figure 3.10). If the type-reduced set 
Y for an input x is discretized or is discrete and consists of α  points, then the expres-
sion for its centroid is 

y(x) = [∑α
k=1 yk μY(yk) ]/ [∑

α
k=1 μY(yk) ] (3.14) 

If α is large then data storage may be a problem for the computation of Equation 
(3.14). This equation can, however, be evaluated using parallel processing, in this 
case data storage will not be problem. Currently, however, most researchers still de-
pend on software for simulations and cannot make use of parallel processing. We can, 
however, use a recursive method to vastly reduce the memory required for storing the 
data that are needed to compute the defuzzification output. From Equation (3.14), we 
can calculate 

A(i) = A(i-1) + yi μY(yi) A(0) = 0 (3.15) 

and 

B(i) = B(i-1) + yi μY(yi) B(0) = 0 (3.16) 

for i =1,…, α. With these formulas we just need to store A and B during each  
iteration. 

From our previous discussions about the five elements that comprise the Figure 3.9 
type-2 FLS, we see that there are many possibilities to choose from, even more than 
for a type-1 FLS. To begin, we must decide on the kind of defuzzification (singleton 
or non-singleton). We must also choose a FOU for each type-2 membership function, 
decide on the functional forms for both the primary and secondary membership func-
tions, and choose the parameters of the membership functions (fixed a-priori or tuned 
during a training procedure). Then we need to choose the composition (max-min, 
max-product), implication (minimum, product), type-reduction method (centroid, cen-
ter-of-sums, height, modified height, center-of-sets), and defuzzifier. Clearly, there is 
an even greater richness among type-2 FLSs than there is among type-1 FLSs. In 
other words, there are more design degrees of freedom associated with a type-2 FLS 
than with a type-1 FLS; hence, a type-2 FLS has the potential to outperform a type-1 
FLS because of the extra degrees of freedom. 

3.3.2   Non-singleton Fuzzy Logic Systems 

A non-singleton FLS is one whose inputs are modeled as fuzzy numbers. A type-2 
FLS whose inputs are modeled as type-1 fuzzy numbers is referred to as “type-1 non-
singleton type-2 FLS”. This kind of a fuzzy system not only accounts for uncertainties 
about either the antecedents or consequents in rules, but also accounts for input  
measurement uncertainties. 

Type-2 Fuzzy Systems
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A type-1 non-singleton type-2 FLS is described by the same diagram as in single-
ton type-2 FLS, see Figure 3.9. The rules of a type-1 non-singleton type-2 FLS are the 
same as those for the singleton type-2 FLS. What are different is the fuzzifier, which 
treats the inputs as type-1 fuzzy sets, and the effect of this on the inference block. The 
output of the inference block will again be a type-2 fuzzy set; so, the type-reducers 
and defuzzifier that we described for a singleton type-2 FLS apply as well to a type-1 
non-singleton type-2 FLS. 

We can also have a situation in which the input are modeled as type-2 fuzzy num-
bers. This situation can occur, e.g., in time series forecasting when the additive meas-
urement noise is non-stationary. A type-2 FLS whose inputs are modeled as type-2 
fuzzy numbers is referred to as “type-2 non-singleton type-2 FLS”. 

A type-2 non-singleton type-2 FLS is described by the same diagram as in single-
ton type-2 FLS, see Figure 3.9. The rules of a type-2 non-singleton type-2 FLS are the 
same as those for a type-1 non-singleton type-2 FLS, which are the same as those for 
a singleton type-2 FLS. What is different is the fuzzifier, which treats the inputs as 
type-2 fuzzy sets, and the effect of this on the inference block. The output of the in-
ference block will again be a type-2 fuzzy set; so, the type-reducers and defuzzifier 
that we described for a type-1 non-singleton type-2 FLS apply as well to a type-2 non-
singleton type-2 FLS. 

3.3.3   Sugeno Type-2 Fuzzy Systems 

All of our previous FLSs were of the Mamdani type, even though we did not refer to 
them as such. In this section, we will need to distinguish between the two kinds of 
FLSs, we refer to our previous FLSs as “Mamdani” FLSs. Both kinds of FLS are 
characterized by if-then rules and have the same antecedent structures. They differ in 
the structures of their consequents. The consequent of a Mamdani rule is a fuzzy set, 
while the consequent of a Sugeno rule is a function.  

A type-1 Sugeno FLS was proposed by Takagi and Sugeno (1985), and Sugeno 
and Kang (1988), in an effort to develop a systematic approach to generating fuzzy 
rules from a given input-output data set. We will consider in this section the extension 
of first-order type-1 Sugeno FLS to its type-2 counterpart, with emphasis on interval 
sets. 

Consider a type-2 Sugeno FLS having r inputs x1 ∈ X1, …, xr ∈ Xr and one output 
y ∈ Y. A type-2 Sugeno FLS is also described by fuzzy if-then rules that represent in-
put-output relations of a system. In a general first-order type-2 Sugeno model with a 
rule base of M rules, each having r antecedents, the ith rule can be expressed as 

Rl : IF x1 is Ãl
1 and … xp is Ãl

p , THEN Yi = Ci
0 + Ci

1 x1 + … + Ci
r xr (3.17) 

where i = 1,…, M; Ci
j (j = 1,…, r) are consequent type-1 fuzzy sets; Yi, the output of 

the ith rule, is also a type-1 fuzzy set (because it is a linear combination of type-1 
fuzzy sets); and Ãi

k  (k = 1, …, r) are type-2 antecedent fuzzy sets. These rules let us 
simultaneously account for uncertainty about antecedent membership functions and 
consequent parameter values. For a type-2 Sugeno FLS there is no need for type-
reduction, just as there is no need for defuzzification in a type-1 Sugeno FLS. 
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3.4   Summary 

In this chapter, we have presented the main ideas underlying type-2 fuzzy logic and 
we have only started to point out the many possible applications of this powerful 
computational theory. We have discussed in some detail type-2 fuzzy set theory, 
fuzzy reasoning and fuzzy inference systems. At the end, we also gave some remarks 
about type-2 fuzzy modeling with the Mamdani and Sugeno approaches. In the fol-
lowing chapters, we will show how type-2 fuzzy logic (in some cases, in conjunction 
with other methodologies) can be applied to solve real world complex problems. This 
chapter will serve as a basis for the new hybrid intelligent methods, for modeling, 
simulation, and pattern recognition that will be described later this book.  

Summary
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