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15   A New Approach for Plant Monitoring Using Type-2 
Fuzzy Logic and Fractal Theory 

We describe in this chapter a new approach for plant monitoring and diagnostics us-
ing type-2 fuzzy logic and fractal theory. The concept of the fractal dimension is used 
to measure the complexity of the time series of relevant variables for the process. A 
set of type-2 fuzzy rules is used to represent the knowledge for monitoring the proc-
ess. In the type-2 fuzzy rules, the fractal dimension is used as a linguistic variable to 
help in recognizing specific patterns in the measured data. The fuzzy-fractal approach 
has been applied before in problems of financial time series prediction and for other 
types of problems, but now it is proposed to the monitoring of plants using type-2 
fuzzy logic. We also compare the results of the type-2 fuzzy logic approach with the 
results of using only a traditional type-1 fuzzy logic approach. Experimental results 
show a significant improvement in the monitoring ability with the type-2 fuzzy logic 
approach. 

15.1   Introduction 

Diagnostic systems are used to monitor the behavior of a process and identify certain 
pre-defined patterns that are associated with well-known problems (Du, 1998). These 
problems, once identified, imply suggestions for specific solutions. Most diagnostic 
systems are in the form of a rule-based expert system: a set of rules is used to describe 
certain patterns (Chiang et. al, 2000). Observed data are collected and used to evalu-
ate these rules. If the rules are logically satisfied, the pattern is identified, and the 
problem associated with that pattern is suggested (Jain, et. al, 2000). In general, the 
diagnostic systems are used for consultation rather than replacement of human expert 
(Russell et. al, 2000). 

Most current plant monitoring systems only check a few variables against individ-
ual upper and lower limits, and start an audible alarm should each variable move out 
of its predefined range (Chen and Pham, 2001). Other more complicated systems 
normally involve more sensors that provide more data but still follow the same pattern 
of independently checking individual sets of data against some upper and lower limits 
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(Saez and Cipriano, 2001). The warning alarm from these systems only carries a 
meaning that there is something wrong with the process in the plant (Yang et. al, 
1999). Monitoring means checking or regulating the performance of a machine, a 
process, or a system (Scharf, 1991). Diagnosis, on the other hand, means deciding the 
nature and the cause of a diseased condition of a machine, a process, or a system by 
examining the symptoms. In other words, monitoring is detecting suspect symptoms, 
whereas diagnosis is determining the cause of the symptoms (Castillo and Melin, 
2002).  

In this chapter a new fuzzy-fractal approach for plant monitoring is proposed. The 
concept of the fractal dimension is used to measure the complexity of the time series 
of relevant variables for the process (Castillo and Melin, 1994). A set of type-2 fuzzy 
rules is used to represent the knowledge for monitoring the process (Castillo and 
Melin, 2001). In the type-2 fuzzy rules, the fractal dimension is used as a linguistic 
variable to help in recognizing specific patterns in the measured data. The fuzzy-
fractal approach has been applied before in problems of financial time series predic-
tion (Castillo and Melin, 1996) and for other types of problems (Castillo and Melin, 
1998), but now it is proposed to the monitoring of plants using type-2 fuzzy logic. 
Fuzzy systems are comprised of rules (Yen and Langari, 1999). Quite often, the 
knowledge that is used to build these rules is uncertain. Such uncertainty leads to 
rules whose antecedents or consequents are uncertain, which translates into uncertain 
antecedent or consequent membership functions (Mendel, 2001). Type-1 fuzzy sys-
tems (Jang et. al, 1997), whose membership functions are type-1 fuzzy sets, are un-
able to directly handle such uncertainties (Wang, 1997). We describe briefly in this 
paper, type-2 fuzzy systems, in which the antecedent or consequent membership func-
tions are type-2 fuzzy sets.  

15.2   Monitoring and Diagnosis 

Monitoring means checking or regulating the performance of a machine, a process, or 
a system (Du et. al, 1993). Diagnosis, on the other hand, means deciding the nature 
and the cause of a diseased condition of a machine, a process, or a system by examin-
ing the symptoms (Patton et. al, 2000). In other words, monitoring is detecting suspect 
symptoms, whereas diagnosis is determining the cause of the symptoms.  

The importance of monitoring and diagnosis of plant processes now is widely rec-
ognized because it results in increased productivity, improved product quality and de-
creased production cost (Melin and Castillo, 2001). As a result, in the past decade, a 
large number of research and development projects have been carried and many 
monitoring and diagnosis methods have been developed (Du, 1998). The commonly 
used monitoring and diagnosis methods include modeling-based methods, pattern 
recognition methods (Yager and Filev, 1994), fuzzy systems methods (Margaliot and 
Langholz, 2000), knowledge-based systems methods (Melin and Castillo, 2002), arti-
ficial neural networks (Omidvar and Elliot, 1997), and genetic algorithms (Mitchell, 
1998). It is interesting to note that even though these methods are rather different, 
they share a very similar structure as shown in Figure 15.1. 
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Fig. 15.1. Plant Monitoring and Diagnosis 

The “health” of a machine, a process, or an engineering system (which will be re-
ferred to as system condition and denoted by c ∈ {c1, c2,..., cm}) can be considered as 
the “input”, the system working conditions and noises (including system noise and 
sampling noise) can be considered as the “noise”, and the sensor signals are the “out-
puts” from the system. Typically, the sensor signals are processed by a computer,  
after which the signals are transformed into a set of features called feature signals, de-
noted as x = {x1, x2,..., xn}. In general, the systems conditions are predefined, such as 
normal, critical, etc. On the other hand, the features may be the mean of a temperature 
signal, the variance of a displacement signal, etc (Melin and Castillo, 1998). Sensing 
and signal processing are very important to the success of plant monitoring and diag-
nosis (Hsu, 2000). 

More formally, the goal of monitoring is to use the feature signals, x, to determine 
whether the plant is in an acceptable condition(s) (a subset of {c1, c2,..., cm}). On the 
other hand, the objective of diagnosis is to use the feature signals, x, to determine the 
system condition, c ∈ {c1, c2,..., cm}. No matter how monitoring and diagnosis methods 
may differ, monitoring and diagnosis always consist of two phases: training and deci-
sion making. Training is to establish a relationship between the feature signals and the 
systems conditions. Without losing generality, this relationship can be represented as 

x = F(c).                                                      (15.1) 
It should be pointed out that F(c) represents a fuzzy system, a neural network or 

another method that could be used to obtain this relationship. In fact, it is the form of 
the relationship that determines the methods of monitoring and diagnosis, as well as 
the performance of the methods. The relationship F(c) is established based on training 
samples, denoted by x1, x2,..., xk,..., xN, where the system condition for each training 
sample is known [and denoted as c(xk)]. The conditions on F(c), so that monitoring or 
decision making is successful, are that F(c) is one-to-one and bounded. In this way, 
we can always obtain the inverse relationship, which is needed below for achieving 
decision making.  

After the relationship is established, when a new sample is given (from an un-
known system condition), its corresponding condition is estimated based on the in-
verse relationship 

c = F-1 (x).                                                    (15.2) 

Monitoring and Diagnosis
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Fig. 15.2. Fuzzy system for plant monitoring and diagnosis 

This is called decision-making, or classifying. Whereas it is not likely that the 
training samples will cover all possible cases, decision making often involves reason 
ing or inferencing. In particular, when a fuzzy system is used, the relationship is given 
by a set of fuzzy rules as shown in Figure 15.2. The input to the fuzzy system is the 
feature signal and the output of the fuzzy system is the estimated plant condition(s) 
[i.e., z = (z1, z2,..., zm) is an estimate of c = (c1, c2,..., cm)]. In other words, the fuzzy 
system models the inverse relationship between the system conditions and the feature 
signals. 

15.3   Fractal Dimension of a Geometrical Object 

Recently, considerable progress has been made in understanding the complexity of an 
object through the application of fractal concepts (Mandelbrot, 1987) and dynamic 
scaling theory (Mandelbrot, 1997). For example, financial time series show scaled 
properties suggesting a fractal structure (Castillo and Melin, 1999). The fractal di-
mension of a geometrical object can be defined as follows (Peitgen et. al, 1992): 

d = lim [lnN(r)] / [ln(1/r)] 

r → 0 
(15.3) 

where N(r) is the number of structuring elements (boxes, balls, line segments, etc.) 
covering the object and r is the size of the box (Pesin, 1999). An approximation to the 
fractal dimension can be obtained by counting the number of boxes covering the 
boundary of the object for different r sizes and then performing a logarithmic regres-
sion to obtain d (box counting algorithm). In Figure 15.3, we illustrate the box count-
ing algorithm for a hypothetical curve C.  
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Fig. 15.3. Box Counting Algorithm for a Curve C 

Counting the number of boxes for different sizes of r and performing a logarithmic 
linear regression, we can estimate the box dimension of a geometrical object with the 
following equation (Melin and Castillo, 2002): 

ln N(r) = lnβ – d lnr (15.4) 

this algorithm is illustrated in Figure 15.4. 

 

Fig. 15.4. Logarithmic Regression to find the Fractal Dimension 

The fractal dimension can be used to characterize an arbitrary object (Tricot, 
1995). The reason for this is that the fractal dimension measures the geometrical 
complexity of objects (Moon, 1992). In this case, a time series can be classified by us-
ing the numeric value of the fractal dimension (d is between 1 and 2 because we are 
on the plane xy).  

Fractal Dimension of a Geometrical Object
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15.4   Fuzzy Estimation of the Fractal Dimension 

The traditional fractal dimension of a geometrical object assigns a crisp numerical 
value, which measures the geometrical complexity of the object (Semmes, 2000). 
However, in practice it is difficult to assign a unique numerical value to an object due 
to uncertainty (Peters, 1994). It is more appropriate to assign a range of numerical 
values in which there exists a membership degree for this object. For this reason, we 
will assign to an object O a fuzzy set μo, which measures the membership degree for 
that object. Lets consider, for simplicity, that the object O is in the plane xy, then a 
suitable membership function could be a generalized bell function (Zadeh 1971):  

μo=   1 / [ 1 + | (d-c) / a |2b ] (15.5) 

where a, b and c are the parameters of the membership function and d is the tradi-
tional crisp value of the fractal dimension. Of course other types of membership func-
tions could be used depending on the characteristics of the application. By using the 
concept of a fuzzy set (Zadeh, 1965) we are in fact generalizing the mathematical 
concept of the fractal dimension because now we can take into account the uncertain-
ties that may arise due to sampling and experimental errors. In fact, our definition of 
the fuzzy fractal dimension for this case is as follows. 

Definition 15.1. Let O be an arbitrary geometrical object in the plane xy. Then the 
fuzzy fractal dimension is the pair:  (do, μo) 

where do is the numerical value of the fractal dimension calculated by the box count-
ing algorithm, and μo is the membership function for the object. 

With this new definition we can account for the uncertainty in the estimation of the 
fractal dimension of an object. We are, in fact, using this concept of the fuzzy fractal 
dimension in this paper to consider the uncertainty in the time series analysis required 
by the monitoring applications. Also, this new definition enables easier pattern recog-
nition for objects, because it is not necessary to match an exact numerical value to 
recognize a particular object (Yager and Filev, 1994). 

15.5   Type-2 Fuzzy Logic 

The concept of a type-2 fuzzy set was introduced by Zadeh in 1973 as an extension of 
the concept of an ordinary fuzzy set (henceforth called a “type-1 fuzzy set”). A type-2 
fuzzy set is characterized by a fuzzy membership function, i.e., the membership grade 
for each element of this set is a fuzzy set in [0,1], unlike a type-1 set where the mem-
bership grade is a crisp number in [0,1]. Such sets can be used in situations where 
there is uncertainty about the membership grades themselves, e.g., an uncertainty in 
the shape of the membership function or in some of its parameters (Mendel, 2001). 
Consider the transition from ordinary sets to fuzzy sets. When we cannot determine 
the membership of an element in a set as 0 or 1, we use fuzzy sets of type-1. Simi-
larly, when the situation is so fuzzy that we have trouble determining the membership 
grade even as a crisp number in [0,1], we use fuzzy sets of type-2. 
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Example: Consider the case of a fuzzy set characterized by a Gaussian membership 
function with mean m and a standard deviation that can take values in [σ1,σ2], i.e., 

μ(x)=exp {– ½[(x – m)/σ]2 };   σ ∈ [σ1,σ2]                   (15.6) 

Corresponding to each value of σ, we will get a different membership curve (see Fig-
ure 15.5). So, the membership grade of any particular x (except x=m) can take any of 
a number of possible values depending upon the value of σ, i.e., the membership 
grade is not a crisp number, it is a fuzzy set. Figure 15.5 shows the domain of the 
fuzzy set associated with x=0.7. 
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Fig. 15.5. Type-2 fuzzy set representing a type-1 set with uncertain deviation 

We can formally define two kinds of type-2 sets as follows. 

Definition 2. Gaussian type-2 
A Gaussian type-2 fuzzy set is one in which the membership grade of every domain 
point is a Gaussian type-1 set contained in [0,1]. 

Definition 3. Interval type-2 
An interval type-2 fuzzy set is one in which the membership grade of every domain 
point is a crisp set whose domain is some interval contained in [0,1]. 

The basics of fuzzy logic do not change from type-1 to type-2 fuzzy sets, and in gen-
eral, will not change for any type-n (Mendel, 2001). A higher-type number just indi-
cates a higher “degree of fuzziness”. Since a higher type changes the nature of the 
membership functions, the operations that depend on the membership functions 
change; however, the basic principles of fuzzy logic are independent of the nature of  
 

Type-2 Fuzzy Logic
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Fig. 15.6. Structure of a type-2 fuzzy system 

membership functions and hence, do not change. In Figure 15.6 we show the general 
structure of a type-2 fuzzy system. We assume that both antecedent and consequent 
sets are type-2; however, this need not necessarily be the case in practice. 

The structure of the type-2 fuzzy rules is the same as for the type-1 case because 
the distinction between type-2 and type-1 is associated with the nature of the member-
ship functions. Hence, the only difference is that now some or all the sets involved in 
the rules are of type-2. In a type-1 fuzzy system, where the output sets are type-1 
fuzzy sets, we perform defuzzification in order to get a number, which is in some 
sense a crisp (type-0) representative of the combined output sets. In the type-2 case, 
the output sets are type-2; so we have to use extended versions of type-1 defuzzifica-
tion methods. Since type-1 defuzzification gives a crisp number at the output of the 
fuzzy system, the extended defuzzification operation in the type-2 case gives a type-1 
fuzzy set at the output. Since this operation takes us from the type-2 output sets of the 
fuzzy system to a type-1 set, we can call this operation “type reduction” and call the 
type-1 fuzzy set so obtained a “type-reduced set”. The type-reduced fuzzy set may 
then be defuzzified to obtain a single crisp number; however, in many applications, 
the type-reduced set may be more important than a single crisp number. 

Type-2 sets can be used to convey the uncertainties in membership functions of 
type-1 fuzzy sets, due to the dependence of the membership functions on available 
linguistic and numerical information. Linguistic information (e.g. rules from experts), 
in general, does not give any information about the shapes of the membership func-
tions. When membership functions are determined or tuned based on numerical data, 
the uncertainty in the numerical data, e.g., noise, translates into uncertainty in the 
membership functions. In all such cases, any available information about the linguis-
tic/numerical uncertainty can be incorporated in the type-2 framework. However, 
even with all of the advantages that fuzzy type-2 systems have, the literature on the 
applications of type-2 sets is scarce (Mendel, 2001). Some examples are for decision-
making (Yager, 1980), and for solving fuzzy relational equations (Wagenknecht and 
Hartmann, 1988). For the specific case of plant monitoring, the use of type-2 fuzzy 
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rules is justified when the degree of uncertainty is high (for example, due to noise or 
complexity of the process) in the measured time series. Of course, a type-1 fuzzy sys-
tem could be enough for plant monitoring in the case of relatively simple processes in 
the plant (Zadeh, 1975). However, in other cases there are highly non-linear processes 
present in the plant, like in biochemical reactors or electrochemical processes. For this 
reason, we are proposing that to model the uncertainty in this type of highly non-
linear processes, we need to use type-2 fuzzy logic. We illustrate the application of 
the type-2 fuzzy logic approach with the case of monitoring the electrochemical proc-
ess in battery production in a real plant.  

15.6   Plant Monitoring Using a Type-1 Fuzzy-Fractal Approach 

In this section, we show how to implement a fuzzy rule-based expert monitoring sys-
tem with two basic sensors: temperature, and pressure. These two physical variables 
are very important in understanding any chemical process. Our particular case, is the 
monitoring of an electrochemical process, like the one used in battery formation. We 
also use as input the fuzzy fractal dimension of the time series of the measured vari-
ables. Of course, this fuzzy fractal dimension is not a real physical variable, but we 
can use it to measure the complexity of the dynamic behavior of the process. We have 
assigned linguistic values to the fuzzy fractal dimension, with the help of experts in 
the process in such a way as to help in the diagnostic of the different conditions. Indi-
vidual sensors can identify three linguistic values (normal, high, and low) for the two 
real physical variables. The three inputs can be combined to give 9 different real sce-
narios. Of course, there could be in theory at most 27 scenarios in this case, but there 
are only 9 real ones for the particular application of the electrochemical process. This 
is perfectly clear if we notice that there are only two real physical variables with three 
linguistic values for each one. With the perfectly normal case (where all three input 
variables have normal values), there are additionally 8 more cases where combina-
tions of abnormal readings can be observed. 

Let x1 be the temperature, x2 the pressure, x3 the fuzzy fractal dimension, and y the 
diagnostic statement. Let Li, Ni, and Hi, represent the three sets of low range, normal 
range, and high range for input data xi, where i = 1, 2, or 3. Furthermore, let C1, C2,..., 
C9 be the individual scenarios that could happen for each combination of the different 
data sets. The fuzzy rules have the general form: 

 R(0): IF x1 is N1 AND x2 is N2 AND x3 is N3 THEN y is C1 

 ...      ... 

 R(i): IF x1 is V1 AND x2 is V2 AND x3 is V3 THEN y is Ci                (15.7) 

 ...      ... 

 R(26): IF x1 is H1 AND x2 is H2 AND x3 is H3 THEN y is C9 

Plant Monitoring Using a Type-1 Fuzzy-Fractal Approach
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In this case, Vi represents Li, Hi, or Ni, depending on the condition for the plant. 
Experts have to provide their knowledge in plant monitoring to label the individual 
cases Ci for i = 1, 2,..., 9. Also, the membership functions for the linguistic values of 
variables have to be defined according to historical data of the problem and expert 
knowledge. Of course, expert knowledge for temperature and pressure is based on the  
 

 

Fig. 15.7. Architecture of the fuzzy system for plant monitoring 

 

Fig. 15.8. Fuzzy rule base for plant monitoring 
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Fig. 15.9. Non-linear surface for plant monitoring with respect to temperature and fractal  
dimension 

 

Fig. 15.10. Non-linear surface for plant monitoring with respect to pressure and fractal  
dimension 
 

Plant Monitoring Using a Type-1 Fuzzy-Fractal Approach
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dynamics of the process, which experts have gained with their experience. On the 
other hand, expert knowledge for the fuzzy fractal dimension is more of a combina-
tion of expertise on the problem and expertise on the mathematics of fractal theory. 
Perhaps, this can be explained as follows: we need expert knowledge to know if the 
dynamics of the process are abnormal or normal, on the other hand we need knowl-
edge on fractal theory to relate the dynamics to a higher or lower value of the fractal 
dimension. 

We can use the Fuzzy Logic Toolbox of the MATLAB language to implement the 
fuzzy monitoring system described above. In this case, we need to specify the particu-
lar fuzzy rules and the corresponding membership functions for the problem. First, we 
show in Figure 15.7 the general architecture of the fuzzy monitoring system. In this 
figure, we can see the input linguistic variables (temperature, pressure, and fractal di-
mension) and the output variable (condition of the plant) of the fuzzy monitoring sys-
tem. Of course, in this case the fractal dimension is estimated using the box counting 
algorithm, which was implemented also in MATLAB. In Figure 15.8 the implementa-
tion of the fuzzy rule base is shown. The actual 27 rules were defined according to 
expert knowledge on the process. In Figures 15.9 and 15.10 the non-linear surface for 
the problem of monitoring is shown.  

15.7   Plant Monitoring Using the Type-2 Fuzzy-Fractal Approach 

For the case of the type-2 fuzzy-fractal approach, we have to change our way of cal-
culating the output of the fuzzy system. Now, we use interval computations to find the 
minimum and maximum values for obtaining the outputs of the type-2 fuzzy system. 
We basically, compute the outputs of two type-1 fuzzy systems, one for computing 
the minimum value and the other for the maximum value. Then, if we need to further 
reduce the type of the output, we can apply the traditional deffuzzification methods. 
Fortunately, in this way we can take advantage of the machinery that we already have 
for type-1 fuzzy logic, as well as the computer programs in the MATLAB language. 

We show below in Table 15.1 the results of a type-2 fuzzy system for monitoring 
different conditions of the plant. We also show the corresponding values of the type-1 
fuzzy logic approach. A comparison, of both approaches can be made in this way. Of 
course, it is easy to appreciate that in the case of type-2 fuzzy logic the output result is 
an interval, instead of a single numeric value. In some applications, this is closer to 
reality, since we are expecting something similar to a confidence interval. However, 
in other areas of application, like in control, a unique result is needed, so in this case 
we need to defuzzify again (or type-reduce the result). This is also shown in  
Table 15.1. 

From Table 15.1 we can appreciate that in some cases the output of the type-2 
fuzzy system is almost the same as in the type-1 case, but in other situations the re-
sults are somewhat different. For our application, we find out that the results of the 
type-2 fuzzy logic approach were better for monitoring the plant. The main reason for 
saying that the type-2 approach is better, in this case, is that we are really predicting  
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Table 15.1. Comparison between the type-2 and type-1 fuzzy logic approaches 

Tem-
perature 

Pres-
sure 

Frac-
tal Dim. 

Type-1 F. 
L. 

Type-2 
Min 

Type-2 
Max 

105 130 1.6 0.4498 0.4391 0.5030 

100 120 1.5 0.2688 0.2774 0.2775 

95 115 1.4 0.2263 0.2216 0.2539 

90 110 1.3 0.2460 0.2282 0.2783 

102 122 1.7 0.3604 0.3321 0.4210 

85 90 1.2 0.2690 0.2540 0.2750 

75 100 1.8 0.2652 0.2251 0.3039 

55 105 1.3 0.2700 0.2700 0.2701 

130 90 1.1 0.5710 0.5586 0.5855 

112 115 1.6 0.4136 0.4092 0.4138 

possible problems in the plant, and the type-2 intervals are closer to what the experts 
were expecting to see in the monitoring of the process. 

We show in Figures 15.11 and 15.12 the non-linear surfaces for the type-1 and 
type-2 fuzzy systems, respectively. From these figures, we can appreciate the differ-
ence between both fuzzy logic approaches. It is obvious that the type-2 fuzzy logic 
surface is smoother, which is better for modeling the monitoring problem. Finally, we 
show in Figure 15.13 a comparison between the predicted outputs for the type-2 and 
type-1 fuzzy systems. In this figure we can appreciate that the type-2 fuzzy logic ap-
proach is really modeling our uncertainty about the membership functions of the 
fuzzy system. For this reason, the type-1 result is almost always in between the mini-
mum and maximum values of the type-2 approach. Of course, the type-2 approach is 
more realistic because we do not know the exact parameter values of the type-1 mem-
bership functions. 

Based on the examples presented in this section and the previous one, we see that 
using fuzzy logic in monitoring and diagnostics always results in improved perform-
ance. Also, the use of the fractal dimension improves the accuracy of the method. We 
have compared the success rate of the type-2 fuzzy-fractal approach, the type-1 fuzzy-
fractal approach, and the use of only fuzzy logic, using the data from electrochemical 
processes in a real plant. The results are shown in Table 15.2. We are using in all of 
the cases a specific electrochemical process for battery formation. The process is con-
sidered to be in a different condition in each of the three cases. The comparison is be-
tween the results of the intelligent system using the type-2 fuzzy-fractal approach, the 
type-1 approach, and a computer program using only fuzzy logic with the Mamdani 
approach. 

Plant Monitoring Using a Type-1 Fuzzy-Fractal Approach
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Fig. 15.11. Non-linear surface for the type-1 fuzzy system 

 

Fig. 15.12. Non-linear surface for the type-2 fuzzy system 

It should be pointed out that no matter what techniques are used, there is no guar-
antee of success because monitoring and diagnosis is a process of abduction. First, the 
training samples may not represent all the patterns of different system conditions. An  
 



 201 

0 1 2 3 4 5 6 7 8 9
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65
Comparison between Type-2 and Type-1 Fuzzy Logic Outputs

time

O
ut

pu
t

Type-1
Type-2
Type-2

 

Fig. 15.13. Comparison of outputs of the type-2 and type-1 fuzzy systems 

Table 15.2. Success rates of the type-2 and type-1 fuzzy-fractal approaches for monitoring 

Applications Type-2 
Fuzzy-Fractal 

Type-1 
Fuzzy-Fractal  

Fuzzy Logic 

condition monitor-
ing in an electro-
chemical process 
(case 1) 

99% 98% 82% 

condition monitor-
ing in an electro-
chemical process 
(case 2) 

88% 86% 73% 

condition monitor-
ing in an electro-
chemical process 
(case 3) 

93% 90% 79% 

effective solution to this problem is to add more training samples. Second the patterns 
of different system conditions overlap and/or are inseparable owing to the definition 
of system conditions and the use of monitoring indices. 

Finally, it is interesting to compare the performance of the fuzzy-fractal approaches 
with that of using only fuzzy logic (see Table 15.2). We see that the type-1 fuzzy-
fractal approach outperforms the fuzzy logic approach by at least 10% in all the cases. 
We also can appreciate that the type-2 fuzzy-fractal approach outperforms by 2%  

Plant Monitoring Using a Type-1 Fuzzy-Fractal Approach
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(average) the type-1 approach. This demonstrates that the type-2 fuzzy-fractal ap-
proach is indeed the more effective method and, in general outperforms the use of 
type-1 fuzzy logic. 

15.8   Summary 

In this chapter a hybrid fuzzy-fractal approach for plant monitoring has been pro-
posed. Type-2 fuzzy logic is used to model the uncertainty of plant monitoring and 
diagnostics. An implementation in MATLAB has been shown, to describe in more de-
tail the advantages of the new approach. The hybrid fuzzy-fractal approach combines 
the advantages of fuzzy logic (expert knowledge representation) with the advantages 
of the fractal dimension concept (ability to measure object complexity), to achieve  
efficient monitoring and diagnostics. A problem yet to be considered, is how to auto-
matically learn (or adapt) the membership functions and rules of the fuzzy system  
using real data for the problem. 
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