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11   Evolutionary Optimization of Interval Type-2 
Membership Functions Using the Human 
Evolutionary Model 

Uncertainty is an inherent part in controllers used for real-world applications.  The 
use of new methods for handling incomplete information is of fundamental impor-
tance in engineering applications. We simulated the effects of uncertainty produced 
by the instrumentation elements in type-1 and type-2 fuzzy logic controllers to per-
form a comparative analysis of the systems’ response, in the presence of uncertainty. 
We are presenting an innovative idea to optimize interval type-2 membership func-
tions using an average of two type-1 systems with the Human Evolutionary Model, 
we are showing comparative results of the optimized proposed method.  We found 
that the optimized membership functions for the inputs of a type-2 system increases 
the performance of the system for high noise levels.  

11.1   Introduction 

Uncertainty affects decision-making and appears in a number of different forms. The 
concept of information is fully connected with the concept of uncertainty. The most 
fundamental aspect of this connection is that the uncertainty involved in any problem-
solving situation is a result of some information deficiency, which may be incom-
plete, imprecise, fragmentary, not fully reliable, vague, contradictory, or deficient in 
some other way (Klir and Yuan, 1995).  The general framework of fuzzy reasoning 
allows handling much of this uncertainty, fuzzy systems employ type-1 fuzzy sets, 
which represents uncertainty by numbers in the range [0, 1].  When something is un-
certain, like a measurement, it is difficult to determine its exact value, and of course, 
type-1 fuzzy sets makes more sense than using crisp sets (Zadeh, 1975). However, it 
is not reasonable to use an accurate membership function for something uncertain, so 
in this case what we need is another type of fuzzy sets, those which are able to handle 
these uncertainties, the so called type-2 fuzzy sets (Mendel, 2000).  So, the amount of 
uncertainty in a system can be reduced by using type-2 fuzzy logic because it offers 
better capabilities to handle linguistic uncertainties by modeling vagueness and  
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unreliability of information (Karnik and Mendel, 2001).  In industry, type-2 fuzzy 
logic and neural networks was used in the control of non-linear dynamic plants (Ha-
gras, 2004) (Melin and Castillo, 2004). 

This chapter deals with the optimization of interval type-2 membership functions 
in a fuzzy logic controller (FLC).  Since, uncertainty is inherent in controllers for real 
world applications, as a first step, we are presenting how to deal with it using type-2 
FLC to diminish the effects of imprecise information.  We are supporting this state-
ment with experimental results, qualitative observations, and quantitative measures of 
errors.  For quantifying the errors, we utilized three widely used performance criteria, 
these are:  Integral of Square Error (ISE), Integral of the Absolute value of the Error 
(IAE), and Integral of the Time multiplied by the Absolute value of the Error (ITAE) 
(Deshpande and Ash, 1988).  Then as a second step, we optimized the parameters of 
the Gaussian membership functions (MFs) using the Human Evolutionary Model 
(HEM) which will be explained in section 11.3, and ISE as the fitness function. In this 
case, we used as an output, the average of two type-1 system.  

11.2   Fuzzy Controllers 

A FLS, described completely in terms of type-1 fuzzy sets is called a type-1 fuzzy 
logic system (type-1 FLS). It is composed by a knowledge base that comprises the in-
formation given by the process operator in form of linguistic control rules; a fuzzifica-
tion interface, who has the effect of transforming crisp data into fuzzy sets; an  
inference system, that uses them in conjunction with the knowledge base to make  
inference by means of a reasoning method; and a defuzzification interface, which 
translates the fuzzy control action so obtained to a real control action using a defuzzi-
fication method. 

 

Fig. 11.1. System used for obtaining the experimental results 

In this chapter, the implementation of the fuzzy controller in terms of type-1 fuzzy 
sets, has two input variables such as the error e(t), the difference between the refer-
ence signal and the output of the process, as well as the error variation Δe(t), 
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so the control system can be represented as in Fig. 11.1. 
A FLS described using at least one type-2 fuzzy set is called a type-2 FLS.  Type-1 

FLSs are unable to directly handle rule uncertainties, because they use type-1 fuzzy 
sets that are certain.  On the other hand, type-2 FLSs, are very useful in circumstances 
where it is difficult to determine an exact certainty, and measurement uncertainties 
(Mendel, 2000). 

Similar to a type-1 FLS, a type-2 FLS includes fuzzifier, rule base, fuzzy inference 
engine, and output processor.  The output processor includes type-reducer and de-
fuzzifier; it generates a type-1 fuzzy set output (from the type-reducer) or a crisp 
number (from the defuzzifier) (Mendel, 2000).  A type-2 FLS is again characterized 
by IF-THEN rules, but its antecedent or consequent sets are now type-2.  In the case 
of the implementation of the type-2 FLC, we have the same characteristics as in type-
1 FLC, but we used type-2 fuzzy sets as membership functions for the inputs and for 
the output. 

For evaluating the transient closed-loop response of a computer control system we 
can use the same criteria that normally are used for adjusting constants in PID (Pro-
portional Integral Derivative) controllers.  These are: 

1. Integral of Square Error (ISE). 
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2. Integral of the Absolute value of the Error (IAE). 
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3. Integral of the Time multiplied by the Absolute value of the Error (ITAE). 
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The selection of the criteria depends on the type of response desired, the errors will 
contribute different for each criterion, so we have that large errors will increase the 
value of ISE more heavily than to IAE.  ISE will favor responses with smaller over-
shoot for load changes, but ISE will give longer settling time. In ITAE, time appears 
as a factor, and therefore, ITAE will penalize heavily errors that occur late in time, 
but virtually ignores errors that occurs early in time.  

11.3   The Human Evolutionary Model 

The main idea of this computational model (Montiel et al., 2007),is to combine 
synergetically diferent techniques for performing search and optimization tasks. HEM 
was defined as follows (Montiel et al., 2007): 

( )POSVRLPSTLLESOPAIISHHEM ,,/,,,,,,,=  

Fuzzy Controllers



136 Evolutionary Optimization of Interval Type-2 Membership Functions 

where  
H Human 
AIIS Adaptive Intelligent Intuitive System 
P Population of size N individuals 
O Single or a multiple objective optimization goals 
S Evolutionary strategy used for reaching the objectives expressed  

in O 
E Environment, here we can have predators, etc. 
L Landscape, i.e., the scenario where the evolution must be performed 
TL/S Tabu List formed by the bests solutions found/Pareto Set 
VRL Visited Regions List 
POS Pareto Optimal Set 

 
Fig. 11.2 is a schematic representation of one individual which is comprised of 

three parts: a genetic representation gr, which can be codified using binary or float-
ing-point representation; a set of genetic effects ge, that are attributes of each individ-
ual such as “physical structure”, “gender”, “actual age”, “maximum age allowed”, 
pheromone level”, etc; these attributes give to the algorithm some of the human like 
characteristics that will define in great part, the individual behavior.  

 

Fig. 11.2. Representing one individual in HEM 

The third part in the individual representation is devoted to individual’s fitness val-
ues. An individual pi is defined as pi=(gri,gei,fvi) where gri=(gri1,…,griM) is a vector (a 
row) of the matrix GR of dimension M × N. The genetic effects (gei) are rows in a ma-
trix GE. In this method we can have one or several fitness values (fv), so we can han-
dle single objective optimization problems (SOOP), and multi-objective optimization 
problems (MOOP). Fitness values are defined as vectors fvi in the matrix FVJ×N, in 
this way we have fv=(fv1,…,fvJ).  In this context, a population Pi is defined as 
Pi=(GRi+GEi+FVi). In the attribute geigender, we have the valid values set {M,F,0}, in 
this set M alludes a subpopulation of male individuals, F is used for the female  
subpopulation, and 0 means that this attribute  will not be considered. The genetic at 
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Fig. 11.3. General structure of HEM 

tribute geiactAge contains the actual age of an individual; its value corresponds to the 
number of generation that the individual has survived. We can set the maximum life 
expectance for each individual in the attribute geimaxAge. The task of the attribute 
geiphLevel is to leave trace about which individuals have been involved in previous gen-
erations producing good offsprings.  Fig. 11.3 shows the general structure of HEM.   

In Figure 11.3, we have a general description of HEM containing six main blocks. 
In the first block, we show that the human or group of humans is part of the system. 
HEM is an intelligent evolutionary algorithm that learns from experts their rational 
and intuitive procedures that they use to solve optimization problems. In this model, 
we consider that we have two kinds of humans: real human beings and artificial hu-
mans. In the first block of Figure 11.3 we show that real human beings form one 
class. In the second block, the artificial human implemented in the AIIS of HEM is 
shown. Humans as part of the system are in charge of teaching the artificial human all 
the knowledge needed for realizing the searching task. The AIIS should learn the ra-
tional and intuitive knowledge from the experts; the final purpose is that the artificial 

The Human Evolutionary Model
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human eventually can substitute the human beings most of the times. HEM has a 
feedback control system formed by blocks three and four; they work coordinately for 
monitoring and evaluating the evolution of the problem to be solved. In the fifth 
block, we have a single objective optimization (SOO) method for solving single ob-
jective optimization problems (SOOP). In addition, using the SOO method we can to 
find the ideal, utopian and nadir vectors for multiple objective optimization problems 
(MOOP). In the sixth block, we have a multiple objective optimization (MOO) 
method, which is dedicated to find the Pareto optimal set (POS) in MOOP. 

11.4   Experimental Results 

Figure 11.1 shows, the feedback control system that was used for achieving the results 
of this paper.  It was implemented in Matlab where the controller was designed to fol-
low the input as closely as possible. 

The plant was modeled using equation (11.6) 

( ) ( ) ( ) ( )
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The controller’s output was applied directly to the plant’s input. Since we are inter-
ested in comparing the performance between normal type-1 and type-2 FLC system 
versus optimized type-2 FLC system, we tested the controller in three ways:  

1. Considering the system as ideal, that is, we did not introduce in the modules 
of the control system any source of uncertainty.  See experiments 1, and 2. 

2.  Simulating the effects of uncertain modules (subsystems) response introduc-
ing some uncertainty, and diverse noise levels.  See experiments 3, 4 and 5. 

3. After optimization of the interval type-2 MFs, we repeated case two above.  
See experiment 6. 

For case one, as is shown in Fig. 11.1, the system’s output is directly connected to 
the summing junction, but in the second case, the uncertainty was simulated introduc-
ing random noise with normal distribution (the dashed square in Fig. 1).  We added 
noise to the system’s output y(i) using the Matlab’s function “randn” which generates 
random numbers with Gaussian distribution. The signal and the added noise in turn, 
were obtained with the programmer’s expression (11.7), the result ( )iy  was intro-

duced to the summing junction of the controller system. Note that in (11.7) we are us-
ing the value 0.05, for experiments 3 and 4, but in the set of tests for experiment 5 we 
varied this value to obtain different SNR values. 

randniyiy ⋅+= 05.0)()(                                            (11.7) 

We tested the system using as input, a unit step sequence free of noise, )(ir .  For 

evaluating the system’s response and compare between type 1 and type 2 fuzzy con-
trollers, we used the performance criteria ISE, IAE, and ITAE.  In Table 11.3, we 
summarized the values obtained for each criterion considering 200 units of time.  For 
calculating ITAE we considered a sampling time 1.0=sT sec. 
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For experiments 1, 2, 3, and 4 the reference input r is stable and noisy free.  In ex-
periments 3 and 4, although the reference appears clean, the feedback at the summing 
junction is noisy since we introduced deliberately noise for simulating the overall ex-
isting uncertainty in the system, in consequence, the controller’s inputs ( )te  (error), 
and )(teΔ  contains uncertainty data.  

In experiment 5, we tested the systems, type-1 and type-2 FLCs, introducing di-
verse values of noiseη , this is modifying the signal to noise ratio SNR (Ingle and 
Proakis, 2000), 
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Because many signals have a very wide dynamic range, SNRs are usually ex-
pressed in terms of the logarithmic decibel scale, SNR(db), 
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In Table 11.4, we show, for different values of SNR(db), the behavior of ISE, IAE, 
ITAE for type-1 and type-2 FLCs.  In almost all the cases the results for type-2 FLC 
are better than type-1 FLC.  

In type-1 FLC, we selected Gaussian MFs for the inputs and for the output.  A 
Gaussian MF is specified by two parameters {c,σ}: 
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c  represents the MFs center and σ determines the MFs standard deviation.  
For each input of the type-1 FLC, ( )te  and )(teΔ , we defined three type-1 fuzzy 

Gaussian MFs: negative, zero, positive. The universe of discourse for these member-
ship functions is in the range [-10 10]; their centers are -10, 0 and 10 respectively, and 
their standard deviations are 9, 2 and 9 respectively. 

For the output of the type-1 FLC, we have five type-1 fuzzy Gaussian MFs: NG, N, 
Z, P and PG. They are in the interval [-10 10], their centers are -10, -4.5, 0, 4, and 10 
respectively; and their standard deviations are 4.5, 4, 4.5, 4 and 4.5.  Table 11.1 illus-
trates the characteristics of the inputs and output of the FMs of the type-1 FLC. 

For the type-2 FLC, as in type-1 FLC we also selected Gaussian MFs for the inputs 
and for the output, but in this case we have an interval type-2 Gaussian MFs with a 
fixed standard deviation, σ , and an uncertain center, ie., 
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Experimental Results
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Table 11.1. Characteristics of the  MFs of the inputs and output of the type-1 FLC  

Variable Term 
Center 

c 
Standard 
Deviation 

σ 
negative -10 9 

zero 0 2 
Input e 

positive 10 9 
negative -10 9 

zero 0 2 
Input  
∆e 

positive 10 9 
NG -10 4.5 

N -4.5 4 
Z 0 4.5 
P 4 4 

Output 
cde 

PG 10 4.5 

In terms of the upper and lower membership functions, we have for )(~ x
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and for the lower membership function )(~ x
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Hence, in type-2 FLC, for each input we defined three interval type-2 fuzzy Gaus-
sianMFs: negative, zero, positive in the interval [-10 10], as illustrates Fig. 11.4 for 
input e.  For computing the output we have five interval type-2 fuzzy Gaussian MFs 
NG, N, Z, P and PG, with uncertain center and fixed standard deviations in the inter-
val [-10 10], as can be seen in Fig. 11.5. Table 11.2 shows the characteristics of the 
MFs of the inputs and output of the type-2 FLC. 

In experiment 6, to simulate the interval type-2 MFs of the FLC, we used two type-1 
FLCs.  Using HEM as the optimization method, ISE as a fitness function, we found 
the best values, see table V, for the MFs of the inputs of these controllers.  Through  
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Table 11.2. Characteristics of the MFs of the inputs and output of the type-2 FLC 

Variable Term 
Center 

c1 

Center 
c2 

Standard 
Deviation 

σ 
negative -10.25 -9.75 9.2 

zero -0.25 0.25 2.2 
Input e 

positive 9.75 10.25 9.2 
negative -10.25 -9.75 9.2 

zero -0.25 0.25 2.2 
Input  
∆e 

positive 9.75 10.25 9.2 
NG -10.25 -9.75 4.5 

N -4.75 -4.5 4 
Z -0.25 0.25 4.5 
P 3.75 4.25 4 

Output 
cde 

PG 9.75 10.25 4.5 

an average of the two type-1 optimized FLCs, we repeated experiment 5, and calcu-
lated again the values of ISE, IAE and ITAE, as can be seen in table 11.6.  

For the experiments with interval type-2 MFs not optimized, we used, basically, the 
type-2 toolbox that we developed. 

Experiment 1.  Ideal system using a type-1 FLC.   
In this experiment, we did not add uncertainty data to the system. The system trends 
to stabilize with time and the output will follow accurately the input.  In Table 11.3, 
we listed the obtained values of ISE, IAE, and ITAE for this experiment. 

Experiment 2.  Ideal system using a type-2 FLC.   
Here, we used the same test conditions of Experiment 1, but in this case, we imple-
mented the controller’s algorithm with type-2 fuzzy logic. The corresponding per-
formance criteria are listed in Table 11.3. 

 

Fig. 11.4. Input e membership functions for the type-2 FLC 

Experimental Results
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Fig. 11.5. Output cde membership functions fot the type-2 FLC 

Experiment 3. System with uncertainty using a type-1 FLC.  
In this case, we simulated using equation (7), the effects of uncertainty introduced to 
the system by transducers, amplifiers, and any other element that in real world appli-
cations affects expected values.  In Table 11.3, we can see the obtained values of ISE, 
IAE, and ITAE for a simulated 10 db signal noise ratio. 

Experiment 4. System with uncertainty using a type-2 FLC. In this experiment, we 
introduced uncertainty in the system, in the same way as in Experiment 3. In this case, 
we used a type-2 FLC and we improved those results obtained with a type-1 FLC in 
Experiment 3, see table 11.3. 

Table 11.3. Comparison of performance criteria for type-1 and type-2 fuzzy logic controllers 
for 10 db signal noise ratio. values obtained after 200 samples. 

Type-1 FLC Type-2 FLC Per-
formance 

Criteria 
Ideal 

System 
Syst. 

with uncer-
tainty 

Ideal 
System 

Syst. 
with uncer-

tainty 
ISE 5.2569 205.019

1 
5.2572 149.309

7 
IAE 13.8055 155.941

2 
13.7959 131.77 

ITAE 46.0651 1583.4 45.8123 1262.2 

Experiment 5. Varying the signal to noise ratio in type-1 and type-2 FLCs.  
To test the robustness of the type-1 and type-2 FLCs, we repeated experiments 3 and 
4 giving different noise levels, going from 30 db to 6 db of SNR ratio in each experi-
ment. In Table 11.4, we summarized the values for ISE, IAE, ITAE considering 200  
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Table 11.4. Behavior of type -1 and type-2 fuzzy logic controllers after variation of signal 
noise ratio. Values obtained for 200 samples. 

Type-1 FLC Type-2 FLC SNR 
db ISE IAE ITAE ISE IAE ITAE 

6 1208 392.3 4903 1113 368.76 4388 
8 1004 352.4 4526 903 330.38 4104 

10 205.0 155.9 1583.4 149.3 131.77 1262.2 
12 89.77 102.1 974.97 89.8 102.21 974.93 
14 56.47 80.88 769.51 56.78 80.85 770.25 
16 36.28 64.36 610.86 36.39 64.21 610.65 
18 23.76 51.54 485.19 23.81 51.32 485.16 
20 16.14 41.75 386.45 16.04 41.59 386.6 
22 11.36 34.65 310.04 11.25 34.28 308.87 
24 8.54 29.25 249.67 8.39 28.78 247.89 
26 6.87 25.15 202.46 6.72 24.78 201.07 
28 5.9 22.2 166.38 5.78 21.92 165.21 
30 5.38 20.12 139.27 5.27 19.77 137.47 

Table 11.5. Characteristics of the optimized MFs of the inputs and output of the type-2 FLC 

Variable Term 
Center 

c1 

Standard 
Deviation 

σ1 

Center 
c2 

Standard 
Deviation 

σ2 

negative -10 9 -10 8.0298 
zero 0 2 0 1.0987 

Input e 

positive 10 9 10 8.1167 
negative -10 9.2 -10 8.7767 

zero 0 2.2 0 1.0987 
Input  
∆e 

positive 10 9.2 10 8.5129 
NG -10 4.5 -10 4.5 

N -4.5 4 -4.5 4 
Z 0 4.5 0 4.5 
P 4 4 4 4 

Output 
cde 

PG 10 4.5 10 4.5 

units of time with a Psignal of 22.98 db in all cases. As it can be seen in Table 11.4, in 
presence of diverse noise levels, the behavior of type-2 FLC is better than type-1 FLC 
above 10 db. 

From Table 11.4, taking two examples, the extreme cases; we have for an SNR ra-
tio of 8 db, in type-1 FLC the next performance values ISE=1004, IAE=352.45, 
ITAE=4526; for the same case, in type-2 FLC, we have ISE=903, IAE=330.38, 
ITAE=4104.  

For 10 db of SNR ratio, we have for type-1 FLC, ISE=205.01, IAE=155.94, 
ITAE=1583.4, and for type-2 FLC, ISE=149.3, IAE=131.77, ITAE=1262.2.  

These values indicate a better performance of type-2 FLC than type-1 FLC above 
certain noise values, because they are a representation of the errors and as bigger they 
are the performance of the system is worst  

Experimental Results
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To optimize the interval type-2 MFs of the FLC, we simulated the system using 
two type-1 FLCs .  We maintain constant the centers of the Gaussian MFs of the in-
puts and varied its standard deviations. 

After using HEM as the optimization method, and taking ISE as the fitness func-
tion, we found the best values of the MFs, as can be seen in table 11.5.  With the new 
values of the MFs of both type-1 FLCs, we repeated experiment 5, but in this case, we 
used the average of the two type-1 FLCs as the output of the type-2 system.  
Table 11.6, shows the results for this experiment, as can be seen, all the values of ISE 
were improved, and in general we can see that the performance of the system is better. 

Experiment 6. Optimizing the interval type-2 MFs of the FLC. 

Table 11.6. Comparison of performance criteria for type-1 FLC, and type-2 fuzzy logic contro 
ller with optimized MFs, for 10 db signal noise ratio. Values obtained after 200 samples. 

Type-1 FLC Type-2 FLC SNR 
db ISE IAE ITAE ISE IAE ITAE 

6 1208 392.3 4903 616.4 274.7 3005 
8 1004 352.4 4526 437.3 226.7 2509 

10 205.0 155.9 1583.4 115 116.6 1119.6 
12 89.77 102.1 974.97 72.8 90.9 866.8 
14 56.47 80.88 769.51 45.6 71.3 674.1 
16 36.28 64.36 610.86 28.9 56.3 528.4 
18 23.76 51.54 485.19 18.6 45.2 419.4 
20 16.14 41.75 386.45 12.6 37 337 
22 11.36 34.65 310.04 8.9 30.8 273.8 
24 8.54 29.25 249.67 6.8 26.3 227.7 
26 6.87 25.15 202.46 5.6 23.1 195.6 
28 5.9 22.2 166.38 4.9 21 172.8 
30 5.38 20.12 139.27 4.5 19.6 157.8 

11.5   Summary 

We observed and quantified using performance criteria such as ISE, IAE, and ITAE that 
in systems without uncertainties (ideal systems) is a better choice to select a type-1 FLC 
since it works a little better than a type-2 FLC, and it is easier to implement it. It is 
known that type-1 FLC can handle nonlinearities, and uncertainties up to some extent.  

Unfortunately, real systems are inherently noisy and nonlinear, since any element 
in the system contributes with deviations of the expected measures because of thermal 
noise, electromagnetic interference, etc., moreover, they add nonlinearities from ele-
ment to element in the system.   

In the simulation of real systems, systems with uncertainty, we observed that the 
results presented in Table 11.4 demonstrated that the performance of this kind of con-
trollers is better under high noise levels.  After optimizing the interval type- 2 MFs 
the performance of the system is improved as we can see in table 11.6. 

We can say that using a type-2 FLC in real world applications can be a better 
choice since this type of system is a more suitable system to manage uncertainty, as 
we can see in the results shown in tables 11.5 and 11.6. 
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