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Preface 

We describe in this book, new methods for building intelligent systems using type-2 
fuzzy logic and soft computing techniques. Soft Computing (SC) consists of several 
computing paradigms, including type-1 fuzzy logic, neural networks, and genetic 
algorithms, which can be used to create powerful hybrid intelligent systems. In this 
book, we are extending the use of fuzzy logic to a higher order, which is called type-2 
fuzzy logic. Combining type-2 fuzzy logic with traditional SC techniques, we can 
build powerful hybrid intelligent systems that can use the advantages that each tech-
nique offers. We consider in this book the use of type-2 fuzzy logic and traditional SC 
techniques to solve pattern recognition problems in real-world applications. We con-
sider in particular the problems of face, fingerprint and voice recognition. We also 
consider the problem of recognizing a person by integrating the information given by 
the face, fingerprint and voice of the person. Other types of applications solved with 
type-2 fuzzy logic and SC techniques, include intelligent control, intelligent manufac-
turing, and adaptive noise cancellation. 

This book is intended to be a major reference for scientists and engineers interested 
in applying type-2 fuzzy logic for solving problems in pattern recognition, intelligent 
control, intelligent manufacturing, robotics and automation. This book can also be 
used as a textbook or major reference for graduate courses like the following: soft 
computing, intelligent pattern recognition, computer vision, applied artificial intelli-
gence, and similar ones. We consider that this book can also be used to get novel ideas 
for new lines of research, or to continue the lines of research proposed by the authors 
of the book. 

In Chapter 1, we begin by offering a brief introduction of the potential use of type-
2 fuzzy logic in different real-world applications. We discuss the application of type-2 
fuzzy logic in problems of pattern recognition. We also describe the use of type-2 
fuzzy logic in problems of intelligent control of non-linear plants. We also outline the 
application of type-2 fuzzy logic in real-world applications of intelligent manufactur-
ing, robotics and automation. 

We describe in Chapter 2 the main ideas underlying type-1 fuzzy logic, and the ap-
plication of this powerful computational theory to the problems of modeling, control 
and pattern recognition. We discuss in some detail type-1 fuzzy set theory, fuzzy rea-
soning, and fuzzy inference systems. At the end, we also give some general guidelines 
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for the process of fuzzy modeling. We illustrate these concepts with several examples 
that show the applicability of type-1 fuzzy logic. The importance of type-1 fuzzy logic 
as a basis for developing intelligent systems has been recognized in several areas of 
application. 

We describe in Chapter 3 the basic concepts, notation, and theory of type-2 fuzzy 
logic, which is a generalization of type-1 fuzzy logic. Type-2 fuzzy logic enables the 
management of uncertainty in a more complete way. This is due to the fact that in 
type-2 membership functions we also consider that there is uncertainty in the form of 
the functions, unlike type-1 membership functions in which the functions are consid-
ered to be fixed and not uncertain. We describe type-2 fuzzy set theory, type-2 fuzzy 
reasoning, and type-2 fuzzy systems. We also give examples to illustrate these ideas to 
the reader of the book.  

We describe in Chapter 4 an efficient method for fuzzy inference in interval type-2 
fuzzy logic. The new method of inference has been proposed to obtain fast output 
results of interval type-2 fuzzy systems. Fast and approximate results are justified in 
problems that need to work in real time. For example, fuzzy controllers that need to 
give solutions in real-time need obtain the outputs very fast. In this case, the new in-
ference method uses only two values to approximate the interval fuzzy system. Details 
of this method are given in this chapter. 

We describe in Chapter 5 the basic concepts, notation and learning algorithms for 
designing intelligent systems with interval type-2 fuzzy logic. Detailed methods for 
design and implementation of type-2 fuzzy systems are presented. The methods are 
illustrated with simple examples and are the basis for the applications described later. 
For this reason, we consider this chapter very important for understanding some of the 
applications that are described in later chapters of the book. 

We describe in Chapter 6 a new approach for human recognition using as informa-
tion the face, fingerprint, and voice of a person. Intelligent techniques can be used for 
achieving face recognition, fingerprint recognition, and voice identification. In this 
chapter we are considering the integration of these three biometric measures to im-
prove the accuracy of human recognition. The new approach will integrate the infor-
mation from three main modules, one for each of the three biometric measures. The 
new approach consists in a modular architecture that contains three basic modules: 
face, fingerprint, and voice. The final decision is based on the results of the three 
modules and uses interval type-2 fuzzy logic to take into account the uncertainty of the 
outputs of the modules. 

We describe in Chapter 7 a new method for improving training in modular neural 
networks using interval type-2 fuzzy logic. In this chapter we consider two parts of a 
Modular Neural Network for image recognition, where a Type-2 Fuzzy Inference 
System (FIS 2) makes a great difference. The first FIS 2 is used for feature extraction 
in training data, and the second one to find the ideal parameters for the integration 
method of the modular neural network. 

We describe in Chapter 8 a new method for edge border detection using interval 
type-2 fuzzy logic. Edges detection in digital images is a problem that has been solved 
by means of the application of different techniques from digital signal processing, also 
the combination of some of these techniques with Fuzzy Inference System (FIS) has 
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been proposed. In this chapter a new Type-2 Fuzzy Logic method is implemented for 
the detection of edges and the results of three different techniques for the same task 
are compared. 

We describe in Chapter 9 a method for the systematic design of stable type-2 fuzzy 
logic controllers. Stability is one of the more important aspects in the traditional 
knowledge of Automatic Control. Type-2 Fuzzy Logic is an emerging and promising 
area for achieving Intelligent Control (in this case, Fuzzy Control). In this chapter, we 
use the Fuzzy Lyapunov Synthesis as proposed by Margaliot to build a Lyapunov 
Stable Type-1 Fuzzy Logic Control System. Then we make an extension from a Type-
1 to a Type-2 Fuzzy Logic Control System, ensuring the stability on the control sys-
tem and proving the robustness of the corresponding fuzzy controller. 

We describe in Chapter 10 an exhaustive experimental study of type-2 fuzzy logic 
controllers for different non-linear plants. Uncertainty is an inherent part in controllers 
used for real-world applications.  The use of new methods for handling incomplete 
information is of fundamental importance in engineering applications.  This chapter 
deals with the design of controllers using type-2 fuzzy logic for minimizing the effects 
of uncertainty produced by the instrumentation elements.  We simulated type-1 and 
type-2 fuzzy logic controllers to perform a comparative analysis of the systems’ re-
sponse, in the presence of uncertainty.  

We describe in Chapter 11 the evolutionary optimization of interval type-2 fuzzy 
controllers. The use of new methods for handling incomplete information is of funda-
mental importance in engineering applications. We simulated the effects of uncertainty 
produced by the instrumentation elements in type-1 and type-2 fuzzy logic controllers 
to perform a comparative analysis of the systems’ response, in the presence of uncer-
tainty. We are presenting an innovative idea to optimize interval type-2 membership 
functions using an average of two type-1 systems with the Human Evolutionary 
Model, we are showing comparative results of the optimized proposed method.  We 
found that the optimized membership functions for the inputs of a type-2 system tend 
to increase the performance of the system for high noise levels. 

We describe in Chapter 12 the design and implementation of interval type-2 fuzzy 
logic systems. This chapter presents the development and design of a graphical user 
interface and a command line programming Toolbox for construction, edition and simu-
lation of Interval Type-2 Fuzzy Inference Systems. The Interval Type-2 Fuzzy Logic 
System Toolbox (IT2FLS) is an environment for interval type-2 fuzzy logic inference 
system development. Tools that cover the different phases of the fuzzy system design 
process, from the initial description phase, to the final implementation phase, constitute 
the Toolbox. The Toolbox’s best qualities are the capacity to develop complex systems 
and the flexibility that allows the user to extend the availability of functions for working 
with the use of type-2 fuzzy operators, linguistic variables, interval type-2 membership 
functions, defuzzification methods and the evaluation of Interval Type-2 Fuzzy Inference 
Systems. 

We describe in Chapter 13 the intelligent control of the pendubot using type-2 
fuzzy logic and neural networks. First, the general concept of adaptive model-based 
control is described. Second, the use of type-2 fuzzy logic for adaptive control is de-
scribed. Third, a neuro-fuzzy approach is proposed to learn the parameters of the 
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fuzzy system for control. A specific non-linear plant was used to simulate the hybrid 
approach for adaptive control. The specific plant was also used as test bed in the ex-
periments. The non-linear plant that was considered is the "Pendubot", which is a non-
linear plant similar to the two-link robot arm. The results of the type-2 fuzzy logic 
approach for control were good, both in accuracy and efficiency. 

We describe in Chapter 14 a method for automated quality control in sound speaker 
manufacturing using type-2 fuzzy logic and fractal theory. Traditional quality control 
has been done by manually checking the quality of sound after production. This man-
ual checking of the speakers is time consuming and occasionally was the cause of 
error in quality evaluation. For this reason, we developed an intelligent system for 
automated quality control in sound speaker manufacturing. The intelligent system has 
a type-2 fuzzy rule base containing the knowledge of human experts in quality control. 
The parameters of the fuzzy system are tuned by applying neural networks using, as 
training data, a real time series of measured sounds as given by good sound speakers. 
We also use the fractal dimension as a measure of the complexity of the sound signal. 

We describe in Chapter 15 a new approach for plant monitoring and diagnostics us-
ing type-2 fuzzy logic and fractal theory. The concept of the fractal dimension is used 
to measure the complexity of the time series of relevant variables for the process. A 
set of type-2 fuzzy rules is used to represent the knowledge for monitoring the proc-
ess. In the type-2 fuzzy rules, the fractal dimension is used as a linguistic variable to 
help in recognizing specific patterns in the measured data. The fuzzy-fractal approach 
has been applied before in problems of financial time series prediction and for other 
types of problems, but now it is proposed to the monitoring of plants using type-2 
fuzzy logic. We also compare the results of the type-2 fuzzy logic approach with the 
results of using only a traditional type-1 fuzzy logic approach. Experimental results 
show a significant improvement in the monitoring ability with the type-2 fuzzy logic 
approach. 

We describe in Chapter 16 a new method for intelligent tracking of autonomous ro-
botic systems using interval type-2 fuzzy logic and genetic algorithms. We develop a 
tracking controller for the dynamic model of unicycle mobile robot by integrating a 
kinematic controller and a torque controller based on Fuzzy Logic Theory. Computer 
simulations are presented confirming the performance of the tracking controller and its 
application to different navigation problems. 

We describe in Chapter 17 the application of type-2 fuzzy logic for achieving adap-
tive noise cancellation. The objective of adaptive noise cancellation is to filter out an 
interference component by identifying a model between a measurable noise source 
and the corresponding un-measurable interference. In this chapter, we propose the use 
of type-2 fuzzy logic to find this model. The use of type-2 fuzzy logic is justified due 
to the high level of uncertainty of the process, which makes difficult to find appropri-
ate parameter values for the membership functions. 

We end this preface of the book by giving thanks to all the people who have help or 
encourage us during the writing of this book. First of all, we would like to thank our 
colleague and friend Prof. Janusz Kacprzyk for always supporting our work, and for 
motivating us to write our research work. We would also like to thank our colleagues 
working in Soft Computing, which are too many to mention each by their name. Of 
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course, we need to thank our supporting agencies, CONACYT and DGEST, in our 
country for their help during this project. We have to thank our institution, Tijuana 
Institute of Technology, for always supporting our projects. Finally, we thank our 
families for their continuous support during the time that we spend in this project. 

 

 
July 2007 Oscar Castillo 
 Patricia Melin 

 Tijuana, Mexico 
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1   Introduction to Type-2 Fuzzy Logic 

We describe in this book, new methods for building intelligent systems using type-2 
fuzzy logic and soft computing techniques. Soft Computing (SC) consists of several 
computing paradigms, including type-1 fuzzy logic, neural networks, and genetic al-
gorithms, which can be used to create powerful hybrid intelligent systems. In this 
book, we are extending the use of fuzzy logic to a higher order, which is called type-2 
fuzzy logic. Combining type-2 fuzzy logic with traditional SC techniques, we can 
build powerful hybrid intelligent systems that can use the advantages that each tech-
nique offers. We consider in this book the use of type-2 fuzzy logic and traditional SC 
techniques to solve pattern recognition problems in real-world applications. We con-
sider in particular the problems of face, fingerprint and voice recognition. We also 
consider the problem of recognizing a person by integrating the information given by 
the face, fingerprint and voice of the person. Other types of applications solved with 
type-2 fuzzy logic and SC techniques, include intelligent control, intelligent manufac-
turing, and adaptive noise cancellation. 

Fuzzy logic is an area of soft computing that enables a computer system to reason 
with uncertainty (Castillo & Melin, 2001). A fuzzy inference system consists of a set 
of if-then rules defined over fuzzy sets. Fuzzy sets generalize the concept of a tradi-
tional set by allowing the membership degree to be any value between 0 and 1 
(Zadeh, 1965). This corresponds, in the real world, to many situations where it is dif-
ficult to decide in an unambiguous manner if something belongs or not to a specific 
class. Fuzzy expert systems, for example, have been applied with some success to 
problems of decision, control, diagnosis and classification, just because they can 
manage the complex expert reasoning involved in these areas of application. The 
main disadvantage of fuzzy systems is that they can't adapt to changing situations. For 
this reason, it is a good idea to combine fuzzy logic with neural networks or genetic 
algorithms, because either one of these last two methodologies could give adaptability 
to the fuzzy system (Melin & Castillo, 2002). On the other hand, the knowledge that 
is used to build these fuzzy rules is uncertain. Such uncertainty leads to rules whose 
antecedents or consequents are uncertain, which translates into uncertain antecedent 
or consequent membership functions (Karnik & Mendel 1998). Type-1 fuzzy systems, 
like the ones mentioned above, whose membership functions are type-1 fuzzy sets, 
are unable to directly handle such uncertainties. We also describe in this book, type-2 
fuzzy systems, in which the antecedent or consequent membership functions are  
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type-2 fuzzy sets. Such sets are fuzzy sets whose membership grades themselves are 
type-1 fuzzy sets; they are very useful in circumstances where it is difficult to deter-
mine an exact membership function for a fuzzy set. Another way to handle this higher 
degree of uncertainty is to use intuitionistic fuzzy logic (Atanassov, 1999), which can 
also be considered as a generalization of type-1 fuzzy logic. In intuitionistic fuzzy 
logic the uncertainty in describing fuzzy sets is modeled by using at the same time the 
membership function and the non-membership function of a set (assuming that they 
are not complementary).  

Neural networks are computational models with learning (or adaptive) characteris-
tics that model the human brain (Jang, Sun & Mizutani, 1997). Generally speaking, 
biological natural neural networks consist of neurons and connections between them, 
and this is modeled by a graph with nodes and arcs to form the computational neural 
network. This graph along with a computational algorithm to specify the learning ca-
pabilities of the system is what makes the neural network a powerful methodology to 
simulate intelligent or expert behavior (Miller, Sutton & Werbos, 1995). Neural net-
works can be classified in supervised and unsupervised. The main difference is that in 
the case of the supervised neural networks the learning algorithm uses input-output 
training data to model the dynamic system, on the other hand, in the case of unsuper-
vised neural networks only the input data is given. In the case of an unsupervised 
network, the input data is used to make representative clusters of all the data. It has 
been shown, that neural networks are universal approximators, in the sense that they 
can model any general function to a specified accuracy and for this reason neural 
networks have been applied to problems of system identification, control, diagnosis, 
time series prediction, and pattern recognition. We also describe the basic concepts, 
theory and algorithms of modular and ensemble neural networks. We will also give 
particular attention to the problem of response integration, which is very important 
because response integration is responsible for combining all the outputs of the mod-
ules. Basically, a modular or ensemble neural network uses several monolithic neural 
networks to solve a specific problem. The basic idea is that combining the results of 
several simple neural networks we will achieve a better overall result in terms of ac-
curacy and also learning can be done faster. 

Genetic algorithms and evolutionary methods are optimization methodologies 
based on principles of nature (Jang, Sun & Mizutani, 1997). Both methodologies can 
also be viewed as searching algorithms because they explore a space using heuristics 
inspired by nature. Genetic algorithms are based on the ideas of evolution and the bio-
logical process that occur at the DNA level. Basically, a genetic algorithm uses a 
population of individuals, which are modified by using genetic operators in such a 
way as to eventually obtain the fittest individual (Man, Tang & Kwong, 1999). Any 
optimization problem has to be represented by using chromosomes, which are a codi-
fied representation of the real values of the variables in the problem (Mitchell, 1998). 
Both, genetic algorithms and evolutionary methods can be used to optimize a general 
objective function. As genetic algorithms are based on the ideas of natural evolution, 
we can use this methodology to evolve a neural network or a fuzzy system for a par-
ticular application. The problem of finding the best architecture of a neural network is 
very important because there are no theoretical results on this, and in many cases we 
are forced to trial and error unless we use a genetic algorithm to automate this proc-
ess. A similar thing occurs in finding out the optimal number of rules and membership 
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functions of a fuzzy system for a particular application, here a genetic algorithm can 
also help us avoid time consuming trial and error. In this book, we use genetic algo-
rithms to optimize the architecture of fuzzy and neural systems. 

We describe in this book a new approach for face recognition using modular neural 
networks with a fuzzy logic method for response integration. We describe a new ar-
chitecture for modular neural networks for achieving pattern recognition in the par-
ticular case of human faces. Also, the method for achieving response integration is 
based on the fuzzy Sugeno integral and type-2 fuzzy logic. Response integration is 
required to combine the outputs of all the modules in the modular network. We have 
applied the new approach for face recognition with a real database of faces from stu-
dents and professors of our institution. Recognition rates with the modular approach 
were compared against the monolithic single neural network approach, to measure the 
improvement. The results of the modular neural network approach gives excellent 
performance overall and also in comparison with the monolithic approach. We also 
apply this approach for fingerprint recognition using modular neural networks with a 
fuzzy logic method for response integration. We describe a new architecture for 
modular neural networks for achieving pattern recognition in the particular case of 
human fingerprints. Also, the method for achieving response integration is based on 
the fuzzy Sugeno integral. Response integration is required to combine the outputs of 
all the modules in the modular network. We have applied the new approach for fin-
gerprint recognition with a real database of fingerprints obtained from students of our 
institution. 

We also describe in this book the use of neural networks, fuzzy logic and genetic 
algorithms for voice recognition. In particular, we consider the case of speaker recog-
nition by analyzing the sound signals with the help of intelligent techniques, such as 
the neural networks and fuzzy systems. We use the neural networks for analyzing the 
sound signal of an unknown speaker, and after this first step, a set of type-2 fuzzy 
rules is used for decision making. We need to use fuzzy logic due to the uncertainty of 
the decision process. We also use genetic algorithms to optimize the architecture of 
the neural networks. We illustrate our approach with a sample of sound signals from 
real speakers in our institution. 

We describe in this book our new approach for human recognition using as infor-
mation the face, fingerprint, and voice of a person. We have described above the use 
of intelligent techniques for achieving face recognition, fingerprint recognition, and 
voice identification. Now we can consider the integration of these three biometric 
measures to improve the accuracy of human recognition. The new approach will inte-
grate the information from three main modules, one for each of the three biometric 
measures. The new approach consists in a modular architecture that contains three ba-
sic modules: face, fingerprint, and voice. The final decision is based on the results of 
the three modules and uses type-2 fuzzy logic to take into account the uncertainty of 
the outputs of the modules. 

For the problems of intelligent control of non-linear plants, we also have found that 
applying type-2 fuzzy logic can help in improving the performance of the controllers. 
We have considered the design of stable type-2 fuzzy controllers, and the method can 
be considered a generalization of the fuzzy Lyapunov approach that was already pro-
posed for type-1 fuzzy controllers (Margaliot, 2000). An extensive comparison of the 
performance of type-2 and type-1 fuzzy controllers has been done under different  
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levels of uncertainty to measure the advantage of type-2 fuzzy logic in this class of 
problems. The problem of designing type-2 fuzzy controllers using evolutionary com-
puting has also been considered.  

Finally, for the problems of intelligent manufacturing, robotics and automation, we 
have also considered the application of type-2 fuzzy logic and SC techniques for solv-
ing this kind of problems. In particular, we have considered the automation of quality 
control in sound speaker manufacturing by combining interval type-2 fuzzy logic with 
fractal theory, with excellent results. Plant monitoring and diagnosis is also consid-
ered by combining interval type-2 fuzzy logic and fractal theory. Intelligent tracking 
of autonomous robotic systems is achieved by using a combination of interval type-2 
fuzzy logic and genetic algorithms. In this case, the genetic algorithms are used for 
finding the optimal parameters of the type-2 fuzzy system. Adaptive noise cancella-
tion is also considered by combining interval type-2 fuzzy logic and neural networks. 
The simulation results show the advantage of using type-2 fuzzy logic for this kind of 
problems. 
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2   Type-1 Fuzzy Logic 

This chapter introduces the basic concepts, notation, and basic operations for the  
type-1 fuzzy sets that will be needed in the following chapters. Type-2 fuzzy sets as 
well as their operations will be discussed in the next chapter. For this reason, in this 
chapter we will focus only on type-1 fuzzy logic. Since research on fuzzy set theory 
has been underway for over 30 years now, it is practically impossible to cover all as-
pects of current developments in this area. Therefore, the main goal of this chapter is 
to provide an introduction to and a summary of the basic concepts and operations that 
are relevant to the study of type-1 fuzzy sets. We also introduce in this chapter the 
definition of linguistic variables and linguistic values and explain how to use them in 
type-1 fuzzy rules, which are an efficient tool for quantitative modeling of words or 
sentences in a natural or artificial language. By interpreting fuzzy rules as fuzzy rela-
tions, we describe different schemes of fuzzy reasoning, where inference procedures 
based on the concept of the compositional rule of inference are used to derive conclu-
sions from a set of fuzzy rules and known facts. Fuzzy rules and fuzzy reasoning are 
the basic components of fuzzy inference systems, which are the most important mod-
eling tool, based on fuzzy set theory. 

The "fuzzy inference system" is a popular computing framework based on the con-
cepts of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning (Jang, Sun & Mizu-
tani, 1997). It has found successful applications in a wide variety of fields, such as 
automatic control, data classification, decision analysis, expert systems, time series 
prediction, robotics, and pattern recognition (Jamshidi, 1997). Because of its multid-
isciplinary nature, the fuzzy inference system is known by numerous other names, 
such as "fuzzy expert system" (Kandel, 1992), "fuzzy model" (Sugeno & Kang, 
1988), "fuzzy associative memory" (Kosko, 1992), and simply "fuzzy system". 

The basic structure of a type-1 fuzzy inference system consists of three conceptual 
components: a "rule base", which contains a selection of fuzzy rules; a "data base" (or 
"dictionary"), which defines the membership functions used in the fuzzy rules; and a 
"reasoning mechanism", which performs the inference procedure upon the rules and 
given facts to derive a reasonable output or conclusion. In general, we can say that a 
fuzzy inference system implements a non-linear mapping from its input space to out-
put space. This mapping is accomplished by a number of fuzzy if-then rules, each of 
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which describes the local behavior of the mapping. In particular, the antecedent of a 
rule defines a fuzzy region in the input space, while the consequent specifies the out-
put in the fuzzy region. 

We will describe in the following chapter a new area in fuzzy logic, which studies 
type-2 fuzzy sets and type-2 fuzzy systems. Basically, a type-2 fuzzy set is a set in 
which we also have uncertainty about the membership function. Since we are dealing 
with uncertainty for the conventional fuzzy sets (which are called type-1 fuzzy sets 
here) we can achieve a higher degree of approximation in modeling real world prob-
lems. Of course, type-2 fuzzy systems consist of fuzzy if-then rules, which contain 
type-2 fuzzy sets. We can say that type-2 fuzzy logic is a generalization of conven-
tional fuzzy logic (type-1) in the sense that uncertainty is not only limited to the lin-
guistic variables but also is present in the definition of the membership functions.  

In what follows, we shall first introduce the basic concepts of fuzzy sets, and fuzzy 
reasoning. Then we will introduce and compare the three types of fuzzy inference sys-
tems that have been employed in various applications. Finally, we will address briefly 
the features and problems of fuzzy modeling, which is concerned with the construc-
tion of fuzzy inference systems for modeling a given target system. In this chapter, we 
will assume that all fuzzy sets, fuzzy rules and operations are of type-1 category, 
unless otherwise specified. 

2.1   Type-1 Fuzzy Set Theory 

Let X be a space of objects and x be a generic element of X. A classical set A, A⊆X, 
is defined by a collection of elements or objects x ∈ X, such that each x can either be-
long or not belong to the set A. By defining a "characteristic function" for each ele-
ment x ∈ X, we can represent a classical set A by a set of order pairs (x,0) or (x,1), 
which indicates x ∉ A or x ∈ A, respectively. 

Unlike the aforementioned conventional set, a fuzzy set (Zadeh, 1965) expresses 
the degree to which an element belongs to a set. Hence the characteristic function of a 
fuzzy set is allowed to have values between 0 and 1, which denotes the degree of 
membership of an element in a given set.  

Definition 2.1. Fuzzy sets and membership functions 
If X is a collection of objects denoted generically by x, then a "fuzzy set" A in X is 
defined as a set of ordered pairs: 

A = {(x, μ
A
(x)) | x ∈ X}. (2.1) 

where μ
A
(x) is called "membership function" (or MF for short) for the fuzzy set A. 

The MF maps each element of X to a membership grade (or membership value) be-
tween 0 and 1. 

Obviously, the definition of a fuzzy set is a simple extension of the definition of a 
classical set in which the characteristic function is permitted to have any values be-
tween 0 and 1. If the values of the membership function μ

A
(x) is restricted to either 0 

or 1, then A is reduced to a classical set and μ
A
(x) is the characteristic function of A. 

This can be seen with the following example. 
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Example 2.1. Fuzzy set with a discrete universe of discourse X 
Let X = {Tijuana, Acapulco, Cancun} be the set of cities one may choose to organize 
a conference in. The fuzzy set A = “desirable city to organize a conference in” may be 
described as follows: 

  A = {(Tijuana, 0.5), (Acapulco, 0.7), (Cancun, 0.9)} 
In this case, the universe of discourse X is discrete- in this example, three cities in 

Mexico. Of course, the membership grades listed above are quite subjective; anyone 
can come up with three different values according to his or her preference. 

A fuzzy set is uniquely specified by its membership function. To describe member-
ship functions more specifically, we shall define the nomenclature used in the litera-
ture (Jang, Sun & Mizutani, 1997). 

 

Definition 2.2. Support 
The "support" of a fuzzy set A is the set of all points x in X such that  μ

A
(x) > 0: 

support (A) = { x | μ
A
(x) > 0 }. (2.2) 

Definition 2.3. Core 
The "core" of a fuzzy set is the set of all points x in X such that  μ

A
(x) = 1: 

core (A) = { x | μ
A
(x) = 1 }. (2.3) 

Definition 2.4. Normality 
A fuzzy set A is "normal" if its core is nonempty. In other words, we can always find 
a point x ∈ X such that μ

A
(x) = 1. 

Definition 2.5. Crossover points 
A "crossover point" of a fuzzy set A is a point x ∈ X at which μ

A
(x) = 0.5: 

crossover (A) = { x | μ
A
(x) = 0.5 }. (2.4) 

Definition 2.6. Fuzzy singleton 
A fuzzy set whose support is a single point in X with μ

A
(x) = 1 is called a "fuzzy  

singleton". 
 

Definition 2.7. α-cut, strong α-cut 
The “α-cut” or “α-level set” of a fuzzy set A is a crisp set defined by 

Aα = { x | μ
A
(x) ≥ α }. (2.5) 

“Strong α-cut” or “strong α−level set” are defined similarly: 

A’α = { x | μ
A
(x) > α }. (2.6) 

Using the notation for a level set, we can express the support and core of a fuzzy 
set A as 

 

  support (A) = A’0 

 

Type-1 Fuzzy Set Theory
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and 
  core (A) = A1 

respectively. 
Corresponding to the ordinary set operations of union, intersection and comple-

ment, fuzzy sets have similar operations, which were initially defined in Zadeh's 
seminal paper (Zadeh, 1965). Before introducing these three fuzzy set operations, first 
we shall define the notion of containment, which plays a central role in both ordinary 
and fuzzy sets. This definition of containment is, of course, a natural extension of the 
case for ordinary sets. 

Definition 2.8. Containment 
The fuzzy set A is "contained" in fuzzy set B (or, equivalently, A is a "subset" of B) if 
and only if μ

A
(x) ≤ μ

B
(x) for all x. Mathematically, 

A ⊆ B ⇔ μ
A
(x) ≤ μ

B
(x). (2.7) 

Definition 2.9. Union 
The "union" of two fuzzy sets A and B is a fuzzy set C, written as C = A∪B or C = A 
OR B, whose MF is related to those of A and B by 

μ
C
(x) = max( μ

A
(x), μ

B
(x) ) = μ

A
(x) ∨ μ

B
(x). (2.8) 

Definition 2.10. Intersection 
The "intersection" of two fuzzy sets A and B is a fuzzy set C, written as C = A∩B or 
C = A AND B, whose MF is related to those of A and B by 

μ
C
(x) = min( μ

A
(x), μ

B
(x) ) = μ

A
(x) ∧ μ

B
(x). (2.9) 

Definition 2.11. Complement or Negation 
The "complement" of a fuzzy set A, denoted by A ( ⎤ A, NOT A), is defined as 

μ
A
(x) = 1- μ

A
(x). (2.10) 

As mentioned earlier, a fuzzy set is completely characterized by its MF. Since most 
fuzzy sets in use have a universe of discourse X consisting of the real line R, it would 
be impractical to list all the pairs defining a membership function. A more convenient 
and concise way to define a MF is to express it as a mathematical formula. First we 
define several classes of parameterized MFs of one dimension. 

Definition 2.12. Triangular MFs 
A "triangular MF" is specified by three parameters {a, b, c} as follows: 

 

      0,  x ≤ a . 

y = triangle(x;a,b,c) = (x-a) / (b-a),  a ≤ x ≤ b .               (2.11)  

   (c-x) / (c-b),  b ≤ x ≤ c . 
      0,  c ≤ x . 
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The parameters {a,b,c} (with a < b < c ) determine the x coordinates of the three 
corners of the underlying triangular MF. Figure 2.1 (a) illustrates a triangular MF  
defined by triangle(x; 10, 20, 40). 

 
Definition 2.13. Trapezoidal MFs 
A "trapezoidal MF" is specified by four parameters {a, b, c, d} as follows: 

 
       0,  x ≤ a . 
   (x-a) / (b-a),  a ≤ x ≤ b .               (2.12)  

trapezoid (x;a,b,c,d) =      1,  b ≤ x ≤ c . 
   (d-x) / (d-c),  c ≤ x ≤ d . 
       0,  d ≤ x . 
 

The parameters {a, b, c, d} (with a < b ≤ c <d) determine the x coordinates of the 
four corners of the underlying trapezoidal MF. Figure 2.1 (b) illustrates a trapezoidal 
MF defined by trapezoid(x; 10, 20 40, 75). 

Due to their simple formulas and computational efficiency, both triangular MFs 
and trapezoidal MFs have been used extensively, especially in real-time implementa-
tions. However, since the MFs are composed of straight line segments, they are not 
smooth at the corner points specified by the parameters. In the following we introduce 
other types of MFs defined by smooth and nonlinear functions. 
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Fig. 2.1. Examples of two types of parameterized MFs 

Definition 2.14. Gaussian MFs 
A "Gaussian MF" is specified by two parameters {c , σ }: 

- 1 ( x - c)2 

        gaussian(x; c, σ ) = e 
2
     σ         . 

(2.13) 

 

Type-1 Fuzzy Set Theory
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A “Gaussian” MF is determined completely by c and σ ; c represents the MFs cen-
ter and σ determines the MFs width. Figure 2.2 (a) plots a Gaussian MF defined by 
gaussian (x; 50, 20). 

Definition 2.15. Generalized bell MFs 
A "generalized bell MF" is specified by three parameters {a, b, c}: 

bell(x; a, b, c) =  1  

                                                  1  + | (x-c) / a |2b 
(2.14) 

where the parameter b is usually positive. We can note that this MF is a direct gener-
alization of the Cauchy distribution used in probability theory, so it is also referred to 
as the "Cauchy MF". Figure 2.2 (b) illustrates a generalized bell MF defined by 
bell(x; 20, 4, 50). 

Although the Gaussian MFs and bell MFs achieve smoothness, they are unable to 
specify asymmetric MFs, which are important in certain applications. Next we define 
the sigmoidal MF, which is either open left or right. 
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             (a) Gaussian MF         (b) Generalized Bell MF 

Fig. 2.2. Examples of two classes of parameterized continuous MFs 

Definition 2.16. Sigmoidal MFs 
A "Sigmoidal MF" is defined by the following equation: 

sig(x; a, c) =   1   

                                           1 + exp [-a(x-c)] 

(2.15) 

where a controls the slope at the crossover point x = c. 
Depending on the sign of the parameter "a", a sigmoidal MF is inherently open 

right or left and thus is appropriate for representing concepts such as "very large" or  
"very negative". Figure 2.3 shows two sigmoidal functions y1 =sig(x; 1, -5) and  

y2 =sig(x; -2, 5). 
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            (a) y1 = sig(x; 1, -5)          (b) y2 = sig(x; -2, 5) 

Fig. 2.3. Two sigmoidal functions y1 and y2 

2.2   Fuzzy Rules and Fuzzy Reasoning 

In this section we introduce the concepts of the extension principle and fuzzy relations, 
which extend the notions of fuzzy sets introduced previously. Then we give the defini-
tion of linguistic variables and linguistic values and show how to use them in fuzzy 
rules. By interpreting fuzzy rules as fuzzy relations, we describe different schemes of 
fuzzy reasoning. Fuzzy rules and fuzzy reasoning are the backbone of fuzzy inference 
systems, which are the most important modeling tool based on fuzzy set theory. 

2.2.1   Fuzzy Relations 

The “extension principle” is a basic concept of fuzzy set theory that provides a gen-
eral procedure for extending crisp domains of mathematical expressions to fuzzy do-
mains. This procedure generalizes a common one-to-one mapping of a function f to a 
mapping between fuzzy sets. More specifically, lets assume that f is a function from 
X to Y and A is a fuzzy set on X defined as 

A = μ
A
(x1)/x1 + μ

A
(x2)/x2 +…+ μ

A
(xn)/xn  

Then the extension principle states that the image of fuzzy set A under the mapping 
f can be expressed as a fuzzy set B, 

B = f(A) = μ
A
(x1)/y1 + μ

A
(x2)/y2 +…+ μ

A
(xn)/yn  

where yi = f(xi), i = 1, …, n. In other words, the fuzzy set B can be defined through 
the values of f in x1, x2, …, xn. If f is a many-to-one mapping, then there exists x1, x2 
∈ X, x1 ≠ x2, such that f(x1) = f(x2) = y*, y* ∈ Y. In this case, the membership grade 
of B at y = y* is the maximum of the membership grades of A at x = x1 and x = x2, 
since f(x) = y* may result from x = x1 or x = x2. More generally speaking, we have 

μ
B
(y ) = max μ

A
(x). 

                                        x = f-1(y) 

 

Fuzzy Rules and Fuzzy Reasoning
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A simple example of this concept is shown below. 

Example 2.2. Application of the extension principle to fuzzy sets 
Let suppose we have the following fuzzy set with discrete universe 

  A = 0.2/ -2 + 0.5/ -1 + 0.7/ 0 + 0.9/ 1 + 0.4/ 2 

and lets suppose that we have the following mapping 

  y = x2 + 1. 

After applying the extension principle, we have the following result 

  B = 0.2/ 5 + 0.5/ 2 + 0.7/ 1 + 0.9/ 2 + 0.4/ 5 
  B = 0.7/ 1 + (0.2 ∨ 0.4)/ 5 + (0.5 ∨ 0.9)/ 2 
  B = 0.7/ 1 + 0.4/ 5 + 0.9/ 2,  
 

where ∨ represents “max”. 
Binary fuzzy relations are fuzzy sets in X × Y which map each element in X × Y to 

a membership grade between 0 and 1. In particular, unary fuzzy relations are fuzzy 
sets with one-dimensional MFs; binary fuzzy relations are fuzzy sets with two-
dimensional MFs, and so on. Here we will restrict our attention to binary fuzzy rela-
tions. A generalization to n-ary fuzzy relations is not so difficult. 

Definition 2.17. Binary fuzzy relation 
Let X and Y be two universes of discourse. Then 

ℜ = { ((x, y), μℜ(x, y))| (x, y) ∈ X × Y} (2.16) 

is a binary fuzzy relation in X × Y.  

Example 2.3. Binary fuzzy relations 
Let X = {1, 2, 3} and Y = {1, 2, 3, 4, 5} and ℜ = “y is slightly greater than x”. The 
MF of the fuzzy relation ℜ can be defined (subjectively) as 

 
  μℜ(x, y) =    (y - x)/(y + x), if y > x.                              (2.17) 

     0,  if y ≤ x. 
 
This fuzzy relation ℜ can be expressed as a relation matrix in the following form: 
 

          0  0.333  0.500  0.600  0.666 
ℜ =    0     0  0.200  0.333  0.428 
          0     0      0  0.142  0.250 

 
where the element at row i and column j is equal to the membership grade between 
the ith element of X and jth element of Y. 

Other common examples of binary fuzzy relations are the following: 

• x is similar to y ( x and y are objects) 
• x depends on y ( x and y are events) 
• If x is big, then y is small (x is an observed reading and y is the correspond-

ing action) 
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The last example, “If x is A, then y is B”, is used repeatedly in fuzzy systems. We 
will explore fuzzy relations of this type in the following section. 

Fuzzy relations in different product spaces can be combined through a composition 
operation. Different composition operations have been proposed for fuzzy relations; 
the best known is the max-min composition proposed by Zadeh in 1965. 

Definition 2.18. Max-min composition 
Let ℜ1 and ℜ2 be two fuzzy relations defined on X × Y and Y × Z, respectively. The 
“max-min composition” of ℜ1 and ℜ2 is a fuzzy set defined by  

ℜ1οℜ2 = {[(x, z), max min(μℜ1
(x, y), μℜ2

(y, z))]|x∈X, y∈Y, z∈Z} 

                                 y 
(2.18) 

When ℜ1 and ℜ2 are expressed as relation matrices, the calculation of the composition 
ℜ1οℜ2 is almost the same as matrix multiplication, except that × and + are replaced 
by the “min” and “max” operations, respectively. For this reason, the max-min com-
position is also called the “max-min product”. 

2.2.2   Fuzzy Rules 

As was pointed out by Zadeh in his work on this area (Zadeh, 1973), conventional 
techniques for system analysis are intrinsically unsuited for dealing with humanistic 
systems, whose behavior is strongly influenced by human judgment, perception, and 
emotions. This is a manifestation of what might be called the "principle of incompati-
bility": "As the complexity of a system increases, our ability to make precise and yet 
significant statements about its behavior diminishes until a threshold is reached be-
yond which precision and significance become almost mutually exclusive characteris-
tics" (Zadeh, 1973). It was because of this belief that Zadeh proposed the concept of 
linguistic variables (Zadeh, 1971) as an alternative approach to modeling human 
thinking. 

Definition 2.19. Linguistic variables 
A "Linguistic variable" is characterized by a quintuple (x, T(x), X, G, M) in which x 
is the name of the variable; T(x) is the "term set" of x-that is, the set of its "linguistic 
values" or "linguistic terms"; X is the universe of discourse, G is a "syntactic rule" 
which generates the terms in T(x); and M is a "semantic rule" which associates with 
each linguistic value A its meaning M(A), where M(A) denotes a fuzzy set in X. 

Definition 2.20. Concentration and dilation of linguistic values 
Let A be a linguistic value characterized by a fuzzy set membership function μA(.). 

Then Ak is interpreted as a modified version of the original linguistic value expressed 
as 

Ak =  ∫x [ μA(x)]k / x  . (2.19) 

In particular, the operation of "concentration" is defined as 

CON (A) = A
2
   , (2.20) 
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while that of "dilation" is expressed by 

DIL (A) = A
0.5

   . (2.21) 

Conventionally, we take CON(A) and DIL(A) to be the results of applying the 
hedges "very" and "more or less", respectively, to the linguistic term A. However, 
other consistent definitions for these linguistic hedges are possible and well justified 
for various applications. 

Following the definitions given before, we can interpret the negation operator NOT 
and the connectives AND and OR as  

 NOT(A) = ⎤ A =  ∫x  [ 1 - μA(x) ] / x    , 

 A AND B = A ∩ B =  ∫x  [ μA(x) ∧ μB(x) ] / x ,            (2.22) 

 A OR B = A ∪ B =  ∫x  [ μA(x) ∨ μB(x) ] / x   .  

respectively, where A and B are two linguistic values whose meanings are defined by 
μ

A
(.) and μ

B
(.) . 

Definition 2.21. Fuzzy If-Then Rules 
A "fuzzy if-then rule" (also known as "fuzzy rule", "fuzzy implication", or "fuzzy 
conditional statement") assumes the form 

if x is A then y is B   ,  (2.23) 

where A and B are linguistic values defined by fuzzy sets on universes of discourse X 
and Y, respectively. Often "x is A" is called "antecedent" or "premise", while "y is B" 
is called the "consequence" or "conclusion". 

Examples of fuzzy if-then rules are widespread in our daily linguistic expressions, 
such as the following: 

• If pressure is high, then volume is small. 
• If the road is slippery, then driving is dangerous. 
• If the speed is high, then apply the brake a little. 

Before we can employ fuzzy if-then rules to model and analyze a system, first we 
have to formalize what is meant by the expression "if x is A then y is B", which is 
sometimes abbreviated as A  B. In essence, the expression describes a relation be-
tween two variables x and y; this suggests that a fuzzy if-then rule is defined as a binary 
fuzzy relation R on the product space X x Y. Generally speaking, there are two ways to 
interpret the fuzzy rule A  B. If we interpret A  B as A "coupled with" B then 

  R = A  B = A × B =  ∫x x y  μ
A
(x) * μ

B
(y) / (x,y)  

where * is an operator for intersection (Mamdani & Assilian, 1975). On the other 
hand, if A  B is interpreted as A "entails" B, then it can be written as one of two dif-
ferent formulas: 

• Material implication: 
   R = A  B = ⎤ A ∪ B  .                 (2.24) 
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• Propositional Calculus: 
   R = A  B = ⎤ A ∪ (A ∩ B)  .                (2.25) 

Although these two formulas are different in appearance, they both reduce to the 
familiar identity A  B ≡ ⎤ A ∪ B when A and B are propositions in the sense of 
two-valued logic. 

Fuzzy reasoning, also known as approximate reasoning, is an inference procedure 
that derives conclusions from a set of fuzzy if-then rules and known facts. The basic 
rule of inference in traditional two-valued logic is "modus ponens", according to 
which we can infer the truth of a proposition B from the truth of A and the implication 
A  B. This concept is illustrated as follows: 

 premise 1 (fact):   x  is  A , 
 premise 2 (rule):   if  x  is  A  then  y  is  B  , 
 consequence (conclusion):  y  is  B . 

However, in much of human reasoning, modus ponens is employed in an approxi-
mate manner. This is written as 

 premise 1 (fact):   x  is  A' 
 premise 2 (rule):   if  x  is  A  then  y  is  B  , 
 consequence (conclusion):  y  is  B' 

where A' is close to A and B' is close to B. When A, B, A' and B' are fuzzy sets of ap-
propriate universes, the foregoing inference procedure is called "approximate reason-
ing" or "fuzzy reasoning"; it is also called "generalized modus ponens" (GMP for 
short), since it has modus ponens as a special case. 

Definition 2.22. Fuzzy reasoning 
Let A, A', and B be fuzzy sets of X, X, and Y respectively. Assume that the fuzzy im-

plication A  B is expressed as a fuzzy relation R on X x Y. Then the fuzzy set B in-
duced by "x is A'" and the fuzzy rule "if x is A then y is B" is defined by 

  μ
B'(y) = maxx min [ μ

A'(x), μ
R
(x, y) ] 

            = Vx [ μ
A'(x) ∧ μ

R
(x, y) ] .                              (2.26) 

Now we can use the inference procedure of fuzzy reasoning to derive conclusions 
provided that the fuzzy implication A  B is defined as an appropriate binary fuzzy 
relation. 

 

Single Rule with Single Antecedent 
This is the simplest case, and the formula is available in Equation (2.26). A further 
simplification of the equation yields 

  μ
B'(y) = [ Vx ( μ

A'(x) ∧ μ
A
(x) ) ] ∧ μ

B
(y)   

            = ω ∧ μ
B
(y)   

In other words, first we find the degree of match ω as the maximum of μ
A'(x) ∧ 

μ
A
(x); then the MF of the resulting B' is equal to the MF of B clipped by ω. Intui-

tively, ω represents a measure of degree of belief for the antecedent part of a rule; this  
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measure gets propagated by the if-then rules and the resulting degree of belief or MF 
for the consequent part should be no greater than ω. 

Multiple Rules with Multiple Antecedents 
The process of fuzzy reasoning or approximate reasoning for the general case can be 
divided into four steps: 

1) Degrees of compatibility: Compare the known facts with the antecedents of fuzzy 
rules to find the degrees of compatibility with respect to each antecedent MF. 

2) Firing Strength: Combine degrees of compatibility with respect to antecedent 
MFs in a rule using fuzzy AND or OR operators to form a firing strength that indi-
cates the degree to which the antecedent part of the rule is satisfied. 

3) Qualified (induced) consequent MFs: Apply the firing strength to the consequent 
MF of a rule to generate a qualified consequent MF. 

4) Overall output MF: Aggregate all the qualified consequent MFs to obtain an 
overall output MF. 

2.3   Fuzzy Inference Systems 

In this section we describe the three types of fuzzy inference systems that have been 
widely used in the applications. The differences between these three fuzzy inference 
systems lie in the consequents of their fuzzy rules, and thus their aggregation and de-
fuzzification procedures differ accordingly. 

The "Mamdani fuzzy inference system" (Mamdani & Assilian, 1975) was proposed 
as the first attempt to control a steam engine and boiler combination by a set of  
linguistic control rules obtained from experienced human operators. Figure 2.4 is an 
illustration of how a two-rule Mamdani fuzzy inference system derives the overall 
output z when subjected to two numeric inputs x and y. 

In Mamdani's application, two fuzzy inference systems were used as two control-
lers to generate the heat input to the boiler and throttle opening of the engine cylinder, 
respectively, to regulate the steam pressure in the boiler and the speed of the engine. 
Since the engine and boiler take only numeric values as inputs, a defuzzifier was used 
to convert a fuzzy set to a numeric value. 

 
Defuzzification 
Defuzzification refers to the way a numeric value is extracted from a fuzzy set as a 
representative value. In general, there are five methods for defuzzifying a fuzzy set A 
of a universe of discourse Z, as shown in Figure 2.5 (Here the fuzzy set A is usually 
represented by an aggregated output MF, such as C' in Figure 2.4). A brief explana-
tion of each defuzzification strategy follows. 

• Centroid of area zCOA: 

   zCOA = ∫z μ
A
(z)zdz                   (2.27) 

                ∫z μ
A
(z)dz  
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           Min     
             A1           B1          C1

C’1

            x          y             z

           
A2     B2 C2

   C’2

            x          y              z
            Max

x      y      

C’

z
            zCOA  

Fig. 2.4. The Mamdani fuzzy inference system using the min and max operators 

where μ
A
(z) is the aggregated output MF. This is the most widely adopted defuzzifi-

cation strategy, which is reminiscent of the calculation of expected values of probabil-
ity distributions. 

 

• Bisector of area zBOA :   zBOA   satisfies 
 

    zBOA                 β   

   ∫
α
   μ

A
(z)dz  =  ∫z

BOA   μ
A
(z)dz    ,                                (2.28) 

where α = min{z | z ∈ Z} and β = max{z | z ∈ Z}. 
 

• Mean of maximum zMOM : zMOM is the average of the maximizing z at 

which the MF reach a maximum μ*. Mathematically, 
 
   zMOM  =  ∫z'  zdz   ,                 (2.29) 

                  ∫z'  dz    

where z' = { z | μ
A
(z) = μ* }. In particular, if μ

A
(z) has a single maximum at z = z*, 

then zMOM = z*. Moreover, if μ
A
(z) reaches its maximum whenever z ∈ [z

left
, z

right
]  

then zMOM = (z
left

 + z
right

 ) / 2. 
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Fig. 2.5. Various defuzzification methods for obtaining a numeric output 

• Smallest of maximum zSOM : zSOM is the minimum (in terms of magni-

tude) of the maximizing z. 
• Largest of maximum zLOM : zLOM is the maximum (in terms of magni-

tude) of the maximizing z. Because of their obvious bias, zSOM and zLOM 

are not used as often as the other three defuzzification methods. 

The calculation needed to carry out any of these five defuzzification operations is 
time-consuming unless special hardware support is available. Furthermore, these de-
fuzzification operations are not easily subject to rigorous mathematical analysis, so 
most of the studies are based on experimental results. This leads to the propositions of 
other types of fuzzy inference systems that do not need defuzzification at all; two of 
them will be described in the following. Other more flexible defuzzification methods 
can be found in several more recent papers (Yager & Filev, 1993), (Runkler & 
Glesner, 1994). 

We will give a simple example to illustrate the use of the Mamdani fuzzy inference 
system. We will consider the case of determining the quality of a image produce by a 
Television as a result of controlling the electrical tuning process based on the input vari-
ables: voltage and current. Automating the electrical tuning process during the manufac-
turing of televisions, results in increased productivity and reduction of production costs, 
as well as increasing the quality of the imaging system of the television. The fuzzy model 
will consist of a set of rules relating these variables, which represent expert knowledge in 
the electrical tuning process of televisions. In Figure 2.6 we show the architecture of the 
fuzzy system relating the input variables (voltage, current and time) with the output vari-
able (quality of the image), which was implemented by using the MATLAB Fuzzy Logic 
Toolbox. We show in Figure 2.7 the fuzzy rule base, which was implemented by using 
the “rule editor” of the same toolbox. In Figure 2.8 we can appreciate the membership 
functions for the image-quality variable. We show in Figure 2.9 the membership func-
tions for the voltage variable. We also show in Figure 2.10 the use of the “rule viewer” of 
MATLAB to calculate specific values. Finally, in Figure 2.11 we show the non-linear 
surface for the Mamdani model. 
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Time (2)

System tv-tuning: 3 inputs, 1 outputs, 13 rules

Image-Quality (5)

tv-tuning

(mamdani)
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System Architecture 

 

Fig. 2.6. Architecture of the fuzzy system for quality evaluation 

 

Fig. 2.7. Fuzzy rule base for quality evaluation 
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Fig. 2.8. Gaussian membership functions for the output linguistic variable 
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Fig. 2.9. Gaussian membership functions for the voltage linguistic variable 
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Fig. 2.10. Use of the fuzzy rule base with specific values 
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Fig. 2.11. Non-linear surface of the Mamdani fuzzy model 
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Sugeno Fuzzy Models 
The "Sugeno fuzzy model" (also known as the "TSK fuzzy model") was proposed by 
Takagi, Sugeno and Kang in an effort to develop a systematic approach to generating 
fuzzy rules from a given input-output data set (Takagi & Sugeno, 1985), (Sugeno & 
Kang, 1988). A typical fuzzy rule in a Sugeno fuzzy model has the form: 

  if  x  is  A  and  y  is  B  then  z = f(x,y) 
where A and B are fuzzy sets in the antecedent, while z = f(x,y) is a traditional func-
tion in the consequent. Usually f(x,y) is a polynomial in the input variables x and y, 
but it can be any function as long as it can appropriately describe the output of the 
model within the fuzzy region specified by the antecedent of the rule. When f(x,y) is a 
first-order polynomial, the resulting fuzzy inference system is called a "first-order 
Sugeno fuzzy model". When f is constant, we then have a "zero-order Sugeno fuzzy 
model", which can be viewed either as a special case of the Mamdani inference sys-
tem, in which each rule's consequent is specified by a fuzzy singleton, or a special 
case of the Tsukamoto fuzzy model (to be introduced next), in which each rule's con-
sequent is specified by a MF of a step function center at the constant. 

Figure 2.12 shows the fuzzy reasoning procedure for a first-order Sugeno model. 
Since each rule has a numeric output, the overall output is obtained via "weighted av-
erage", thus avoiding the time-consuming process of defuzzification required in a 
Mamdani model. In practice, the weighted average operator is sometimes replaced 
with the "weighted sum" operator (that is, w

1
z

1
 + w

2
z

2
 in Figure 2.12) to reduce com-

putation further specially, in the training of a fuzzy inference system. However, this 
simplification could lead to the loss of MF linguistic meanings unless the sum of fir-
ing strengths (that is,  ∑wi ) is close to unity. 

 
  μ     μ          Min         
              A1            B1     
       z1 = p1x + q1y + r1 
             w1   
              x            y    
          
   μ      μ             
 A2       B2      
       z2 = p2x + q2y + r2 
             w2   
          
              x            y    
          
  x       y          
        weighted average 
                       z = w1 z1 + w2 z2   
                    w1 + w2   
 

Fig. 2.12. The Sugeno fuzzy model 
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Unlike the Mamdani fuzzy model, the Sugeno fuzzy model cannot follow the com-
positional rule of inference strictly in its fuzzy reasoning mechanism. This poses some 
difficulties when the inputs to a Sugeno fuzzy model are fuzzy. Specifically, we can 
still employ the matching of fuzzy sets to find the firing strength of each rule. How-
ever, the resulting overall output via either weighted average or weighted sum is al-
ways crisp; this is counterintuitive since a fuzzy model should be able to propagate 
the fuzziness from inputs to outputs in an appropriate manner. Without the use of the 
time-consuming defuzzification procedure, the Sugeno fuzzy model is by far the most 
popular candidate for sample-data-based modeling. 

We will give a simple example to illustrate the use of the Sugeno fuzzy inference 
system. We will consider again the television example, i.e., determining the quality of 
the images produced by the television depending on the voltage and current of the 
electrical tuning process. In Figure 2.13 we show the architecture of the Sugeno 
model for this example. We show in Figure 2.14 the fuzzy rule base of the Sugeno 
model. We also show in Figure 2.15 the membership functions for the current input 
variable. In Figure 2.16 we show the non-linear surface of the Sugeno model. 

Finally, we show in Figure 2.17 the use of the “rule viewer” of the Fuzzy Logic 
Toolbox of MATLAB. The rule viewer is used when we want to evaluate the output 
of a fuzzy system using specific values for the input variables. In Figure 2.17, for ex-
ample, we give a voltage of 5 volts, a current intensity of 5 Amperes, and a time of 
production of 5 seconds, and obtain as a result a quality of 92.2%, which is excellent. 
Of course, this is only an illustrative example of the potential use of fuzzy logic in this 
type of applications. 

Voltage (3)

Current (3)

Time (2)

System tv-tun-sugeno: 3 inputs, 1 outputs, 13 rules

f(u)

Image-Quality (5)

tv-tun-sugeno

(sugeno)

13 rules

System Architecture for Sugeno Type 

 

Fig. 2.13. Architecture of the Sugeno fuzzy model for quality evaluation 
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Fig. 2.14. Fuzzy rule base for quality evaluation using the “rule editor” 
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Fig. 2.15. Membership functions for the current linguistic variable 
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Fig. 2.16. Non-linear surface for the Sugeno fuzzy model for quality evaluation 

 

Fig. 2.17. Application of the rule viewer of MATLAB with specific values 

Tsukamoto Fuzzy Models 
In the "Tsukamoto fuzzy models" (Tsukamoto, 1979), the consequent of each fuzzy 
if-then rule is represented by a fuzzy set with a monotonical MF, as shown in  

Fuzzy Inference Systems



26 Type-1 Fuzzy Logic 

Figure 2.18. As a result, the inferred output of each rule is defined as a numeric value 
induced by the rule firing strength. The overall output is taken as the weighted aver-
age of each rule's output. Figure 2.18 illustrates the reasoning procedure for a two-
input two-rule system. 

Since each rule infers a numeric output, the Tsukamoto fuzzy model aggregates 
each rule's output by the method of weighted average and thus avoids the time-
consuming process of defuzzification. However, the Tsukamoto fuzzy model is not 
used often since it is not as transparent as either the Mamdani or Sugeno fuzzy mod-
els. Since the reasoning method of the Tsukamoto fuzzy model does not follow 
strictly the compositional rule of inference, the output is always crisp even when the 
inputs are fuzzy. 

 
     μ      μ          Min     μ     
              A1            B1            C1  
          
          
              x            y               z 
           z1   
     μ       μ          μ     
 A2       B2    C2  
          
          
          
              x            y                z 
            z2   
  x       y      
          
        weighted average 
                       z = w1 z1 + w2 z2   
                    w1 + w2   

 

Fig. 2.18. The Tsukamoto fuzzy model 

There are certain common issues concerning all the three fuzzy inference systems 
introduced previously, such as how to partition an input space and how to construct a 
fuzzy inference system for a particular application. We will examine these issues in 
more detail in the following lines. 

 
Input Space Partitioning 
Now it should be clear that the main idea of fuzzy inference systems resembles that of 
"divide and conquer" - the antecedent of a fuzzy rule defines a local fuzzy region, 
while the consequent describes the behavior within the region via various constitu-
ents. The consequent constituent can be a consequent MF (Mamdani and Tsukamoto 
fuzzy models), a constant value (zero-order Sugeno model), a linear equation (first-
order Sugeno model) or a non-linear equation (higher order Sugeno models).  
Different consequent constituents result in different fuzzy inference systems, but their 
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antecedents are always the same. Therefore, the following discussion of methods of 
partitioning input spaces to form the antecedents of fuzzy rules is applicable to all 
three types of fuzzy inference systems. 

• Grid partition: This partition method is often chosen in designing a fuzzy 
controller, which usually involves only several state variables as the inputs 
to the controller. This partition strategy needs only a small number of MFs 
for each input. However, it encounters problems when we have a moder-
ately large number of inputs. For instance, a fuzzy model with 12 inputs 

and 2 MFs on each input would result in 212 = 4096 fuzzy if-then rules, 
which is prohibitively large. This problem, usually referred to as the "curse 
of dimensionality", can be alleviated by other partition strategies. 

• Tree partition: In this method each region can be uniquely specified along a 
corresponding decision tree. The tree partition relieves the problem of an 
exponential increase in the number of rules. However, more MFs for each 
input are needed to define these fuzzy regions, and these MFs do not usu-
ally bear clear linguistic meanings. In other words, orthogonality holds 

roughly in X × Y, but not in either X or Y alone. 
• Scatter partition: By covering a subset of the whole input space that charac-

terizes a region of possible occurrence of the input vectors, the scatter par-
tition can also limit the number of rules to a reasonable amount. However, 
the scatter partition is usually dictated by desired input-output data pairs 

and thus, in general, orthogonality does not hold in X, Y or X × Y. This 
makes it hard to estimate the overall mapping directly from the consequent 
of each rule's output. 

2.4   Fuzzy Modeling 

In general, we design a fuzzy inference system based on the past known behavior of a 
target system. The fuzzy system is then expected to be able to reproduce the behavior 
of the target system. For example, if the target system is a human operator in charge 
of a electrochemical reaction process, then the fuzzy inference system becomes a 
fuzzy logic controller that can regulate and control the process. 

Let us now consider how we might construct a fuzzy inference system for a spe-
cific application. Generally speaking, the standard method for constructing a fuzzy in-
ference system, a process usually called "fuzzy modeling", has the following features: 

• The rule structure of a fuzzy inference system makes it easy to incorporate 
human expertise about the target system directly into the modeling process. 
Namely, fuzzy modeling takes advantage of "domain knowledge" that 
might not be easily or directly employed in other modeling approaches. 

• When the input-output data of a target system is available, conventional 
system identification techniques can be used for fuzzy modeling. In other 
words, the use of "numerical data" also plays an important role in "fuzzy 
modeling", just as in other mathematical modeling methods. 

Fuzzy Modeling
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Conceptually, fuzzy modeling can be pursued in two stages, which are not totally 
disjoint. The first stage is the identification of the "surface structure", which includes 
the following tasks: 

1. Select relevant input and output variables. 
2. Choose a specific type of fuzzy inference system. 
3. Determine the number of linguistic terms associated with each input and 

output variables. 
4. Design a collection of fuzzy if-then rules. 

Note that to accomplish the preceding tasks, we rely on our own knowledge (com-
mon sense, simple physical laws, an so on) of the target system, information provided 
by human experts who are familiar with the target system, or simply trial and error. 

After the first stage of fuzzy modeling, we obtain a rule base that can more or less 
describe the behavior of the target system by means of linguistic terms. The meaning 
of these linguistic terms is determined in the second stage, the identification of "deep 
structure", which determines the MFs of each linguistic term (and the coefficients of 
each rule’s output in the case that a Sugeno model is used). Specifically, the identifi-
cation of deep structure includes the following tasks: 

1. Choose an appropriate family of parameterized MFs. 
2. Interview human experts familiar with the target systems to determine the 

parameters of the MFs used in the rule base. 
3. Refine the parameters of the MFs using regression and optimization tech-

niques. 

Task 1 and 2 assume the availability of human experts, while task 3 assumes the 
availability of a desired input-output data set. When a fuzzy inference system is used 
as a controller for a given plant, then the objective in task 3 should be changed to that 
of searching for parameters that will generate the best performance of the plant. 

2.5   Summary 

In this chapter, we have presented the main ideas underlying type-1 fuzzy logic and 
we have only started to point out the many possible applications of this powerful 
computational theory. We have discussed in some detail fuzzy set theory, fuzzy rea-
soning and fuzzy inference systems. At the end, we also gave some remarks about 
fuzzy modeling. In the following chapters, we will show how fuzzy logic techniques 
(in some cases, in conjunction with other methodologies) can be applied to solve real 
world complex problems. 
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3   Type-2 Fuzzy Logic 

We introduce in this chapter a new area in fuzzy logic, which is called type-2 fuzzy 
logic. Basically, a type-2 fuzzy set is a set in which we also have uncertainty about 
the membership function. Of course, type-2 fuzzy systems consist of fuzzy if-then 
rules, which contain type-2 fuzzy sets. We can say that type-2 fuzzy logic is a gener-
alization of conventional fuzzy logic (type-1) in the sense that uncertainty is not only 
limited to the linguistic variables but also is present in the definition of the member-
ship functions.  

Fuzzy Logic Systems are comprised of rules. Quite often, the knowledge that is 
used to build these rules is uncertain. Such uncertainty leads to rules whose antece-
dents or consequents are uncertain, which translates into uncertain antecedent or con-
sequent membership functions (Karnik & Mendel 1998). Type-1 fuzzy systems (like 
the ones seen in the previous chapter), whose membership functions are type-1 fuzzy 
sets, are unable to directly handle such uncertainties. We describe in this chapter, 
type-2 fuzzy systems, in which the antecedent or consequent membership functions 
are type-2 fuzzy sets. Such sets are fuzzy sets whose membership grades themselves 
are type-1 fuzzy sets; they are very useful in circumstances where it is difficult to de-
termine an exact membership function for a fuzzy set. 

The original fuzzy logic, founded by Lotfi Zadeh, has been around for more than 
30 years, and yet it is unable to handle uncertainties (Mendel, 2001). That the original 
fuzzy logic (type-1 fuzzy logic) cannot do this sounds paradoxical because the word 
“fuzzy” has the connotation of uncertainty. The expanded fuzzy logic (type-2 fuzzy 
logic) is able to handle uncertainties because it can model and minimize their effects. 

In what follows, we shall first introduce the basic concepts of type-2 fuzzy sets, and 
type-2 fuzzy reasoning. Then we will introduce and compare the different types of fuzzy 
inference systems that have been employed in various applications. We will also con-
sider briefly type-2 fuzzy logic systems and the comparison to type-1 fuzzy systems.  

3.1   Type-2 Fuzzy Sets 

The concept of a type-2 fuzzy set, was introduced by Zadeh (1975) as an extension of 
the concept of an ordinary fuzzy set (henceforth called a “type-1 fuzzy set”). A type-2 
fuzzy set is characterized by a fuzzy membership function, i.e., the membership grade 
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for each element of this set is a fuzzy set in [0,1], unlike a type-1 set where the mem-
bership grade is a crisp number in [0,1]. Such sets can be used in situations where 
there is uncertainty about the membership grades themselves, e.g., an uncertainty in 
the shape of the membership function or in some of its parameters. Consider the tran-
sition from ordinary sets to fuzzy sets. When we cannot determine the membership of 
an element in a set as 0 or 1, we use fuzzy sets of type-1. Similarly, when the situation 
is so fuzzy that we have trouble determining the membership grade even as a crisp 
number in [0,1], we use fuzzy sets of type-2. 

This does not mean that we need to have extremely fuzzy situations to use type-2 
fuzzy sets. There are many real-world problems where we cannot determine the exact 
form of the membership functions, e.g., in time series prediction because of noise in 
the data. Another way of viewing this is to consider type-1 fuzzy sets as a first order 
approximation to the uncertainty in the real-world. Then type-2 fuzzy sets can be con-
sidered as a second order approximation. Of course, it is possible to consider fuzzy 
sets of higher types but the complexity of the fuzzy system increases very rapidly. For 
this reason, we will only consider very briefly type-2 fuzzy sets. Lets consider some 
simple examples of type-2 fuzzy sets. 

Example 3.1. Consider the case of a fuzzy set characterized by a Gaussian membership 
function with mean m and a standard deviation that can take values in [σ1,σ2], i.e., 

μ(x)=exp {– ½[(x – m)/σ]2 }; σ ∈ [σ1,σ2] (3.1) 

Corresponding to each value of σ, we will get a different membership curve (see 
Figure 3.1). So, the membership grade of any particular x (except x=m) can take any 
of a number of possible values depending upon the value of σ, i.e., the membership 
grade is not a crisp number, it is a fuzzy set. Figure 3.1 shows the domain of the fuzzy 
set associated with x=0.7; however, the membership function associated with this 
fuzzy set is not shown in the figure. 
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Fig. 3.1. A type-2 fuzzy set representing a type-1 fuzzy set with uncertain standard deviation 
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Example 3.2. Consider the case of a fuzzy set with a Gaussian membership function 
having a fixed standard deviation σ, but an uncertain mean, taking values in [m1, m2], i.e., 

μ(x)=exp {– ½[(x – m)/σ]2 }; m ∈ [m1,m2] (3.2) 

Again, μ(x) is a fuzzy set. Figure 3.2 shows an example of such a set.  

Example 3.3. Consider a type-1 fuzzy set characterized by a Gaussian membership 
function (mean M and standard deviation σx), which gives one crisp membership 
m(x) for each input x ∈ X, where 

m(x)=exp {– ½ [(x – M)/σx]
2} (3.3) 

This is shown in Figure 3.3. Now, imagine that this membership of x is a fuzzy set. 
Let us call the domain elements of this set “primary memberships” of x (denoted by 
μ1) and membership grades of these primary memberships “secondary memberships” 
of x [denoted by μ2(x, μ1)]. So, for a fixed x, we get a type-1 fuzzy set whose domain 
elements are primary memberships of x and whose corresponding membership grades 
are secondary memberships of x. If we assume that the secondary memberships fol-
low a Gaussian with mean m(x) and standard deviation σm, as in Figure 3.3, we can 
describe the secondary membership function for each x as 

μ2(x,μ1) = e – ½ [(μ1 - m(x))/ σm]2 (3.4) 

where μ1 ∈ [0,1] and m is as in equation (3.3). 
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Fig. 3.2. A type-2 fuzzy set representing a type-1 fuzzy set with uncertain mean. The mean is 
uncertain in the interval [0.4, 0.6]. 

We can formally define these two kinds of type-2 sets as follows. 
 

Definition 3.1. Gaussian type-2 
A Gaussian type-2 fuzzy set is one in which the membership grade of every domain 
point is a Gaussian type-1 set contained in [0,1]. 

Example 3.3 shows an example of a Gaussian type-2 fuzzy set. Another way of view-
ing type-2 membership functions is in a three-dimensional fashion, in which we 
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Fig. 3.3. A type-2 fuzzy set in which the membership grade of every domain point is a  
Gaussian type-1 set 
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Fig. 3.4. Three-dimensional view of a type-2 membership function 

can better appreciate the idea of type-2 fuzziness. In Figure 3.4 we have a three-
dimensional view of a type-2 Gaussian membership function. 

 

Definition 3.2. Interval type-2 
An interval type-2 fuzzy set is one in which the membership grade of every domain 
point is a crisp set whose domain is some interval contained in [0,1]. 
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Example 3.1 shows an example of an interval type-2 fuzzy set. 

We will give some useful definitions on type-2 fuzzy sets in the following lines. 
 

Definition 3.3. Footprint of uncertainty 
Uncertainty in the primary memberships of a type-2 fuzzy set, Ã, consists of a 
bounded region that we call the “footprint of uncertainty” (FOU). Mathematically, it 
is the union of all primary membership functions (Mendel 2001). 

We show as an illustration in Figure 3.5 the footprint of uncertainty for a type-2 
Gaussian membership function. This footprint of uncertainty can be obtained by pro-
jecting in two dimensions the three-dimensional view of the type-2 Gaussian mem-
bership function. 
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Fig. 3.5. Footprint of uncertainty of a sample type-2 Gaussian membership function 

Definition 3.4. Upper and lower membership functions 
An “upper membership function” and a “lower membership functions” are two type-1 
membership functions that are bounds for the FOU of a type-2 fuzzy set Ã. The upper 
membership function is associated with the upper bound of FOU(Ã). The lower 
membership function is associated with the lower bound of FOU(Ã). 

We illustrate the concept of upper and lower membership functions as well as the 
footprint of uncertainty in the following example. 

Example 3.4. Gaussian primary MF with uncertain standard deviation 
For the Gaussian primary membership function with uncertain standard deviation 
(Figure 3.1), the upper membership function is 
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upper(FOU(Ã)) = N(m, σ2; x) (3.5) 

And the lower membership function is 

lower(FOU(Ã)) = N(m, σ1; x). (3.6) 

We will describe the operations and properties of type-2 fuzzy sets in the following 
section. 

3.2   Operations of Type-2 Fuzzy Sets 

In this section we describe the set theoretic operations of type-2 fuzzy sets. We are 
interested in the case of type-2 fuzzy sets, Ãi (i = 1,…,r), whose secondary mem-
bership functions are type-1 fuzzy sets. To compute the union, intersection, and 
complement of type-2 fuzzy sets, we need to extend the binary operations of 
minimum (or product) and maximum, and the unary operation of negation, from 
crisp numbers to type-1 fuzzy sets, because at each x, μÃi (x, u) is a function 
(unlike the type-1 case, where μÃi (x) is a crisp number). The tool for computing 
the union, intersection, and complement of type-2 fuzzy sets is Zadeh’s extension 
principle (Zadeh, 1975). 

Consider two type-2 fuzzy sets Ã1 and Ã2, i.e., 

Ã1 = ∫x μÃ1 (x)/ x (3.7) 

and 

Ã2 = ∫x μÃ2 (x)/ x (3.8) 

In this section, we focus our attention on set theoretic operations for such general 
type-2 fuzzy sets. 
 

Definition 3.5. Union of type-2 fuzzy sets 
The union of Ã1 and Ã2 is another type-2 fuzzy set, just as the union of type-1 fuzzy 
sets A1 and A2 is another type-1 fuzzy set. More formally, we have the following ex-
pression 

Ã1 ∪ Ã2 = ∫x∈X μÃ1∪Ã2 (x)/ x (3.9) 

We can explain Equation (3.9) by the “join” operation (Mendel, 2001). Basically, 
the join between two secondary membership functions must be performed between 
every possible pair of primary memberships. If more than one combination of  
pairs gives the same point, then in the join we keep the one with maximum member-
ship grade. We will consider a simple example to illustrate the union operation. In  
Figure 3.6 we plot two type-2 Gaussian membership functions, and the union is 
shown in Figure 3.7. 
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Fig. 3.6. Two sample type-2 Gaussian membership functions 
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Fig. 3.7. Union of the two Gaussian membership functions 
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Fig. 3.8. Intersection of two type-2 Gaussian membership functions 

Definition 3.6. Intersection of type-2 fuzzy sets 
The intersection of Ã1 and Ã2 is another type-2 fuzzy set, just as the intersection of 
type-1 fuzzy sets A1 and A2 is another type-1 fuzzy set. More formally, we have the 
following expression 

Ã1 ∩ Ã2 = ∫x∈X μÃ1∩Ã2 (x)/ x (3.10) 

We illustrate the intersection of two type-2 Gaussian membership functions in  
Figure 3.8 

We can explain Equation (3.10) by the “meet” operation (Mendel, 2001). Basi-
cally, the meet between two secondary membership functions must be performed  
between every possible pair of primary memberships. If more than one combination 
of pairs gives the same point, then in the meet we keep the one with maximum  
membership grade. 

Definition 3.7. Complement of a type-2 fuzzy set 
The complement of set Ã is another type-2 fuzzy set, just as the complement of type-1 
fuzzy set A is another type-1 fuzzy set. More formally we have 

Ã’ = ∫x μÃ’1 (x)/ x (3.11) 

where the prime denotes complement in the above equation. In this equation μÃ’1 is a 
secondary membership function, i.e., at each value of x μÃ’1 is a function (unlike the 
type-1 case where, at each value of x, μÃ’1 is a point value). 

 

Example 3.5. Type-2 fuzzy set operations 
In this example we illustrate the union, intersection and complement operations for 
two type-2 fuzzy sets Ã1 and Ã2, and for a particular element x for which the  
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secondary membership functions in these two sets are μÃ1 (x) = 0.5/0.1 + 0.8/0.2 and 
μÃ2 (x) = 0.4/0.5 + 0.9/0.9. Using in the operations the minimum t-norm and the 
maximum t-conorm, we have the following results: 

 

μÃ1∪Ã2 (x) = μÃ1 (x) ∪ μÃ2 (x) = (0.5/0.1 + 0.8/0.2) ∪ (0.4/0.5 + 0.9/0.9) 
= (0.5 ∧ 0.4)/(0.1 ∨ 0.5) + (0.5 ∧ 0.9)/(0.1 ∨ 0.9) + 
(0.8 ∧ 0.4)/(0.2 ∨ 0.5) + (0.8 ∧ 0.9)/(0.2 ∨ 0.9) 
= 0.4/0.5 + 0.5/0.9 + 0.4/0.5 + 0.8/0.9 
= max{0.4, 0.4}/0.5 + max{0.5, 0.8}/0.9 
= 0.4/0.5 + 0.8/0.9 

 

μÃ1∩Ã2 (x) = μÃ1 (x) ∩ μÃ2 (x) = (0.5/0.1 + 0.8/0.2) ∩ (0.4/0.5 + 0.9/0.9) 
= (0.5 ∧ 0.4)/(0.1 ∧ 0.5) + (0.5 ∧ 0.9)/(0.1 ∧ 0.9) + 
(0.8 ∧ 0.4)/(0.2 ∧ 0.5) + (0.8 ∧ 0.9)/(0.2 ∧ 0.9) 
= 0.4/0.1 + 0.5/0.1 + 0.4/0.2 + 0.8/0.2 
= max{0.4, 0.5}/0.1 + max{0.4, 0.8}/0.2 
= 0.5/0.1 + 0.8/0.2 

 

μÃ’1 (x) = 0.5/ (1 – 0.1) + 0.8/ (1 – 0.2) = 0.5/ 0.9 + 0.8/ 0.8. 

3.3   Type-2 Fuzzy Systems 

The basics of fuzzy logic do not change from type-1 to type-2 fuzzy sets, and in gen-
eral, will not change for any type-n (Karnik & Mendel 1998). A higher-type number 
just indicates a higher “degree of fuzziness”. Since a higher type changes the nature of 
the membership functions, the operations that depend on the membership functions 
change; however, the basic principles of fuzzy logic are independent of the nature of 
membership functions and hence, do not change. Rules of inference like Generalized 
Modus Ponens or Generalized Modus Tollens continue to apply. 

The structure of the type-2 fuzzy rules is the same as for the type-1 case because 
the distinction between type-2 and type-1 is associated with the nature of the member-
ship functions. Hence, the only difference is that now some or all the sets involved in 
the rules are of type-2. In a type-1 fuzzy system, where the output sets are type-1 
fuzzy sets, we perform defuzzification in order to get a number, which is in some 
sense a crisp (type-0) representative of the combined output sets. In the type-2 case, 
the output sets are type-2; so we have to use extended versions of type-1 defuzzifica-
tion methods. Since type-1 defuzzification gives a crisp number at the output of the 
fuzzy system, the extended defuzzification operation in the type-2 case gives a type-1 
fuzzy set at the output. Since this operation takes us from the type-2 output sets of the 
fuzzy system to a type-1 set, we can call this operation “type reduction” and call the 
type-1 fuzzy set so obtained a “type-reduced set”. The type-reduced fuzzy set may 
then be defuzzified to obtain a single crisp number; however, in many applications, 
the type-reduced set may be more important than a single crisp number. 

Type-2 sets can be used to convey the uncertainties in membership functions of 
type-1 fuzzy sets, due to the dependence of the membership functions on available 
linguistic and numerical information. Linguistic information (e.g. rules from experts), 
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in general, does not give any information about the shapes of the membership func-
tions. When membership functions are determined or tuned based on numerical data, 
the uncertainty in the numerical data, e.g., noise, translates into uncertainty in the 
membership functions. In all such cases, any available information about the linguis-
tic/numerical uncertainty can be incorporated in the type-2 framework. However, 
even with all of the advantages that fuzzy type-2 systems have, the literature on the 
applications of type-2 sets is scarce. Some examples are Yager (1980) for decision 
making, and Wagenknecht & Hartmann (1988) for solving fuzzy relational equations. 
We think that more applications of type-2 fuzzy systems will come in the near future 
as the area matures and the theoretical results become more understandable for the 
general public in the fuzzy arena. 

3.3.1   Singleton Type-2 Fuzzy Logic Systems 

This section discusses the structure of a singleton type-2 Fuzzy Logic Systems (FLS), 
which is a system that accounts for uncertainties about the antecedents or consequents 
in rules, but does not explicitly account for input measurement uncertainties. More 
complicated (but, more versatile) non-singleton type-2 FLSs, which account for both 
types of uncertainties, are discussed later.  

The basics of fuzzy logic do not change from type-1 to type-2 fuzzy sets, and in 
general will not change for type-n. A higher type number just indicates a higher de-
gree of fuzziness. Since a higher type changes the nature of the membership func-
tions, the operations that depend on the membership functions change, however, the 
basic principles of fuzzy logic are independent of the nature of membership functions 
and hence do not change. Rules of inference, like Generalized Modus Ponens, con-
tinue to apply. 

A general type-2 FLS is shown in Figure 3.9. As discussed before a type-2 FLS is 
very similar to type-1 FLS, the major structural difference being that the defuzzifier 
block of a type-1 FLS is replaced by the output processing block in type-2 FLS. That 
block consists of type-reduction followed by defuzzification.  

During our development of a type-2 FLS, we assume that all the antecedent and 
consequent sets in rules are type-2, however, this need not necessarily be the case in 
practice. All results remain valid as long as long as just one set is type-2. This means 
that a FLS is type-2 as long as any one of its antecedent or consequent sets is type-2.  

In the type-1 case, we generally have fuzzy if-then rules of the form 

Rl : IF x1 is Al
1 and … xp is Al

p , THEN y is Yl  l = 1,…, M (3.12) 

As mentioned earlier, the distinction between type-1 and type-2 is associated with the 
nature of the membership functions, which is not important when forming the rules. 
The structure of the rules remains exactly the same in the type-2 case, but now some 
or all of the sets involved are type-2. 

Consider a type-2 FLS having r inputs x1 ∈ X1, …, xr ∈ Xr and one output y ∈ Y. 
As in the type-1 case, we can assume that there are M rules; but, in the type-2 case the 
lth rule has the form 

Rl : IF x1 is Ãl
1 and … xp is Ãl

p , THEN y is ìl  l = 1,…, M (3.13) 
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Fig. 3.9. Type-2 Fuzzy Logic System 

This rule represents a type-2 fuzzy relation between the input space X1 × …× Xr, and 
the output space, Y, of the type-2 fuzzy system. 

In a type-1 FLS the inference engine combines rules and gives a mapping from in-
put type-1 fuzzy sets to output type-1 fuzzy sets. Multiple antecedents in rules are 
combined by the t-norm. The membership grades in the input sets are combined with 
those in the output sets using composition. Multiple rules may be combined using the 
t-conorm or during defuzzification by weighted summation. In the type-2 case the in-
ference process is very similar. The inference engine combines rules and gives a 
mapping from input type-2 fuzzy sets to output type-2 fuzzy sets. To do this one 
needs to compute unions and intersections of type-2 fuzzy sets, as well as composi-
tions of type-2 relations. 

In the type-2 fuzzy system (Figure 3.9), as in the type-1 fuzzy system, crisp inputs 
are first fuzzified into fuzzy input sets that then activate the inference block, which in 
the present case is associated with type-2 fuzzy sets. In this section, we describe sin-
gleton fuzzification and the effect of such fuzzification on the inference engine. The 
“fuzzifier” maps a crisp point x = (x1,…, xr)

T ∈ X1 × X2 … × Xr ≡ X into a type-2 
fuzzy set Ãx  in X.  

The type-2 output of the inference engine shown in Figure 3.9 must be processed 
next by the output processor, the first operation of which is type-reduction. Type-
reduction methods include (Mendel, 2001): centroid, center-of-sums, height, modified 
height, and center-of-sets. Lets assume that we perform centroid type-reduction. Then 
each element of the type-reduced set is the centroid of some embedded type-1 set for 
the output type-2 set of the FLS. Each of these embedded sets can be thought of as an 
output set of an associated type-1 FLS, and, correspondingly, the type-2 FLS can be 
viewed of as a collection of many different type-1 FLSs. Each type-1 FLS is embed-
ded in the type-2 FLS; hence, the type-reduced set is a collection of the outputs of all 
of the embedded type-1 FLSs (see Figure 3.10). The type-reduced set lets us represent 
the output of the type-2 FLS as a fuzzy set rather than as a crisp number, which is 
something that cannot be done with a type-1 fuzzy system. 
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Referring to Figure 3.10, when the antecedent and consequent membership func-
tions of the type-2 FLS have continuous domains, the number of embedded sets is  
uncountable. Figure 3.10 shows a situation in which we have assumed that the mem-
bership functions have discrete (or discretized) domains. The memberships in the 
type-reduced set, μY(yi), represent the level of uncertainty associated with each em-
bedded type-1 FLS. A crisp output can be obtained by aggregating the outputs of all 
embedded type-1 FLSs by, e.g., finding the centroid of the type-reduced set. 

If all of the type-2 uncertainties were to disappear, the secondary membership 
functions for all antecedents and consequents would each collapse to a single point, 
which shows that the type-2 FLS collapses to a type-1 FLS. 
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Fig. 3.10. A type-2 FLS viewed as a collection of embedded type-1 FLSs 

If we think of a type-2 FLS as a “perturbation” of a type-1 FLS, due to uncertain-
ties in their membership functions, then the type-reduced set of the type-2 FLS can be 
thought of as representing the uncertainty in the crisp output due to the perturbation. 
Some measure of the spread of the type-reduced set may then be taken to indicate the 
possible variation in the crisp output due to the perturbation. This is analogous to us-
ing confidence intervals in a stochastic-uncertainty situation. 
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We defuzzify the type-reduced set to get a crisp output from the type-2 FLS. The 
most natural way to do this seems to be finding the centroid of the type-reduced set. 
Finding the centroid is equivalent to finding the weighted average of the outputs of all 
the type-1 FLSs that are embedded in the type-2 FLS, where the weights correspond 
to the memberships in the type-reduced set (see Figure 3.10). If the type-reduced set 
Y for an input x is discretized or is discrete and consists of α  points, then the expres-
sion for its centroid is 

y(x) = [∑α
k=1 yk μY(yk) ]/ [∑

α
k=1 μY(yk) ] (3.14) 

If α is large then data storage may be a problem for the computation of Equation 
(3.14). This equation can, however, be evaluated using parallel processing, in this 
case data storage will not be problem. Currently, however, most researchers still de-
pend on software for simulations and cannot make use of parallel processing. We can, 
however, use a recursive method to vastly reduce the memory required for storing the 
data that are needed to compute the defuzzification output. From Equation (3.14), we 
can calculate 

A(i) = A(i-1) + yi μY(yi) A(0) = 0 (3.15) 

and 

B(i) = B(i-1) + yi μY(yi) B(0) = 0 (3.16) 

for i =1,…, α. With these formulas we just need to store A and B during each  
iteration. 

From our previous discussions about the five elements that comprise the Figure 3.9 
type-2 FLS, we see that there are many possibilities to choose from, even more than 
for a type-1 FLS. To begin, we must decide on the kind of defuzzification (singleton 
or non-singleton). We must also choose a FOU for each type-2 membership function, 
decide on the functional forms for both the primary and secondary membership func-
tions, and choose the parameters of the membership functions (fixed a-priori or tuned 
during a training procedure). Then we need to choose the composition (max-min, 
max-product), implication (minimum, product), type-reduction method (centroid, cen-
ter-of-sums, height, modified height, center-of-sets), and defuzzifier. Clearly, there is 
an even greater richness among type-2 FLSs than there is among type-1 FLSs. In 
other words, there are more design degrees of freedom associated with a type-2 FLS 
than with a type-1 FLS; hence, a type-2 FLS has the potential to outperform a type-1 
FLS because of the extra degrees of freedom. 

3.3.2   Non-singleton Fuzzy Logic Systems 

A non-singleton FLS is one whose inputs are modeled as fuzzy numbers. A type-2 
FLS whose inputs are modeled as type-1 fuzzy numbers is referred to as “type-1 non-
singleton type-2 FLS”. This kind of a fuzzy system not only accounts for uncertainties 
about either the antecedents or consequents in rules, but also accounts for input  
measurement uncertainties. 
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A type-1 non-singleton type-2 FLS is described by the same diagram as in single-
ton type-2 FLS, see Figure 3.9. The rules of a type-1 non-singleton type-2 FLS are the 
same as those for the singleton type-2 FLS. What are different is the fuzzifier, which 
treats the inputs as type-1 fuzzy sets, and the effect of this on the inference block. The 
output of the inference block will again be a type-2 fuzzy set; so, the type-reducers 
and defuzzifier that we described for a singleton type-2 FLS apply as well to a type-1 
non-singleton type-2 FLS. 

We can also have a situation in which the input are modeled as type-2 fuzzy num-
bers. This situation can occur, e.g., in time series forecasting when the additive meas-
urement noise is non-stationary. A type-2 FLS whose inputs are modeled as type-2 
fuzzy numbers is referred to as “type-2 non-singleton type-2 FLS”. 

A type-2 non-singleton type-2 FLS is described by the same diagram as in single-
ton type-2 FLS, see Figure 3.9. The rules of a type-2 non-singleton type-2 FLS are the 
same as those for a type-1 non-singleton type-2 FLS, which are the same as those for 
a singleton type-2 FLS. What is different is the fuzzifier, which treats the inputs as 
type-2 fuzzy sets, and the effect of this on the inference block. The output of the in-
ference block will again be a type-2 fuzzy set; so, the type-reducers and defuzzifier 
that we described for a type-1 non-singleton type-2 FLS apply as well to a type-2 non-
singleton type-2 FLS. 

3.3.3   Sugeno Type-2 Fuzzy Systems 

All of our previous FLSs were of the Mamdani type, even though we did not refer to 
them as such. In this section, we will need to distinguish between the two kinds of 
FLSs, we refer to our previous FLSs as “Mamdani” FLSs. Both kinds of FLS are 
characterized by if-then rules and have the same antecedent structures. They differ in 
the structures of their consequents. The consequent of a Mamdani rule is a fuzzy set, 
while the consequent of a Sugeno rule is a function.  

A type-1 Sugeno FLS was proposed by Takagi and Sugeno (1985), and Sugeno 
and Kang (1988), in an effort to develop a systematic approach to generating fuzzy 
rules from a given input-output data set. We will consider in this section the extension 
of first-order type-1 Sugeno FLS to its type-2 counterpart, with emphasis on interval 
sets. 

Consider a type-2 Sugeno FLS having r inputs x1 ∈ X1, …, xr ∈ Xr and one output 
y ∈ Y. A type-2 Sugeno FLS is also described by fuzzy if-then rules that represent in-
put-output relations of a system. In a general first-order type-2 Sugeno model with a 
rule base of M rules, each having r antecedents, the ith rule can be expressed as 

Rl : IF x1 is Ãl
1 and … xp is Ãl

p , THEN Yi = Ci
0 + Ci

1 x1 + … + Ci
r xr (3.17) 

where i = 1,…, M; Ci
j (j = 1,…, r) are consequent type-1 fuzzy sets; Yi, the output of 

the ith rule, is also a type-1 fuzzy set (because it is a linear combination of type-1 
fuzzy sets); and Ãi

k  (k = 1, …, r) are type-2 antecedent fuzzy sets. These rules let us 
simultaneously account for uncertainty about antecedent membership functions and 
consequent parameter values. For a type-2 Sugeno FLS there is no need for type-
reduction, just as there is no need for defuzzification in a type-1 Sugeno FLS. 
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3.4   Summary 

In this chapter, we have presented the main ideas underlying type-2 fuzzy logic and 
we have only started to point out the many possible applications of this powerful 
computational theory. We have discussed in some detail type-2 fuzzy set theory, 
fuzzy reasoning and fuzzy inference systems. At the end, we also gave some remarks 
about type-2 fuzzy modeling with the Mamdani and Sugeno approaches. In the fol-
lowing chapters, we will show how type-2 fuzzy logic (in some cases, in conjunction 
with other methodologies) can be applied to solve real world complex problems. This 
chapter will serve as a basis for the new hybrid intelligent methods, for modeling, 
simulation, and pattern recognition that will be described later this book.  

Summary
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4   A Method for Type-2 Fuzzy Inference in Control 
Applications 

A novel method of type 2 fuzzy logic inference is presented in this chapter. The 
method is highly efficient regarding computational time and implementation effort. 
Type-2 input membership functions are optimized using the Human Evolutionary 
Model (HEM) considering as the objective function the Integral of Squared Error at 
the controllers output. Statistical tests were achieved considering how the error at  
the controller’s output is diminished in presence of uncertainty, demonstrating that the 
proposed method outperforms an optimized traditional type-2 fuzzy controller for  
the same test conditions. 

4.1   Introduction 

In engineering as well as in the scientific field is of growing interest to use type-2 
fuzzy logic controller (FLC). It is a well documented fact that type-2 FLC had dem-
onstrated in several fields their usefulness to handle uncertainty which is an inherent 
characteristic of real systems. Because uncertainty and real systems are inseparable 
characteristics the research of novel methods to handle incomplete or not too reliable 
information is of great interest (Mendel, 2001).  Recently, we have seen the use of 
type-2 fuzzy sets in Fuzzy Logic Systems (FLS) in different areas of application. 
From those including fuzzy logic systems, neural networks and genetic algorithms, to 
some papers with emphasis on the implementation of type-2 FLS; in others, it is ex-
plained how type-2 fuzzy sets let us model and minimize the effects of uncertainties 
in rule-base FLS (Mendel and John, 2002). Also, a paper that provides mathematical 
formulas and computational flowcharts for computing the derivatives that are needed 
to implement steepest-descent parameter tuning algorithms for type-2 fuzzy logic sys-
tems (Mendel, 2004).  Some research works are devoted to solve real world applica-
tions in different areas, for example in signal processing, type-2 fuzzy logic is applied 
in prediction of the Mackey-Glass chaotic time-series with uniform noise presence 
(Karnik and Mendel, 1999). In medicine, an expert system was developed for solving 
the problem of Umbilical Acid-Base (UAB) assessment (Ozen and Garibaldi, 2003).  
In industry, type-2 fuzzy logic and neural networks was used in the control of  
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non-linear dynamic plants (Melin and Castillo, 2004); also we can find interesting 
studies in the field of mobile robots (Hagras, 2004).   
Although, the use of a type-2 FLC can be considered as a viable option to handle un-
certainty, also it is well known all the deficiencies and requirements that the use of 
this technology implies. 

In this work we are presenting a method whose goal is to simplify the implementa-
tion of a type-2 FLC without any loss of reliability in the results. In fact, this novel 
method reduces some of the stressful difficult to implement the traditional type-2 
FLC. 

The organization of this work is as follows: In section 2 is explained step by step 
how to implement this proposal and the method used to optimize the traditional as 
well as the proposed type-2 FLC. Section 3 is devoted to explain the kind and classi-
fication of experiments that were achieved, also in this section are given the experi-
mental results. In section 4 is performed a discussion about the obtained results. Fi-
nally, in section 5 we have the conclusions. 

4.2   Proposed Method to Implement Type-2 FLC  

It is proposed to use two type-1 fuzzy systems (FS) to emulate a type-2 FS. The 
membership functions (MF), fuzzification process, fuzzy inference and defuzzifica-
tion are type-1. The MFs are organized in such a way that they will be able to emulate 
the footprint of uncertainty (FOU) in a type-2 FS. To obtain the best parametric val-
ues for the MF the proposed method uses the optimized MFs, and we used the Human 
Evolutionary Model (HEM) to achieve the optimization. 

To validate the proposed method, we made several comparative experiments using 
type-1 fuzzy traditional systems, as well as type-2 interval FS in accordance to those 
worked by (Mendel, 2001). The tests were achieved in the experimental base shown 
in Figure 4.1 which is a closed loop control system. The control goal is to make a 
tracking of the input signal r , which is applied to the systems summing junction. 
Note that we are using an adaptive fuzzy controller that needs to be optimized. In the 
feedback, with the aim of proving the proposal, we are considering two situations. 
One is to directly connect the system output to one summing junction. The second is 
to introduce noise to simulate uncertainty in the feedback data. At the summing junc-
tion output we have the error signal, which is applied to the input of the fuzzy control-
ler, from the error signal we are obtaining a derivative signal; i.e., the change of error 
vs. time, which also is applied to the controllers input. 

In general, the proposed solution to substitute the Mendel’s type-2 FS consists in 
using the average of two type-1 FS, and to achieve this is necessary to follow the next 
steps: 

1. To substitute each type-2 MF with two type-1 MFs. For doing this, the FOU of 
each MF is substituted with two type-1 MFs. In Fig. 4.2, the error signal (input 
fuzzy variable) e  consists of three linguistic variables, they have been substituted 
as was explained obtaining the fuzzy sets that are shown in Fig. 4.3 where each 
fuzzy set is a type-1 MF. The first type-1 FLC (FLC1) is constructed using the up-
per MFs, and the second one (FLC2) with the lower MFs. 
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Fig. 4.1. Block diagram of the system used to test the proposal solution 

 

Fig. 4.2. Type-2 MF for the error input 

2. To substitute the type-2 inference system, it is necessary to obtain the inference of 
each type-1 system in the traditional way. 1  
3. To substitute the type reduction and defuzzification stages of a type-2 FS, it is nec-
essary to obtain the defuzzification of each system as is traditionally done, and aver-
age them. 

 

Proposed Method to Implement Type-2 FLC
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Fig 4.3. Substitution of the type-2 MFs of the error input using type-1 MFs 

Performance Criteria  

For evaluating the transient closed-loop response of a computer control system we 
can use the same criteria that normally are used for adjusting constants in PID (Pro-
portional Integral Derivative) controllers.  These are (Sepulveda et al., 2007): 

Integral of Square Error (ISE). 

[ ]∫
∞

=
0

2)(ISE dtte                                                    (4.1) 

Integral of the Absolute value of the Error (IAE). 

∫
∞

=
0

|)(|IAE dtte                                                (4.2) 

Integral of the Time multiplied by the Absolute value of the Error (ITAE). 

∫
∞

=
0

|)(|ITAE dttet                                            (4.3) 

The selection of the criteria depends on the type of response desired, the errors will 
contribute different for each criterion, so we have that large errors will increase the 
value of ISE more heavily than to IAE.  ISE will favor responses with smaller over-
shoot for load changes, but ISE will give longer settling time. In ITAE, time appears 
as a factor, and therefore, ITAE will penalize heavily errors that occur late in time, 
but virtually ignores errors that occur early in time. 
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4.3   Experiments 

The experiments were divided in two classes: 

1. The first class was to find, under different ranges for the FOU, the optimal values 
for the parameters of the interval type-2 MFs of the type-2 FLC of the non-linear 
control plant. 

2. On the second class of experiments; it was realized the same as in the first class, 
but considering the average of the two type-1 FLC. 

Class 1. Experiments with type-2 FLC 

It is a fact that type-2 FLCs offer better conditions to handle uncertainty, so the 
purpose of the experiments of class 1, were to find the optimal parameters of the 
interval type-2 MFs to control the plant in a better way.   

It was used a novel evolutive algorithm; Human Evolutionary Model (Montiel et 
al., 2005), to find those optimal values and to analize the influence of the FOU, we 
realized several tests for different ranges of it, beginning with the thinner and finally 
with the broader one. Once the optimal values were found, it was tested the behavior 
of the type-2 FLC, for different noise levels, from 8 db to 30 db. 

Class 2. Experiments with average of two FLCs 

To control the plant, we used the proposal solution of using the average of two type-1 
FLC to simulate a type-2 FLC. For these experiments, it was considered that one 
type-1 FLC manage and fixed the upper MFs, and the other the low MFs. Here, in the 
same way as in experiments of class 1, from the optimal values found for the MFs, it 
was tested the behavior of the average of two type-1 FLC, for different noise levels, 
from 8 db to 30 db. 

4.4   Results 

The HEM was the optimization method that we used (Montiel et al., 2005). The initial 
setting for each range of the FOU for this evolutionary method were: 

Initial population of individuals =20 
Low bound of individuals=10 
Upper bound of individuals=100 
Number of variables=6 (Standard deviation of each of the MFs of the inputs).  
Number of generations=60 

The search process was repeated 30 times, always looking for the optimal parame-
ter values to obtain the lowest ISE value. 

Class 1 

In figures 4.4 and 4.5 it can be seen the optimized MFs that obtained the best results 
in the control of the plant. 

Experiments
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Fig. 4.4. Optimized MFs of the input error e of the type-2 FLC, for a 2.74 to 5.75 range of the 
FOU 

 

Fig. 4.5. Optimized MFs of the input delta-e of the type-2 FLC, for a 2.74 to 5.75 range of the 
FOU 

Class 2 

In figures 4.6 and 4.7, we can see the optimized MFs of the average of two type-1 
FLCs, here as in Class 1, the best results were obtained in the broader range 
search. 

Table 4.1, shows a comparison of the ISE values obtained for each FLC with its 
optimized MFs. As can be seen, with the proposal of two optimizedtype-1 FLCs, the 
ISE error is lower in all the search ranges. 
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Fig. 4.6. Optimized MFs of the input error e of the average of two type-1 FLC, for a 2.74 to 
5.75 range of the FOU 

 
Fig. 4.7. Optimized MFs of the input delta-e of the two type-1 FLC, for a 2.74 to 5.75 range of 
the FOU 

Table 4.1. Comparison values between Type-2 FLC and average of two type-1 FLCs 

TYPE-2 FLC AVERAGE TYPE-1 FLCs  

Search 
range 

Best ISE AVERAGE 
ISE 

Best ISE AVERAGE 
ISE 

3.74-4.75 4.761 4.9942 4.5619 4.7701 

3.24-5.25 4.328 4.5060 4.2024 4.4009 

2.74-5.75 4.3014 4.4005 4.1950 4.346 

Results
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4.5   Summary 

Based on the results of the experiments, we can conclude that the proposed method, 
that consists in using two optimized type-1 FLCs instead of a optimized traditional 
type-2 FLC, is a convenient and viable alternative because it offers advantages such 
as a highly efficient regarding computational time and implementation effort.  The 
type-2 FLCs need to realize a complex task in each step of the process, specially in 
the type reduction case. With the proposed method it is easier to optimize the parame-
ters of the MFs of a type-1 FLC than an interval type-2 FLC. 
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5   Design of Intelligent Systems with Interval Type-2 
Fuzzy Logic 

Uncertainty is an inherent part of intelligent systems used in real-world applications.  
The use of new methods for handling incomplete information is of fundamental im-
portance.  Type-1 fuzzy sets used in conventional fuzzy systems cannot fully handle 
the uncertainties present in intelligent systems.  Type-2 fuzzy sets that are used in 
type-2 fuzzy systems can handle such uncertainties in a better way because they  
provide us with more parameters. This chapter deals with the design of intelligent sys-
tems using interval type-2 fuzzy logic for minimizing the effects of uncertainty pro-
duced by the instrumentation elements, environmental noise, etc. Experimental results 
include simulations of feedback control systems for non-linear plants using type-1 and 
type-2 fuzzy logic controllers; a comparative analysis of the systems’ response is per-
formed, with and without the presence of uncertainty.  

5.1   Introduction 

Uncertainty affects decision-making and appears in a number of different forms. The 
concept of information is fully connected with the concept of uncertainty. The most 
fundamental aspect of this connection is that the uncertainty involved in any problem-
solving situation is a result of some information deficiency, which may be incom-
plete, imprecise, fragmentary, not fully reliable, vague, contradictory, or deficient in 
some other way (Klir and Yuan, 1995). Uncertainty is an attribute of information 
(Zadeh, 2005). The general framework of fuzzy reasoning allows handling much of 
this uncertainty, fuzzy systems employ type-1 fuzzy sets, which represent uncertainty 
by numbers in the range [0, 1].  When something is uncertain, like a measurement, it 
is difficult to determine its exact value, and of course type-1 fuzzy sets make more 
sense than using sets (Zadeh, 1975).  However, it is not reasonable to use an accurate 
membership function for something uncertain, so in this case what we need is another 
type of fuzzy sets, those which are able to handle these uncertainties, the so called 
type-2 fuzzy sets (Mizumoto and Tanaka, 1976) (Mendel, 2001).  So, the amount of 
uncertainty in a system can be reduced by using type-2 fuzzy logic because it offers 
better capabilities to handle linguistic uncertainties by modeling vagueness and  
unreliability of information (Liang and Mendel, 2000). 
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Recently, we have seen the use of type-2 fuzzy sets in Fuzzy Logic Systems (FLS) 
in different areas of application (Lee et al., 2003). A novel approach for realizing the 
vision of ambient intelligence in ubiquitous computing environments (UCEs), is 
based on embedding intelligent agents that use type-2 fuzzy systems which are able to 
handle the different sources of uncertainty and imprecision in UCEs to give a good 
response (Doctor et al., 2005).  There are also papers with emphasis on the implemen-
tation of type-2 FLS (Karnik and Mendel, 1999) and in others, it is explained how 
type-2 fuzzy sets let us model and minimize the effects of uncertainties in rule-base 
FLS (Wu and Mendel, 2001). There is also a paper that provides mathematical formu-
las and computational flowcharts for computing the derivatives that are needed to im-
plement steepest-descent parameter tuning algorithms for type-2 fuzzy logic systems 
(Mendel, 2004).  Some research works are devoted to solve real world applications in 
different areas, for example in signal processing, type-2 fuzzy logic is applied in pre-
diction of the Mackey-Glass chaotic time-series with uniform noise presence (Men-
del, 2000). In medicine, an expert system was developed for solving the problem of 
Umbilical Acid-Base (UAB) assessment (Ozen and Garibaldi, 2003).  In industry, 
type-2 fuzzy logic and neural networks was used in the control of non-linear dynamic 
plants (Melin and Castillo, 2004); also we can find interesting studies in the field of 
mobile robots (Hagras, 2004).   

In this chapter we deal with the application of interval type-2 fuzzy control to non-
linear dynamic systems.  It is a well known fact, that in the control of real systems, 
the instrumentation elements (instrumentation amplifier, sensors, digital to analog, 
analog to digital converters, etc.) introduce some sort of unpredictable values in the 
information that has been collected (Castillo and Melin, 2004).  So, the controllers de-
signed under idealized conditions tend to behave in an inappropriate manner (Castillo 
and Melin, 2001).  Since, uncertainty is inherent in the design of controllers for real 
world applications, we are presenting how to deal with this problem using type-2 
Fuzzy Logic Controller (FLC), to reduce the effects of imprecise information.  We are 
supporting this statement with experimental results, qualitative observations, and 
quantitative measures of errors.  For quantifying the errors, we utilized three widely 
used performance criteria, these are: Integral of Square Error (ISE), Integral of the 
Absolute value of the Error (IAE), and Integral of the Time multiplied by the Abso-
lute value of the Error (ITAE) (Deshpande and Ash, 1988). We also consider the ap-
plication of interval type-2 fuzzy logic to the problem of forecasting chaotic time  
series. 

5.2   Fuzzy Logic Systems  

In this section, a brief overview of type-1 and type-2 fuzzy systems is presented. This 
overview is considered as necessary to understand the basic concepts needed to un-
derstand the methods and algorithms presented later in the chapter. 

5.2.1   Type-1 Fuzzy Logic Systems  

In the 40's and 50's, many researchers proved that dynamic systems could be mathe-
matically modeled using differential equations.  In these works we have the  
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foundations of the Control Theory, which in addition with the Transform Theory 
(Laplace’s Theory), provided an extremely powerful means of analyzing and design-
ing control systems (Mamdani, 1993).  These theories were developed until the 70's, 
when the area was called Systems Theory to indicate its definitiveness. 

Soft computing techniques have become an important research topic, which can be 
applied in the design of intelligent controllers (Jang et al., 1997). These techniques 
have tried to avoid the above-mentioned drawbacks, and they allow us to obtain effi-
cient controllers, which utilize the human experience in a more natural form than the 
conventional mathematical approach (Zadeh, 1973).  In the cases in which a mathe-
matical representation of the controlled system is difficult to obtain, the process op-
erator has the knowledge, the experience to express the relationships existing in the 
process behavior. 

A FLS, described completely in terms of type-1 fuzzy sets is called a type-1 fuzzy 
logic system (type-1 FLS). It is composed by a knowledge base, which comprises the 
information given by the process operator in form of linguistic control rules. A fuzzi-
fication interface, that has the effect of transforming crisp data into fuzzy sets. An in-
ference system, that uses the fuzzy sets in conjunction with the knowledge base to 
make inferences by means of a reasoning method. Finally, a defuzzification interface, 
which translates the fuzzy control action so obtained to a real control action using a 
defuzzification method (Mendel, 2001). 

In this chapter, the implementation of the fuzzy controller in terms of type-1 fuzzy 
sets, has two input variables, which are the error e(t), the difference between the ref-
erence signal and the output of the process, as well as the error variation Δe(t), 

)()()( tytrte −=  (5.1) 

)1()()( −−=Δ tetete  (5.2) 

so the control system can be represented as in Figure 5.1. 

 
Fig. 5.1. System used for obtaining the experimental results for control 

Fuzzy Logic Systems
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5.2.2   Type-2 Fuzzy Logic Systems 

If for a type-1 membership function, as in Figure 5.2, we blur it to the left and to the 
right, as illustrated in Figure 5.3, then a type-2 membership function is obtained. In 
this case, for a specific value 'x , the membership function ( 'u ), takes on different 
values, which are not all weighted the same, so we can assign an amplitude distribu-
tion to all of those points.  

Doing this for all Xx ∈ , we create a three-dimensional membership function –a 
type-2 membership function– that characterizes a type-2 fuzzy set (Mendel, 2001) 
 

 
Fig. 5.2. Type-1 membership function 

 
Fig. 5.3. Blurred type-1 membership function 
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(Mendel and Mouzouris, 1999). A type-2 fuzzy set A~ , is characterized by the mem-
bership function: 

( ){ }]1,0[,|),(),,(~
~ ⊆∈∀∈∀= xA JuXxuxuxA μ  (5.3) 

in which 1),(0 ~ ≤≤ uxAμ .  Another expression for A~  is, 

),/(),(
~

~ uxuxA
Xx Ju A

x
∫ ∫∈ ∈

= μ ]1,0[⊆xJ  (5.4) 

Where ∫ ∫ denotes the union over all admissible input variables x and u.  For dis-

crete universes of discourse ∫ is replaced by ∑ (Mendel and John, 2002).  In fact 

]1,0[⊆xJ  represents the primary membership of x, and ),(~ uxAμ is a type-1 fuzzy 

set known as the secondary set.  Hence, a type-2 membership grade can be any subset 
in [0,1], the primary membership, and corresponding to each primary membership, 
there is a secondary membership (which can also be in [0,1]) that defines the possi-
bilities for the primary membership (Liang and Mendel, 2000). Uncertainty is repre-
sented by a region, which is called the footprint of uncertainty (FOU). When 

]1,0[,1),(~ ⊆∈∀= xA Juuxμ  we have an interval type-2 membership function, 

as shown in Figure 5.4.  The uniform shading for the FOU represents the entire inter-
val type-2 fuzzy set and it can be described in terms of an upper membership func-

tion )(~ xAμ and a lower membership function )(~ xAμ . 

 
Fig. 5.4. Interval type-2 membership function 

Fuzzy Logic Systems
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A FLS described using at least one type-2 fuzzy set is called a type-2 FLS.  Type-1 
FLSs are unable to directly handle rule uncertainties, because they use type-1 fuzzy 
sets that are certain.  On the other hand, type-2 FLSs, are very useful in circumstances 
where it is difficult to determine an exact membership function, and there are meas-
urement uncertainties (Mendel, 2001). 

It is known that type-2 fuzzy sets enable modeling and minimizing the effects of 
uncertainties in rule-based FLS.  Unfortunately, type-2 fuzzy sets are more diffi-
cult to use and understand than type-1 fuzzy sets; hence, their use is not wide-
spread yet.  As a justification for the use of type-2 fuzzy sets, in (Sepulveda et al., 
2007) are mentioned at least four sources of uncertainties not considered in type-1 
FLSs:  

1. The meanings of the words that are used in the antecedents and consequents of 
rules can be uncertain (words mean different things to different people).  

2. Consequents may have histogram of values associated with them, especially when 
knowledge is extracted from a group of experts who do not all agree. 

3. Measurements that activate a type-1 FLS may be noisy and therefore uncertain. 
4. The data used to tune the parameters of a type-1 FLS may also be noisy.  

All of these uncertainties translate into uncertainties about fuzzy set membership 
functions.  Type-1 fuzzy sets are not able to directly model such uncertainties because 
their membership functions are totally crisp.  On the other hand, type-2 fuzzy sets are 
able to model such uncertainties because their membership functions are themselves 
fuzzy.  A type-1 fuzzy set is a special case of a type-2 fuzzy set; its secondary mem-
bership function is a subset with only one element, unity. 

A type-2 FLS is again characterized by IF-THEN rules, but its antecedent or con-
sequent sets are now of type-2.  Type-2 FLSs, can be used when the circumstances are 
too uncertain to determine exact membership grades such as when the training data is 
corrupted by noise.  Similar to a type-1 FLS, a type-2 FLS includes a fuzzifier, a rule  
 

Fig. 5.5. Type-2 Fuzzy Logic System 
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base, fuzzy inference engine, and an output processor, as we can see in Fig. 5.5.  The 
output processor includes type-reducer and defuzzifier; it generates a type-1 fuzzy set 
output (from the type-reducer) or a crisp number (from the defuzzifier) (Mendel, 
2005).  Now we will explain each of the blocks of Figure 5.5. 

5.2.2.1   Fuzzifier 
The fuzzifier maps a crisp point x=(x1,…,xp)

T ∈X1xX2x…xXp ≡ X  into a type-2 fuzzy 

set xA
~

in X (Mendel, 2001), interval type-2 fuzzy sets in this case.  We will use type-2 

singleton fuzzifier, in a singleton fuzzification, the input fuzzy set has only a single 

point on nonzero membership. xA
~

is a type-2 fuzzy singleton if 1/1)x(
xA

~ =μ  for 

x=x' and 0/1)x(
xA

~ =μ  for all other x≠x'[7]. 

5.2.2.2   Rules 
The structure of rules in a type-1 FLS and a type-2 FLS is the same, but in the latter 
the antecedents and the consequents will be represented by type-2 fuzzy sets.  So for a 
type-2 FLS with p inputs x1∈X1,…,xp ∈Xp  and one output y∈Y, Multiple Input Sin-
gle Output (MISO), if we assume there are M rules, the lth rule in the type-2 FLS can 
be written as follows: 

Rl: IF x1 is lF1
~ and ···and xp is l

pF~  , THEN y is lG~       

l=1,…,M 
(5.5) 

5.2.2.3   Inference 
In the type-2 FLS, the inference engine combines rules and gives a mapping from in-
put type-2 fuzzy sets to output type-2 fuzzy sets.  It is necessary to compute the join 

⊔, (unions) and the meet Π (intersections), as well as extended sup-star compositions 

(sup star compositions) of type-2 relations.  If l
p

ll AFF ~~~
1 =××L , equation (5.5) can 

be re-written as 

lll
p

lll GAGFFR ~~~~~: 1 →=→××L  l=1,…,M (5.6) 

Rl is described by the membership function ),,...,(),( 1 yxxy pRR ll μμ =x , where 

),(),( ~~ yy lll GAR
xx →= μμ  (5.7) 

can be written as (Mendel, 2001): 
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(5.8) 

 

Fuzzy Logic Systems
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In general, the p-dimensional input to Rl is given by the type-2 fuzzy set xA~ whose 

membership function is 

)()( 1~~
1

xxAx
μμ =x  Π···Π )(~ ppx xμ =Π p

i 1= )(~ iix xμ  (5.9) 

where ),...,1(~ piX i = are the labels of the fuzzy sets describing the inputs.  Each rule 

Rl determines a type-2 fuzzy set l
x

l RAB o~~ = such that: 

== l
x

l RAB
y

o~~ )( μμ ⊔ [ )(~ xX xAx μ∈ Π ]),( ylR
xμ       y∈Y  l=1,…,M (5.10) 

This equation is the input/output relation in Figure 5.5 between the type-2 fuzzy set 
that activates one rule in the inference engine and the type-2 fuzzy set at the output of 
that engine (Mendel, 2001). 

In the FLS we used interval type-2 fuzzy sets and meet under product t-norm, so 
the result of the input and antecedent operations, which are contained in the firing set 
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where * is the product operation. 

5.2.2.4   Type Reducer 
The type-reducer generates a type-1 fuzzy set output, which is then converted in a 
crisp output through the defuzzifier.  This type-1 fuzzy set is also an interval set, for 
the case of our FLS we used center of sets (cos) type reduction, Ycos which is ex-
pressed as (Mendel, 2001)  

∑
∑

∫∫ ∫∫
=

=

∈∈
∈∈ −

−

−

−

==
M

i

i

M

i

ii

ffffff
yyyyyyrl

f

yf
yyY M

MM
M

r
M

l
M

rl

1

1

],[],[
],[],[cos /1],[)( 1

11
111 LLx  

(5.14) 

this interval set is determined by its two end points, yl and yr, which corresponds to 

the centroid of the type-2 interval consequent set iG
~

,  
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before the computation of  Ycos (x), we must evaluate equation (5.15), and its two end 
points, yl and yr.  If the values of fi and yi that are associated with yl are denoted fl

i and 
yl

i, respectively, and the values of fi and yi that are associated with yr are denoted fr
i 

and yr
i, respectively, from equation (15.14), we have (Mendel, 2001)  
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5.2.2.5   Defuzzifier 
From the type-reducer we obtain an interval set Ycos, to defuzzify it we use the average 
of yl and yr, so the defuzzified output of an interval singleton type-2 FLS is (Mendel, 
2001)  

2
)( rl yy

y
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=x  (5.18) 

In this chapter, we are simulating the fact that the instrumentation elements (in-
strumentation amplifier, sensors, digital to analog, analog to digital converters, etc.) 
are introducing some sort of unpredictable values in the collected information.  In the 
case of the implementation of the type-2 FLC, we have the same characteristics as in 
type-1 FLC, but we used type-2 fuzzy sets as membership functions for the inputs and 
for the output. 

5.2.3   Performance Criteria 

For evaluating the transient closed-loop response of a computer control system we 
can use the same criteria that normally are used for adjusting constants in PID (Pro-
portional Integral Derivative) controllers.  These are (Sepulveda et al., 2007): 

1. Integral of Square Error (ISE). 

[ ]∫
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=
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2 Integral of the Absolute value of the Error (IAE). 

∫
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3. Integral of the Time multiplied by the Absolute value of the Error (ITAE). 

∫
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The selection of the criteria depends on the type of response desired, the errors 
will contribute different for each criterion, so we have that large errors will in-
crease the value of ISE more heavily than to IAE.  ISE will favor responses with 
smaller overshoot for load changes, but ISE will give longer settling time. In 
ITAE, time appears as a factor, and therefore, ITAE will penalize heavily errors 
that occur late in time, but virtually ignores errors that occur early in time. Design-
ing using ITAE will give us the shortest settling time, but it will produce the larg-
est overshoot among the three criteria considered.  Designing considering IAE will 
give us an intermediate result, in this case, the settling time will not be so large 
than using ISE nor so small than using ITAE, and the same applies for the over-
shoot response.  The selection of a particular criterion is depending on the type of 
desired response. 

5.3   Experimental Results for Intelligent Control 

The experimental results are devoted to show comparisons in the system’s response in 
a feedback controller when using a type-1 FLC or a type-2 FLC. A set of five experi-
ments is described in this section. The first two experiments were performed in ideal 
conditions, i.e., without any kind of disturbance.  In the last three experiments, Gaus-
sian noise was added to the feedback loop with the purpose of simulating, in a global 
way, the effects of uncertainty from several sources. 

Figure 5.1 shows the feedback control system that was used for obtaining the 
simulation results.  The complete system was simulated in the Matlab program-
ming language, and the controller was designed to follow the input as closely as 
possible. The plant is a non-linear system that is modeled using equation (5.22) 

( ) ( ) ( ) ( ) ( ) ( )25.0105.019.0207.032.0 −⋅+−⋅+−⋅+−⋅−⋅= iuiuiyiyiyiy  (5.22) 

To illustrate the dynamics of this non-linear system, two different inputs are ap-
plied, first the input indicated by equation (5.23), which is shown in Figure 5.6, and 
whose system’s response is in Figure 5.7. 
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Fig. 5.6. Test sequence applied to the model of the plant given in equation (5.23) 

 
Fig. 5.7. System´s response for the inputs given in equation (5.23) which is illustrated in Fig. 5.6 
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Fig. 5.8. A second input to the model for testing the plant response 

Now, for a slightly different input given by equation (5.24), see Figure 5.8, we 
have the corresponding system´s response in Figure 5.9. 
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(5.24) 

Going back to the control problem, this system given by equation (5.22) was used 
in Figure 5.1, under the name of plant or process, in this figure we can see that the 
controller’s output is applied directly to the plant’s input.  Since we are interested in 
comparing the performance between type-1 and type-2 FLC systems, the controller 
was tested in two ways:  

1. One is considering the system as ideal, that is, not introducing in the modules of 
the control system any source of uncertainty (experiments 1 and 2). 

2.  The other one is simulating the effects of uncertain modules (subsystems) re-
sponse introducing some uncertainty (experiments 3, 4 and 5). 
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Fig. 5.9. Output of the plant when we applied the input given by equation (5.24) illustrated in 
Fig. 5.8 

For both cases, as it is shown in Figure 5.1, the system’s output is directly con-
nected to the summing junction, but in the second case, the uncertainty was simulated 
introducing random noise with normal distribution (the dashed square in Figure 5.1).  
We added noise to the system’s output y(i) using the Matlab’s function “randn”, 
which generates random numbers with Gaussian distribution. The signal and the 
added noise in turn, were obtained with the programmer’s expression (5.25), the result 
y(i) was introduced to the summing junction of the controller system. Note that in ex-
pression (5.25) we are using the value 0.05, for experiments 3 and 4, but in the set of 
tests for experiment 5, we varied this value to obtain different SNR values. 

randniyiy ⋅+= 05.0)()(  (5.25) 

The system was tested using as input, a unit step sequence free of noise, )(ir .  For 

evaluating the system’s response and comparing between type 1 and type 2 fuzzy con-
trollers, the performance criteria ISE, IAE, and ITAE were used.  In Table 5.3, we 
summarized the values obtained in an ideal system for each criterion considering 400 
units of time.  For calculating ITAE a sampling time of 1.0=sT sec. was considered. 

For all experiments the reference input r is stable and noisy free.  In experiments 3 
and 4, although the reference appears clean, the feedback at the summing junction is 
noisy since noise for simulating the overall existing uncertainty in the system was in-
troduced deliberately, in consequence, the controller’s inputs e (t) (error), and )(teΔ  

contain uncertainty in the data.  
In Experiment 5, we tested the systems, type-1 and type-2 FLCs, introducing dif-

ferent values of noise η , this was done by modifying the signal to noise ratio SNR 

(Proakis and Manolakis, 1996), 
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Because many signals have a very wide dynamic range (Ingle and Proakis, 2000), 
SNRs are usually expressed in terms of the logarithmic decibel scale, SNR(db), 
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In Table 5.4, we show, for different values of SNR(db), the behavior of ISE, IAE, 
ITAE for type-1 and type-2 FLCs.  In all the cases the results for type-2 FLC are bet-
ter than type-1 FLC.  

In the type-1 FLC, Gaussian membership functions (Gaussian MFs) for the inputs 
and for the output were used.  A Gaussian MF is specified by two parameters {c,σ}: 
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c  represents the MFs center and σ determines the MFs standard deviation.  

For each of the inputs of the type-1 FLC, e (t) and )(teΔ , three type-1 fuzzy 

Gaussian MFs were defined as: negative, zero, positive. The universe of discourse for 
these membership functions is in the range [-10 10]; their centers are -10, 0 and 10 re-
spectively, and their standard deviations is 4.2466 as is illustrated in Figures 5.10  
and 5.11. 

For the output of the type-1 FLC, we have five type-1 fuzzy Gaussian MFs: NG, N, 
Z, P and PG. They are in the interval [-10 10], their centers are -10, -.5, 0, 5, and 10 re-
spectively; and their standard deviation is 2.1233 as can be seen in Figure 5.12. Table 1 
illustrates the characteristics of the MFs of the inputs and output of the type-1 FLC. 

 
Fig. 5.10. Input e membership functions for the type-1 FLC 
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Fig. 5.11. Input eΔ  membership functions for the type-1 FLC 

 

Fig. 5.12. Output cde membership functions for the type-1 FLC 

In experiments 2, 4, and 5, for the type-2 FLC, as in type-1 FLC, we also selected 
Gaussian MFs for the inputs and for the output, but in this case we have interval type-
2 Gaussian MFs with a fixed center, c, and an uncertain standard deviation,σ , i.e.,  
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In terms of the upper and lower membership functions, we have for )(~ xAμ , 

)x;,c(N)x( 2A
~ σμ =  (5.30) 
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Table 5.1. Characteristics of the inputs and output of type-1 FLC 

Variable Term Center c  Standard deviation 
σ  

negative -10 4.2466 
zero 0 4.2466 

 
Input e  

positive 10 4.2466 
Negative -10 4.2466 

Zero 0 4.2466 
 

Input eΔ  
positive 10 4.2466 

NG -10 2.1233 
N -5 2.1233 
Z 0 2.1233 
P 5 2.1233 

 

Output cde  

 PG 10 2.1233 

and for the lower membership function )(~ xAμ , 

)x;,c(N)x( 1A
~ σμ =  (5.31) 

where ( ) ≡x,,cN 2σ
2
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σ , (Mendel, 2001). 

Hence, in the type-2 FLC, for each input we defined three interval type-2 fuzzy Gaus-
sian MFs: negative, zero, positive in the interval [-10 10], as illustrated in Figures 
5.13 and 5.14.  For computing the output we have five interval type-2 fuzzy Gaussian  
 

 
Fig. 5.13. Input e membership functions for the type-2 FLC 
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Fig. 5.14. Input eΔ membership functions for the type-2 FLC 

MFs, which are NG, N, Z, P and PG, in the interval [-10 10], as can be seen in Figures 
5.15. Table 5.2 shows the characteristics of the inputs and output of the type-2 FLC. 

For type-2 FLC we used, basically, the software for type-2 fuzzy logic developed 
by our research group.  In all experiments, we have a dash-dot line for illustrating the 
system’s response and behavior of type-1 FLC, in the same sense, a continuous line 
for type-2 FLC. The reference input r is shown with a dot line. 

 

Fig. 5.15. Output cde membership functions for the type-2 FLC 
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Table 5.2. Characteristics of the inputs and output of type-2 FLC 

Variable Term Center 
c  

Standard 
deviation 1σ  

Standard 
deviation 2σ  

negative -10 5.2466 3.2466 
zero 0 5.2466 3.2466 

 
Input e  

positive 10 5.2466 3.2466 
Negative -10 5.2466 3.2466 

Zero 0 5.2466 3.2466 
 

Input 
eΔ  positive 10 5.2466 3.2466 

NG -10 2.6233 1.6233 
N -5 2.6233 1.6233 
Z 0 2.6233 1.6233 
P 5 2.6233 1.6233 

 

Output 

cde  PG 10 2.6233 1.6233 

Experiment 1: Simulation of an ideal system with a type-1 FLC.  
In this experiment, uncertainty data was not added to the system, and the system re-
sponse is illustrated in Figure 5.16.  Note that the settling time is of about 140 units of 
time; i.e., the system tends to stabilize with time and the output will follow accurately 
the input.  In Table 5.3, we listed the obtained values of ISE, IAE, and ITAE for this  

 

 
Fig. 5.16. This graphic shows the system’s response to a unit step sequence.  The input refer-
ence r is shown with pointed line, for the type-1 the systems’ output y(i) is shown with dash dot 
line; and for type-2, the system’s output y(i) with continuous line. 
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Table 5.3. Comparison of performance criteria for type-1 and type-2 fuzzy logic controllers for 
20 db signal noise ratio. values obtained after 200 samples 

Type-1 FLC Type-2 FLC Perform-
ance 
Criteria 

Ideal Sys-
tem 

Syst. with un-
certainty 

Ideal Sys-
tem 

Syst. with 
uncertainty 

ISE 7.65 19.4 6.8 18.3 
IAE 17.68 49.5 16.4 44.8 

ITAE 62.46 444.2 56.39 402.9 

experiment.  In Figures 5.17, 5.18 and 5.19, the ISE, IAE, and ITAE behaviors of this 
experiment are shown. 

Experiment 2: Simulation of an ideal system using the type-2 FLC.   
Here, the same test conditions of Experiment 1 were used, but in this case, we imple-
mented the controller’s algorithm with type-2 fuzzy logic. The output sequence is illus-
trated in Figure 5.16, and the corresponding performance criteria are listed in Table 5.3, 
and we can observe that using a type-2 FLC we obtained the lower errors.  By visual in-
spection, we can observe that the output system’ response of the Experiment 1, and this 
one, are similar as it is shown in Figures 5.17, 5.18, and 5.19. 

 
Fig. 5.17. In uncertainty absence, the ISE values are very similar for type-1 and type-2 FLCs 

Experiment 3: System with uncertainty using a type-1 FLC.  
In this case, equation (5.25) was used to simulate the effects of uncertainty introduced 
to the system by transducers, amplifiers, and any other element that in real world ap-
plications affects expected values.  In this experiment the noise level was simulated in 
the range of 20 db of SNR ratio.  Figure 5.20 shows the system’s response output.  In 
Figures 5.21, 5.22, and 5.23, the performance criteria ISE, IAE, ITAE are represented 
graphically.   
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Fig. 5.18. In uncertainty absence, the IAE values obtained at the plant’s output are very similar 
for type-1 and type-2 FLCs, here is more evident that a type-1 FLC works a little better than in 
Fig. 5.17 

 

Fig. 5.19. In uncertainty absence, the ITAE values obtained at the plant’s output are similar for 
type-1 and type-2 FLCs, in accordance with Figure 5.18, it is evident that a type-1 FLC works a 
little better 
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Fig. 5.20. This graphic was obtained with uncertainty presence; compare the system’s outputs 
produced by type-1 and type-2 FLCs. Note that quite the opposite to Figure 5.16, a type-2 FLC 
works much better than a type-1 FLC when the system has uncertainty. The overshoot error is 
lower for a type-2 FLC. 

 
Fig. 5.21. We can see that a type-2 FLC produces lower overshoot errors, quantitatively the ISE 
overall error of using type-2 is 18.3 against 19.4 of the overall error produced by the type-1 
FLC 
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Experiment 4: System with uncertainty using a type-2 FLC. 
In this experiment, uncertainty was introduced in the system, in the same way as in 
Experiment 3.  In this case, a type-2 FLC was used and the results obtained with a 
type-1 FLC (Experiment 3) were improved. We can appreciate from Figure 5.20, that 
the lower overshoot and the best settling times are reached using a type-2 FLC. In  
 

 
Fig. 5.22. In accordance with Fig. 5.20, IAE confirms that we obtained the best system re-
sponse using a type-2 FLC with uncertainty presence.  Moreover, the error of the settling time 
and steady state is lower using a type-2 FLC. 

 
Fig. 5.23. Here we can see that the steady state error of the system produced by a type-2 FLC is 
lower than the error produced by a type-1 FLC with uncertainty present.  ITAE will punish 
heavily all those errors produced with time. 
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Figures 5.21 and 5.22, we can see that with a type-2 FLC the overshoot error de-
creases very quickly and it remains lower than using a type-1 FLC.  In Fig. 5.23, we 
can observe that through time the lower errors are obtained using a type-2 FLC. 

 
Experiment 5:  Varying the Signal to Noise Ratio (SNR) in type-1 and type-2 FLCs.  
To test the robustness of the type-1 and type-2 FLCs, we repeated experiments 3 and 
4 giving different noise levels, going from 30 db to 8 db of SNR ratio in each experi-
ment.  In Table 5.4, we summarized the values for ISE, IAE, and ITAE considering 
200 units of time with a Psignal of 22.98 db in all cases.  As it can be seen in Table 5.4, 
in presence of different noise levels, the behavior of type-2 FLC is in general better 
than type-1 FLC. 

Table 5.4. Behavior of type-1 and type-2 fuzzy logic controllers after variation of signal noise 
ratio. Values obtained for 200 samples. 

Noise variation Type-1  FLC Type-2 FLC 
SNR 
(db) 

Sum 
Noise (db) 

ISE IAE ITAE ISE IAE ITAE 

  8 22.72 321.1 198.1 2234.1 299.4 194.1 2023.1 
10 20.762 178.1 148.4 1599.4 168.7 142.2 1413.5 
12 18.783 104.7 114.5 1193.8 102.1 108.8 1057.7 
14 16.785 64.1 90.5 915.5 63.7 84.8 814.6 
16 14.78 40.9 72.8 710.9 40.6 67.3 637.8 
18 12.78 27.4 59.6 559.1 26.6 54.2 504.4 
20 10.78 19.4 49.5 444.2 18.3 44.8 402.9 
22  8.78 14.7 42 356.9 13.2 37.8 324.6 
24  6.78 11.9 36.2 289 10.3 32.5 264.2 
26  4.78 10.1 31.9 236.7 8.5 28.6 217.3 
28  2.78  9.1 28.5 196.3 7.5 25.5 180.7 
30  0.78 8.5 25.9 164.9 7 23.3 152.6 

From Table 5.4, considering two examples, the extreme cases; we have for an SNR 
ratio of 8 db, in type-1 FLC the following performance values ISE=321.1, IAE=198.1, 
ITAE=2234.1; and for the same case, in type-2 FLC, we have ISE=299.4, IAE=194.1, 
ITAE=2023.1.  

For 30 db of SNR ratio, we have for the type-1 FLC, ISE=8.5, IAE=25.9, 
ITAE=164.9, and for the type-2 FLC, ISE=7, IAE=23.3, ITAE=152.6.  

These values indicate a better performance of the type-2 FLC than type-1 FLC, be-
cause they are a representation of the errors, and as the error increases the perform-
ance of the system goes down.  

5.4   Summary 

We have presented the study of the controllers’ design for nonlinear control systems 
using type-1 and type-2 fuzzy logic. We presented five experiments where we simu-
lated the systems’ responses with and without uncertainty presence. In the experi-
ments, a quantification of errors was achieved and documented in tables for different 

Summary
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criteria such as ISE, IAE, and ITAE, it was shown that the lower overshoot errors and 
the best settling times were obtained using a type-2 FLC. Based on the experimental 
results, we can say that the best results are obtained using type-2 fuzzy systems.  In 
our opinion, this is because type-2 fuzzy sets that are used in type-2 fuzzy systems 
can handle uncertainties in a better way because they provide us with more parame-
ters and more design degrees of freedom.  
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6   Method for Response Integration in Modular Neural 
Networks with Type-2 Fuzzy Logic  

We describe in this chapter a new method for response integration in modular neural 
networks using type-2 fuzzy logic. The modular neural networks were used in human 
person recognition. Biometric authentication is used to achieve person recognition. 
Three biometric characteristics of the person are used: face, fingerprint, and voice. A 
modular neural network of three modules is used. Each module is a local expert on 
person recognition based on each of the biometric measures. The response integration 
method of the modular neural network has the goal of combining the responses of the 
modules to improve the recognition rate of the individual modules. We show in this 
chapter the results of a type-2 fuzzy approach for response integration that improves 
performance over type-1 fuzzy logic approaches. 

6.1   Introduction 

Today, a variety of methods and techniques are available to determine unique iden-
tity, the most common being fingerprint, voice, face, and iris recognition (Melin and 
Castillo, 2005). Of these, fingerprint and iris offer a very high level of certainty as to a 
person's identity, while the others are less exact. A large number of other techniques 
are currently being examined for suitability as identity determinants. These include 
(but are not limited to) retina, gait (walking style), typing style, body odour, signature, 
hand geometry, and DNA. Some wildly esoteric methods are also under development, 
such as ear structure, thermal imaging of the face and other parts of the body, subcu-
taneous vein patterns, blood chemistry, anti-body signatures, and heart rhythm, to 
name a few (Urias et al., 2006). 

The four primary methods of biometric authentication in widespread use today are 
face, voice, fingerprint, and iris recognition. All of these are supported in our ap-
proach, some more abundantly than others. Generally, face and voice are considered 
to be a lower level of security than fingerprint and iris, but on the other hand, they 
have a lower cost of entry. We describe briefly in this section some of these biometric 
methods. 
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Face Recognition. Facial recognition has advanced considerably in the last 10 to 15 
years. Early systems, based entirely on simple geometry of key facial reference 
points, have given way to more advanced mathematically-based analyses such as Lo-
cal Feature Analysis and Eigenface evaluation. These have been extended though the 
addition of "learning" systems, particularly neural networks. 

Face recognition systems are particularly susceptible to changes in lighting sys-
tems. For example, strong illumination from the side will present a vastly different 
image to a camera than neutral, evenly-positioned fluorescent lighting. Beyond this, 
however, these systems are relatively immune to changes such as weight gain, specta-
cles, beards and moustaches, and so on. Most manufacturers of face recognition sys-
tems claim false accept and false reject rates of 1% or better. 

Voice Recognition. Software systems are rapidly becoming adept at recognising and 
converting free-flowing speech to its written form. The underlying difficulty in doing 
this is to flatten out any differences between speakers and understand everyone uni-
versally. Alternatively, when the goal is to specifically identify one person in a large 
group by their voice alone, these very same differences need to be identified and en-
hanced. 

As a means of authentication, voice recognition usually takes the form of speak-
ing a previously-enrolled phrase into a computer microphone and allowing the 
computer to analyse and compare the two sound samples. Methods of performing 
this analysis vary widely between vendors. None is willing to offer more than cur-
sory descriptions of their algorithms--principally because, apart from LAN authen-
tication, the largest market for speaker authentication is in verification of persons 
over the telephone. 

Fingerprint Recognition. The process of authenticating people based on their finger-
prints can be divided into three distinct tasks. First, you must collect an image of a 
fingerprint; second, you must determine the key elements of the fingerprint for con-
firmation of identity; and third, the set of identified features must be compared with a 
previously-enrolled set for authentication. The system should never expect to see a 
complete 1:1 match between these two sets of data. In general, you could expect to 
couple any collection device with any algorithm, although in practice most vendors 
offer proprietary, linked solutions. 

A number of fingerprint image collection techniques have been developed. The 
earliest method developed was optical: using a camera-like device to collect a 
high-resolution image of a fingerprint. Later developments turned to silicon-based 
sensors to collect an impression by a number of methods, including surface  
capacitance, thermal imaging, pseudo-optical on silicon, and electronic field  
imaging. 

As discussed, a variety of fingerprint detection and analysis methods exist, each 
with their own strengths and weaknesses. Consequently, researchers vary widely on 
their claimed (and achieved) false accept and false reject rates. The poorest systems 
offer a false accept rate of around 1:1,000, while the best are approaching 
1:1,000,000. False reject rates for the same vendors are around 1:100 to 1:1000. 
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6.2   Proposed Approach for Recognition 

Our proposed approach for human recognition consists in integrating the information 
of the three main biometric parts of the person: the voice, the face, and the fingerprint 
(Urias et al., 2006). Basically, we have an independent system for recognizing a per-
son from each of its biometric information (voice, face, and fingerprint), and at the 
end we have an integration unit to make a final decision based on the results from 
each of the modules. In Figure 6.1 we show the general architecture of our approach 
in which it is clearly seen that we have one module for voice, one module for face 
recognition, and one module for fingerprint recognition. At the top, we have the deci-
sion unit integrating the results from the three modules. In this paper the decision unit 
is implemented with a type-2 fuzzy system. 

 

Fig. 6.1. Architecture of the proposed modular approach 

6.3   Modular Neural Networks 

This section describes a particular class of "modular neural networks", which have a 
hierarchical organization comprising multiple neural networks; the architecture basi-
cally consists of two principal components: local experts and an integration unit, as il-
lustrated in Figure 6.2. In general, the basic concept resides in the idea that combined 
(or averaged) estimators may be able to exceed the limitation of a single estimator 
(Fogelman-Soulie, 1993). The idea also shares conceptual links with the "divide and 
conquer" methodology. Divide and conquer algorithms attack a complex problem by 
dividing it into simpler problems whose solutions can be combined to yield a solution 
to the complex problem (Monrocq, 1993). When using a modular network, a given 
task is split up among several local experts NNs (Happel and Murre, 1994). The aver-
age load on each NN is reduced in comparison with a single NN that must learn the 
entire original task, and thus the combined model may be able to surpass the limita-
tion of a single NN. The outputs of a certain number of local experts (Oi) are mediated 
 
 

Proposed Approach for Recognition
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Fig. 6.2. Architecture of a modular neural network 

by an integration unit. The integrating unit puts the outputs together using estimated 
combination weights (gi). The overall output Y is given by equation (6.1). 

Yi = Σgi OI (6.1) 

Nowlan, Jacobs, Hinton, and Jordan (Nowlan et al., 1991) described modular net-
works from a competitive mixture perspective. That is, in the gating network, they 
used the "softmax" function, which was introduced by (McCullagh and Nelder, 1994). 
More precisely, the gating network uses a softmax activation gi of ith output unit 
given by 

Gi = exp (kui)/ Σj exp (kuj) (6.2) 

Where ui is the weighted sum of the inputs flowing to the ith output neuron of the gat-
ing network. Use of the softmax activation function in modular networks provides a 
sort of "competitive" mixing perspective because the ith local expert's output Oi with a 
minor activation ui does not have a great impact on the overall output Yi. 

6.4   Integration of Results for Person Recognition Using Fuzzy 
Logic 

On the past decade, fuzzy systems have displaced conventional technology in differ-
ent scientific and system engineering applications, especially in pattern recognition 
and control systems.  The same fuzzy technology, in approximation reasoning form, is 
resurging also in the information technology, where it is now giving support to deci-
sion making and expert systems with powerful reasoning capacity and a limited  
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quantity of rules (Zadeh, 1998). For the case of modular neural networks, a fuzzy sys-
tem can be used as an integrator or results (Melin and Castillo, 2005). 

The fuzzy sets were presented by L. A. Zadeh in 1965 to process / manipulate data 
and information affected by  unprobabilistic uncertainty / imprecision (Zadeh, 1975). 
These were designed to mathematically represent the vagueness and uncertainty of 
linguistic problems; thereby obtaining formal tools to work with intrinsic imprecision 
in different type of problems; it is considered a generalization of the classic set theory. 

Type-2 fuzzy sets are used for modeling uncertainty and imprecision in a better 
way. These type-2 fuzzy sets were originally presented by  Zadeh in 1975 and are es-
sentially “fuzzy fuzzy” sets where the fuzzy degree of membership is a type-1 fuzzy 
set (Zadeh, 1996).  The new concepts were introduced by (Mendel, 2001) allowing 
the characterization of a type-2 fuzzy set with a superior membership function and an 
inferior membership function; these two functions can be represented each one by a 
type-1 fuzzy set membership function.  The interval between these two functions rep-
resent the footprint of uncertainty (FOU), which is used to characterize a type-2 fuzzy 
set. The uncertainty is the imperfection of knowledge about the natural process or 
natural state.  The statistical uncertainty is the randomness or error that comes from 
different sources as we use it in a statistical methodology (Castillo et al., 2005). 

6.5   Modular Neural Networks with Type-2 Fuzzy Logic as a 
Method for Response Integration 

As was mentioned previously, type-2 fuzzy logic was used to integrate the responses 
of the three modules of the modular network. Each module was trained with the cor-
responding data, i.e. face, fingerprint and voice. Also, a set of modular neural net-
works was built to test the type-2 fuzzy logic approach of response integration. The 
architecture of the modular neural network is shown in Figure 6.3. From this figure 
we can appreciate that each module is also divided in three parts with the idea of also 
dividing each of the recognition problems in three parts. 

Experiments were performed with sets of 20 and 30 persons. The trainings were 
done with different architectures, i.e. different number of modules, layers and nodes. 

As can be appreciated from Figure 6.3, the first module was used for training with 
voice data. In this case, three different words were used for each person. The words 
used were: access, presentation, and hello. 

The second module was used for training with person face data. In this case, two 
different photos were taken from each person, one in a normal position and the other 
with noise. The idea is that training with noise will make the recognition more robust 
to changes in the real world. We show in Figure 6.4 the photos of two persons in a 
normal situation and in a noisy situation. 

The third module was used with fingerprint data of the group of persons. The fin-
gerprint information was taken with a  scanner. Noise was added for training the neu-
ral networks. 

In all cases, each module is subdivided in three submodules, in this way making 
easier the respective recognition problem. 
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Fig. 6.3. Architecture of the Modular Network used for the recognition problem 
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Fig. 6.4. Sample Photos of Faces in a Normal and Noisy Situation 

6.6   Simulation Results 

A set of different trainings for the modular neural networks was performed to test the 
proposed type-2 fuzzy logic approach for response integration in modular neural net-
works. We show in Table 1 some of these trainings with different numbers of mod-
ules, layers and nodes. The training times are also shown in this table to illustrate the 
performance with different training algorithms and conditions. 
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Table 6.1. Sample Trainings of the Modular Neural Network 

 

 

Fig. 6.5. Input variables of the type-2 fuzzy system 

 
 

Simulation Results
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Fig. 6.6. Output variables of the type-2 fuzzy system 

Table 6.2. Results of the Type-2 Fuzzy System with Triangular Membership Functions 

 

Once the necessary trainings were done, a set of tests were performed with differ-
ent type-2 fuzzy systems. The fuzzy systems were used as response integrators for the 
three modules of the modular network. In the type-2 fuzzy systems, different types of 
membership functions were considered with goal of comparing the results and deice 
on the best choice for the recognition problem. 

The best type-2 fuzzy system, in the sense that it produced the best recognition re-
sults, was the one with triangular membership functions. This fuzzy system has 3 in-
put variables and one output variable, with three membership functions per variable. 
We show in Figures 6.5 and 6.6 the membership functions of the type-2 fuzzy system. 

The recognition results of this type-2 fuzzy system for each training of the modular 
neural network are shown in Table 2. 

In Table 6.2 we show the results for 15 trainings of the modular neural network. In 
each row of this table we can appreciate the recognition rate with the type-2 fuzzy 
system. We can appreciate that in 8 out of 15 cases, a 100% recognition rate was 
achieved.  

The fuzzy systems with worst results for the modular neural network were the ones 
with Gaussian and Trapezoidal membership functions. We use 3 input variables and 
one output variable, as in the previous fuzzy system. We show in Figures 6.7 and 6.8 
the Gaussian membership functions of this system. 
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Fig. 6.7. Input variables for type-2 fuzzy system with Gaussian membership functions 

 

Fig. 6.8. Output variable for type-2 fuzzy system with Gaussian membership functions 

 

Fig. 6.9. Input variables for the Type-2 Fuzzy System with Trapezoidal Functions 

We show in Figures 6.9 and 6.10 the Trapezoidal membership functions of another 
type-2 fuzzy system. 

The results that were obtained with Gaussian and Trapezoidal membership functions 
are similar. We show in Table 3 the recognition results obtained with the type-2 fuzzy 
system with Trapezoidal membership functions. We can appreciate from Table 6.3 
 

Simulation Results
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Fig. 6.10. Output variable for type-2 fuzzy system with Trapezoidal functions 

Table 6.3. Recognition rates with the Type-2 System and Trapezoidal Functions 

 

that only in 6 out of the 15 cases a 100% recognition rate is obtained. Also, there are 4 
cases with low recognition rates. 

We have to mention that results with a type-1 fuzzy integration of responses were 
performed in previous paper, in which the recognition rates were consistently lower 
by an average of 5%. We can state in conclusion that the type-2 fuzzy system for re-
sponse integration is improving the recognition rate in the case of persons based on 
face, fingerprint and voice. 

6.7   Summary 

We described in this chapter a new method for response integration in modular neural 
networks that uses type-2 fuzzy logic to model uncertainty in the decision process. 
We showed different trainings of the modular neural networks, and tested different 
type-2 fuzzy systems for response integration. Based on the obtained recognition 
rates, the best results were achieved with a type-2 fuzzy system with triangular 
membership functions. The results obtained with this type-2 fuzzy system are better 
than the previously obtained by a similar type-1 approach. 
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7   Type-2 Fuzzy Logic for Improving Training Data and 
Response Integration in Modular Neural Networks for 
Image Recognition 

The combination of Soft Computing techniques allows the improvement of intelligent 
systems with different hybrid approaches. In this work we consider two parts of a 
Modular Neural Network for image recognition, where a Type-2 Fuzzy Inference 
System (FIS 2) makes a great difference. The first FIS 2 is used for feature extraction 
in training data, and the second one to find the ideal parameters for the integration 
method of the modular neural network. Once again Fuzzy Logic is shown to be a tool 
that can help improve the results of a neural system, when facilitating the representa-
tion of the human perception. 

7.1   Method for Image Recognition 

At the moment, many methods for image recognition are available. But most of them 
include a phase of feature extraction or another type of preprocessing closely related 
to the type of image to recognize (Melin and Castillo, 2005) (Starovoitov et al., 2002) 
(Chuang et al., 2000). The method proposed in this paper can be applied to any type 
of images, because the preprocessing phase does not need specific data about the type 
of image (Melin et al., 2007) (Mendoza and Melin, 2007). 

Even if the method was not designed only for face recognition, we have made the 
tests with the ORL face database (AT&T Laboratories Cambridge) composed of 400 
images of size 112x92. There are 40 persons, with 10 images of each person. The im-
ages are taken at different times, lighting and facial expressions. The faces are in up-
right position of frontal view, with slight left-right rotation. Figure 7.1 shows the 10 
samples of one person in ORL database. 

To explain the proposed steps of the method, we need to separate it them in two 
phases: the training phase in figure 7.3 and the recognition phase in figure 7.4. 
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Fig. 7.1. Set of 10 samples of a person in ORL 

 

Fig. 7.2. Steps in Training Phase 

 

Fig. 7.3. Steps in Recognition Phase 

7.2   Type-2 Fuzzy Inference System as Edge Detector 

In previous work we presented an efficient Fuzzy Inference System for edges detec-
tion, in order to use the output image like input data for modular neural networks 
(Mendoza and Melin, 2006). In the proposed technique, it is necessary to apply Sobel 
operators to the original images, then use a Fuzzy Inference System Type-2 to gener-
ate the vector of edges that would serve like input data in a neural network. Type-2 
Fuzzy Logic enables us to handle uncertainties in decision making and recognition in 
a more convenient way and for this reason was proposed (Castillo et al., 2007). 
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For the Type-2 Fuzzy Inference System, 3 inputs are required, 2 of them are the 
gradients with respect to x-axis and y-axis, calculated with (1), to which we will call 
DH and DV respectively. 

The Sobel edges detector uses a pair of 3x3 convolution masks, one estimating the 
gradient in the x-direction (columns) and the other estimating the gradient in the y-
direction (rows). 
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Where Sobely y Sobelx are the Sobel Operators throughout x-axis and y-axis. 
If we define I as the source image, gx and gy are two images which at each point 

contain the horizontal and vertical derivative approximations, the latter are computed 
as (2) and (3). 
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Where gx and gy are the gradients along axis-x and axis-y, and * represents the con-
volution operator. 

The other input is a filter that calculates when applying a mask by convolution to 
the original image. The low-pass filter hMF (4) allow us to detect image pixels be-
longing to regions of the input were the mean gray level is lower. These regions are 
proportionally more affected by noise, supposed it is uniformly distributed over the 
whole image.  

The goal here is to design a system which makes it easier to include edges in low 
contrast regions, but which does not favor false edges by effect of noise (Miosso and 
Bauchspiess, 2001). 
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(7.4) 

Then the inputs for FIS type 2 are: DH=gx, DV=gy, M= hMF*I, where * is the convo-
lution operator, and de output is a column vector contains the values of the image 
edges, and we can represent that in graphics shown in figure 7.4.  

The Edges Image is smaller than the original because the result of convolution op-
eration is a central matrix where the convolution has a value. Then in our example, 
each image with dimension 112x92 is reduced to 108x88. 

The inference rules and membership function parameters allow to calculate a gray 
value between -4.5 and 1.5 for each pixel, where the most negative values corresponds 

Type-2 Fuzzy Inference System as Edge Detector
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corresponds to the dark tone in the edges of the image. Then if we see the rules, only 
when the increment value of the inputs DH and DV are low the output is HIGH or 
clear (the background), in the rest of rules the output is LOW or dark (the edges). The 
complete set of fuzzy rules is given as follows (Castro et al., 2006): 

 
1. If (DH is LOW) and (DV is LOW) then (EDGES is HIGH) (1)      
2. If (DH is MEDIUM) and (DV is MEDIUM) then (EDGES is LOW) (1) 
3. If (DH is HIGH) and (DV is HIGH) then (EDGES is LOW) (1)     
4. If (M is LOW) and (DV is MEDIUM) then (EDGES is LOW) (1)     
5. If (M is LOW) and (DH is MEDIUM) then (EDGES is LOW) (1) 
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Fig. 7.4. Membership Function for the Type-2 FIS Edge Detector 

Fig. 7.5. Examples of edge detection with the Type-2 FIS method 
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The edge detector allows us to ignore the background color. We can see in this da-
tabase of faces, different tones present for the same or another person. Then we  
eliminate a possible influence of a bad classification by the neural network, without 
losing detail in the image. Another advantage of edge detector is that the values can 
be normalized to a homogenous value range, independently the light, contrast or 
background tone in each image. At the examples in figure 7.5, all the edges in the im-
ages have a minimum value of -3.8 and a maximum value of 0.84.  In particular for 
neural network training, we find these values to make the training faster: the mean of 
the values is near 0 and the standard deviation is near 1 for all the images. 

7.3   The Modular Structure 

The design of the Modular Neural Network consists of 3 monolithic feedforward neu-
ral networks (Sharkey, 1999), each one trained with a supervised method with the first 
7 samples of the 40 images. Then the edges vector column is accumulated until the 
number of samples to form the input matrix for the neural networks as it is in the 
scheme of figure 7.7. Once the complete matrix of images is divided in 3 parts, each 
module is training with a correspondent part, with some rows of overlap. 

The target to the supervised training method consist of one identity matrix for each 
sample, building one matrix with dimensions 40x(40*number_of_samples), as shown 
in figure 7.8. 

Each Monolithic Neural Network has the same structure and is trained under the 
same conditions, like we can see in the next code segment: 

layer1=200; layer2=200;  
layer3=number_of_subjects; 
net=newff(minmax(p),[layer1,layer2,layer3],{'tan 
sig','tansig','logsig'},'traingdx'); 
net.trainParam.goal=1e-5; 
net.trainParam.epochs=1000; 

 

The average number of epochs to meet the goal in each module is of 240, and the re-
quired time of 160 seconds. 

7.4   Simulation Results 

A program was developed in Matlab that simulates each module with the 400 images 
of the ORL database, building a matrix with the results of the simulation of each 
module. These matrices are stored in the file “mod.mat” to be analyzed later for the 
combination of results. We can observe that in the columns corresponding to the 
training data, the position with a value near one is the image selected correctly.  How-
ever in the columns that correspond to the test data this doesn’t always happens, rea-
son why it is very important to have a good combination method to recognize more 
images. 

According to exhaustive tests made in the simulation matrices, we know that rec-
ognition of the images that were used for the training of the neural networks is of the 

The Modular St ucturer
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100%. Therefore the interest is focused on the recognition of the samples that do not 
belong to the training set, is to say samples 8,9 and 10. The parameters for the Sugeno 
Fuzzy Integral that will be inferred will be the Fuzzy Densities, a value between 0 and 
1 for each module, which determines the rate for each module. The parameter lambda, 
according to the theory of fuzzy measures depends on the values of the fuzzy densi-
ties, and is calculated by searching for the roots of a polynomial. After the simulation 
of an image in the Neural Network, the simulation value is the only known parameter 
to make a decision, then to determine the fuzzy density for each module is the unique 
available information.  For this reason we analyze the values in many simulations ma-
trix and decide that each input to the FIS Type-2 corresponds to the maximum value 
of each column corresponding to the simulation of each module of each one of the 
400 images. The process to recognize each one of the images is shown in figure 6. 

 

Fig. 7.6. Process of recognition using the type-2 fuzzy modular  approach 

Then each output corresponds to one fuzzy density, to be applied for each module 
to perform the fusion of results later with the Fuzzy Sugeno Integral. The inference 
rules found fuzzy densities near 1 when de maximum value in the simulation is be-
tween 0.5 and 1, and near 0 when the maximum value in the simulation is near 0. The 
fuzzy rules are shown below and membership functions in Figure 7.7. 

 

1. If (max1 is LOW) then (d1 is LOW) (1)     
2. If (max2 is LOW) then (d2 is LOW) (1)     
3. If (max3 is LOW) then (d3 is LOW) (1)     
4. If (max1 is MEDIUM) then (d1 is HIGH) (1) 
5. If (max2 is MEDIUM) then (d2 is HIGH) (1) 
6. If (max3 is MEDIUM) then (d3 is HIGH) (1) 
7. If (max1 is HIGH) then (d1 is HIGH) (1)   
8. If (max2 is HIGH) then (d2 is HIGH) (1)   
9. If (max3 is HIGH) then (d3 is HIGH) (1) 
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Fig. 7.7. Membership functions for the FIS to find fuzzy densities 

Although the rules are very simple, allows to model the fuzziness to rate de modules 
when the simulation result don’t reach the maximum value 1. 

However some of the images don’t reach the sufficient value in the simulation of 
the three modules, in these cases, do not exists enough information to select an image 
at the modules combination, and the image is wrongly selected. 

In order to measure of objective form the final results, we developed a method of 
random permutation, which rearranges the samples of each person before the training. 
Once a permutation is made, the modular neural networks are trained and combined 
four times to obtain the sufficient information to validate the results. The average rec-
ognition rate is of 96.5%.  

We show in Table 7.1 the summary of simulation results for each of the 
modules and the average and maximum results of the modular network (after fusion 
or combination of the results). 

Table 7.1. Summary of the simulation results with the hybrid approach 

Image Recognition (%) Permu-
tation Train 1 Train 2 Train 3 Train 4 Average Maximum 

1 92.75 95 92.2 93.25 93.3 95 
2 96.5 95.25 94.25 95.5 95.375 96.5 
3 91.5 92 93.75 95.25 93.125 95.25 
4 94.5 94.5 93.25 94 94.0625 94.5 
5 93.75 93.5 94 96 94.3125 96 
     94.035 96.5 

 

Simulation Results
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7.5   Summary 

We have shown in this chapter that the combination of Soft Computing techniques al-
lows the improvement of intelligent systems with different hybrid approaches. In this 
chapter we considered two parts of a Modular Neural Network for image recognition, 
where a Type-2 Fuzzy Inference System (FIS 2) help us improves the performance re-
sults in image recognition. The first FIS 2 was used for feature extraction in training 
data, and the second one to find the ideal parameters for the integration method of the 
modular neural network.  
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8   Fuzzy Inference Systems Type-1 and Type-2 for 
Digital Images Edge Detection 

Edges detection in digital images is a problem that has been solved by means of the 
application of different techniques from digital signal processing, also the combina-
tion of some of these techniques with Fuzzy Inference System (FIS) has been experi-
enced. In this chapter a new FIS Type-2 method is implemented for the detection of 
edges and the results of three different techniques for the same intention are com-
pared. 

8.1   Introduction 

In the area of digital signal processing, methods have been proven that solve the prob-
lem of image recognition. Some of them include techniques like binarization, bidi-
mensional filtrate, detection of edges and compression using banks of filters and trees, 
among others. 

Specifically in methods for the detection of edges we can find comparative studies 
of methods like: Canny, Narwa, Iverson, Bergholm y Rothwell. Others methods can 
group in two categories: Gradient and Laplacian (Heath, 1996). 

The gradient methods like Roberts, Prewitt and Sobel detect edges, looking for 
maximum and minimum in first derived from the image. The Laplacian methods like 
Marrs-Hildreth do it finding the zeros of second derived from the image (Mendoza 
and Melin, 2005). 

This work is the beginning of an effort for the design of new pre-processing images 
techniques, using Fuzzy Inference Systems (FIS), that allows feature extraction and 
construction of input vectors for neural networks with aims of image recognition. 

Artificial neural networks are one of the most used objective techniques in the 
automatic recognition of patterns, here some reasons: 

 

• Theoretically any function can be determined. 
• Except the input patterns, it is not necessary to provide additional information. 
• They are possible to be applied to any type of patterns and to any data type.  
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The idea to apply artificial neuronal networks for images recognition, tries to ob-
tain results without providing another data that the original images, of this form the 
process is more similar to the form in which the biological brain learns to recognize 
patterns, only knowing experiences of past. 

Models with modular neural networks have been designed, that allow recognizing 
images divided in four or six parts. This is necessary due to the great amount of input 
data, since an image without processing is of 100x100 pixels, needs a vector 10000 
elements, where each one corresponds to pixel with variations of gray tones between 
0 and 255 (Mendoza and Melin, 2005). 

This chapter shows an efficient Fuzzy Inference System for edges detection, in or-
der to use the output image like input data for modular neural networks. In the pro-
posed technique, it is necessary to apply Sobel operators to the original images, and 
then use a Fuzzy System to generate the vector of edges that would serve as input data 
to a neural network. 

8.2   Sobel Operators 

The Sobel operator applied on a digital image, in gray scale, calculates the gradient of 
the intensity of brightness of each pixel, giving the direction of the greater possible in-
crease of black to white, in addition calculates the amount of change of that direction. 

The Sobel operator performs a 2-D spatial gradient measurement on an image. 
Typically it is used to find the approximate absolute gradient magnitude at each point 
in an input grayscale image.  

The Sobel edges detector uses a pair of 3x3 convolution masks, one estimating the 
gradient in the x-direction (columns) and the other estimating the gradient in the y-
direction (rows). 

A convolution mask is usually much smaller than the actual image. As a result, the 
mask is slid over the image, manipulating a square of pixels at a time. The Sobel 
masks are shown in equation (8.1) (Green, 2002): 
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Where Sobely y Sobelx are the Sobel Operators throughout x-axis and y-axis. 
If we define I as the source image,  gx and gy are two images which at each point 

contain the horizontal and vertical derivative approximations, the latter are computed 
as in equations (8.2) and (8.3). 

∑∑
=

=

=

=
−+−+=

3

1

3

1
2,2,, *

i

i

j

j
jcirjixx ISobelg   

(8.2) 

∑∑
=

=

=

=
−+−+=

3

1

3

1
2,2,, *

i

i

j

j
jcirjiyy ISobelg   

(8.3) 



 97 

Where gx and gy are the gradients along axis-x and axis-y, and * represents the con-
volution operator. 

The gradient magnitude g is calculated with equation (8.4) (Fan et al., 2004). 

22
yx ggg +=  (8.4) 

8.3   Edge Detection by Gradient Magnitude 

Although the idea presented in this chapter, is to verify the efficiency of a FIS for 
edges detection in digital images, from the approaches given by Sobel operator, is 
necessary to display first the obtained results using only the gradient magnitude. 

It will be used as an example the first image of the subject number one of the ORL 
database (figure 8.1). The gray tone of each pixel of this image is a value of between 
0 and 255. 
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Fig. 8.1. Original Image 1.pgm 

In figure 8.2 appears the image generated by gx, and figure 8.3 presents the image 
generated by gy. 
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Fig. 8.2. Image given by gx Fig. 8.3. Image given by gy 

Edge Detection by Gradient Magnitude
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An example of maximum and minimum values of the matrix given by gx, gy and g 
from the image 1.pgm is shown in table 8.1. 

Table 8.1. Maximum and minimum values from  1.pgm, gx, gy y g 

Tone 1.pgm gx gy g 

Minimum 11 -725 -778 0 
Maximum 234 738 494 792 

After applying equation (8.4), g is obtained as it is in figure 8.4. 

 

Fig. 8.4. Edges image given by g 

8.4   Edge Detection Using Type-1 Fuzzy Logic 

A Mamdani FIS was implemented using Type-1 Fuzzy Logic, with four inputs, one out-
put and 7 rules, using the Matlab Fuzzy Logic Toolbox, which is shown in figure 8.5. 

For the Type-1Fuzzy Inference System, 4 inputs are required, 2 of them are the 
gradients with respect to x-axis and y-axis, calculated with equation (2) and equation 
(3), to which we will call DH and DV respectively. 

M

DH

DV

EDGES

EDGES DETECTOR

(mamdani)

 

Fig. 8.5. FIS in Matlab Fuzzy Logic Tool Box 



 99 

The other two inputs are filters: A high-pass filter, given by the mask of the equation 
(8.5), and a low-pass filter given by the mask of equation (8.6). The high-pass filter hHP 
detects the contrast of the image to guarantee the border detection in relative low contrast 
regions. The low-pass filter hMF allow to detects image pixels belonging to regions of 
the input were the mean gray level is lower. These regions are proportionally more af-
fected by noise, supposed it is uniformly distributed over the whole image.  

The goal here is to design a system which makes it easier to include edges in low 
contrast regions, but which does not favor false edges by effect of noise (Miosso and 
Bauchspiess, 2001). 
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(8.6) 

Then the inputs for FIS type 1 are: 

DH=gx 
DV=gy 
HP= hHP*I 
M= hMF*I 

where * is the convolution operator. 
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Fig. 8.6. Input variable DH 

Edge Detection Using Type-1 Fuzzy Logic
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For all the fuzzy variables, the membership functions are of Gaussian type. Ac-
cording to the executed tests, the values in DH and DV, go from -800 to 800, then the 
ranks in x-axis adjusted as it is in figures 8.6, 8.7 and 8.8, in where the membership 
functions are: 

LOW: gaussmf(43,0),  
MEDIUM: gaussmf(43,127), 
HIGH: gaussmf(43,255). 
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Fig. 8.7. Input variable DV 
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Fig. 8.8. Input variable HP 

In the case of variable M, the tests threw values in the rank from 0 to 255, and thus 
the rank in x-axis adjusted, as it is appraised in figure 8.9. 

In figure 8.10 is the output variable EDGES that also adjusted the ranks between 0 
and 255, since it is the range of values required to display the edges of an image. 
The seven fuzzy rules that allow to evaluate the input variables, so that the exit image 
displays the edges of the image in color near white (HIGH tone), whereas the back-
ground was in tones near black (tone LOW). 

 

1. If (DH is LOW) and (DV is LOW) then (EDGES is LOW)   
2. If (DH is MEDIUM) and (DV is MEDIUM) then (EDGES is HIGH)  
3. If (DH is HIGH) and (DV is HIGH) then (EDGES is HIGH)   
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Fig. 8.9. Input variable M 

0 50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

EDGES

D
eg

re
e 

of
 m

em
be

rs
hi

p

LOW MEDIUM HIGH

 

Fig. 8.10. Output variable EDGES 

 

Fig. 8.11. EDGES Image by FIS Type 1 

Edge Detection Using Type-1 Fuzzy Logic
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4. If (DH is MEDIUM) and (HP is LOW) then (EDGES is HIGH) 
5. If (DV is MEDIUM) and (HP is LOW) then (EDGES is HIGH) 
6. If (M is LOW) and (DV is MEDIUM) then (EDGES is LOW)    
7. If (M is LOW) and (DH is MEDIUM) then (EDGES is LOW)    

 

The result obtained for image of figure 1 is remarkably better than the one than it 
was obtained with the method of gradient magnitude, as it is in figure 8.11. 

Reviewing the values of each pixel, we see that all fall in the rank from 0 to 255, 
which is not obtained with the method of gradient magnitude. 

8.5   Edge Detection Using Type-2 Fuzzy Logic 

For the Type-2 FIS, the same method was followed as in Type-1 FIS, indeed to be 
able to make a comparison of both results. The tests with the type-2 FIS, were exe-
cuted using the computer program imagen_bordes_fis2.m, which creates a Type-2 In-
ference System (Mamdani) by intervals (Mendel, 2001). 

 

Fig. 8.12. Type-2 fuzzy variables 
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Fig. 8.13. EDGES Image by FIS Type 2 

The mentioned program creates the fuzzy variables type 2 as it is seen in figure 
8.12. The wide of the FOU chosen for each membership function was the one that had 
better results after several experiments. 

The program imagen_bordes_fuzzy2.m was implemented to load the original im-
age, and to apply the filters before mentioned. Because the great amount of data that 
the fuzzy rules must evaluate, the image was divided in four parts, and the FIS was 
applied to each one separately. The result of each evaluation gives a vector with tones 
of gray by each part of the image, in the end is the complete image with the edges 
(figure 8.13). 

8.6   Comparison of Results 

The first results of several tests conducted in different images can be appreciated in 
table 8.2. 

At first, the results with FIS Type-1 and FIS Type2 are seen very similar. However 
thinking about that to show the images with a dark background it could confuse the 
contrast of tones, tests were done inverting the consequent of the rules, so that the 
edges take the dark tone and the bottom the clear tone, the rules changed to the fol-
lowing form: 

1. If (DH is LOW) and (DV is LOW) then (EDGES is HIGH) 
2. If (DH is MEDIUM) and (DV is MEDIUM) then (EDGES is LOW) 
3. If (DH is HIGH) and (DV is HIGH) then (EDGES is LOW)    
4. If (DH is MEDIUM) and (HP is LOW) then (EDGES is LOW)  
5. If (DV is MEDIUM) and (HP is LOW) then (EDGES is LOW)  
6. If (M is LOW) and (DV is MEDIUM) then (EDGES is HIGH)   
7. If (M is LOW) and (DH is MEDIUM) then (EDGES is HIGH)   

 
 

Edge Detection Using Type-  Fuzzy Logic 2 
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Table 8.2. Results of Edge Detection by FIS1 y FIS2 
(dark background) 

Original Im-
age 

EDGES  
(FIS 1) 

EDGES  
(FIS 2) 

  

  

  

  

  

 
Fuzzy Systems were tested both (Type-1 and Type-2), with the new fuzzy rules 

and same images, obtaining the results that are in table 8.3. 
In this second test can be appreciated a great difference between the results ob-

tained with the FIS 1 and FIS 2, noticing at first a greater contrast in the images ob-
tained with the FIS 1 and giving to the impression of a smaller range of tones of gray 
in the type-2 FIS. 

In order to obtain an objective comparison of the images, histograms were elabo-
rated respectively [14] corresponding to the resulting matrices of edges of the FIS 1 
and FIS 2, which are in table 8.4. 
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Table 8.3. Results of Edge Detection by FIS1 y FIS2 
(clear background) 

EDGES  
(FIS 1) 

EDGES  
(FIS 2) 

  

  

  

  

The histograms show in the y-axis the range of tones of gray corresponding to each 
image and in x-axis the frequency in which he appears pixel with each tone. 

As we can observe, unlike detector FIS1, with FIS2 the edges of an image could be 
obtained from very complete form, only taking the tones around 150 and 255. 

Like a last experiment, in this occasion to the resulting images of the FIS Type-2 
the every pixel out of the range between 50 and 255 was eliminated.  

Table 8.5 shows the amount of elements that was possible to eliminate in some of 
the images, we see that the Type-2 Edges Detector FIS allows to using less than half 
of the original pixels without losing the detail of the images. This feature could be a  
great advantage if these images are used like input data in neural networks for detec-
tion of images instead the original images. 

 

Comparison of Results
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Table 8.4. Histograms Of The Resulting Images Of The Edges by Gradient Magnitud, Fis 1 
And Fis 2 Methods 

IMAGE: 1.PGM                                                           

METHOD: GRADIENT MAGNITUDE 
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Table 8.5. Type-2FIS Edges Images Including Only Pixels With Tones Between 150 And 255 

BORDERS IMAGE DIMENSION 
(pixels) 

PIXELS INCLUDED 
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108x88 
 

(9504) 

4661 
 

49 % 
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Table 8.5. (continued) 
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(15840) 

7077 
 

44.6 % 

8.7   Summary 

The application of Sobel filters was very useful to define the input vectors for the 
Type-1 FIS and the Type-2 FIS, although in future works we will  try to design 
Neuro-Fuzzy techniques able to extract image patterns without another data that the 
original image and to compare the results with traditional techniques of digital signal 
processing. 

Thanks to the histograms of the images it was possible to verify the improvement 
of results of the FIS Type-1 with respect to the FIS Type-2, since with only the appre-
ciation of the human eye was very difficult to see an objective difference. 

The best result was obtained by the Type-2Fuzzy Inference System, because it was 
possible to clear more than half of the pixels without depreciating the image, which 
will reduce in drastic form the cost of training in a neural network. 

Summary
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9   Systematic Design of a Stable Type-2 Fuzzy Logic 
Controller 

Stability is one of the more important aspects in the traditional knowledge of Auto-
matic Control. Type-2 Fuzzy Logic is an emerging and promising area for achieving 
Intelligent Control (in this case, Fuzzy Control). In this chapter we use the Fuzzy 
Lyapunov Synthesis as proposed by Margaliot to build a Lyapunov Stable Type-1 
Fuzzy Logic Control System, and then we make an extension from a Type-1 to a 
Type-2 Fuzzy Logic Control System, ensuring the stability on the control system and 
proving the robustness of the corresponding fuzzy controller. 

9.1   Introduction 

Stability has been one of the central issues concerning fuzzy control since Mamdani’s 
pioneer work (Mamdani and Assilian, 1975). Most of the critical comments to fuzzy 
control are due to the lack of a general method for its stability analysis. 

But as Zadeh often points out, fuzzy control has been accepted by the fact that it is 
task-oriented control, while conventional control is characterized as setpoint-oriented 
control, and hence do not need a mathematical analysis of stability. Also, as Sugeno 
has mentioned, in general, in most industrial applications, the stability of control is 
not fully guaranteed and the reliability of a control hardware system is considered to 
be more important than the stability (Sugeno, 1999). 

The success of fuzzy control, however, does not imply that we do not need a stabil-
ity theory for it. Perhaps the main drawback of the lack of stability analysis would be 
that we cannot take a model-based approach to fuzzy control design. In conventional 
control theory, a feedback controller can be primarily designed so that a close-loop 
system becomes stable (Paul and Yang, 1999). This approach of course restricts us to 
setpoint-oriented control, but stability theory will certainly give us a wider view on 
the future development of fuzzy control. 

Therefore, many researchers have worked to improve the performance of the 
FLC’s and ensure their stability. Li and Gatland in 1995 proposed a more systematic 
design method for PD and PI-type FLC’s. Choi, Kwak and Kim (Choi et al., 2000) 
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present a single-input FLC ensuring stability. Ying in 1994 presented a practical  
design method for nonlinear fuzzy controllers, and many other researchers have re-
sults on the matter of the stability of FLC’s, in (Castillo et al., 2005) and (Cázarez et 
al., 2005) presents an extension of the Margaliot work (Margaliot and G. Langholz, 
2000) to built stable type-2 fuzzy logic controllers in Lyapunov sense. 

This work is based on Margaliot´s work (Margaliot and Langholtz, 2000), we use 
the Fuzzy Lyapunov Synthesis to build an Stable Type-2 Fuzzy Logic Controller for a 
1 Degree of Freedom (DOF) manipulator robot, first without gravity effect to prove 
stability, and then with gravity effect to prove the robustness of the controller. The 
same criteria can be used for any number of DOF manipulator robots, linear or 
nonlinear, and any kind of plants. 

This chapter is organized as follows: In Section 9.2 we present an introductory ex-
planation of type-1 and type-2 FLC’s. In Section 9.3 we extend Margaliot’s result to 
build a general rule base for any type (1 or 2) of FLC’s. Experimental results are  
presented in Section 9.4 and the summary is given in Section 9.5.  

9.2   Fuzzy Logic Controllers 

9.2.1   Type-1 Fuzzy Logic Control 

Type-1 FLCs are both intuitive and numerical systems that map crisp inputs to a crisp 
output. Every FLC is associated with a set of rules with meaningful linguistic inter-
pretations, such as 

:lR If 1x is lF1 and 2x is lF2 and … and nx is 
l

nF Then w is lG  

which can be obtained either from numerical data, or experts familiar with the prob-
lem at hand. Based on this kind of statement, actions are combined with rules in an 
antecedent/consequent format, and then aggregated according to approximate reason-

ing theory, to produce a nonlinear mapping from input space nUxxUUU ...21= to 

the output space W , where nkUF k
l

k ,...,2,1, =⊂ , are the antecedent type-1 

membership functions, and WGl ⊂ is the consequent type-1 membership function. 

The input linguistic variables are denoted by nkuk ,...,2,1, = , and the output lin-

guistic variable is denoted by w . 

A Fuzzy Logic System (FLS), as the kernel of a FLC, consist of four basic ele-
ments (Fig. 9.1): the type-1 fuzzyfier, the fuzzy rule-base, the inference engine, and 

the type-1 defuzzyfier. The fuzzy rule-base is a collection of rules in the form of lR , 
which are combined in the inference engine, to produce a fuzzy output. The type-1 
fuzzyfier maps the crisp input into type-1 fuzzy sets, which are subsequently used as 
inputs to the inference engine, whereas the type-1 defuzzyfier maps the type-1 fuzzy 
sets produced by the inference engine into crisp numbers. 
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Fig. 9.1. Structure of type-1 fuzzy logic system 

Fuzzy sets can be interpreted as membership functions Xu  that associate with each 

element x  of the universe of discourse, U , a number )(xuX in the interval [0,1]: 

]1,0[: →UuX  
(9.1) 

For more detail of Type-1 FLS see (Chen and Pham, 2000). 

9.2.2   Type-2 Fuzzy Logic Control 

As with the type-1 fuzzy set, the concept of type-2 fuzzy set was introduced by Zadeh 
as an extension of the concept of an ordinary fuzzy set (Zadeh, 1975). 

A FLS described using at least one type-2 fuzzy set is called a type-2 FLS. Type-1 
FLSs are unable to directly handle rule uncertainties, because they use type-1 fuzzy 
sets that are certain. On the other hand, type-2 FLSs, are very useful in circumstances 
where it is difficult to determine an exact, and measurement uncertainties (Mendel, 
2000). 

It is known that type-2 fuzzy set let us to model and to minimize the effects of un-
certainties in rule-based FLS. Unfortunately, type-2 fuzzy sets are more difficult to 
use and understand that type-1 fuzzy sets; hence, their use is not widespread yet. 

Similar to a type-1 FLS, a type-2 FLS includes type-2 fuzzyfier, rule-base, infer-
ence engine and substitutes the defuzzifier by the output processor. The output proc-
essor includes a type-reducer and a type-2 defuzzyfier; it generates a type-1 fuzzy set 
output (from the type reducer) or a crisp number (from the defuzzyfier). A type-2 FLS 
is again characterized by IF-THEN rules, but its antecedent of consequent sets are 
now type-2. Type-2 FLSs, can be used when the circumstances are too uncertain to 
determine exact membership grades. A model of a type-2 FLS is shown in Fig. 9.2. 

 

Fuzzy Logic Controllers
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Fig. 9.2. Structure of type-2 fuzzy logic system 

In the case of the implementation of type-2 FLCs, we have the same characteristics 
as in type-1 FLC, but we now use type-2 fuzzy sets as membership functions for the 
inputs and for the outputs. Fig. 9.3 shows the structure of a control loop with a FLC. 

 

Fig. 9.3. Fuzzy control loop 

9.3   Systematic and Design of Stable Fuzzy Controllers 

For our description we consider the problem of designing a stabilizing controller for a 

1DOF manipulator robot system depicted in Fig.9.4. The state-variables are θ=1x - 

the robot arm angle, and θ&=2x  - its angular velocity. The system’s actual dynami-

cal equation, which we will assume unknown, is as shown in equation (9.2) (Paul and 
Yang, 1999): 

( ) ( ) τ=++ )(, qgqqqCqqM &&&&  
(9.2) 

To apply the fuzzy Lyapunov synthesis method, we assume that the exact equations 
are unknown and that we have only the following partial knowledge about the plant 
(see Fig. 9.4): 

1. The system may have really two degrees of freedom θ  and θ& , referred to as 

1x and 2x , respectively. Hence, 21 xx =& . 
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Fig. 9.4. 1DOF Manipulator robot 

2. 2x&  is proportional to u , that is, when u increases (decreases) 2x& increases  

(decreases). 

To facilitate our control design we are going to suppose no gravity effect in our 
model, see (equation 9.3). 

τ=qml &&2  (9.3) 

Our objective is to design the rule-base of a fuzzy controller that will carry the robot 

arm to a desired position dx θ=1 . We choose (9.4) as our Lyapunov function candi-

date. Clearly, V is positive-definite. 

)(
2

1
),( 2

2
2
121 xxxxV +=  (9.4) 

Differentiating V , we have (9.5),  

22212211 xxxxxxxxV &&&& +=+=  (9.5) 

Hence, we require: 

02221 <+ xxxx &  (9.6) 

We can now derive sufficient conditions so that condition (9.6) holds: If 1x and 

2x have opposite signs, then 021 <xx and (9.6) will hold if 02 =x& ; if 1x and 2x are 

both positive, then (9.6) will hold if 12 xx −<& ; and if 1x and 2x are both negative, 

then (9.6) will hold if 12 xx −>& . 

We can translate these conditions into the following fuzzy rules: 

 
 

Systematic and Design of Stable Fuzzy Controllers
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• If 1x is positive and 2x is positive then 2x& must be negative big 

• If 1x is negative and 2x is negative then 2x& must be positive big 

• If 1x is positive and 2x is negative then 2x& must be zero 

• If 1x is negative and 2x is positive then 2x& must be zero 

However, using our knowledge that 2x& is proportional tou , we can replace each 

2x& with u  to obtain the fuzzy rule-base for the stabilizing controller: 

• If 1x is positive and 2x is positive Then u must be negative big 

• If 1x is negative and 2x is negative Then u must be positive big 

• If 1x is positive and 2x is negative Then u must be zero 

• If 1x is negative and 2x is positive Then u must be zero 

It is interesting to note that the fuzzy partitions for 1x , 2x , and u follow elegantly 

from expression (9.5). Because  )( 212 xxxV && += , and since we require that V& be 

negative, it is natural to examine the signs of 1x and 2x ; hence, the obvious fuzzy 

partition is positive, negative. The partition for 2x& , namely negative big, zero, posi-

tive big is obtained similarly when we plug the linguistic values positive, negative 

for 1x  and 2x  in (9.5). To ensure that 12 xx −<&  )( 12 xx −>&  is satisfied even 

though we do not know 1x ’s exact magnitude, only that it is positive (negative), we 

must set 2x&  to negative big (positive big). Obviously, it is also possible to start 

with a given, pre-defined, partition for the variables and then plug each value in the 

expression for V& to find the rules. Nevertheless, regardless of what comes first, we 
see that fuzzy Lyapunov synthesis transforms classical Lyapunov synthesis from the 
world of exact mathematical quantities to the world of computing with words 
(Zadeh, 1996). 

To complete the controllers design, we must model the linguistic terms in the rule-
base using fuzzy membership functions and determine an inference method. Follow-
ing (Wang, 1997), we characterize the linguistic terms positive, negative, negative 
big, zero and positive big by the type-1 membership functions shown in Fig. 9.5 for a 
Type-1 Fuzzy Logic Controller, and by the type-2 membership functions shown in 
Fig. 9.6 for a Type-2 Fuzzy Logic Controller. Note that the type-2 membership func-
tions are extended type-1 membership functions. 

To this end, we had systematically developed a FLC rule-base that follows the 
Lyapunov Stability criterion. In Section 9.4 we present some experimental results us-
ing our fuzzy rule-base to build a Type-2 Fuzzy Logic Controller. 
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Fig. 9.5. Set of type-1 membership functions: a) positive, b)negative, c) negative big, d) zero 
and e) positive big 

 

Fig. 9.6. Set of type-2 membership functions: a)negative, b) positive, c) positive big, d) zero 
and e) negative big 

 

Systematic and Design of Stable Fuzzy Controllers
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9.4   Experimental Results 

In Section 9.3 we had systematically developed a stable FLC rule-base, and now we 
are going to show some experimental results using our stable rule-base to build a 
Type-2 FLC. The plant description used in the experiments is the same shown in Sec-
tion 9.3. 

Our experiments were done with Type-1 Fuzzy Sets and Interval Type-2 Fuzzy 
Sets. In the Type-2 Fuzzy Sets the membership grade of every domain point is a crisp 
set whose domain is some interval contained in [0,1] (Mendel, 2000). On Fig. 9.6 we 
show some Interval Type-2 Fuzzy Sets, and for each fuzzy set, the grey area is known 
as the Footprint of Uncertainty (FOU) (Mendel, 2000), and this is bounded by an up-
per and a lower membership function as shown in Fig. 9.7. 

 

Fig. 9.7. Interval Type-2 Fuzzy Set 

In our experiments we increase and decrease the value of ε  to the left and to the right 

side having a Lε  and a Rε  values respectively to determine how much the FOU can 
be extended or perturbed without losing stability in the FLC. 

We did make simulations with initial conditions of θ  having values in the whole 

circumference [0, 2π ], and the desired angle dθ  having values in the same range. 
The initial conditions considered in the experiments shown in this paper are an angle 

rad0=θ  and radd 1.0=θ . 

In Fig. 9.8 we show a simulation of the plant made with a Type-1 FLC, as can be 
seen, the plant has been regulated in around 8 seconds, and in Fig. 9.9 we show the 
graph of equation (9.5) which is always negative defined and consequently the system 
is stable.  

Figure 9.10 shows the simulation results of the plant made with the Type-2 FLC 
increasing and decreasing ε in the range of [0,1], and as can be seen the plant has 
been regulated in around  10 seconds, and the graph of (9.5), which is depicted in  
Fig. 9.11 is always negative defined and consequently the system is stable. As we can 
seen, the time response is increasing when the value of ε is increasing.  
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Fig. 9.8. Response for the Type-1 FLC 

 

 

Fig. 9.9. V& for the Type-1 FLC 

With the variation of ε in the definition of the FOU, the control surface changes pro-

portional to the change of ε , for this reason, the value of u for 1≥ε  is practically 
zero, and the plant does not have physical response. To test the robustness of the built 
Fuzzy Controller, now we are going to use the same controller designed in Section 
9.3, but at this time, we are going to use it to control equation (9.2) considering the 
gravity effect as shown in equation (9.7). 

τ=+ qgmlqml cos2 &&  (9.7) 
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Fig. 9.10. Response for the Type-2 FLC ( )1,0[→ε ) 

 

 

Fig. 9.11. V&  for the Type-2 FLC ( ]1,0[→ε ) 

In Figure 9.12 we can see a simulation of the plant obtained with a Type-1 FLC, 
and as can be seen, the plant has been regulated in approximately 8 seconds and  
Figure 9.13 shows the graph of (9.5) which is always negative defined and conse-
quently the system is stable.  
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Fig. 9.12. Response for the Type-1 FLC 

 

 

Fig. 9.13. V& for the Type-1 FLC 

Figure 9.14 shows the simulation results of the plant obtained with the Type-2 FLC 
with increasing and decreasing  ε  values in the range of [0,1], and the graph of (9.5) 
depicted at Fig. 9.15 is always negative defined and consequently the system is stable. 
As we can seen, if we use an adaptive gain like in (Castillo et al., 2005) all the cases 
ofε can be regulated around 8 seconds.  
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Fig. 9.14. Response for the Type-2 FLC ( ]1,0[→ε ) 

 

 

Fig. 9.15. V&  for the Type-2 FLC ( ]1,0[→ε ) 

9.5   Summary 

Margaliot’s approach for the design of FLC’s is now proved to be valid for both, 
Type-1 and Type-2 Fuzzy Logic Controllers. In the case of Type-2 FLC’s member-
ship functions, we can perturb or change the definition domain of the FOU without 
losing of stability of the controller; in the case described in this chapter, like in (Casti-
llo et al.,2005) we have to use an adaptive gain to regulate the plant in a desired time. 
For our example of the 1DOF manipulator robot, stability holds when extending the 
FOU on the domain [0,1), and we also have shown that a FLC designed following the 
Fuzzy Lyapunov Synthesis is stable and robust. 
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10   Experimental Study of Intelligent Controllers Under 
Uncertainty Using Type-1 and Type-2 Fuzzy Logic 

Uncertainty is an inherent part in controllers used for real-world applications.  The 
use of new methods for handling incomplete information is of fundamental impor-
tance in engineering applications.  This chapter deals with the design of controllers 
using type-2 fuzzy logic for minimizing the effects of uncertainty produced by the in-
strumentation elements.  We simulated type-1 and type-2 fuzzy logic controllers to 
perform a comparative analysis of the systems’ response, in the presence of uncer-
tainty.  

10.1   Introduction 

Uncertainty affects decision-making and appears in a number of different forms.  The 
concept of information is fully connected with the concept of uncertainty. The most 
fundamental aspect of this connection is that the uncertainty involved in any problem-
solving situation is a result of some information deficiency, which may be incom-
plete, imprecise, fragmentary, not fully reliable, vague, contradictory, or deficient in 
some other way (Klir and Yuan, 1995).  The general framework of fuzzy reasoning 
allows handling much of this uncertainty, fuzzy systems employ type-1 fuzzy sets, 
which represents uncertainty by numbers in the range [0, 1].  However, when some-
thing is uncertain, like a measurement, it is difficult to determine its exact value, and 
of course type-1 fuzzy sets make more sense than using crisp sets (Zadeh, 1975). 
However, it is not reasonable to use an accurate membership function for something 
uncertain, so in this case what we need is another type of fuzzy sets, those, which are 
able to handle these uncertainties, the so called type-2 fuzzy sets (Mendel, 2000). So, 
the amount of uncertainty in a system can be reduced by using type-2 fuzzy logic be-
cause it offers better capabilities to handle linguistic uncertainties by modeling 
vagueness and unreliability of information (Karnik and Mendel, 2001). 

Recently, we have seen the use of type-2 fuzzy sets in fuzzy logic systems to deal 
with uncertain information (Mendel, 1998). So we can find some papers emphasizing 
on the implementation of a type-2 Fuzzy Logic System (FLS) (Karnik and Mendel, 
1999); in others, it is explained how type-2 fuzzy sets let us model and minimize the 
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effects of uncertainties in rule-base FLSs (Mendel and John, 2002). Some research 
works are devoted to solve real world applications in different areas, for example, in 
signal processing type-2 fuzzy logic is applied in prediction in Mackey-Glass chaotic 
time-series with uniform noise presence (Mendel, 2000). In medicine, an expert sys-
tem was developed for solving the problem of Umbilical Acid-Base (UAB) assess-
ment (Ozen and Garibaldi, 2003). In industry, type-2 fuzzy logic and neural networks 
was used in the control of non-linear dynamic plants (Hagras, 2004) (Melin and Casti-
llo, 2004). 

This chapter deals with the advantages of using type-2 fuzzy sets in the implemen-
tation of a Fuzzy Logic Controller (FLC), for a real system.  It is a fact, that in the 
control of real systems, the instrumentation elements (instrumentation amplifier, sen-
sors, digital to analog, analog to digital converters, etc.) introduce some sort of unpre-
dictable values in the information that has been collected (Castillo and Melin, 2001). 
So, the controllers designed under idealized conditions tend to behave in an inappro-
priate manner.  Since, uncertainty is inherent in the design of controllers for real 
world applications, we are presenting how to deal with it using type-2 FLC to dimin-
ish the effects of imprecise information.  We are supporting this statement with ex-
perimental results, qualitative observations, and quantitative measures of errors.  For 
quantifying the errors, we utilized three widely used performance criteria, these are:  
Integral of Square Error (ISE), Integral of the Absolute value of the Error (IAE), and 
Integral of the Time multiplied by the Absolute value of the Error (ITAE) (Sepulveda 
et al., 2007).  

This chapter is organized as follows: section 10.2 presents an introductory explana-
tion of type-1 and type-2 FLCs and the performance criteria for evaluating the tran-
sient and steady state closed-loop response in a computer control system.  In section 
10.3, we are showing details of the implementation of the feedback control system 
used in this work, we are presenting some experimental results and a performance 
comparison between type-1 and type-2 fuzzy logic controllers.  

10.2   Fuzzy Controllers  

In the 40's and 50's, many researchers proved that many dynamic systems can be 
mathematically modeled using differential equations.  These previous works represent 
the foundations of the Control theory which, in addition with the Transform theory, 
provided an extremely powerful means of analyzing and designing control systems.  
These theories were being developed until the 70's, when the area was called System 
theory to indicate its definitiveness (Mamdani, 1993).  Its principles have been used to 
control a very big amount of systems taking mathematics as the main tool to do it dur-
ing many years.  Unfortunately, in too many cases this approach could not be sus-
tained because many systems have unknown parameters or highly complex and 
nonlinear characteristics that make them not to be amenable to the full force of 
mathematical analysis as dictated by the Control theory.    

Soft computing techniques have become a research topic, which is applied in the de-
sign of controllers (Jang et al., 1997).  These techniques have tried to avoid the above-
mentioned drawbacks, and they allow us to obtain efficient controllers, which utilize the 
human experience in a more related form than the conventional mathematical approach 
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(Zadeh, 1971).  In the cases in which a mathematical representation of the controlled 
systems cannot be obtained, the process operator should be able to express the rela-
tionships existing in them, that is, the process behavior. 

A FLS, described completely in terms of type-1 fuzzy sets is called a type-1 fuzzy 
logic system (type-1 FLS). It is composed by a knowledge base that comprises the  
information given by the process operator in form of linguistic control rules, a fuzzifi-
cation interface, who has the effect of transforming crisp data into fuzzy sets, an  
inference system, that uses them in conjunction with the knowledge base to make  
inference by means of a reasoning method, and a defuzzification interface, which 
translates the fuzzy control action so obtained to a real control action using a defuzzi-
fication method. 

In this chapter, the implementation of the fuzzy controller in terms of type-1 fuzzy 
sets, has two input variables such as the error e(t), the difference between the refer-
ence signal and the output of the process, as well as the error variation Δe(t), 

)()()( tytrte −=                                                       (10.1) 

)1()()( −−=Δ tetete                                                     (10.2) 

so the control law can be represented as in Fig. 10.1. 
A FLS described using at least one type-2 fuzzy set is called a type-2 FLS.  Type-1 

FLSs are unable to directly handle rule uncertainties, because they use type-1 fuzzy 
sets that are certain (Mendel and Mouzouris, 1999).  On the other hand, type-2 FLSs, 
are very useful in circumstances where it is difficult to determine an exact certainties, 
and measurement uncertainties (Mendel, 2000). 

It is known that type-2 fuzzy sets let us to model and to minimize the effects of un-
certainties in rule-based FLS.  Unfortunately, type-2 fuzzy sets are more difficult to 
use and understand than type-1 fuzzy sets; hence, their use is not widespread yet.  In 
(Sepulveda et al., 2007) were mentioned at least four sources of uncertainties in  
type-1 FLSs:  

1. The meanings of the words that are used in the antecedents and consequents 
of rules can be uncertain (words mean different things to different people).  

2. Consequents may have histogram of values associated with them, especially 
when knowledge is extracted from a group of experts who do not all agree. 

3. Measurements that activate a type-1 FLS may be noisy and therefore uncer-
tain. 

4. The data used to tune the parameters of a type-1 FLS may also be noisy.  

All of these uncertainties translate into uncertainties about fuzzy set membership 
functions.  Type-1 fuzzy sets are not able to directly model such uncertainties because 
their membership functions are totally crisp.  On the other hand, type-2 fuzzy sets are 
able to model such uncertainties because their membership functions are themselves 
fuzzy.  A type-2 membership grade can be any subset in [0,1], the primary member-
ship, and corresponding to each primary membership, there is a secondary member-
ship (which can also be in [0,1]) that defines the possibilities for the primary  
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Fig. 10.1. Block diagram of the fuzzy control 

membership. A type-1 fuzzy set is a special case of a type-2 fuzzy set; its secondary 
membership function is a subset with only one element, unity.   

Similar to a type-1 FLS, a type-2 FLS includes fuzzifier, rule base, fuzzy inference 
engine, and output processor. The output processor includes type-reducer and defuzzi-
fier; it generates a type-1 fuzzy set output (from the type-reducer) or a crisp number 
(from the defuzzifier). A type-2 FLS is again characterized by IF-THEN rules, but its 
antecedent or consequent sets are now type-2. Type-2 FLSs, can be used when the 
circumstances are too uncertain to determine exact membership grades such as when 
training data is corrupted by noise.  In our case, we are simulating that the instrumen-
tation elements (instrumentation amplifier, sensors, digital to analog, analog to digital 
converters, etc.) are introducing some sort of unpredictable values in the collected  
information.    

In the case of the implementation of the type-2 FLC, we have the same characteris-
tics as in type-1 FLC, but we used type-2 fuzzy sets as membership functions for the 
inputs and for the output. 

For evaluating the transient closed-loop response of a computer control system we 
can use the same criteria that normally are used for adjusting constants in PID (Pro-
portional Integral Derivative) controllers.  These are (Deshpande and Ash, 1988): 

1. Integral of Square Error (ISE). 

[ ]∫
∞

=
0

2ISE dte                                                    (10.3) 

2. Integral of the Absolute value of the Error (IAE). 

∫
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||IAE dte                                                     (10.4) 

3. Integral of the Time multiplied by the Absolute value of the Error (ITAE). 

∫
∞
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||ITAE dtet                                                   (10.5) 
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The selection of the criteria depends on the type of response desired, the errors will 
contribute different for each criterion, so we have that large errors will increase the 
value of ISE more heavily than to IAE.  ISE will favor responses with smaller over-
shoot for load changes, but ISE will give longer settling time. In ITAE, time appears 
as a factor, and therefore, ITAE will penalize heavily on errors that occur late in time, 
but virtually ignores errors that occurs early in time. Designing using ITAE will give 
us the shortest settling time, but it will produce the largest overshoot among the three 
criteria considered.  Designing considering IAE will give us an intermediate result, in 
this case, the settling time will not be so large than using ISE nor so small than using 
ITAE, and the same applies for the overshoot response.  The selection of a particular 
criterion is depending on the type of desired response. 

10.3   Experimental Results 

We are showing in Fig. 10.1, the feedback control system that was used for achieving 
the results of this paper.  It was implemented in Matlab where the controller was de-
signed to follow the input as closely as possible.  The plant was modeled using equa-
tion (10.6) 

( ) ( ) ( ) ( ) ( ) ( )25.01005.019.027.032.0 −⋅+−⋅+−⋅+−⋅−⋅= iuiuiyiyiyiy       (10.6) 

The controller’s output was applied directly to the plant’s input. Since we are inter-
ested in comparing the performance between type-1 and type-2 FLC system, we 
tested the controller in two ways:  

1. One is considering the system as ideal, that is, we did not introduce in the 
modules of the control system any source of uncertainty.  See experiments 1, 
and 2. 

2. The other one is simulating the effects of uncertain modules (subsystems) re-
sponse introducing some uncertainty.  See experiments 3, and 4. 

For both cases, as is shown in Fig. 10.1, the system’s output is directly connected 
to the summing junction, but in the second case, the uncertainty was simulated intro-
ducing random noise with normal distribution (the dashed square in Fig. 10.1).  We 
added noise to the system’s output ( )iy  using equation (10.7), which in turn was in-

troduced to the summing junction of the controller system.  

( ) ( ) randniyiy ⋅+= 05.0                              (10.7) 

We tested the system using as input, a unit step sequence free of noise, ( )ir .  For 

evaluating the system’s response and compare between type 1 and type 2 fuzzy con-
trollers, we used the performance criteria ISE, IAE, and ITAE.  In table 10.1, we 
summarized the values obtained for each criterion considering 400 units of time.  For 
calculating ITAE we considered a sampling time 1.0=sT sec. 

For Experiments 1, 2, 3, and 4 the reference input r is stable and noisy free.  In ex-
periments 3 and 4, although the reference appears clean, the feedback at the summing  
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junction is noisy since we introduced deliberately noise for simulating the overall  
existing uncertainty in the system, in consequence, the controller’s inputs e  (error), 

and e
tΔ

Δ
 contains uncertainty data.   

For each input of the type-1 FLC, we defined three type-1 fuzzy Gaussian mem-
bership functions: negative, zero, positive. The universe of discourse for these mem-
bership functions is in the range [-10 10]; their mean is -10, 0 and 10 respectively, and 
their standard deviation are 9, 2 and 9 respectively.  

For the output, we have five type-1 fuzzy Gaussian membership functions: NG, 
N, Z, P and PG.  They are on the interval [-10 10], their means are -10, -4.5, 0, 4, 
and 10 respectively; and their standard deviations are 4.5, 4, 4.5, 4 and 4.5  
respectively.  

In the type-2 FLC, for each input we defined three type-2 fuzzy Gaussian member-
ship functions: negative, zero, positive.  In this case the fuzzy membership functions 
have uncertain mean and fixed standard deviation on the interval [-10 10].  For the 
upper membership functions we have -10.5, -1, and 9.5 uncertain means; for the lower 
membership functions we have -9.5, 1, and 10.5 uncertain means respectively; for the 
fixed standard deviations 9, 2 and 9 respectively.   

For computing the output we have five type-2 fuzzy Gaussian membership func-
tions with uncertain mean and fixed standard deviations: NG, N, Z, P and PG, on the 
interval [-10 10].  For the upper membership functions we have -10.25, -4.75, -0.25, 
3.75 and 9.75 uncertain means; for the lower membership functions we have  -9.75,  
-4.25, 0.25, 4.25 and 10.25 uncertain means respectively.  The fixed standard devia-
tions: 4.5, 4, 4.5, 4 and 4.5 respectively.   

For the type-2 FLC, the inputs and the output have interval type-2 membership 
functions.  In all of the experiments, we used a dash-dot line for illustrating the sys-
tem’s response and behavior of type-1 FLC, in the same sense, we used continuous 
line for type-2 FLC.  The reference input r is shown with a dot line. 

 
Experiment 1.  Ideal system using a type-1 FLC.   
In this experiment, we did not add uncertainty data to the system, the system response 
is illustrated in Figure 10.2.  Note that the settling time is in about 140 units of time; 
i.e., the system trends to stabilize with time and the output will follow accurately the 
input.  In Table 10.1, we listed the obtained values of ISE, IAE, and ITAE for this ex-
periment. We are showing in Fig. 10.3, 10.4 and 10.5 the ISE, IAE, and ITAE  
behavior of this experiment. 

 

Experiment 2.  Ideal system using a type-2 FLC.   
Here, we used the same test conditions of Experiment 1, but in this case, we implemented 
the controller’s algorithm with type-2 fuzzy logic, its output sequence is illustrated in  
Fig. 10.2, and the corresponding performance criteria are listed in Table 10.1.  By visual 
inspection, we can observe that the output system response of the Experiment 1, and this 
one, are very similar, they are almost overlapped.   
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Fig. 10.2.  This graphic shows the system’s response to a unit step sequence.  The input refer-
ence r is shown with pointed line, for type 1 the systems’s output y(i) is shown with dash dot 
line; and for type-2, the system’s output y(i) with continuous line.  Note, that both responses are 
very similar, although, in this case the lower errors were obtained with type-1 FLC. 

 
Fig. 10.3. In uncertainty absence, the ISE values are very similar for type-1 and type-2 FLCs 
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Fig. 10.4. In uncertainty absence, the IAE values obtained at the plant’s output are very similar 
for type-1 and type-2 FLCs, here is more evident that a type-1 FLC works a little better than in 
Fig. 10.3 

Using the performance criteria we can get a quantitative comparison, where we can 
observe small differences favoring Experiment 1, i.e., the results obtained using a 
type-1 FLC. 

We can observe in Fig. 10.3, 10.4, and 10.5 that using a type-1 FLC we got the 
lower errors. 
 

Experiment 3.  System with uncertainty using a type-1 FLC.  
In this case, we simulated using equation (7), the effects of uncertainty introduced 
to the system by transducers, amplifiers, and any other element that in real world 
applications affects expected values.  We are showing in Fig. 6, the system’s re-
sponse output.  In Fig. 10.7, 10.8, and 10.9 are plotted the performance criteria ISE, 
IAE, ITAE.   

Experiment 4.  System with uncertainty using a type-2 FLC.  In this experiment, we 
introduced uncertainty in the system, in the same way as in Experiment 3. In this case, 
we used a type-2 FLC and we improved those results obtained with a type-1 FLC 
(Experiment 3).   

We can easily appreciate in Fig. 10.6, that the lower overshoot and the best settling 
times were reached using a type-2 FLC. 

Using Fig. 10.7 and 10.8, we can see that with a type-2 FLC the overshoot error 
decreases very quickly and remains lower than using a type-1 FLC.  In Fig. 10.9, 
we can observe that through the time the lower errors are obtained using a type-2 
FLC. 
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Fig. 10.5. In uncertainty absence, the ITAE values obtained at the plant’s output are very simi-
lar for type-1 and type-2 FLCs, in accordance with Figure 10.13, it is evident a type-1 FLC 
works a little better 

 

Fig. 10.6. This graphic was obtained with uncertainty presence; compare the system’s outputs 
produced by type-1 and type-2 FLCs.  Note that quite the opposite of Figure 10.2, a type-2 FLC 
works much better than a type-1 FLC when the system has uncertainty. The overshoot error is 
lower for a type-2 FLC. 

Experimental Results



130 Experimental Study of Intelligent Controllers Under Uncertainty 

Table 10.1. comparison of performance criteria for type-1 and type-2 fuzzy logic controllers. 
Values obtained after 400 samples. 

Type-1 FLC Type-2 FLC Performance 

Criteria Ideal  

System 

Syst. with 

uncertainty 

Ideal  

System 

Syst. with 

uncertainty 

ISE 5.2569 15.1143 5.4479 9.5516 

IAE 13.8092 57.9542 14.204 45.4106 

ITAE 59.9589 1111.2 61.636 877.5299 

 

 

Fig. 10.7. Here we can see that a type-2 FLC produces lower overshoot errors, quantitatively 
the ISE overall error of using type-2 is 9.5516 against 15.1143 of the overall error produced by 
the type-1 FLC 
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Fig. 10.8. In accordance with Fig. 10.6, IAE confirms that we obtained the best system re-
sponse using a type-2 FLC with uncertainty presence.  Moreover, the error of the settling time 
and steady state is lower using a type-2 FLC.  

 
Fig. 10.9. Here we can see that the steady state error of the system produced by a type-2 FLC is 
lower than the error produced by a type-1 FLC with uncertainty present. ITAE will punish 
heavily all those errors produced with time.  

10.4   Summary 

We observed and quantified using performance criteria such as ISE, IAE, and ITAE 
that in systems without uncertainties (ideal systems) is a better choice to select a  

Summary
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type-1 FLC since it works a little better than a type-2 FLC, and it is easier to imple-
ment it.  It is known that type-1 FLC can handle nonlinearities, and uncertainties up to 
some extent.  

Unfortunately, real systems are inherently noisy and nonlinear, since any element 
in the system contributes with deviations of the expected measures because of thermal 
noise, electromagnetic interference, etc., moreover, they add nonlinearities from ele-
ment to element in the system.   

For real systems, systems with uncertainty, we observed and quantify that the 
lower overshoot errors and the best settling times were obtained using a type-2 FLC.   

We are concluding that using a type-2 FLC in real world applications can be a bet-
ter choice since the amount of uncertainty in real systems most of time is difficult to 
estimate.   
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11   Evolutionary Optimization of Interval Type-2 
Membership Functions Using the Human 
Evolutionary Model 

Uncertainty is an inherent part in controllers used for real-world applications.  The 
use of new methods for handling incomplete information is of fundamental impor-
tance in engineering applications. We simulated the effects of uncertainty produced 
by the instrumentation elements in type-1 and type-2 fuzzy logic controllers to per-
form a comparative analysis of the systems’ response, in the presence of uncertainty. 
We are presenting an innovative idea to optimize interval type-2 membership func-
tions using an average of two type-1 systems with the Human Evolutionary Model, 
we are showing comparative results of the optimized proposed method.  We found 
that the optimized membership functions for the inputs of a type-2 system increases 
the performance of the system for high noise levels.  

11.1   Introduction 

Uncertainty affects decision-making and appears in a number of different forms. The 
concept of information is fully connected with the concept of uncertainty. The most 
fundamental aspect of this connection is that the uncertainty involved in any problem-
solving situation is a result of some information deficiency, which may be incom-
plete, imprecise, fragmentary, not fully reliable, vague, contradictory, or deficient in 
some other way (Klir and Yuan, 1995).  The general framework of fuzzy reasoning 
allows handling much of this uncertainty, fuzzy systems employ type-1 fuzzy sets, 
which represents uncertainty by numbers in the range [0, 1].  When something is un-
certain, like a measurement, it is difficult to determine its exact value, and of course, 
type-1 fuzzy sets makes more sense than using crisp sets (Zadeh, 1975). However, it 
is not reasonable to use an accurate membership function for something uncertain, so 
in this case what we need is another type of fuzzy sets, those which are able to handle 
these uncertainties, the so called type-2 fuzzy sets (Mendel, 2000).  So, the amount of 
uncertainty in a system can be reduced by using type-2 fuzzy logic because it offers 
better capabilities to handle linguistic uncertainties by modeling vagueness and  
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unreliability of information (Karnik and Mendel, 2001).  In industry, type-2 fuzzy 
logic and neural networks was used in the control of non-linear dynamic plants (Ha-
gras, 2004) (Melin and Castillo, 2004). 

This chapter deals with the optimization of interval type-2 membership functions 
in a fuzzy logic controller (FLC).  Since, uncertainty is inherent in controllers for real 
world applications, as a first step, we are presenting how to deal with it using type-2 
FLC to diminish the effects of imprecise information.  We are supporting this state-
ment with experimental results, qualitative observations, and quantitative measures of 
errors.  For quantifying the errors, we utilized three widely used performance criteria, 
these are:  Integral of Square Error (ISE), Integral of the Absolute value of the Error 
(IAE), and Integral of the Time multiplied by the Absolute value of the Error (ITAE) 
(Deshpande and Ash, 1988).  Then as a second step, we optimized the parameters of 
the Gaussian membership functions (MFs) using the Human Evolutionary Model 
(HEM) which will be explained in section 11.3, and ISE as the fitness function. In this 
case, we used as an output, the average of two type-1 system.  

11.2   Fuzzy Controllers 

A FLS, described completely in terms of type-1 fuzzy sets is called a type-1 fuzzy 
logic system (type-1 FLS). It is composed by a knowledge base that comprises the in-
formation given by the process operator in form of linguistic control rules; a fuzzifica-
tion interface, who has the effect of transforming crisp data into fuzzy sets; an  
inference system, that uses them in conjunction with the knowledge base to make  
inference by means of a reasoning method; and a defuzzification interface, which 
translates the fuzzy control action so obtained to a real control action using a defuzzi-
fication method. 

 

Fig. 11.1. System used for obtaining the experimental results 

In this chapter, the implementation of the fuzzy controller in terms of type-1 fuzzy 
sets, has two input variables such as the error e(t), the difference between the refer-
ence signal and the output of the process, as well as the error variation Δe(t), 

 



 135 

)()()( tytrte −=                                                (11.1) 

)1()()( −−=Δ tetete                                              (11.2) 

so the control system can be represented as in Fig. 11.1. 
A FLS described using at least one type-2 fuzzy set is called a type-2 FLS.  Type-1 

FLSs are unable to directly handle rule uncertainties, because they use type-1 fuzzy 
sets that are certain.  On the other hand, type-2 FLSs, are very useful in circumstances 
where it is difficult to determine an exact certainty, and measurement uncertainties 
(Mendel, 2000). 

Similar to a type-1 FLS, a type-2 FLS includes fuzzifier, rule base, fuzzy inference 
engine, and output processor.  The output processor includes type-reducer and de-
fuzzifier; it generates a type-1 fuzzy set output (from the type-reducer) or a crisp 
number (from the defuzzifier) (Mendel, 2000).  A type-2 FLS is again characterized 
by IF-THEN rules, but its antecedent or consequent sets are now type-2.  In the case 
of the implementation of the type-2 FLC, we have the same characteristics as in type-
1 FLC, but we used type-2 fuzzy sets as membership functions for the inputs and for 
the output. 

For evaluating the transient closed-loop response of a computer control system we 
can use the same criteria that normally are used for adjusting constants in PID (Pro-
portional Integral Derivative) controllers.  These are: 

1. Integral of Square Error (ISE). 

[ ]∫
∞

=
0

2)(ISE dtte                                               (11.3) 

2. Integral of the Absolute value of the Error (IAE). 
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3. Integral of the Time multiplied by the Absolute value of the Error (ITAE). 
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The selection of the criteria depends on the type of response desired, the errors will 
contribute different for each criterion, so we have that large errors will increase the 
value of ISE more heavily than to IAE.  ISE will favor responses with smaller over-
shoot for load changes, but ISE will give longer settling time. In ITAE, time appears 
as a factor, and therefore, ITAE will penalize heavily errors that occur late in time, 
but virtually ignores errors that occurs early in time.  

11.3   The Human Evolutionary Model 

The main idea of this computational model (Montiel et al., 2007),is to combine 
synergetically diferent techniques for performing search and optimization tasks. HEM 
was defined as follows (Montiel et al., 2007): 

( )POSVRLPSTLLESOPAIISHHEM ,,/,,,,,,,=  

Fuzzy Controllers



136 Evolutionary Optimization of Interval Type-2 Membership Functions 

where  
H Human 
AIIS Adaptive Intelligent Intuitive System 
P Population of size N individuals 
O Single or a multiple objective optimization goals 
S Evolutionary strategy used for reaching the objectives expressed  

in O 
E Environment, here we can have predators, etc. 
L Landscape, i.e., the scenario where the evolution must be performed 
TL/S Tabu List formed by the bests solutions found/Pareto Set 
VRL Visited Regions List 
POS Pareto Optimal Set 

 
Fig. 11.2 is a schematic representation of one individual which is comprised of 

three parts: a genetic representation gr, which can be codified using binary or float-
ing-point representation; a set of genetic effects ge, that are attributes of each individ-
ual such as “physical structure”, “gender”, “actual age”, “maximum age allowed”, 
pheromone level”, etc; these attributes give to the algorithm some of the human like 
characteristics that will define in great part, the individual behavior.  

 

Fig. 11.2. Representing one individual in HEM 

The third part in the individual representation is devoted to individual’s fitness val-
ues. An individual pi is defined as pi=(gri,gei,fvi) where gri=(gri1,…,griM) is a vector (a 
row) of the matrix GR of dimension M × N. The genetic effects (gei) are rows in a ma-
trix GE. In this method we can have one or several fitness values (fv), so we can han-
dle single objective optimization problems (SOOP), and multi-objective optimization 
problems (MOOP). Fitness values are defined as vectors fvi in the matrix FVJ×N, in 
this way we have fv=(fv1,…,fvJ).  In this context, a population Pi is defined as 
Pi=(GRi+GEi+FVi). In the attribute geigender, we have the valid values set {M,F,0}, in 
this set M alludes a subpopulation of male individuals, F is used for the female  
subpopulation, and 0 means that this attribute  will not be considered. The genetic at 
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Fig. 11.3. General structure of HEM 

tribute geiactAge contains the actual age of an individual; its value corresponds to the 
number of generation that the individual has survived. We can set the maximum life 
expectance for each individual in the attribute geimaxAge. The task of the attribute 
geiphLevel is to leave trace about which individuals have been involved in previous gen-
erations producing good offsprings.  Fig. 11.3 shows the general structure of HEM.   

In Figure 11.3, we have a general description of HEM containing six main blocks. 
In the first block, we show that the human or group of humans is part of the system. 
HEM is an intelligent evolutionary algorithm that learns from experts their rational 
and intuitive procedures that they use to solve optimization problems. In this model, 
we consider that we have two kinds of humans: real human beings and artificial hu-
mans. In the first block of Figure 11.3 we show that real human beings form one 
class. In the second block, the artificial human implemented in the AIIS of HEM is 
shown. Humans as part of the system are in charge of teaching the artificial human all 
the knowledge needed for realizing the searching task. The AIIS should learn the ra-
tional and intuitive knowledge from the experts; the final purpose is that the artificial 

The Human Evolutionary Model
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human eventually can substitute the human beings most of the times. HEM has a 
feedback control system formed by blocks three and four; they work coordinately for 
monitoring and evaluating the evolution of the problem to be solved. In the fifth 
block, we have a single objective optimization (SOO) method for solving single ob-
jective optimization problems (SOOP). In addition, using the SOO method we can to 
find the ideal, utopian and nadir vectors for multiple objective optimization problems 
(MOOP). In the sixth block, we have a multiple objective optimization (MOO) 
method, which is dedicated to find the Pareto optimal set (POS) in MOOP. 

11.4   Experimental Results 

Figure 11.1 shows, the feedback control system that was used for achieving the results 
of this paper.  It was implemented in Matlab where the controller was designed to fol-
low the input as closely as possible. 

The plant was modeled using equation (11.6) 

( ) ( ) ( ) ( )
( ) ( )25.0105.0

19.0207.032.0

−⋅+−⋅
+−⋅+−⋅−⋅=

iuiu

iyiyiyiy
                       (11.6) 

The controller’s output was applied directly to the plant’s input. Since we are inter-
ested in comparing the performance between normal type-1 and type-2 FLC system 
versus optimized type-2 FLC system, we tested the controller in three ways:  

1. Considering the system as ideal, that is, we did not introduce in the modules 
of the control system any source of uncertainty.  See experiments 1, and 2. 

2.  Simulating the effects of uncertain modules (subsystems) response introduc-
ing some uncertainty, and diverse noise levels.  See experiments 3, 4 and 5. 

3. After optimization of the interval type-2 MFs, we repeated case two above.  
See experiment 6. 

For case one, as is shown in Fig. 11.1, the system’s output is directly connected to 
the summing junction, but in the second case, the uncertainty was simulated introduc-
ing random noise with normal distribution (the dashed square in Fig. 1).  We added 
noise to the system’s output y(i) using the Matlab’s function “randn” which generates 
random numbers with Gaussian distribution. The signal and the added noise in turn, 
were obtained with the programmer’s expression (11.7), the result ( )iy  was intro-

duced to the summing junction of the controller system. Note that in (11.7) we are us-
ing the value 0.05, for experiments 3 and 4, but in the set of tests for experiment 5 we 
varied this value to obtain different SNR values. 

randniyiy ⋅+= 05.0)()(                                            (11.7) 

We tested the system using as input, a unit step sequence free of noise, )(ir .  For 

evaluating the system’s response and compare between type 1 and type 2 fuzzy con-
trollers, we used the performance criteria ISE, IAE, and ITAE.  In Table 11.3, we 
summarized the values obtained for each criterion considering 200 units of time.  For 
calculating ITAE we considered a sampling time 1.0=sT sec. 
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For experiments 1, 2, 3, and 4 the reference input r is stable and noisy free.  In ex-
periments 3 and 4, although the reference appears clean, the feedback at the summing 
junction is noisy since we introduced deliberately noise for simulating the overall ex-
isting uncertainty in the system, in consequence, the controller’s inputs ( )te  (error), 
and )(teΔ  contains uncertainty data.  

In experiment 5, we tested the systems, type-1 and type-2 FLCs, introducing di-
verse values of noiseη , this is modifying the signal to noise ratio SNR (Ingle and 
Proakis, 2000), 

noise

signal

P

Ps
SNR ==

∑
∑

2

2

η
                                        (11.8) 

Because many signals have a very wide dynamic range, SNRs are usually ex-
pressed in terms of the logarithmic decibel scale, SNR(db), 
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In Table 11.4, we show, for different values of SNR(db), the behavior of ISE, IAE, 
ITAE for type-1 and type-2 FLCs.  In almost all the cases the results for type-2 FLC 
are better than type-1 FLC.  

In type-1 FLC, we selected Gaussian MFs for the inputs and for the output.  A 
Gaussian MF is specified by two parameters {c,σ}: 

2

2

1

)(
⎟
⎠
⎞

⎜
⎝
⎛ −−

= σμ
cx

A ex                                        (11.10) 

c  represents the MFs center and σ determines the MFs standard deviation.  
For each input of the type-1 FLC, ( )te  and )(teΔ , we defined three type-1 fuzzy 

Gaussian MFs: negative, zero, positive. The universe of discourse for these member-
ship functions is in the range [-10 10]; their centers are -10, 0 and 10 respectively, and 
their standard deviations are 9, 2 and 9 respectively. 

For the output of the type-1 FLC, we have five type-1 fuzzy Gaussian MFs: NG, N, 
Z, P and PG. They are in the interval [-10 10], their centers are -10, -4.5, 0, 4, and 10 
respectively; and their standard deviations are 4.5, 4, 4.5, 4 and 4.5.  Table 11.1 illus-
trates the characteristics of the inputs and output of the FMs of the type-1 FLC. 

For the type-2 FLC, as in type-1 FLC we also selected Gaussian MFs for the inputs 
and for the output, but in this case we have an interval type-2 Gaussian MFs with a 
fixed standard deviation, σ , and an uncertain center, ie., 
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Experimental Results
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Table 11.1. Characteristics of the  MFs of the inputs and output of the type-1 FLC  

Variable Term 
Center 

c 
Standard 
Deviation 

σ 
negative -10 9 

zero 0 2 
Input e 

positive 10 9 
negative -10 9 

zero 0 2 
Input  
∆e 

positive 10 9 
NG -10 4.5 

N -4.5 4 
Z 0 4.5 
P 4 4 

Output 
cde 

PG 10 4.5 

In terms of the upper and lower membership functions, we have for )(~ x
A

μ , 
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and for the lower membership function )(~ x
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where ( ) ≡xcN ,,1 σ
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Hence, in type-2 FLC, for each input we defined three interval type-2 fuzzy Gaus-
sianMFs: negative, zero, positive in the interval [-10 10], as illustrates Fig. 11.4 for 
input e.  For computing the output we have five interval type-2 fuzzy Gaussian MFs 
NG, N, Z, P and PG, with uncertain center and fixed standard deviations in the inter-
val [-10 10], as can be seen in Fig. 11.5. Table 11.2 shows the characteristics of the 
MFs of the inputs and output of the type-2 FLC. 

In experiment 6, to simulate the interval type-2 MFs of the FLC, we used two type-1 
FLCs.  Using HEM as the optimization method, ISE as a fitness function, we found 
the best values, see table V, for the MFs of the inputs of these controllers.  Through  
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Table 11.2. Characteristics of the MFs of the inputs and output of the type-2 FLC 

Variable Term 
Center 

c1 

Center 
c2 

Standard 
Deviation 

σ 
negative -10.25 -9.75 9.2 

zero -0.25 0.25 2.2 
Input e 

positive 9.75 10.25 9.2 
negative -10.25 -9.75 9.2 

zero -0.25 0.25 2.2 
Input  
∆e 

positive 9.75 10.25 9.2 
NG -10.25 -9.75 4.5 

N -4.75 -4.5 4 
Z -0.25 0.25 4.5 
P 3.75 4.25 4 

Output 
cde 

PG 9.75 10.25 4.5 

an average of the two type-1 optimized FLCs, we repeated experiment 5, and calcu-
lated again the values of ISE, IAE and ITAE, as can be seen in table 11.6.  

For the experiments with interval type-2 MFs not optimized, we used, basically, the 
type-2 toolbox that we developed. 

Experiment 1.  Ideal system using a type-1 FLC.   
In this experiment, we did not add uncertainty data to the system. The system trends 
to stabilize with time and the output will follow accurately the input.  In Table 11.3, 
we listed the obtained values of ISE, IAE, and ITAE for this experiment. 

Experiment 2.  Ideal system using a type-2 FLC.   
Here, we used the same test conditions of Experiment 1, but in this case, we imple-
mented the controller’s algorithm with type-2 fuzzy logic. The corresponding per-
formance criteria are listed in Table 11.3. 

 

Fig. 11.4. Input e membership functions for the type-2 FLC 

Experimental Results
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Fig. 11.5. Output cde membership functions fot the type-2 FLC 

Experiment 3. System with uncertainty using a type-1 FLC.  
In this case, we simulated using equation (7), the effects of uncertainty introduced to 
the system by transducers, amplifiers, and any other element that in real world appli-
cations affects expected values.  In Table 11.3, we can see the obtained values of ISE, 
IAE, and ITAE for a simulated 10 db signal noise ratio. 

Experiment 4. System with uncertainty using a type-2 FLC. In this experiment, we 
introduced uncertainty in the system, in the same way as in Experiment 3. In this case, 
we used a type-2 FLC and we improved those results obtained with a type-1 FLC in 
Experiment 3, see table 11.3. 

Table 11.3. Comparison of performance criteria for type-1 and type-2 fuzzy logic controllers 
for 10 db signal noise ratio. values obtained after 200 samples. 

Type-1 FLC Type-2 FLC Per-
formance 

Criteria 
Ideal 

System 
Syst. 

with uncer-
tainty 

Ideal 
System 

Syst. 
with uncer-

tainty 
ISE 5.2569 205.019

1 
5.2572 149.309

7 
IAE 13.8055 155.941

2 
13.7959 131.77 

ITAE 46.0651 1583.4 45.8123 1262.2 

Experiment 5. Varying the signal to noise ratio in type-1 and type-2 FLCs.  
To test the robustness of the type-1 and type-2 FLCs, we repeated experiments 3 and 
4 giving different noise levels, going from 30 db to 6 db of SNR ratio in each experi-
ment. In Table 11.4, we summarized the values for ISE, IAE, ITAE considering 200  
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Table 11.4. Behavior of type -1 and type-2 fuzzy logic controllers after variation of signal 
noise ratio. Values obtained for 200 samples. 

Type-1 FLC Type-2 FLC SNR 
db ISE IAE ITAE ISE IAE ITAE 

6 1208 392.3 4903 1113 368.76 4388 
8 1004 352.4 4526 903 330.38 4104 

10 205.0 155.9 1583.4 149.3 131.77 1262.2 
12 89.77 102.1 974.97 89.8 102.21 974.93 
14 56.47 80.88 769.51 56.78 80.85 770.25 
16 36.28 64.36 610.86 36.39 64.21 610.65 
18 23.76 51.54 485.19 23.81 51.32 485.16 
20 16.14 41.75 386.45 16.04 41.59 386.6 
22 11.36 34.65 310.04 11.25 34.28 308.87 
24 8.54 29.25 249.67 8.39 28.78 247.89 
26 6.87 25.15 202.46 6.72 24.78 201.07 
28 5.9 22.2 166.38 5.78 21.92 165.21 
30 5.38 20.12 139.27 5.27 19.77 137.47 

Table 11.5. Characteristics of the optimized MFs of the inputs and output of the type-2 FLC 

Variable Term 
Center 

c1 

Standard 
Deviation 

σ1 

Center 
c2 

Standard 
Deviation 

σ2 

negative -10 9 -10 8.0298 
zero 0 2 0 1.0987 

Input e 

positive 10 9 10 8.1167 
negative -10 9.2 -10 8.7767 

zero 0 2.2 0 1.0987 
Input  
∆e 

positive 10 9.2 10 8.5129 
NG -10 4.5 -10 4.5 

N -4.5 4 -4.5 4 
Z 0 4.5 0 4.5 
P 4 4 4 4 

Output 
cde 

PG 10 4.5 10 4.5 

units of time with a Psignal of 22.98 db in all cases. As it can be seen in Table 11.4, in 
presence of diverse noise levels, the behavior of type-2 FLC is better than type-1 FLC 
above 10 db. 

From Table 11.4, taking two examples, the extreme cases; we have for an SNR ra-
tio of 8 db, in type-1 FLC the next performance values ISE=1004, IAE=352.45, 
ITAE=4526; for the same case, in type-2 FLC, we have ISE=903, IAE=330.38, 
ITAE=4104.  

For 10 db of SNR ratio, we have for type-1 FLC, ISE=205.01, IAE=155.94, 
ITAE=1583.4, and for type-2 FLC, ISE=149.3, IAE=131.77, ITAE=1262.2.  

These values indicate a better performance of type-2 FLC than type-1 FLC above 
certain noise values, because they are a representation of the errors and as bigger they 
are the performance of the system is worst  

Experimental Results
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To optimize the interval type-2 MFs of the FLC, we simulated the system using 
two type-1 FLCs .  We maintain constant the centers of the Gaussian MFs of the in-
puts and varied its standard deviations. 

After using HEM as the optimization method, and taking ISE as the fitness func-
tion, we found the best values of the MFs, as can be seen in table 11.5.  With the new 
values of the MFs of both type-1 FLCs, we repeated experiment 5, but in this case, we 
used the average of the two type-1 FLCs as the output of the type-2 system.  
Table 11.6, shows the results for this experiment, as can be seen, all the values of ISE 
were improved, and in general we can see that the performance of the system is better. 

Experiment 6. Optimizing the interval type-2 MFs of the FLC. 

Table 11.6. Comparison of performance criteria for type-1 FLC, and type-2 fuzzy logic contro 
ller with optimized MFs, for 10 db signal noise ratio. Values obtained after 200 samples. 

Type-1 FLC Type-2 FLC SNR 
db ISE IAE ITAE ISE IAE ITAE 

6 1208 392.3 4903 616.4 274.7 3005 
8 1004 352.4 4526 437.3 226.7 2509 

10 205.0 155.9 1583.4 115 116.6 1119.6 
12 89.77 102.1 974.97 72.8 90.9 866.8 
14 56.47 80.88 769.51 45.6 71.3 674.1 
16 36.28 64.36 610.86 28.9 56.3 528.4 
18 23.76 51.54 485.19 18.6 45.2 419.4 
20 16.14 41.75 386.45 12.6 37 337 
22 11.36 34.65 310.04 8.9 30.8 273.8 
24 8.54 29.25 249.67 6.8 26.3 227.7 
26 6.87 25.15 202.46 5.6 23.1 195.6 
28 5.9 22.2 166.38 4.9 21 172.8 
30 5.38 20.12 139.27 4.5 19.6 157.8 

11.5   Summary 

We observed and quantified using performance criteria such as ISE, IAE, and ITAE that 
in systems without uncertainties (ideal systems) is a better choice to select a type-1 FLC 
since it works a little better than a type-2 FLC, and it is easier to implement it. It is 
known that type-1 FLC can handle nonlinearities, and uncertainties up to some extent.  

Unfortunately, real systems are inherently noisy and nonlinear, since any element 
in the system contributes with deviations of the expected measures because of thermal 
noise, electromagnetic interference, etc., moreover, they add nonlinearities from ele-
ment to element in the system.   

In the simulation of real systems, systems with uncertainty, we observed that the 
results presented in Table 11.4 demonstrated that the performance of this kind of con-
trollers is better under high noise levels.  After optimizing the interval type- 2 MFs 
the performance of the system is improved as we can see in table 11.6. 

We can say that using a type-2 FLC in real world applications can be a better 
choice since this type of system is a more suitable system to manage uncertainty, as 
we can see in the results shown in tables 11.5 and 11.6. 
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12   Design of Fuzzy Inference Systems with the Interval 
Type-2 Fuzzy Logic Toolbox 

This chapter presents the development and design of a graphical user interface and a 
command line programming Toolbox for construction, edition and simulation of In-
terval Type-2 Fuzzy Inference Systems. The Interval Type-2 Fuzzy Logic System 
Toolbox (IT2FLS), is an environment for interval type-2 fuzzy logic inference system 
development. Tools that cover the different phases of the fuzzy system design proc-
ess, from the initial description phase, to the final implementation phase, constitute 
the Toolbox. The Toolbox’s best qualities are the capacity to develop complex sys-
tems and the flexibility that allows the user to extend the availability of functions for 
working with the use of type-2 fuzzy operators, linguistic variables, interval type-2 
membership functions, defuzzification methods and the evaluation of Interval Type-2 
Fuzzy Inference Systems. 

12.1   Introduction 

On the past decade, fuzzy systems have displaced conventional technologies in differ-
ent scientific and system engineering applications, especially in pattern recognition 
and control systems.  The same fuzzy technology, in approximation reasoning form, is 
resurging also in the information technology, where it is now giving support to deci-
sion-making and expert systems with powerful reasoning capacity and a limited quan-
tity of rules. The fuzzy sets were presented by L.A. Zadeh in 1965 to process /  
manipulate data and information affected by un-probabilistic uncertainty/imprecision 
(Zadeh, 1975). These were designed to mathematically represent the vagueness and 
uncertainty of linguistic problems; thereby obtaining formal tools to work with intrin-
sic imprecision in different type of problems; it is considered a generalization of the 
classic set theory. Intelligent Systems based on fuzzy logic are fundamental tools for 
nonlinear complex system modeling. Fuzzy sets and fuzzy logic are the base for fuzzy 
systems, where their objective has been to model how the brain manipulates inexact 
information. Type-2 fuzzy sets are used for modeling uncertainty and imprecision in a 
better way. These type-2 fuzzy sets were originally presented by  Zadeh in 1975 and 
are essentially “fuzzy fuzzy” sets where the fuzzy degree of membership is a type-1 
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fuzzy set (Karnik and Mendel, 1998).  The new concepts were introduced by Mendel 
and Liang allowing the characterization of a type-2 fuzzy set with a inferior member-
ship function and an superior membership function; these two functions can be repre-
sented each one by a type-1 fuzzy set membership function (Mendel, 2000).  The in-
terval between these two functions represents the footprint of uncertainty (FOU), 
which is used to characterize a type-2 fuzzy set. The uncertainty is the imperfection of 
knowledge about the natural process or natural state.  The statistical uncertainty is the 
randomness or error that comes from different sources as we use it in a statistical 
methodology. Type-2 fuzzy sets have been applied to a wide variety of problems by 
(Melin and Castillo, 2004). 

12.2   Interval Type-2 Fuzzy Set Theory 

A type-2 fuzzy set (Liang and Mendel, 2000) expresses the non-deterministic truth 
degree with imprecision and uncertainty for an element that belongs to a set. A type-2 

fuzzy set denoted by A
~~

, is characterized by a type-2 membership function 

),(~~ ux
A

μ , where x∈X, u ∈ u
xJ ⊆ [0,1] and 1),(0 ~~ ≤≤ ux

A
μ  is defined in equa-

tion (1). 
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An example of a type-2 membership function constructed in the IT2FLS Toolbox was 
composed by a Pi primary and a Gbell secondary type-1 membership functions, these 
are depicted in Figure 12.1.  

 

 

Fig. 12.1. FOU for Type-2 Membership Functions 
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type-2 fuzzy set (Mendel, 2001) denoted by equations (12.2) and (12.3). 
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 is a type-2 fuzzy Singleton, the membership function is defined by equation 
(12.3) 
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Fig. 12.2. FOU for Gbell Primary Interval Type-2 Membership Functions 

Interval Type-2 Fuzzy Inference System 

The human knowledge is expressed as a set of fuzzy rule. The fuzzy rules are basically 
of the form IF <Antecedent> THEN <Consequent> and expresses a fuzzy relationship 
 

Interval Type-2 Fuzzy Set Theory
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Fig. 12.3. Interval Type-2 Fuzzy Reasoning 

 

Fig. 12.4. Type-2 inference fuzzy system structure 

or proposition. In fuzzy logic the reasoning is imprecise, it is approximated, which 
means that we can infer from one rule a conclusion even if the antecedent doesn’t 
comply completely. We can count on two basic inference methods between rules and 
inference laws, Generalized Modus Ponens (GMP) (Yager, 1983) (Zadeh, 1989) and 
Generalized Modus Tollens (GMT) that represent the extensions or generalizations of 
classic reasoning. The GMP inference method is known as direct reasoning and is re-
sumed as: 

Rule  IF x is A THEN y is B 
Fact       x is A’ 
_______________________________________ 
Conclusion              y is B’ 
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Where A, A’, B and B’ are fuzzy sets of any kind. This relationship is expressed as 
)('' BAAB →= o . Figure 13.3 shows an example of Interval Type-2 direct reason-

ing with Interval Type-2 Fuzzy Inputs. An Inference Fuzzy System is a rule base sys-
tem that uses fuzzy logic, instead of Boolean logic utilized in data analysis (Yager, 
1980) (Zadeh, 1988). Its basic structure includes four components (Fig. 13.4). 

12.3   Interval Type-2 Fuzzy System Design 

The Mamdani and Takagi-Sugeno-Kang Interval Type-2 Fuzzy Inference Models 
(Mendel, 2001) and the design of Interval Type-2 membership functions and opera-
tors are implemented in the IT2FLS (Interval Type-2 Fuzzy Logic Systems) Toolbox 
which was build on top of the Matlab® commercial Fuzzy Logic Toolbox. The 
IT2FLS Toolbox contain the functions to create Mamdani and TSK Interval Type-2 
Fuzzy Inference Systems (newfistype2.m), functions to add input-output variables and 
their ranges (addvartype2.m), it has functions to add 22 types of Interval Type-2 
Membership functions for input-outputs (addmftype2.m), functions to add the rule 
matrix (addruletype2.m), it can evaluate the Interval Type-2 Fuzzy Inference Systems 
(evalifistype2.m), evaluate Interval Type-2 Membership functions (evalimftype2.m), 
it can generate the initial parameters of the Interval Type-2 Membership functions 
(igenparamtype2.m), it can plot the Interval Type-2 Membership functions with the 
input-output variables (plotimftype2.m), it can generate the solution surface of the  
 
 

 

Fig. 12.5. IT2FIS Editor 

Interval Type-2 Fuzzy System Design
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Fig. 12.6. Interval Type-2 MF’s Editor 

Fuzzy Inference System (gensurftype2.m), it plots the Interval type-2 membership 
functions (plot2dtype2.m, plot2dctype2.m), a folder to evaluate the derivatives of the 
Interval type-2 Membership Functions (dit2mf) and a folder with different and gener-
alized Type-2 Fuzzy operators (it2op, t2op). 

The implementation of the IT2FLS GUI is analogous to the GUI used for Type-1 
FLS in the Matlab® Fuzzy Logic Toolbox, thus allowing the experienced user to 
adapt easily to the use of IT2FLS GUI (Castro, 2006). Figures 12.5 and 12.6 show the 
main viewport of the Interval Type-2 Fuzzy Inference Systems Structure Editor called 
IT2FIS (Interval Type-2 Fuzzy Inference Systems). 

12.4   Simulation Results 

We present results of a comparative analysis of the Mackey-Glass chaotic time-series 
forecasting study using intelligent cooperative architecture hybrid methods, with neu-
ral networks, (Mamdani, Takagi-Sugeno-Kang) type-1 fuzzy inference systems and 
genetic algorithms (neuro-genetic, fuzzy-genetic and neuro-fuzzy) and an interval 
type-2 fuzzy logic model, for the implicit knowledge acquisition in a time series be-
havioral data history (Castro, 2005). Also we present a shower simulation and a truck 
backer-upper simulation with interval type-2 fuzzy logic systems using the IT2FLS 
Toolbox. 
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Mackey-Glass chaotic time-series 

To identify the model we make an exploratory series analysis with 5 delays,  L5x(t), 6 
periods and 500 training data values to forecast 500 output values. The IT2FLS (Takagi-
Sugeno-Kang) system works with 4 inputs, 4 interval type-2 membership functions  
(igbellmtype2) for each input, 4 rules (Fig. 7) and one output with 4 interval linear func-
tions, it is evaluated with no normalized values (Figure 12.7). The root mean square  
error (RMSE) forecasted is 0.0235. Table 12.1 shows the RMSE differences of six fore-
casting methods, where CANFIS and IT2FLS-TSK evaluate the best Mackey-Glass  
series forecasts respectively.  The advantage of using the interval type-2 fuzzy logic 
forecasting method is that it obtains better results, even when data contains high levels 
of noise, furthermore we can use this method for better uncertainty series limits  
forecasting. 

 

Fig. 12.7. IT2FLS (TSK) Rules 

Table 12.1. Forecasting of Time Series 

Mackey-Glass Methods 
RMSE trn/chk epoch cpu(s)* 

NNFF**† 0.0595 500/500 200 13.36 

CANFIS 0.0016 500/500 50 7.34 

NNFF-GA† 0.0236 500/500 150 98.23 

FLS(TKS)-GA† 0.0647 500/500 200 112.01 

FLS(MAM)-GA† 0.0693 500/500 200 123.21 

IT2FLS 0.0235 500/500 6 20.47 
                    *    POWER BOOK G4 1.5 Ghz / 512 MB RAM. 
               **    Architecture: 4-13-1 † 30 samples average. 

Simulation Results



152 Design of Fuzzy Inference Systems with the Interval Type-2 Fuzzy Logic Toolbox 

 

Shower Control Simulation 

In figures 12.8 and 12.9 we compare the type-1 and type-2 fuzzy control results for 
the temperature and shower control simulation. The control variables signal of the in-
terval type-2 fuzzy logic system show a better respond signal than the type-1 fuzzy 
logic system. 
 

 

Fig. 12.8. Temperature and Flow. Type-1 fuzzy control 

 

Fig. 12.9. Temperature and Flow. Interval type-2 fuzzy control 

Truck backer-upper control simulation. 

In figures 12.10 and 12.11 we compare the type-1 and interval type-2 fuzzy control 
trajectories for the truck backer-upper control simulation.  In the truck backer-upper 
control using interval type-2 fuzzy logic, the trajectories are more stable and smooth 
than the type-1 fuzzy control. 
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Fig. 12.10. Trajectories obtained with the type-1 fuzzy control 

 

Fig. 12.11. Trajectories obtained with the interval type-2 fuzzy control 

12.5   Summary 

The time series results show that intelligent hybrid methods and interval type-2 fuzzy 
models can be derived as a generalization of the autoregressive non-lineal models in 
the context of time series. This derivation allows a practical specification for a general 
class of prognosis and identification time series model, where a set of input-output 

Summary
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variables are part of the dynamics of the time series knowledge base. This helps the 
application of the methodology to a series of diverse dynamics, with a very low num-
ber of causal variables to explain behavior. The results in the interval type-2 fuzzy 
control cases of the shower and truck backer upper have similar results to the type-1 
fuzzy control with moderate uncertain footprints. To better characterize the interval 
type-2 fuzzy models we need to generate more case studies with better knowledge 
bases for the proposed problems, therefore classify the interval type-2 fuzzy model 
application strengths. The design and implementation done in the IT2FLS Toolbox is 
potentially important for research in the interval type-2 fuzzy logic area, thus solving 
complex problems on the different applied areas. Our future work is to improve the 
IT2FLS Toolbox with a better graphics user interface (GUI) and integrate a learning 
technique Toolbox to optimize the knowledge base parameters of the interval type-2 
fuzzy inference system and design interval type-2 fuzzy neural network hybrid  
models. 
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13   Intelligent Control of the Pendubot with Interval 
Type-2 Fuzzy Logic 

We describe in this chapter adaptive model-based control of non-linear plants using 
type-2 fuzzy logic and neural networks. First, the general concept of adaptive model-
based control is described. Second, the use of type-2 fuzzy logic for adaptive control 
is described. Third, a neuro-fuzzy approach is proposed to learn the parameters of the 
fuzzy system for control. A specific non-linear plant was used to simulate the hybrid 
approach for adaptive control. The specific plant was also used as test bed in the ex-
periments. The non-linear plant that was considered is the "Pendubot", which is a 
non-linear plant similar to the two-link robot arm. The results of the type-2 fuzzy 
logic approach for control were good, both in accuracy and efficiency. 

13.1   Introduction 

Adaptive control is a method for designing a controller with some adjustable parame-
ters and an embedded mechanism for adjusting these parameters (Castillo and Melin, 
2001). Adaptive controllers have been used mainly to improve the controller’s per-
formance online (Diao and Passino, 2002). For each control cycle, the adaptive algo-
rithm is normally implemented in three basics steps:  

1. Observable data are collected to calculate the controller’s performance,  
2. The controller’s performance is used as a guidance to calculate the adjustment to a 

set of controller parameters,  
3. The controller’s parameters are then adjusted to improve the performance of the 

controller. 

A typical application of adaptive control has been to calibrate a system at startup. 
In this case, a controller is also designed for a specific class of dynamic systems 
(Chen and Pham, 2001). However the parameters that characterize the dynamic be-
havior of a particular system might not be known in advance. A controller is then de-
signed and arbitrary values are assigned to initialize these parameters. After a few 
control cycles, parameters are adjusted to converge to the actual parameters of the 
system. This approach is often used for cases in which a system is designed to handle 
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a variable payload. The payload is different each time, e.g., a crane is used to pick up 
a sizeable object. The payload will alter the basic dynamic behavior of a dynamic sys-
tem. Adaptive control is normally used to calibrate these parameters that characterize 
such dynamic behavior. Traditionally, there are four basic approaches for adaptive 
control (Castillo and Melin, 2003): (i) gain scheduling, (ii) model reference adaptive 
system, (iii) self-tuning regulator, and (iv) dual control. Gain scheduling is a method 
of adjusting the control signal based on a known look-up table describing changes of 
a dynamic system. The model reference adaptive system is a method of comparing the 
performance of the actual system against an assumed mathematical model that de-
scribes the actual system, and designing control input to drive this comparison error to 
zero (Melin and Castillo, 2001). Self-tuning regulator is a method of updating the pa-
rameters of a model that describes the plant based on observed data, and channeling 
the updated information into the controller that is designed based on these parameters. 
Dual control is a method of extending adaptive control to stochastic model dealing 
with uncertainties.  

In this chapter, an extension to the principle of adaptive control using type-2 fuzzy 
logic is proposed. First, the concept of adaptive fuzzy control is described. A neuro-
fuzzy approach is used to learn the parameters of the fuzzy system using real data 
from the plant. The proposed adaptive control was tested with a specific non-linear 
plant, to evaluate the performance of this approach. The Pendubot was used as the 
non-linear plant in this study (Fantoni and Lozano, 2002). The simulation and ex-
perimental results clearly show the advantage of using type-2 fuzzy logic to improve 
the concept of adaptive control.  

13.2   Adaptive Fuzzy Control 

Adaptive fuzzy control is an extension of fuzzy control theory to allow the fuzzy con-
troller, extending its applicability, either to a wider class of uncertain systems or to 
fine-tune the parameters of a system to accuracy (Chen and Pham, 2001). In this 
scheme, a fuzzy controller is designed based on knowledge of a dynamic system 
(Margaliot and Langholz, 2000). This fuzzy controller is characterized by a set of pa-
rameters (Passino and Yurkovich, 1998). These parameters are either the controller 
constants or functions of a model’s constants. 

A controller is designed based on an assumed mathematical model representing a 
real system. It must be understood that the mathematical model does not completely 
match the real system to be controlled. Rather, the mathematical model is seen as an 
approximation of the real system. A controller designed based on this model is as-
sumed to work effectively with the real system if the error between the actual system 
and its mathematical representation is relatively insignificant. However, there exists a 
threshold constant that sets a boundary for the effectiveness of a controller. An error 
above this threshold will render the controller ineffective toward the real system. An 
adaptive controller is set up to take advantage of additional data collected at run time 
for better effectiveness. At run time, data are collected periodically at the beginning of 
each constant time interval, tn = tn-1 + �t, where �t is a constant measurement of time, 
and [tn, tn-1) is a duration between data collection. Let Dn be a set of data collected at 
time t = tn. It is assumed that at any particular time, t = tn, a history of data {D0, D1, 



 157 

…, Dn} is always available. The more data available, more accurate the approxima-
tion of the system will become. 

At run time, the control input is fed into both the real system and the mathematical 
model representing the system. The output of the real system and the output of that 
mathematical model are collected and an error representing the difference between 
these two outputs are calculated. Let x(t) be the output of the real system, and y(t) the 
output of the mathematical model. The error ε(t) is defined as: 

ε(t) = x(t) – y(t).                                                (13.1) 

Figure 13.1 depicts this tracking of the difference between the mathematical model 
and the real dynamic system it represents. 

 

Fig. 13.1. Tracking the error function between outputs of a real system and mathematical model 

An adaptive controller will be adjusted based on the error function ε(t). This  
calculated data will be fed into either the mathematical model or the controller for ad-
justment. Since the error function ε(t) is available only at run time, an adjusting 
mechanism must be designed to accept this error as it becomes available, i.e., it must 
evolve with the accumulation of data in time. At any time, t = tn, the set of calculated 
data in the form of a time series {ε(t0), ε(t1),..., ε(tn)}is available and must be used by 
the adjusting mechanism to update appropriate parameters. 

In normal practice, instead of doing re-calculation based on a lengthy set of data, 
the adjusting algorithm is reformulated to be based on two entities: (i) sufficient in-
formation, and (ii) newly collected data. The sufficient information is a numerical 
variable representing the set of data {ε(t0), ε(t1),..., ε(tn-1)} collected from the initial 
time t0 to the previous collecting cycle starting at time t = tn-1. The new datum ε(tn) is 
collected in the current cycle starting at time t = tn.  

An adaptive controller will operate as follows. The controller is initially designed 
as a function of a parameter set and state variables of a mathematical model. The pa-
rameters can be updated any time during operation and the controller will adjust itself 
to the newly updated parameters. The time frame is usually divided into a series of 
equally spaced intervals {[tn,tn+1)| n = 0,1,2,...; tn+1 = tn+ ε t}. At the beginning of each 
time interval [tn,t n+1) observable data are collected and the error function ε (tn) is  
 

Adaptive Fuzzy Control
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calculated. This error is used to calculate the adjustment in the parameters of the con-
troller. New control input u(tn) for the time interval [tn,tn+1) is then calculated based on 
the newly calculated parameters and fed into both the real dynamic system under con-
trol and the mathematical model upon which the controller is designed. This com-
pletes one control cycle. The next control cycle will consist of the same steps repeated 
for the next time interval [tn+1,tn+2), and so on. 

A dynamic system (Rasband, 1990) can be described by a set of fuzzy if-then rules 
that correlate the input and the output. These rules include a set of parameters that is 
used to uniquely calculate the estimated output of a system given the inputs and cur-
rent states of the system. A dynamic system is mathematically modeled as a set of 
Sugeno fuzzy if-then rules (Sugeno and Kang, 1988): 

R1: IF x1(tn) is X11 AND …AND xi(tn) is X1i 

THEN y1(tn+1) = a11x1(tn) + … + a1ixi(tn)+      + b11u1(tn) + … + b1iuj(tn) 

     …   …    …                     (2) 

Rk: IF x1(tn) is Xk1 AND …AND xi(tn) is Xki 

THEN yk(tn+1) = ak1x1(tn) + … + akixi(tn)+      + bk1u1(tn) + … + bkiuj(tn) 

where x1, x2, …, xi are the observable state variables of the real system, y1, y2, …, yk 
are the calculated state variables of the mathematical model, and u1, u2, …, uj the con-
trol inputs to both the real system and the mathematical model. 

The above fuzzy mathematical model is characterized by a set of parameters {aki, 
bkj} These parameters will determine the behavior of the mathematical model. Theo-
retically, the model will approximate the real system. The more accurately the model 
approximates the real dynamic system, the better the controller designed based on this 
model behaves. 

Similarly, a fuzzy controller, if designed based on the fuzzy mathematical model 
above, will have the following form of fuzzy rules: 
 

R1: IF x1(tn) is X11 AND …AND xi(tn) is X1I 

THEN u1(tn) = k11x1(tn) + k12x2(tn) + … + k1ixi(tn) 

…    …    …             (3) 

Rj: IF x1(tn) is Xk1 AND …AND xi(tn) is Xki  

THEN uj(tn) = kj1x1(tn) + kj2x2(tn) + … + kjixi(tn) 

In this case, the set of parameters {kji} characterizes the controller. It can be under-
stood intuitively that the parameter set {kji} is designed as a function of the parameter 
set {aki, bkj}, so that the state variables of the fuzzy model are driven to a target point 
with stability. 
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13.3   Type-2 Fuzzy Logic 

Fuzzy Logic Systems are comprised of rules. Quite often, the knowledge that is used 
to build these rules is uncertain. Such uncertainty leads to rules whose antecedents or 
consequents are uncertain, which translates into uncertain antecedent or consequent 
membership functions (Karnik and Mendel, 1998). Type-1 fuzzy systems (Jang et. al, 
1997), whose membership functions are type-1 fuzzy sets, are unable to directly han-
dle such uncertainties (Melin and Castillo, 2002). We describe briefly in this paper, 
type-2 fuzzy systems (Mendel, 2001), in which the antecedent or consequent mem-
bership functions are type-2 fuzzy sets. Such sets are fuzzy sets whose membership 
grades themselves are type-1 fuzzy sets; they are very useful in circumstances where 
it is difficult to determine an exact membership function for a fuzzy set. 

The concept of a type-2 fuzzy set, was introduced by Zadeh, 1975, as an extension 
of the concept of an ordinary fuzzy set (henceforth called a “type-1 fuzzy set”). A 
type-2 fuzzy set is characterized by a fuzzy membership function, i.e., the member-
ship grade for each element of this set is a fuzzy set in [0,1], unlike a type-1 set where 
the membership grade is a crisp number in [0,1]. Such sets can be used in situations 
where there is uncertainty about the membership grades themselves, e.g., an uncer-
tainty in the shape of the membership function or in some of its parameters. Consider 
the transition from ordinary sets to fuzzy sets. When we cannot determine the mem-
bership of an element in a set as 0 or 1, we use fuzzy sets of type-1. Similarly, when 
the situation is so fuzzy that we have trouble determining the membership grade even 
as a crisp number in [0,1], we use fuzzy sets of type-2. 

This does not mean that we need to have extremely fuzzy situations to use type-2 
fuzzy sets. There are many real-world problems where we cannot determine the exact  
 

 

Fig. 13.2. Structure of a type-2 fuzzy system 

Type-2 Fuzzy Logic 
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form of the membership functions, e.g., in time series prediction because of noise in 
the data. Another way of viewing this is to consider type-1 fuzzy sets as a first order 
approximation to the uncertainty present in the real-world. Then type-2 fuzzy sets can 
be considered as a second order approximation. Of course, it is possible to consider 
fuzzy sets of higher types but the complexity of the fuzzy system increases very  
rapidly.  

The basics of fuzzy logic do not change from type-1 to type-2 fuzzy sets, and in 
general, will not change for any type-n (Mendel, 2001). A higher-type number just 
indicates a higher “degree of fuzziness”. Since a higher type changes the nature of the 
membership functions, the operations that depend on the membership functions 
change; however, the basic principles of fuzzy logic are independent of the nature of 
membership functions and hence, do not change. Rules of inference like Generalized 
Modus Ponens or Generalized Modus Tollens continue to apply. 

In Figure 13.2 we show the general structure of a type-2 fuzzy system. We assume 
that both antecedent and consequent sets are type-2; however, this need not necessar-
ily be the case in practice. 

The structure of the type-2 fuzzy rules is the same as for the type-1 case because 
the distinction between type-2 and type-1 is associated with the nature of the member-
ship functions. Hence, the only difference is that now some or all the sets involved in 
the rules are of type-2. In a type-1 fuzzy system, where the output sets are type-1 
fuzzy sets, we perform defuzzification in order to get a number, which is in some 
sense a crisp (type-0) representative of the combined output sets. In the type-2 case, 
the output sets are type-2; so we have to use extended versions of type-1 defuzzifica-
tion methods. Since type-1 defuzzification gives a crisp number at the output of the 
fuzzy system, the extended defuzzification operation in the type-2 case gives a type-1 
fuzzy set at the output. Since this operation takes us from the type-2 output sets of the 
fuzzy system to a type-1 set, we can call this operation “type reduction” and call the 
type-1 fuzzy set so obtained a “type-reduced set”. The type-reduced fuzzy set may 
then be defuzzified to obtain a single crisp number; however, in many applications, 
the type-reduced set may be more important than a single crisp number. 

Type-2 sets can be used to convey the uncertainties in membership functions of 
type-1 fuzzy sets, due to the dependence of the membership functions on available 
linguistic and numerical information. Linguistic information (e.g. rules from experts), 
in general, does not give any information about the shapes of the membership func-
tions. When membership functions are determined or tuned based on numerical data, 
the uncertainty in the numerical data, e.g., noise, translates into uncertainty in the 
membership functions. In all such cases, any available information about the linguis-
tic/numerical uncertainty can be incorporated in the type-2 framework. However, 
even with all of the advantages that fuzzy type-2 systems have, the literature on the 
applications of type-2 sets is scarce. Some examples are for decision-making (Yager, 
1980), and for solving fuzzy relational equations (Wagenknecht and Hartmann, 1988). 

For the specific case of adaptive control of non-linear plants, the use of type-2 
fuzzy rules is justified when the degree of uncertainty is high (for example, due to 
noise or complexity of the process) in the measured time series. Of course, a type-1 
fuzzy system could be enough for adaptive control in the case of relatively simple 
processes in the plant (Castillo and Melin, 2001). However, in other cases there are 
highly non-linear processes present in the plant, like in biochemical reactors or  
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electrochemical processes (Melin and Castillo, 2001). For this reason, we are propos-
ing that to model the uncertainty in this type of highly non-linear processes, we need 
to use type-2 fuzzy logic. We illustrate the application of the type-2 fuzzy logic ap-
proach with the case of controlling the motion of the “Pendubot”. Experimental re-
sults show a significant improvement in the tracking capabilities with the type-2 fuzzy 
logic approach. 

13.4   Description of the Pendubot Plant 

The Pendubot is a non-linear plant that has many attractive features for control re-
search and education (Fantoni and Lozano, 2002). The Pendubot system consists of 
two links moving around a fixed point, which is very similar to the case of a two-link 
robot arm (Sun et. al, 2001). In Figure 3 we can appreciate a pictorial representation 
of the Pendubot.  

The equations of motion for the Pendubot can be found using Lagrangian dynam-
ics. In matrix form the equations are: 

τ = D(q)q'' + C(q,q')q' + g(q)                                        (13.4) 

where τ is the vector of torque applied to the links and q is the vector of joint angle 
positions with 

 
     d11 d12  

D(q) =  
    d21 d22  

 
d11 = m1l

2
c1 + m2(l

2
1 +l2

c2 + 2l1lc2cosq2)+ I1 + I2  

d12 = d21 = m2(l
2
c2 + l1lc2cosq2)+ I2  

d22 = m2l
2

c2 + I2  

and 
 
    hq2  hq2 + hq1 

C (q, q') =   
   -hq1         0 
 
 h = -m2l1lc2sinq2 
and 

   φ1 
g(q) =    
  φ2 

 
φ1 = (m2lc1 + m2l1) gcosq1 + m2lc2 gcos(q1 + q2) 
φ2 = m2lc2 gcos(q1 + q2) 

Description of the Pendubot Plant
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m1, the total mass of link one, 

l1, the length of link one, 

lc1, the distance to the center of mass of link one, 

I1, the moment of inertia of link one about its centroid, 

m2, the total mass of link two, 

lc2, the distance to the center of mass of link two, 

I2, the moment of inertia of link two about its centroid, 

g, the acceleration of gravity. 

From the above equations it is observed that the seven dynamic parameters can be 
grouped into the following five parameter equations 

                                       θ1 = m1l
2
c1 + m2l

2
1+ I1  

                                       θ2 = m2l
2
c2 + I2 

                                       θ3 = m2l1lc2                                                         (13.5) 

                                       θ4 = m1lc1 + m2l1 

                                                 θ5 = m2lc2 

For a control design that neglects friction, these five parameters are all that are 
needed. There is no reason to go a step further and find the individual parameters 
since the control equations can be written with only the five parameters. Substituting 
these parameters into the above equations leaves the following matrices: 

 
      θ1 + θ2 + 2θ3 cosq2  θ2 + θ3 cosq2 

D(q) = 
      θ2 + θ3 cosq2   θ2 
 

 

      -θ3 sin(q2 )q'2 -θ3 sin(q2 )q'2 -θ3 sin(q2 )q'1 
C(q,q') =  
      θ3 sin(q2 )q'1   0 
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      θ4 gcosq1 + θ5 gcos(q1 + q2 ) 
        g(q) =  
       θ5 gcos(q1 + q2 ) 
 
 
Finally, using the invertible property of the mass matrix, D(q), the state equations 

are given by: 
 
 q’1  
           = D(q)-1 τ –D(q)-1 C(q,q')q – D(q)-1 g(q)   (13.6) 

 q’2 
 

 x1 = q1,   x2 = q'1,   x3 = q2 ,   x4 = q'
2  

 x1 = x2  

 x2 = q’1 

 x3 = x4 

 x4 = q’2 

We show in Figure 13.4 the blocks diagram for the simulation of the Pendubot us-
ing the Simulink tool of MATLAB. Using the Simulink tool, we can simulate differ-
ent dynamic behaviors of the non-linear plant and also test different intelligent con-
trollers. We show in Figure 13.5 a sample simulation of the Pendubot plant for a 
specific situation. 

 

Fig. 13.3 Pictorial representation of the Pendubot non-linear plant 

Description of the Pendubot Plant
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Fig. 13.4. Blocks diagram in Simulink for the Pendubot plant 

 

Fig. 13.5. Simulation of the Pendubot plant for a specific situation 
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13.5   Simulation Results with Type-1 Fuzzy Control 

The Pendubot system consists of a two-link arm that can be stabilized in the upright 
position. The Pendubot system is one of the three configurations that can be assem-
bled for the Mechatronics system, which is shown in real form in Figure 13.6. 

 

Fig. 13.6. A view of the Mechatronics system in the Control Lab 

To give an idea of the performance of our neuro-fuzzy approach for adaptive 
model-based control of non-linear plants, we show below simulation results obtained 
for the Pendubot. The desired trajectory for the link was selected to be 

qd = tsin(2.0t)                                                (13.7) 

and the simulation was carried out with the initial values:  q(0) = 0.1 q'1(0) = 0. 

We used three-layer neural networks (with 15 hidden neurons) with the Levenberg-
Marquardt algorithm (Melin and Castillo, 2002) and hyperbolic tangent sigmoidal 
functions as the activation functions for the neurons (Miller et. al, 1995). We show in 
Figure 13.7 the function approximation achieved with the neural network for control 
after 9 epochs of training with a variable learning rate. The identification achieved by 
the neural network can be considered very good because the error has been decreased 

to the order of 10-4. We show in Figure 13.8 the fuzzy rule base for controlling the  
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Fig. 13.7. Function approximation after 9 epochs 

 

Fig. 13.8. Fuzzy rule base for control of the plant 
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Fig. 13.9. Non-linear surface for modelling the plant 

Pendubot system. The fuzzy system was implemented in the fuzzy logic toolbox of 
MATLAB (Nakamura, 1997). We show in Figure 13.9 the non-linear surface for con-
trolling the non-linear plant. 

Summarizing, we can say using a set of fuzzy rules for controlling the non-linear 
plant. However, still we can improve the performance of intelligent system for control 
by using a hybrid approach combining the advantages of neural networks and fuzzy 
logic (Zilouchian and Jamshidi, 2001). The neuro-fuzzy approach can be used to op-
timize the parameters of the fuzzy system (like with the ANFIS method). 

13.6   Type-2 Fuzzy Control of the Pendubot 

For the case of the type-2 fuzzy logic approach, we have to change our way of calcu-
lating the output of the fuzzy system. Now, we use interval computations to find the 
minimum and maximum values for obtaining the outputs of the type-2 fuzzy system. 
We basically, compute the outputs of two type-1 fuzzy systems, one for computing 
the minimum value and the other for the maximum value. Then, if we need to further 
reduce the type of the output, we can apply the traditional deffuzzification methods. 
Fortunately, in this way we can take advantage of the machinery that we already have 
for type-1 fuzzy logic, as well as the computer programs in the MATLAB program-
ming language. 

We show below, in Table 13.1, the results of a type-2 fuzzy system for controlling 
different conditions of the plant. We also show the corresponding values of the type-1 
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fuzzy logic approach. A comparison, of both approaches can be made in this way. Of 
course, it is easy to appreciate that in the case of type-2 fuzzy logic the output result is 
an interval, instead of a single numeric value. In some applications, this is closer to 
reality, since we are expecting something similar to a confidence interval. However, 
in other areas of application, like in control, a unique result is needed, so in this case 
we need to defuzzify again (or type-reduce the result). The centroid value shown in 
Table 13.1 is the result of type-reducing the interval, given by the minimum and 
maximum values, using the centroid method. 

Table 13.1 Comparison between the type-2 and the type-1 fuzzy logic approaches 

Theta  The
ta1  

x x1 Type-1 
F.L. 

Type-2 
min 

Type-2  
max 

-0.5 
-0.4  
-0.2  
0.2 
 0.3 
 0.4  
-0.4  
-0.3  
0.45 
 0.5  
-0.25 
-0.1 

-0.5  
-0.4  
-0.2  
0.2 
 0.3  
0.4  
0.4  
0.2  
0.3 
0.5  
0.2 
 0.1 

-3.0  
-2.8  
-2.5  
1.0  
1.5  
2.5  
-1.5  
1.5  
2.35  
3.0  
-2.75  
0.75 

-3.0  
-2.8  
-2.5  
1.0  
1.5  
2.5  
2.5  
-2.0  
2.45 
3.0  
1.0 
0.75 

-21.8089 
-28.2943 
-14.1706 
14.1706 
21.2629 
28.2943 
-15.3708 
-10.0538 
30.2580 
33.2449 
-6.7334 
3.1987 

-23.4666 
-33.0175 
-14.6773 
13.1480 
20.6327 
26.1292 
-21.8082 
-11.0802 
27.5427 
32.7477 
-6.3145 
2.4332 

-21.8089 
-25.3952 
-13.2667 
15.7477 
23.9127 
33.0175 
-13.4062 
-9.5352 
32.9074 
33.1621 
-6.2630 
4.0886 

 
Fig. 13.10. Non-linear surface for the type-1 fuzzy system 
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Fig. 13.11. Non-linear surface for the type-2 fuzzy system 
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Fig. 13.12. Comparison of type-2 and type-1 fuzzy systems outputs 

From Table 13.1 we can appreciate that in some cases the output of the type-2 
fuzzy system is almost the same as in the type-1 case, but in other situations the re-
sults are somewhat different. For our application, we find out that the results of the 

Type-2 Fuzzy Control of the Pendubot 



170 Intelligent Control of the Pendubot with Interval Type-2 Fuzzy Logic 

type-2 fuzzy logic approach were better for controlling the plant. The main reason for 
saying that the type-2 approach is better, in this case, is that we have a more stable 
surface of control.  

We show in Figures 13.10 and 13.11 the non-linear surfaces for the type-1 and 
type-2 fuzzy systems, respectively. From these figures, we can appreciate the differ-
ence between both fuzzy logic approaches. It is obvious that the type-2 fuzzy logic 
surface is smoother, which is better for controlling the plant. Finally, we show in Fig-
ure 13.12 a comparison between the predicted outputs for the type-2 and type-1 fuzzy 
systems. In Figure 13.12 we can appreciate that the type-1 result is almost always in 
between the minimum and maximum values of the type-2 fuzzy system. 

13.7   Summary 

We have very good simulation results for the Pendubot system for different condi-
tions. We did compare the use of type-1 fuzzy logic for control with the use of type-2 
fuzzy logic to decide which one is the best for this application. We found out that the 
type-2 approach was more efficient. The new method for control combines the advan-
tages of neural networks (learning and adaptability) with the advantages of type-2 
fuzzy logic (use of expert knowledge) to achieve the goal of robust adaptive control 
of the Pendubot system. We consider that our method for adaptive control can be ap-
plied to general non-linear dynamical systems because the hybrid approach, combin-
ing neural networks and fuzzy logic, does not depend on the particular characteristics 
of the non-linear dynamic plant. The main advantage of using type-2 fuzzy logic, in 
this case, is due to the greater ability of this theory in modeling uncertainties in the 
control of non-linear plants. 
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14   Automated Quality Control in Sound Speakers 
Manufacturing Using a Hybrid Neuro-fuzzy-Fractal 
Approach 

We describe in this chapter the application of type-2 fuzzy logic to the problem of 
automated quality control in sound speaker manufacturing. Traditional quality control 
has been done by manually checking the quality of sound after production. This man-
ual checking of the speakers is time consuming and occasionally was the cause of er-
ror in quality evaluation. For this reason, we developed an intelligent system for 
automated quality control in sound speaker manufacturing. The intelligent system has 
a type-2 fuzzy rule base containing the knowledge of human experts in quality con-
trol. The parameters of the fuzzy system are tuned by applying neural networks using, 
as training data, a real time series of measured sounds as given by good sound speak-
ers. We also use the fractal dimension as a measure of the complexity of the sound 
signal. 

14.1   Introduction 

We describe in this chapter the application of a type-2 fuzzy logic approach to the 
problem of quality control in the manufacturing of sound speakers in a real plant. The 
quality control of the speakers was done before by manually checking the quality of 
sound achieved after production (Dickason, 1997). A human expert evaluates the 
quality of sound of the speakers to decide if production quality was achieved. Of 
course, this manual checking of the speakers is time consuming and occasionally was 
the cause of error in quality evaluation (Loctite, 1999). For this reason, it was neces-
sary to consider automating the quality control of the sound speakers. The problem of 
measuring the quality of the sound speakers is as follows: 

1. First, we need to extract the real sound signal of the speaker during the testing pe-
riod after production 

2. Second, we need to compare the real sound signal to the desired sound signal of the 
speaker, and measure the difference in some way 
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3. Third, we need to decide on the quality of the speaker based on the difference 
found in step 2. If the difference is small enough then the speaker can be consid-
ered of good quality, if not then is bad quality. 

The first part of the problem was solved by using a multimedia kit that enable us to 
extract the sound signal as a file, which basically contains 108000 points over a pe-
riod of time of 3 seconds (this is the time required for testing). We can say that the 
sound signal is measured as a time series of data points (Castillo and Melin, 2003), 
which has the basic characteristics of the speaker. The second part of the problem was 
solved by using a neuro-fuzzy approach to train a fuzzy model with the data from the 
good quality speakers (Mandelbrot, 1987). We used a neural network (Jang et 
al.,1997) to obtain a Sugeno fuzzy system (Sugeno and Kang, 1988) with the time se-
ries of the ideal speakers. In this case, a neural network (Rumelhart et al., 1986) is 
used to adapt the parameters of the fuzzy system with real data of the problem. With 
this fuzzy model, the time series of other speakers can be used as checking data to 
evaluate the total error between the real speaker and the desired one. The third part of 
the problem was solved by using another set of type-2 fuzzy rules (Zadeh, 1975), 
which basically are fuzzy expert rules to decide on the quality of the speakers based 
on the total checking error obtained in the previous step. Of course, in this case we 
needed to define type-2 membership functions for the error and quality of the product, 
and the Mamdani reasoning approach was used. We also use as input variable of the 
fuzzy system the fractal dimension of the sound signal. The fractal dimension (Man-
delbrot, 1987) is a measure of the geometrical complexity of an object (in this case, 
the time series). We tested our fuzzy-fractal approach for automated quality control 
during production with real sound speakers with excellent results. Of course, to meas-
ure the efficiency of our intelligent system we compared the results of the fuzzy-
fractal approach to the ones by real human experts.  

14.2   Basic Concepts of Sound Speakers 

In any sound system, ultimate quality depends on the speakers (Dickason, 1997). The 
best recording, encoded on the most advanced storage device and played by a top-of-
the-line deck and amplifier, will sound awful if the system is hooked up to poor 
speakers. A system's speaker is the component that takes the electronic signal stored 
on things like CDs, tapes and DVD's and turns it back into actual sound that we can 
hear. 

14.2.1   Sound Basics 

To understand how speakers work, the first thing you need to do is understand how 
sound works. Inside your ear is a very thin piece of skin called the ear-drum. When 
your eardrum vibrates, your brain interprets the vibrations as sound. Rapid changes in 
air pressure are the most common thing to vibrate your eardrum.  

An object produces sound when it vibrates in air (sound can also travel through 
liquids and solids, but air is the transmission medium when we listen to speakers). 
When something vibrates, it moves the air particles around it. Those air particles in 
turn move the air particles around them, carrying the pulse of the vibration through 
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the air as more and more particles are pushed farther from the source of the vibration. 
In this way, a vibrating object sends a wave of pressure fluctuation through the at-
mosphere. When the fluctuation wave reaches your ear, it vibrates the eardrum back 
and forth. Our brain interprets this motion as sound. We hear different sounds from 
different vibrating objects because of variations in:  

• sound wave frequency -- A higher wave frequency simply means that the air pres-
sure fluctuates faster. We hear this as a higher pitch. When there are fewer fluctua-
tions in a period of time, the pitch is lower.  

• air pressure level -- the wave's amplitude -- determines how loud the sound is. 
Sound waves with greater amplitudes move our ear drums more, and we register 
this sensation as a higher volume.  

A speaker is a device that is optimized to produce accurate fluctuations in air pres-
sure. 

14.2.2   Making Sound 

In the last section we saw that sound travels in waves of air pressure fluctuation, and 
that we hear sounds differently depending on the frequency and amplitude of these 
waves. We also learned that microphones translate sound waves into electrical sig-
nals, which can be encoded onto CDs, tapes, LPs, etc. Players convert this stored in-
formation back into an electric current for use in the stereo system.  

A speaker is essentially the final translation machine -- the reverse of the micro-
phone. It takes the electrical signal and translates it back into physical vibrations to 
create sound waves. When everything is working as it should, the speaker produces 
nearly the same vibrations that the microphone originally recorded and encoded on a 
tape, CD, LP, etc. Traditional speakers do this with one or more drivers. A driver pro-
duces sound waves by rapidly vibrating a flexible cone, or diaphragm. Figure 14.1 
shows a typical speaker driver.  

The voice coil is a basic electromagnet. An electromagnet is a coil of wire, usually 
wrapped around a piece of magnetic metal, such as iron. Running electrical current 
through the wire creates a magnetic field around the coil, magnetizing the metal it is 
wrapped around. The field acts just like the magnetic field around a permanent mag-
net: It has a polar orientation -- a "north" end and a "south" end -- and it is attracted to 
iron objects. But unlike a permanent magnet, in an electromagnet you can alter the 
orientation of the poles. If you reverse the flow of the current, the north and south 
ends of the electromagnet switch. This is exactly what a stereo signal does -- it con-
stantly reverses the flow of electricity. If you've ever hooked up a stereo system, then 
you know that there are two output wires for each speaker -- typically a black one and 
a red one. Figure 14.2 shows the wire that runs through the speaker system. 

Essentially, the amplifier is constantly switching the electrical signal, fluctuating 
between a positive charge and a negative charge on the red wire. Since electrons al-
ways flow in the same direction between positively charged particles and negatively 
charged particles, the current going through the speaker moves one way and then re-
verses and flows the other way. This alternating current causes the polar orientation of 
the electromagnet to reverse itself many times a second. 

Basic Concepts of Sound Speakers
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Fig. 14.1. A typical speaker driver, with a metal basket, heavy permanent magnet and paper 
diaphragm 

 

Fig. 14.2. The wire that runs through the speaker system connects to two hook-up 
jacks on the driver. 

So how does this fluctuation make the speaker coil move back and forth? The elec-
tromagnet is positioned in a constant magnetic field created by a permanent magnet. 
These two magnets -- the electromagnet and the permanent magnet -- interact with 
each other as any two magnets do. The positive end of the electromagnet is attracted 
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to the negative pole of the permanent magnetic field, and the negative pole of the 
electromagnet is repelled by the permanent magnet's negative pole.  

When the electromagnet's polar orientation switches, so does the direction of repul-
sion and attraction. In this way, the alternating current constantly reverses the magnet 
forces between the voice coil and the permanent magnet. This pushes the coil back 
and forth rapidly, like a piston. When the electrical current flowing through the voice 
coil changes direction, the coil's polar orientation reverses. This changes the magnetic 
forces between the voice coil and the permanent magnet, moving the coil and attached 
diaphragm back and forth. 

When the coil moves, it pushes and pulls on the speaker cone. This vibrates the air 
in front of the speaker, creating sound waves. The electrical audio signal can also be 
interpreted as a wave. The frequency and amplitude of this wave, which represent the 
original sound wave, dictates the rate and distance that the voice coil moves. This, in 
turn, determines the frequency and amplitude of the sound waves produced by the 
diaphragm.  

14.2.3   Chunks of the Frequency Range 

In the last section we saw that traditional speakers produce sound by pushing and 
pulling an electromagnet attached to a flexible cone. Although drivers all work on the 
same concept, there is actually a wide variety in driver size and power. The basic 
driver types are:  

1. Woofers 
2. Tweeters  
3. Midrange 

Woofers are the biggest drivers, and are designed to produce low frequency 
sounds. Tweeters are much smaller units, designed to produce the highest frequencies. 
Midrange speakers produce a range of frequencies in the middle of the sound spec-
trum.  

14.3   Type-2 Fuzzy Logic Systems 

Fuzzy Logic Systems are comprised of rules. Quite often, the knowledge that is used 
to build these rules is uncertain. Such uncertainty leads to rules whose antecedents or 
consequents are uncertain, which translates into uncertain antecedent or consequent 
membership functions (Karnik and Mendel, 1998). Type-1 fuzzy systems (Castillo 
and Melin, 2001), whose membership functions are type-1 fuzzy sets, are unable to 
directly handle such uncertainties. We describe briefly in this section, type-2 fuzzy 
systems, in which the antecedent or consequent membership functions are type-2 
fuzzy sets. Such sets are fuzzy sets whose membership grades themselves are type-1 
fuzzy sets; they are very useful in circumstances where it is difficult to determine an 
exact membership function for a fuzzy set. 

Type-2 Fuzzy Logic Systems
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14.3.1   Type-2 Fuzzy Sets 

The concept of a type-2 fuzzy set, was introduced by (Zadeh, 1975) as an extension of 
the concept of an ordinary fuzzy set (henceforth called a “type-1 fuzzy set”). A type-2 
fuzzy set is characterized by a fuzzy membership function, i.e., the membership grade 
for each element of this set is a fuzzy set in [0,1], unlike a type-1 set where the mem-
bership grade is a crisp number in [0,1]. Such sets can be used in situations where 
there is uncertainty about the membership grades themselves, e.g., an uncertainty in 
the shape of the membership function or in some of its parameters. Consider the tran-
sition from ordinary sets to fuzzy sets. When we cannot determine the membership of 
an element in a set as 0 or 1, we use fuzzy sets of type-1. Similarly, when the situation 
is so fuzzy that we have trouble determining the membership grade even as a crisp 
number in [0,1], we use fuzzy sets of type-2. 

This does not mean that we need to have extremely fuzzy situations to use type-2 
fuzzy sets. There are many real-world problems where we cannot determine the exact 
form of the membership functions, e.g., in time series prediction because of noise in 
the data. Another way of viewing this is to consider type-1 fuzzy sets as a first order 
approximation to the uncertainty in the real-world. Then type-2 fuzzy sets can be con-
sidered as a second order approximation. Of course, it is possible to consider fuzzy 
sets of higher types but the complexity of the fuzzy system increases very rapidly. Let 
us consider some simple examples of type-2 fuzzy sets. 

Example 14.1. Consider the case of a fuzzy set characterized by a Gaussian member-
ship function with mean m and a standard deviation that can take values in [σ1,σ2], 
i.e., 

μ(x)=exp {– ½[(x – m)/σ]2 };   σ ∈ [σ1,σ2] (14.1) 

Corresponding to each value of σ, we will get a different membership curve (see Fig-
ure 14.3). So, the membership grade of any particular x (except x=m) can take any of 
a number of possible values depending upon the value of σ, i.e., the membership 
grade is not a crisp number, it is a fuzzy set. 

Example 14.2. Consider the case of a fuzzy set with a Gaussian membership function 
having a fixed standard deviation σ, but an uncertain mean, taking values in [m1, m2], 
i.e., 

 μ(x)=exp {– ½[(x – m)/σ]2 };   m ∈ [m1,m2] (14.2) 

Again, μ(x) is a fuzzy set. Figure 14.4 shows an example of such a set. 
 
We can formally define these two kinds of type-2 sets as follows. 

Definition 14.1. Gaussian type-2 
A Gaussian type-2 fuzzy set is one in which the membership grade of every domain 
point is a Gaussian type-1 set contained in [0,1]. 

Definition 14.2. Interval type-2 
An interval type-2 fuzzy set is one in which the membership grade of every domain 
point is a crisp set whose domain is some interval contained in [0,1]. 
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Fig. 14.3. A Type-2 fuzzy set representing a type-1 fuzzy set with uncertain standard deviation 

 

Fig. 14.4. Type-2 fuzzy set with Gaussian membership function and fixed standard deviation 

14.3.2   Type-2 Fuzzy Systems 

The basics of fuzzy logic do not change from type-1 to type-2 fuzzy sets, and in  
general, will not change for any type-n (Karnik and Mendel, 1998). A higher-type 
number just indicates a higher “degree of fuzziness”. Since a higher type changes the 
nature of the membership functions, the operations that depend on the membership 
functions change; however, the basic principles of fuzzy logic are independent of the  
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Fig. 14.5. Structure of a type-2 fuzzy system 

nature of membership functions and hence, do not change. Rules of inference like  
Generalized Modus Ponens or Generalized Modus Tollens continue to apply. In Fig-
ure 14.5 we show the general structure of a type-2 fuzzy system. We assume that both 
antecedent and consequent sets are type-2; however, this need not necessarily be the 
case in practice. 

The structure of the type-2 fuzzy rules is the same as for the type-1 case because 
the distinction between type-2 and type-1 is associated with the nature of the member-
ship functions. Hence, the only difference is that now some or all the sets involved in 
the rules are of type-2. In a type-1 fuzzy system, where the output sets are type-1 
fuzzy sets, we perform defuzzification in order to get a number, which is in some 
sense a crisp (type-0) representative of the combined output sets. In the type-2 case, 
the output sets are type-2; so we have to use extended versions of type-1 defuzzifica-
tion methods. Since type-1 defuzzification gives a crisp number at the output of the 
fuzzy system, the extended defuzzification operation in the type-2 case gives a type-1 
fuzzy set at the output. Since this operation takes us from the type-2 output sets of the 
fuzzy system to a type-1 set, we can call this operation “type reduction” and call the 
type-1 fuzzy set so obtained a “type-reduced set”. The type-reduced fuzzy set may 
then be defuzzified to obtain a single crisp number; however, in many applications, 
the type-reduced set may be more important than a single crisp number. 

Type-2 sets can be used to convey the uncertainties in membership functions of 
type-1 fuzzy sets, due to the dependence of the membership functions on available 
linguistic and numerical information. Linguistic information (e.g. rules from experts), 
in general, does not give any information about the shapes of the membership func-
tions. When membership functions are determined or tuned based on numerical data, 
the uncertainty in the numerical data, e.g., noise, translates into uncertainty in the 
membership functions. In all such cases, any available information about the linguis-
tic/numerical uncertainty can be incorporated in the type-2 framework. However, 
even with all of the advantages that fuzzy type-2 systems have, the literature on the 
applications of type-2 sets is scarce. Some examples are for decision making (Yager, 
1980), and for solving fuzzy relational equations (Wagenknecht and Hartmann, 1988). 
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14.4   Description of the Problem 

The basic problem consists in the identification of sound signal quality. Of course, 
this requires a comparison between the real measured sound signal and the ideal good 
sound signal. We need to be able to accept speakers, which have a sound signal that 
do not differ much from the ideal signals. We show in Figure 14.6 the form of the 
sound signal for a good speaker (of a specific type). The measured signal contains 
about 108 000 points in about 3 seconds. We need to compare any other measured 
signal with the good one and calculate the total difference between both of them, and 
if the difference is small then we can accept the speaker as a good one. On the other 
hand, if the difference is large then we reject the speaker as a bad one. 

 
Fig. 14.6. Sound signal of a Good Speaker 

 

Fig. 14.7. Sound Signal of Bad Speaker (Case 1) 

Description of the Problem
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Fig. 14.8. Sound Signal of Bad Speaker (Case 2) 

We show in Figure 14.7 the sound signal for a speaker of bad quality. We can 
clearly see the difference in the geometrical form of this signal and the one shown in 
Figure 14.6. In this case, the difference between the figures is sufficiently large and 
we easily determine that the speaker is of bad quality. We also show in Figure 14.8 
another sound signal for a bad quality speaker.  

14.5   Fractal Dimension of an Object 

Recently, considerable progress has been made in understanding the complexity of an 
object through the application of fractal concepts (Mandelbrot, 1987) and dynamic 
scaling theory. For example, financial time series show scaled properties suggesting a 
fractal structure (Castillo and Melin, 2002). The fractal dimension of a geometrical 
object can be defined as follows: 

d = lim [lnN(r)] / [ln(1/r)] 

                                  r → 0 
(14.3) 

where N(r) is the number of boxes covering the object and r is the size of the box. An 
approximation to the fractal dimension can be obtained by counting the number of 
boxes covering the boundary of the object for different r sizes and then performing a 
logarithmic regression to obtain d (box counting algorithm). In Figure 14.9, we illus-
trate the box counting algorithm for a hypothetical curve C. Counting the number of 
boxes for different sizes of r and performing a logarithmic linear regression, we can 
estimate the box dimension of a geometrical object with the following equation: 

ln N(r) = lnβ – d lnr (14.4) 

this algorithm is illustrated in Figure 14.10. 
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Fig. 14.9. Box counting algorithm for a curve C 

 

Fig. 14.10. Logarithmic regression to find dimension 

We developed a computer program for calculating the fractal dimension of a sound 
signal. The computer program uses as input the figure of the signal and counts the 
number of boxes covering the object for different grid sizes. For example, the fractal 
dimension for the sound signal of Figure 14.6 is of 1.6479, which is a low value be-
cause it corresponds to a good speaker. On the other hand, the fractal dimension for 
Figure 14.7 is 1.7843, which is a high value (bad speaker). Also, for the case of  
Figure 14.8 the dimension is 1.8030, which is even higher (again, a bad speaker). 

14.6   Experimental Results 

We describe in this section the experimental results obtained with the intelligent system 
for automated quality control. The intelligent system uses a fuzzy rule base to determine 
automatically the quality of sound in speakers. We used a neural network to adapt the 
parameters of the fuzzy system using real data from the problem. We used the time se-
ries of 108000 points measured from a good sound speaker (in a period of 3 seconds) as 
training data in the neural network. We then use the measured data of any other speaker 
as checking data, to compare the form of the sound signals. We show in Figures 14.11 
and 14.12 two cases where a neural network is used to adapt a fuzzy system with train-
ing data of good sound speakers. The approximation is very good considering the  
complexity of the problem. Once the training was done, we used the fuzzy system for 
measuring the total difference between a given signal and the good ones. This difference 

Experimental Results
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is used to decide on the final quality of the speaker using another set of fuzzy rules with 
the Mamdani approach. The type-2 fuzzy rules are as follows: 

 

IF Difference is small  AND Fractal Dimension is small  
THEN Quality Excellent 
 

IF Difference is regular  AND Fractal Dimension is small 
    THEN Quality is Good 
 

IF Difference is regular  AND Fractal Dimension is high 
  THEN Quality is Medium 
 

IF Difference is medium  AND Fractal Dimension is small 
  THEN Quality is Medium 
 

IF Difference is medium  AND Fractal Dimension is high 
   THEN Quality is Bad 
 

IF Difference is large   AND Fractal Dimension is small 
  THEN Quality is Medium 
 

IF Difference is large   AND Fractal Dimension is high 
  THEN Quality is Bad 
 

IF Difference is small   AND Fractal Dimension is high 
  THEN Quality is Medium 

 

Fig. 14.11. Function approximation of the sound signal using type-2 fuzzy logic 
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Fig. 14.12. Function approximation of the sound signal using type-2 fuzzy logic (Case 2) 

 
Fig. 14.13. Non-linear surface of type-1 fuzzy system 

We can compare type-2 fuzzy logic with the traditional fuzzy logic in the following 
figures. First, we show in Figure 14.13 the non-linear surface of a type-1 fuzzy system 
for quality control. Second, we show in Figure 14.14 the non-linear surface of the 
type-2 fuzzy system for quality control. We can appreciate from these figures that the  
 

Experimental Results
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Fig. 14.14. Non-linear surface of type-2 fuzzy system 

 
Fig. 14.15. Plot of the type-2 and type-1 fuzzy system 

no-linear surface of the type-2 fuzzy system is smoother, which is due to the fact that  
in this case we are averaging the results of at least two type-1 fuzzy systems. We also 
show in Figure 14.15 (as a comparison) a plot of the results of the type-2 fuzzy sys-
tem and the results of two type-1 systems for the same input data. Finally, we show in 
Table 14.1 the results of the type-2 and type-1 fuzzy systems for 12 specific cases. 

We also show in Figure 14.16 the general architecture of the type-2 fuzzy system 
for quality control. 
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Table 14.1. Outputs of the type-2 and type-1 fuzzy systems for 12 specific situations 

Input Variable Output of the Fuzzy Systems 
Fractal Dim. Difference Type-1 Type-2 

min 
Type-2 
max 

Average 

1.1 
1.2 
1.3 
1.5 
1.6 
1.7 
1.8 
1.3 
1.7 
1.5 
1.6 
1.3 

0.01 
0.05 
0.03 
0.08 
0.02 
0.01 
0.10 
0.20 
0.40 
0.05 
0.03 
0.01 

91.6159  
88.4461  
90.5619  
72.0445  
88.0722  
87.0820  
57.7984  
70.2707  
84.9467  
86.4039  
87.6774  
90.8434 

91.3824  
85.6593  
89.0866  
70.1125  
86.8907  
86.0586  
55.7255  
60.3185  
79.5448  
80.1912  
85.5487  
90.5823 

91.6843  
90.0590  
91.1582  
77.3158  
88.8715  
87.8339  
63.0281  
73.8411  
87.5151  
89.2951  
88.8180  
91.1990 

91.05334 
87.8591 
90.1224 
73.7142 
87.8811 
86.9462 
59.3768 
67.0798 
83.5299 
84.7432 
87.1833 
90.8907 

 

Fig. 14.16. Architecture of the fuzzy system 

14.7   Summary 

We described in this chapter the application of a type-2 fuzzy logic to the problem of 
automating the quality control of sound speakers during manufacturing in a real plant. 
We have implemented an intelligent system for quality control in the MATLAB pro-
gramming language using the new approach. We also use the fractal dimension as a 
measure of geometrical complexity of the sound signals. The intelligent system per-
forms rather well considering the complexity of the problem. The intelligent system has 
been tested in a real manufacturing plant with very good results. 

Summary
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15   A New Approach for Plant Monitoring Using Type-2 
Fuzzy Logic and Fractal Theory 

We describe in this chapter a new approach for plant monitoring and diagnostics us-
ing type-2 fuzzy logic and fractal theory. The concept of the fractal dimension is used 
to measure the complexity of the time series of relevant variables for the process. A 
set of type-2 fuzzy rules is used to represent the knowledge for monitoring the proc-
ess. In the type-2 fuzzy rules, the fractal dimension is used as a linguistic variable to 
help in recognizing specific patterns in the measured data. The fuzzy-fractal approach 
has been applied before in problems of financial time series prediction and for other 
types of problems, but now it is proposed to the monitoring of plants using type-2 
fuzzy logic. We also compare the results of the type-2 fuzzy logic approach with the 
results of using only a traditional type-1 fuzzy logic approach. Experimental results 
show a significant improvement in the monitoring ability with the type-2 fuzzy logic 
approach. 

15.1   Introduction 

Diagnostic systems are used to monitor the behavior of a process and identify certain 
pre-defined patterns that are associated with well-known problems (Du, 1998). These 
problems, once identified, imply suggestions for specific solutions. Most diagnostic 
systems are in the form of a rule-based expert system: a set of rules is used to describe 
certain patterns (Chiang et. al, 2000). Observed data are collected and used to evalu-
ate these rules. If the rules are logically satisfied, the pattern is identified, and the 
problem associated with that pattern is suggested (Jain, et. al, 2000). In general, the 
diagnostic systems are used for consultation rather than replacement of human expert 
(Russell et. al, 2000). 

Most current plant monitoring systems only check a few variables against individ-
ual upper and lower limits, and start an audible alarm should each variable move out 
of its predefined range (Chen and Pham, 2001). Other more complicated systems 
normally involve more sensors that provide more data but still follow the same pattern 
of independently checking individual sets of data against some upper and lower limits 
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(Saez and Cipriano, 2001). The warning alarm from these systems only carries a 
meaning that there is something wrong with the process in the plant (Yang et. al, 
1999). Monitoring means checking or regulating the performance of a machine, a 
process, or a system (Scharf, 1991). Diagnosis, on the other hand, means deciding the 
nature and the cause of a diseased condition of a machine, a process, or a system by 
examining the symptoms. In other words, monitoring is detecting suspect symptoms, 
whereas diagnosis is determining the cause of the symptoms (Castillo and Melin, 
2002).  

In this chapter a new fuzzy-fractal approach for plant monitoring is proposed. The 
concept of the fractal dimension is used to measure the complexity of the time series 
of relevant variables for the process (Castillo and Melin, 1994). A set of type-2 fuzzy 
rules is used to represent the knowledge for monitoring the process (Castillo and 
Melin, 2001). In the type-2 fuzzy rules, the fractal dimension is used as a linguistic 
variable to help in recognizing specific patterns in the measured data. The fuzzy-
fractal approach has been applied before in problems of financial time series predic-
tion (Castillo and Melin, 1996) and for other types of problems (Castillo and Melin, 
1998), but now it is proposed to the monitoring of plants using type-2 fuzzy logic. 
Fuzzy systems are comprised of rules (Yen and Langari, 1999). Quite often, the 
knowledge that is used to build these rules is uncertain. Such uncertainty leads to 
rules whose antecedents or consequents are uncertain, which translates into uncertain 
antecedent or consequent membership functions (Mendel, 2001). Type-1 fuzzy sys-
tems (Jang et. al, 1997), whose membership functions are type-1 fuzzy sets, are un-
able to directly handle such uncertainties (Wang, 1997). We describe briefly in this 
paper, type-2 fuzzy systems, in which the antecedent or consequent membership func-
tions are type-2 fuzzy sets.  

15.2   Monitoring and Diagnosis 

Monitoring means checking or regulating the performance of a machine, a process, or 
a system (Du et. al, 1993). Diagnosis, on the other hand, means deciding the nature 
and the cause of a diseased condition of a machine, a process, or a system by examin-
ing the symptoms (Patton et. al, 2000). In other words, monitoring is detecting suspect 
symptoms, whereas diagnosis is determining the cause of the symptoms.  

The importance of monitoring and diagnosis of plant processes now is widely rec-
ognized because it results in increased productivity, improved product quality and de-
creased production cost (Melin and Castillo, 2001). As a result, in the past decade, a 
large number of research and development projects have been carried and many 
monitoring and diagnosis methods have been developed (Du, 1998). The commonly 
used monitoring and diagnosis methods include modeling-based methods, pattern 
recognition methods (Yager and Filev, 1994), fuzzy systems methods (Margaliot and 
Langholz, 2000), knowledge-based systems methods (Melin and Castillo, 2002), arti-
ficial neural networks (Omidvar and Elliot, 1997), and genetic algorithms (Mitchell, 
1998). It is interesting to note that even though these methods are rather different, 
they share a very similar structure as shown in Figure 15.1. 
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Fig. 15.1. Plant Monitoring and Diagnosis 

The “health” of a machine, a process, or an engineering system (which will be re-
ferred to as system condition and denoted by c ∈ {c1, c2,..., cm}) can be considered as 
the “input”, the system working conditions and noises (including system noise and 
sampling noise) can be considered as the “noise”, and the sensor signals are the “out-
puts” from the system. Typically, the sensor signals are processed by a computer,  
after which the signals are transformed into a set of features called feature signals, de-
noted as x = {x1, x2,..., xn}. In general, the systems conditions are predefined, such as 
normal, critical, etc. On the other hand, the features may be the mean of a temperature 
signal, the variance of a displacement signal, etc (Melin and Castillo, 1998). Sensing 
and signal processing are very important to the success of plant monitoring and diag-
nosis (Hsu, 2000). 

More formally, the goal of monitoring is to use the feature signals, x, to determine 
whether the plant is in an acceptable condition(s) (a subset of {c1, c2,..., cm}). On the 
other hand, the objective of diagnosis is to use the feature signals, x, to determine the 
system condition, c ∈ {c1, c2,..., cm}. No matter how monitoring and diagnosis methods 
may differ, monitoring and diagnosis always consist of two phases: training and deci-
sion making. Training is to establish a relationship between the feature signals and the 
systems conditions. Without losing generality, this relationship can be represented as 

x = F(c).                                                      (15.1) 
It should be pointed out that F(c) represents a fuzzy system, a neural network or 

another method that could be used to obtain this relationship. In fact, it is the form of 
the relationship that determines the methods of monitoring and diagnosis, as well as 
the performance of the methods. The relationship F(c) is established based on training 
samples, denoted by x1, x2,..., xk,..., xN, where the system condition for each training 
sample is known [and denoted as c(xk)]. The conditions on F(c), so that monitoring or 
decision making is successful, are that F(c) is one-to-one and bounded. In this way, 
we can always obtain the inverse relationship, which is needed below for achieving 
decision making.  

After the relationship is established, when a new sample is given (from an un-
known system condition), its corresponding condition is estimated based on the in-
verse relationship 

c = F-1 (x).                                                    (15.2) 

Monitoring and Diagnosis
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Fig. 15.2. Fuzzy system for plant monitoring and diagnosis 

This is called decision-making, or classifying. Whereas it is not likely that the 
training samples will cover all possible cases, decision making often involves reason 
ing or inferencing. In particular, when a fuzzy system is used, the relationship is given 
by a set of fuzzy rules as shown in Figure 15.2. The input to the fuzzy system is the 
feature signal and the output of the fuzzy system is the estimated plant condition(s) 
[i.e., z = (z1, z2,..., zm) is an estimate of c = (c1, c2,..., cm)]. In other words, the fuzzy 
system models the inverse relationship between the system conditions and the feature 
signals. 

15.3   Fractal Dimension of a Geometrical Object 

Recently, considerable progress has been made in understanding the complexity of an 
object through the application of fractal concepts (Mandelbrot, 1987) and dynamic 
scaling theory (Mandelbrot, 1997). For example, financial time series show scaled 
properties suggesting a fractal structure (Castillo and Melin, 1999). The fractal di-
mension of a geometrical object can be defined as follows (Peitgen et. al, 1992): 

d = lim [lnN(r)] / [ln(1/r)] 

r → 0 
(15.3) 

where N(r) is the number of structuring elements (boxes, balls, line segments, etc.) 
covering the object and r is the size of the box (Pesin, 1999). An approximation to the 
fractal dimension can be obtained by counting the number of boxes covering the 
boundary of the object for different r sizes and then performing a logarithmic regres-
sion to obtain d (box counting algorithm). In Figure 15.3, we illustrate the box count-
ing algorithm for a hypothetical curve C.  
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Fig. 15.3. Box Counting Algorithm for a Curve C 

Counting the number of boxes for different sizes of r and performing a logarithmic 
linear regression, we can estimate the box dimension of a geometrical object with the 
following equation (Melin and Castillo, 2002): 

ln N(r) = lnβ – d lnr (15.4) 

this algorithm is illustrated in Figure 15.4. 

 

Fig. 15.4. Logarithmic Regression to find the Fractal Dimension 

The fractal dimension can be used to characterize an arbitrary object (Tricot, 
1995). The reason for this is that the fractal dimension measures the geometrical 
complexity of objects (Moon, 1992). In this case, a time series can be classified by us-
ing the numeric value of the fractal dimension (d is between 1 and 2 because we are 
on the plane xy).  

Fractal Dimension of a Geometrical Object
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15.4   Fuzzy Estimation of the Fractal Dimension 

The traditional fractal dimension of a geometrical object assigns a crisp numerical 
value, which measures the geometrical complexity of the object (Semmes, 2000). 
However, in practice it is difficult to assign a unique numerical value to an object due 
to uncertainty (Peters, 1994). It is more appropriate to assign a range of numerical 
values in which there exists a membership degree for this object. For this reason, we 
will assign to an object O a fuzzy set μo, which measures the membership degree for 
that object. Lets consider, for simplicity, that the object O is in the plane xy, then a 
suitable membership function could be a generalized bell function (Zadeh 1971):  

μo=   1 / [ 1 + | (d-c) / a |2b ] (15.5) 

where a, b and c are the parameters of the membership function and d is the tradi-
tional crisp value of the fractal dimension. Of course other types of membership func-
tions could be used depending on the characteristics of the application. By using the 
concept of a fuzzy set (Zadeh, 1965) we are in fact generalizing the mathematical 
concept of the fractal dimension because now we can take into account the uncertain-
ties that may arise due to sampling and experimental errors. In fact, our definition of 
the fuzzy fractal dimension for this case is as follows. 

Definition 15.1. Let O be an arbitrary geometrical object in the plane xy. Then the 
fuzzy fractal dimension is the pair:  (do, μo) 

where do is the numerical value of the fractal dimension calculated by the box count-
ing algorithm, and μo is the membership function for the object. 

With this new definition we can account for the uncertainty in the estimation of the 
fractal dimension of an object. We are, in fact, using this concept of the fuzzy fractal 
dimension in this paper to consider the uncertainty in the time series analysis required 
by the monitoring applications. Also, this new definition enables easier pattern recog-
nition for objects, because it is not necessary to match an exact numerical value to 
recognize a particular object (Yager and Filev, 1994). 

15.5   Type-2 Fuzzy Logic 

The concept of a type-2 fuzzy set was introduced by Zadeh in 1973 as an extension of 
the concept of an ordinary fuzzy set (henceforth called a “type-1 fuzzy set”). A type-2 
fuzzy set is characterized by a fuzzy membership function, i.e., the membership grade 
for each element of this set is a fuzzy set in [0,1], unlike a type-1 set where the mem-
bership grade is a crisp number in [0,1]. Such sets can be used in situations where 
there is uncertainty about the membership grades themselves, e.g., an uncertainty in 
the shape of the membership function or in some of its parameters (Mendel, 2001). 
Consider the transition from ordinary sets to fuzzy sets. When we cannot determine 
the membership of an element in a set as 0 or 1, we use fuzzy sets of type-1. Simi-
larly, when the situation is so fuzzy that we have trouble determining the membership 
grade even as a crisp number in [0,1], we use fuzzy sets of type-2. 
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Example: Consider the case of a fuzzy set characterized by a Gaussian membership 
function with mean m and a standard deviation that can take values in [σ1,σ2], i.e., 

μ(x)=exp {– ½[(x – m)/σ]2 };   σ ∈ [σ1,σ2]                   (15.6) 

Corresponding to each value of σ, we will get a different membership curve (see Fig-
ure 15.5). So, the membership grade of any particular x (except x=m) can take any of 
a number of possible values depending upon the value of σ, i.e., the membership 
grade is not a crisp number, it is a fuzzy set. Figure 15.5 shows the domain of the 
fuzzy set associated with x=0.7. 
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Fig. 15.5. Type-2 fuzzy set representing a type-1 set with uncertain deviation 

We can formally define two kinds of type-2 sets as follows. 

Definition 2. Gaussian type-2 
A Gaussian type-2 fuzzy set is one in which the membership grade of every domain 
point is a Gaussian type-1 set contained in [0,1]. 

Definition 3. Interval type-2 
An interval type-2 fuzzy set is one in which the membership grade of every domain 
point is a crisp set whose domain is some interval contained in [0,1]. 

The basics of fuzzy logic do not change from type-1 to type-2 fuzzy sets, and in gen-
eral, will not change for any type-n (Mendel, 2001). A higher-type number just indi-
cates a higher “degree of fuzziness”. Since a higher type changes the nature of the 
membership functions, the operations that depend on the membership functions 
change; however, the basic principles of fuzzy logic are independent of the nature of  
 

Type-2 Fuzzy Logic
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Fig. 15.6. Structure of a type-2 fuzzy system 

membership functions and hence, do not change. In Figure 15.6 we show the general 
structure of a type-2 fuzzy system. We assume that both antecedent and consequent 
sets are type-2; however, this need not necessarily be the case in practice. 

The structure of the type-2 fuzzy rules is the same as for the type-1 case because 
the distinction between type-2 and type-1 is associated with the nature of the member-
ship functions. Hence, the only difference is that now some or all the sets involved in 
the rules are of type-2. In a type-1 fuzzy system, where the output sets are type-1 
fuzzy sets, we perform defuzzification in order to get a number, which is in some 
sense a crisp (type-0) representative of the combined output sets. In the type-2 case, 
the output sets are type-2; so we have to use extended versions of type-1 defuzzifica-
tion methods. Since type-1 defuzzification gives a crisp number at the output of the 
fuzzy system, the extended defuzzification operation in the type-2 case gives a type-1 
fuzzy set at the output. Since this operation takes us from the type-2 output sets of the 
fuzzy system to a type-1 set, we can call this operation “type reduction” and call the 
type-1 fuzzy set so obtained a “type-reduced set”. The type-reduced fuzzy set may 
then be defuzzified to obtain a single crisp number; however, in many applications, 
the type-reduced set may be more important than a single crisp number. 

Type-2 sets can be used to convey the uncertainties in membership functions of 
type-1 fuzzy sets, due to the dependence of the membership functions on available 
linguistic and numerical information. Linguistic information (e.g. rules from experts), 
in general, does not give any information about the shapes of the membership func-
tions. When membership functions are determined or tuned based on numerical data, 
the uncertainty in the numerical data, e.g., noise, translates into uncertainty in the 
membership functions. In all such cases, any available information about the linguis-
tic/numerical uncertainty can be incorporated in the type-2 framework. However, 
even with all of the advantages that fuzzy type-2 systems have, the literature on the 
applications of type-2 sets is scarce (Mendel, 2001). Some examples are for decision-
making (Yager, 1980), and for solving fuzzy relational equations (Wagenknecht and 
Hartmann, 1988). For the specific case of plant monitoring, the use of type-2 fuzzy 
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rules is justified when the degree of uncertainty is high (for example, due to noise or 
complexity of the process) in the measured time series. Of course, a type-1 fuzzy sys-
tem could be enough for plant monitoring in the case of relatively simple processes in 
the plant (Zadeh, 1975). However, in other cases there are highly non-linear processes 
present in the plant, like in biochemical reactors or electrochemical processes. For this 
reason, we are proposing that to model the uncertainty in this type of highly non-
linear processes, we need to use type-2 fuzzy logic. We illustrate the application of 
the type-2 fuzzy logic approach with the case of monitoring the electrochemical proc-
ess in battery production in a real plant.  

15.6   Plant Monitoring Using a Type-1 Fuzzy-Fractal Approach 

In this section, we show how to implement a fuzzy rule-based expert monitoring sys-
tem with two basic sensors: temperature, and pressure. These two physical variables 
are very important in understanding any chemical process. Our particular case, is the 
monitoring of an electrochemical process, like the one used in battery formation. We 
also use as input the fuzzy fractal dimension of the time series of the measured vari-
ables. Of course, this fuzzy fractal dimension is not a real physical variable, but we 
can use it to measure the complexity of the dynamic behavior of the process. We have 
assigned linguistic values to the fuzzy fractal dimension, with the help of experts in 
the process in such a way as to help in the diagnostic of the different conditions. Indi-
vidual sensors can identify three linguistic values (normal, high, and low) for the two 
real physical variables. The three inputs can be combined to give 9 different real sce-
narios. Of course, there could be in theory at most 27 scenarios in this case, but there 
are only 9 real ones for the particular application of the electrochemical process. This 
is perfectly clear if we notice that there are only two real physical variables with three 
linguistic values for each one. With the perfectly normal case (where all three input 
variables have normal values), there are additionally 8 more cases where combina-
tions of abnormal readings can be observed. 

Let x1 be the temperature, x2 the pressure, x3 the fuzzy fractal dimension, and y the 
diagnostic statement. Let Li, Ni, and Hi, represent the three sets of low range, normal 
range, and high range for input data xi, where i = 1, 2, or 3. Furthermore, let C1, C2,..., 
C9 be the individual scenarios that could happen for each combination of the different 
data sets. The fuzzy rules have the general form: 

 R(0): IF x1 is N1 AND x2 is N2 AND x3 is N3 THEN y is C1 

 ...      ... 

 R(i): IF x1 is V1 AND x2 is V2 AND x3 is V3 THEN y is Ci                (15.7) 

 ...      ... 

 R(26): IF x1 is H1 AND x2 is H2 AND x3 is H3 THEN y is C9 

Plant Monitoring Using a Type-1 Fuzzy-Fractal Approach
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In this case, Vi represents Li, Hi, or Ni, depending on the condition for the plant. 
Experts have to provide their knowledge in plant monitoring to label the individual 
cases Ci for i = 1, 2,..., 9. Also, the membership functions for the linguistic values of 
variables have to be defined according to historical data of the problem and expert 
knowledge. Of course, expert knowledge for temperature and pressure is based on the  
 

 

Fig. 15.7. Architecture of the fuzzy system for plant monitoring 

 

Fig. 15.8. Fuzzy rule base for plant monitoring 
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Fig. 15.9. Non-linear surface for plant monitoring with respect to temperature and fractal  
dimension 

 

Fig. 15.10. Non-linear surface for plant monitoring with respect to pressure and fractal  
dimension 
 

Plant Monitoring Using a Type-1 Fuzzy-Fractal Approach
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dynamics of the process, which experts have gained with their experience. On the 
other hand, expert knowledge for the fuzzy fractal dimension is more of a combina-
tion of expertise on the problem and expertise on the mathematics of fractal theory. 
Perhaps, this can be explained as follows: we need expert knowledge to know if the 
dynamics of the process are abnormal or normal, on the other hand we need knowl-
edge on fractal theory to relate the dynamics to a higher or lower value of the fractal 
dimension. 

We can use the Fuzzy Logic Toolbox of the MATLAB language to implement the 
fuzzy monitoring system described above. In this case, we need to specify the particu-
lar fuzzy rules and the corresponding membership functions for the problem. First, we 
show in Figure 15.7 the general architecture of the fuzzy monitoring system. In this 
figure, we can see the input linguistic variables (temperature, pressure, and fractal di-
mension) and the output variable (condition of the plant) of the fuzzy monitoring sys-
tem. Of course, in this case the fractal dimension is estimated using the box counting 
algorithm, which was implemented also in MATLAB. In Figure 15.8 the implementa-
tion of the fuzzy rule base is shown. The actual 27 rules were defined according to 
expert knowledge on the process. In Figures 15.9 and 15.10 the non-linear surface for 
the problem of monitoring is shown.  

15.7   Plant Monitoring Using the Type-2 Fuzzy-Fractal Approach 

For the case of the type-2 fuzzy-fractal approach, we have to change our way of cal-
culating the output of the fuzzy system. Now, we use interval computations to find the 
minimum and maximum values for obtaining the outputs of the type-2 fuzzy system. 
We basically, compute the outputs of two type-1 fuzzy systems, one for computing 
the minimum value and the other for the maximum value. Then, if we need to further 
reduce the type of the output, we can apply the traditional deffuzzification methods. 
Fortunately, in this way we can take advantage of the machinery that we already have 
for type-1 fuzzy logic, as well as the computer programs in the MATLAB language. 

We show below in Table 15.1 the results of a type-2 fuzzy system for monitoring 
different conditions of the plant. We also show the corresponding values of the type-1 
fuzzy logic approach. A comparison, of both approaches can be made in this way. Of 
course, it is easy to appreciate that in the case of type-2 fuzzy logic the output result is 
an interval, instead of a single numeric value. In some applications, this is closer to 
reality, since we are expecting something similar to a confidence interval. However, 
in other areas of application, like in control, a unique result is needed, so in this case 
we need to defuzzify again (or type-reduce the result). This is also shown in  
Table 15.1. 

From Table 15.1 we can appreciate that in some cases the output of the type-2 
fuzzy system is almost the same as in the type-1 case, but in other situations the re-
sults are somewhat different. For our application, we find out that the results of the 
type-2 fuzzy logic approach were better for monitoring the plant. The main reason for 
saying that the type-2 approach is better, in this case, is that we are really predicting  
 



 199 

Table 15.1. Comparison between the type-2 and type-1 fuzzy logic approaches 

Tem-
perature 

Pres-
sure 

Frac-
tal Dim. 

Type-1 F. 
L. 

Type-2 
Min 

Type-2 
Max 

105 130 1.6 0.4498 0.4391 0.5030 

100 120 1.5 0.2688 0.2774 0.2775 

95 115 1.4 0.2263 0.2216 0.2539 

90 110 1.3 0.2460 0.2282 0.2783 

102 122 1.7 0.3604 0.3321 0.4210 

85 90 1.2 0.2690 0.2540 0.2750 

75 100 1.8 0.2652 0.2251 0.3039 

55 105 1.3 0.2700 0.2700 0.2701 

130 90 1.1 0.5710 0.5586 0.5855 

112 115 1.6 0.4136 0.4092 0.4138 

possible problems in the plant, and the type-2 intervals are closer to what the experts 
were expecting to see in the monitoring of the process. 

We show in Figures 15.11 and 15.12 the non-linear surfaces for the type-1 and 
type-2 fuzzy systems, respectively. From these figures, we can appreciate the differ-
ence between both fuzzy logic approaches. It is obvious that the type-2 fuzzy logic 
surface is smoother, which is better for modeling the monitoring problem. Finally, we 
show in Figure 15.13 a comparison between the predicted outputs for the type-2 and 
type-1 fuzzy systems. In this figure we can appreciate that the type-2 fuzzy logic ap-
proach is really modeling our uncertainty about the membership functions of the 
fuzzy system. For this reason, the type-1 result is almost always in between the mini-
mum and maximum values of the type-2 approach. Of course, the type-2 approach is 
more realistic because we do not know the exact parameter values of the type-1 mem-
bership functions. 

Based on the examples presented in this section and the previous one, we see that 
using fuzzy logic in monitoring and diagnostics always results in improved perform-
ance. Also, the use of the fractal dimension improves the accuracy of the method. We 
have compared the success rate of the type-2 fuzzy-fractal approach, the type-1 fuzzy-
fractal approach, and the use of only fuzzy logic, using the data from electrochemical 
processes in a real plant. The results are shown in Table 15.2. We are using in all of 
the cases a specific electrochemical process for battery formation. The process is con-
sidered to be in a different condition in each of the three cases. The comparison is be-
tween the results of the intelligent system using the type-2 fuzzy-fractal approach, the 
type-1 approach, and a computer program using only fuzzy logic with the Mamdani 
approach. 

Plant Monitoring Using a Type-1 Fuzzy-Fractal Approach
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Fig. 15.11. Non-linear surface for the type-1 fuzzy system 

 

Fig. 15.12. Non-linear surface for the type-2 fuzzy system 

It should be pointed out that no matter what techniques are used, there is no guar-
antee of success because monitoring and diagnosis is a process of abduction. First, the 
training samples may not represent all the patterns of different system conditions. An  
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Fig. 15.13. Comparison of outputs of the type-2 and type-1 fuzzy systems 

Table 15.2. Success rates of the type-2 and type-1 fuzzy-fractal approaches for monitoring 

Applications Type-2 
Fuzzy-Fractal 

Type-1 
Fuzzy-Fractal  

Fuzzy Logic 

condition monitor-
ing in an electro-
chemical process 
(case 1) 

99% 98% 82% 

condition monitor-
ing in an electro-
chemical process 
(case 2) 

88% 86% 73% 

condition monitor-
ing in an electro-
chemical process 
(case 3) 

93% 90% 79% 

effective solution to this problem is to add more training samples. Second the patterns 
of different system conditions overlap and/or are inseparable owing to the definition 
of system conditions and the use of monitoring indices. 

Finally, it is interesting to compare the performance of the fuzzy-fractal approaches 
with that of using only fuzzy logic (see Table 15.2). We see that the type-1 fuzzy-
fractal approach outperforms the fuzzy logic approach by at least 10% in all the cases. 
We also can appreciate that the type-2 fuzzy-fractal approach outperforms by 2%  

Plant Monitoring Using a Type-1 Fuzzy-Fractal Approach
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(average) the type-1 approach. This demonstrates that the type-2 fuzzy-fractal ap-
proach is indeed the more effective method and, in general outperforms the use of 
type-1 fuzzy logic. 

15.8   Summary 

In this chapter a hybrid fuzzy-fractal approach for plant monitoring has been pro-
posed. Type-2 fuzzy logic is used to model the uncertainty of plant monitoring and 
diagnostics. An implementation in MATLAB has been shown, to describe in more de-
tail the advantages of the new approach. The hybrid fuzzy-fractal approach combines 
the advantages of fuzzy logic (expert knowledge representation) with the advantages 
of the fractal dimension concept (ability to measure object complexity), to achieve  
efficient monitoring and diagnostics. A problem yet to be considered, is how to auto-
matically learn (or adapt) the membership functions and rules of the fuzzy system  
using real data for the problem. 
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16    Intelligent Control of Autonomous Robotic Systems 
Using Interval Type-2 Fuzzy Logic and Genetic 
Algorithms 

We develop a tracking controller for the dynamic model of unicycle mobile robot by 
integrating a kinematic controller and a torque controller based on Fuzzy Logic The-
ory. Computer simulations are presented confirming the performance of the tracking 
controller and its application to different navigation problems. 

16.1   Introduction 

Mobile robots are nonholonomic systems due to the constraints imposed on their 
kinematics. The equations describing the constraints cannot be integrated simbolically 
to obtain explicit relationships between robot positions in local and global coordi-
nate’s frames. Hence, control problems involve them have attracted attention in the 
control community in the last years (Kolmanovsky and McClamroch, 1995). 

Different methods have been applied to solve motion control problems. (Kanayama 
et al., 1991) propose a stable tracking control method for a nonholonomic vehicle  
using a Lyapunov function. (Lee et al., 1998) solved tracking control using backstep-
ping and in (Lee and Tai, 2001) with saturation constraints. Furthermore, most re-
ported designs rely on intelligent control approaches such as Fuzzy Logic Control 
(Bentalba et al., 1997) (Ishikawa, 1991) (Lee et al., 1999) (Pawlowski, 2001) and 
Neural Networks (Fierro and Lewis, 1998) (Song and Sheen, 2000). 

However the majority of the publications mentioned above, has concentrated on 
kinematics models of mobile robots, which are controlled by the velocity input, while 
less attention has been paid to the control problems of nonholonomic dynamic sys-
tems, where forces and torques are the true inputs: (Bloch and Drakunov, 1991) and 
(Chwa, 2004), used a sliding mode control to the tracking control problem. (Fierro 
and Lewis, 1995) propose a dynamical extension that makes possible the integration 
of kinematic and torque controller for a nonholonomic mobile robot. (Fukao et al., 
2000), introduced an adaptive tracking controller for the dynamic model of mobile 
robot with unknown parameters using backstepping.  
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In this chapter we present a tracking controller for the dynamic model of a unicycle 
mobile robot, using a control law such that the mobile robot velocities reach the given 
velocity inputs, and a fuzzy logic controller such that provided the required torques 
for the actual mobile robot. The rest of this chapter is organized as follows. Sections 
16.2 and 16.3 describe the formulation problem, which include: the kinematic and dy-
namic model of the unicycle mobile robot and introduces the tracking controller. Sec-
tion 16.4 illustrates the simulation results using the tracking controller. The section 
16.5 gives the conclusions. 

16.2   Problem Formulation 

The model considered in this chapter is of a unicycle mobile robot (see Figure 16.1), 
it consist of two driving wheels mounted on the same axis and a front free wheel 
(Campion et al., 1996). 

 

Fig. 16.1. Wheeled mobile robot 

The motion can be described with equation (16.1) of movement in a plane (Fierro and 
Lewis, 1995):  

w

v
q
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0sin

0cos

θ
θ

=&  

τ=++ )(),()( qGvqqVvqM &&                               (16.1) 

Where Tyxq ],,[ θ=  is the vector of generalized coordinates which describes the 

robot position, (x,y) are the cartesian coordinates, which denote the mobile center of 
mass and θ is the angle between the heading direction and the x-axis (which is taken 

counterclockwise form); Twvv ],[= is the vector of velocities, v and w are the linear 
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and angular velocities respectively; rR∈τ is the input vector, nxnRqM ∈)(  is a 

symmetric and positive-definite inertia matrix, nxnRqqV ∈),( & is the centripetal and 

Coriolis matrix, nRqG ∈)( is the gravitational vector. Equation (16.1) represents the 

kinematics or steering system of a mobile robot. Notice that the no-slip condition im-
posed a non-holonomic constraint described by equation (16.2), that it means that the 
mobile robot can only move in the direction normal to the axis of the driving wheels. 

0sincos =− θθ xy &&                                            (16.2) 

Tracking Controller of Mobile Robot 
Our control objective is established as follows: Given a desired trajectory qd(t) and 
orientation of mobile robot we must design a controller that apply adequate torque τ 
such that the measured positions q(t) achieve the desired reference qd(t)  represented 
as equation (16.3): 

0)()(lim =−
∞→

tqtqd
t

                                            (16.3) 

To reach the control objective, we are based in the procedure of (Fierro and Lewis, 
1995), we deriving a τ(t) of a specific vc(t) that controls the steering system (16.1) us-
ing a Fuzzy Logic Controller (FLC). A general structure of tracking control system is 
presented in the Figure 16.2. 

 

Fig. 16.2. Tracking control structure 

16.3   Control of the Kinematic Model 

We are based on the procedure proposed by (Kanayama et al., 1991) and (Nelson et 
al., 1988) to solve the tracking problem for the kinematic model, this is denoted as 
vc(t). Suppose the desired trajectory qd satisfies equation (16.4):  

 

Control of the Kinematic Model 
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Using the robot local frame (the moving coordinate system x-y in figure 16.1), the 
error coordinates can be defined as equation (16.5): 
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And the auxiliary velocity control input that achieves tracking for equation (16.1) is 
given by equation (16.6): 
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Where k1, k2 and k3 are positive constants. 

16.4    Fuzzy Logic Controller 

The purpose of the Fuzzy Logic Controller (FLC) is to find a control input τ such that 
the current velocity vector v to reach the velocity vector vc this is denoted in equation 
(16.7): 

0lim =−
∞→

vvc
t

                                         (16.7) 

As is shown in Figure 16.2, basically the FLC has 2 input variables corresponding 
the velocity errors obtained of (16.7) (denoted as ev and ew: linear and angular veloc-
ity errors respectively), and 2 outputs variables, the driving and rotational input 
torques τ (denoted by F and N respectively). The membership functions (MF)[9] are 
defined by 1 triangular and 2 trapezoidal functions for each variable involved due to 
the fact are easy to implement computationally. 

Figures 16.3 and Fig. 16.4 show the MFs in which N, C, P represent the fuzzy sets 
[9] (Negative, Zero and Positive respectively) associated to each input and output 
variable, where the universe of discourse is normalized into [-1,1] range. 

The rule set of FLC contain 9 rules which governing the input-output relationship 
of the FLC and this adopts the Mamdani-style inference engine (Passino andYurk-
ovich, 1998), and we use the center of gravity method to realize defuzzification pro-
cedure. In Table 16.1, we present the rule set whose format is established as follows: 
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Fig. 16.3. Membership function of the input variables ev and ew 

 

Fig. 16.4. Membership functions of the output variables F and N 

Table 16.1. Fuzzy rule set 

 
 

Fuzzy Logic Controller
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Rule i: If ev is G1 and ew is G2 then F is G3 and N is G4 

Where G1..G4 are the fuzzy set associated to each variable and i= 1 ... 9. In  
Table 16.1, N means NEGATIVE, P means POSITIVE and C means ZERO. 

16.5   Simulation Results 

Simulations have been done in Matlab® to test the tracking controller of the mobile 
robot defined in equation (16.1). We consider the initial position q(0) = (0, 0, 0) and 
initial velocity v(0) = (0,0). From Figures 16.5 to 16.8 we show the results of the 
simulation for the case 1. Position and orientation errors are depicted in Figure 16.5 
and 16.6 respectively, as can be observed the errors are sufficient close to zero, the 
trajectory tracked (see Figure 16.7) is very close to the desired, and the velocity errors 
shown in Figure 16.8 decrease to zero, achieving the control objective in less than 1 
second of the whole simulation. We show in Figure 16.9 the Simulink block diagram 
to test the controller. We also show in Figure 16.10 the tracking errors in the three 
variables. Finally, we show in Figure 16.11 the evolution of the genetic algorithm that 
was used to find the optimal parameters for the fuzzy controller. 

In Table 16.2 we show simulation results for 25 experiments with different condi-
tions for the gains of the fuzzy controller.  We can also appreciate from this table that 
different reference velocities and positions were considered. 

 

Fig. 16.5. Positions error with respect to the reference values. Solid: error in x, dotted: error in y. 
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Fig. 16.6. Orientation error with respect to the reference values 

 
Fig. 16.7. Mobile Robot Trajectory 

 

Simulation Results
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Fig. 16.8. Velocity errors: Solid: error in ev, dotted: error in ew 

 

Fig. 16.9. Simulink block diagram of the controller 
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Fig. 16.10 Tracking errors in the three variables 

 

Fig. 16.11 Evolution of GA for finding optimal Controller 

 

Simulation Results
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Table 16.2. Simulation results for different experiments with the fuzzy controller 

 

16.6   Summary 

We described the development of a tracking controller integrating a fuzzy logic con-
troller for a unicycle mobile robot with known dynamics, which can be applied for 
both, point stabilization and trajectory tracking. Computer simulation results confirm 
that the controller can achieve our objective. As future work, several extensions can 
be made to the control structure of Figure 16.2, such as to increase the tracking accu-
racy and the performance level. 
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17   Adaptive Noise Cancellation Using Type-2 Fuzzy 
Logic and Neural Networks 

We describe in this chapter the application of type-2 fuzzy logic for achieving adap-
tive noise cancellation. The objective of adaptive noise cancellation is to filter out an 
interference component by identifying a model between a measurable noise source 
and the corresponding un-measurable interference. In this chapter, we propose the use 
of type-2 fuzzy logic to find this model. The use of type-2 fuzzy logic is justified due 
to the high level of uncertainty of the process, which makes difficult to find appropri-
ate parameter values for the membership functions. 

17.1   Introduction 

Adaptive noise cancellation was first proposed by (Widrow and Glover in 1975); the 
objective is to filter out an interference component by identifying a linear model be-
tween a measurable noise source and the corresponding un-measurable interference. 
Adaptive noise cancellation using linear filters has been used successfully in real-
world applications, such as interference cancellation in electrocardiograms (ECGs), 
echo elimination on long-distance telephone transmission lines, and antenna interfer-
ence canceling (Widrow and Stearns, 1985). 

It is obvious that we can extend the concept of linear adaptive noise cancellation 
into the non-linear arena by using non-linear adaptive systems. In this chapter, we 
show how a neural network can be used to adapt the parameters of a type-2 fuzzy sys-
tem, which models the dynamics that transforms a noise source into an interference 
component in a detected signal. Under certain conditions, the proposed approach is 
sometimes more suitable than noise elimination techniques based on frequency-
selective filtering. 

Figure 17.1 shows the schematic diagram of an ideal situation to which adaptive 
noise cancellation can be applied. Here we have an un-measurable information signal 
x(k) and a measurable noise source signal n(k); the noise source goes through un-
known non-linear dynamics (Rasband, 1990) to generate a distorted noise d(k), which 
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is then added to x(k) to form the measurable output signal y(k). Our task is to retrieve 
the original information signal x(k) from the overall output signal y(k), which consists 
of the information signal x(k) plus d(k), a distorted and delayed version of n(k). 

A good example of noise cancellation is the suppression of the maternal ECG 
component (noise) from the fetal ECG (Jang et al., 1997). Suppose that we want to 
measure the fetal ECG x(k) during labor. If we record signals from a sensor placed in 
the abdominal region, the obtained signal is inevitable noisy due to the mother's 
heartbeat signal n(k), which can be measured clearly via a sensor at the thoracic re-
gion. However, the heartbeat signal n(k) does not appear directly in y(k). Instead, n(k) 
travels through the mother's body and arrives delayed and distorted to appear in the 
overall measurement y(k). Mathematically, the detected output signal can be ex-
pressed as 

y(k) = x(k) + d(k) = x(k) + f(n(k), n(k-1), n(k-2),…)                 (17.1) 

 

Fig. 17.1. Schematic diagram of noise cancellation 

The function f(.) represents the non-linear dynamics that the noise signal n(k) goes 
through. If f(.) was know exactly, it would be easy to recover the original information 
signal by subtracting d(k) from y(k) directly. However, f(.) is usually unknown in ad-
vance and could be time varying due to changes in the environment. Moreover, the 
spectrum of d(k) may overlap that of x(k) substantially, invalidating the use of com-
mon frequency-domain filtering techniques. 

To estimate the distorted noise signal d(k), we need to pick up a clean version of 
the noise signal n(k) that is independent of the information signal. However, we can 
not access the distorted noise signal d(k) directly since it is an additive component of 
the overall measurable signal y(k). Fortunately, as long as the information signal x(k) 
is zero mean and not correlated with the noise signal n(k), we can use the detected 
signal y(k) as the desired output of the fuzzy system (trained with a neural network), 
as in Figure 17.2. 
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Fig. 17.2. Schematic diagram of noise cancellation with adaptive fuzzy filtering 

More specifically, let the output of the fuzzy system be denoted by d(k). The learn-
ing rule of the neural network tries to minimize the error 

    [e(k)]2 = [y(k) - d(k)]2                                                  (17.2) 
                                                  = [x(k) + d(k) - d(k)]2 
                                                  = [x(k) + d(k) - f(n(k), n(k-1), n(k-2),…)]2 

where f is the function implemented by the fuzzy system. Since x(k) is not correlated 
with n(k) or its history, the fuzzy system has no information on how to minimize the 
error component attributable to x. In other words, the information signal x serves as 
an un-correlated "noise" component in the data fitting processing. Of course, the 
fuzzy system can be of conventional type-1 form or of a higher order form, like in the 
case of a type-2 approximation. We will discuss briefly type-2 fuzzy systems in  
the following section, assuming that the type-1 case is well known. 

17.2   Type-2 Fuzzy Logic 

The concept of a type-2 fuzzy set, was introduced by (Zadeh, 1975) as an extension of 
the concept of an ordinary fuzzy set (henceforth called a “type-1 fuzzy set”). A type-2 
fuzzy set is characterized by a fuzzy membership function, i.e., the membership grade 
for each element of this set is a fuzzy set in [0,1], unlike a type-1 set where the mem-
bership grade is a crisp number in [0,1]. Such sets can be used in situations where 
there is uncertainty about the membership grades themselves, e.g., an uncertainty in 
the shape of the membership function or in some of its parameters. Consider the tran-
sition from ordinary sets to fuzzy sets. When we cannot determine the membership of 
an element in a set as 0 or 1, we use fuzzy sets of type-1. Similarly, when the situation 
is so fuzzy that we have trouble determining the membership grade even as a crisp 
number in [0,1], we use fuzzy sets of type-2 (Karnik and Mendel, 1998). 

Type-2 Fuzzy Logic
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Fig. 17.3. A type-2 fuzzy set representing a type-1 set with uncertain deviation 

Example: Consider the case of a fuzzy set characterized by a Gaussian membership 
function with mean m and a standard deviation that can take values in [σ1,σ2], i.e., 

   μ(x)=exp {– ½[(x – m)/σ]2 };   σ ∈ [σ1,σ2]                         (17.3) 

Corresponding to each value of σ, we will get a different membership curve (see  
Figure 17.3). So, the membership grade of any particular x (except x=m) can take any 
of a number of possible values depending upon the value of σ, i.e., the membership 
grade is not a crisp number, it is a fuzzy set. Figure 17.3 shows the domain of the 
fuzzy set associated with x=0.7. 

We can formally define two kinds of type-2 sets as follows. 

Definition 17.1. Gaussian type-2 
A Gaussian type-2 fuzzy set is one in which the membership grade of every domain 
point is a Gaussian type-1 set contained in [0,1]. 

Definition 17.2. Interval type-2 
An interval type-2 fuzzy set is one in which the membership grade of every domain 
point is a crisp set whose domain is some interval contained in [0,1]. 

The basics of fuzzy logic do not change from type-1 to type-2 fuzzy sets, and in gen-
eral, will not change for any type-n (Mendel, 2001). A higher-type number just indi-
cates a higher “degree of fuzziness”. Since a higher type changes the nature of the 
membership functions, the operations that depend on the membership functions 
change; however, the basic principles of fuzzy logic are independent of the nature of 
membership functions and hence, do not change. In Figure 17.4 we show the general 
structure of a type-2 fuzzy system. We assume that both antecedent and consequent 
sets are type-2; however, this need not necessarily be the case in practice. 
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Fig. 17.4. Structure of a type-2 fuzzy system 

The structure of the type-2 fuzzy rules is the same as for the type-1 case because 
the distinction between type-2 and type-1 is associated with the nature of the member-
ship functions. Hence, the only difference is that now some or all the sets involved in 
the rules are of type-2. In a type-1 fuzzy system, where the output sets are type-1 
fuzzy sets, we perform defuzzification in order to get a number, which is in some 
sense a crisp (type-0) representative of the combined output sets. In the type-2 case, 
the output sets are type-2; so we have to use extended versions of type-1 defuzzifica-
tion methods. Since type-1 defuzzification gives a crisp number at the output of the 
fuzzy system, the extended defuzzification operation in the type-2 case gives a type-1 
fuzzy set at the output. Since this operation takes us from the type-2 output sets of the 
fuzzy system to a type-1 set, we can call this operation “type reduction” and call the 
type-1 fuzzy set so obtained a “type-reduced set”. The type-reduced fuzzy set may 
then be defuzzified to obtain a single crisp number; however, in many applications, 
the type-reduced set may be more important than a single crisp number. 

Type-2 sets can be used to convey the uncertainties in membership functions of 
type-1 fuzzy sets, due to the dependence of the membership functions on available 
linguistic and numerical information. Linguistic information (e.g. rules from experts), 
in general, does not give any information about the shapes of the membership func-
tions. When membership functions are determined or tuned based on numerical data, 
the uncertainty in the numerical data, e.g., noise, translates into uncertainty in the 
membership functions. In all such cases, any available information about the linguis-
tic/numerical uncertainty can be incorporated in the type-2 framework. However, 
even with all of the advantages that fuzzy type-2 systems have, the literature on the 
applications of type-2 sets is scarce. Some examples are for decision-making (Yager, 
1980), and for solving fuzzy relational equations (Wagenknecht, and Hartmann, 
1988). For the specific case of pattern recognition, the use of type-2 fuzzy rules is jus-
tified when the degree of uncertainty is high (for example, due to noise or complexity 
of the process) in the measured time series. 

Type-2 Fuzzy Logic
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17.3   ANFIS Approach for Building a Type-1 Fuzzy System for 
Noise Cancellation 

ANFIS stands for adaptive neuro fuzzy inference systems (Jang et al., 1997). This ar-
chitecture was proposed by Jang in 1997 to give fuzzy systems adaptive capabilities. 
In this way, one can use data to find the optimal parameter values of the fuzzy system. 
Of course, this ANFIS architecture was initially proposed for the type-1 fuzzy system 
case. We describe in this section how can the ANFIS approach be used to achieve 
noise cancellation with a type-1 fuzzy system.  

In this case, function f of Equation (17.1) is approximated by the fuzzy system 
generated using ANFIS. Since, the signal x(k) is not correlated with the noise n(k) or 
its history, ANFIS has no clue on how to minimize the error component attributable to 
x. In other words, the information signal x serves as an un-correlated  “noise” compo-
nent in the data fitting process, so ANFIS can do nothing about it except picking up 
its steady-state trend. Instead, the best that ANFIS can do is to minimize the error 
component attributable to d(k) and this happens to be the desired error measure. 

Before presenting simulation results, we establish the conditions under which 
adaptive noise cancellation is valid: 

1) The noise signal n(k) should be available and independent of the information sig-
nal x(k). 

2) The information signal x(k) must be zero mean. 
3) The order of the passage dynamics is known. (This determines the number of in-

puts to the ANFIS filter.) 

In our experiments, we applied ANFIS to two non-linear passage dynamics of or-
ders two and three, respectively. In the first, experiment, the unknown non-linear pas-
sage dynamics were assumed to be defined as 

                                 d(k) = f(n(k), n(k-1))                    (17.4) 
                                          = sin(n(k)) n(k-1)/ [ 1 + (n(k-1))2 

where n(k) is a noise source and d(k) denotes the resultant from the non-linear 
passage dynamics f(.) attributable to n(k) and n(k-1). 

We assume that the information signal x(k) is expressed as given in the following 
equation 

                                  x(k) = sin (7800/ k +20)   (17.5) 

where k is a step count and the sampling periods is of 0.000005 seconds.  

To use ANFIS in this experiment, we collected 600 training data pairs of the 
following form 

 [n(k), n(k-1); y(k)]                                             (17.6) 
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Fig. 17.5. (a) Original information signal x(k), (b) noise signal n(k) 

with k runs from 1 to 600. We used a four-rule ANFIS to fit the training data,  
in which each of the two inputs was assigned two generalized bell membership  
functions. 

In our second experiment, we used real-world audio signals for the simulations. 
The audio signals were obtained from the MATLAB sound files: handel.mat and 
chirp.mat. When these files are loaded into MATLAB and played by the command 
sound, handel.mat is a piece of music of composer George Handel’s and chirp.mat 
the sound of a bird’s chirping. In this case, we used handel.mat as the information 
signal x(k) and chirp.mat as the noise source n(k). These audio signals were sampled  
at 8200 Hz. The non-linear passage dynamics was a third order equation. To model 
f(.) using ANFIS, we collected 1000 training points of the following form: 

[n(k), n(k-1), n(k-2); y(k)],                                      (17.7) 

ANFIS Approach for Building a Type-1 Fuzzy System for Noise Cancellation
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Fig. 17.6. (a) Distorted noise signal d(k), (b) measurable output signal y(k) 

with k runs from 2 to 1001. We used an eight rule ANFIS to fit the training data, in 
which each of the three inputs was assigned two generalized bell membership functions. 

We describe now some simulation results with the ANFIS approach for adaptive 
noise cancellation. In our experiment, we have an information signal x(k) shown in 
Figure 17.5(a) and noise signal shown in Figure 17.5(b). The measurable noise source 
is Gaussian with zero mean and unity variance. The resulting distorted noise d(k) 
produced by the non-linear dynamics is shown in Figure 17.6(a). The measurable 
signal at the receiving end, denoted by y(k), is equal to the sum of x(k) and d(k), 
which is shown in Figure 17.6(b). 

We can appreciate from Figure 17.6 that ANFIS (for a type-1 fuzzy system) gives 
good results for noise cancellation. We also have similar results for the second 
experiment. 

17.4   Modified ANFIS Approach for the Type-2 Fuzzy System of 
Noise Cancellation 

If we now want to design an interval type-2 fuzzy system that is capable of adaptive 
noise cancellation, we need to have an extension of the previous type-1 ANFIS 
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approach. If we assume an interval approximation for the type-2 fuzzy sets, we can 
use a finite number of type-1 fuzzy systems to construct the type-2 fuzzy system. This 
means that we can use a finite number of type-1 ANFIS systems for achieving an 
adaptive type-2 fuzzy system. In the simplest situation, at least two type-1 ANFIS 
systems are needed to have an interval type-2 ANFIS. This can expressed as follows: 

Type-2 ANFIS = Type-1 ANFIS(L) +  Type 1 ANFIS(H)                   (17.8) 

where L stands for low and H for high. Of course, this will only be a good 
approximation when simple interval type-2 fuzzy sets are used. For Gaussian type-2 
fuzzy sets, we need a higher number of type-1 ANFIS systems to have a good 
approximation. 
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Fig. 17.7. (a) Estimated distorted signal, (b) estimated information signal 

For the experiments, we decided to use 4 type-1 ANFIS systems to approximate 
the Type-2 ANFIS system for adaptive noise cancellation. All the remaining 
parameters were the same as the ones used in the type-1 case.  

Now we show the results of using the type-2 fuzzy system for noise cancellation 
(trained with ANFIS). We show in Figure 17.7(a) the estimated distorted noise 
resulting from the non-linear dynamics. We also show in Figure 17.7(b) the estimated 
information signal. Finally, we show in Figure 17.8(a) the estimated error and in 
Figure 17.8(b) the original information signal. We can appreciate that the estimated 
information signal is very close to the original one. For this reason, the fuzzy logic 
approach is successful for this application. 

Modified ANFIS Approach for the Type-2 Fuzzy System of Noise Cancellation
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Fig.17. 8. (a) estimated error, (b) original information signal x(k) 

17.5   Comparison of Results 

We describe in this section the comparison of the simulation results of both 
approaches. The two experiments described before, were considered by both the  
type-1 fuzzy logic approach and the type-2 fuzzy logic approach. As a performance 
measure between the noise cancellation approaches we will use the sum of squared 
errors between the real information signal and the estimated signal. This can be 
expressed as follows 

SSE = Σ ([e(k)]2 )= Σ[y(k) - d(k)]2                                (17.9) 

where the sum is over the whole range of points used in the corresponding case. The 
SSE value gives an idea of how well we are fitting the f function of the non-linear 
dynamics. We show in Table 17.1 the comparison (based on the average SSE values) 
of the type-1 and the type-2 fuzzy logic approaches for the two experiments, 
considered in this paper. We considered 30 runs of ANFIS in each case to obtain an 
average representative value.  
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Table 17.1. Comparison between the type-1 and type-2 fuzzy logic approaches 

 Type-1 Type-2 
Experiment 1 0.1556 0.1445 
Experiment 2 0.7732 0.6395 

For the first experiment, we have very good noise cancellation results, which is 
expected due to the simpler nature of the non-linear dynamics added to the noise. 
Also, we can also say that the difference bettween SSE values is not so great due to 
the same reason. 
From Table 17.1, we can appreciate that the type-2 fuzzy approach outperforms the 
type-1 approach for noise cancellation in both experiments (based on the SSE values). 
For the first experiment, we have very good noise cancellation results, which is 
expected due to the simpler nature of the non-linear dynamics added to the noise. 
Also, we can also say that the difference bettween SSE values is not so great due to 
the same reason. 

From Table 17.1, we can say that for the second experiment it is more difficult to 
perform noise cancellation. Even with the type-2 fuzzy logic approach, we have some 
dynamics that were not identified correctly, and for this reason the estimated 
information signal is not so close to the original information signal. Of course, in this 
case the noise is not Gaussian, as in the previous case. The "chirp" noise is more like 
an animal sound, which is added to the music of Handel. We believe that the 
parameters of the type-2 fuzzy system need to be optimized even more. Other 
methods, like genetic algorithms could be used in the future to try in perform a better 
optimization of the parameters in the fuzzy system. 

Of course, the above comparison is not considering the time of computation 
involved in the training, which is always higher for the type-2 approach because we 
are using a set of type-1 ANFIS systems to approximate the type-2 fuzzy sytem. In 
our particular case, we have used four type-1 ANFIS systems to have an 
approximation of the type-2 fuzzy system. For this reason, the computation time is 
approximately four times for the type-2 fuzzy system. 

17.6   Summary 

We have described in this chapter the application of type-2 fuzzy logic and neural 
networks (by using ANFIS) for achieving adaptive noise cancellation. Type-2 fuzzy 
logic was needed because of the high level of uncertainty in modeling the non-linear 
dynamics that is changing the noise dynamics. Neural networks are needed because 
we want to use the time series of the signals to adapt the parameters of the fuzzy 
system. The type-2 fuzzy logic approach was compared against the type-1 approach in 
two experiments. The simulation results in the experiments, with the proposed 
approach, show the potential of type-2 fuzzy logic techniques in the field of adaptive 
noise cancellation. 

Summary
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Appendix 

The Type-2 Fuzzy Logic Toolbox has been developed by our research group in  
Tijuana, Mexico and can be obtained by sending an email message to Prof. Oscar 
Castillo (ocastillo@hafsamx.org), and mentioning that it will be used with this book. 
You will be asked to send a letter in which you formally ask to use the software and 
after a few months another letter stating that the software has been useful in your  
research. 

This type-2 fuzzy logic toolbox has a similar interface to the type-1 fuzzy logic 
toolbox already available in Matlab®, and as consequence can be used very easily. 
You will need to have Matlab® from version 7.1 and up to execute this toolbox. A 
web site for users of this toolbox will be build in the future so that more help and in-
formation will be available to the users. 

The goal of the toolbox is to help promote the area of type-2 fuzzy logic, but it is 
only a tool to help research and academic work, it is not intended for commercial or 
industrial use and no guarantee can be made of the results obtained with this toolbox. 
Also, the authors are not responsible of the results or possible damage or injuries to 
others as a result of using the type-2 fuzzy logic toolbox. 

We would like to thank our Ph.D. student (Juan Ramon Castro-Rodriguez) for his 
great help in developing the computer programs of the type-2 fuzzy logic toolbox. Juan 
Ramon’ thesis work is in the area of type-2 fuzzy logic and for this reason we felt that 
developing a toolbox for developing type-2 fuzzy systems was very important. 

We would like to mention that in most of the chapters of this book, the toolbox was 
used to apply the concepts of interval type-2 fuzzy logic in solving the problems of 
pattern recognition, intelligent control and intelligent manufacturing and automation. 
As a consequence in most of the chapters the use of the toolbox for type-2 fuzzy logic 
is illustrated. In particular, in Chapter 12 there is a detailed description of the type-2 
fuzzy logic toolbox. In this chapter, the use of the toolbox is illustrated with simple 
examples, so the reader can better understand how to use it. 

In conclusion, we recommend using this type-2 fuzzy logic toolbox to learn the 
theory and concepts of type-2 fuzzy logic. We also recommend using this toolbox for 
developing intelligent systems that solve problems from a wide rage of areas, like  
pattern recognition, control, manufacturing, robotics, and automation. It is possible 
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that after using the toolbox for solving a particular problem, it may be necessary that 
the users develop their own computer programs in the programming language more 
suitable for the application. In any case, we feel that the toolbox for type-2 fuzzy sys-
tems would be useful at least as a tool for developing initial ideas of a solution for a 
particular problem. 
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