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Summary. This chapter explores three aspects of learning in document analysis:
(1) field classification, (2) interactive recognition, and (3) portable and networked
applications. Context in document classification conventionally refers to language
context, i.e., deterministic or statistical constraints on the sequence of letters in syl-
lables or words, and on the sequence of words in phrases or sentences. We show how
to exploit other types of statistical dependence, specifically the dependence between
the shape features of several patterns due to the common source of the patterns
within a field or a document. This type of dependence leads to field classification,
where the features of some patterns may reveal useful information about the fea-
tures of other patterns from the same source but not necessarily from the same
class. We explore the relationship between field classification and the older concepts
of unsupervised learning and adaptation. Human interaction is often more effective
interspersed with algorithmic processes than only before or after the automated
parts of the process. We develop a taxonomy for interaction during training and
testing, and show how either human-initiated and machine-initiated interaction can
lead to human and machine learning. In a section on new technologies, we discuss
how new cameras and displays, web-wide access, interoperability, and essentially
unlimited storage provide fertile new approaches to document analysis.

1 Introduction

The classical models for character recognition and document image analysis
must be extended to accommodate the classification of multiple common-
source patterns. We show how field classification exploits statistical depen-
dence due to the common source of a field of patterns and also leads to a
simple and operational definition of classifier adaptation. We explore diverse
contextual constraints beyond those imposed by language models. Instead of
ignoring the ever-present human-computer interaction, we propose more effec-
tive ways of exploiting it. We also examine the impact of recent technological
developments on OCR and DIA and raise some research questions.
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In this introductory section we list some of the limitations of conventional
models for classification and propose extensions to field classification, adapta-
tion and unsupervised learning. In the second section, Field Classification, we
examine the contextual constraints that favor field classification and present
some situations for which field classification algorithms have already been
developed. We also attempt to clarify some distinctions between trainable,
supervised, semi-supervised, unsupervised, adaptive and self-organizing algo-
rithms for training, teaching, and learning.

The third section, Interaction in training and testing, considers paradigms
where some interaction helps either or both the operator or the algorithmic
parts of the system. Our premise is that interaction will remain necessary, for
the foreseeable future, in most operational recognition systems. The fourth
section, Technology and Applications, explores how advances in technology
foster new applications in OCR and DIA. While the rest of this survey is
mainly a retrospective and attempts to rationalize existing results, here we
attempt to look ahead. In the Conclusions we list some trends and open
research problems.

1.1 The Classical Paradigm for Pattern Recognition

Until the last decade, the customary framework for statistical pattern recogni-
tion in Optical Character Recognition (OCR), Hand-printed Character Recog-
nition (HCR), and Document Image Analysis (DIA) was based on three key
constraints:

1. Representative training set. The data was divided into two mutually ex-
clusive sets of patterns for training and testing, each consisting of samples
from a fixed number of classes with given or estimated prior probabilities.
It was generally assumed that the patterns in both sets were independent
samples produced by selecting a class label according to the prior class
probabilities, then generating an observation (feature, attribute) vector
from the corresponding class-conditional probability distributions. The
labels of the test set were used only to determine classification accuracy.
(Some researchers partitioned the training set further to provide a valida-
tion set for tuning parameters.)

2. Singlet classification. The patterns were classified one at a time. Each
pattern was assigned a label on its own merits, independently of every
other pattern. In OCR and HCR, each pattern was a single glyph (i.e.,
a letter, numeral, or ideograph). In DIA, it could be an entire word, a
drawing or a photograph, or even an entire document. The only important
exception to this constraint was the application of linguistic context in
character recognition. Other entities, like forms, tables and documents,
were also usually processed as though they occurred in isolation.

3. No interaction. Only algorithmic processes were considered of interest.
It was understood that in real applications the labels in both the training
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set and the test set would have to be provided by key entry, that human
help was necessary to produce segmented character or word patterns for
experimentation, and that intervention would be necessary at the opera-
tional level to deal with unclassified and misclassified patterns. However,
these interactive components of the system were considered extraneous
to the pattern recognition system, and in research settings and research
publications little attention was devoted to optimizing them.

This architecture is typically represented by a data flow diagram similar
to that shown in Fig. 1. No special provisions are made to indicate either the
relevant data sets or the class labels.

Fig. 1. Generic first generation pattern recognition system

Over the last decade or two, many systems were proposed that did not
fit neatly into the above paradigm. Some of the new approaches were the
result of theoretical advances, while others arose from the realization that
some important applications grossly violated the stated constraints. Many
simply exploited technological advances: faster CPUs, larger amounts of stor-
age, miniaturization, portability and connectivity, and better displays.

Our objective in this chapter is to construct a more general framework for
pattern classification that encompasses recent research and may even leave
room for new ideas. The notions at the core of the new paradigm are learn-
ing and adaptation, styles, multi-pattern classification, and human-machine
interaction. We will give examples of methods and applications that fit the
new paradigm, and discuss the technological advances that made them possi-
ble. We will also show how some widely used techniques, like clustering, ex-
pectation maximization, and active learning, fit naturally into the proposed
framework.

We propose to define the new paradigm at a level of detail sufficient for
probabilistic simulation of alternative classification algorithms. In this kind of
simulation, the labels and patterns are generated by pseudo-random-number
generators such as are readily found in most programming language libraries
and in Matlab or Excel. Languages and software packages designed for sim-
ulation, like Simula, Modsim, Ross, Simscript, and Matlab toolboxes, offer
a variety of built-in univariate probability distributions. It is, however, more
difficult to generate multivariate distributions (e.g., Multinomial, Dirichlet, or
Uniform), other than Gaussian, with the desired degree of statistical depen-
dence completely specified by an arbitrary covariance matrix.

Our architecture for simulation does not address a critical component of
all pattern recognition systems, feature extraction. Feature extraction is the
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step that transforms the output of the transducer (scanner, camera, tablet,
microphone) into an abstract high-dimensional vector space where classifica-
tion boundaries are defined. The error rate achievable by an ideal classifier
depends on the chosen set of features. We are not, however, aware of any
general technique for designing a good feature set, and even methods for se-
lecting a subset of good features from a larger set leave much to be desired.
We will therefore blithely assume that for each application some expert has
already provided software for generating feature vectors. The simulations will
start with a probabilistic feature space where the simulation parameters can
simply be set to “good” features or “bad” features.

Another important aspect of OCR and DIA that we cannot simulate (but
will discuss) is segmentation. Much effort has been devoted to separating text
from illustrations, locating paragraphs and lines of print, and to word and
character segmentation. Although the relevant algorithms fall in the realm of
image processing rather than pattern recognition, segmentation and classifi-
cation are often combined. As for feature extraction, there are few statistical
models and tools for segmentation.

In the next subsection we define the components of a more comprehensive
classifier architecture.

1.2 Definitions for an Expanded Paradigm

The definitions here pertain primarily to the role of various data sets in a clas-
sification system, with particular regard to simulated data. Merely envisaging
it lends precision to definitions.

Training set. The training set consists of a set of labeled pattern (fea-
ture) vectors. For the purpose of analysis, one can assume that the feature
vectors have either continuous or discrete valued components, but simulators
can generate only discrete valued features. The number of components in the
feature vectors, called the dimensionality of the problem, is fixed. There are
four types of labels: class labels, source labels, style labels, and instance labels,
as described below. The training set must have at least class labels, but the
presence or absence of source and style labels leads to different types of classi-
fiers. Patterns with the same source label share the same style, while patterns
with different source labels may or may not be of the same style.

Test set. The test set consists of a sequence of feature vectors with source
and class labels. The class labels must be used only for error counts. Each
test pattern has a source label. The source length is the number of test pat-
terns from the same source. The source distributions may be the same as in
the training set, or different. Even if they are the same, the correspondence
between the source labels of the test set and the source labels of the training
set is assumed to be unknown. The test set has no style labels.

Field. For purpose of classification, the patterns of the test set are divided
into fields. A field consists of a fixed number of patterns (called field length)
from the same source. The choice of field length depends on the available
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computing resources, while the source length (the number of patterns from
the same source in the test set) defines the scope of statistical dependence or
context. Even in the absence of linguistic context, a field length of only two
(i.e., pair classification) may lead to a significant increase in accuracy over
singlet classification.

Source, style, and class labels. The assignment of these labels is the most
time-consuming part of preparing a real dataset for experimentation. Under
the assumption that each document is generated by the same source, only
one source label per document need be entered. Style labels in the training
set may be assigned by inspection, by font recognition for printed characters,
by clustering or expectation maximization for handprint, or not assigned at
all. Initial class labels are usually assigned by some classifier, and then the
errors are found by proofreading and corrected manually. Sometimes data for
experiments on printed characters is automatically generated by a script that
generates so many samples of each font, in which case source, style and class
labels can be assigned automatically.

Instance labels. Although not necessary for describing a classification
scheme, it is good experimental practice to attach a unique label (accession
code, serial number, identifier) to every pattern. This allows tracking changes
in class label assignments when classifier parameters are changed, and whether
errors committed by different classifiers are correlated. It may also serve as
a time stamp for scenarios where the order of the patterns within the field
matters, as in the case of linguistic context.

Example: Some NIST data sets have samples of isolated digits (10 classes).
Each pattern is represented by a 24x30 binary array, therefore the dimension-
ality of the feature vector is 720 [1]. There are 600 writers, and the serial
number of the writer is attached to each digit. These writer labels are our
source labels. Writer consistency in the shape of the numerals is one aspect of
style. Several writers may have the same style. To ensure that patterns of the
same writer do not occur on both training and test set, the data is partitioned
by writer. There are about 100 digits from each writer, so the source length
is approximately 100. The NIST data set does not include style labels. As
we will see, the presence of styles may improve classification accuracy even
without the presence of explicit style labels.

Simulated data. The source label, which identifies patterns guaranteed to
have the same style, is generated first. Then a style label is selected with fixed
prior probability over the styles. Next, a sequence of class labels is generated
according to class priors. The source length may be fixed or subject to a
probability distribution that governs the number of patterns per source (for
example, the number of digits in the courtesy field of a bank check, or the
number of letters, digits and punctuation in a business letter). Finally, the
feature vectors are generated from class-and-style conditional feature distri-
butions. The patterns from each source are restricted to a single style; in other
words, isogenous or common-source patterns of the same class are indepen-
dently drawn samples from the same distribution. Before classification, the
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test set is partitioned into same-source fields. To simulate some applications,
we may allow all of these probability distributions to change gradually. This
makes a difference only if the classifier has a bounded horizon, i.e., if the field
is shorter than the test set.

The important distinction between the new framework and old framework
is the presence of multiple feature distributions that are constant within a
source but may change from source to source. In order to exploit within-source
consistency, field classification rather than singlet classification is necessary.
A further distinction is that the distribution of the patterns may change with
time. The nature of the classifiers appropriate for different scenarios within
the above overall framework is elaborated in the next section.

2 Field Classification

We are now ready to consider situations where it is advantageous to classify
entire groups of objects instead of classifying each object in isolation. This is
generally the case in DIA and OCR, where a message (substantiated as a doc-
ument) consists of an ordered collection of visual objects (glyphs). We show
that many common constraints on acceptable sequences of symbols, and on
the visual appearance of the glyphs used to represent them, can be expressed
in terms of statistical dependence between patterns. Because the estimation
and exploitation of the underlying joint probability distributions requires ex-
amination of more than one pattern at a time, we discuss field classification.
We relegate the relevant mathematical formalisms to the cited references, but
we present some tools that facilitate the study of the inter-pattern feature
dependences, and state the assumptions under which optimal or approximate
field classification algorithms have already been developed. We conclude the
section with a discussion of adaptive classification and unsupervised learning.

2.1 Context

Information relevant to classifying an object (digit, letter, word, illustration
or document) is often extraneous to the object itself. It may either reside in
other objects that are also to be classified, or it can be considered part of
the environment in which the classifier operates. In the first case, recognition
accuracy can be improved by taking into account the characteristics of an
entire group of objects to classify each one, i.e., by field classification. In the
second case, the recognition can be improved by providing means to specialize
or tune the classifier for either singlet patterns or fields to its environment.
The additional information is generally called context, regardless of whether
it can be derived from the available samples [2, 3].

In character and speech recognition, the word “context” is often reserved
for linguistic context. It has, however, a much wider scope in Artificial Intelli-
gence, as exemplified by the topics discussed at the biennial ACM Context con-
ferences, which draw on several centuries of studies in epistemology [4, 5, 6, 7].
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We will examine situations other than linguistic context where field classifi-
cation is useful, but neglect broader considerations that need to be taken into
account in preprocessing and feature extraction rather than in the classifier
itself. In other words, we will concentrate on the kinds of context where the
patterns to be classified provide information about each other.

Since the use of linguistic context is well established in both character and
speech recognition, we will first look at language models. Then we will examine
some relations between the shapes of the patterns. We will distinguish between
order-independent and order-dependent relations, and also between forms of
statistical dependence that arise between labels, between shape features, and
between labels and shape features –of all the patterns within a field.

Language Models

Language models are approximate descriptions of natural language at the
morphological, lexical, syntactic, semantic, or pragmatic levels. While many
of the earlier models were rule-based, the advent of large computer-readable
corpora for estimating parameters has given rise to statistical models.

Morphological models typically consist of polygram frequencies [8]. These
frequencies vary from language to language and are always highly skewed [9].
In English text, for example, the probability of “e” is 0.1241, while that of “z”
is only 0.0007. The skew increases with polygram length: P[th]=0.04, while
P[qh]=0. It is clear that an ambiguity between an e and a c after a d should
be resolved in favor of e, but is e or c more likely after u? Elaborate methods
have been proposed to estimate the probabilities of rare letter or phoneme
sequences [10].

Lexical models are based on word frequencies and word transition frequen-
cies. The simplest systems are based on dictionaries (strictly speaking, lexi-
cons) that report only the existence or non-existence of a sequence of letters
as a valid word of a particular language, without its frequency of occurrence.
(Agglutinative languages with many case endings and verb forms, like Italian,
typically require lexicons at least three times larger than English.) Commercial
OCR systems routinely use not only large general lexicons but also specialized
lexicons of biological, chemical or legal terminology, and lists of abbreviations,
acronyms, and proper names. Most often dictionary-lookup is carried out only
as a post-processing step, which is generally suboptimal. Some examples of
over-reliance on lexicons are given in [11], which also describes many other
sources of OCR errors.

The best statistical syntactic models surpass the power of rule-based sys-
tems [12, 13, 14]. Estimates of transition frequencies between syntactic cate-
gories (noun, verb, adjective, adverb ...) can be obtained from large annotated
corpora. Syntactic models are of limited use in English because of the multi-
ple categories carried by many words (e.g., Yellow soap / I wonder where the
yellow went, or To fit a dress / A fit athlete / A good fit). Applying semantic
and pragmatic models is even harder [15].
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Formally, all linguistic context in character recognition can be expressed
as statistical dependence between the labels of patterns. The random variables
whose joint probabilities must be estimated are letter, word, or part-of-speech
labels. Linguistic context is always order-dependent, and therefore often mod-
eled with transition frequencies in Markov Chains, Hidden Markov Models,
and Markov Random Fields [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28].
Linguistic variables are usually assumed to be independent of character shape,
even though titles and headings in large or bold type have a different lan-
guage structure than plain text. Optimal field classification of printed matter
is often approximated by a post-processor that simply attempts to integrate
confidence measures based on shape and language.

Style

We term style any difference between the statistical characteristics of a group
of patterns generated by a single source and the characteristics of a group of
patterns generated by several sources [29, 30, 31]. A single-source group usu-
ally exhibits some shape consistency. For instance, we may be able to dis-
tinguish numerals written by Alice from numerals written by Bob. Alice’s
numerals seem similar to each other, and Bob’s numerals are also similar to
each other, but Alice’s numerals are different from Bob’s. The same notion
can be applied also to text printed in different fonts. Forensic analysts can
tell whether two sets of letters or numerals were written with the same pen,
or printed on the same printer.

More formally, style context is defined as the presence of statistical depen-
dence arising between patterns (represented as random vectors) because they
are from the same source. Unlike language context, it is independent of the
order of the patterns in the field. It takes two distinct forms, which we call
intra-class style and inter-class style [32].

Intra-class style is the shape consistency of a single class from each source.
It reveals how consistent a writer is in writing a glyph. Does Alice always
cross her 7s, while Bob never does? It is, of course, even more marked in
print, where words, paragraphs, and entire documents are often composed
in a single typeface. Experts can recognize dozens of typefaces by inspection.
More subtle than typeface consistency is the intra-class style within documents
printed by the same printer or scanned by the same scanner. In OCR, where
each glyph (a letter, numeral or ideograph) is usually represented by a feature
vector, we say that a data set exhibits intra-class style if the feature-vectors
of patterns of the same source and class, considered as random variables, are
(class-and-style-conditionally) statistically dependent.

Inter-class style determines how much the shape of a given class reveals
about the appearance of other classes from the same source. The way Alice
writes 1 helps predict the way she will write 7. If the n has no serifs, neither will
h, m, or r. We say that the data set exhibits inter-class style if the feature-
vectors of patterns of different classes, considered as random variables, are
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(class-and-style-conditionally) statistically dependent. Fig. 2. illustrates two
pairs that cannot both be recognized correctly as 17 by a singlet classifier,
and an instance where the label assigned by a singlet classifier is corrected by
the field classifier.

Fig. 2. Benefit of pair classification when there is inter-class style

We show in Fig. 3 a useful representation for visually comparing singlet
and field classification boundaries. (This representation allows showing only a
single feature for each pattern, hence only a 2-D field feature.) We plot some
field features, which have bimodal Gaussian mixture distributions, for each
field class (AA, AB, BA, BB) of a two-class problem (A,B) with a single feature
x. We also show the 2-D decision boundaries of the singlet classifier and of
the field classifier. The optimal field classification boundaries and the singlet
boundaries are different, so we would expect some gain with a field classifier.
Simulation of a field classifier shows a reduction in the error rate of single
patterns from 15% to about 10%.
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Fig. 3. Gaussian class-conditional distributions of a single feature x for classes A

and B and styles 1 and 2. Below are the representations of singlet (left) and pair
(right) feature (spaces x1, x2) and decision boundaries for a field of two patterns.
The AA region is bottom left, AB is bottom right, BA top left, and BB top right

Order-Dependent Inter-Pattern Dependence

Inter-pattern class-feature dependence is fairly rare. It occurs when features
of a pattern depend on the class, rather than on the rendering (features),
of an adjacent pattern. For example, the vertical location of an apostrophe
may depend on whether the previous letter had an ascender, but not on its
font (Fig. 4). That is, the features of the apostrophe are independent of the
preceding letter, given its label.

Feature dependence between adjacent patterns is common, as illustrated in
Fig. 5 (from [3]). In cursive writing, the location of the last stroke of a pattern
determines the nature of the ligature that joins it to the next pattern. It is
different from style, because the ligature-sensitive features of the two patterns
depend on the shape and order of the patterns. A similar phenomenon in
speech is called co-articulation.
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Fig. 4. Example of inter-pattern class-feature dependence

Fig. 5. Examples of order-dependent inter-pattern feature dependence: note the
difference between the ligatures preceding the a’s

2.2 Field Classifiers

Dependence between patterns suggests that a field classifier should assign
a field label, consisting of a sequence of class labels, based on the feature
vectors of all the patterns in a test field. The number of possible field labels
rises exponentially with field length, thereby effectively limiting the maximum
operational field length.

We discuss below several types of field classifiers that have been proposed
under various assumptions. These field classifiers are generally based on the
formulation of singlet classifiers: for instance, they may be Bayes classifiers
or MAP classifiers, and either parametric or non-parametric classifiers. In
addition to standard statistical classifiers, neural networks and support vector
machines can also be exploited for field classification. To classify each pattern,
all field classifiers combine information derived from the entire training set
with information from the whole test field.

Field-Trained Classifiers

An obvious idea is to concatenate the features of singlet patterns to form field
feature vectors, and train the classifier on every possible field class. All of the
well-developed theory of singlet classification then applies. This method, how-
ever, requires training samples of every field class, and is therefore generally
impractical with field lengths greater than two.

In text, not all combinations of letters occur. Word classifiers can therefore
be trained on words, rather than on every possible sequence of characters. One
version of this approach divides the letters of the alphabet into fewer and more
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easily classified categories based on character shape codes (ascenders and de-
scenders) [33, 34]. Because character-level segmentation is error prone, most
word classifiers are not based on concatenating singlet character features, but
on features extracted from the entire word. This approach is particularly suit-
able for limited-vocabulary applications like postal addresses or legal amounts
on bank checks [35, 36], and for correction of OCR errors [37]. Another ex-
ample of holistic word classification is based on statistics extracted from each
cell of a grid superimposed on the word [38]. For degraded documents with
larger vocabularies, word level indexing (as opposed to keyword spotting) was
proposed with a three-stage comparison based on word aspect ratios, vector
features extracted with a grid superimposed on each word, and within-word
connectivity. Experimental evidence for high precision and recall in retrieval
was adduced from a multilingual collection of OCR-resistant documents span-
ning four centuries [39].

Font Classification

For printed matter, font classifiers and font-specific character classifiers can
be trained on data sets of specific type faces or on broad groups (serif/sans-
serif, italic, bold). The font classifier is then applied first to a test field, and its
decision is used to select the appropriate character classifier [40, 41, 42, 43].
The same idea can be applied to writer identification [44]. Many words of text
may be necessary to reliably identify the font. Furthermore, the resulting clas-
sifier is generally suboptimal, because the features in character classification
are neglected in font classification, and those used in the font classifier are
neglected in character classification. Style classifiers, discussed below, use the
entire set of features.

Discrete-Style Classifier and Style-First Classifier

If the underlying feature distributions are Gaussian, and the training set has
style labels that allow estimating the parameters of the class-and-style con-
ditional feature distributions, then the joint posterior mixture-distributions
of the field classes can be computed for fields of arbitrary length. The re-
sulting optimal classifier is known as the Discrete Style Classifier [31]. The
lengthy computation (exponential with field length) can be approximated by
keeping track of frequently co-occurring (same-source) shapes [45] or, more
consistently, by a Style First Classifier that computes the posterior probabil-
ity based on the most likely style [46]. Non-parametric nearest-neighbor field
classifiers are described in [47] and support vector machine field classifiers
in [48].

Style-Conscious Quadratic Discriminant Field Classifier

In some applications, like handprint recognition with a multitude of writers,
it is sensible to assume a continuous distribution of Gaussian styles instead
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of some predetermined fixed number. The posterior distribution for any field
length can then be determined from only the cross-covariance matrix of pairs
of same-source pattern feature vectors (op. cit. [46]). The resulting Style-
Conscious Quadratic Discriminant Field classifier is optimal under the stated
assumptions. The experiments described in the cited references indicate that
all of these field classifiers achieve lower character error rate than the singlet
classifiers on which they are based.

2.3 Adaptive Classifiers

The word adaptive (which surfaced in conjunction with stochastic approxima-
tion, potential functions, adelines, madelines, and perceptrons), is overloaded
and has been used in many different ways since its appearance – first in au-
tomatic control then in pattern recognition – more than forty years ago [49].
Adaptation and learning were linked to stochastic approximation (Robbins-
Monroe and Kiefer-Wolfovitz processes) by Aizerman, Tsypkin and Fu among
others [50, 51, 52]. Nevertheless we need a word for a concept that fits with our
definitions of training and test sets and of field classification, and that shares
the connotation associated with adaptation. In our context, adaptation can
be defined clearly and simply without introducing any additional notions. Our
definition offers the advantage that it applies equally to structural adaptation,
parameter adaptation, and to complex classification formulas that could be
equivalent to either.

We define an adaptive classifier as a field classifier with a field that en-
compasses the entire test set.

Such a classifier can clearly use all of the information that is available
in the patterns to be classified. Not only does the classification of the last
pattern in the test set profit from information garnered from the first pattern,
but the classification of the first pattern also benefits from the last pattern.
In principle, the field-classification boundaries of an adaptive classifier can
be determined entirely from the training set. This does not imply that the
distribution of shorter subsequences of patterns in the field is stationary, but
it does require all of the test patterns to be available at the same time.

For long test sets, the computation of the posterior field probabilities must
be approximated. Dynamic field classifiers adjust their classification parame-
ters after classifying a finite subset of the test field, thereby approximating an
optimal adaptive classifier. The approximation may be necessary either be-
cause there are insufficient computational resources to classify the entire test
set optimally, or because some of the test patterns must be classified before
all of them are available.

Dynamic classifiers present the danger of wandering off course, perhaps
because of a completely mislabeled subset of the test field, and never recover. It
may therefore be prudent to test them periodically on some typical validation
field and, if the error rate is too high, reset the parameters to those obtained
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from the original trusted training set. Adaptation in commercial OCR systems
seldom exceeds page length (c. 2000 characters).

The style-constrained classifiers described below are not dynamic, because
their decision depends only on the ensemble of patterns of the current field,
which is generally only a subset of the test set. If a field reappears later,
after many other fields from different sources and styles were classified, the
result will be the same. (In contrast, a classifier that is dynamic according to
our definition could well classify a subsequent but identical field differently.)
Nevertheless, it may be appropriate to claim that these classifiers adapt to
the style of each test field.

2.4 Supervised, Semi-supervised, and Unsupervised Learning

Algorithmic grouping or clustering of unlabeled patterns according to their
distance to each other in feature space is often called unsupervised classifi-
cation or learning [53]. Persistent attempts since the sixties to endow self-
organization, (self-)adaptivity, learning without a teacher, training without
a trainer, self-produced pattern discrimination, self-correction, and unsuper-
vised, semi-supervised or non-supervised classification with a stable meaning
have proved futile [54, 55, 56]. As mentioned above, we reserve the word adap-
tive for a more specific concept.

We take the position that pattern recognition in OCR and DIA cannot
be entirely unsupervised, because documents, words, letters and numerals al-
ready have some prior meaning to human readers. At some point, this meaning
must be communicated to the classifier so as to regain the correspondence be-
tween the arbitrary labels assigned by the machine and the labels of the user
community (for instance ASCII character labels, or Reuters document cate-
gories). We attempt next to discover what is the “hidden” information used
by various “unsupervised” pattern recognition methods.

The least information necessary to turn a mixture decomposition method
into a classifier is admirably elucidated in [57, 58]. The unlabeled patterns are
presented as a Gaussian mixture distribution with unknown mixing parame-
ters. It is shown that with an increasing number of samples, the parameters of
the constituent distributions can be estimated to arbitrary precision. However,
in order to determine with better than chance accuracy which constituent cor-
responds to which class, we need at least one labeled pattern. Increasing the
proportion of labeled to unlabeled samples brings such a classifier closer to
the vanilla-flavored (supervised) classifier.

The idea of first partitioning unlabeled samples, and then assigning labels
to each partition, was thoroughly explored in the sixties from the perspective
of both signal-processing [59, 60, 61] and potential functions [62, 63, 64]. In
1966 Dorofeyuk presented several clustering algorithms, and then assigned
labels to each cluster according to the known majority label in each cluster.
He tested his algorithms on five classes of hand-printed digits. He called the
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procedure teaching without a teacher, because the labels were not used in the
clustering process [65].

Examples of easy- and difficult-to-cluster pattern configurations are simple
to visualize in two dimensions [66, 67]. The widely-used K-means cluster-
ing algorithm was popularized as a general method for “exploratory” multi-
variate analysis of unlabeled data [68, 69]. A variation that addressed some
of the shortcomings of the elementary algorithm by splitting and merging
classes was called Isodata [70]. In the communications community, iterative
minimization of the sum-of-squared-error criterion became known as Vector
Quantization [71, 72]. Among the first attempts at evaluating regiorously the
effectiveness of clustering methods were Dubes and Jain [73]. Variations of
the method with respect to initialization, cost function, splitting and merging
clusters, and distance metrics, have been amply described [74, 75]. Current
research focuses on combining multiple cluster configurations obtained by dif-
ferent algorithms, i.e., clustering ensembles [76].

Clustering with the K-means algorithm using labeled seeds (initial clus-
ter centroids) circumvents the need for assigning labels after the clustering
process. One of the simplest adaptive classifiers (called decision-directed ap-
proximation [77]) is a minimum-distance-to-class-centroid classifier that iter-
atively recomputes the class centroids according to the class labels assigned
on the previous step (Fig 6). It is clear that the final class centroids de-
pend, as do cluster centroids in K-means, only on the initial seeds (here the
class means of the training set), and on the patterns in the test field. Sev-
eral successful examples of decision-directed classification in OCR have been
reported [78, 79, 80, 81, 82, 83]. Other applications include Morse Code tran-
scription [84], adaptive equalization [85, 86], and thematic mapping in remote
sensing [87, 88].

Crisp clustering algorithms assign each pattern to a single cluster. Fuzzy
clustering algorithms assign membership functions. Agglomerative and di-
visive algorithms group or partition patterns according to a pre-calculated
matrix of pairwise similarities (which need not have metric properties). Statis-
tical methods based on the very general principle of Expectation Maximization
[89, 90] attempt to decompose mixture distributions into their constituents.
In each of these approaches, the problem is simplified if the number of classes
is known. The number of classes may be replaced or augmented by other per-
tinent information, like constraints on the number of patterns per cluster, or
on the cluster diameters.

We underline that any of the above methods for grouping patterns accord-
ing to some predetermined measure of similarity may serve as the foundation
for “unsupervised” classification. All of them exploit style consistency, albeit
only intra-class style. Like other style classifiers, these methods reduce the
need for labeled samples. The methods for addressing small-training-sample
problems [2], [9] and ‘wrong’ (or non-representative) training-sample problems
are essentially equivalent. However, classifiers based on only intra-class styles
are obviously suboptimal when the data exhibits inter-class style as well.
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Fig. 6. Adjustment of the classification boundary in a decision-directed classifier.
The new boundary is at equal distance from the class centroids of the patterns as
classified by the original classifier learn on the training set

Patterns are often clustered for multi-stage classification of large- alphab-
bets, like Chinese [92, 93]. As a demonstration of the power of language con-
text, all the characters in a document can be clustered, and labels assigned
to the cluster labels by solving a substitution cipher, without using any prior
class-related shape information [94, 95, 96, 97, 98].

Clustering is not necessarily followed by assigning an object label to each
cluster. Clustering the connected components (most of which correspond to
individual characters) in an isogenous text image is the basis for efficient
text-image compression, such as DjVu and JBIG2 [99, 100, 101]. Clustering
of approximate representations of document words was used to reduce the
number of comparisons of a query versus document words in the multilingual
word indexing scheme mentioned above [102]. The method was called font-
adaptive because the words in each source were clustered separately.

3 Interaction in Training and Classification

Research aimed at fully automating the processing of document images has
received sustained attention over the past 40 years. Nevertheless, any of the
dozens of surveys to date (one of our favorites is [103]) will reveal that progress
in automatic recognition and interpretation has been slower than predicted.
Further improvement on cursive handwriting and degraded print may be even
slower because the remaining challenges are harder. As in speech recognition,
bridging the “semantic gap” between machine and human knowledge appears
problematic. The context in all the varieties discussed above brought by hu-
mans to any classification task is much greater than what can be codified
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automatically from even the largest collections of training samples available
to our community. Endowing fully automated systems with broad knowledge
remains an elusive goal. Fortunately, in many applications it is not necessary
to fully automate the task of document analysis. This may be the case when
the focus is on a relatively few high-value documents (perhaps just one). The
computer can play the role of an assistant to help the user acquire information
that would otherwise remain inaccessible. While such documents could be col-
lected and returned to a central repository for scanning and batch processing
in the traditional manner, it may be advantageous to exploit the information
immediately and in situ.

There are pronounced differences between human and machine cognitive
abilities. A divide-and-conquer strategy for visual recognition can partition
difficult domains into components that are relatively easier for both human
and machine (Table I). Humans excel in gestalt tasks, like object-background
separation. They apply to recognition a rich set of contextual constraints and
superior noise-filtering abilities. They can also easily read degraded text (e.g.,
CAPTCHA’s [104]) on which the best optical character recognition systems
produce only gibberish. On the other hand, the study of psychophysics reveals
that humans have limited memory and poor absolute judgment [105].

Computers can perform many tasks faster and more accurately. They can
store thousands of images and the associations between them, and never forget
a name or a label. They can compute geometrical properties like higher-order
moments whereas a human is challenged to determine even the centroid of a
complex figure. Spatial frequency and other kernel transforms can be easily
computed to differentiate similar textures. Computers can count thousands
of connected components and sort them according to various criteria (size,
aspect ratio, convexity). They can quickly measure lengths and areas, and
flawlessly evaluate multivariate conditional probabilities, decision functions,
logic rules, and grammars. Nevertheless, computer vision systems have diffi-
culty in recognizing “obvious” differences and they do not generalize well from
limited training sets

We are not advocating here exploratory data analysis in feature space [106,
107], but operator interaction with displayed document images or parts
thereof. Although we cannot clearly separate human interaction during train-
ing and testing (because when a human helps the system during classification
time, it can be viewed as training) we attempt to categorize interaction as:
(1) Human-initiated or Machine-initiated; (2) Durable or Ephemeral. Durable
Interaction immediately alters some system parameters and therefore affects
how the system deals with new data. Ephemeral Interaction merely labels new
patterns or modifies the results of classification.

3.1 Examples of Human-Initiated Interaction

The most common example of human-initiated interaction is labeling training
patterns. Another example is word completion on touch-screen devices (word



238 G. Nagy and S. Veeramachaneni

HUMAN MACHINE
Dichotomies

Multi category classification
Figure-ground separation
Part-whole relationships
Salience

Non-linear high dimensional classification
boundaries

Extrapolation from limited
training samples

Broad context
Precise mesaurement of individual features
Enumeration
Store and recall many labeled reference
patterns

Accurate estimation of statistical
parameters

Application of Markovian properties
Estimation of decision functions from
training samples

Evaluation of complex sets of rules
Gauging relative size and intensity
Detection of significant
differences between objects

Computation of geometric moments
Orthogonal spatial transforms
(e.g. wavelets)

Connected components analysis
Sorting and searching
Rank-ordering items according to a
criterion

Additive white noise, salt and pepper noise
Colored noise; Texture
Non-linear feature dependence

Determination of local etrema in high-
dimensions

Global optima in low dimensions

Table 1. Comparison of relative strengths of human and machine in diverse aspects
of visual pattern recognition
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completion is seldom used with regular keyboards because it tends to distract
the operator). Such interaction has also proved its value in the vectorization of
engineering drawings and maps. We briefly describe these three applications.

Labeling Training Patterns in OCR

Nowadays all manual labeling of documents, or parts of documents, is car-
ried out with computer display of digitized material, and can therefore be
considered interactive. Indeed, considerable ingenuity has been applied to
provide interfaces that speed up the process and reduce mislabeling. Com-
mercial OCR firms strive to improve successive releases of their recognition
systems by accumulating millions of labeled characters. If everything is keyed,
it is human-initiated interaction. If they first OCR the training documents
and only correct the errors, then the interaction is machine-initiated. It is
ephemeral because the current classifier does not benefit from the newly la-
beled patterns.

Most OCR systems also provide at least limited facilities for additional
training in the field for new shapes and new classes. If necessary, the operator
can separate document segments set in different typefaces or written by dif-
ferent individuals. Entering only part of a document may help a recognition
system designed with this in mind to fine-tune the classification algorithms.
The underlying assumption is that if the remainder of the document(s) is
from the same source, then the adjusted parameters will yield more accurate
recognition. Training is not limited to characters: for example, a table-location
algorithm can be trained via multi-parameter optimization [108].

Mobile Text Entry

It is clear that one bottleneck in mobile interactive document analysis is text
entry. Without scanning or a regular keyboard, the alternatives are (1) virtual
keyboard on a touch sensitive screen, (2) finger-operated keypad on arm or
thigh (perhaps incorporated in the operator’s clothing), and (3) automatic
speech recognition. We believe that the stylus is the most appropriate so-
lution, because in addition to text entry it can also mediate the graphical
communication essential in other phases of document image analysis.

The virtual keyboard was invented in the seventies to avoid having the op-
erator shift constantly between pointing device and keyboard while digitizing
maps and line-drawings. It consisted of a picture of a keyboard that could be
shifted to the area of the drawing being vectorized. Current virtual keyboards
usually appear in a fixed partition of the touch-sensitive screen of a handheld
device. Edwards’ survey of input interfaces in mobile devices covers most of
the relevant issues [109]. Data input is usually a local operation, so it makes
little difference whether the device is networked or not.

Important considerations for stylus data entry are speed, operator com-
fort, and ramp-up time. The first two factors are influenced by the amount of
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space allocated to the keyboard, to the recognized or keyed text, and to con-
trol functions. The third factor depends heavily on the keyboard layout. The
QWERTY layout, developed to prevent binding of type bars in mechanical
typewriters, is suboptimal even for typing, and even more so for one-handed
stylus entry.

Ancona gives a good overview of alternative keyboards and word-completion
algorithms [110]. An upper bound on the speed of individual character entry
is imposed by Fitts’ Law, which is a nonlinear relationship between pointing
time and the distance and size of the target. The relevant distance is that
between the screen areas (“keys”) corresponding to consecutive letters. The
letter transition frequency is given by a language model. It is possible to re-
duce the average distance by having multiple keys for common symbols, but
this decreases the size of the keys. Several researchers have optimized key-
board designs according to various language models [111, 112, 113, 114]. The
computed speeds hover about 40 words per minute, but actual text entry is
much slower.

The speed increase obtainable by word completion depends on the lan-
guage model. Ancona (op. cit. [110]) demonstrates a keyboard with separate
keys for the ten most common words (with a cumulative word frequency of
28%). After each tap on the screen, the ten most likely words appear in the
selection area of the screen. If the correct word is included, it can be selected
with one additional tap. If not, another letter is tapped, which brings up ten
new words. With a vocabulary of 13,000 words, the expected number of taps
per word was 3.3. The performance of word-completion systems depends on
how well the stored lexicon is matched to the user input. Multiple lexicons –
for different languages and applications – can be either stored on board, or
downloaded via a wireless connection.

Vectorization

Entering line art (maps and engineering drawings) manually is even more
laborious and expensive than keying text. Manual vectorization was first con-
ducted from hardcopy on a digitizing table. The operator traced the lines with
cross-hairs under a magnifying glass with a MARK button. After the advent of
large-size roller-feed scanners and bitmapped displays all service bureaus and
in-house operations adopted on-screen vectorization. Vectorized lines could
now be displayed with a different color, deviations between the manually en-
tered line segments and the original bitmap became clearly visible, and the
operator could zoom in on dense portions of the drawing.

If most of the labels on a drawing or map cannot be recognized by OCR
because of poor document quality or unusual character shapes, it is still possi-
ble to rapidly mark their location and orientation, rotate them to horizontal,
and move them to a single area of the screen [115]. This accelerates man-
ual label entry (a single E-size drawing may contain over 3,000 alphanumeric
symbols). Most such data-entry systems are part of GIS or CAD software
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designed for standard workstations, where all graphical operator interaction
is mediated by the mouse. As demonstrated by Engelbart and colleagues at
SRI long ago, direct-action devices, like a touch-sensitive stylus, would allow
faster and more accurate interaction [116]. However, the aspects of interest
here are the machine-initiated algorithms developed for semi-automated data
entry.

To enter colored maps, different color layers are first separated according to
RGB values. Vectorizing algorithms are manually initialized to a line segment
or curve, and automatically follow that line at least to the next intersection
point. Some systems also attempt to automatically recognize map and drawing
symbols (e.g., for schools or resistors). If it fails, the operator overrides it. The
character recognition software recognizes cleanly lettered labels (elevations,
part numbers, resistor values), but leaves labels confused by overlaid line art
or poor lettering to the operator.

These interactive systems (like CAVIAR, below) exhibit clear speed advan-
tages over completely manual data entry, and are robust enough (unlike auto-
mated systems) for operational application. Although some of these systems
are laboriously trainable, one key difference compared to CAVIAR is that no
commercial system that we are aware of incorporates active algorithms (i.e.,
durable interaction) that take advantage of routine operator input.

3.2 Machine-Initiated Interaction

All trainable systems incorporate, by definition, durable interaction. Most
such systems, however, are human-initiated: training is a preliminary, sepa-
rate phase from the recognition, without regard to what can be correctly or
incorrectly recognized without additional training. We believe that eventu-
ally all interaction in DIA should be machine-initiated and durable. In other
words, the operator should not even have to look at data that the system
had no trouble in classifying, and every interaction should be utilized by the
system to improve subsequent classification. We therefore present some of our
work outside of DIA on machine-initiated, durable interaction. Then we pro-
pose several phases in DIA where we see potential applications of similar types
of interaction.

Machine-Initiated, Durable Interaction in CAVIAR Systems

CAVIAR (Computer Assisted Visual Interactive Recognition) is an interac-
tive system for recognizing faces and flowers, both problems of a level of
difficulty (i.e., current automated accuracy) comparable to document recog-
nition [117, 118, 119, 120, 121]. Experiments on sizable databases of faces
and flowers indicate that interactive recognition is more than twice as fast
as the unaided human, and yields an error rate ten times lower than state-
of-the-art automated classifiers. The benefit margin of interactive recognition
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increases with improved automated classification. Parsimonious human inter-
action throughout the interpretation process is much better than operator
intervention only at the beginning and the end, e.g., framing the objects to be
recognized or dealing with rejects. Furthermore, this interactive architecture
has been shown to scale up: it can start with only a single sample of each
class, and it improves as recognized samples are added automatically to the
reference database (decision-directed adaptation).

The notions embodied in CAVIAR differ in fundamental ways from past
efforts at mobile, interactive recognition. Whether such an approach can be
equally effective in the domain of documents as it is for flowers and faces
is unproven, and adapting CAVIAR to document analysis requires further
research. There are, however, other projects that share similar goals and as-
sumptions. The Army Research Laboratory’s Forward Area Language Con-
verter (FALCon) system provides mobile optical character recognition (OCR)
and translation capabilities [122, 123], but, so far as we know, it has a tradi-
tional user interface. Research on camera-based document acquisition is grow-
ing [124, 125]. However, this work, like FALCon, treats the later processing
stages as though they will be fully automated.

Camera-based systems for locating and recognizing text in traffic signs
and providing translation services for visitors to foreign lands are somewhat
similar [126, 127], but their interaction paradigm is less integrated into classifi-
cation than CAVIAR’s. Reading systems for the vision-impaired likewise focus
on page-at-a-time processing, but offer an auditory user interface [128, 129]. A
somewhat similar notion is recent work on developing tools to support forensic
document analysis [130]. Forensic systems are, however, intended for off-line
use by domain experts (as opposed to opportunistic document readers whose
primary jobs lie elsewhere), and have no need for mobility.

Potential for Machine-Initiated Durable Interaction in DIA

We mention some DIA tasks where CAVIAR-like systems may prove advan-
tageous. We focus on scenarios where automated algorithms work accurately
only on exceptionally clean documents, but where a little interaction can
quickly produce acceptable results on ordinary material.

Binarization. Most OCR algorithms are designed for binarized images,
because all scripts avoid discrimination based on shades of gray or color.
Therefore documents must be converted to binary images after digitization
to 8-bit gray scale or RGB. Global binarization algorithms work only if the
foreground and background reflectance are uniform throughout the document,
which may not be the case if part of a folded documents suffers prolonged ex-
posure to sunlight, or if there are dark areas around the edges of a photocopy.
Local binarization algorithms set the threshold according to the distribution of
reflectance in a window translated through the page. The threshold estimates
of the relative density and configuration of the foreground (ink) and back-
ground invariably depend on explicit or implicit assumptions that hold only
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for a narrow class of documents. An operator can easily tell when binarization
fails. Setting the appropriate window size for local algorithmic thresholding
requires far less work than setting the threshold manually everywhere, and it
is more robust than fully automated local thresholding.

Page segmentation. Column, paragraph and line segmentation are other
instances where interaction may be effective. The first step is usually estimat-
ing global document skew. While accurate skew estimation and correction
algorithms have been developed for printed matter, they do not work well
on handwriting because the orientation of individual lines varies, the margins
are not straight, there may be only a few words on a page, or there may be
several columns of words or phrases at different angles. Humans can, however,
judge skew remarkably well, and convey this information to the computer by
a few well chosen stylus taps or by rotating a superimposed grid. After the
computer-proposed skew correction and line finding is corrected, the occa-
sional merged pair of lines – due to overlapping ascenders and descenders –
can be likewise rapidly separated.

Word segmentation. This is relatively easy for printed text, except for ex-
tremely tightly-set, micro-justified print. In handwriting, however, large spaces
may appear within words. Towards the end of a line, words are often squeezed
together. In Arabic and other scripts, some inter-letter spaces are mandatory.
Underlined groups of words can further complicate the task. Again, humans
can usually spot missed word boundaries even in unfamiliar languages and
scripts. If the writing lines are already properly segmented, then a simple
interface can be designed to correct linked and broken words.

Character recognition. An operator can provide global assistance to the
character recognition system. He or she may be able to recognize the lan-
guage or script of a document, indicate the average slant, and (in Western
scripts) the prevalent case. The operator may decide which of the available
lexicons would provide the best language model, and the chosen lexicons can
be automatically updated with entries from the processed documents that
have been deemed correct. Humans can also tell where perfect accuracy is im-
portant, as in telephone numbers, email addresses, and proper nouns and, if
recognition fails, enter them manually or select them from the top recognition
candidates. Finally, if the typeface is entirely outside the machine’s repertory,
it can cluster the character images, so that the operator need to label only a
representative member of each cluster [131].

Active Learning: Machine-Initiated Durable Interaction During
Training

During the training of pattern classifiers it is often feasible to provide labels for
the training patterns incrementally. The most ‘informative’ patterns can be
chosen iteratively, and their labels queried. This learning paradigm, wherein
the learner is allowed to choose the information to be acquired, is called active
learning and has been shown to significantly reduce the labeling cost, while
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preserving the accuracy of the trained classifier [132, 133]. Although we are
not aware of any formal application of active learning in DIA (as opposed
to document categorization), the training samples are often augmented when
classification errors arise. This practice is seldom documented.

4 Technology and Applications

In this section we briefly discuss recent technological advances that alter the
landscape of OCR and DIA and open up new applications.

4.1 Cameras and Displays

Solid state sensors are more sensitive to light than film. Current digital
consumer-grade cameras, PDA cameras, and even cell-phone cameras with
tiny lenses have comparable spatial sampling rate, geometric fidelity, and
higher photometric range than desktop scanners of just a few years ago. Top
of the line camera-phones already provide 5 mega pixels in color, which is
sufficient for most A4 pages. The effects of non-uniform illumination can be
mitigating by taking calibration pictures. We can therefore expect that most
document acquisition will soon take place with 2-D sensor arrays rather than
linear sensor sweep [134, 135].

High quality portable document acquisition systems (first for law enforce-
ment and military applications) will require personal OCR, DIA, and doc-
ument interpretation support systems [136]. Current defense interests are
mainly in foreign-language documents and non-Latin scripts. Since the person
acquiring the document is likely to have some expertise or at least interest
in its contents, and images are not acquired in large quantities, increased
interaction seems appropriate, at least in preprocessing. Interaction will be
enhanced by direct action which allows pointing faster and more accurately
than with a mouse, but hampered by the miniature screen. A letter-size doc-
ument is certainly not readable on any camera-back display. Zooming and
scrolling on both directions is impractical. Perhaps the new textile based dis-
plays will provide a satisfactory interface. Another alternative for interaction
is notebook-sized touch-sensitive displays like the Tablet-PC.

Another topic of rising interest is reading text in videos, including road
signs from car-mounted cameras [137, 138, 139, 140]. Such text is often in color
and exhibits more geometric and photometric distortion than text scanned
from paper. Furthermore, there is less context of every kind.

4.2 Web-Wide Data Accessibility

Rapidly increasing storage and communication capacity has led to a qualita-
tive change in the nature of document image collections available for experi-
mentation. The information retrieval community is alread making good use of
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web-based document collections to evaluate diverse approaches in the contests
of the Text Retrieval Conferences (TREC) Genomics Track, the Knowledge
Discovery and Data Mining Cup, and the Creative Assessment of Informa-
tion Extraction in Biology. Image test databases typically contain at least two
orders of magnitude fewer documents than test collections for information
retrieval, extraction, categorization, and screening (because about a million
bytes must be processed per page image, versus a few thousand bytes for an
encoded page).

Most DIA research has been based on ad hoc collections of documents
assembled by the researchers themselves because they are rich in aspects rel-
evant to their particular research task. Although the collection, annotation
and documentation of such test databases is not a trivial task, we seldom see
much reuse by different groups of researchers, except possibly in Chinese and
Japanese character recognition. This is likely to change as more and more
research data sets are posted on the web. Large enough benchmarks would
allow each test to be run on new, but statistically representative, samples.
This would help avoid tuning algorithms to the test set, which is an almost
inevitable consequence of open test collections of limited size [141].

Most applications must contend with highly repetitive material (for exam-
ple, some firms do nothing but convert telephone directories to computable
readable form). Nevertheless, many researchers strive for diversity within the
constraints imposed by their task. Although this approach tests the range of
applicability of the algorithms, it would also be desirable to experiment with
adaptation on large, relatively homogeneous sets of document images that can
now be readily found on the web.

Collection tools for DIA research require some database of digital libraries
with downloadable page images, and a search engine capable of searching the
database (or the whole web). The first step is the location of one or more col-
lections with images of the desired type. (It is not always easy to tell, just by
looking at a display, which pages are in image format, and which pages are in
coded format). Whether partial processing of documents, such as type catego-
rization, script or language recognition, contrast enhancement, skew detection
and removal, segmentation at various levels (e.g. paragraph, line, word), ta-
ble spotting, etc., is valuable by itself may be open to question, but there
are certainly a great many researchers and publications engaged in pursuing
such relatively narrow goal because end-to-end document processing requires
a large team with varied resources. It would therefore be valuable to develop
tools for the extraction of document collections with specific characteristics
including degree of homogeneity or heterogeneity from digital libraries, and
appropriate specifications of standard formats for intermediate results.

A small-scale study was reported on the Making of America collection
(part of Cornell University’s Digital Library), which at the time comprised 267
monographs (books) and 22 journals (equaling 955 serial volumes) for a total
of 907,750 pages, making it three orders of magnitude larger than the datasets
traditionally used in document analysis research (e.g., the UW1 CD-ROM).
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Two tasks were evaluated: optical character recognition and table detection.
In the case of the former, the textual transcriptions provided by the digital
library (primarily for retrieval purposes) were used as the ground-truth, while
for the latter, a visual inspection of the pages purported to contain tables was
conducted, enabling precision (but not recall) measurements [142].

4.3 Digital Libraries

The Million Book Project at Carnegie Mellon is already well over the half-way
mark. The Google consortium plans to digitize over 10.5 million unique books.
The non-profit Open Content Alliance, initiated by the Internet Archive and
Yahoo, proposes to provide broad access to non-proprietary world culture on
paper. The CMU project produces only page images, but Google is experi-
menting with commercial OCR systems in dozens of languages with a view
to provide searchable text. The European Library offers access to both digital
and non-digital resources of the 45 national libraries of Europe. Most cur-
rent digitization projects produce only page images: browsing digital libraries
accessible through university libraries suggests that only a small fraction of
their content has been transcribed. Crane addresses the issues of scale and
sampling of quasi-infinite collections [143].

These “cultural” collections, which convert old books to computer-readable
form, represent only part of the growth of digital libraries. Equally important
are specialized collections for research, assembled from journals, conference
proceedings and reports that are already in computer readable form. Some
well known examples are: ArXiv for Physics, DML for Mathematics, Cite-
Seer for Computer Science, and Medline for medicine, but there are growing
collections in every field of study.

In addition to web-wide access to cultural and technical collections, there
are many novel services. Among the most popular are music servers, ge-
nealogical searches, and software that allows organizing and sharing personal
photographs. Newspapers, radio and television stations offer access to their
archives, and specialized search engines have been developed for sound ef-
fects [144]. Some of these require audio interaction, while many game sites
and some web-based educational laboratories need a haptic modality. Never-
theless, we do not believe that multimedia will diminish the importance of
digital sources of conventional printed information, and of related technolo-
gies. Current developments at the intersection digital library development and
DIA include research opportunities in digitizing, coding, annotating, dissem-
inating and preserving library documents [145].

4.4 Interoperability

A simple ASCII or Unicode file may be sufficient output for experiments
on isolated digits and characters. But how should we code the output of an
equation recognition system? Most researchers use either a proprietary format
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or TeX [146, 147, 148]. Both lack a good transition to analytical and numerical
equation processing tools like Mathematica and Maple. A similar quandary
arises with table recognition. Again, we would like a format that allows a
smooth transition to a database query language. We favor Wang Notation,
which provides a layout-independent representation of the relations between
hierarchical category headers and content cells [149, 150]. For archival circuit
diagrams and engineering drawings, the natural choice seems to be one of the
widespread CAD formats (like Spice, Synopsis, and AutoCad).

Most business documents now carry XML tags, which facilitate their inter-
pretation by whatever community agrees to the underlying convention. XML
tags allows automated processing of equivalent fields, regardless of what they
are called on the document. For instance, one tag may specify to whom pay-
ment should be routed, regardless of whether the name field is called vendor,
provider, supplier, or seller. Digital libraries have evolved elaborate conven-
tions for tagging metadata, beginning with the Library of Congress MARC
format, and migrating from SGML to XML and the Dublin and SDLIP
Cores [151]. Perhaps it is finally time for our research community to agree
at least on XML schemes for “interoperability” [152]. This will also eventu-
ally help to relieve us from the tedious task of reading technical articles, which
will be delegated to indefatigable autonomous agents.

XML tags have no actual meaning or semantics. The notion of meaning
appears to require some kind of shared understanding of a topic. Since many
current attempts to formalize meaning are focused on ontologies, ontologi-
cal engineering may play a part in the extraction of concepts from docu-
ments [153].

4.5 Document Storage

We keep defining new units to keep up with the size and speed of storage
devices. We can store book-length files and high-resolution pictures on devices
that hang on our key chain. Whereas document image compression used to be
a popular field of research that led to impressive increases in the compression
ratio of mainly-text images, there is no longer any need to compress documents
at the “retail” level. Large archives are still compressed, but communication
links are so fast that they are often decompressed before retrieval.

Merely digitizing or coding something does not guarantee permanent ac-
cess. For instance, many records from WWII were kept on punched cards.
Not only did the punch cards disintegrate, but the card readers have disap-
peared. Magnetic tape and disk and optical media have a relatively short life.
Furthermore, the software required to read the coded data may be incompati-
ble with computers of another generation. It is not uncommon for engineering
drawings prepared on earlier Computer Aided Design systems to be rescanned
and revectorized, simply because the CAD software can no longer run on any
available computer. Diskettes, tape cassettes, and ZIP drives are already ob-
solete. Until recently, many organizations opted for archiving documents on
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microfilm or microfiche instead of digital media. However, at current storage
costs, it is plausible to keep everything on line. When the server is replaced,
everything is copied, so there is no need to worry about removable media for-
gotten in some cabinet. Is the solution to keep every document spinning for
ever?

5 Conclusions

This survey can be regarded only as samples of research selected from a large
population according to prior probabilities that correspond only to the au-
thors’ own research interests. It is far from exhaustive or representative, and
different topics are covered at different depths. In spite of the plethora of
citations, it suffers from small-sample effects. Some of our samples may be
distorted or mislabeled. As a training set for predicting research, it is highly
biased. Nevertheless, we take the opportunity to list our impressions, based
on imperfect training and grossly suboptimal recognition, of where the field
is heading, and of what research problems should be addressed to reach the
next stage.

5.1 Trends

Increasing processing power and storage capability by over a factor of 1000
during the last decade allows much greater use of context of all types. This
leads naturally to exploiting common-source language and style constraints,
i.e., field classification in OCR and joint processing of multiple tables, forms,
figures and other document components in DIA. Further decreases in er-
ror rates are unlikely without adaptive/dynamic field classification. Although
none of the underlying ideas are new, they can now be tested without ac-
cess to supercomputers, and perhaps even incorporated into commercial OCR
engines.

The availability of useful OCR and DIA software and inexpensive scanners
on desktop computer systems means that all necessary interaction, including
labeling training material, adjusting parameters, proofreading and corrections,
is likely to be carried out by folks who would rather be doing something else.
We do not believe that interaction can be eliminated in the foreseeable future,
i.e., that most tasks of interest can be fully automated. This increases the
premium on transparent and effective interaction. The demands on users can
be alleviated by systems capable of taking full advantage of machine-initiated,
durable interaction.

OCR and DIA capability is migrating to consumer-grade cameras, pocket
computers and even to camera-phones. Although good interfaces that replace
page-displays and keyboards are still lacking, many users will find these de-
vices convenient enough to accept a touch-sensitive screen-and-audio interface
for casual document capture.
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5.2 Open Problems

Although both style and language constraints have been extensively investi-
gated, we found little or no research on combining style, language constraints
and order-dependent shape context. How can these diverse constraints be
combined optimally?

In interactive dynamic recognition systems, both operator interventions
and classification results can permanently change some of the classification
parameters. Therefore the overall accuracy of such systems depends both on
the quality of the interaction and on the order of arrival of patterns to be
classified. How should such systems be evaluated?

Interactive visual classification benefits from the availability of a visual
model for mediating communications between the operator and the machine.
How can such visual models be constructed for new visual recognition tasks?

In all OCR and DIA systems with which we are familiar, feature sets are
constructed by trial and error. How can a complete OCR and DIA system for
a new language, script, and page layout, be generated automatically, starting
only with a collection of labeled pixel maps?
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83. Marosi, I., Tóth, L.: OCR Voting Methods for Recognizing Low Contrast
Printed Documents: in Proc. 2nd IEEE International Conference on Document
Image Analysis for Libraries, DIAL 2006, Lyon, France, April 2006.

84. Gold, B.: Machine recognition of hand-sent Morse code, IRE Trans. Informa-
tion Theory, vol. IT-5, pp. 17–24, March 1959.

85. Lucky, R. W.: Automatic Equalization for Digital Communication. Bell Sys-
tems Technical Journal, 44:547–588, 1965.



254 G. Nagy and S. Veeramachaneni

86. Lucky, R. W.: Techniques for adaptive equalization of digital communication
systems. Bell Systems Technical Journal, 45:255–286, February 1966.

87. Nagy, G., Tolaba, J.: Nonsupervised Crop Classification through Airborne Mul-
tispectral Observations, IBM Journal of Research and Development 16, #2, pp.
138–153, March 1972.

88. Shahshani, B.M., Landgrebe, D.A.: Asymptotic improvement of supervised
learning by utilizing additional unlabeled samples: normal mixture density
case, Proc. SPIE Vol. 1766, p. 143–155, Neural and Stochastic Methods in
Image and Signal Processing, Su-Shing Chen; Ed., 1992.

89. Dempster, A.P., Laird, M.M., Rubin, D.B.: Maximum Likelihood from Incom-
plete Data via the EM Algorithm, J Royal Statistical Soc., vol. 39, no. 1, pp.
1–38, 1977.

90. Redner, R.A., Walker, H.F.: Mixture densities, maximum likelihood, and the
EM algorithm, SIAM Review 26, 2, pp. 195–235, 1984.

91. Raudys, S., Jain, A.K.: Small Sample Size Effects in Statistical Pattern Recog-
nition: Recommendations for Practitioners, IEEE Trans. on Patt. Anal. and
Machine Intell., 13(3), 252–264, 1991.

92. Casey, R.G., Nagy, G.: Recognition of Printed Chinese Characters, IEEE
Transactions on Electronic Computers EC-15, #1, pp. 91–101, February 1966.

93. Liu, C.-L., Jaeger, S., Nakagawa, M.: On line recognition of Chinese characters:
the State of the Art, IEEE Trans. Pattern Analysis and Machine Intelligence
26, 2, pp. 198–213, (2004).

94. Casey, R.G., Nagy, G.: Autonomous Reading Machine, IEEE Transactions on
Computers C-17, #5, pp. 492–503, May 1968.

95. Casey, R.G., Nagy, G.: Advances in Pattern Recognition, Scientific American
224, #4, pp. 56–71, 1971.

96. Casey, R.G.: Text OCR by Solving a Cryptogram, Proc. Eighth Int’l Conf.
Pattern Recognition, pp. 349–351, 1986.

97. Nagy, G., Seth, S., Einspahr, K., Meyer, T.: Efficient Algorithms to Decode
Substitution Ciphers with Applications to OCR,Proceedings of International
Conference on Pattern Recognition, vol. 8, 352–355, Paris, October 1986.

98. Ho, T.K., Nagy, G.: OCR with no shape training,Proceedings of International
Conference on Pattern Recognition-XV, vol. 4, pp. 27–30, Barcelona, Septem-
ber 2000.

99. Ascher, R.N., Nagy, G.: A Means for Achieving a High Degree of Compaction
on Scan-Digitized Printed Text, IEEE Transactions on Computers C-23, #11,
pp. 1174–1179, October 1974.

100. Bottou, L. Haffner, P., Howard, P., Simard, P., Bengio, Y., LeCun, Y.: High
Quality Document Image Compression with DjVu, Journal of Electronic Imag-
ing, vol. 7, no. 3, pp. 410–425, July 1998.

101. Witten, I., Moffat, A., Bell, T.: Managing Gigabytes, Academic Press 1999.
102. Marinai, S., Marino, E., Soda, G.: Font Adaptive Word Indexing of Modern

Printed Documents, IEEE Trans. Pattern Recognition and Machine Intelli-
gence 28(8), pp. 1187–1199, August 2006.

103. Nagy, G.: Twenty Years of Document Image Analysis in IEEE PAMI, IEEE
Trans. Pattern Analysis and Machine Recognition 22(1), 38–62, January 2000.

104. Baird, H.S., Lopresti, D. P., editors: Human Interactive Proofs, Procs. Second
International Workshop, volume 3517 of LNCS, 2005.

105. Miller, G.: The magical number seven plus or minus two; some limits on our
capacity for processing information. Psychological Review, 63:81–97, 1956.



Adaptive and Interactive Approaches to Document Analysis 255

106. Sammon, J.W.: Interactive pattern analysis and classification, IEEE Trans.
Computers C-16, 594-616, July 1970.

107. Ho, T.K.: Exploratory Analysis of Point Proximity in Subspaces, Proceedings
of the 16th International Conference on Pattern Recognition, Quebec City,
August 11–15, 2002.

108. Cesarini, F., Marinai, S., Sarti, L., Soda, G.: Trainable table location in docu-
ment images, Proceedings of International Conference on Pattern Recognition-
XVI, Vol. 3, Quebec City, 236–240, 2002.

109. Edwards, J.. New interfaces: Making computers more accessible. IEEE Com-
puter, pages 12–14, December 1997.

110. Ancona, M., Locati, S., Mancini, M., Romagnoli, A., Quercini, G.: Comfortable
textual data entry for PocketPC: the WTX system. In Advances in Grapho-
nomics, Proceedings of International Graphonomics Symposium 2005, Salerno,
Italy, June 2005.

111. Langendorf, D.J.: Textware solution’s Fitaly keyboard v1.0 easing the burden
of keyboard input. WinCELair Review, February 1998.

112. Masui, T.: An efficient text input method for pen-based computers. In Proceed-
ings of the ACM Conference on Computer-Human Interaction, pages 328–335,
1998.

113. James, C.L., Reischel, K.M.: Text input for mobile devices: Comparing model
prediction to actual performance. In Proceedings of the ACM Conference on
Computer-Human Interaction, pages 365–371, 2001.

114. Mackenzie, S., Soukore, W.: Text entry for mobile computing: Models and
methods, theory and practice, Human-Computer Interaction, 17:147–198, 2002.

115. Nagy, G., Li, L., Samal, A., Seth, S., Xu, Y.: Integrated text and line-art ex-
traction from a topographic map.International Journal on Document Analysis
and Recognition, 2(4):177–185, June 2000.

116. English, W.K., Engelbart, D.C., Berman, M.L.: Display-selection techniques
for text manipulation. IEEE Transactions on Human Factors in Electronics,
HFE-8(1):5–15, March 1967.

117. Zou, J. Nagy, G.: Interactive visual pattern recognition,Proceedings of the 17th
International Conference on Pattern Recognition, XVI, IEEE Computer Soci-
ety Press, Vol. III, pp. 478–481, Aug. 2002.

118. Zou, J. Nagy, G.: Evaluation of model-based interactive ower recognition. In
Proceedings of the 17th International Conference on Pattern Recognition, vol-
ume 2, pages 311–314, (2004).

119. Cha, S.-H., Evans, A., Gattani, A., Nagy, G., Sikorski, J., Tappert, C., Thomas,
P., Zou, J.: Computer Assisted Visual Interactive Recognition (CAVIAR)
technology. In Proceedings of the IEEE Electro/Information Technology Con-
ference, May 2005. PDF

120. Nagy, G.: Interactive, Mobile, Distributed Pattern Recognition, Proc. of the
13th International Conference on Image Analysis and Processing ICIAP,
Cagliari, Italy, LNCS 3617, 37–49, 2005.

121. Zou, J. Nagy, G.: Human-computer interaction for complex pattern recogni-
tion problems, to appear in Data Complexity in Pattern Recognition, Springer
Verlag, Editors: Mitra Basu, Tin Kam Ho, Publication Date: Dec. 2006.

122. Holland, M., Schlesiger, C.: High-mobility machine translation for a battlefield
environment. In Proceedings of NATO/RTO Systems Concepts and Integration
Symposium, volume 15, pages 1–3, Monterey, CA, May 1998.



256 G. Nagy and S. Veeramachaneni

123. Swan, K.: FALCon: Evaluation of OCR and machine translation paradigms,
August 1999. http://www.arl.army.mil/seap/reports/kreport.pdf. (accessed on
8/8/06)

124. Fisher, F.: Digital camera for document acquisition. In Symposium
on Document Image Understanding Technology, Columbia, MD, 2001.
http://www.dtic.mil/matris/sbir/sbir022/a038.pdf. (accessed on 8/8/06)

125. Jacobs, C., Simard, P.. Low resolution camera based OCR. International Jour-
nal on Document Analysis and Recognition. To appear. (2004)

126. Fujisawa, H., Sako, H., Okada, Y., Lee, S.: Information capturing camera and
developmental issues. InProceedings of the Fifth International Conference on
Document Analysis and Recognition (ICDAR’99), pages 205–208, Bangalore,
India, September 1999.

127. Yang, J., Chen, X., Zhang, J., Zhang, Y., Waibel, A.: Automatic detection and
translation of text from natural scenes. In Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP ’02),
May 2002.

128. Hedgpeth, T., Rush, M., Black, J., Panchanathan, S.: The iCare project reader.
In Procs. Sixth International ACM SIGACCESS Conference on Computers and
Accessibility, October (2004).

129. Peters, J.P., Thillou, C., Ferreira, S.: Embedded reading device for blind people:
a user-centred design. In Procs. IEEE Emerging Technologies and Applications
for Imagery Pattern Recognition (AIPR 2004), pages 217–222, (2004).

130. Srihari, S., Shi, Z.: Forensic handwritten document retrieval system. In Procs.
First International Workshop on Document Image Analysis for Libraries
(DIAL’04), pages 188-194, (2004).

131. Xu, Y., Nagy, G.: Prototype Extraction and Adaptive OCR, IEEE Trans.
Pattern Analysis and Machine Intelligence Vol. 21, 12, pp. 1280–1296, Dec.
1999.

132. MacKay, D.: Information-based objective functions for active data selection.
Neural Computation, Vol. 4, No. 4, pp. 590–604, 1992.

133. Freund, Y., Seung, H.S., Shamir, E., Tishby, N.: Selective sampling using the
query by committee algorithm. Machine Learning 28, 133–168, 1997

134. Liang, J., Doerman, D., .Li, H.: Camera-based analysis of text and documents:
a survey, International Journal on Document Analysis and Recognition, 7(2-3),
84–104, July 2005.

135. Pollard, S., Pilu, M.: Building cameras for capturing documents, International
Journal on Document Analysis and Recognition, 7,(2–3), 123–137, July 2005.

136. Lopresti, D., Nagy, G.: Mobile Interactive Support System for Time-Critical
Document Exploitation, Procs. Symposium on Document Image Understand-
ing, College Park, MD November 2005.

137. Gandhi, T., Kasturi, R., Antani, S.: Application of planar motion segmentation
for scene text extraction. In Proc. of the ICPR, 2000, I: 445–449.

138. Myers, G., Bolles, R., Luong, Q.-T., Herson, J.: Recognition of text in 3-D
scenes. In Proc. of the 4th Symp. on Document Image Understanding Technol-
ogy, pp. 23–25, 2001.

139. Wu, W., Chen, X., Yang, J.: Incremental Detection of Text on Road Signs
from Video with Application to a Driving Assistant System, Proceedings of
ACM Multimedia 2004 (MM2004), pp. 852–859 (2004).



Adaptive and Interactive Approaches to Document Analysis 257

140. Yamaguchi, T., Maruyama, M., Miyao1, H., Nakano, Y.: Digit recognition in
a natural scene with skew and slant normalization, International Journal on
Document Analysis and Recognition, 7(2-3), 168–177, July 2005.

141. Salzberg, S.L.: On comparing classifiers: Pitfalls to avoid and a recommended
approach, Data Mining and Knowledge Discovery 1, 317–327, 1997.

142. Lopresti, D., Zhou, J.: Document analysis and the World Wide Web, In Pro-
ceedings of the Second IAPR Workshop on Document Analysis Systems, pages
651–659, Malvern, PA, Oct. 1996.

143. Crane, G.: What Do You Do with a Million Books? D-Lib Magazine 12(3),
ISSN 1082–9873, March 2006.

144. Rice, S.V., Bailey, S.M.: A Web Search Engine for Sound Effects, in Proceedings
of the 119th Convention of the Audio Engineering Society, Paper #6622, New
York, (2005) (PDF).

145. Nagy G., Lopresti, D.: Interactive Document Processing and Digital Libraries,
Proc. 2nd IEEE International Conference on Document Image Analysis for
Libraries, Lyon, France, IEEE Press, 2006.

146. Chou, P.A.: Recognition of equations using a two-dimensional stochastic
context-free grammar. In W. A. Pearlman, editor, Visual Communications and
Image Processing IV, vol. 1199 of SPIE Proceedings Series, 852–863, 1989.

147. Twaakyondo, H.M., Okamoto, M.: Structure analysis and recognition of mathe-
matical expressions, Proc. third Inter. Conf. on Document Analysis and Recog-
nition, ICDAR’95, Montral, Canada, pp. 430–437, 1995.

148. Zanibbi, R., Blostein, D., Cordy, J.R.: Recognizing Mathematical Expressions
Using Tree Transformation, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 24 (11), 1455–1467, 2002.

149. Wang, X.: Tabular abstraction, editing, and formatting, PhD dissertation, Uni-
versity of Waterloo, Canada, 1006.

150. Embley, D., Lopresti, D., Nagy, G.: Notes on Contemporary Table Recogni-
tion, Document Analysis Systems VII, 7th International Workshop, Procs. DAS
2006, Nelson, New Zealand, February 13–15, 2006, Horst Bunke, A. Lawrence
Spitz (Eds.) LNCS 3872, pp. 164–175 Springer 2006.

151. Macgregor, G., McCulloch, E.: Collaborative tagging as a knowledge organi-
sation and resource discovery tool, Library Review, Volume: 55 Issue: 5 Page:
291–300, 2006

152. Hitz, O., Robadey, L., Ingold, R.: Using XML in Document Recognition,
In Proc. Document Layout Interpretation and its Applications (DLIA’99),
Bangalore (India), 1999.

153. Tijerino, Y.A., Embley, D. W., Lonsdale, D. W., Nagy, G.: Towards Ontology
generation from tables, World Wide Web Journal 8, 3, Springer, September
2005.




