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Summary. Pattern classification methods based on learning-from-examples have
been widely applied to character recognition from the 1990s and have brought forth
significant improvements of recognition accuracies. This kind of methods include
statistical methods, artificial neural networks, support vector machines, multiple
classifier combination, etc. In this chapter, we briefly review the learning-based clas-
sification methods that have been successfully applied to character recognition, with
a special section devoted to the classification of large category set. We then discuss
the characteristics of these methods, and discuss the remaining problems in charac-
ter recognition that can be potentially solved by machine learning methods.

1 Introduction

The methods popularly used in the early stage of OCR (optical character
recognition) research and development are template matching and structural
analysis [1]. An intermediate approach between them is feature analysis, also
referred to as feature matching. The templates or prototypes in these early
methods were either designed artificially, selected or averaged from few sam-
ples. As the number of samples increases, these simple methods are insufficient
to accommodate the shape variability of samples, and so, are not able to yield
high recognition accuracy. To take full advantage of large sample data, the
character recognition community turned attention to learning-based classifi-
cation methods, especially artificial neural networks (ANNs) from the late
1980s and the 1990s. Due to the close connection between ANNs and statisti-
cal pattern recognition, statistical classification methods are also considered
seriously from then. Meanwhile, the research activities in pattern recognition
and machine learning communities are becoming close to each other. New
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learning methods, especially support vector machines (SVMs, and more gen-
erally, kernel methods) and ensemble methods (multiple classifier systems),
are now actively studied and applied in pattern recognition.

Learning methods3 have benefited character recognition tremendously:
they release engineers from painful job of template selection and tuning, and
the recognition accuracies have been improved significantly because of learn-
ing from large sample data. Some excellent results have been reported by,
e.g. [2, 3, 4]. While enjoying the benefits of learning-from-examples, we are
aware that the problem is far from being solved: the recognition accuracies
of either machine-printed characters on degraded image or freely handwritten
characters are insufficient; the existing learning methods do not work well
on large category set; huge sample data and ever-increasing data; recognition
errors cannot be eliminated even if we reject a large percentage of samples,
etc. The solution of these remaining problems should still rely on learning: to
better utilize knowledge and samples.

In this chapter, we first give a brief survey of classification methods in
character recognition. A special section is devoted to the classification of large
category set. We then discuss the strengths and weaknesses of these methods,
identify the needs of improved performance in character recognition, and sug-
gest some research directions of pattern classification that can help meet with
these needs. We will focus on the classification of isolated (segmented) char-
acters, though classification methods are also important for other tasks like
layout analysis and segmentation (see [5]). The classification of characters is
also important for segmentation, when over-segmentation-based or character-
model-based word/string recognition schemes are adopted. When we discuss
classification, it is assumed that pre-processing and feature extraction proce-
dures have been performed appropriately.

2 Brief Survey of Classification Methods

The classification methods for character recognition can be roughly categori-
zed into feature-vector-based methods and structural methods. Feature-vector-
based methods are prevailing, especially in off-line character recognition,
because of their simple implementation and low computational complexity.
Whereas a feature vector can be easily extracted from character images, for
structural methods, the extraction of components or strokes are rather diffi-
cult. Meanwhile, there is not an off-the-shelf method for learning structural
models from examples. Hence, we mainly discuss feature-vector-based meth-
ods, including statistical classification methods, ANNs, SVMs, and multiple
classifier combination. A comprehensive survey of classification methods has
been given by Jain et al. [6]. Statistical methods and ANNs are systematically

3 We refer to learning when classifier design is concerned, and refer to classification
when the task of recognition is concerned
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treated by Fukunaga [7] and Bishop [8], respectively. The textbook of Duda
et al. [9] emphasizes statistical methods, but covers other methods as well.
In the following, we briefly review the methods that have been successfully
applied to character recognition.

2.1 Statistical Methods

Statistical classification methods are rooted in the Bayes decision rule. In the
case of 0-1 loss, the input pattern is classified to the class of maximum a pos-
teriori (MAP) probability, which is computed by the Bayes formula from the
a priori probability (usually assumed equal for defined classes) and the con-
ditional probability density. Statistical classifiers are divided into parametric
ones and non-parametric ones depending on the probability density estimation
approach. Parametric classifiers assume for each class a known form of density
function, usually a Gaussian function, with unknown parameters estimated on
training samples by maximum likelihood (ML). Non-parametric classifiers ap-
proximate arbitrary density functions by interpolating the local densities of
training samples (Parzen window), or estimate the a posteriori probabilities
directly from samples (k-nearest neighbor (k-NN)). Non-parametric methods
are expensive in both storage space and execution, however. Though para-
metric methods assume restrictive density functions, they perform fairly well
for practical problems.

When assuming Gaussian density and equal a priori probabilities, the
Bayesian discriminant function is equivalent to a quadratic discriminant func-
tion (QDF), which is often taken as a standard classifier in benchmarking.
When further assuming that the Gaussian density functions of all classes
share a common covariance matrix, the QDF is reduced to a linear discrimi-
nant function (LDF). If more restrictively, the conditional density function is
spherical Gaussian with equal variance, the discriminant function is reduced
to the Euclidean distance from class mean, which was often taken in early fea-
ture matching methods. The QDF does not necessarily outperform the LDF
because it has as many parameters as square of feature dimensionality, and
so, is sensitive to the training sample size. The regularized discriminant anal-
ysis (RDA) method [10] alleviates this problem by smoothing the covariance
matrices. On the other hand, Kimura et al. replace the minor eigenvalues of
covariance matrix of each class with a constant [11]. The resulting modified
quadratic discriminant function (MQDF) involves less parameters and lower
computation than the QDF, and results in improved generalization accuracy
(accuracy on un-trained samples). The MQDF is popularly used, especially
in handwritten Chinese/Japanese character recognition. An improvement of
MQDF with elaborate parameter estimation is called as modified Bayes dis-
criminant function (MBDF) [12]. Another method that is often referred is
the projection distance [13], in which the distance of input pattern from a
linear subspace of each class serves a reasonable discriminant function. An
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improvement, called modified projection distance (MPD), has a functional
form similar to the MQDF [14].

Other than regularizing Gaussian density, the Gaussian mixture model
(mixture of Gaussians) can model multi-modal distributions. For high-
dimensional feature space as is the case of character recognition, however, it
does not generalize well. Using a mixture of low-dimensional linear subspaces
lowers the complexity of Gaussian mixture while maintaining the multi-modal
nature, and the classification performance can be largely improved, as have
been demonstrated in handwritten numeral recognition [15, 16].

Under the umbrella of statistical pattern recognition are also feature se-
lection and transformation methods. Feature transformation can reduce the
dimensionality of feature space and often improve the classification accuracy.
Principal component analysis (PCA) and Fisher discriminant analysis (FDA)
are two linear subspace learning methods that have been popularly used. PCA
is effective mainly in the recognition of small character set, whereas for large
character set, FDA is more efficient [12, 17]. Heteroscedastic discriminant
analysis and nonlinear dimensionality reduction have been actively studied in
pattern recognition, but are rarely applied to pratical character recognition.

Feature selection is also an active research field in pattern recognition and
machine learning. It benefits recognition when there is a large number of fea-
tures containing redundant and/or noisy ones. Extracting various types of
features followed by feature subset selection may yield higher performance
than classification on the original feature set or an artificially selected sub-
set. Promising results of handwritten digit recognition using feature subset
selection have been reported in [18].

Both parametric and non-parametric classifiers estimate the density pa-
rameters of each class independently without considering the separability of
different classes. Some methods have been proposed to improve the classifica-
tion accuracy by modifying the parameters according to the recognition errors
on training samples made by the ML classifier, like the LDA method [19] and
the mirror image learning method [20]. Parameter optimization methods by
error minimization will be reviewed in the context of neural networks.

2.2 Artificial Neural Networks

The connecting weights of artificial neural networks (ANNs) are adjustable to
fit an objective of functional approximation, e.g. minimum regression error.
Feedforward neural networks, including single-layer perceptron (SLP), mul-
tilayer perceptron (MLP), radial basis function (RBF) network, higher-order
neural network (HONNs), etc., have been widely applied to pattern recogni-
tion. Usually, each output node of the network corresponds to a class, and the
maximum output gives the decision of classification. The connecting weights
are usually adjusted to minimize the square error between the outputs and
target values on training samples (supervised learning). The minimum square
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error training algorithm for MLP is referred to as back-propagation (BP) in
particular. /indexback-propagation

The descriptions of supervised learning, SLP, MLP, and RBF network can
be found in most neural networks textbooks. The output of SLP can be viewed
as a linear discriminant function, with the weights estimated by error mini-
mization instead of maximum lieklihood (ML), and so, the SLP often gives
higher classification accuracy than the LDF with ML estimation. The MLP is
flexible to approximate nonlinear functions and capable of separating patterns
of complicated distributions. This power makes it a popular tool for pattern
classification. Many works in character recognition have taken the MLP as a
standard classifier or benchmark. The generalization performance of MLP can
be improved by weight decay, local connection (local receptive fields), weight
sharing, structure selection and stopping by cross-validation, etc. A network
using local connection and shared weights, called convolutional neural net-
work, has reported great success in character recognition [2, 21]. It directly
works on character image and the hidden nodes with local connection can be
viewed as trainable feature extractors. For feature vector-based classification,
using a modular network for each class can also improve the accuracy [22].

The RBF network has one hidden layer of Gaussian functions, which are
combined linearly by the output nodes. In early stage, the parameters of RBF
networks were usually estimated in two phases: Gaussian parameter estima-
tion by clustering and weight learning by error minimization. Since the clus-
tering procedure does not consider the speparability of patterns, the Gaussian
parameters learned this way do not lead to good classification performance.
A substantial improvement is to adjust all the parameters simultaneously by
error minimization [8]. This makes the RBF network competitive with the
MLP in classification accuracy.

The HONN is also referred to as functional-link network [23], polynomial
network, or polynomial classifier [24]. Its output is a weighted combination of
pattern features and their polynomial expansions. For high-dimensional fea-
tures, the number of (even 2nd-order) polynomial terms is extremely large.
This complexity can be reduced by dimensionality reduction before polyno-
mial expansion [25] or polynomial term selection [26]. A recently proposed
class-specific feature polynomial classifier (CFPC) improves the classification
accuracy by polynomial expansion on class-specific linear subspaces [27].

Some unsupervised learning methods have also been applied to pattern
recognition, among them are competitive learning for vector quantization
(VQ, can be used for learning prototypes for each class) and auto-association
network (an application to character recognition can be seen in [28]). On
the other hand, Zhang et al. learn mixtures of linear subspaces using neural
networks for classification [29].

The learning vector quantization (LVQ) algorithm of Kohonen [30] learns
class prototypes with the aim of separating the samples of different classes.
LVQ is a supervised learning method and can give higher classification ac-
curacy than VQ. We view VQ and LVQ as neural-like methods because like
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neural networks, the parameters (prototypes) are adjusted in online mode
(stochastic gradient descent, iteratively on training samples). Some improve-
ments of LVQ learn prototypes by minimizing classification or regression error
instead of heuristic adjustment [31].

The discriminative learning quadratic discriminant function (DLQDF) [32]
can also be viewed as a neural-like classifier. The DLQDF inherits the struc-
ture and initial parameters from the MQDF, but the parameters are optimized
on training samples by minimizing the classification error by stochastic gradi-
ent descent. In experiments of handwritten numeral recognition, the DLQDF
was shown to outperform most statistical and neural classifiers.

2.3 Kernel Methods

Kernel methods, including support vector machines (SVMs) [33, 34] primarily
and kernel PCA, kernel FDA, etc., are receiving increasing attention and have
shown superior performance in pattern recognition. Kernel methods use a
kernel function to represent the inner product of two patterns in expanded
nonlinear feature space (possibly of infinite dimensionality). Both training and
classification are performed via the kernel function without explicit access of
the nonlinear space. An SVM is a binary classifier with discriminant function
being the weighted combination of kernel functions over all training samples.
The weights (coefficients) are learned by quadratic programming (QP) with
the aim of maximizing the margin in feature space. After learning, the samples
of non-zero weights are called support vectors (SVs), which are stored and
used in classification. The maximal margin criterion of SVM learning leads
to good generalization performance, but the resulting large number of SVs
brings about heavy storage and computation in classification.

For multi-class classification, binary SVMs can be combined in two ways:
one-versus-all (one-against-others) or one-versus-one (pairwise). The pairwise
combination scheme was shown to outperform one-versus-all when using linear
kernel [35]. When nonlinear kernels are used, the one-versus-all scheme per-
forms sufficiently. In recent years, many results of character recognition using
SVM classification have been reported, mostly for small category set problems
like numeral recognition. The results (e.g. [4]) show that SVMs indeed yield
higher accuracies than statistical and neural classifiers, but the storage and
computation of large number of SVs are expensive. A strategy to alleviate the
computation cost is to use a statistical or neural classifier for selecting two
candidate classes, which are then discriminated by SVM [36]. Dong et al. used
a one-versus-all scheme for large set Chinese character recognition with fast
training [37]. They speed up the recognition by using a coarse classifier for
candidate selection, but cannot avoid the problem of storing large number of
SVs.
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2.4 Multiple Classifier Systems

Combining multiple classifiers has been long pursued for improving the accu-
racy of single classifiers [38, 39]. Rahman et al. give a survey of combination
methods in character recognition, including various structures of classifier or-
ganization [40]. Moreover, other chapters of this book are dedicated to this
subject. Parallel (horizontal) combination is more often adopted for high ac-
curacy, while sequential (cascaded, vertical) combination is mainly used for
accelerating large category set classification. According to the information
level of classifier outputs, the decision fusion methods for parallel combination
are categorized into abstract-level, rank-level, and measurement-level combi-
nation. Measurement-level combination takes full advantage of output infor-
mation, and many fusion methods have been proposed to it [41, 42, 43]. Some
character recognition results using multiple classifiers combined at different
levels are reported by Suen and Lam [44].

The classification performance of multiple classifiers not only depends on
the fusion strategy, but also relies on the complementariness (also referred
to as independence or diversity) of the classifiers. Complementariness can
be yielded by varying training samples, pattern features, classifier structure,
learning methods, etc. In recently years, methods for generating multiple clas-
sifiers (called an ensemble) by exploring the diversity of training samples based
on a given feature representation are receiving high attention, among them are
the Bagging [45] and the Boosting [46]. For character recognition, combining
classifiers based on different pre-processing and feature extraction techniques
is effective. Yet another effective method uses a single classifier to classify
multiple deformations (called perturbations or virtual test samples) of the in-
put pattern and combine the decisions on multiple deformations [47, 48]. The
deformations of training samples can also be used to train the classifier for
improving the generalization performance [48, 21].

3 Strategies for Large Category Set

Unlike numerals and English letters that have only tens of classes, the char-
acter sets of some oriental languages, like Chinese, Japanese, and Korean,
have thousands of daily-used characters. A standard of Chinese, GB2312-80,
contains 3,755 characters in the level-1 set and 3,008 characters in the level-2
set, 6,763 in total. A general-purpose Chinese character recognition system
needs to deal with an even larger set because those not-often-used characters
should be recognized as well.

For classifying a large category set, many classifiers become infeasible be-
cause either the training time or the classification time becomes unacceptably
long. Classifiers based on discriminative supervised learning (called discrim-
inative classifiers hereof), like ANNs and SVMs, are rarely used to directly
classify a large category set. Two divide-and-conquer schemes are often used
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to accelerate classification. In one scheme, a simple and fast classifier is used
to select a dynamic subset from the whole class set such that the input pat-
tern belongs to the subset with high probability. In another scheme, the class
set is divided into static (possibly overlapping) clusters and the input pattern
is assigned to one or several clusters, whose unification gives the subset of
classes for further discrimination. A hierarchical classification method using
both schemes was reported in [49]. Tree classifiers were ever pursued for fast
classification of large character set (e.g. [50]) but the accumulation of error
along hierarchies makes them insufficient in accuracy, especially for recogniz-
ing handwritten characters.

In divide-and-conquer schemes, the second-stage classifier for discriminat-
ing a subset of classes (called fine classifier) can be a quadratic classifier or a
discriminative classifier. The main advantage of quadratic classifiers is that the
parameters of each class are estimated independently using the samples of one
class only. The training time is hence linear with the number of classes (NoC).
Successful quadratic classifiers include the MQDF of Kimura et al. [11, 12]
and some modifications of Mahalanobis distance, which have lower complexity
and yield higher accuracy than the original QDF. A further improvement is
the compound discriminant functions [51, 14], which discriminate pairs of con-
fusing classes without extra parameters compared to the baseline quadratic
classifier. The asymmetric Mahalanobis distance of Kato et al. [52] yields su-
perior recognition accuracy, though with higher complexity than the MQDF.

The training time for a discriminative classifier is square of the NoC since
the total number of samples is linear with the NoC, and each sample is used
for training the parameters of all classes. To alleviate this problem for large
category set, neural networks are usually trained with a subset of samples. Fu
and Xu designed probabilistic decision-based neural networks for discriminat-
ing groups of classes divided by clustering [53], with each network trained with
the samples of the classes in a group. Kimura et al. design an MLP for each
of confusing classes, which are determined from the classification on training
samples using a statistical classifier [54]. Each MLP discriminates one target
class from some rivals that are confused to the target class by the statistical
classifier. In classification, an MLP is activated only when its target class is
the top-rank class given by the statistical classifier. Saruta et al. design an
MLP for each class, but the MLP is trained with the samples of a few classes
only [55].

Training SVMs with all samples for Chinese character recognition has been
attempted by Dong et al., who designed a fast training algorithm [37]. Though
the training with all samples is now feasible due to the increasing power of
computers, reducing the complexities of training, storage and classification is
concerned for practical applications.

As a discriminative classifier, the LVQ classifier has moderate complexity
for large category set [17, 31]. Fukumoto et al. has used a generalized LVQ
(GLVQ) algorithm for discriminatively adjusting the class means of quadratic
classifiers for large character set recognition [56]. The DLQDF [32], discrim-
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inatively adjusting all the parameters of quadratic classifier, provides more
accurate classification than LVQ, but its training is very computationally ex-
pensive for large category set. By introducing hierarchical rival class search
for acceleration, the training of DLQDF on large category set is feasible [57].
Compared to the ML-based MQDF, however, the DLQDF improves the ac-
curacy of handwritten Chinese character recognition only slightly [57, 58].

The mirror image learning method of Wakabayashi et al. [20], for adjusting
the covariance parameters of quadratic classifier, was recently applied to hand-
written Chinese character recognition with success [59]. Running quadratic
classification and modifying covariance matrices for five cycles on training
samples, the accuracy of MQDF on test samples was improved from 98.15%
to 98.38%. Using compound quadratic discriminant functions for pair discrim-
ination, the test accuracy was further improved to 98.50%.

Feature dimensionality reduction also plays an important role in large char-
acter set recognition, since it reduces the classifier complexity (both parameter
storage and computation) and possibly, improves the classification accuracy.
The Fisher discriminant analysis (FDA) has shown success in many recogni-
tion systems [12, 58], though it assumes equal covariance for all classes and
tends to blur the difference between nearby classes. Previous hetorescedas-
tic discriminant analysis (HDA) methods are computationally formidable for
large category set. A new HDA method was proposed recently and applies
effectively to Chinese character recognition [60].

A feature subspace learning method by error minimization, called discrim-
inative feature extraction (DFE) [61], has been tried to improve the accuracy
of Chinese character recognition [17, 62, 63, 57]. DFE optimizes the sub-
space vectors and classifier parameters simultaneously by stochastic gradient
descent. With a classifier of single prototype per class, the optimization for
thousands of classes is computationally feasible, and the simultaneous opti-
mization of class prototypes and subspace can be viewed as a combination of
LVQ and DFE. Using a quadratic classifier on the feature subspace learned by
DFE with a prototype classifier, the accuracy of handwritten Chinese char-
acter recognition is improved significantly compared to classification on FDA
subspace [57].

4 Comparison of Classification Methods

In this section we collect some character recognition results reported in the lit-
erature for comparing the performance of the classification methods reviewed
above, and we discuss the characteristics of these methods regarding their
impacts on practical applications.

4.1 Performance Comparison

The various experiments of character recognition differ in many factors such
as the sample data, pre-processing technique, feature representation, classifier
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structure and learning algorithm. It is hard to assess the performance of a spe-
cial classification or learning method from the recognition accuracies reported
by different works since the other factors are variable. Only a few works have
compared different classification/learning methods based on the same feature
data.

For handwritten character recognition, more experiments have been re-
ported for off-line recognition than for on-line recognition. Regarding the tar-
get of recognition, the 10 Arabic numerals are most often tested, while Chinese
characters or Japanese Kanji characters are often tested in large character set
recognition. The numeral databases that have been widely tested include the
CENPARMI, NIST Special Database 19 (SD19), MNIST, etc. The NIST SD19
contains huge number of character images, but researchers often use different
partitions of data for training and testing, unlike that the CENPARMI and
MNIST databases are partitioned into standard training and test sets.

Performance on Handwritten Numerals

We first collect some high recognition accuracies reported on standard numeral
databases, then summarize some results of classification on common feature
data.

The CENPARMI database contains 4,000 training samples and 2,000 test
samples. Early works using structural analysis hardly reached 95% of cor-
rect recognition on this test set [64]. In recently years, it is easy to achieve a
recognition rate over 98% by extracting statistical features and training clas-
sifiers. Suen et al. reported a correct rate 98.85% by training neural networks
on 450,000 samples [3]. By training with the standard 4,000 samples, correct
rates over 99% have been given by polynomial classifier (PC) and SVMs with
efficient image normalization and feature extraction [4, 65].

The MNIST database contains 60,000 training samples and 10,000 test
samples. Each sample was normalized to a gray-scale image of 20× 20 pixels,
which is located in a 28× 28 plane. The pixel values of normalized image are
used as feature values, on which different classifiers and learning algorithms
can be fairly compared. LeCun et al. collected a number of test accuracies
given by various classifiers [2]. A high accuracy, 99.30%, was given by a boosted
convolutional neural network (CNN) trained with distorted data. Simard
et al. improved both the distorted sample generation and the implementation
of CNN and resulted in a test accuracy 99.60% [21]. Instead of the trainable
feature extractors in CNN, extracting heuristically discriminating features also
lead to high accuracies. Without training with distorted samples, Teow and
Loe obtained a test accuracy 99.57% by extracting local structure features
and classification using triowise linear SVMs [66]. On 200D gradient direction
feature, Liu et al. obtained a test accuracy 99.58% by SVM classification,
99.42% by polynomial classifier, and over 99% by many other classifiers [4].

On the MNIST database, training classifiers without feature extraction
show worst performance. Since image pre-processing and feature extraction
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are both important to character recognition, a better scheme to compare clas-
sifiers is to train them on a common discriminating feature representation.
Holmström et al. compared various statistical and neural classifiers on PCA
features extracted from normalized images [67]. However, the PCA feature
does not perform satisfactorily. In the comparison studies of Liu et al. [68, 4],
the features used, chaincode and gradient direction features, are widely rec-
ognized and well-performing in practice. Their results show that parametric
statistical classifiers (especially the MQDF) generalize better than neural clas-
sifiers when training with small sample data, while neural classifiers outper-
forms when training with large sample data. The SVM classifier with RBF
kernel mostly gives the highest accuracy. The best neural classifier was shown
to be the polynomial classifier (PC), which is far less complex in storage and
execution than SVMs. And the RBF network mostly outperforms the MLP
when training all its parameters discriminatively.

A citation of error rates from [4] is shown in Table 1, where “4-grad”
and “8-grad” stand for 4-orientation and 8-direction gradient features, respec-
tively; and “SVC-poly” and “SVC-rbf” denotes one-versus-all support vector
classifiers with polynomial kernel and RBF kernel, respectively. In this table,
the RBF network is shown to be inferior to the MLP on the MNIST dataset,
but on many other datasets, the RBF network outperforms the MLP [4].

Table 1. A citation of error rates (%) on the MNIST test set

Feature pixel PCA 4-grad 8-grad

k-NN 3.66 3.01 1.26 0.97
MLP 1.91 1.84 0.84 0.60
RBF 2.53 2.21 0.92 0.69
PC 1.64 N/A 0.83 0.58
SVC-poly 1.69 1.43 0.76 0.55
SVC-rbf 1.41 1.24 0.67 0.42

Performance on Large Character Sets

In the area of Chinese/Japanese character recognition, a public handprinted
(constrained handwriting) database ETL9B has been widely tested. Various
classification methods have been proposed, but they have never been com-
pared on a common feature representation of samples.

The ETL9B database contains 200 samples for each of 3,036 classes, in-
cluding 2,965 Kanji and 71 hiragana characters. Early works often used 100
samples of odd number from each class for training and the even-numbered
samples for testing, and focused on image normalization and feature extrac-
tion for improving the performance of feature matching. Nonlinear normal-
ization based on line density equalization [69, 70] and edge direction feature
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extraction are now widely accepted. Using the class means of training sam-
ples as prototypes, the recognition accuracy on test samples was hardly over
95%. On this sample partitioning scheme, Saruta et al. achieved a correct
rate of 95.84% by using class-modular neural networks for fine classification
[55]. Using FDA for dimensionality reduction and GLVQ for optimizing the
class means, Fukumoto et al. reported a correct rate of 97.22% for Euclidean
distance, 98.30% for projection distance (PD) and 98.41% for modified PD
(MPD) [56]. The PD and MPD classifiers have comparable complexity with
the MQDF, however.

High accuracies have been reported on ETL9B by using quadratic classi-
fiers and SVMs. Nakajima et al. used 160 samples per class for training and
the remaining 40 samples for testing, and reported a correct rate 98.90% using
MPD and compound MPD [14]. Dong et al. tested on a partially different set
of 40 samples per class, and reported a correct rate 99.00% by using SVMs
trained on enhanced samples for fine classification [37]. Kimura et al. tested
on 40 samples per class in rotation and reported average rate 99.15% by us-
ing modified Bayes discriminant function on enhanced training samples [12].
Suzuki et al. [51] and Kato et al. [52] tested on 20 samples per class in rotation,
and both used partial inclination detection for improving normalization. Using
compound Mahalanobis distance for fine classification, Suzuki et al. improved
the recognition rate from 99.08% to 99.31%. Kato et al. reported a correct
rate 99.42% by using asymmetric Mahalanobis distance for fine classification.

Some works reported results on ETL9B as well as databases of handwritten
Chinese characters, say, HCL2000 [58] and CASIA [57]. The Chinese databases
are not available for free use, however. From the reported results, the Chinese
samples turn out to be more difficult to recognize than the samples of ETL9B.
Based on nonlinear normalization and gradient direction feature extraction,
the accuracies on ETL9B (with samples partitioned as [14]) are as high as
99.33% and 99.39%, while the accuracies on HCL2000 and CASIA databases
are 98.56% and 98.43%, respectively. The underlying classification methods
are DLQDF+compound quadratic discrminant [58] and DFE+DLQDF [57],
respectively.

4.2 Statistical vs. Discriminative Classifiers

We refer to statistical classifiers as those based on parametric or non-
parametric density estimation, and discriminative classifiers as those based
on minimum (regression or classification) error training. Discriminative clas-
sifiers include neural networks and SVMs, for which the parameters of one
class are trained on the samples of all classes or selected confusing classes.
For statistical classifiers, the parameters of one class are estimated from the
samples of its own class only. Non-parametric classifiers like Parzen window
method and k-NN rule are not practical for real-time applications, and so, are
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not considered in the following discussions. We compare the characteristics of
statistical and discriminative classifiers in the following respects.

• Complexity and flexibility of training. The training time of statistical clas-
sifiers is linear with the number of classes, and it is easy to add a new
class to an existing classifier since the parameters of the new class are esti-
mated from the new samples only. Also, adapting the density parameters
of a class to new samples is possible. In contrast, the training time of dis-
criminative classifiers is proportional to square of the number of classes,
and to guarantee the stability of parameters, adding new classes or new
samples need re-training with all samples.

• Classification accuracy. When training with enough samples, discrimina-
tive classifiers give higher generalization accuracies than statistical classi-
fiers. This is because discriminative classifiers are trained to separate the
samples of different classes in the feature space, while the pre-assumed
density form of statistical classifiers limits its capability to accommodate
large variability of samples.

• Dependence on training sample size. The generalization accuracy of regu-
larized statistical classifiers (like MQDF and RDA) are more stable against
the training sample size than discriminative classifiers (see [68]). On small
sample size, statistical classifiers can generalize better than discriminative
ones.

• Storage and execution complexity. At same level of classification accuracy,
discriminative classifiers tend to have less parameters than statistical clas-
sifiers. Hence, discriminative classifiers are more economical in storage and
execution.

• Confidence of decision. The discriminant functions of parametric statistical
classifiers are connected to the class conditional probability, and can be
easily converted to a posteriori probabilities by the Bayes formula. On the
other hand, the outputs of discriminative classifiers are directly connected
to a posteriori probabilities.

• Rejection capability. Classifiers of higher classification accuracies tend to
reject ambiguous patterns better, but not necessarily reject well outliers
(patterns out of defined classes) [68]. Parametric statistical classifiers are
resistant to outliers because of the assumption of compact density func-
tions, whereas discriminative classifiers are susceptible to outliers because
of open decision regions [71]. Outlier rejection is important to integrated
segmentation and recognition of character strings [72]. The rejection capa-
bility of discriminative classifiers can be enhanced by training with outlier
samples.

4.3 Neural Networks vs. SVMs

In addition to the common properties of discriminative classifiers as above,
neural classifiers and SVMs show different properties in the following respects.
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• Complexity of training. The parameters of neural classifiers are generally
adjusted by gradient descent with the aim of optimizing an objective func-
tion on training samples. By feeding the training samples a fixed number
of epochs, the training time is linear with the number of samples. SVMs
are trained by quadratic programming (QP), and the training time is gen-
erally proportional to the square of number of samples. Some fast SVM
training algorithms with nearly linear complexity are available, however.

• Flexibility of training. The parameters of neural classifiers (for character
classification) can be adjusted in string-level or layout-level training by
gradient descent with the aim of optimizing the global recognition perfor-
mance [2, 73]. SVMs can only be trained at the level of holistic patterns.

• Model selection. The generalization performance of neural classifiers is sen-
sitive to the size of the network structure, and the selection of an appro-
priate structure relies on cross-validation. The performance of SVMs also
depends on the selection of kernel type and kernel parameters, but this
dependence is not so influential as the structure selection of neural net-
works.

• Classification accuracy. SVMs have been demonstrated superior classifica-
tion accuracies to neural classifiers in many experiments.

• Storage and execution complexity. SVM learning by QP often results in
a large number of SVs, which should be stored and computed in classifi-
cation. Neural classifiers have much less parameters, and the number of
parameters are easy to control. For reducing the execution complexity of
SVMs, SV reduction techniques are effective, but may sacrifice the classi-
fication accuracy to some degree.

5 Remaining Problems and Future Works

Though tremendous advances have been achieved in applying classification
and learning methods to character recognition, there is still a gap between the
needs of applications and the actual performance, and some problems encoun-
tered in practice have not been considered seriously. We list these problems
and discuss the future research directions of classification and learning that
can potentially solve or alleviate them.

5.1 Improvements of Accuracy

Recognition rates over 99% have been reported to handwritten numeral recog-
nition and handprinted Chinese character recognition, but accuracies lower
than 90% are often reported to some difficult cases like English letters, cur-
sive words, unconstrained Chinese characters, etc. The recognition rate, even
as high as 99.9%, is never sufficient. Any improvement to accuracy will make
the recognition system more welcome by users. Improved accuracy can be
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achieved by carefully tuning every processing task: pre-processing, feature ex-
traction, sample generation, classifier design, multiple classifier combination,
etc. We hereof only discuss some issues related to classification and learning.

• Feature transformation. Feature transformation methods, including PCA
and FDA, have been proven effective in pattern classification, but no
method claims to find the best feature subspace. Generalized transfor-
mation methods based on relaxed density assumptions and those based on
discriminative learning are expected to find better feature spaces.

• Feature selection. Character classification has been mostly performed on a
limited number of features, which are usually artificially selected. Increas-
ing the number of features complicates the design of classifier and may
deteriorate the generalization performance. It is now possible to automat-
ically select a good feature set from huge number of candidate features.
With the aim of optimizing separability or description, the selected fea-
tures may lead to better classification than artificially selected ones.

• Sample generation and selection. Training with distorted samples has re-
sulted in improved generalization performance, but better methods of dis-
torted sample generation are yet to be found. Since very large number of
distorted samples can be generated and some of them may be mislead-
ing, the selection of samples then becomes important to guarantee the
efficiency and quality of training.

• Joint feature selection and classifier design. To select features and de-
sign classifier jointly may lead to better classification performance. The
Bayesian network belongs to such kind of classifiers and is now being stud-
ies intensively.

• Hybrid statistical/discriminative learning. A hybrid statistical/discrimina-
tive classifier may yielder high accuracy than both the pure statistical and
the pure discriminative classifier [74]. A way to design such classifiers is to
adjust the parameters of parametric statistical classifiers discriminatively
on training samples [75, 32], to improve both generalization accuracy and
resistance to outliers. Also, combining the decisions of statistical and dis-
criminative classifiers is preferred to combining similar classifiers.

• Ensemble learning. The performance of combining multiple classifiers pri-
marily relies on the complementariness of classifiers. Maximizing the di-
versity of classifiers is now receiving increasing attention. A heuristic is to
combine classifiers with different properties: training data, pre-processing,
feature extraction, classifier structure, learning algorithm, etc. Among the
methods that explore the diversity of data, the Boosting is considered as
the best ensemble classifier. It has not been widely tested in character
recognition yet.
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5.2 Reliable Confidence and Rejection

Since we cannot achieve 100% correct recognition in practice, it is desirable
to reject or delay the decision for those patterns with low confidence. There
maybe two kinds of confidence measures: class conditional probability-like
(conditional confidence) and posterior probability-like (posterior confidence).
Rejecting ambiguous patterns (those confused between different classes) is
generally based on posterior confidence, and rejecting outliers (those out of
defined classes) is generally based on conditional confidence. If we can estimate
the conditional confidence reliably, it would help reject ambiguous patterns
as well. Both confidence measures can be unified into the posterior probabil-
ities of open world: normalization to unity for defined classes and an outside
world. Transforming classifier outputs to probability measures facilitates con-
textual processing which integrates information from multiple sources. The
following ways may help improve the rejection capability of current character
recognition methods.

• Elaborate density estimation. Probability density estimation is a tradi-
tional problem in statistical pattern recognition, but is not well-solved
yet. Good density models for character classes can yield both high classi-
fication accuracy and rejection capability, especially outlier rejection. The
Gaussian mixture model is being studied intensively, and many efforts are
given to automatically estimating the number of components. For density
estimation in high-dimensional spaces, combining feature transformation
or selection may result in good classification performance. Density estima-
tion in kernel space would be a choice to explore nonlinear subspace.

• One-class classification. One-class classifiers separate one class from the
remaining world with parameters estimated from the samples of the target
class only. Using one-class classifiers as class verifiers added to a multi-class
classifier can improve rejection. The distribution of a class can be described
by a good density model (as discussed above) or support vectors in kernel
space [76]. Structural analysis, though do not compete with statistical
and discriminative classifiers in classification accuracy, may serve as good
verifiers.

• Hybrid statistical/discriminative learning.Hybrid statistical/discriminative
classifiers, as discussed in 5.1, may yield both high classification accuracy
and resistance to outliers. This principle of learning is to be extended to
more statistical models than Gaussian discriminant function and may be
combined with feature transformation.

• Multiple classifier combination. Different classifiers tend to disagree on
ambiguous patterns, so the combination of multiple classifiers can better
identify and reject ambiguous patterns [77]. Generally, combining comple-
mentary classifiers can improve the classification accuracy and the tradeoff
between error rate and reject rate.
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5.3 Improvements to Large Category Set

Discriminative learning methods have not been extensively applied to the
recognition of large character set. Using quadratic classifiers with sophisti-
cated normalization and feature extraction, high accuracies have been reported
to handprinted sample databases like the ETL9B. However many misrecog-
nized samples are easily recognized by humans and are potentially solvable
by discriminative learning. The probable reasons that neural networks could
not perform competitively (e.g. [55]) are: (1) There are few training samples
per class (less than 200 in ETL9B); (2) The class-modular network only takes
the samples of confusing classes as negative samples, so the resulting network
is not resistant to the samples of un-trained classes. The application of SVMs
to Chinese character recognition [37] is successful though its accuracy can-
not be compared directly to other works because of different pre-processing
and feature extraction procedures. To better utilize discriminative classi-
fiers for discriminating similar characters, several issues should be considered
seriously.

• Training sample size. To demonstrate the benefit of discriminative clas-
sifiers, we should use a large number of samples per class for training.
If using the discriminative classifier for discriminating a subset of classes
only, these selected classes should have more samples than other classes.
A new public database released in Japan, called JEITA-HP, contain more
than 500 samples per class. The Chinese database HCL2000 contains over
1,000 samples for each of 3,755 classes.

• Confusing set selection. The subset of confusing classes is usually selected
heuristically according to the classification results of a statistical classifier
on training samples. This procedure need to be considered more rigorously,
say, from probabilistic view.

• Type of discriminative classifier. When the discriminative classifier is used
to discriminate a subset of classes, the resistance to outliers is prefer-
able because the patterns of un-trained classes are often presented to the
discriminative classifier in execution. In this respect, the hybrid statisti-
cal/discriminative classifier is a good choice.

• Samples for training discriminative classifier. If a neural or SVM classifier
is used to discriminate a subset of classes, it should be trained with samples
of other classes too, in order to enhance the resistance to outliers.

• Fusion of cascaded classifiers. Using either a multi-class classifier or pair-
wise classifier for the second-stage classification, fusing the decisions of
first-stage and second-stage classifiers probabilistically will benefit the
global recognition accuracy.

5.4 Incremental Learning

As discussed in Section 4.2, when adding new classes or new samples to
defined classes, discriminative classifiers need to be re-trained with all the
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accumulated samples. Incremental learning for adapting existing classifiers to
new classes and new samples has rarely been considered in character recogni-
tion. Some published works of incremental learning in the neural networks
community can be referred for our application. Statistical models can be
adapted on new samples without forgetting past data distribution in the
framework of Bayesian learning, and hybrid statistical/discriminative mod-
els can also be stabilized to past distribution while adapting to new data. For
all classifier models, an ensemble classifier can be generated by combining new
classifiers trained with new samples with existing ones [78].

The samples for classifier training and adaptation are ever increasing. In
addition to adaptation to new labeled data, training with unlabeled data
is another topic that is intensively studied in machine learning, called semi-
supervised learning [79]. This learning scheme is applicable to character recog-
nition since we cannot attach class labels to all samples artificially.

5.5 Benchmarking of Methods

Fair comparison of classifiers is difficult because many classifiers, especially
neural networks, are flexible in implementation and their performance are af-
fected by human factors [80]. In the character recognition field, the comparison
of methods is more difficult because many processing steps (pre-processing,
feature extraction, classification) are involved. Even on experiments using the
same training and test sets, researchers often compare the performance at sys-
tem level: the final recognition rate obtained by integrating all the processing
steps. In these circumstances, it is hard to decide what method at which step
is the most influential to the final result.

To conduct a fair comparison of methods instead of overall systems, we
recommend to use standard techniques for all steps except the step under
comparison. For example, to compare classifiers, standard pre-processing and
feature extraction techniques should be applied to all the classifiers to com-
pare. Many techniques, e.g. nonlinear normalization and direction feature ex-
traction, are variable in implementation details. It is hoped that open source
codes of standard techniques for every processing step of character recognition
are released, such that other researchers can fairly compare the methods of a
special step. For comparing classifiers, to release common feature data instead
of sample images is meaningful.
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