
Machine Learning for Digital Document
Processing: from Layout Analysis to Metadata
Extraction

Floriana Esposito, Stefano Ferilli, Teresa M.A. Basile, and Nicola Di Mauro

Università degli Studi di Bari
Dipartimento di Informatica
Via Orabona, 4
70126 Bari - Italy
{esposito,ferilli,basile,ndm}@di.uniba.it

Summary. In the last years, the spread of computers and the Internet caused a
significant amount of documents to be available in digital format. Collecting them
in digital repositories raised problems that go beyond simple acquisition issues, and
cause the need to organize and classify them in order to improve the effectiveness and
efficiency of the retrieval procedure. The success of such a process is tightly related
to the ability of understanding the semantics of the document components and
content. Since the obvious solution of manually creating and maintaining an updated
index is clearly infeasible, due to the huge amount of data under consideration,
there is a strong interest in methods that can provide solutions for automatically
acquiring such a knowledge. This work presents a framework that intensively exploits
intelligent techniques to support different tasks of automatic document processing
from acquisition to indexing, from categorization to storing and retrieval.

The prototypical version of the system DOMINUS is presented, whose main char-
acteristic is the use of a Machine Learning Server, a suite of different inductive
learning methods and systems, among which the more suitable for each specific doc-
ument processing phase is chosen and applied. The core system is the incremental
first-order logic learner INTHELEX. Thanks to incrementality, it can continuously
update and refine the learned theories, dynamically extending its knowledge to han-
dle even completely new classes of documents.

Since DOMINUS is general and flexible, it can be embedded as a document
management engine into many different Digital Library systems. Experiments in a
real-world domain scenario, scientific conference management, confirmed the good
performance of the proposed prototype.

1 Introduction & Motivations

In the World Wide Web era, a huge amount of documents in digital format are
spread throughout the most diverse Web sites, and a specific research area,

F. Esposito et al.: Machine Learning for Digital Document Processing: from Layout Analysis

to Metadata Extraction, Studies in Computational Intelligence (SCI) 90, 105–138 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

106 F. Esposito et al.

focused on principles and techniques for setting up and managing document
collections in a digital form, quickly expanded. Usually, these large repositories
of digital documents are defined as Digital Libraries, intended as distributed
collections of textual and/or multimedia documents, whose main goal is the
acquisition and the organization of the information contained therein.

During the past years a considerable effort was spent in the development
of intelligent techniques in order to automatically transform paper documents
into digital format, saving the original layout with the aim of reconstruction.
Machine Learning techniques have been applied to attain this goal, and a suc-
cessful application in preserving cultural heritage material is reported in [1].

Today, most documents are generated, stored and exchanged in a digital
format, although it is still necessary to maintain the typing convention of
classical paper documents. The specific problem we will deal with consists in
the application of intelligent techniques to a system for managing a collection
of digital documents on the Internet; such a system, aimed at automatically
extracting significant information from the documents, is useful to properly
store, retrieve and manage them in a Semantic Web perspective [2]. Indeed,
organizing the documents on the grounds of the knowledge they contain is
fundamental for being able to correctly access them according to the user’s
particular needs. For instance, in the scientific papers domain, in order to
identify the subject of a paper and its scientific context, an important role
is played by the information available in components such as Title, Authors,
Abstract and Bibliographic references. This last component in particular, with
respect to others, is a source of problems both because it is placed at the end
of the paper, and because it is, in turn, made up of different sub-components
containing various kinds of information, to be handled and exploited in dif-
ferent ways.

At the moment we are not aware of techniques able to automatically an-
notate the layout components of digital documents, without reference to a
specific template. We argue that a process is still necessary to identify the
significant components of a digital document through three typical phases:
Layout Analysis, Document Image Classification and Document Image Un-
derstanding. As widely known, Layout Analysis consists in the perceptual or-
ganization process that aims at identifying the single blocks of a document and
at detecting relations among them (Layout Structure); then, associating the
proper logical role to each component yields the Document Logical Structure.
Since the logical structure is different according to the kind of document, two
steps are in charge of identifying such a structure: Document Image Classifica-
tion, aiming at the categorization of the document (e.g., newspaper, scientific
paper, email, technical report, call for papers) and Document Image Under-
standing, aiming at the identification of the significant layout components for
that class. Once the class as been defined it is possible to associate to each
component a tag that expresses its role (e.g., signature, object, title, author,
abstract, footnote, etc.). We propose to apply multistrategy Machine Learn-
ing techniques along these phases of document processing where the classical

Machine Learning for Digital Document Processing 107

statistical and numerical approaches to classification and learning may fail,
being not able to deal with the lack of a strict layout regularity in the variety
of documents available online.

The problem of Document Image Processing requires a first-order language
representation for two reasons. First, classical attribute-value languages de-
scribe a document by means of a fixed set of features, each of which takes
a value from a corresponding pre-specified value set; the exploitation of this
language in this domain represents a limitation since one cannot know a priori
how many components make up a generic document. Second, in an attribute-
value formalism it is not possible to represent and efficiently handle the re-
lationships among components; the information coming from the topological
structure of all components in a document turns out to be very useful in doc-
ument understanding. For instance, in a scientific paper, it is useful to know
that the acknowledgments usually appear above the references section and
in the end of the document, or that the affiliation of the authors is reported
generally at the beginning of the document, below or on the right of their
names.

The continuous flow of new and different documents in a Web repository
or in Digital Libraries calls for incremental abilities of the system, that must
be able to update or revise a faulty knowledge previously acquired for iden-
tifying the logical structure of a document. Traditionally, Machine Learning
methods that automatically acquire knowledge in developing intelligent sys-
tems, require to be provided with a set of training examples, belonging to a
defined number of classes, and exploit them altogether in a batch way.

Although sometimes the term incremental is used to define some learn-
ing method [3, 4, 5, 6], incrementality generally refers to the possibility of
adjusting some parameters in the model on the grounds of new observations
that become available when the system is already operational. Thus, classical
approaches require that the number of classes is defined and fixed since the
beginning of the induction step: this prevents the opportunity of dealing with
totally new instances, belonging to new classes, that require the ability to
incrementally revise a domain theory as soon as new data are encountered.
Indeed, Digital Libraries require autonomous or semi-autonomous operation
and adaptation to changes in the domain, the context, or the user needs. If any
of these changes happens, the classical approach requires that the entire learn-
ing process is restarted to produce a model capable of coping with the new
scenario. Such requirements suggest that incremental learning, as opposed to
classical batch one, is needed whenever either incomplete information is avail-
able at the time of initial theory generation, or the nature (and the kinds)
of the concepts evolves dynamically. E.g., this is the case of modifications in
time of typing style of documents that nevertheless belong to the same class
or of the introduction of a completely new class. Incremental processing allows
for continuous responsiveness to the changes in the context, can potentially
improve efficiency and deals with concept evolution. The incremental setting
implicitly assumes that the information (observations) gained at any given

108 F. Esposito et al.

moment is incomplete, and thus that any learned theory could be susceptible
of changes.

This chapter presents the prototypical version of DOMINUS (DOcument
Management INtelligent Universal System): such a system is characterized by
the intensive exploitation of intelligent techniques in each step of document
processing from acquisition to indexing, from categorization to storing and
retrieval. Since it is general and flexible, it can be embedded as a document
management engine into many different Digital Library systems. In the fol-
lowing, after a brief description of the architecture of DOMINUS, the results
of the layout analysis on digital documents are discussed, with the interest-
ing improvements achieved by using kernel-based approaches and incremental
first-order learning techniques: the satisfying results in document layout cor-
rection, classification and understanding allow to start an effective structural
metadata extraction. Then, the categorization, filing and indexing tasks are
described with the results obtained in the effective retrieval of scientific docu-
ments. Finally, the application of the system in a real-world domain scenario,
scientific conference management, is reported and discussed.

2 The Document Management System Architecture

This Section briefly presents the overall architecture of DOMINUS, reported
in Figure 1. A central role is played by the Learning Server, which intervenes
during different processing steps in order to continuously adapt the knowl-
edge taking into consideration new experimental evidence and changes in the
context. The corresponding process flow performed by the system from the
original digital documents acquisition to text extraction and indexing is re-
ported in Figure 2.

The layout analysis process on documents in digital format starts with
the application of a pre-processing module, called WINE (Wrapper for the
Interpretation of Non-uniform Electronic document formats), that rewrites
basic PostScript operators to turn their drawing instructions into objects (see
Section 3). It takes as input a digital document and produces (by an in-
termediate vector format) the initial document’s XML basic representation,
that describes it as a set of pages made up of basic blocks. Due to the large
number of basic blocks discovered by WINE, that often correspond to frag-
ments of words, it is necessary a first aggregation based on blocks overlapping
or adjacency, yielding composite blocks corresponding to whole words. The
number of blocks after this step is still large, thus a further aggregation (e.g.,
of words into lines) is needed. Since grouping techniques based on the mean
distance between blocks proved unable to correctly handle the case of multi-
column documents, such a task was cast to a multiple instance problem (see
Section 3.1) and solved exploiting the kernel-based method proposed in [7],
implemented in a Learning Server module that is able to generate rewriting
rules that suggest how to set some parameters in order to group together

Machine Learning for Digital Document Processing 109

Fig. 1. Document Management System Architecture

word blocks to obtain lines. The inferred rules will be stored in the Theories
knowledge base for future exploitation by RARE (Rule Aggregation REwriter)
and modification.

Once such a line-block representation is generated, DOC (Document
Organization Composer) collects the semantically related blocks into groups
by identifying the surrounding frames based on white spaces and the results
of the background structure analysis. This is an improvement of the original
Breuel’s algorithm [8], that finds iteratively the maximal white rectangles in
a page: here the process is forced to stop before finding insignificant white
spaces such as inter-word or inter-line ones (see Section 3.2).

At the end of this step, some blocks might not be correctly recognized. In
such a case a phase of layout correction is needed, that is automatically per-
formed in DOCG (Document Organization Correction Generator) by exploit-
ing embedded rules stored in the Theories knowledge base. Such rules were
automatically learned from previous manual corrections collected on some
document during the first trials and using the Learning Server.

Once the layout structure has been correctly and definitely identified, a
semantic role must be associated to each significant components in order to
perform the automatic extraction of the interesting text with the aim of im-
proving document indexing. This step is performed by DLCC (Document and
Layout Components Classifier) by firstly associating the document to a class
that expresses its type and then associating to every significant layout com-
ponent a tag expressing its role. Both these steps are performed thanks to
theories previously learned and stored in the Theories knowledge base. In

110 F. Esposito et al.

Fig. 2. Document Management System Process Flow

case of failure these theories can be properly updated. The theory revision
step is performed by a first-order incremental learning system that runs on
the new observations and tries to modify the old theories in the knowledge
base. At the end of this step both the original document and its XML rep-
resentation, enriched with class information and components annotation, is
stored in the Internal Document Database, IDD.

Finally, the text is extracted from the significant components and the
Indexing Server is called by the IGT (Index Generator for Text) module
to manage such information, useful for an effective content-based document
retrieval.

Machine Learning for Digital Document Processing 111

3 Layout Structure Recognition

Based on the ODA/ODIF standard, any document can be progressively parti-
tioned into a hierarchy of abstract representations, called its layout structure.
Here we describe an approach implemented for discovering a full layout hier-
archy in digital documents based primarily on layout information.

The layout analysis process starts with a preliminary preprocessing step
performed by a module that takes as input a generic digital document and
produces a corresponding vectorial description. An algorithm for performing
this task is PSTOEDIT [9], but it was discarded because it only applies to
PostScript (PS) and Portable Document Format (PDF) documents and returns
a description lacking sufficient details for our purposes.

Thus, a module named WINE has been purposely developed. At the mo-
ment, it deals with digital documents in PS or PDF formats, that represent
the current de facto standard for document interchange. The PostScript [10]
language is a simple interpretative programming language with powerful
graphical capabilities that allow to precisely describe any page. The PDF [11]
language is an evolution of PostScript that rapidly gained acceptance as a file
format for digital documents. Like PostScript, it is an open standard, enabling
integrated solutions from a broad range of vendors. In particular, WINE con-
sists of a rewriting of basic PostScript operators that turns the instructions
into objects. For example, the PS instruction to display a text becomes an
object describing a text with attributes for the geometry (location on the
page) and appearance (font, color, etc.). The output of WINE is a vector for-
mat describing the initial digital document as a set of pages, each of which
is composed of basic blocks. The descriptors used by WINE for representing a
document are the following:

box(id,x0,y0,x1,y1,font,size,RGB,row,string): a piece of text in the document,
represented by its bounding box;

stroke(id,x0,y0,x1,y1,RGB,thickness): a graphical (horizontal/vertical) line of
the document;

fill(id,x0,y0,x1,y1,RGB): a closed area filled with one color;
image(id,x0,y0,x1,y1): a raster image;
page(n,w,h): page information;

where: id is the block identifier; (x0, y0) and (x1, y1) are respectively the
upper-left/lower-right coordinates of the block (note that x0 = x1 for vertical
lines and y0 = y1 for horizontal lines); font is the the type font; size represents
the text size; RGB is the color of the text, line or area in #rrggbb format;
row is the index of the row in which the text appears; string is the text of the
document contained in the block; thickness is the thickness of the line; n rep-
resents the page number; w and h are the page width and height, respectively.
Figure 3 reports an extract of the vectorial transformation of the document.

Such a vectorial representation is translated into an XML basic represen-
tation, that will be modified as long as the layout analysis process proceeds,

112 F. Esposito et al.

Fig. 3. WINE output: Vectorial Transformation of the Document

in order to represent the document by means of increasingly complex aggre-
gations of basic components progressively discovered by the various layout
analysis phases.

3.1 A Kernel-Based Method to Group Basic Blocks

The first step in the document layout analysis concerns the identification of
rules to automatically shift from the basic digital document description to a
higher level one. Indeed, by analyzing the PS or PDF source, the “elementary”
blocks that make up the document, identified by WINE, often correspond
just to fragments of words (see Figure 3), thus a first aggregation based on
their overlapping or adjacency is needed in order to obtain blocks surrounding
whole words (word-blocks). Successively, a further aggregation starting from
the word-blocks could be performed to have blocks that group words in lines
(line-blocks), and finally the line-blocks could be merged to build a paragraph
(frames). As to the grouping of blocks into lines, since techniques based on
the mean distance between blocks proved unable to correctly handle cases of
multi-column documents, we decided to apply Machine Learning approaches
in order to automatically infer rewriting rules that could suggest how to set
some parameters in order to group together rectangles (words) to obtain lines.
To do this, RARE uses a kernel-based method to learn rewriting rules able to
perform the bottom-up construction of the whole document starting from the
basic/word blocks up to the lines. Specifically, such a learning task was cast to
a Multiple Instance Problem and solved exploiting the kernel-based algorithm

Machine Learning for Digital Document Processing 113

Fig. 4. Block Features

proposed in [7]. In our setting, each elementary block is described by means
of a feature-vector of the form:

[Block Name, Page No, Xi, Xf , Yi, Yf , Cx, Cy, H, W]

made up of parameters interpreted according to the representation in Figure 4,
i.e.:

• Block Name: the identifier of the considered block;
• Page No: the number of page in which the block is positioned;
• Xi and Xf : the x coordinate values, respectively, for the start and end

point of the block;
• Yi and Yf : the y coordinate values, respectively, for the start and end point

of the block;
• Cx and Cy: the x and y coordinate values, respectively, for the centroid of

the block;
• H, W : the distances (height and width) between start and end point of,

respectively, x and y coordinate values.

Starting with this description of the elementary blocks, the corresponding
example descriptions, from which rewriting rules have to be learned, are built
considering each block along with its Close Neighbor blocks: Given a block
On and the Close Neighbor blocks CNOnk, with their own description:

[On, Page No, Xni, Xnf , Yni, Ynf , Cnx, Cny, Hn, Wn],
[CNOnk, Page No, Xnki, Xnkf , Ynki, Ynkf , Cnkx, Cnky , Hnk, Wnk]

we represent an example E by means of the template [On, CNOnk], i.e.:
[New Block Name, Page No, Xni, Xnf , Yni, Ynf , Cnx, Cny,
Xnki, Xnkf , Ynki, Ynkf , Cnkx, Cnky , Dx, Dy]

where the New Block Name is a name for the new block built by appending
the names of both the original blocks, the information about the x and y
coordinates are the original ones and two new parameters, Dx and Dy, contain
the information about the distances between the two blocks.

Fixed a block On, the template [On, CNOnk] is used to find, among all
the word blocks in the document, every instance of close neighbors of the

114 F. Esposito et al.

considered block On. Such an example (set of instances) will be labelled by
an expert as positive for the target concept “the two blocks can be merged”
if and only if the blocks On and CNOnk are adjacent and belong to the same
line in the original document, or as negative otherwise. Figure 5 reports an
example of the selected close neighbor blocks for the block b1. All the blocks
represented with dashed lines could eventually be merged, and hence they will
represent the positive instances for the concept merge, while dotted lines have
been exploited to represent the blocks that could not be merged, and hence
will represent the negative instances for the target concept. It is worth noting
that not every pair of adjacent blocks has to be considered a positive example
since they could belong to different frames in the considered document. Such
a situation is reported in Figure 6. Indeed, typical cases in which a block
is adjacent to the considered block but actually belongs to another frame
are, e.g., when they belong to adjacent columns of a multi-column document
(right part of Figure 6) or when they belong to two different frames of the
original document (for example, the Title and the Authors frame - left part
of Figure 6).

In such a representation, a block On has at least one close neighbor
block and at most eight (CNOnk with k ∈ {1, 2, . . . , 8} or, top-down, from
left to right: top left corner, top, top right corner, right, bottom right corner,

Fig. 5. Close Neighbor blocks for block b1

Fig. 6. Selection of positive and negative blocks according to the original document:
one-column document on the left, two-columns document on the right

Machine Learning for Digital Document Processing 115

bottom, bottom left corner, left); the immediate consequence of the adopted
representation is that each single example is actually made up of a bag of
instances and, hence, the problem can be clearly cast as a Multiple Instance
Problem to be solved by applying the Iterated-Discrim algorithm [7] in or-
der to discover the relevant features and their values to be encoded in rules
made up of numerical constraints allowing to automatically set parameters to
group together words in lines. In this way, the XML line-level description of
the document is obtained, that represents the input to the next step in the
layout analysis of the document.

In the following, an example of the representation is provided. Given the
representation shown in Figure 5 for the identification of positive and negative
blocks, and the template for the example description, a possible representation
for the positive example (a set of instances) expressing the description “block
b35 can be merged with blocks b36,b34, b24, b43 if and only if such blocks
have the reported numeric features (size and position in the document)” is:

ex(b35) :-
istance([b35, b36, 542.8, 548.3, 447.4, 463.3, 553.7, 594.7,

447.4, 463.3, 545.6, 455.3, 574.2, 455.3, 5.5, 0]).
istance([b35, b34, 542.8, 548.3, 447.4, 463.3, 529.2, 537.4,

447.4, 463.3, 545.5, 455.4, 533.3, 455.3, 5.5, 0]).
istance([b35, b24, 542.8, 548.3, 447.4, 463.3, 496.3, 583.7,

427.9, 443.8, 545.5, 455.3, 540.1, 435.9, 0, 3.5]).
istance([b35, b43, 542.8, 548.3, 447.4, 463.3, 538.5, 605.4,

466.9, 482.8, 545.5, 455.3, 571.9, 474.8, 0, 3.5]).

3.2 Discovery of the Background Structure of the Document

The objects that make up a document are spatially organized in frames, de-
fined as collections of objects completely surrounded by white space. It is
worth noting that there is no exact correspondence between the layout notion
of a frame and a logical notion such as a paragraph: two columns on a page
correspond to two frames, while a paragraph might begin in one column and
continue into the next column.

The next step towards the discovery of the document logical structure,
after transforming the original digital document into its basic XML represen-
tation and grouping the basic blocks into lines, consists in performing the
layout analysis of the document by applying an algorithm named DOC, a
variant of that reported in [8] for addressing the key problem in geometric
layout analysis. DOC analyzes the whitespace and background structure of
each page in the document in terms of rectangular covers, and it is efficient
and easy to implement.

Once DOC has identified the whitespace structure of the document, thus
yielding the background, it is possible to compute its complement, thus

116 F. Esposito et al.

Fig. 7. DOC output: XML Representation of the Layout Structure of the Document
in Figure 3

obtaining the document content blocks. When computing the complement,
two levels of description are generated. The former refers to single blocks
filled with the same kind of content, the latter consists in rectangular frames
that may be made up of many blocks of the former type. Thus, the overall de-
scription of the document includes both kinds of objects, plus information on
which frames include which blocks and on the actual spatial relations between
frames and between blocks in the same frame (e.g., above, touches, etc.). This
allows to maintain both levels of abstraction independently. Figure 7 reports
the XML layout structure that is the output of DOC. Figure 8 depicts, along
with the original document, the graphical representation of the XML generated
by a two-column document trough the basic block vectorial transformation
and the grouped words/lines representation, obtained by means of a process
that is not a merely syntactic transformation from PS/PDF to XML.

It is worth to note that exploiting as-is the algorithm reported in [8] on the
basic representation discovered by the WINE tool in real document domains
turns out to be unfeasible due to the usually large number of basic blocks
discovered. Thus, the preliminary aggregation of basic blocks into words and
then of words into lines by means of the above procedure is fundamental
for the efficiency and effectiveness of the DOC algorithm. Additionally, some
modifications to the algorithm on which DOC is based deserve attention. First
of all, any horizontal/vertical line in the layout is considered as a natural

Machine Learning for Digital Document Processing 117

separator, and hence is already considered as background (along with all the
surrounding white space) before the algorithm starts. Second, any white block
whose height or width is below a given threshold is discarded as insignificant
(this should avoid returning inter-word or inter-line spaces). Lastly, since the
original algorithm tries to find iteratively the maximal white rectangles, taking
it to its natural end and then computing the complement would result again
in the original basic blocks coming from the previous steps and provided as
input. This would be useless, and hence raised the problem of identifying a
stop criterion to end this process.

Such a criterion was empirically established as the moment in which the
area of the new white rectangle retrieved, W (R), represents a percentage of
the total white area in the document page, W (D), less than a given threshold
δ, i.e.:
Let A(D) be the area of the document page under consideration, A(Ri), i =
1, . . . , n be the areas of the blocks identified thus far in the page, and W (D) =
A(D)−∑

i=1,...,n A(Ri) be the total white area in the page (computed as the
difference between the total page area and the area of the blocks in the page),
then the stop criterion is established as:

W (R)
W (D)

< δ

The empirical study was performed applying the algorithm in full on a set
of 100 documents of three different categories, and it took into account the
values of three variables in each step of the algorithm: number of new white
rectangles (black line in Figure 9) normalized between 0 and 1, ratio of the
last white area retrieved with respect to the total white area of the current
page of the document (bold line in Figure 9), ratio of the white area retrieved
so far with respect to the total white area of the current page of the document
(dashed line in Figure 9). The ratio of the white area retrieved, the dashed

Fig. 8. Line and final layout analysis representations of the generated XML structure
of a document

118 F. Esposito et al.

Fig. 9. Stop Criterion Analysis

line, is never equal to 1 (the algorithm does not find all the white area), but it
becomes stable before reaching 1/4 of the total steps of the algorithm. Such a
consideration is generally valid for all the documents except for those having
a scattered appearance. Such a point, highlighted in the figure with a black
diamond, is the best stop point for the algorithm since before it the layout
is not sufficiently detailed, while after it useless white spaces are found, as
shown with the black line in the graphic. Indeed, this is the point in which
all the useful white spaces in the document, e.g. those between columns and
sections, have been identified. Such a consideration is confirmed by analyzing
the trend of the ratio of the last white area retrieved with respect to the total
white area in the current page of the document (bold line), that decreases up
to 0 in such a point. This suggests to stop executing the algorithm just there.
It is worth noting that this value is reached very early, and before the size
of the structure containing the blocks waiting to be processed starts growing
dramatically, thus saving lots of time and space resources.

4 Structural Metadata Extraction

The organization of the document collection and the extraction of the inter-
esting text is a fundamental issue for a more efficient storage and retrieval
process in a digital library. To perform such tasks, one has to firstly identify
the correct type the document belongs to (e.g. understand whether the doc-
ument is a magazine, or a book, or a scientific paper) in order to file it in
the corresponding record. Then, the significant components of the document
have to be identified in order to extract from them the information needed to
categorize it. Since carrying out manually such a process is unfeasible due to
the huge amount of documents, our proposal is the use of a concept learning

Machine Learning for Digital Document Processing 119

system to infer rules able to correctly classify the document type along with its
significant components. The inborn complexity of the document domain, and
the need to express relations among components, suggests the exploitation
of symbolic first-order logic as a powerful representation language to handle
such a situation. Furthermore, based on the belief that in typical digital li-
braries on the Internet new documents continuously become available over
time and are to be integrated in the collection, we consider incrementality
as a fundamental requirement for the techniques to be adopted. Even more
difficult, it could be the case that not only single definitions turn out to be
faulty and need revision, but whole new document classes are to be included
in the collection as soon as the first document for them becomes available.
This represents a problem for most existing systems, that require not only all
the information on the application domain to be available when the learning
process starts, but also the set of classes for which they must learn definitions
to be completely defined since the beginning.

These considerations, among others about the learning systems available
in the literature, led to the exploitation of INTHELEX (INcremental THEory
Learner from EXamples) [12], whose most characterizing features are its in-
cremental nature, the reduced need of a deep background knowledge, the
exploitation of negative information and the peculiar bias on the generaliza-
tion model, which reduces the search space and does not limit the expressive
power of the adopted representation language.

4.1 The Learning System

INTHELEX is an Inductive Logic Programming [13] system that learns hi-
erarchical logic theories from positive and negative examples. It is fully in-
cremental (in addition to the possibility of refining previously generated
hypotheses/definitions, learning can also start from an empty theory), and
adopts DatalogOI [14] as a representation language: based on the Object Iden-
tity assumption (different symbols must denote different objects), it ensures
effectiveness of the descriptions and efficiency of their handling, while preserv-
ing the expressive power of the unrestricted case. It can learn simultaneously
multiple concepts/classes, possibly related to each other; it can retain all the
processed examples, so to guarantee validity of the learned theories on all of
them.

INTHELEX has a closed loop architecture (i.e., feedback on performance is
used to activate the theory revision phase [15]). The learning cycle it performs,
depicted in Figure 10, can be described as follows. A set of examples of the
concepts to be learned, possibly selected by an expert, is provided by the
environment. This set can be subdivided into three subsets (training, tuning,
and test set) according to the way in which examples are exploited during
the learning process. Specifically, training examples, previously classified by
the expert, are stored in the base of processed examples, and exploited to
obtain an initial theory that is able to explain them. In INTHELEX, such a

120 F. Esposito et al.

Fig. 10. Learning System Architecture

theory can also be provided by the expert, or even be empty. Subsequently, the
validity of the theory against new available tuning/test examples, also stored
in the example base as long as they are processed, is checked against the set
of inductive hypotheses, producing a decision that is compared to the correct
one. Test examples are exploited just to check the predictive capabilities of
the theory, intended as its behavior on new observations, without causing a
refinement of the theory in the case of incorrectness. Conversely, in case of
incorrectness on a tuning example, the cause of the wrong decision can be
located and the proper kind of correction chosen, firing the theory revision
process. In this way, tuning examples are exploited incrementally to modify
incorrect theories according to a data-driven strategy.

Specifically, INTHELEX incorporates two inductive refinement operators
to revise the theory, one for generalizing definitions that reject positive exam-
ples, and the other for specializing definitions that explain negative examples.
If an example is positive and not covered, the system first tries to general-
ize one of the available definitions of the concept the example refers to, so
that the resulting revised theory covers the new example and is consistent
with all the past negative examples. If such a generalization is found, then
it replaces the chosen definition in the theory, or else a new clause is chosen
to compute generalization. If no definition can be generalized in a consistent
way, the system checks whether the example itself can represent a new alter-
native (consistent) definition of the concept. If so, such a definition is added
to the theory, or else the example itself is added as an exception. If the ex-
ample is negative and covered, specialization is needed. Among the theory
definitions that concur in covering the example, INTHELEX tries to specialize

Machine Learning for Digital Document Processing 121

one by adding to it one or more conditions which characterize all the past
positive examples and can discriminate them from the current negative one.
In case of failure, the system tries to add the negation of a condition, that is
able to discriminate the negative example from all the past positive ones. If
this fails too, the negative example is added to the theory as an exception.
New incoming observations are always checked against the exceptions before
applying the rules that define the concept they refer to.

Another peculiarity in INTHELEX is the embedding of multistrategy oper-
ators that may help in solving the theory revision problem by pre-processing
the incoming information. It was operated according to the theoretical frame-
work for integrating different learning strategies known as Inferential Theory
of Learning [16]. Deduction refers to the possibility of better representing the
examples and, consequently, the inferred theories. INTHELEX exploits deduc-
tion to recognize known concepts that are implicit in the examples description
and explicitly add them to the descriptions. The system can be provided with
a Background Knowledge, supposed to be correct and hence not modifiable,
containing (complete or partial) concept definitions to be exploited during
deduction. Differently from abstraction (see next), all the specific information
used by deduction is left in the example description. Hence, it is preserved in
the learning process until other evidence reveals it is not significant for the
concept definition, which is a more cautious behavior. Abduction was defined
by Peirce as hypothesizing facts that, together with a given theory, could ex-
plain a given observation, and aims at completing possibly partial information
in the examples (adding more details). According to the framework proposed
in [17], this can be done by exploiting a set of abducibles (concepts about
which assumptions can be made, that carry all the incompleteness of the do-
main: if it were possible to complete their definitions then the theory would be
correctly described) and a set of integrity constraints (each corresponding to
a combination of conditions that is not allowed to occur, that provide indirect
information about abducibles). Abstraction is a pervasive activity in human
perception and reasoning, and aims at removing superfluous details from the
description of both the examples and the theory. Thus, the exploitation of
abstraction results in the shift from the language in which the theory is de-
scribed to a higher level one. According to the framework proposed in [18], in
INTHELEX abstraction takes place by means of a set of operators that replace
a number of components by a compound object, or decrease the granularity
of a set of values, or ignore whole objects or just part of their features, or
neglect the number of occurrences of some kind of object.

4.2 Representation Language

In order to work, the learning system must be provided with a suitable first-
order logic representation of the documents. Thus, once the layout compo-
nents of a document are automatically discovered as explained in Section 3,
the next step concerns the automatic description of the pages, blocks and

122 F. Esposito et al.

Fig. 11. Representation Plans according to [19]

frames according to their size, spatial [19] and inclusion relations. Dealing
with multi-page documents, the document description must be enriched with
page information such as: page number and position (whether it is at the be-
ginning, in the middle or at the end of the document, and specifically whether
it is the last one), total number of pages in the document. As pointed out,
the automatic process results in a set of content rectangles recognized in each
page. Such rectangles are described by means of their size (height and width),
their type (text, graphic, line) and their horizontal and vertical position in
the document. Furthermore, the algebraic relations ⊂ and ⊃ are exploited to
express the inclusion between frames and pages, e.g. contain(pagei, framej),
and between blocks and frames, e.g. contain(framej , blockk).

Another possible relation between rectangles is the spatial one. Given a
rectangle r, one can ideally divide the plan containing it in 25 parts (see Figure
11), and describe the relative position between the other rectangles and r in
terms of the plans they occupy with respect to r. Such a technique is applied
to every block belonging to a same frame and to all the adjacent frames, where
a rectangle is adjacent to another rectangle r if it is the nearest rectangle to r
in some plan. Additionally, such a kind of representation of the plans allows
also to express in the example description the topological relations [20, 19],
such as closeness, intersection and overlapping between rectangles. However,
the topological information can be deduced by the spatial relationships, and
thus it can be included by the system during the learning process by means of
deduction and abstraction. For instance, the following fragment of background
knowledge could be provided to the system to infer the topological relations
between two blocks or frames:

top_alignment(B1,B2):-

occupy_plane_9(B1,B2), not(occupy_plane_4(B1,B2)).

top_alignment(B1,B2):-

occupy_plane_10(B1,B2), not(occupy_plane_5(B1,B2)).

bottom_alignment(B1, B2) :-

occupy_plane_19(B1, B2), not(occupy_plane_24(B1, B2)).

bottom_alignment(B1, B2) :-

occupy_plane_20(B1, B2), not(occupy_plane_25(B1, B2)).

Machine Learning for Digital Document Processing 123

Fig. 12. Block representation

left_alignment(B1,B2):-

occupy_plane_17(B1,B2), not(occupy_plane_16(B1,B2)).

left_alignment(B1,B2):-

occupy_plane_22(B1,B2), not(occupy_plane_21(B1,B2)).

right_alignment(B1, B2) :-

occupy_plane_19(B1, B2), not(occupy_plane_20(B1, B2)).

right_alignment(B1, B2) :-

occupy_plane_24(B1, B2), not(occupy_plane_25(B1, B2)).

touch(B1,B2):-

occupy_plane_14(B1,B2), not(occupy_plane_13(B1,B2)).

touch(B1,B2) :-

occupy_plane_17(B1,B2), not(occupy_plane_13(B1,B2)).

touch(B1,B2) :-

occupy_plane_18(B1,B2), not(occupy_plane_13(B1,B2)).

touch(B1,B2):-

occupy_plane_19(B1,B2), not(occupy_plane_13(B1,B2)).

Thus, given the representation of the two blocks reported in Figure 12 where
block B2 occupies plans 14, 15, 19, 24, 25 while block B1 occupies plans 13, 14,
18, 19, and having in common the plans 14 and 19, the initial representation
will be made up, among other descriptors, by:

....., occupy_plane_14(b2, b1), occupy_plane_19(b2, b1),

and the system is able to recognize the topological relations above reported
giving the following:

..., touch(b2,b1), bottom_alignment(b2,b1),....

In this language unary predicate symbols, called attributes, are used to
describe properties of a single layout component (e.g. height and length),
while n-ary predicate symbols, called relations, are used to express spatial
relationships between layout components. A complete list of attributes and
relations is reported in Table 1.

124 F. Esposito et al.

Page Descriptors

page number(d,p): p is the number of current page in document d
last page(p): true if page p is the last page of the document
in first pages(p): true if page p belongs to the first n pages of the document

(n < 1/3 total number of the pages in the document)
in middle pages(p): true if page p is in the middle n pages of the document

(1/3 < n < 2/3 total number of the pages in the document)
in last pages pagine(p): true if page p belongs to the last n pages of the document

(n > 2/3 total number of pages in the document)
number of pages(d, n): n is the total number of pages in document d
page width(p,w): w is the page width (a value normalized in [0,1])
page height(p,h): h is the page height (a value normalized in [0,1])

Frame/Block Descriptors

frame(p,f): f is a frame of page p
block(p,b): b is a block of page p
type(b,t): t is the type of the block content (text, graphic, mixed, empty, verti-

cal line, horizontal line, oblique line)
width(b,w): w is the block width in pixels
height(b,h): h is the block height in pixels
x coordinate rectangle(r,x): x is the horizontal coordinate of the start point of the

rectangle (frame or block) r
y coordinate rectangle(r,y): y is the vertical coordinate of the start point of the

rectangle (frame or block) r

Topological Relation Descriptors

belong(b, f): block b belongs to frame f
pos upper(p, r): rectangle r is positioned in the upper part of page p
pos middle(p, r): the rectangle r is vertically positioned in the middle part of page

p
pos lower(p, r): the rectangle r is positioned in the lower part of page p
pos left(p, r): the rectangle r is positioned in the left part of page p
pos center(p, r): the rectangle r is horizontally positioned in the center part of page

p
pos right(p, r): the rectangle r is positioned in the right part of page p
touch(b1,b2): block b1 touches block b2 and vice versa
on top(b1,b2): block b1 is positioned on block b2
to right(b1,b2): block b1 is positioned on the right of block b2
top alignment(b1, b2): block b1 is over block b2
bottom alignment(b1, b2): block b1 is under block b2
left alignment(b1, b2): block b1 is on the left of block b2
right alignment(b1, b2): block b1 is on the right of block b2

Table 1. Attributes/Relations used to describe the documents

Machine Learning for Digital Document Processing 125

4.3 Layout Correction

Due to the fixed stop threshold (see section 3.2), it might happen that after the
layout analysis step some blocks are not correctly recognized, i.e. background
areas are considered as content ones and/or vice versa. In such a case a phase
of layout correction would be desirable. A first correction of the automatically
recognized layout can be performed by allowing the system user to manually
force further forward steps, or to go some step backward, in the algorithm
with respect to the stop threshold. This is possible since the system maintains
three structures that keep track of: all white rectangles found (W), all black
rectangles found (B) and all rectangles that it has not analyzed yet (N : if
no threshold is given all the rectangles are analyzed and N will be empty at
the end of processing). Hence, when the user is not satisfied by the discovered
layout because some background is missing, he can decide to go forward, and
the system will extract and process further rectangles from N . Conversely,
if the user notes that the system has found insignificant background pieces,
he can decide to go back and the system will correspondingly move blocks
between W , B and N .

However, such a solution is not always effective in case of lost significant
background rectangles (e.g., small areas that represent the cut point between
two frames), since they could be very small and hence it would be necessary to
perform many forward steps (during which the system would probably restore
insignificant white rectangles) before being able to retrieve them. Even worse,
the system could be completely unable to retrieve the needed background just
because it is too small to satisfy the constraints.

To solve both problems, DOCG, a module to improve the analysis per-
formed by DOC, was implemented. It uses machine learning techniques to
automatically infer rules for recognizing interesting background rectangles
among those discarded or not yet analyzed by the layout analysis algorithm,
according to their size and position with respect to the surrounding blocks.
Specifically, we first processed a number of documents, then presented to the
user all the blocks in the N structure and asked him to force as background
some rectangles that the system had erroneously discarded (even if such rect-
angles do not satisfy the constraints), and to remove insignificant rectangles
erroneously considered as background by the system. These blocks were then
considered as examples for the learning system in order to infer rules to au-
tomatically perform this task during future layout analysis processes. Again,
due to the need of expressing many relationships among blocks in order to
represent these situations, a first-order description language was required,
and INTHELEX was exploited as a learning system. Specifically, each example
described the block to be forced plus all the blocks around it, along with
their size and position in the document, both before and after the manual
correction.

126 F. Esposito et al.

Classification

After detecting the document layout structure, a logic role can be associated
to some of its components. In fact, the role played by a layout component
represents meta-information that could be exploited to tag the document and
help its filing and management within the digital library. The logical com-
ponents can be arranged in another hierarchical structure, which is called
logical structure. The logical structure is the result of repeatedly dividing the
content of a document into increasingly smaller parts, on the basis of the
human-perceptible meaning of the content. The leaves of the logical structure
are the basic logical components, such as authors and title of a magazine arti-
cle or the date and signature in a commercial letter. The heading of an article
encompasses the title and the author and is therefore an example of com-
posite logical component. Composite logical components are internal nodes of
the logical structure. The root of the logical structure is the document class.
The problem of finding the logical structure of a document can be cast as the
problem of associating some layout components with a corresponding logical
component.

The first component that can be tagged is the document itself, according to
the class it belongs to (document image classification step). Indeed, in general
many kinds of documents with different layout structures can be present in
one library, and they have to be exploited in different ways according to their
type. In turn, the type of a document is typically reflected by the layout
structure of its first page: e.g., humans can immediately distinguish a bill
from an advertisement or a letter or a (newspaper or scientific) article without
actually reading their content, but just based on their visual appearance.

For this reason, we decided to apply machine learning to infer rules that
allow to automatically classify new incoming documents according to their
first-page layout, in order to determine how to file them in the digital reposi-
tory and what kind of processing they should undergo next. This step turns
out to be very significant in a digital library, where a lot of different layout
structures for the documents, either belonging to different classes or even to
the same class, can be encountered. Again, the diverse and complex relation-
ships that hold between the layout components of a document suggested the
use of a first-order representation language and learning system. Additionally,
the possibility of continuously extending the repository with new classes of
documents or with modifications of the existing ones asked for incremental
abilities that INTHELEX provides.

Classification of multi-page documents is performed by matching the lay-
out structure of their first page against the automatically learned models of
classes of documents. These models capture the invariant properties of the
images layout structures of documents belonging to the same class. They con-
sist of rules expressed in a first-order logic language, so that the document
classification problem can be reformulated as a matching test between a logic
formula that represents a model and another logic formula that describes the

Machine Learning for Digital Document Processing 127

image/layout properties of the first page. The choice of a first-order logic
language fulfils the requirements of flexibility and generality.

Understanding

Once the class of a document has been identified on the basis of its first page
layout, its logical components that are present in any page can be located
and tagged by matching the layout structure of each page against models of
logical components. Indeed, if we assume that it is possible to identify logical
components by using only layout information, just as humans do, these models
capture the invariant layout properties of the logical components of documents
in the same class.

This is the task of the document image understanding phase, that must
necessarily follow document image classification since the kind of logical com-
ponents that can be expected in a document strongly depends on the docu-
ment class (e.g., in a commercial letter one expects to find a sender, possibly
a logo, an address, an object, a body, a date and a signature, whereas in a
scientific paper one could be interested in its title, authors and their affilia-
tions, abstract and bibliographic references). Once again, they are expressed
as rules in a first-order logic language. However, differently from document
classification, the document understanding problem cannot be effectively re-
formulated as a simple matching test between logic formulae. The association
of the logical description of pages with logical components requires a full-
fledged theorem prover, since it is typical that one component is defined and
identified in relation to another one.

5 Categorization, Filing and Indexing

One of the most important tasks in digital library management concerns the
categorization of documents. Effectiveness in performing such a task repre-
sents the success factor in the retrieval process, in order to identify documents
that are really interesting for the users. Indeed, a problem of most existing
word-based retrieval systems consists in their ineffectiveness in finding inter-
esting documents when the users exploit different words than those by which
the information they seek has been indexed. This is due to a number of tricky
features that are typical of natural language: different writers use different
words to describe the same idea (synonymy), thus a person issuing a query
in a search engine might use different words than those that appear in an in-
teresting document, and could not retrieve the document; one word can have
multiple meanings (polysemy), so a searcher can get uninteresting documents
concerning the alternate meanings. To face such a problem, the Latent Seman-
tic Indexing (LSI) technique [21] has been adopted, that tries to overcome the
weaknesses of term-matching based retrieval by treating the unreliability of
observed term-document association data as a statistical problem. Indeed,

128 F. Esposito et al.

LSI assumes that there exists some underlying latent semantic structure in
the data, that is partially obscured by the randomness of word choice with re-
spect to the retrieval phase, and that can be estimated by means of statistical
techniques.

As a weighting function, a combination of the local and global relevance
of terms has been adopted in the following way:

wij = L(i, j) ∗ G(i)

where L(i, j) represents the local relevance of the term i in the document j
and G(i) represents the global value of the term i. A good way to relate such
values is represented by the log entropy function, where:

L(i, j) = log(tfij + 1)

G(i) = 1 −
∑

j=1,...,N

pij ∗ log(pij)
log(N)

Here, N represents the number of documents and pij = tfij

gfi
, where tfij is the

local relevance for each term (the frequency of the term i in the document
j, TF) and gfi is the global relevance for each term (the frequency of the
term i in the whole set of documents, IDF). This way, the logarithmic value
of the local factor L(i, j) mitigates the effects due to large variations in term
frequencies, while the entropy function of the global factor G(i) mitigates the
noise that could be present in the documents.

The success of the retrieval step turns out to be strictly related to the
choice of the parameter k that represents the best new rank, lower than the
original one, to reduce the matrix. In our system, it is set as the minimum
number of documents needed to cover the whole set of terms. As to the re-
trieval phase, the following weighting function was applied to each element
of the query vector in order to create, for the query too, the correspondence
between the local and global factor:

qij = (0.5 +
0.5 ∗ tfi

maxtf
) ∗ log

N

n

where tfi is the frequency of term i in the query, maxtf is the maximum value
among all the frequencies, N represents the total number of documents and n
is the number of documents in which term i appears. In our system the cosine
similarity function [22] was exploited to perform the comparison between the
query vector and each document vector. Documents that show a high degree
of similarity according to the value computed are those interesting for the user
query.

However, the large amount of items that a document management sys-
tem has to deal with, and the continuous flow of new documents that could

Machine Learning for Digital Document Processing 129

be added to the initial database, require an incremental methodology to up-
date the initial LSI matrix. Indeed, applying from scratch at each update
the LSI method, taking into account both the old (already analyzed) and the
new documents, would become computationally inefficient. Two techniques
have been developed in the literature to update (i.e., add new terms and/or
documents to) an existing LSI generated database: Folding-In [23] and SVD-
Updating [24]. An analysis on the performance of both techniques shows that
SVD-Updating is more suitable to be exploited in a digital library environ-
ment. Indeed, the former is a much simpler alternative that uses the exist-
ing LSI matrix to represent new information but yields poor-quality updated
matrices, since the semantic correlation information contained in the new
documents/terms is not exploited by the updated semantic space. The latter
represents a trade-off between the former and the recomputation from scratch.

6 Exploitation and Evaluation

The system for automated digital documents processing was evaluated in each
step, from document acquisition to document indexing for categorization and
information retrieval purposes. Since the system can be embedded as a doc-
ument management engine into many different domain-specific applications,
in this section we focus on the Conference Management scenario. As we will
see DOMINUS can usefully support some of the more critical and knowledge-
intensive tasks involved by the organization of a scientific conference, such as
the assignment of the submitted papers to suitable reviewers.

6.1 Scientific Conference Management Scenario

Organizing scientific conferences is a complex and multi-faceted activity that
often requires the use of a Web-based management system to make some tasks
a little easier to carry out, such as the job of reviewing papers. Some of the fea-
tures typically provided by these packages are: submission of abstracts and pa-
pers by Authors; submission of reviews by the Program Committee Members
(PCMs); download of papers by the Program Committee (PC); handling of
reviewers preferences and bidding; Web-based assignment of papers to PCMs
for review; review progress tracking; Web-based PC meeting; notification of
acceptance/rejection; sending e-mails for notifications.

Let us now present a possible scenario. An Author connects to the Internet
and opens the submission page, where (after registering, or after logging in if
already registered) he can browse his hard disk and submit a paper by choos-
ing the corresponding file in one of the accepted formats. After uploading, the
paper undergoes the following processing steps. The layout analysis algorithm
is applied, in order to single out its layout components. Then, it is translated
into a first-order logic description and classified by a proper module according
to the theory learned so far for the acceptable submission layout standards. A

130 F. Esposito et al.

single conference can allow different layout standards for the submitted papers
(e.g., full paper, poster, demo) and it can be the case that many conferences
have to be managed at the same time. Depending on the identified class, a
further step consists in locating and labelling the layout components of inter-
est for that class (e.g., title, author, abstract and references in a full paper).
The text contained in each of such components is read, stored and used to
automatically file the submission record (e.g., by filling its title, authors and
abstract fields). If the system is unable to carry out any of these steps, such
an event is notified to the Conference administrators, that can manually fix
the problem and let the system complete its task. Such manual corrections are
logged and used by the incremental learning component to refine the avail-
able classification/labeling theories in order to improve their performance on
future submissions. Nevertheless, this is done off-line, and the updated theory
replaces the old one only after the learning step is successfully completed, thus
allowing further submissions in the meantime. Alternatively, the corrections
can be logged and exploited all at once to refine the theory when the system
performance falls below a given threshold.

The next step, which is currently under investigation, concerns the auto-
matic categorization of the paper content on the grounds of the text it con-
tains. This allows to match the paper topic against the reviewers’ expertise,
in order to find the best associations for the final assignment. Specifically, we
exploit the text in the title, abstract and bibliographic references, assuming
that they concentrate the subject and research field the paper is concerned
with. This requires a pre-processing step that extracts the meaningful content
from each reference (ignoring, e.g., page numbers, place and editors). Further-
more, the paper topics discovered in the indexing phase are matched with the
conference topics with the aim of supporting the conference scheduling.

6.2 Experimental Results

In the above scenario, the first step concerns document image classification
and understanding of the documents submitted by the Authors. In order to
evaluate the system on this phase, experiments were carried out on a fragment
of 353 documents coming from our digital library, made up of documents of
the last ten years available in online repositories (i.e., publishers’ online sites,
authors’ home pages, the Scientific Literature Digital Library CiteSeer, our
submissions, etc.) interesting for our research topics. The resulting dataset
is made up of four classes of documents: the Springer-Verlag Lecture Notes
in Computer Science (LNCS) series, the Elsevier journals style (ELSEVIER),
the Machine Learning Journal (MLJ) and the Journal of Machine Learning
Research (JMLR). Specifically, 70 papers were formatted according to the
LNCS style (proofs and initial submission of the papers), 61 according to the
ELSEVIER style, 122 according to the MLJ (editorials, Kluwer Academy and
Springer Science publishers) style and 100 according to the JMLR style.

Machine Learning for Digital Document Processing 131

Fig. 13. Two first pages from the JMLR class

It is worth to note that even documents in the same class might fall in
different layout standards, according to the period of publication, since the
publisher layout style may have changed in time. Thus, the changes in spatial
organization of the first page might affect the classification step (see Fig-
ure 13).

This calls for the incremental abilities of the incremental system that must
generate different concept definitions at the same time. Indeed, the system is
able, at any moment, to learn the layout description of a new class of document
style preserving the correct definition of the others. In this way a global theory
is built, containing the definitions of different document styles, that could be
used for many conferences.

Each document was described according to the features reported in Sec-
tion 4.2, and was considered as a positive example for the class it belongs to,
and as a negative example for all the other classes to be learned. The system
performance was evaluated according to a 10-fold cross validation methodol-
ogy, ensuring that the training and test sets contained the same percentage of
positive and negative examples. Furthermore, the system was provided with
background knowledge expressing topological relations (see Section 4.2), and
abstraction operators were used to discretize numeric values concerning size
and position into intervals expressed by symbolic descriptors. In the follow-
ing, an example of the abstraction rules for rectangles width discretization is
given.

width_very_small(X):-

rectangle_width(X, Y), Y >= 0, Y =< 0.023.

132 F. Esposito et al.

width_small(X):-

rectangle_width(X, Y), Y > 0.023, Y =< 0.047.

width_medium_small(X):-

rectangle_width(X, Y), Y >= 0.047, Y =< 0.125.

width_medium(X):-

rectangle_width(X, Y), Y > 0.125, Y =< 0.203.

A first experiment was run to infer the document classification rules; good
results were obtained in terms of runtime, predictive accuracy, number of the-
ory revisions (Rev = total revisions, Rev+ = revisions performed on positive
examples only, Rev- = revisions performed on negative examples). Further-
more, in order to evaluate the theory revision rate, some additional measures
were considered: the global percentage of revisions Rev on the whole train-
ing set (RevRate), the percentage of revisions Rev- on the positive examples
(RevRate+) and the percentage of revisions Rev- on the negative examples
(RevRate-)), as reported in Table 2. The lowest accuracy and poorest perfor-
mance was obtained on MLJ, that reflects the variety of corresponding paper
formats and typing styles.

Table 2. Learning System Performance: inferring rules for paper class identification

Class Rev Rev+ Rev- RevRate RevRate+ RevRate- Time (s.) Acc. %

LNCS 16 11.7 4.3 0.05 0.18 0.02 662.88 97.2
MLJ 28.2 18.7 9.5 0.08 0.17 0.04 2974.87 93.5
ELSEVIER 13.6 11.2 2.4 0.04 0.20 0.01 303.85 98.9
JMLR 12.7 10 2.7 0.04 0.11 0.01 1961.66 98.2

As to the revision rate, Figure 14 sketches the system performance with
respect to revisions and accuracy on the training phase in the classification
step in one fold (the nearest to the average reported in Table 2). The curve
represents the trend in accuracy as long as new examples are analyzed, while
the cuts represent the revision points. These points become very sparse as the
number of analyzed examples increases and the accuracy curve, after a first
phase in which many revisions have to be performed to restore the theory cor-
rectness, tends to increase towards a stable condition. The results concerning
class MLJ are perfectly consistent with the composition of the selected sam-
ple; the variety of typing conventions and formats underlying the documents
requires to extend the training set.

Once the classification step has been completed the image document un-
derstanding phase starts. The second experiment was performed on the title,
authors, abstract and references layout components of documents belonging to
the LNCS class. This class was chosen since it represents the layout standard
of papers submitted to the 18th Conference on Industrial & Engineering Ap-
plications of Artificial Intelligence & Expert Systems (IEA/AIE 2005) which

Machine Learning for Digital Document Processing 133

Fig. 14. Accuracy and revision rate of the learning system on tuning phase

has been used as a real testbed. In Table 3 the averaged results of the 10 folds
are reported, that can be considering satisfying from both the accuracy and
the time consuming point of view.

Table 3. Learning System Performance: inferring rules for components label
identification

Label Rev Rev+ Rev- RevRate RevRate+ RevRate- Time (s.) Acc. %

Title 16.5 13.7 2.8 0.06 0.22 0.01 217.60 95.3
Abstract 10.5 9.4 1.1 0.04 0.15 0.01 104.07 96.2
Author 14.6 11.1 3.5 0.05 0.17 0.02 146.48 98.6
Ref 15.4 10.6 4.8 0.06 0.17 0.02 150.93 97.4

A very hard task in the organization of Scientific Conferences is the re-
viewers assignment; due to the many constraints, manually performing such a
task is very tedious and difficult, and does not guarantee the best results. The
proposed document management system can assist the conference program
chair both in indexing and retrieving the documents and their associated top-
ics, although not explicitly reported by the paper authors. In the following we
present an experiment carried out on the above reported dataset consisting of

134 F. Esposito et al.

264 papers submitted to the IEA/AIE 2005 conference, whose Call for Papers
included 34 topics of interest.

Firstly, the layout of each paper in digital format was automatically an-
alyzed in order to recognize the significant components. In particular, the
abstract and title were considered the most representative of the document
subject, and hence the corresponding text was extracted to apply the LSI
technique. The words contained therein were stemmed according to the tech-
nique proposed by Porter [25], resulting in a total of 2832 word stems. Then,
the same procedure was applied to index the reviewers expertise according
to the titles of their papers appearing in the DBLP Computer Science Bibli-
ography repository (http://www.informatik.uni-trier.de/∼ley/db/), resulting in
2204 stems.

In both cases, the LSI parameters were set in such a way that all the
conference topics were covered as different concepts. The experiment consisted
first in performing 34 queries, each corresponding to one conference topic,
both on papers and on reviewers, and then in associating respectively to each
paper/reviewer the first l results of the LSI queries. The results obtained on
document topic recognition showed that considering 88 documents per query
is enough to cover the whole set of documents. However, considering just 30
documents per query, 257 out of 264 documents (97.3%) were already assigned
to at least one topic. This is an acceptable trade-off since the remaining 7
documents can be easily assigned by hand. Moreover, 30 documents are a
good choice to assure the equidistribution over the document. Interestingly,
more than half of the documents (54.7%) concern 2 ÷ 4 topics so confirming
the extremely specialized nature of the conference and the high correlation
between the topics. The results, compared to the conference program chair
indications, showed a 79% accuracy on average. Setting l = 10, the automatic
assignment of the topics to the reviewers resulted in 65% accuracy compared
to the suggestions of the conference program chair.

Lastly, the expert system GRAPE (Global Review Assignment Processing
Engine) [26] has the task of automatically assigning the papers to reviewers
taking into account specific knowledge (i.e., conflicts, nationality, common
interest, etc.). The final assignments were considered very useful suggestions
by the experts so confirming the goodness of the indexing process and of the
topic associations.

7 Related Work

Image Document analysis refers to algorithms and techniques developed in
order to obtain a computer-readable description of a scanned document [27].

While an impressive amount of contribution has been presented applied to
scanned image documents, only recently a few works have faced the problem
of handling digital document formats such as PDF and PS. Most of them aim
at extracting (some part of) the document content by means of a syntactic

Machine Learning for Digital Document Processing 135

parsing of the PDF [28, 29, 30] or at discovering the background by means of
statistical analyses applied to the numerical features of the documents and its
components [31]. A further step towards digital document analysis as opposed
(but complementary) to document image analysis is represented by the work
reported in [32]; here, a method is proposed for the extraction of the logical
structure from PDF files by examining the visual appearance and geometric
position of text and image blocks distributed over the whole document and
exploiting the information on line spacing and font usage in order to bridge the
semantic gap between the document image and its content. In this work, the
PDF file is firstly decomposed by syntactically parsing it, then grouping words
into lines (by means of APIs provided by the Acrobat Exchange viewer), lines
in bins (based on their point size, font name and their coordinates in the page)
and finally bins in blocks. Successively, relationships (greater/lesser status)
among two blocks are discovered by analyzing their features (font name and
point size) and labels of the discovered blocks are identified by applying (and
possibly modifying after new blocks are evaluated) a set of rules purposely
codified by a domain expert for the class/tags at hand.

Recently, some works [33, 34] proposed a strategy that mixes the layout
extraction methods from digital documents with the most widely used docu-
ment analysis techniques. The approach consists into three steps:

• parsing syntactically the PDF file to extract the document primitives (text,
image or graphics);

• recognizing and grouping homogeneous entities among the extracted prim-
itives;

• extracting the logical layout structure by means of text entities labelling
(e.g., title, author, body) and document modelling in which the entities
are projected in a document model.

Here, for each class of documents an expert provides a model, representing its
grammar, i.e. a hierarchy of logical entities.

A similar approach which uses grammars to annotate document compo-
nents is proposed in [35]. Here, based on the model provided by an expert, a
set of possible roles is assigned to each layout object. Then, they are collected
into more complex objects until the logical structure is produced.

All the approaches reported above perform geometric layout analysis by
means of a syntactic parsing of the document. Then, the mapping between
the geometric and logical structure is supported by using a template of the
document, a grammar representing its layout, or an expert system whose
knowledge base must be provided by a human expert.

8 Conclusion

The huge amount of documents available in digital form and the flourishing
of digital repositories raise problems about document management, concerned

136 F. Esposito et al.

with effectiveness and efficiency of their successive retrieval, that cannot be
faced by manual techniques. This paper proposed DOMINUS, an intelligent
system characterized by the intensive application of Machine Learning tech-
niques as a support to all phases of automated document processing, from
document acquisition to document understanding and indexing. The core of
DOMINUS is the Learning Server, a suite of different inductive learning meth-
ods and systems, among which the more suitable for the specific document
processing phase is chosen and applied. The most interesting is INTHELEX, a
proprietary incremental learning system able to handle structural descriptions
and to automatically revise first-order theories.

Experiments in the real-world domain of automatic Scientific Conference
Management have been presented and discussed, showing the validity of the
proposed approach.

Several future work directions are planned for the proposed system. First
of all, the automatic processing of bibliographic references, that can improve
the identification of the document subject and context. Secondly, the use of
ontologies in text processing in order to improve the effectiveness of content-
based retrieval.

References

1. Esposito, F., Malerba, D., Semeraro, G., Ferilli, S., Altamura, O., Basile,
T.M.A., Berardi, M., Ceci, M., Mauro, N.D.: Machine learning methods for
automatically processing historical documents: From paper acquisition to XML
transformation. In: Proceedings of the First International Workshop on Docu-
ment Image Analysis for Libraries (DIAL 2004). (2004) 328–335

2. Berners Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
284(5) (2001) 34–43

3. Utgoff, P.E.: Incremental induction of decision trees. Machine Learning 4(2)
(1989) 161–186

4. Cauwenberghs, G., Poggio, T.: Incremental and decremental support vector ma-
chine learning. In: Advances in Neural Information Processing Systems (NIPS
2000). Volume 13., Cambridge, MA, USA, MIT Press (2000) 409–415

5. Solomonoff, R.: Progress in incremental machine learning. In: NIPS Workshop
on Universal Learning Algorithms and Optimal Search, Dec. 14, 2002, Whistler,
B.C., Canada, 27 pp. (2003)

6. Wong, W., Fu, A.: Incremental document clustering for web page classifica-
tion. In: IEEE 2000 Int. Conf. on Info. Society in the 21st century: emerging
technologies and new challenges (IS2000), Nov 5-8, 2000, Japan. (2000)

7. Dietterich, T.G., Lathrop, R.H., Lozano-Perez, T.: Solving the multiple instance
problem with axis-parallel rectangles. Artificial Intelligence 89(1-2) (1997) 31–
71

8. Breuel, T.M.: Two geometric algorithms for layout analysis. In: Workshop on
Document Analysis Systems. (2002)

9. Glunz, W.: pstoedit - a tool converting postscript and PDF files into various
vector graphic formats (2007) (http://www.pstoedit.net).

Machine Learning for Digital Document Processing 137

10. Adobe Systems Inc.: PostScript language reference manual – 2nd ed. Addison
Wesley (1990)

11. Adobe Systems Inc.: PDF Reference version 1.3 – 2nd ed. Addison Wesley
(2000)

12. Esposito, F., Ferilli, S., Fanizzi, N., Basile, T.M., Di Mauro, N.: Incremental
multistrategy learning for document processing. Applied Artificial Intelligence:
An Internationa Journal 17(8/9) (2003) 859–883

13. Muggleton, S., Raedt, L.D.: Inductive logic programming: Theory and methods.
Journal of Logic Programming 19/20 (1994) 629–679

14. Semeraro, G., Esposito, F., Malerba, D., Fanizzi, N., Ferilli, S.: A logic frame-
work for the incremental inductive synthesis of datalog theories. In Fuchs, N.,
ed.: Proceedings of the 7th International Workshop on Logic Program Synthesis
and Transformation. Volume 1463 of LNCS., Springer (1998) 300–321

15. Becker, J.: Inductive learning of decision rules with exceptions: Methodology
and experimentation. Master’s thesis, Dept. of Computer Science, University of
Illinois at Urbana-Champaign, Urbana, Illinois (1985) B.S. diss., UIUCDCS-F-
85-945

16. Michalski, R.: Inferential theory of learning. developing foundations for mul-
tistrategy learning. In Michalski, R., Tecuci, G., eds.: Machine Learning. A
Multistrategy Approach. Volume IV. Morgan Kaufmann (1994) 3–61

17. Kakas, A., Mancarella, P.: On the relation of truth maintenance and abduction.
In: Proceedings of the 1st Pacific Rim International Conference on Artificial
Intelligence, Nagoya, Japan (1990)

18. Zucker, J.D.: Semantic abstraction for concept representation and learning. In
Michalski, R.S., Saitta, L., eds.: Proceedings of the 4th International Workshop
on Multistrategy Learning. (1998) 157–164

19. Papadias, D., Theodoridis, Y.: Spatial relations, minimum bounding rectangles,
and spatial data structures. International Journal of Geographical Information
Science 11(2) (1997) 111–138

20. Egenhofer, M.: Reasoning about binary topological relations. In Gunther, O.,
Schek, H.J., eds.: Second Symposium on Large Spatial Databases. Volume 525
of Lecture Notes in Computer Science., Springer (1991) 143–160

21. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman,
R.A.: Indexing by Latent Semantic Analysis. Journal of the American Soci-
ety of Information Science 41(6) (1990) 391–407

22. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM
Press / Addison-Wesley (1999)

23. Berry, M.W., Dumais, S.T., O’Brien, G.W.: Using linear algebra for intelligent
information retrieval. SIAM Rev. 37(4) (1995) 573–595

24. O’Brien, G.W.: Information management tools for updating an SVD-encoded in-
dexing scheme. Technical Report UT-CS-94-258, University of Tennessee (1994)

25. Porter, M.F.: An algorithm for suffix stripping. In Karen, J.S., Willet, P., eds.:
Readings in information retrieval. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA (1997) 313–316

26. Di Mauro, N., Basile, T.M.A., Ferilli, S.: GRAPE: An expert review assignment
component for scientific conference management systems. In: Innovations in Ap-
plied Artificial Intelligence: 18th International Conference on Industrial and En-
gineering Applications of Artificial Intelligence and Expert Systems (IEA/AIE
2005). Volume 3533 of Lecture Notes in Computer Science., Springer Verlag
(2005) 789–798

138 F. Esposito et al.

27. Nagy, G.: Twenty years of document image analysis in PAMI. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 22(1) (2000) 38–62

28. Futrelle, R.P., Shao, M., Cieslik, C., Grimes, A.E.: Extraction, layout analysis
and classification of diagrams in PDF documents. In: Proceedings of Seventh In-
ternational Conference on Document Analysis and Recognition (ICDAR 2003).
(2003) 1007–1014

29. Chao, H.: Graphics extraction in PDF document. In Kanungo, T., Smith,
E.H.B., Hu, J., Kantor, P.B., eds.: Proceedings of SPIE - The International
Society for Optical Engineering. Volume 5010. (2003) 317–325

30. Ramel, J.Y., Crucianu, M., Vincent, N., Faure, C.: Detection, extraction and
representation of tables. In: Proceedings of the Seventh International Conference
on Document Analysis and Recognition (ICDAR 2003), Washington, DC, USA,
IEEE Computer Society (2003) 374–378

31. Chao, H., Fan, J.: Layout and content extraction for pdf documents. In: Doc-
ument Analysis Systems VI, Proceeding of the Sixth International Workshop
(DAS 2004). Volume 3163 of Lecture Notes in Computer Science., Springer Ver-
lag (2004) 213–224

32. Lovegrove, W.S., Brailsford, D.F.: Document analysis of PDF files: methods,
results and implications. Electronic Publishing – Origination, Dissemination and
Design 8(2-3) (1995) 207–220

33. Hadjar, K., Rigamonti, M., Lalanne, D., Ingold, R.: Xed: A new tool for extract-
ing hidden structures from electronic documents. In: DIAL ’04: Proceedings of
the First International Workshop on Document Image Analysis for Libraries
(DIAL’04), Washington, DC, USA, IEEE Computer Society (2004) 212

34. Rigamonti, M., Bloechle, J.L., Hadjar, K., Lalanne, D., Ingold, R.: Towards a
canonical and structured representation of PDF documents through reverse en-
gineering. In: ICDAR ’05: Proceedings of the Eighth International Conference on
Document Analysis and Recognition, Washington, DC, USA, IEEE Computer
Society (2005) 1050–1055

35. Anjewierden, A.: AIDAS: Incremental logical structure discovery in pdf docu-
ments. In: Proceedings of Sixth International Conference on Document Analysis
and Recognition (ICDAR 2001). (2001) 374–378

