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Summary. This chapter presents an off-line, text-independent system for writer
identification and verification. At the core of the system are Gaussian Mixture Mod-
els (GMMs). GMMs provide a powerful yet simple means of representing the distri-
bution of features extracted from the text lines of a writer. For each writer, a GMM
is built and trained on text lines of that writer. In the identification or verification
phase, a text line of unknown origin is presented to each of the models. As a result
of the recognition process each model returns a log-likelihood score. These scores
are used for both the identification and the verification task. Three types of confi-
dence measures are defined on the scores: simple score based, cohort model based,
and world model based confidence measures. Experiments demonstrate a very good
performance of the system on the identification and the verification task.

1 Introduction

In recent years, significant progress has been made in recognizing a person
based on biometric features [1, 2, 3]. Different biological traits such as face,
fingerprint, iris, signature, and voice are being used to identify a person or ver-
ify its identity. This chapter addresses the problem of personal identification
and verification based on a person’s handwriting.

Writer identification is the task of determining the author of a sample
handwriting from a set of writers [4]. Related to this task is writer verification,
i.e., the task of determining whether or not a handwritten text has been
written by a certain person. If any text may be used to establish the identity
of the writer, the task is text independent. Otherwise, if a writer has to write
a particular predefined text to identify himself or herself, or to verify his or
her identity, the task is text dependent.

If temporal and spatial information about the writing is available, writer
identification and verification can be performed on-line, otherwise if only a
scanned image of the handwriting is available the recognition is performed off-
line. The system we propose in this chapter performs text independent writer
identification and verification using off-line handwritten text lines. Examples
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Fig. 1. Examples of text lines

of handwritten text lines from our database, produced by different writers,
are given in Fig. 1. Possible applications of our system include forensic writer
identification [5], the retrieval of handwritten documents from a database [6]
or authorship determination of historical manuscripts [7].

In this chapter we use Gaussian Mixture Models (GMMs) to model a per-
son’s handwriting. GMMs provide a powerful yet simple means of representing
the distribution of features extracted from text lines written by a person. For-
mally, a GMM consists of a weighted sum of uni-modal Gaussian densities.
While GMMs have been used in speech recognition [8, 9] they have not yet
been applied to off-line, text independent writer identification and verification,
to the best of our knowledge.

For each writer in the considered population, an individual GMM is trained
using data from that writer only. Thus for n different writers we obtain n
different GMMs. Intuitively, each GMM can be understood as an expert spe-
cialized in recognizing the handwriting of one particular person. Given an
arbitrary text line as input, each GMM outputs a recognition score. Assum-
ing that the recognition score of a model is higher on input from the writer
the model is trained on than on input from other writers, we can utilize the
scores produced by the different GMMs for the task of identifying the writer
of a text line or of verifying whether a text line has actually been written by
the person who claims to be the writer.
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Our approach has several advantages compared to other approaches:
GMMs have a mathematically simple, well understood structure and there
exist standard algorithms for training and testing [9]. For every writer there
is exactly one model which is trained with a set of simple features. We do
not need to model characters or words. Therefore we do not need a transcrip-
tion of the text, but can use any unlabeled text for training and testing. This
property makes our system language independent.

The rest of this chapter is structured as follows. In Sect. 2 we present
related work in the field of writer identification and verification. The GMMs
used by our system are introduced in Sect. 3. An overview of our writer
identification and verification system is given in Sect. 4 and in Sect. 5 we
present several confidence measures for our system. Results of a number of
experiments are presented and discussed in Sect. 6. Finally, Sect. 7 concludes
the chapter and proposes future work.

2 Related Work

Surveys covering work in automatic writer identification and signature verifi-
cation until 1993 are given in [4, 10]. Recently, several additional approaches
to writer identification and verification have been proposed.

Said et al. [11] treat the writer identification task as a texture analysis
problem. They use global statistical features extracted from the entire image
of a text using multi-channel Gabor filtering and grey-scale co-occurrence
matrix techniques.

Srihari et al. [12, 13] address the problem of writer verification, i.e., the
problem of determining whether two documents are written by the same per-
son or not. In order to identify the writer of a given document, they model
the problem as a classification problem with two classes, authorship and non-
authorship. Given two handwriting samples, one of known and the other of
unknown identity, the distance between two documents is computed. Then
the distance value is used to classify the data as positive or negative.

Zois et al. [14] base their approach on single words by morphologically
processing horizontal projection profiles. The projections are partitioned into
a number of segments from which feature vectors are extracted. A Bayesian
classifier and a neural network are then applied to the feature vectors.

In Hertel et al. [15] a system for writer identification is described. The
system first segments a given text into individual text lines and then extracts
a set of features from each text line. The features are subsequently used in a
k-nearest-neighbor classifier that compares the feature vector extracted from
a given input text to a number of prototype vectors coming from writers with
known identity.

Bulacu et al. [16] use edge-based directional probability distributions as
features for the writer identification task. The authors introduce edge-hinge
distribution as a new feature. The key idea behind this feature is to consider
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two edge fragments in the neighborhood of a pixel and compute the joint prob-
ability distribution of the orientations of the two fragments. Additionally, in
[17] the histogram of connected-component contours (CO3) for upper-case
handwriting is introduced as a new feature. Combining this feature with the
edge-hinge feature achieves better results than each of the features used sep-
arately. In [18] this approach is extended to mixed-style handwriting using
fragmented connected-component contours.

In a number of papers [19, 20, 21] graphemes are proposed as features for
describing the individual properties of handwriting. Furthermore, it is shown
that each handwriting can be characterized by a set of invariant features,
called the writer’s invariants. These invariants are detected using an automatic
grapheme clustering procedure. In [22] these graphemes are used to address
the writer verification task based on text blocks as well as on handwritten
words.

Leedham et al. [23] present a set of eleven features which can be extracted
easily and used for the identification and the verification of documents con-
taining handwritten digits. These features are represented as vectors, and by
using the Hamming distance measure and determining a threshold value for
the intra-author variation a high degree of accuracy in authorship detection
is achieved.

Previously, we have proposed to use Hidden Markov Model (HMM) [24]
based text recognizers for the purpose of writer identification and verification
[25, 26]. For each writer, an individual recognizer is built and trained on text
lines of that writer. This results in a number of recognizers, each of which is
an expert on the handwriting of exactly one writer. Assuming that correctly
recognized words have a higher score than incorrectly recognized words and
that the recognition rate of a system is higher on input from the writer the
system was trained on than on input from other writers, the scores produced
by the different HMMs are used to decide who has written the input text line.

In this chapter, instead of HMM based recognizers, we use GMMs to model
a person’s handwriting. While GMMs have been used in the speech recognition
community [8, 9], they have not been applied, to the best of our knowledge,
to off-line writer identification and verification. A GMM can be viewed as a
single-state HMM with a Gaussian mixture observation density. The advan-
tages of using GMMs over HMMs are manifold. First, GMMs are conceptually
less complex than HMMs consisting of only one state and one output distri-
bution function, which leads to significantly shorter training times. Second,
in GMMs only the parameters of the output distribution function have to
be estimated during training compared to HMMs where the state transition
probabilities have to be estimated as well. Third, neither words nor characters
have to be modeled using GMMs, because every writer is represented by ex-
actly one model. Finally, no transcription of the text lines are needed during
training.
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Fig. 2. A two-dimensional GMM consisting of a weighted sum of three uni-modal
Gaussian densities

3 Gaussian Mixture Models

We use Gaussian Mixture Models (GMMs) to model the handwriting of each
person of the underlying population. The distribution of the feature vectors
extracted from a person’s handwriting is modeled by a Gaussian mixture
density. For a D-dimensional feature vector x the mixture density for a specific
writer is defined as

p(x|λ) =
M∑
i=1

wipi(x). (1)

where the mixture weights wi sum up to one. The mixture density is a
weighted linear combination of M uni-modal Gaussian densities pi(x), each
parametrized by a D × 1 mean vector µi and a D × D covariance matrix Ci:

pi(x) =
1

(2π)D/2|Ci|1/2
exp{−1

2
(x − µi)′(Ci)−1(x − µi)}. (2)

The parameters of a writer’s density model are denoted as λ = {wi, µi, Ci}
for all i = 1, . . . , M . This set of parameters completely describes the model
and enables us to concisely model a person’s handwriting.

The GMMs are trained using the Expectation-Maximization (EM) algo-
rithm [27]. The EM algorithm follows the Maximum Likelihood (ML) principle
by iteratively refining the parameters of the GMM to monotonically increase
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the likelihood of the estimated model for the observed feature vectors. The
algorithm starts with a data set X of N feature vectors xj , an initial set of
M uni-modal Gaussian densities Ni=̂N(µi, Ci), and M mixture weights wi.
Then, in the first step, for each training data point xj the responsibility of
each component Ni is determined. In the second step, the component densi-
ties, i.e., the mean vector µi and the variance matrix Ci for each component
and the weights wi are re-estimated based on the training data. These two
steps are repeated until the likelihood score of the entire data set does not
change substantially or a limit on the number of iterations is reached.

While the general model supports full covariance matrices, often only di-
agonal covariance matrices are used. This simplification is motivated by the
following observations: first, theoretically the density modeling of an M di-
mensional full covariance matrix can equally well be achieved using a larger
order diagonal covariance matrix. Second, diagonal covariance matrices are
computationally more efficient than full covariance matrices, and third, diag-
onal matrix GMMs outperformed full matrix GMMs in various experiments
[9]. An example of a two dimensional GMM with a diagonal covariance matrix
is shown in Fig. 2.

The Gaussian component densities can either be initialized randomly or
by using vector quantization techniques such as k-means clustering [28]. Fur-
thermore, often variance flooring is employed to avoid an overfitting of the
variance parameters [29]. The idea of variance flooring is to impose a lower
bound on the variance parameters as a variance estimated from only few data
points can be very small and might not be representative of the underlying
distribution of the data [29]. The minimal variance value is defined by

σ2
min = α ∗ σ2

global (3)

where α denotes the variance flooring factor and the global variance σ2
global is

calculated on the complete data set. The minimal variance, σ2
min , is used to

initialize the variance parameters of the model. During the EM update step,
if a calculated variance parameter is smaller than σ2

min then the variance
parameter is set to this value.

During decoding, the feature vectors X = {x1, . . . ,xT } extracted from a
text line are assumed to be independent. The log-likelihood score of a model
λ for a sequence of feature vectors X is defined as

log p(X |λ) =
T∑

t=1

log p(xt|λ), (4)

where p(xt|λ) is computed according to Eq. 1.
In this work, we use diagonal covariance matrices and the models are

initialized using k-means clustering. The GMMs are implemented using the
Torch library [30].
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Fig. 3. Schematic overview of the writer identification and verification system

4 System Overview

We use GMMs as the building blocks of our writer identification and verifica-
tion system. A schematic overview of the system is shown in Fig. 3. For each
writer, a GMM as described in the previous section is built and trained with
data coming from this writer only. As a result of the training procedure, we
get a model for each writer.

A set of features is extracted from each text line to train the GMMs.
Before feature extraction, a series of normalization operations are applied to
each text line. The operations are designed to improve the quality of the
features extracted without removing writer specific information.

For the purpose of normalization, the contrast of the grey-scale images is
enhanced first, leading to images with black strokes written on white back-
ground. Then vertical scaling and thinning normalization operations are ap-
plied, which are described in the following two paragraphs. The aim of vertical
scaling is to normalize the height of the text line and thinning assures inde-
pendence of the writing pen.

To perform vertical scaling a text line is divided into three zones: a zone
containing the ascenders, a middle zone, and a zone containing the descen-
ders. These three zones are to be normalized to a predefined height which is
important in order to reduce the variability of the features used to train the
GMMs. To actually perform this operation, the upper and the lower base-
line of the text line have to be determined. To find the two baselines, the
histogram of the horizontal projection of the image of the text line is used.
The real histogram is matched with an ideal histogram. The location of the
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Text line before normalization and thinning

Text line after normalization and thinning

Fig. 4. A text line before and after normalization and thinning

upper and the lower baseline are detected and the three main writing zones
are determined. Each of these three zones is then individually positioned and
scaled to a predefined height.

Different pens of different width have been used to write the text lines.
In order to eliminate the effect of the pen width on the performance of the
system, all text lines are thinned using the iterative MB2 thinning algorithm
[31]. After thinning, all strokes in a text line image are at most two pixels wide.
In Fig. 4 a text line before and after normalization and thinning is shown.

In the next step, features are extracted by a sliding window. The window
moves from left to right one pixel per step. For every column of pixels in the
sliding window, nine geometrical features are extracted. These features have
shown to produce good results on both the text recognition task [32] as well
as on the writer identification and verification task [33].

The feature set consists of three global and six local features. The three
global features describe the distribution of the pixels in the column, e.g., the
fraction of black pixels in the window, the center of gravity and the second
order moment. The six local features describe specific points in the column.
The features describe the position and the orientation of the upper- and the
lower-most pixel, the number of black-to-white transitions in the window, and
the fraction of black pixels between the upper- and the lower-most black pixel
(see Fig. 5 for an illustration of the six local features). The feature vectors of
every column in the sliding window are averaged to produce the final feature
vector. At last, the feature vectors which only describe white space are deleted.

The width of the sliding window was optimized in an independent exper-
iment involving 571 text lines from 20 writers. These 20 writers are not part
of the data set used to train the GMM models in the subsequent experiments.
A fixed number of 100 Gaussian mixture components and a variance flooring
factor of 0.001 were used for training. The window width was varied from 2
to 32 by steps of two. The highest writer identification rate of 99.05% was
achieved using a window width of 14 pixels. This window width was used in
all subsequent experiments to extract the features from a text line.

The sequences of nine-dimensional feature vectors extracted from the text
lines are used to train the GMMs. After training, each GMM is especially
adapted to the individual handwriting style of a particular writer. During
identification, a text line to be classified is presented to the GMM of each
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Fig. 5. Six local features extracted from each row in the sliding window

writer. Each GMM outputs a log-likelihood score and a standard deviation for
the given text line. These scores are the basis for identification and verification
as described below.

5 Confidence Measures

In order to assign a text line to a certain person or to verify the identity of a
text line with a claimed identity we need a means of measuring how sure the
system is about the given text line. A confidence measure enables us to judge
the quality of the recognition and to implement a rejection mechanism based
on this measure.

For writer identification we define the following rejection mechanism. If
the confidence measure of a text line is above a given threshold, the system
returns the identity of the text line with the highest ranked score; otherwise
the system rejects the input. Thus if we have n writers, the writer identification
problem is a n-class classification problem with a reject option.

The decision criterion for writer verification is similar. If the confidence
measure of a text line is above a certain threshold, we assume that the text
line was in fact written by the claimed writer; otherwise the input is classified
as not being of the claimed identity. In writer verification we deal with a
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two-class classification problem that is independent of the number of writers
under consideration.

Various confidence measures for off-line handwriting recognition have been
presented in the literature [34, 35, 36]. In this chapter, three common types
of confidence measures are used. The first type of confidence measure is solely
based on the score of the model under consideration and therefore is not
normalized. The other two types of confidence measures normalize the recog-
nition score based on a cohort model and a world model approach, respectively.
The cohort model approach normalizes the score of the model of the claimed
writer with respect to the score of the most competitive writers [37]. The
world model approach normalizes the score of the claimed writer by a model
which is trained on a large number of samples from many writers [38].

5.1 Confidence Measures for Writer Identification

A text line is presented to each model and the returned log-likelihood scores
are sorted. Given a text line t of an unknown author, the simplest confidence
measure is to judge the quality of the recognition based on the log-likelihood
score of the first ranked model:

cmIdentLLScore(t) = llfirstRanked (5)

The next confidence measure is inspired by the cohort model approach.
The confidence measure is calculated from the difference of the log-likelihood
score of the first ranked model, llfirstRanked, and the log-likelihood score of the
second ranked model, llsecondRanked:

cmIdentCohortModel(t) = llfirstRanked − llsecondRanked (6)

The third confidence measure uses a world model to normalize the log-
likelihood score of the first ranked writer. The world model is trained on
a large number of text lines coming from different writers. The confidence
measure is calculated on the difference of the log-likelihood score of the first
ranked writer, llfirstRanked, and the world model, llworldModel:

cmIdentWorldModel(t) = llfirstRanked − llworldModel (7)

All the confidence measures for writer identification presented in this sec-
tion need to determine the system which produces the highest log-likelihood
score. A text line has to be presented to the model of each writer under con-
sideration. Then the returned scores have to be sorted, which means that the
calculation of these confidence measures depends on the number of writers.

5.2 Confidence Measures for Writer Verification

The confidence measures for writer verification are similar to the ones de-
fined for writer identification in the previous section. Compared to the writer



Off-line Writer Identification and Verification Using GMMs 419

identification case where the log-likelihood score of the first ranked system
is normalized, the log-likelihood score of the claimed system is normalized
instead.

The first simple confidence measure for a text line t is the log-likelihood
score of the model of the claimed identity, llclaimedID:

cmVerif LLScore(t) = llclaimedID (8)

The next confidence measure is inspired by the cohort model approach.
Based on the ranking of the scores the confidence measure is calculated from
the difference of the log-likelihood score of the claimed identity, llclaimedID,
and the first best ranked competing writer, llbestRankedCompeting:

cmVerif CohortModel(t) = llclaimedID − llbestRankedCompeting (9)

The third confidence measure implements a world model approach. The
difference of the score of the model of the claimed identity and the world
model is computed:

cmVerif WorldModel(t) = llclaimedID − llworldModel (10)

In comparison to the world model based confidence score in the identifica-
tion case (Eq. 7), in the verification case we do not need to present the text
line in question to all the models, but to the model of the claimed identity
and the world model only.

6 Experiments

6.1 Data sets

The text lines used in our experiments are part of the IAM handwriting
database [39]1. The database currently contains over 1,500 pages of hand-
written text. For each writer we use five pages of text from which between 27
and 54 text lines are extracted.

Five-fold cross validation is used in our experiments. Cross validation en-
ables us to use all text lines for training without committing the error of train-
ing or of optimizing meta parameters on the test set [40]. For each writer, the
set of available text lines is split into five sets. The idea is to train the system
on three sets, use the fourth set to find an optimal set of meta parameters and
then test on the fifth set. This procedure is iterated five times such that each
set is used for testing once. The final recognition rate is obtained by averaging
the five results from each of the test sets.

1 The IAM handwriting database is publicly available at:
www.iam.unibe.ch/˜fki/iamDB
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Example of original text lines

Example of skillfully forged text lines

Fig. 6. Examples of original and skillfully forged text lines

In this experimental setup, the data set consists of text lines from 100
different writers. All in all, 4,103 text lines are available and due to cross
validation we can use all the text lines for both training and testing.

A verification system can make two types of errors. First, the system can
falsely reject a text written by a client and, second, it can falsely accept a
text coming from an impostor [41]. Therefore we need two sets for testing a
writer verification system: one set consisting of clients and one set containing
impostors. The impostor set can be composed of unskilled forgeries, where
the impostor makes no effort to simulate a genuine handwriting, and of skilled
forgeries, where the impostor tries to imitate the handwriting of a client as
closely as possible [42].

The unskillfully forged test set used in our experiments consists of two
disjoint subsets coming from clients and impostors. The unskilled forgeries
that form the impostor set are obtained from the database by extracting 571
text lines produced by 20 writers. The writers of these text lines are disjoint
from the 100 clients and no model exists that is trained on the handwriting
of any of these 20 writers. Based on these text lines the impostor data set is
constructed by assigning, to each of these text lines, seven identities of writers
known to the system. In total, the impostor data set consists of 7×571 =3,997
lines and the complete test set of 8,100 text lines. The rationale is that the
number of text lines to be accepted should be approximately the same as
the number of text lines that have to be rejected, i.e., the two classes under
consideration should be balanced.
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Fig. 7. Writer identification rate as a function of the number of Gaussian mixture
components and the variance flooring factor on the validation set

The skillfully forged test set is again composed of two subsets, a client
and an impostor subset. The client data set consists of one page of text each
from 20 different writers which are part of the 100 clients. A total of 169 text
lines are extracted from these 20 pages. The same 20 pages are then skillfully
forged. The acquisition protocol is as follows. A person is presented with a
page of handwritten text and given 10 minutes to train the writing. Then
he or she is asked to forge the text. An example of three original and three
skillfully forged text lines are given in Fig. 6. From the forgeries thus created,
another 169 text lines are extracted. Hence, in total 338 text lines are used in
this test set.

6.2 Writer Identification Experiments

We first conducted an experiment to measure the influence of the number of
Gaussian mixture components and the variance flooring factor on the writer
identification rate. The number of Gaussian mixture components is varied
from 60 to 200 by steps of 10 and the variance flooring factor is varied from
0.001 to 0.025 by steps of 0.002.

The writer identification rate as a function of the number of Gaussian
mixture components and the variance flooring factor on the validation set is
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shown in Fig. 7. On the validation set, the highest writer identification rate
of 98.20% is achieved using 130 Gaussian mixture components and a variance
flooring factor of 0.011. An identification rate higher than 97.03% is achieved
using 60 Gaussian mixture components or more on the validation set. The two
meta parameters optimized on the validation set are then used to calculate the
final writer identification rate of 97.88% on the test set. We also use the world
model trained with these meta parameters in the subsequent experiments.

In Fig. 8, the n-best list is shown where the writer identification rate based
on the first n ranks is plotted. The error rate of the system drops below 1% if
the first three ranks, and below 0.5% if the first seven ranks are considered.
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Table 1. Equal Error Rates (EERs) for the unskillfully and skillfully forged test set

Equal Error Rate (ERR) Unskilled Forgeries Skilled Forgeries

cmVerif LLScore 13.0% 41.0%
cmVerif WorldModel 3.2% 18.6%
cmVerif CohortModel 1.5% 9.3%

The error-rejection curves obtained from the identification test set are
shown in Fig. 9. The simple log-likelihood score based confidence score
(cmIdentLLScore) produces the lowest performing error-rejection curve. The
error rate drops below 1% only if more than 22% of the text lines with the
lowest confidence score are rejected. The next best error-rejection curve is
produced by the world model based approach (cmIdentWorldModel). The er-
ror rate is smaller than 1% if less than 5% of the text lines are rejected.
The cohort model based approach (cmIdentCohortModel) yields the best error-
rejection curve. Fewer than 5% of the text lines have to be rejected to obtain
an error rate smaller than 0.5%.

The observation that the cohort model based approach performs best can
be explained by the fact that the normalization is based on the actual text
line being presented, i.e., the adequate model to normalize the text line is
selected anew for each text line. In comparison, the world model approach
normalizes the score of a text line by the score of a general world model which
is independent of the text line under consideration.

6.3 Writer Verification Experiments

The results of the writer verification experiments are reported as Receiver
Operator Characteristic (ROC) curves in Figs. 10 and 11. An ROC curve
describes the performance of a verification system on a test set by plotting
the False Acceptance Rate (FAR) against the False Rejection Rate (FRR) [41].
In Table 6.3 the estimated Equal Error Rates (EERs) for the ROC curves are
given [41]. The Equal Error Rate estimates the point on an ROC curve where
the FAR is identical to the FRR.

In Fig. 10 the ROC curves on the unskillfully forged test set are shown.
The ROC curves produced by the simple log-likelihood score (cmVerif LLScore)
has the lowest performance with an EER of 13.0%. The world model based
confidence measure (cmVerif WorldModel) achieves an EER of 3.2%. The ROC
curve based on the cohort model approach (cmVerif CohortModel) performs best
and yields an EER of around 1.5%.

The ROC curves on the skillfully forged test set for the GMM based sys-
tems are shown in Fig. 11. The ROC curve with the lowest performance re-
sults from the simple log-likelihood score confidence measure (cmVerif LLScore)
with an EER of around 41.0%. The world model based confidence measure
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(cmVerif WorldModel) yields an EER of around 18.6%. The best ROC curve is
produced by the cohort model based confidence measure (cmVerif CohortModel)
with an EER of around 9.3%.

In both verification experiments, the ROC curves show the same hierar-
chy of performance: the simple log-likelihood score based confidence measure
yields the lowest performing ROC curve, the next best ROC curve is produced
by the world model based confidence measure which itself is outperformed by
the cohort model based ROC curve. This behavior is consistent with the writer
identification case, where the best error-rejection curve is achieved when the
score of a text line is normalized with respect to the score of the most com-
petitive writer.

The calculation of the cohort model based confidence measure however is
costly compared to the world model based confidence measure. For every text
line, the log-likelihood scores of all writers models have to be computed and
sorted to determine the best performing model. In comparison, to compute the
world model based confidence measure, only the score of the claimed system
and the world model is needed and is independent of the number of client
models.

7 Conclusion

We have used Gaussian Mixture Models (GMMs) to address the task of off-line
text-independent writer identification and verification. GMMs provide a pow-
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Fig. 11. ROC curves on the skillfully forged test set

erful yet simple means of representing the distribution of features extracted
from handwritten text lines. A sliding window extracts a sequence of simple,
language independent feature vectors from a text line. The feature sequences
are used to train one model for each writer. During recognition, a text line
of unknown origin is presented to each of the models. Each model returns a
log-likelihood score for the given input. The scores are the basis for writer
identification and verification.

On the writer identification task, a text line is assigned to the writer of
the first ranked model if the confidence measure is above a given threshold.
We achieve a correct writer identification rate of 97.88% in a 100 writers
experiment using 4,103 text lines. If we consider not only the first, but the
three highest ranked writers, in over 99.0% of all cases the writer of the text
line under question is correctly identified. Furthermore, if we reject fewer than
5% of the text lines with the lowest confidence score, the writer identification
rate improves to over 99.5% using the best performing confidence measure.

Similarly, on the writer verification task a text line is accepted if its confi-
dence score is above a certain threshold; otherwise it is rejected. Two sets of
experiments have been conducted: the unskillfully forged test set contains in
total 8,100 text lines from 100 clients and 20 impostors. The skillfully forged
test set contains 338 text lines from 20 clients and 20 impostors. An Equal
Error Rate (EER) of around 1.5% is achieved on the unskillfully forged test
set and an EER of approximately 9.3% is obtained on the skillfully forged test
set by the best confidence measure.
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Three types of confidence measures have been presented in this chapter:
simple score based, cohort model based and world model based confidence
measures. For both writer identification and verification, the cohort model
based confidence measure performs best. This observation can be explained
by the fact that the normalization depends on the actual text line being pre-
sented, i.e., the relevant model to normalize the text line is selected anew for
each text line. In comparison, the world model confidence measure normalizes
the score of a text line by the score of a general world model.

In future work we plan to measure the influence of using less data to train
the GMMs. A possible approach would be to use a universal background model
[9] and then adapt this model to a specific writer model. Another interesting
question is to investigate whether modifications of the world model based
confidence measure as presented in [43] would yield performances similar to
the ones obtained by the cohort model based confidence measure. Furthermore
we plan to compare the performance of this system to the HMM based system
developed previously.
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