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Summary. In this chapter, the use of synthetic training data for handwriting recog-
nition is studied. After an overview of the previous works related to the field, the
authors’ main results regarding this research area are presented and discussed, in-
cluding a perturbation model for the generation of synthetic text lines from existing
cursively handwritten lines of text produced by human writers. The goal of synthetic
text line generation is to improve the performance of an off-line cursive handwriting
recognition system by providing it with additional training data. It can be expected
that by adding synthetic training data the variability of the training set improves,
which leads to a higher recognition rate. On the other hand, synthetic training data
may bias a recognizer towards unnatural handwriting styles, which could lead to a
deterioration of the recognition rate. The proposed perturbation model is evaluated
under several experimental conditions, and it is shown that significant improvement
of the recognition performance is possible even when the original training set is large
and the text lines are provided by a large number of different writers.

1 Introduction

The problem of automatic recognition of scanned handwritten documents is of
great significance in numerous scientific, business, industrial, and personal ap-
plications that require the reading and processing of human written texts. The
ultimate goal is that computers approach, or even surpass, the text recognition
performance of humans. Despite the enormous amount of research activities
that already have been carried out in the past decades to study this problem,
it is considered very difficult and still not satisfactorily solved [1, 2]. Today’s
commercial systems work in areas where strict task specific knowledge and
constraints are available, such as postal address reading [3], and the process-
ing of bank checks [4] and forms [5, 6]. On the other hand, the more challenging
task of recognizing unconstrained handwriting has also many potential appli-
cations, for example, office automation, digital libraries, and personal digital
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assisting devices. In this chapter the problem of unconstrained recognition is
addressed.

Despite the existence of the numerous elaborated and mature handwriting
recognition techniques [7, 8, 9, 10, 11, 12], machines’ reading performance is
still considerably lower than that of humans. This inspired researchers to focus
not only on the development of novel recognition algorithms, but also on the
improvement of other aspects of handwriting recognition systems. These ef-
forts include multiple classifier combination [13, 14, 15], the better utilization
of the available a-priori, e.g. linguistic knowledge [16, 17], as well as the col-
lection of large, publicly available datasets of human written texts [18, 19, 20],
which enables better training of the recognizers and also an objective com-
parison of their performances.

As an alternative, to overcome the difficulties and inherent limitations
of collecting a large number of human written samples, the present chapter
investigates the generation and use of synthetic training data for off-line cur-
sive handwriting recognition. It has been shown in many works before that
the size and quality of the training data has a great impact on the perfor-
mance of handwriting recognition systems. A general observation is that the
more texts are used for training, the better recognition performance can be
achieved [21, 22, 23, 24].

In this work it is examined whether this observation holds if the training
set is augmented by synthetically generated texts. The motivation is that aug-
menting the training set by computer generated text samples is much faster
and cheaper than collecting additional human written samples. To achieve our
goal, a perturbation model is presented to generate synthetic text lines from
existing cursively handwritten lines of text produced by human writers. Our
purpose is to add synthetic data to the natural training data, rendered by hu-
man writers, so as to enlarge the training set. The basic idea of the approach
is to use continuous nonlinear functions that control a class of geometrical
transformations applied on the existing handwritten texts. The functions en-
sure that the distortions performed are not reversed by standard preprocessing
operations of handwriting recognition systems. Besides the geometrical dis-
tortions, thinning and thickening operations are also part of the model.

A closer examination reveals, however, that the use of synthetic training
data does not necessarily lead to an improvement of the recognition rate, be-
cause of two adversarial effects. First, it can be expected that the variability
of the training set improves, which potentially leads to a higher recognition
rate. On the other hand, synthetic training data may bias a recognizer to-
wards unnatural handwriting styles, which can lead to a deterioration of the
recognition rate, particularly if natural handwriting is used for testing.

The aim in this chapter is to find configurations of our recognizer and
the synthetic handwriting generation process, by which the recognition per-
formance can be significantly improved. The parameters examined include
the number of Gaussian mixture components in the recognizer used for dis-
tribution estimation, distortion strength, training set size, and the number
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of writers in the training set. It is shown that significant improvement of the
recognition performance is possible even when the original training set is large
and the text lines are provided by many different writers. But to really achieve
an improvement in this case, one has also to consider the capacity of the recog-
nition system, which needs to be appropriately adjusted when expanding the
training set with synthetic text lines. Parts of this work have been published
in [25, 26]. The current chapter provides a synoptic presentation and overview
of the authors’ previous work on synthetic text line generation for the training
of handwriting recognition systems.

The chapter is organized as follows. In Section 2, an overview of the related
previous works on synthetic text generation is given. Section 3 introduces our
perturbation model, while in Section 4 a concise description of the off-line
handwriting recognition system used for the experiments is given. Experi-
mental results are presented in Section 5. Finally, Section 6 provides some
conclusions and suggestions for future work.

2 Synthetically Generated Text

The concept of synthetic text relates to both machine printed and handwritten
documents. Synthesizing text means that real-world processes that affect the
final appearance of a text are simulated by a computer program. For example,
in the case of machine printed documents the printing and scanning defects,
while in the case of handwriting the different writing instruments or the whole
writing process can be modeled and simulated by computer.

Synthetic texts can be generated in numerous ways, and they have
widespread use in the field of document analysis and recognition. In the fol-
lowing, a brief overview is given. Approaches for both machine printed and
handwritten synthetic text generation are presented, since they often have
similar aims, and thus the findings and developments of one field can also
affect and stimulate the other one and vice versa.

2.1 Improving and Evaluating Recognition Systems

The two main difficulties that contemporary text recognizers have to face are
the degraded quality of document images as well as the great variation of
the possible text styles [27, 28, 29]. The quality of document images usually
degrades to various extent during printing, scanning, photocopying, and fax-
ing. Style variation means that either different fonts might be used (machine
printed text), or many individual writing styles can occur (handwritten text).

One way to alleviate the above mentioned problems is to train the recog-
nizers using sets of text samples that are more representative to the specific
recognition task under consideration. This idea is supported by two facts. First
of all, every recognizer needs to be trained, i.e. it has to learn how the differ-
ent characters and/or words may look like. Furthermore, in the past decade
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researchers in the field of image pattern recognition realized that any further
improvement of recognition performance depends as much on the size and
quality of the training data as on the underlying features and classification
algorithms used [30]. As a rule of thumb says, the classifier that is trained on
the most data wins.

A straightforward way to improve the training set is to collect more real-
world text samples [18, 19, 20]. The effectiveness of this approach has been
experimentally justified by numerous works in the literature, yielding higher
recognition performance for increased training set sizes [21, 22, 23, 24]. Un-
fortunately, collecting real-world samples is a rather expensive and time con-
suming procedure, and truthing the collected data is error-prone [31, 32]. A
possible solution to these drawbacks is to create text image databases au-
tomatically by generating synthetic data, which is cheap, fast, and far less
error-prone. Furthermore, it enables the generation of much larger databases
than those acquired by the conventional method. The main weakness of the
synthetic approach is that the generated data may not be as representative
as real-world data.

In machine printed OCR (Optical Character Recognition), especially when
the possible fonts are a-priori known, the concept of representativeness of
the training set can be approached from the side of document degradation.
In [33, 34, 35], defects caused by the use of printing and imaging devices are
explicitly modeled and applied to ideal input images (e.g. Postscript docu-
ment) to generate realistic image populations. Such synthetic data can then
be used to build huge and more representative training sets for document im-
age recognition systems [36, 37, 38]. The ability of controlling the degree of
degradation makes it also possible to carry out systematic design and evalu-
ation of OCR systems [36, 39, 40, 41].

For handwriting recognition, no parameterized model of real-world image
populations is available, due to the lack of mathematical models accounting for
the enormous variations present in human handwriting. Nevertheless, several
attempts to generate synthetic data for handwriting recognition systems are
reported.

In [42], human written character tuples are used to build up synthetic text
pages. Other approaches apply random perturbations on human written char-
acters [21, 43, 44, 45, 46], or words [47, 48]. In [49], realistic off-line characters
are generated from on-line patterns using different painting modes.

Generating synthetic handwriting does not necessarily require to use hu-
man written texts as a basis. In [50] and [51], characters are generated by
perturbation of the structural description of character prototypes.

Those works where the application of synthetic training data yielded im-
proved recognition performance over natural training data are mainly related
to the field of isolated character recognition [21, 43, 45, 46]. The natural train-
ing set was augmented by perturbed versions of human written samples, and
the larger training set enabled better training of the recognizer. However, to
the knowledge of the authors, for the problem of general, cursive handwritten
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word and text line recognition, no similar results besides those of the authors
(see e.g. [25, 26]) involving synthetically generated text images have been
reported.

Finally, perturbation approaches can also be applied in the recognition
phase, making the recognizer insensitive to small transformations or distor-
tions of the image to be recognized [44, 47, 52].

2.2 Handwritten Notes and Communications

The use of handwriting has the ability to make a message or a letter look
more natural and personal. One way to facilitate the input of such messages
for electronic communication is to design methods that are able to generate
handwriting-style texts, particularly in the style of a specific person.

Such methods have several possible applications. For example, using a
word processor, editable handwritten messages could be inputted much faster
directly from the keyboard. For pen-based computers, errors made by the user
could be corrected automatically by substituting the erroneous part of text
by its corrected version, using the same writing style.

In [53], texts showing a person’s handwriting style are synthesized from
a set of tuples of letters, collected previously from that person, by simply
concatenating an appropriate series of static images of tuples together.

Learning-based approaches are presented in [54], [55], and [56], to generate
Hangul characters, handwritten numerals, and cursive text, respectively, of a
specific person’s handwriting style. These methods need temporal (on-line)
information to create a stochastic model of an individual style.

A method that is based on character prototypes instead of human writ-
ten samples is presented in [57]. Korean characters are synthesized using
templates of ideal characters, and a motor model of handwriting generation
(see [58]) adapted to the characteristics of Korean script. The templates con-
sist of strokes of predefined writing order. After the geometrical perturbation
of a template, beta curvilinear velocity and pen-lifting profiles are generated
for the strokes, which are overlapped in time. Finally, the character is drawn
using the generated velocity and pen-lifting profiles.

One possible application of the method is to build handwriting-style fonts
for word processors. On the other hand, the method can provide training data
for handwriting recognizers. Although the generated characters look natural
and represent various styles, they were not used for training purposes.

2.3 Reading-Based CAPTCHAs

At present, there is a clear gap between the reading abilities of humans and
machines. Particularly, humans are remarkably good at reading seriously de-
graded (e.g. deformed, occluded, or noisy) images of text, while modern OCR
systems usually fail when facing such an image [59].
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This observation can be used to design so-called CAPTCHAs (Completely
Automatic Public Turing test to tell Computers and Humans Apart), to
distinguish humans from computers [60, 61, 62]. The main application of
CAPTCHAs is to prevent computer programs from automatic registration
to publicly available services offered on the Internet. For example, this way
spammers can be prevented from registering automatically thousands of free
e-mail accounts for their fraudulent activities.

Several reading-based CAPTCHAs were proposed in the literature. All of
them synthesize a degraded text image that is used to challenge the appli-
cant to read it. The approval for the access to the required resource is then
based on the correctness of the answer the applicant types in. The challenges
may contain machine printed texts [60, 59, 63, 64, 65, 66, 67], or handwrit-
ing [68]. Reading-based CAPTCHAs that are already in industrial use in-
clude [60], [66], and [67].

3 Perturbation Model

Variation in human handwriting is due to many sources, including letter shape
variation, variety of writing instruments, and others. In this section, a pertur-
bation model for the distortion of cursive handwritten text lines is presented,
where these sources of variation are modeled by geometrical transformations
as well as thinning and thickening operations.

3.1 Previous Work and Design Goals

In the field of handwritten character recognition, numerous methods are re-
ported to perturb character images. Among other geometrical transforma-
tions, translation, scaling, rotation, shearing, shrinking, interpolation between
character samples, and also nonlinear deformations were tried [21, 43, 45, 46].
Other types of perturbations include erosion and dilation [21], and pixel in-
version noise [45].

Although they seem to be very different approaches, surprisingly almost
all of the transformations mentioned in the previous paragraph have been ap-
plied successfully to generate additional training samples for character recog-
nition systems, yielding improvements in the recognition performance.1 Thus
the character recognition experiments suggest that most of the perturbations
might improve the recognition rate. Furthermore, there is no comparative
study showing that one or more of these approaches are superior to the oth-
ers.

With this background from character recognition research in mind, the de-
sign of our perturbation model was motivated by two important aspects: sim-
plicity and nonlinearity. Simplicity is achieved by applying the same concept

1 The only exception is shrinking, which deteriorated the system performance in [21]
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Fig. 1. Example of a CosineWave function

(underlying function, see Subsection 3.2) to each type of geometrical transfor-
mation, and considering only some basic types of distortions (shearing, scaling
and shifting along one of the main axes). Nonlinearity is needed so that the
distortions applied on the handwriting cannot be reversed by standard linear
preprocessing operations of a state-of-the-art handwriting recognition system
(see Section 4).

The perturbation model incorporates some parameters with a range of
possible values, from which a random value is picked each time before dis-
torting a text line. There is a constraint on the text lines to be distorted:
they have to be skew and slant corrected, because of the nature of the ap-
plied geometrical transformations. This constraint is not severe, because skew
and slant correction are very common preprocessing steps found in almost any
handwriting recognition system. In the following subsections the perturbation
model is described in greater detail.

3.2 Underlying Functions

Each geometrical transformation in the model is controlled by a continuous
nonlinear function, which determines the strength of the considered transfor-
mation. These functions will be called underlying functions.

The underlying functions are synthesized from a simple function, called
CosineWave. A CosineWave is the concatenation of n functions, f1, f2, . . . , fn,
where fi : [0, li] → R, fi(x) = (−1)i ·a ·cos( π

li
·x), li > 0. An example is shown

in Fig. 1. The functions fi (separated by vertical line segments in Fig. 1) are
called components. The length of component fi is li and its amplitude is |a|.
The amplitude does not depend on i, i.e. it is the same for all components.

To randomly generate a CosineWave instance, three ranges of parameter
values need to be defined:

• [amin, amax] for the amplitude |a|,
• [lmin, lmax] for the component length,
• [xmin, xmax] for the interval to be covered by the concatenation of all

components.

The generation of a CosineWave is based on the following steps. First the
amplitude is selected by picking a value α ∈ [amin, amax] randomly and letting
a = α or a = −α with a 50% probability each. Then l1 is decided by randomly
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Fig. 2. Example of a sum of two CosineWave functions

picking a value from [lmin, lmax]. Finally the beginning of the first component
(i.e. f1) is chosen randomly from the [xmin − l1, xmin] interval. From this
point on we only have to add additional components, one after the other,
with randomly chosen lengths, until xmax is reached. For randomly picking a
value from an interval, always the uniform distribution over that interval is
used.

An underlying function is obtained by summing up a number, m, of such
CosineWave functions. Fig. 2 depicts an example of such an underlying func-
tion with m = 2.

3.3 Geometrical Transformations

The underlying functions control several geometrical transformations, which
are divided into two groups: the line level transformations applied on whole
lines of text, and the connected component level transformations applied on
the individual connected components of the considered line of text. The un-
derlying function of each transformation is randomly generated, as described
in Subsection 3.2. The parameters xmin and xmax are always defined by the
actual size of the image to be distorted. In the following the geometrical trans-
formations will be defined and illustrated by figures. Note that the figures are
only for illustration purposes, and weaker instances of the distortions are ac-
tually used in the experiments described later on.

There are four classes of geometrical transformations on the line level.
Their purpose is to change properties, such as slant, horizontal and vertical
size, and the position of characters with respect to the baseline. The line level
transformations are these:

• Shearing: The underlying function, denoted by f(x), of this transfor-
mation defines the tangent of the shearing angle for each x coordinate.
Shearing is performed with respect to the lower baseline. An example is
shown in Fig. 3. In this example and the following ones, the original text
line is shown at the bottom, the underlying function in the middle, and
the result of the distortion on top.

• Horizontal scaling: Here the underlying function determines the hori-
zontal scaling factor, 1 + f(x), for each x coordinate. This transformation
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Fig. 3. Illustration of shearing. The original text line is at the bottom, the under-
lying function is in the middle, and result of the distortion is on top

Fig. 4. Illustration of horizontal scaling

is performed through horizontal shifting of the pixel columns.2 An example
of this operation is shown in Fig. 4.

• Vertical scaling: The underlying function determines the vertical scaling
factor, 1 + f(x), for each x coordinate. Scaling is performed with respect
to the lower baseline. An example can be seen in Fig. 5.

• Baseline bending: This operation shifts the pixel columns in vertical
direction, by the amount of h · f(x) for each x coordinate, where h is the
height of the body of the text (i.e. the distance between the upper and
lower baselines). An example is given in Fig. 6.3

The perturbation model also includes transformations, similar to the ones
described above, on the level of connected components. These transformations
change the structure of the writing in a local context, i.e. within each con-
nected component. After the application of these transformations, the result-
ing connected components are scaled in both horizontal and vertical direction
so that their bounding boxes regain their original sizes, and then they are
placed in the image exactly at their original locations. For each connected
component, individual underlying functions are generated. There are three
classes of such transformations:

2 The appropriate shifting value at x is given by
∫ x

0
(1 + f(x))dx = x +

∫ x

0
f(x)dx

3 It can be observed that the baseline is usually not a straight line, but rather of a
wavy shape
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Fig. 5. Illustration of vertical scaling

Fig. 6. Illustration of baseline bending

• Horizontal scaling: This transformation is identical to the line level hor-
izontal scaling as described before, but it is applied to individual connected
components rather than whole lines of text.

• Vertical scaling 1: This is the counterpart of horizontal scaling in the
vertical direction.

• Vertical scaling 2: This transformation is identical to the line level verti-
cal scaling, except that scaling is performed with respect to the horizontal
middle-line of the bounding box.

The effect of all three transformations applied one after the other is shown
in Fig. 7. In this figure, the lower text line is the original one, and above its
distorted version is displayed. One can observe that in spite of the distortions
the connected components underwent, their bounding boxes have remained
the same.

3.4 Thinning and Thickening Operations

The appearance of a text line can also be changed by varying the thickness of
its strokes. In the present perturbation model this is done by applying thinning
or thickening steps iteratively. The method is based on a grayscale variant of
the MB2 thinning algorithm [69]. (A general way to get the grayscale version
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Fig. 7. Illustration of connected component level distortions. The original text line
is below, and the result of the distortions is above

Fig. 8. Illustration of thinning (above) and thickening (below) operations. The
original text line is in the middle

of a specific type of thinning algorithm operating on binary images can be
found in [70]). Thinning and thickening could also be performed using the
morphological erosion and dilation operators, respectively, but this would not
be safe when applied iteratively, because part of the original writing might be
lost after too many steps of erosion. An illustration is given in Fig. 8, where
the original text line is located in the middle, and above (below) it the results
of two successive thinning (thickening) steps can be seen. The choice whether
thinning or thickening is applied, as well as the number of steps (including
zero) is randomly made.

3.5 Distorted Text Line Generation

Now that the main constituents of the perturbation model have been intro-
duced, a simple scheme for the distortion of whole text lines can be designed.
The steps of the perturbation method for distorting a given skew and slant
corrected text line are the following:

1. Apply each of the line level transformations to the text line, one after the
other, in the order given in Subsection 3.3.
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Fig. 9. Demonstration of the perturbation method. The original human written
text line is on top, and below it five distorted versions can be seen

2. For each individual connected component, apply the connected component
level transformations, and make sure that the bounding boxes remain the
same with respect to both size and location.

3. Apply thinning or thickening operations.

Of course, these steps are not required to be always rigorously followed. In
particular, one can omit one or several of the transformations. The method is
demonstrated in Fig. 9. The original human written text line is on top, and
below there are five synthetically generated versions of that line. It can be
seen that all of the characters have somewhat changed in each generated line.
Note that due to the random nature of the perturbation method, virtually all
generated text lines are different. Other examples are given in Section 5.

4 Handwriting Recognition System

The application considered in this chapter is the off-line recognition of cur-
sively handwritten text lines. The recognizer used is the Hidden Markov Model
(HMM) based cursive handwritten text line recognizer described in [12]. The
recognizer takes, as a basic input unit, a complete line of text, which is first
normalized with respect to skew, slant, baseline location and writing width.4

4 Text line normalization is also applied in the training phase. Since the text lines
to be distorted have to be skew and slant corrected, synthetic training text line
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Fig. 10. Example of an input text line, before (above) and after (below) normal-
ization

An example is shown in Fig. 10. Normalization with respect to baseline loca-
tion means that the body of the text line (the part which is located between
the upper and lower baselines), the ascender part (above the upper baseline),
and the descender part (below the lower baseline) will be vertically scaled to a
predefined height. Writing width normalization is performed by a horizontal
scaling operation, and its purpose is to scale the characters so that they have
a predefined average width value.

For feature extraction, a sliding window of one pixel width is moved from
left to right over the input text line, and nine geometrical features are ex-
tracted at each window position. Thus an input text line is converted into a
sequence of feature vectors in a 9-dimensional feature space. The nine features
used in the system are the average gray value of the window, the center of
gravity, the second order moment of the window, the position and the gra-
dient of the upper and lower contours, the number of black-white transitions
in vertical direction, and the average gray value between the upper and lower
contour [12].

For each character, an HMM is built. In all HMMs the linear topology is
used, i.e. there are only two transitions per state, one to itself and one to the
next state. In the emitting states, the observation probability distributions
are estimated by mixtures of Gaussian components. In other words, contin-
uous HMMs are used. The character models are concatenated to represent
words and sequences of words. For training, the Baum-Welch algorithm [71]
is applied. In the recognition phase, the Viterbi algorithm [71] with bigram
language modeling [17] is used to find the most probable word sequence. As
a consequence, the difficult task of explicitly segmenting a line of text into
isolated words is avoided, and the segmentation is obtained as a byproduct of
the Viterbi decoding applied in the recognition phase. The output of the rec-
ognizer is a sequence of words. In the experiments described in the following,
the recognition rate will always be measured on the word level.

generation takes place right after the skew and the slant of the text line have
been normalized



346 T. Varga and H. Bunke

5 Experimental Evaluation

The purpose of the experiments is to investigate whether the performance
of the off-line handwritten text recognizer described in Section 4 can be im-
proved by adding synthetically generated text lines to the training set. Two
configurations with respect to training set size and number of writers are ex-
amined: small training set with only a few writers, and large training set with
many writers.

For the experiments, subsets of the IAM-Database [20] were used. This
database includes over 1,500 scanned forms of handwritten text from more
than 600 different writers. In the database, the individual text lines of the
scanned forms are extracted already, allowing us to perform off-line handwrit-
ten text line recognition experiments directly without any further segmenta-
tion steps.5

All the experiments presented in this section are writer-independent,
i.e. the population of writers who contributed to the training set is disjoint
from those who produced the test set. This makes the task of the recognizer
very hard, because the writing styles found in the training set can be totally
different from those in the test set, especially if the training set was provided
by only a few writers. However, when a given training set is less representative
of the test set, greater benefit can be expected from the additional synthetic
training data.

If not mentioned otherwise, all the three steps described in Subsection 3.5
are applied to distort a natural text line. Underlying functions are obtained by
summing up two randomly generated CosineWave functions (two is the min-
imum number to achieve peaks with different amplitudes, see Figs. 1 and 2).
Concerning thinning and thickening operations, there are only three possi-
ble events allowed: one step of thinning, one step of thickening, or zero steps
(i.e. nothing happens), with zero steps having the maximal probability of the
three alternatives, while the two other events are equally probable.

5.1 Small Training Set with a Small Number of Writers

The experiments described in this subsection are conducted in order to test
the potential of the proposed method in relatively simple scenarios, i.e. the
case of a small training set and only of few writers. For the experiments, 541
text lines from 6 different writers, were considered.6 The underlying lexicon
consisted of 412 different words. The six writers who produced the data used in
the experiments will be denoted by a, b, c, d, e and f in the following. Subsets
of writers will be represented by sequences of these letters. For example, abc
stands for writers a, b, and c.

Three groups of experiments were conducted, in which the text lines of
the training sets were distorted by applying three different subsets of the
5 See also: http://www.iam.unibe.ch/∼fki/iamDB
6 Each writer produced approximately 90 text lines
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Table 1. Results of the experiments described in Subsection 5.1 (in %)

original all dist. line level cc. level

a 33.14 48.98 47.06 38.69

b 38.68 43.07 40.41 42.61

c 39.16 49.31 46.80 44.41

d 30.56 53.14 48.62 43.02

e 54.40 59.61 58.88 54.24

f 18.83 31.98 26.90 27.76

ab 60.69 73.46 75.79 54.92

cd 56.84 61.30 62.44 59.66

ef 63.84 68.46 67.54 67.51

abc 75.19 74.11 75.78 74.83

def 65.35 68.87 67.04 68.74

distortions described in Section 3. The three subsets were the set of all dis-
tortions, the set of geometrical transformations on the line level, and the set
of connected component level geometrical transformations. In each case, five
distorted text lines per given training text line were generated and added to
the training set. So the extended training set was six times larger than the
original one.

Fig. 11 shows examples of natural and synthetically generated pairs of text
lines used in the experiments where all the distortions were applied. For each
pair of text lines the natural one is shown below, while the synthetic one is
above it. The first pair belongs to writer a, the second to writer b, and so on.

The recognition results of the three experiments are shown in Table 1,
where the rows correspond to the different training modalities. The test set
is always the complement of the training set, and consists of natural text
only. For example, the test set corresponding to the first row consists of all
natural text lines written by writers bcdef, while the training set is given
by all natural text lines produced by writer a plus five distorted instances
of each natural text line. In the first column, the results achieved by the
original system that uses only natural training data are given for the purpose
of reference. The other columns contain the results of the three groups of
experiments using expanded training sets, i.e. the results for all, line level, and
connected component level distortions, respectively. In those three columns
each number corresponds to the median recognition rate of three independent
experimental runs. In each run a different recognition rate is usually obtained
because of the random nature of the distortion procedure.

In Table 1 it can be observed that adding synthetic training data leads
to an improvement of the recognition rate in 29 out of 33 cases. Some of
the improvements are quite substantial, for example, the improvement from
33.14% to 48.98% in row a.

Augmenting the training set of a handwriting recognition system by syn-
thetic data as proposed in this chapter may have two adversarial effects on
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Fig. 11. Natural (below) and synthetic (above) text lines for writers a-f

the recognition rate. First, adding synthetic data increases the variability of
the training set, which may be beneficial when the original training set has a
low variability, i.e. when it was produced by only one or a few writers. On the
other hand, the distortions may produce unnatural looking words and char-
acters, which may bias the recognizer in an undesired way, because the test
set includes only natural handwriting.
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The greatest increase in recognition performance can be observed in Ta-
ble 1 for those cases when there is only one writer in the training set. Then
the variability of the training set is low and the addition of synthetic data
leads to a better modeling of the test set. In this case, the application of
all distortions outperforms the use of only line level or connected component
level distortions. Where multiple writers are used for training, the variability
of the training set is larger and the increase in recognition performance be-
comes smaller when synthetic training data is added. Also, in this case using
all distortions does not always result in higher recognition rate than applying
just line level or connected component level distortions.

Since in the majority of the experimental runs, an improvement of the
recognition rate was observed, it can be concluded that the use of synthetic
training data can potentially lead to improved handwriting recognition sys-
tems, in case of only a few writers in the training set.

In all experiments described in this subsection, single Gaussians were used
in the HMMs’ states to estimate observation probability distributions (see also
Section 4). As we will see in the following, the number of Gaussians should be
increased if the training set contains handwriting samples from many writers.

5.2 Large Training Set with Many Writers

In the following, the case where there are many writers and a large training
set is considered. For the experiments, a subset of the IAM-Database different
from that used in the previous subsection was considered, consisting of 1,993
text lines produced by 400 different writers, and the underlying lexicon con-
tained 6,012 words. This set of text lines was randomly divided into training,
validation and test set, such that their sets of writers were pairwise disjoint.
The training and validation set contained 1,433 lines from 288 writers, and
160 text lines from 32 writers, respectively. The test set contained 400 text
lines from 80 writers.

First, the training and the validation set were used to find the optimal
parameters for the system that uses natural training data only, and for the
system that uses a mixture of natural and synthetic training data. In the
following, these two optimized systems will be referred to as Original System
and Expanded System, respectively.

The optimization was performed in terms of capacity and distortion
strength. The capacity of the recognition system is defined as the number
of free parameters to be estimated from the training set. It determines how
much information the recognizer can store to express its knowledge about the
handwriting represented by the training set. A capacity too high may cause
overfitting on the training data. On the other hand, a capacity too low may
lead to a poor handwriting model. Since the synthetically expanded training
set contains increased variability (both natural and unnatural), its optimal
capacity is expected to be higher than the recognizer’s optimal capacity for
the original training set. That is, if the capacity of the system is not increased
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after the expansion of the training set, there is the danger that the capacity
may be too low, such that the system is biased towards the unnatural variabil-
ity introduced by the additional synthetic text lines, to an extent which may
cause the recognition performance to drop. In the experiments, the capacity
was varied through changing the number of Gaussian mixture components
used for estimating the feature value distributions in the states of the Hidden
Markov Models (see Section 4). The number of Gaussian mixtures, Ga, is the
same in all HMMs. If this parameter, Ga, is increased, then it enables the sys-
tem to model the distributions of the features extracted from the handwriting
more accurately. Thus the capacity of the system is increased.

The second parameter to optimize was the distortion strength, which can
be controlled by changing the interval of the possible amplitude values for
the underlying functions described in Section 3. Four levels of strength were
defined based on a subjective assessment: very weak, weak, middle and strong.
Note that these terms indicate only the relative order of the four levels, rather
than absolute categories.7 In Fig. 12, two examples are shown, where the text
lines on top were distorted using all four different distortion strengths. For
the distorted text line generation, all of the distortions were applied, in the
way described in Subsection 3.5. A trade-off between quality and variability of
the generated text lines can be observed, which is governed by the distortion
strength. That is, stronger distortions usually introduce more variability, but
on the other hand, the generated text lines tend to look less natural. Thus
tuning the distortion strength is expected to be beneficial.

Detailed results of the optimization stage are reported in Table 2. In the
HMM training procedure, the training set, consisting of natural and synthetic
training data, was used, while the recognition rates were measured on the
validation set, which consisted of natural text lines only. Column original
corresponds to the system using exclusively natural training data. According
to the best result, the system with Ga = 15 is chosen as the Original System,
which achieved a recognition rate of 70.48%. The other four columns, namely
very weak, weak, middle and strong, show the recognition rates of the system
using a mixture of natural and synthetic training data. For each text line in the
training set, always five distorted text lines were generated, thus the expanded
training set was always six times larger than the original one. Those results
which correspond to statistically significant improvements with respect to the
Original System (with a significance level higher than 90%), are highlighted
using boldface.8

It can be seen that increasing the capacity is beneficial for expanded train-
ing sets. Rows Ga = 6 and Ga = 12 show the effects of low capacity after
7 The strength was increased by jointly increasing the amplitude parameters for

all the transformations, sampling in equal steps in terms of the parameter values
of the perturbation model. For thinning/thickening, the probability of zero steps
was decreased

8 The significance level of an improvement was calculated from the writer level
recognition rates, by applying a statistical z-test for matched samples
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a)

b)
Fig. 12. Illustration of levels of distortion strength used in the experiments of
Subsection 5.2. From top to bottom, for both a) and b) parts: original, very weak,
weak, middle and strong
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Table 2. Results of the optimization stage of the experiments of Subsection 5.2
(in %). Statistically significant improvements are highlighted using boldface

original very weak weak middle strong

Ga=6 67.04 65.45 66.12 65.52 62.81

Ga=12 69.95 69.69 71.41 69.76 70.09

Ga=15 70.48 70.88 72.27 71.54 70.48

Ga=18 70.15 72.20 72.47 72.40 71.01

Ga=21 69.62 71.61 72.40 72.01 71.54

Ga=24 70.48 71.34 73.00 73.33 71.21

Ga=27 70.22 71.48 72.87 73.86 71.67

Ga=30 69.49 71.67 72.14 73.20 71.74

training set expansion with synthetic data, resulting in lower recognition rates
in the majority of the cases. With an increasing strength of the distortions, the
optimal capacities become higher: from column original to column strong the
optimal Ga’s were 15, 18, 24, 27 and 30, respectively. This can be explained by
the increasing variability of the training set. (Note that for strength strong,
the optimal capacity is possibly above Ga = 30.) The most significant im-
provements came at strengths weak and middle. All significant improvements
in these columns have a significance level greater than 95%. The most sig-
nificant area is at strength middle, from Ga = 24 to Ga = 30. Here the
significance level is greater than 99%. Thus the Expanded System was chosen
among these, namely the one with Ga = 27, where the recognition rate was
73.86%.

After the optimization stage, the Original System was trained on the union
of the training and validation set, and the Expanded System on the union of
the expanded training and expanded validation set. For each natural text line
in the validation set, five synthetic text lines were generated at strength mid-
dle to get the expanded validation set. Then, using the test set for testing
on previously unseen examples, the recognition results of the Original System
and the Expanded System were 76.85% and 79.54%, respectively, as shown in
Table 3. This shows that using synthetic text lines, the recognition perfor-
mance could be improved by more than 2.5%. The significance level of this
improvement is greater than 99%. (The recognition rates on the test set differ
a lot from those measured on the validation set. This can be explained by the
relatively small size of the validation set. The magnitude of the validation set
is limited by the amount of text lines in the training set, so that the training
set has approximately the same optimal capacity as its union with the vali-
dation set. This way the negative effects of too low capacity can be avoided
at the testing phase. But the choice of the training set size is also constrained
by the computational complexity of the training process, since the training of
HMMs using a large number of Gaussian mixtures is a rather time consuming
procedure.)
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Table 3. Results on the test set of the experiments of Subsection 5.2

Ga strength recognition rate

Original System 15 – 76.85%

Expanded System 27 middle 79.54%

We also note that the synthetic training set expansion methodology pre-
sented above consists of such optimizations that must always be done, inde-
pendently of the underlying datasets:

• The most appropriate distortion strength between zero and extremely
strong can only be found empirically, because it may depend on the details
of the recognizer under consideration, as well as on the concrete dataset.

• Finding the optimal number of Gaussians (or more generally, the optimal
capacity) is a must in a multi-Gaussian system, because it is dependent on
the characteristics of the training set. The same optimization is needed for
the synthetically expanded training set, in order to have a fair comparison
with the original system.9

Thus, the experiments show that expansion of the available set of text lines
by synthetically generated instances makes it possible to significantly improve
the recognition performance of a handwritten text line recognizer, even when
the original training set is large and contains handwriting from many writers.

5.3 Capacity and Saturation

The main goal of synthetic training set expansion was to improve the recog-
nition performance, by adding synthetic text lines to the original, i.e. human
written, training set. With respect to this goal, an important observation of
the experiments was that the number of Gaussians needed to be appropri-
ately increased so that the synthetic training set expansion can improve the
recognition rate.

To further examine this phenomenon, an experiment was conducted us-
ing gradually increasing training sets of an increasing number of writers, while
keeping the test set as well as the number of Gaussian components (i.e. the ca-
pacity) fixed. The natural training and validation set defined in Subsection 5.2
was used for training and testing, respectively. The numbers of Gaussians con-
sidered were 1 and 6. The two corresponding curves of recognition rates are
shown in Fig. 13, where different proportions of the training set were used
for training, while the test set was always the same. The percentages on the
horizontal axis are to be understood with respect to the union of the training
set and the validation set (the union consists of 1433+160 = 1, 593 text lines).

Based on these curves, two statements can be made:
9 It was also demonstrated in this subsection why the optimization of the capacity

should not be overlooked, see Table 2
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Fig. 13. Recognition rates on the test set using increasing training set sizes and
fixed capacity of the recognizer

• For 1 Gaussian, we cannot expect further improvements above approxi-
mately 20% of 1, 593 ≈ 320 training text lines.

• For 6 Gaussians, we cannot expect further improvements above approxi-
mately 50% of 1, 593 ≈ 800 training text lines.

This leads to the intuitive notion of saturation, which means that given a
fixed capacity of the handwriting recognition system, from a certain amount
of natural training data no further improvements in the recognition rate can
be expected. In other words, it cannot be predicted whether increasing the
training set size yields (slightly) improved or deteriorated recognition perfor-
mance. Furthermore, in Fig. 13 it also can be seen that in case of a higher
capacity of 6 Gaussians, the recognizer needs more natural training data to
get saturated.

Apparently, if the amount of natural training data already causes the sys-
tem to be saturated, we cannot expect any positive change in the recognition
rate through the expansion with synthetic data either, since even additional
natural data does not help.10 To the contrary, the negative effect of unnatu-
rality inherent in the synthetic data can become dominant, causing the recog-
nition rate to drop.

As an example for 6 Gaussians, in Table 2 the recognition rate dropped be-
cause the system was already saturated (note that the same data was used here

10 Assuming that natural data is more appropriate than synthetic data for the esti-
mation of details of natural handwriting
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to illustrate saturation). In other words, the too low capacity of the system
after synthetic training set expansion manifested itself through saturation.

To overcome the problem of saturation, in Subsection 5.2 the capacity
of the recognizer had to be increased, in order to make room for further
improvement when synthetic training set expansion is applied.

6 Conclusions and Future Work

In this chapter, the generation and use of synthetic training data in handwrit-
ing recognition was discussed. First, an overview of the related works of the
field was given, including both machine printed and handwritten synthetic
text generation.

The most important results of the authors’ research in the field of syn-
thetic handwriting generation for training purposes were also presented. A
method for training set expansion by generating randomly perturbed versions
of natural text lines rendered by human writers was presented and evaluated
under several experimental conditions in writer-independent experiments. It
was demonstrated that using such expanded training sets, improvements in
the recognition rate can be achieved rather easily when the original training
set is small and contains handwriting from only a limited number of writers.
In the second experiment, it was shown that significant improvement in the
recognition rate is possible to achieve even in the case of a large training set
provided by many writers. In this case, the applied distortion strength needs
to be adjusted, and the capacity of the recognizer (i.e. the number of Gaus-
sians used for distribution estimations) plays an important role. The capacity
has to be optimized after training set expansion, because the optimal capac-
ity of the recognition system trained on the expanded training set is expected
to be higher than the optimal capacity of the system trained on the original
training set. If the capacity is not properly adjusted when using the syntheti-
cally expanded training set, there is the danger that the capacity may become
too low, such that the system is biased towards unnatural handwriting styles
in an undesired way, causing the recognition performance to drop.

Finally, based on the empirical observations of the experiments, the in-
tuitive concept of saturation was introduced. The most important point is
that the saturation has to be taken into account, because neither synthetic
nor natural training set expansion can improve the recognition rate when the
recognition system is already saturated by the available amount of natural
training data. To cope with this problem, in the experiments the capacity of
the recognizer was increased to open up room for further improvement.

As for possible future work, we plan to use not only one but several distor-
tion strengths when expanding the training set. This may produce smoother
training data than, for example, having only natural and strongly distorted
text lines, but nothing between these two levels. Another idea is not to add all
the generated texts to the training set, but perform a kind of pre-selection of
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the most appropriate ones, by using an rejection mechanism. Style dependent
distortions as well as distortion strengths may also facilitate the creation of
expanded training sets of better quality.

Since the problem of synthetic training data was addressed from a rather
general point of view in the experiments, many questions mostly related to the
enhancement of the baseline perturbation method are still open, e.g. consid-
ering other types of distortions as well as underlying functions, or examining
the suitability of the individual distortions.

Our current work makes use of HMM for handwritten text line recogni-
tion. However, similar effects can be expected when dealing with other types
of recognizers, for example, nearest neighbor classifier [21, 46] and neural net-
works [43, 45].

References

1. Bunke, H.: Recognition of Cursive Roman Handwriting – Past, Present and
Future. In: Proc. 7th Int. Conf. on Document Analysis and Recognition, Edin-
burgh, Scotland (2003) 448–459

2. Plamondon, R., Srihari, S.: On-line and Off-line Handwriting Recognition: A
Comprehensive Survey. IEEE Trans. on Pattern Analysis and Machine Intelli-
gence 22(1) (2000) 63–84

3. Srihari, S.: Handwritten Address Interpretation: a Task of Many Pattern Recog-
nition Problems. Int. Journal of Pattern Recognition and Artificial Intelligence
14(5) (2000) 663–674

4. Impedovo, S., Wang, P., Bunke, H., eds.: Automatic Bankcheck Processing.
World Scientific (1997)

5. Gopisetty, S., Lorie, R., Mao, J., Mohiuddin, M., Sorin, A., Yair, E.: Auto-
mated Forms-processing Software and Services. IBM Journal of Research and
Development 40(2) (1996) 211–230

6. Ye, X., Cheriet, M., Suen, C.: A Generic Method of Cleaning and Enhancing
Handwritten Data from Business Forms. Int. Journal on Document Analysis
and Recognition 4(2) (2001) 84–96

7. Arica, N., Yarman-Vural, F.: An Overview of Character Recognition Focused
on Off-line Handwriting. IEEE Trans. on Systems, Man, and Cybernetics – Part
C: Applications and Reviews 31(2) (2001) 216–233

8. Mori, S., Suen, C., Yamamoto, K.: Historical Review of OCR Research and
Development. In O’Gorman, L., Kasturi, R., eds.: Document Image Analysis.
IEEE Computer Society Press (1995) 244–273

9. Simon, J.C.: Off-line Cursive Word Recognition. Proceedings of the IEEE 80(7)
(1992) 1150–1161

10. Steinherz, T., Rivlin, E., Intrator, N.: Offline Cursive Script Word Recognition
– a Survey. Int. Journal on Document Analysis and Recognition 2(2) (1999)
90–110

11. Vinciarelli, A.: A Survey on Off-line Cursive Word Recognition. Pattern Recog-
nition 35(7) (2002) 1433–1446

12. Marti, U.V., Bunke, H.: Using a Statistical Language Model to Improve the
Performance of an HMM-based Cursive Handwriting Recognition System. Int.
Journal of Pattern Recognition and Artificial Intelligence 15(1) (2001) 65–90



Synthetic Training Data in Handwriting Recognition 357

13. Kittler, J., Hatef, M., Duin, R., Matas, J.: On Combining Classifiers. IEEE
Trans. on Pattern Analysis and Machine Intelligence 20(3) (1998) 226–239

14. Roli, F., Kittler, J., Windeatt, T., eds.: Proc. 5th Int. Workshop on Multiple
Classifier Systems, Cagliari, Italy, Springer (2004)

15. Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-
Interscience (2004)

16. Lorette, G.: Handwriting Recognition or Reading? – What is the Situation
at the Dawn of the 3rd Millenium? Int. Journal on Document Analysis and
Recognition 2(1) (1999) 2–12

17. Rosenfeld, R.: Two Decades of Statistical Language Modeling: Where do We
Go from Here? Proc. of the IEEE 88(8) (2000) 1270–1278

18. Elliman, D., Sherkat, N.: A Truthing Tool for Generating a Database of Cursive
Words. In: Proc. 6th Int. Conf. on Document Analysis and Recognition, Seattle,
WA, USA (2001) 1255–1262

19. Guyon, I., Haralick, R., Hull, J., Phillips, I.: Data Sets for OCR and Document
Image Understanding Research. In Bunke, H., Wang, P., eds.: Handbook of
Character Recognition and Document Image Analysis. World Scientific (1997)
779–799

20. Marti, U.V., Bunke, H.: The IAM-Database: an English Sentence Database
for Off-line Handwriting Recognition. Int. Journal on Document Analysis and
Recognition 5(1) (2002) 39–46
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